Understanding and Automatically
Preventing Injection Attacks on Node.js

Cristian-Alexandru Staicu, Michael Pradel, Ben Livshits

Technical Report TUD-CS-2016-14663

TU Darmstadt, Department of Computer Science

November, 2016

75 TECHNISCHE
@/ UNIVERSITAT

(9))\'5’5_~ DARMSTADT SoftwareLab




Understanding and Automatically Preventing
Injection Attacks on NODE.JS

Cristian-Alexandru Staicu®, Michael Pradel*, and Benjamin Livshits’

TU Darmstadt™®

Abstract—The NODE.JS ecosystem has lead to the creation of
many modern applications, such as server-side web applications
and desktop applications. Unlike client-side JavaScript code,
NODE.JS applications can interact freely with the operating
system without the benefits of a security sandbox. The complex
interplay between NODE.JS modules leads to subtle injection
vulnerabilities being introduced across module boundaries. This
paper presents a large-scale study across 235,850 NODE.JS
modules to explore such vulnerabilities. We show that injection
vulnerabilities are prevalent in practice, both due to eval,
which was previously studied for browser code, and due to the
powerful exec API introduced in NODE.JS. Our study shows that
thousands of modules may be vulnerable to command injection
attacks and that even for popular projects it takes long time
to fix the problem. Motivated by these findings, we present
SYNODE, an automatic mitigation technique that combines static
analysis and runtime enforcement of security policies for allowing
vulnerable modules to be used in a safe way. The key idea is to
statically compute a template of values passed to APIs that are
prone to injections, and to synthesize a grammar-based runtime
policy from these templates. Our mechanism does not require the
modification of the NODE.JS platform, is fast (sub-millisecond
runtime overhead), and protects against attacks of vulnerable
modules while inducing very few false positives (less than 10%).

I. INTRODUCTION

JavaScript is the most widely-used programming language
for the client-side of web applications, powering over 90% of
today’s web sites'. Recently, JavaScript has become increas-
ingly popular for platforms beyond the browser: server-side
and desktop applications (NODE.JS), mobile programming
(Apache Cordova/PhoneGap); it is even used for writing
operating systems (Firefox OS). One of the forces behind
using JavaScript in other domains is to enable client-side
programmers to reuse their skills in other environments.

Unfortunately, this skill transfer also spreads the risk of mis-
using JavaScript in a way that threatens software security. On
the one hand, some of the bad habits of client-side JavaScript,
such as the widespread use of the eval construct [24], spread
to additional platforms. On the other hand, new vulnerabilities
and kinds of attacks become possible, which do not directly
map to problems known from the client-side. For example, re-
cent work shows that mobile applications written in JavaScript
contain injection vulnerabilities [12] and that the impact of
attacks in mobile applications is potentially more serious than
that of client-side cross-site scripting (XSS).

1JavaScript use statistics: http://w3techs.com/technologies/
details/cp-javascript/all/all.

Microsoft Research’

This paper is the first to thoroughly investigate a security
issue specific to JavaScript executed on the NODE.JS platform.
Specifically, we focus on injection vulnerabilities, i.e., pro-
gramming errors that enable an attacker to inject and execute
malicious code in an unintended way. Injection vulnerabilities
on the NODE.JS platform differ from those on other JavaScript
platforms in three ways.

1) Injection APIs and impact of attacks: NODE.JS provides
two families of APIs that may accidentally enable injections.
The eval API and its variants take a string argument and
interpret it as JavaScript code, allowing an attacker to execute
arbitrary code in the context of the current application. The
exec API and its variants take a string argument and interpret
it as a shell command, allowing an attacker to execute arbitrary
system-level commands, beyond the context of the current
application. Moreover, attackers may combine both APIs by
injecting JavaScript code via eval, which then uses exec to
execute shell commands. Because of these two APIs and
because NODE.JS lacks the security sandbox known from
browsers, injection vulnerabilities can cause significantly more
harm than in browsers, e.g., by modifying the local file system
or even taking over the entire machine.

2) Developer stance: While it is tempting for researchers
to propose an analysis that identifies vulnerabilities as a
solution, to have longer-range impact, it helps to understand
NODE.JS security more holistically. By analyzing security
issues reported in the past and through developer interactions,
we observed that, while injection vulnerabilities are indeed
an important problem, developers who both use and maintain
JavaScript libraries are reluctant to use analysis tools and are
not always willing to fix their code.

To understand the attitude of NODE.JS module developers
toward potential injection flaws, we submitted a sample of
20 bug reports to developers on GitHub. Somewhat to our
surprise, only about half were responded to and only a small
fraction was fixed (the results of this experiment are detailed
in Figure 6). To understand the situation further, we reviewed
many cases of the use of eval and exec, to discover that
most (80%) could be easily refactored by hand, eliminating
the risk of injections [19]. These observations suggest that it
is unlikely that, given the right analysis tool, developers will
proceed to voluntarily fix potential vulnerabilities.

3) Blame game: A dynamic we have seen develop is a blame
game between NODE.JS module maintainers and developers
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who use these modules, where each party tries to claim that the
other is responsible for checking untrusted input. Furthermore,
while a developer can find it tempting to deploy a local fix to a
vulnerable module, this patch is likely to be made obsolete or
will simply be overwritten by the next module update. These
observations motivated us to develop an approach that provides
a high level of security with a very small amount of developer
involvement.

Given the above observations, it is important to offer
a solution that provides complete automation. This paper
presents SYNODE, an automatic approach to identify potential
injection vulnerabilities and to prevent injection attacks. The
basic idea is to check all third-party modules as part of their
installation and to rewrite them to enable a safe mode. A mix
of two strategies is applied as part of rewriting. First, we
propose to statically analyze the values that may be passed
to APIs prone to injections. The static analysis extracts a
template that describes values passed to the APIs. Second,
for code locations where the static analysis cannot ensure
the absence of injections, we present a dynamic enforcement
mechanism that stops malicious inputs before passing them
to the APIs. A combination of these techniques is applied to
a module at the time of installation via the use of NODE.JS
installation hooks, effectively enforcing a safe mode for third-
party modules. In principle, our runtime enforcement may be
overly conservative, but our evaluation shows that such cases
are rare.

A. Contributions

« Study: We present a study of injection vulnerabilities in
NODE.JS modules, focusing on why and how developers
use potentially dangerous APIs and whether developers
appear open to using tools to avoid these APIs. (Sec-
tion III)

« Static analysis: We present a static analysis that attempts
to infer templates for the user input to be used at
potentially dangerous sinks. (Section 1V)

« Runtime enforcement: For cases that cannot be shown
safe via static analysis, we present a runtime enforcement
achieved through code rewriting. The runtime approach
uses partially instantiated abstract syntax trees (ASTs)
and ensures that the runtime values do not introduce any
unwanted code beyond what is expected. (Section IV)

« Evaluation: We apply our static technique to a set
of 16,795 NODE.JS modules. We discover that 36.66%
of them are statically guaranteed to be safe. For a
subset of the statically unsafe modules, we create both
malicious inputs that exploit the injection vulnerabilities
and benign inputs that exercise the advertised function-
ality of the module. Our runtime mechanism effectively
prevents 100% of the attacks, while being overly conser-
vative for only 8.92% of the benign inputs.

