
Exam 98-380: Introduction to Programming using
Block-Based Languages

Candidates for this exam should understand algorithmic flow and be able to describe computer programs,
use and implement common program control structures, and describe what the code does in block-based
programming languages such as the Touch Develop environment from Microsoft and MIT Scratch.
Candidates should also be familiar with the concepts and technologies described here by taking relevant
training courses, such as Creative Coding Through Games and Apps (CCGA) or Scratch or Blockly courses.
Candidates are expected to have some hands-on experience designing, creating, and publishing code
within a block-based programming language.

Microsoft Technology Associate

Objective Domain
Apply Strategies
to Solve
Computational
Problems

• Identify basic algorithmic steps to solve simple problems.
Decompose simple problems into steps; sequence processes in
the appropriate order; describe storyboards; resolve challenges
and errors related to logic or pseudocode

• Decompose a computational problem into sub-problems.
Describe computer programs that use logical subdivisions;
describe solutions that use programmable strategies such as
objects, functions, and parameters in the pseudo code
provided; identify situations when code can be reviewed

Design
Algorithms

• Create algorithms.
Differentiate problems as easy or hard for computers to solve;
apply the concept of iteration; create simple algorithms

• Analyze game play to identify the algorithmic sequences.
Analyze a game and create a sequence of instructions for
playing it; identify an event; create the code for an event in
block-based editors; explain the “on every frame” code and
event handlers

• Create and analyze algorithms that can be used to
implement animation and movement in code.
Describe animation that uses a series of individual frames;
resolve errors in algorithms; create algorithms that can be
translated into pseudocode or block-based code; use code to
command items on the screen or device

• Explain sequence, selection, and iteration.
Define loops; identify the control variable; predict the output of
loop, random number, and control variable constructs; identify
conditional statements; choose the appropriate Boolean logic
for specific results

•

Exam 98-380: Introduction to Programming using Block-Based Languages

Solve
Computational
Problems by
Using Modeling
and Simulation

Code Programs
in Block-Based
Programming

Assess Personal
Security in
Internet
Communications

© 2014 Certiport, Inc. Certiport and the Certiport logo are registered trademarks of Certiport Inc. All other trademarks and registered trademarks are the property of their respective holders.

Work with Data
Representation
in Block-Based
Programming
Languages

• Represent data in a variety of ways, including text, sounds, pictures, and numbers. Create
code to add and position objects, such as sprites on a screen or device; identify data examples
as text, sound, pictures, or numbers; change the parameters of “set frame grid” to work with
different sprite sheets; explain the role of cloud variables; explain the impact of variable scope,
including cloud variables, global variables, and local or temporary variables; design, create, and
populate a table or two-dimensional array; describe multiple uses for data.

• Employ simple data structures to solve computational problems. Declare and use variables
in a program; use input and variables to calculate new information; describe arrays, lists, and
collections; explain the differences between variables and arrays

• Describe how various types of data are accessed in apps and games . This objective may
include but is not limited to: Name your tenant; set up your first administrator; determine tenant
location.

• Solve computational problems by using computer and non-computer methods, including
unplugged and physical manipulatives. Use algorithms and Boolean logic; use games and
apps to simulate practical tasks such as converting currencies.

• Represent events typically observed in the natural, physical world by coding simulation
and modeling programs. Create programs and apps that mimic random occurrences; create
programs and apps that demonstrate fundamentals of physics such as gravity, acceleration, and
bounce.

• Implement solutions using code. Identify the basic coding elements of the programming
environment; create code for conditional statements; create conditional statements using and,
or, and not; create loops; use counting variables

• Use libraries and built-in functions to facilitate programming solutions. Code by using
ready-made functions related to objects including the game board, wall, obstacle, sprite, string,
textbox, collection, and turtle.

• Make connections between elements of mathematics and computer science. Plot points on
a gaming coordinate system; analyze a game to discover how random numbers are used; use
the random range function to generate random numbers; evaluate random numbers by using
conditionals

• Explain the basic components of Internet communication. Explain how information travels
across the Internet; define cloud computing; describe the Internet of Things; describe the roles
of cloud computing and cloud storage and their uses.

• Explain the principles of security. Describe how personal information can be used in
inappropriate ways; describe how to prevent someone from gaining access to an online account;
describe steps that websites take to keep passwords secure; describe the Caesar Cipher.

• Implement encryption and authentication strategies. Encode and decode messages using
Unicode; evaluate passwords based on security criteria; describe how hashed passwords
enhance Internet security.

• Plan and create programs. Analyze problems in relation to your audience and identify which
apps or games can be part of the solution and how they can be used; describe user-experience
principles; gather user input; use code or text to create instructions for using a program.

• Describe software development processes used to solve problems. TPlan project tasks and
delegate responsibilities; describe a cycle of create, evaluate, and revise.

• Analyze and evaluate completed programs. Evaluate for readability and usability; give and
receive feedback; evaluate feedback and revise the program accordingly.

Examine the
Software
Development
Process