II. BACKGROUND AND EXAMPLE

NODE.JS and injection APIs: The NODE.JS platform is the
de-facto standard for executing JavaScript outside of browsers.

function backupFile(name, ext) {
var cmd = [];

cmd.push("cp");

cmd . push(name + "." + ext);

1
2
3
4
5 cmd.push("”/.localBackup/");
6
7
8
9

exec(cemd. join(" "));

var kind = (ext === "jpg") ? "pics" : "other";
10 console.log(eval("messages.backup_" + kind));
11 3

Fig. 1: Motivating example

The platform provides two families of APIs that may allow
an attacker to inject unexpected code, which we call injection
APIs. First, exec enables command injections if an attacker
can influence the string given to exec, because this string
is interpreted as a shell command. The exec API has been
introduced for NODE.JS and is not available in browsers.
Second, calling eval enables code injections if an attacker can
influence the string passed to eval, because this string is inter-
preted as JavaScript code.” Since code injected via eval may
contain calls to exec, any code injection vulnerability is also
a command injection vulnerability. The latter distinguishes
server-side JavaScript from the widely studied [24] client-side
problems of eval and introduces an additional security threat.

In contrast to the browser platform, NODE.JS does not
provide a security sandbox that controls how JavaScript
code interacts with the underlying operating system. Instead,
NODE.JS code has direct access to the file system, network
resources, and any other operating system-level resources
provided to the processes. As a result, injections are among
the most serious security threats on NODE.JS, as evidenced by
the Node Security Platform?, where, at the time of writing, 20
out of 66 published security advisories address injection
vulnerabilities.

Module system: Code for NODE.JS is distributed and man-
aged via the npm module system. A module typically relies on
various other modules, which are automatically installed when
installing the module. There is no mechanism built into npm
to specify or check security properties of third-party modules
before installation.

Motivating example: Figure 1 shows a motivating example
that we use throughout the paper to illustrate our approach.
The function receives two parameters from an unknown source
and uses them to copy a file on the local file system. The
parameters are intended to represent a file name and a file
extension, respectively. To copy the file, lines 2 to 5 construct
a string that is passed as a command to exec (line 7), which
will execute a shell command. The code also logs a message
to the console. Line 10 retrieves the content of the message by
looking up a property of the messages object. The property,

2We focus on exec and eval in this paper, as these are the most prominent
members of two families of APIs. Extending our work to more APIs, e.g.,
new Function(), is straightforward.

3https://nodesecurity.io/advisories/
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and therefore also the message, depends on the extension of
the backed up file. Implementing a lookup of a dynamically
computed property with eval is a well-known misuse of
eval that frequently occurs in practice [24]. For example,
suppose the function is called with backupFile("f", "txt").
In this case, the command will be cp f£.txt ~/.localBackup
and the logged message will be the message stored in
messages.backup_other.

The example contains two calls to APIs that may allow for
injecting code (lines 7 and 10). As an example for an injection
attack, let us consider the following call:

backupFile("--help && rm -rf * && echo ", "")
The dynamically constructed command will be:

cp --help && rm -rf * && echo . ~/.localBackup/
Unfortunately, this command does not backup any files but
instead it creates space for future backups by deleting all files
in the current directory. Such severe consequences distinguish
the problem of injections on NODE.JS from injections known
from client-side JavaScript, such as XSS: because NODE.JS
code runs without any sandbox that could prevent malicious
code from accessing the underlying system, an attacker is able
to inject arbitrary system-level commands.

III. A STUDY OF INJECTION VULNERABILITIES

To better understand how developers of JavaScript for
NODE.JS handle the risk of injections, we conduct a com-
prehensive empirical study involving 235,850 npm modules.
We investigate four research questions (RQs):

« RQ1: Prevalence. At first, we study whether APIs that
are prone to injection vulnerabilities are widely used in
practice. We find that injection APIs are used frequently
and that many modules depend on them either directly or
indirectly.

¢ RQ2: Usage. To understand why developers use injection
APIs, we identify recurring usage patterns and check
whether the usages could be replaced with less vulnerable
alternatives. We find that many uses of injection APIs are
unlikely to be replaced by less vulnerable alternatives.

o RQ3: Existing mitigation. To understand how develop-
ers deal with the risk of injections, we study to what
extent data gets checked before being passed into injec-
tion APIs. We find that most call sites do not at all check
the data passed into injection APIs.

« RQ4: Maintenance. To understand whether module de-
velopers are willing to prevent vulnerabilities, we report
a sample of vulnerabilities to developers and analyze how
the developers react. We find that, even for widely used
modules, most vulnerabilities remain in the code several
months after making the developers aware of the issue.

The remainder of this section presents the results of our
study in detail. Sections III-A to III-D addresses the research
questions by studying all or a representative sample of all
npm modules. Section III-E reports a detailed analysis of one
particular module. The study is based on data collected from
npm in February 2016.
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Fig. 2: Prevalence of usages of injection APIs in npm modules.

A. RQI: Prevalence

To assess how wide-spread the use of injection APIs is in
real-world JavaScript code written for NODE.JS, we analyze
call sites of these APIs across all 235,850 npm modules.
For each module, we perform a regular expression-based
search that detects call sites of injection APIs based on
the name of the called function. We call modules that rely
on these injection APIs injection modules. Furthermore, we
analyze dependences between modules, as specified in their
package. json file, to assess whether a module uses another
module that calls an injection APIL. Given a module m,,; that
calls an injection API, we say that another module m; has a
“level-1” (“level-2”) dependence if it depends on m;,; (via
another module).

Figure 2 shows how many npm modules use injection APIs,
either directly or via another module. 7,686 modules and 9,111
modules use exec and eval, respectively, which corresponds
to 3% and 4% of all modules. Furthermore, more than 10%
of all modules have a level-2 dependence on a module calling
exec and almost 15% on a module calling eval. We conclude
that the risk of injections is prevalent and that it propagates
to a significant part of the NODE.JS code base.

The results from Figure 2 raise the question as to how to
effectively protect npm modules against injections. For exam-
ple, if many modules with level-1 dependences on injection
APIs would depend on only a single injection module, then
protecting this module against injections would protect all its
dependent modules. To estimate how many modules would be
directly and indirectly protected by protecting a subset of all
modules, we analyze the module dependence graph. Specifi-
cally, we initially mark all injection modules and all modules
with level-1 dependences as unprotected and then, assuming
that some set of injection modules is protected, propagate this
information along dependence edges. Based on this analysis,
we compute a minimal set of injection modules to protect,
so that a particular percentage of modules is protected. The
strategy we consider is to fix vulnerabilities in those modules
with the highest number of level-1 dependences.
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Fig. 3: Percentage of modules that would be protected by protecting
a particular percentage of modules that use injection APIs.

Figure 3 summarizes the results of this experiment. We find
that fixing calls to the injection APIs in the most popular 5%
of all injection modules will protect almost 90% of the level-1
dependences. While this result is encouraging, it is important
to note that 5% of all modules still corresponds to around 780
modules, i.e., many more than could be reasonably fixed
manually.

B. RQ2: Usages

The results from RQI1 show that the risk of injections
is prevalent. In the following, we try to understand why
developers take this risk and whether there are any alternatives.
We manually inspect a random sample of 50 uses of exec
and 100 of eval to identify recurring usage patterns. Our
classification yields four and nine recurring patterns for exec
and eval, respectively, illustrated in detail in the appendix.

Patterns of exec usage: The majority of calls (57%) trigger a
single operating system command and pass a sequence of argu-
ments to it. For these calls, the developers could easily switch
to spawn, which is a safer API to use, equivalent to the well-
known execv functions in C. The second-most common usage
pattern (20%) involves multiple operating system commands
combined using Unix-style pipes. For this pattern, we are not
aware of a simple way to avoid the vulnerable exec call. The
above-mentioned spawn accepts only one command, i.e., a
developer would have to call it multiple times and emulate
the shell’s piping mechanism. Another interesting pattern is
the execution of scripts using relative paths, which accounts
for 10% of the analyzed cases. This pattern is frequently used
as an ad-hoc parallelization mechanisms, by starting another
instance of NODE.JS, and to interoperate with code written in
another programming language.

Patterns of eval usage: Our results of the usage of eval
mostly match those reported in a study of client-side JavaScript
code [24], showing that their findings extend to NODE.JS
JavaScript code. One usage pattern that was not previously
reported is to dynamically create complex functions. This
pattern, which we call “higher-order functions”, is widely used

function escape(s) {
return s.replace(/"/g, *\\"?);
¥

exports.open =
exec (opener + ’

callback) {

1u;);

function open(target,
"’ + escape(target) +
¥

// possible attack:

open("‘rm -rf *‘");

O ~NO U D WN

Fig. 4: Regex-based sanitization and input that bypasses it.

in server-side JavaScript for creating functions from both static
strings and user-provided data. We are not aware of an existing
technique to easily refactor this pattern into code that does not
use eval.

Overall, we find that over 20% of all uses of injection APIs
cannot be easily removed. Furthermore, we believe that many
of the remaining uses are unlikely to be refactored by the
developers. The reason is that even though several techniques
for removing some usages of eval have been proposed years
ago [19], [11] and the risks of this function are widely
documented [4], [9], using eval unnecessarily is still wide-
spread.

C. RQ3: Mitigation

The high prevalence of using APIs prone to injections raises
the question how developers protected their code against such
vulnerabilities. To address this question, we manually analyze
the protection mechanisms used by the sample of API usages
from RQ2. Specifically, we have analyzed (i) whether a call
site of an injection API may be reached by attacker-controlled
data, i.e., whether any mitigation is required, and (ii) if the
call site requires mitigation, which technique the developers
use.

We find that for 58% of the inspected call sites, it may be
possible that attacker-controlled data reaches the injection API.
Among these call sites, the following mitigation techniques are
used:

« None. A staggering 90% of the call sites do not use
any mitigation technique at all. For example, the call to
exec in the motivating example in Figure 1 falls into this
category.

« Regular expressions. For 9% of the call sites, the devel-
opers harden their module against injections using regular
expression-based checks of input data. An example in our
data set is shown in Figure 4. Unfortunately, most regular
expressions we inspected are not correctly implemented
and cannot protect against all possible injection attacks.
For example, the escape method in the figure does not
remove the back ticks characters allowing an attacker to
deliver a malicious payload using the command substi-
tution syntax, as illustrated in the last line of Figure 4.
In general, regular expressions are fraught with danger
when used for sanitization [10].

« Sanitization modules. To our surprise, none of the
modules uses a third-party sanitization module to prevent
injections. To validate whether any such modules exists,



we searched the npm repository and found six modules
intended to protect calls to exec against command injec-
tions: shell-escape, escapeshellarg, command-join, shell-
quote, bash, and any-shell-escape. In total, 198 other
modules depend on one of these sanitization modules, i.e.,
only a small fraction compared to the 19,669 modules
that directly or indirectly use exec. For eval, there is
no standard solution for sanitization and the unanimous
experts advice is to either not use it at all in combination
with untrustworthy input, or to rely on well tested filters
that allow only a restricted class of inputs, such as string
literals or JSON data.

For the remaining 42% of call sites, it is impossible or
very unlikely for an attacker to control the data passed to
the injection APIs. For example, this data includes constant
strings, IDs of operating system processes, and the path of the
current working directory.

We conclude from these results that most modules are
vulnerable to injections and that standard sanitization tech-
niques are rarely used, despite some of the specialized modules
available for this purpose. Developers are either unaware of
the problem in the first place, unwilling to address it, or unable
to properly apply existing solutions.

D. RQA4: Interactions with Module Maintainers

The mitigation techniques discussed for RQ3 depend on
developers investing time and effort into avoiding vulnera-
bilities. To better understand to what extent developers are
willing to invest that kind of effort, we reported 20 previously
unknown command injection vulnerabilities to the developers
of the respective modules that call the injection APIs. We
have manually identified these vulnerabilities during the study
described in this section. For each vulnerability, we describe
the problem and provide an example attack to the project
developers. Figure 5 summarizes our interactions with the
developers. In total, we received eight responses. Most of the
developers acknowledge the problem, and they want to fix it.
However, in the course of several months, only three of the 20
vulnerabilities have been completely fixed. The majority of
issues are still pending, showing the lack of maintenance for
many of the modules involved.

One may hypothesize that these vulnerabilities are char-
acteristic to unpopular modules that are not expected to be
well maintained. We checked this hypothesis by measuring
the number of downloads between January 1 and Febru-
ary 17, 2016 for three sets of modules: (i) modules with
vulnerabilities reported either by us or by others via the Node
Security Platform, (ii) all modules that call an injection API,
(iii) all modules in the npm repository.

Figure 6 summarizes our results on a logarithmic scale. The
boxes are drawn between the lower quartile (25%) and the
upper one (75%) and the horizontal line marks the median. The
results invalidate the hypothesis that vulnerable modules are
unpopular. On the contrary, we observe that various vulnerable
modules and injection modules are highly popular, exposing
millions of users to the risk of injections.

E. Case Study: The growl Module

To better understand whether developers are aware of possi-
ble injection vulnerabilities in modules that they use, we man-
ually analyzed 100 modules that depend on growl. The growl
module displays notifications to users by invoking a particular
command via exec, which is one of the vulnerabilities we
reported as part of RQ4 (see last entry in Figure 5). We found
that modules depending on growl pass various kinds of data
to growl, including error messages and data extracted from
web pages. As anticipated in RQI, vulnerabilities propagate
along module dependences. For example, the loggy module
exposes the command injection vulnerability in grow! to 15
other modules that depend on loggy by sending inputs directly
to growl without any check or sanitization.

We found only four modules that sanitize the data before
sending it to the vulnerable module: mqtt-growl, chook-growl-
reporter, bungle, and autolint. We report these sanitizers in
Figure 7. Sadly, we find that all these methods are insufficient:
one can easily bypass them, as illustrated by the example input
at the end of Figure 7. The input again exploits the command
substitution syntax, which is not considered by any of the
sanitizers.

IV. OVERVIEW

The previous section shows that the risk of injection vul-
nerabilities is widespread, and that a practical technique to
mitigate them must support module maintainers who are
not particularly responsive. Motivated by these findings, this
section presents SYNODE, a novel mitigation approach that
combines static analysis and runtime enforcement into a fully
automatic approach to prevent injection attacks. To the best of
our knowledge, our approach is the first to address the problem
of injection vulnerabilities in NODE.JS JavaScript code.

The overall idea of the mitigation technique is to prevent
injections at the call sites of injection APIs. Figure 8 shows
an overview of the approach. Given a potentially vulnerable
JavaScript module, a static analysis summarizes the values that
may flow into injection APIs in the form of string templates,
or short templates. A template is a sequence consisting of
string constants and holes to be filled with untrusted runtime
data. For call sites where the analysis can statically show that
no untrusted data may flow into the injection API, no further
action is required to ensure safe runtime behavior.

For the remaining call sites, the approach synthesizes a
runtime check and statically rewrites the source code to
perform this check before untrusted data reaches the injection
APIL. When executing the module, the rewritten code enforces
a security policy that checks the runtime values to be filled
into the holes of the template against the statically extracted
template. If this check fails, the program is terminated to
prevent an injection attack.

V. STATIC ANALYSIS

We present a static analysis of values passed to injection
APIs. For each call site of such an API, the analysis summa-
rizes all values that may be passed to the called function into a



API Reported Affected module Confirmed Fixed

Reference

eval Apr 7 mixin-pro yes Apr 7
eval Apr7 modulify no -
eval Apr 7 proto yes Sep 9 *
eval Apr 8 mongoosify yes Jun 20
eval Apr 8 summit yes -
eval Apr 8 microservicebus.node yes -
eval Apr 8 mobile-icon-resizer yes Apr 9
eval Apr 4 m-log - -
eval Apr 8 mongo-edit - -
eval Apr 8 mongo-parse yes -
eval Apr 8 mock2easy - -
eval Apr 8 mongui - -
eval Apr 8 m2m-supervisor - -
eval Apr 8 nd-validator - -
eval Apr 8 nameless-cli - -
eval Apr 8 node-mypeople - -
eval Apr 8 mongoosemask - -
eval Apr7 kmc - -
eval Apr 7 mod - -
exec Jul 21 grow! yes -

github.com/floatinghotpot/mixin-pro/issues/1
github.com/matthewkastor/modulify/issues/2
github.com/milojs/proto/issues/1
github.com/nanachimi/mongoosify/issues/1
github.com/notduncansmith/summit/issues/23
github.com/microServiceBus/microservicebus.node/issues/9
github.com/muzzley/mobile-icon-resizer/issues/8
github.com/m-prj/m-log/pull/1
github.com/louischatriot/mongo-edit/issues/18
github.com/fresheneesz/mongo-parse/issues/7
github.com/appLhui/mock2easy/issues/2
github.com/jjtortosa/mongui/issues/1
github.com/numerex/m2m- supervisor/issues/1
github.com/ndfront/nd-validator/issues/4
github.com/StarmanMartin/nameless-cli/issues/2
github.com/hackrslab/mypeople/issunes/2
github.com/mccormicka/MongooseMask/issues/1
github.com/daxingplay/kmc/issues/54
github.com/modjs/mod/issues/82
github.com/tj/node-growl/issues/60

Fig. 5: Injection vulnerabilities that we reported to the developers. A dash (-) indicates that the developers have not reacted to our report.

All dates are in 2016. The fix marked with * is incomplete.
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Fig. 6: Comparison of the popularity of all the modules, modules with
calls to injection APIs, and modules with reported vulnerabilities. The
boxes indicate the lower quartile (25%) and the upper quartile (75%);
the horizontal line marks the median.

tree representation (Section V-A). Then, the analysis statically
evaluates the tree to obtain a set of templates, which represent
the statically known and unknown parts of the possible string
values passed to the function (Section V-B). Finally, based
on the templates, the analysis decides for each call site of an
injection API whether it is statically safe or whether to insert
a runtime check that prevents malicious strings from reaching
the API (Section V-C).

// sanitization autolint
function escape(text) {
return text.replace(’$’,

¥

*\N\$7);

// sanitization mqgtt-growl
message = message.replace(/"/g,

u\\\uu);

00 ~NO U wWwN -

©

// sanitization bungle

10 const ansiRx =

11 /[\u001b\u009b] [[LO#;7]*

12 (?7:00-914{1,43(7:;[0-91{0,4})*)7
13 [0-9A-ORZcf-nqry=><1/g;

14 Growl(message.replace(ansiRx,
15

16 // sanitization chook-growl-reporter
17 function escapeForGrowl(text) {

7))

18 var escaped = text.replace(/\(/g, *\\(’);
19 escaped = escaped.replace(/\)/g, >\\)’);
20 escaped = escaped.replace(/\""/g, *\\""?);
21 return escaped;

22 }

23

24 // input that bypasses all the sanitizations
25 input = "tst‘rm -rf *x°¢";

Fig. 7: Broken sanitization in growl’s clients.

A. Extracting Template Trees

The analysis is a flow-sensitive, path-insensitive, intra-
procedural, backward data flow analysis. Starting from a call
site of an injection API, the analysis propagates information
about the possible values of the string argument passed to
the API call along inverse control flow edges. The propagated
information is a tree that represents the current knowledge of
the analysis about the value:

Definition 1 (Template tree). A template tree is an acyclic,
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Fig. 9: Examples of template trees.

connected, directed graph (N, &) where
e a node n € N represents a string constant, a symbolic
variable, an operator, or an alternative, and
o an edge e € & represents a nesting relationship between
two nodes.

Figure 9 shows several examples of template trees:

« Example (a) represents a value known to be a string
constant "1s -1". The template tree consist of a single

Example Templates
(a) =["1s -1"]
(b) tb1 = [$ d " —1"}
© = ["messages.backup_pics"]
= ["messages.backup_other"]
(d) tdl ["ep ", $name,".", Sext, ,

" ~/.localBackup"|

Fig. 10: Evaluated templates for the examples in Figure 9.

node labeled with this string.

« In example (b), the analysis knows that the value is the
result of concatenating the value of a symbolic variable
$cmd and the string constant " -1". The root node of
the template tree is a concatenation operator, which has
two child nodes: a symbolic variable node and a string
constant node.

« Example (c) shows the tree that the analysis extracts for
the values that may be passed to eval at line 10 of
Figure 1. Because the value depends on the condition
checked at line 9, the tree has an alternative node with
children that represent the two possible string values.

« Finally, example (d) is the tree extracted for the value
passed to exec at line 7 of Figure 1. This tree contains
several operation nodes that represent the push operations
and the string concatenation that are used to construct the
string value, as well as several symbolic variable nodes
and string constant nodes.

To extract such templates trees automatically, we use a
data flow analysis [21], [1], which propagates template trees
through the program. Starting at a call site of an injection API
with an empty tree, the analysis applies the following transfer
functions:

o Constants. Reading a string constant yields a node that
represents the value of the constant.

o Variables. A read of a local variable or a function param-
eter yields a node that represents a symbolic variable.

o Operations. Applying an operation, such as concatenating
two strings with +, yields a tree where the root node
represents the operator and its children represent the
operands.

e Calls. A call of a function yields a tree where the
root node represents the called function and its children
represent the base object and arguments of the call.

o Assignments. An assignment of the form lhs = rhs
transforms the current tree by replacing any occurrence
of the symbolic variable that corresponds to [hs by the
tree that results from applying the transition function to
rhs.

Whenever the backward control flow merges, the analysis
merges the two template trees of the merged branches. The
merge operation inserts an alternative node that has the two
merged trees as its children. To avoid duplicating subtrees
with identical information, the analysis traverses the two given



trees t; and ¢ to find the smallest pair of subtrees ¢} and ¢}
that contain all differences between ¢1 and ¢o, and then inserts
the alternative node as the parent of | and t}.

Example 1 For example, consider the call site of eval at
line 10 of Figure 1. Starting from an empty tree, the analysis
replaces the empty tree with a tree that represents the string
concatenation at line 10. One child of this tree is a variable
node that represents the variable kind, which has an unknown
value at this point. Then, the analysis reasons backwards and
follows the two control flow paths that assign "pics" and
"other" to the variable kind, respectively. For each path, the
analysis updates the respective tree by replacing the variable
node for kind with the now known string constant. Finally,
the variable reaches the merge point of the backward control
flow and merges the two trees by inserting an alternative node,
which yields the tree in Figure 9c. [

B. Evaluating Template Trees

Based on the template trees extracted by the backward
data flow analysis, the second step of the static analysis is
to evaluate the tree for each call site of an injection API. The
result of this evaluation process is a set of templates:

Definition 2 (Template). A template is a sequence t =
[c1,...,ck] where each c¢; represents either a constant string
or an unknown value (hole).

For example, the template trees in Figure 9 are evaluated to
the templates in Figure 10. To obtain the templates for a given
tree, the analysis iteratively evaluates subtrees in a bottom-
up way until reaching the root node. The evaluation replaces
operation nodes that have a known semantics with the result
of the operation. Our implementation currently models the
semantics of string concatenation, Array.push, Array.join,
and String.replace where the arguments are constant strings.
These operations cover most templates trees that the analysis
extracts from real-world JavaScript code (Section VIII-A).
For alternative nodes, the evaluation considers both cases
separately, duplicating the number of template trees that result
from the evaluation.

Finally, the analysis transforms each evaluated tree into
a template by joining continuous sequences of characters
into constant strings and by representing all symbolic values
and unknown operations between these constants as unknown
values.

C. Identifying Statically Safe Calls

After evaluating template trees, the analysis knows for
each call site of an injection API the set of templates that
represent the string values passed to the call. If all templates
for a particular call site are constant strings, i.e., there are no
unknown parts in the template, then the analysis concludes
that the call site is statically safe. For such statically safe
call sites, no runtime checking is required. In contrast, the
analysis cannot statically ensure the absence of injections if the
templates for the call site contain unknown values. In this case,
checking is deferred to runtime, as explained in Section VI.

For our running example, the analysis determines that the
eval call site at line 10 of Figure 1 is statically safe because
both possible values passed to the function are known. In
contrast, parts of the strings that may be passed to exec
at line 7 are unknown and therefore the check whether an
injection happens is deferred to runtime.

VI. DYNAMIC ENFORCEMENT

For call sites where the values passed to the injection
API cannot be statically determined, we provide a dynamic
enforcement mechanism. The goal of this mechanism is to
reject values found to be dangerous according to a policy.
Intuitively, we want to prevent values that expand the template
computed for the call site in a way that is likely to be
unforeseen by the developer. Our approach achieves this goal
in two steps:

1) Before executing the module, the approach transforms the
statically extracted set of templates for a call site into a
set of partial abstract syntax trees (PAST) that represents
the expected structure of benign values. The trees are
partial because the unknown parts of the template are
represented as unknown subtrees.

2) While executing the module, the approach parses the
runtime value passed to an injection API into an AST
and compares the PASTs from step 1 against the AST.
The runtime mechanism enforces a policy that ensures
that the runtime AST is (i) derivable from at least one of
the PASTs by expanding the unknown subtrees and (ii)
these expansions remain within an allowed subset of all
possible AST nodes.

The following two subsections present the two steps of the
dynamic enforcement mechanism in detail.

A. Synthesizing a Tree-based Policy

The goal of the first step is to synthesize for each call site
a set of trees that represents the benign values that may be
passed to the injection API. Formally, we define this trees as
follows:

Definition 3 (Partial AST). The partial AST (PAST) for a
template of an injection API call site is an acyclic, connected,
directed graph (N, E) where
o Noup € N is a set of nodes that each represent a subtree
of which only the root node Ny, € Nywp is known, and
o (N,E) is a tree that can be expanded into a valid AST
of the language accepted by the API.

For example, Figure 11a shows the PAST for the template
tq1 from Figure 10. For this partial tree, Ny, = {HOLE},
i.e., the hole node can be further expanded, but all the other
nodes are fixed.

To synthesize the PAST for a template, the approach per-
forms the following steps. At first, it instantiates the template
by filling its unknown parts with simple string values known
to be benign. The set of known benign values must be defined
only once for each injection API. Figure 12 shows the set of
values we use for exec and eval, respectively. The approach
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(a) Partial AST for the template in Fig-
ure 10.
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(c) AST rejected by the policy derived from the partial AST.

(d) AST rejected by the policy derived from the
partial AST.

Fig. 11: A partial AST and three ASTs compared against it. The blue nodes are holes and runtime values filled into the holes at runtime.

API Language Known benign values
exec Bash " /file.txt", "1ls"
eval JavaScript x, y, "x", x.p, {x:23}, 23

Fig. 12: Known benign values used to synthesize PASTSs.

exhaustively tries all possible assignments of these values to
the unknown parts of a template. Then, each of the resulting
strings is given to a parser of the language, e.g., a JavaScript
or Bash parser. If and only if the string is accepted as a legal
member of the language, then the approach stores the resulting
AST into a set of legal example ASTs.

Given the legal example ASTs for a template, the next
step is to merge all of them into a single PAST. To this
end, the approach identifies the least common nodes of all
ASTs, i.e., nodes that are shared by all ASTs but that have a
subtree that differs across the ASTs. At first, the given ASTs
are aligned by their root nodes, which must match because

all ASTs belong to the same language. Then, the approach
simultaneously traverses all ASTs in a depth-first manner and
searches for nodes n;. with children that differ across at least
two of the ASTs. Each such node n;. is a least common node.
Finally, the approach creates a single PAST that contains the
common parts of all ASTs and where the least common nodes
remain unexpanded and form the set NV, (Definition 3). Note
that NV, is effectively an under-approximation of the possible
valid inputs, given that we construct it using a small number of
known benign inputs. However, in practice we do not observe
any downsides to this approach, as discussed in Section VIII.

Example 2 For example, for the template ¢4; and the known
benign inputs for Bash in Figure 12, the first argument passed
to cp will be expanded to the values ./file.txt.ls, 1s.ls,
./file.txt../file.txt and 1s../file.txt. All these values
are valid literals according to the Bash grammar, i.e., we
obtain four legal example ASTs. By merging these ASTs, the



approach obtains the PAST in Figure 1la because the only
variations observed across the four ASTs are in the value of
the literal. O

B. Checking Runtime Values Against the Policy

The set of PASTs synthesized for a call site is the basis
of a policy that our mechanism enforces for each string
passed at the call site. We implement this enforcement by
rewriting the underlying JavaScript code at the call site. When
a runtime value reaches the rewritten call site, then the runtime
mechanism parses it into an AST and compares it with the
PASTs of the call site. During this comparison, the policy
enforces two properties:

o P1: The runtime value must be a syntactically valid ex-
pansion of any of the available PASTs. Such an expansion
assigns to each node ng,, € Ny a subtree so that the
resulting tree (i) is legal according to the language and
(ii) structurally matches the runtime value’s AST.

P2: The expansion of a node ng,, of the PAST is
restricted to contain only AST nodes from a pre-defined
set of safe node types. The set of safe node types is
defined once per language, i.e., it is independent of the
specific call site and its PASTs. For shell commands
passed to exec, the approach considers only nodes that
represent literals as safe. For JavaScript code passed to
eval, the approach allows all AST node types that occur
in JSON code, i.e., literals, identifiers, properties, array
expressions, object expressions, member expressions, and
expression statements. Importantly, none of these nodes
types enables an attacker to inject code that has side
effects.

Example 3 To illustrate these properties, suppose that the
three example inputs in Figure 13 are given to the backupFile
function in Figure 1. Input 1 uses the function as expected
by the developer. In contrast, inputs 2 and 3 exploit the
vulnerability in the call to exec by passing data that will cause
an additional command to be executed.

Figure 11 shows the PAST derived (only one because
there is only one template available for this call site) for the
vulnerable call site and the ASTs of the three example inputs.
Input 1 fulfills both P1 and P2 and the value is accepted. In
contrast, the policy rejects input 2 because it does not fulfill
P1. The reason is that the AST of the input (Figure 11c) does
not structurally match the PAST. Likewise, the policy rejects
input 3 because it fulfills P1 but not P2. The reason for not
fulfilling P2 is that the expanded subtree (i.e., the highlighted
nodes in Figure 11d) contain nodes that are not in the set of
safe node types. [

To summarize, the enforced policy can be formalized as
follows:

Definition 4 (Security Policy). Given a runtime value v, a set
of PASTs T, and a set Nyq . of safe node types, v is rejected
unless there exists an expansion t' of some t € T, where

o t' is isomorphic to the AST of v, and
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ID name ext Property
P1 P2

1 file txt v 7/

file txt || rm *x -rf X -

3 file $(rm * -rf) v X

Fig. 13: Inputs compared against the partial AST in Figure 11a.

o let A/input be the set of nodes that belong to a subtree in
the AST of v that matches a node in Ny, then the node
type of all n € Nippyt is in Nygge.

Our runtime enforcement approach can be applied to any kind
of injection API that expects string values specified by a
context-free grammar. The effectiveness of the enforcement
depends on two language-specific ingredients: the set of be-
nign example inputs and the set of safe AST node types.
Given that we are primarily interested in eval and exec sinks,
we have created these ingredients for JavaScript and Bash,
and Section VIII-B shows both to be effective for real-world
NODE.JS code.

VII. IMPLEMENTATION

Static analysis: We implement the static analysis in Java,
building upon the Google Closure Compiler*. To handle loops
and recursion, the static data flow analysis limits the number
of times a statement is revisited while computing a particular
data flow fact to ten. When applying the static analysis to a
module, we impose a one minute timeout per module. After
finishing the analysis of a module, the implementation writes
the set of templates for each call sites into a text file to be
used by the dynamic analysis.

Runtime analysis: We implement the dynamic analysis in
JavaScript. Before executing the module, the analysis pre-
computes the PASTs for each call site based on the templates
gathered by the static analysis. While executing a module,
the analysis intercepts all calls to exec and eval and extracts
the strings passed to these function to be checked against our
policy. To parse strings given to exec and eval, we build upon
the esprima’ and shell-parse® modules.

Automatic deployment: As shown by our study (Section III),
the practical benefits of a technique to prevent injection attacks
depend on how seamlessly the technique can be deployed. A
particular challenge is how to apply a mitigation technique to
code written by third parties that may not be willing to modify
their code. To make the deployment of SYNODE as easy
as possible without relying on the cooperation of third-party
code providers, we advocate an approach in which a module
developer or a system administrator adds a post-installation
script’ to the application packaged as an npm module.

“https://developers.google.com/closure/
Shttp://esprima.org/
Shttps://www.npmjs.com/package/shell-parse
"https://docs.npmjs.com/misc/scripts
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https://www.npmjs.com/package/shell-parse
https://docs.npmjs.com/misc/scripts
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Fig. 14: CDF for the average number of constant characters per call
site. Note the logarithmic horizontal axis.

The script runs on each explicitly declared third-party de-
pendent module and, if necessary, performs the code rewriting
step that adds dynamic enforcement at each statically unsafe
call site of an injection API. As a result, our technique to
prevent injection attacks can be deployed with very little effort
and without requiring any knowledge about third-party code.

VIII. EVALUATION

We evaluate our mitigation technique by applying it to
all 235,850 NODE.JS modules. To avoid analyzing modules
without any injection call sites, we filter modules by searching
for call sites of these methods and include all 16,795 modules
with at least one such call site in our evaluation. Since
evaluating the runtime mechanism requires inputs that exercise
the modules, we consider a subset of the modules, with known
vulnerabilities, found by others or by us during the study
(Section III).

A. Static Analysis

Statically safe call sites: The static analysis finds 18,924
of all 51,627 call sites (36.66%) of injection APIs to be
statically safe. That is, the values that are possibly passed to
each of these call sites are statically known, and an attacker
cannot modify them. To further illustrate this point, Figure 16
shows to what extent the analysis can evaluate trees into
templates. For 31.05% and 39.29% of all call sites of exec
and eval, respectively, the template tree contains only constant
nodes, operators supported by the analysis, and alternative
nodes, which yield constant strings after evaluating the tree.
The remaining template trees also contain symbolic variable
nodes. Most of these trees (49.02% and 34.52%) are fully
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Kind of template tree Number of call sites

exec eval
Evaluates to constant string without holes 31.05% 39.29%
Holes due to symbolic variables only 49.02% 34.52%
Holes due to unsupported operations 19.93% 26.19%

Fig. 16: Kinds of template trees extracted by the static analysis.

evaluated by the analysis, i.e., they contain no unsupported
operators. It is important to note that the static analysis may
provide a useful template even if the template tree contains
an unsupported operation. The reason is that the other nodes
in the tree often provide enough context around the unknown
part created by the unsupported operation.

Context encoded in templates: To better understand the
templates extracted by the static analysis, we measure how
much context about the passed string the static analysis
extracts. First, we measure for each call site how many known
characters are present per template, on average. Figure 14
shows that the templates for the majority of call sites contain
at least 10 known characters. For some call sites, several
thousands of characters are known, e.g., for calls of eval that
evaluate a large piece of JavaScript code stored in a variable.
For 10,967 call sites (21.24%), there is no known character,
i.e., our approach relies entirely on dynamic information.
Second, we measure how many unknown parts the extracted
templates contain. As shown in Figure 15, the templates for
the vast majority of call sites has at most one hole, and very
few templates contain more than five holes. The main reason
for templates with a relatively large number of holes is that
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Fig. 17: CDF for the number of inferred templates per call site. Note
the logarithmic horizontal axis.

the string passed to injection API is constructed in a loop
that appends unknown values to the final string. The static
analysis unrolls such loops a finite number of times, creating
a relatively large number of unknown parts.

Third, we measure how many templates the analysis extracts
per call site. Because different executed paths may cause
different string values to be passed at a particular call site
of an injection API, the analysis may yield multiple templates
for a single call site. Figure 17 shows that for most call sites,
a single template is extracted.

Reasons for imprecision: To better understand the reasons
for imprecision of the static analysis, we measure how fre-
quent particular kinds of nodes in template trees are. We
find that 17.48% of all call sites have a template tree with
at least one node that represent a function parameter. This
result suggests that an inter-procedural static analysis might
collect even more context than our current analysis. To check
whether the static analysis may miss some sanitization-related
operations, we measure how many of the nodes correspond
to string operations that are not modelled by the analysis and
to calls of functions whose name contains “escape”, “quote”,
or “sanitize”. We find that these nodes appear at only 3.03%
of all call sites. The low prevalence of such nodes, reiterates
the observation we made during our study: An npm module
that uses sanitization when calling an injection API is the
exception, rather than the rule.

Analysis running time: Our analysis successfully completes
for 96.27% of the 16,795 modules without hitting the one-
minute timeout after which we stop the analysis of a module.
The average analysis time for these modules is 4.38 seconds,
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showing the ability of our approach to analyze real-world code
at a very low cost.

We conclude from these results that the static analysis is
effective for the large majority of call sites of injection APIs.
Either the analysis successfully shows a call site to receive
only statically known values, or it finds enough context to
yield a meaningful security policy to be checked at runtime.
This finding confirms our design decision to use a scalable,
intra-procedural analysis. The main reason why this approach
works well is because most strings passed to injection APIs
are constructed locally and without any input-dependent path
decisions.

B. Runtime Mechanism

For evaluating our runtime mechanism we consider a set
of vulnerable modules listed in Figure 18. The set includes
modules reported as vulnerable on the Node Security Platform,
modules with vulnerabilities found during our study (Figure 5),
and clients of known vulnerable modules.

Our static analysis identifies a total of 1,560 templates
for the injection APIs in the considered modules. For each
of them, we construct a PAST with a median computation
time of 2 milliseconds per module. We note that for some
modules this number is significantly higher due to our simple
PAST construction algorithm and due to the high number of
templates per module.

For each call site of an injection API in the benchmarks
modules, we find module-level APIs that propagate data to the
call sites of injection APIs. Figure 18 lists the modules and
the type of injection vector we use. “Interface” means that we
call the module via one of its exported APIs, “network” means
that we pass data to the module via a network request, “file
system” means that the module reads input data from a file,
and “command line” means that we pass data as a command
line argument to the module.

For each module, we created both benign and malicious
inputs. As benign inputs, we use example usages provided
in the documentation of the module, whenever possible. As
malicious inputs, we carefully crafted payloads that will
accomplish a specific goal. The goal for eval is to add a
particular property to the globally available console object.
For exec, the goal is to create a file in the file system. We
manage to deliver for each module at least one command
injection payload that achieves this goal, as summarized in
Figure 18. In total, this experimental evaluation involves 56
benign inputs and 65 malicious inputs. Note that in some of
the modules, we observe multiple benign values at the call
site of the injection APIs, even though we provided only one
such input to the module. The reason is that some values
produced by the module may propagate to the injection APIs,
independent of our crafted input.

False positives: Across the 121 inputs, we observe zero false
negatives and five false positives. Three of our false positives
are caused by limitations of our static analysis.

Example 4 For example, Figure 19 contains code that



Injection Inputs False Average
Type Benchmark module vector benign malicious negatives positives overhead (ms)
=8 ~ gm interface 1 2 0 0 0.41
g § i libnotify interface 4 2 0 1 0.19
v '_g 8 codem-transcode network 1 4 0 0 0.80
& printer interface 1 4 0 0 0.28
mixin-pro interface 2 4 0 0 0.16
modulify interface 1 2 0 1 0.04
2 mol-proto interface 1 2 0 1 0.07
> A~  mongoosify interface 1 2 0 0 0.04
ﬁ —  mobile-icon-resizer file system 1 5 0 0 0.39
8 o Mm-log interface 11 1 0 0 0.05
g 2 mongo-parse interface 1 2 0 0 0.11
~ mongoosemask interface 1 1 0 0 0.04
mongui network 1 2 0 0 0.05
mongo-edit network 1 1 0 0 0.04
mock2easy network 1 2 0 0 0.03
Z =~  growl interface 1 2 0 0 2.72
3 E autolint file system 4 4 0 0 1.59
- = maqtt-growl network 1 2 0 0 3.19
i § chook-growl-reporter interface 1 1 0 0 1.60
© < bungle file system 14 4 0 0 1.99
@ fish interface 1 4 0 0 0.21
54 E' git2json interface 1 4 0 1 0.37
S 2 % o kerb_request interface 3 4 0 0 0.25
© 225 & keepass-dmenu command line 1 4 0 1 0.52
Total 56 65 0 5 Avg. 0.74

Fig. 18: Summary of results for runtime enforcement.

var keys Object .keys (dmenuOpts);
var dmenulrgs keys .map(function (flag) A{

return ’-’ + flag
+ 2 "> + dmenuOpts[flag] + ?"?;
}).join(? ?);
var c¢md = ’echo | dmenu -p "Password:" ?

+ dmenulrgs;
exec(cmd);

Fig. 19: Example of a false positive.

constructs a command passed to exec by transforming an array
keys of strings using Array.map. Because of the lack of static
modeling of Array.map, our analysis assumes that the second
part of cmd is unknown, leading to a PAST with a single
unknown subtree. Our restrictive runtime policy allows to fill
this subtree with only a single argument, and therefore rejects
benign values of dmenuArgs that contain two arguments. [

The remaining two false positives are caused by our runtime
mechanism which only allows safe AST nodes in the holes.
This may be too restrictive in some situations, like in the case
of the mol-proto module where eval is used to define arbitrary
function objects whose body are specified by the users of the
module. Overall, we conclude that the approach is effective at
preventing injections while having a false positive rate that is
reasonably low, in particular for a fully-automated technique.

Runtime overhead: The last column of Figure 18 shows the
average runtime overhead per call of an injection API that
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is imposed by the runtime mechanism (in milliseconds). We
report absolute times because the absolute overhead is more
meaningful than normalizing it by a fairly arbitrary workload.
Our enforcement mechanism costs 0.74 milliseconds per call,
on average over 100 runs of the modules using all the inputs.
This result demonstrates that the overhead of enforcement is
generally negligible in practice.

Overhead as a function of the input size: To demonstrate the
scalability of our runtime enforcement, we consider input data
of different size and complexity and pass it to the injection
APIs. Here, we focus on eval call sites from Figure 18 only.
As inputs, we use a diverse sample of 200 JavaScript programs
taken from a corpus of real-world code®. For every call to
eval, we pass all 200 JavaScript programs 100 times each
and measure the variance in enforcement times.

Figure 20 shows the enforcement time, in milliseconds,
depending on the size of the JavaScript program, measured
as the number of AST nodes. For each input size, the figure
shows the 25% percentile, the median value, and the 75%
percentile. We find that the enforcement time scales linearly.
The reason is that all steps of the runtime enforcement, i.e.,
parsing the input, matching the AST with the PASTs, and
checking whether nodes are on a whitelist, are of linear
complexity.

8http://learnbigcode.github.io/datasets/


http://learnbigcode.github.io/datasets/

100

Time (ms)

AST size

Fig. 20: Overhead of runtime checks depending on input size.

IX. RELATED WORK

We restrict our focus to program analysis for security.

A. Analysis of Node.js Code

Injections into NODE.JS code are known to be ex-
ploitable [32] and there is a community-driven effort’ to
identify such problems. Ojamaa and Diilina [23] discuss sev-
eral security problems of server-side JavaScript. They identify
denial of service as one of the main threats for the NODE.JS
platform and also mention eval as a security risks. We take
these observation further by making an in-depth analysis of
injection vulnerabilities on NODE.JS and present an automated
technique to prevent injections.

NodeSentry [6] is a security architecture that supports least-
privilege integration between NODE.JS modules, for limiting
the power of third-parties libraries. The mechanism uses mem-
branes to enforce security checks at different integration lev-
els. Using the terminology introduced in the aforementioned
work, our runtime enforcement can be seen as a lower-bound
policy check on exec and eval. However, our mechanism is
much more powerful than NodeSentry, integrating information
collected by a static analysis to perform a fine-grained policy
enforcement.

Madsen et al. [17] enhance the call graph construction for
NODE.JS applications with event-based dependences. They
show that their analysis can capture real life bugs related to
event propagation which traditional static analysis can not.
Even though the main focus of such a work is not security,
it can enable the creation of more specialized techniques like
taint analysis. The static analysis component of our work is

https://nodesecurity.io/advisories
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intra-procedural, but it can benefit from integrating an inter-
procedural approach, possibly one that considers events. This
could potentially reduce the false positives rate as discussed
in Section VIII-B.

B. Program Analysis for JavaScript

Empirical studies of client-side JavaScript code [36], [24]
show that eval is prevalent in practice but often unnecessary.
Our work shows that these findings extend to server-side
JavaScript code and adds a new category of eval uses to the
existing classification [24]. We also categorize uses of exec, an
API not studied by existing work. Other studies of JavaScript
code focus on inclusions of third-party libraries [22], the
postMessage API [28], and injection attacks on JavaScript-
based mobile applications [12]. Our work differs by studying
NODE.JS code and by addressing vulnerabilities specific to
this platform.

Blueprint [16] prevents XSS attacks by enforcing that the
client-side DOM resembles a parse tree learned at the server-
side, except for a small set of benign differences. Their
work and ours shares the idea of comparing data prone to
injections to a tree-based template. In contrast to Blueprint,
we learn templates statically and focus on command injections
in NODE.JS code.

Stock et al. [30] study DOM-based XSS injections and
propose a technique to prevent them based on dynamic taint
tracking. Similar to our runtime enforcement, their prevention
policy is grammar-based. However, their strict policy to reject
any tainted data that influences JavaScript code except for
literals and JSON would break many of the usages of eval
found during our study. Another difference is that we avoid
the need for taint tracking by statically computing sink-specific
templates.

Recent defenses against XSS attacks [29], [20] advocate
signature-based whitelisting as a way to reject scripts not
originating from the website creator. SICILIAN [29] uses
an AST-based signature that computes a cryptographically
secure hash function for the parts of the script that do not
change. nsign [20] creates signatures that use script dependent
elements (keywords frequency, URLs) and context based infor-
mation (URL that triggered the script, stack trace). Both these
techniques rely on a training phase in which the developer
discovers valid signatures for the scripts, using testing. Our
work is similar in the sense that we employ a set of templates
as a whitelisting mechanism. However, we do not use testing
to collect these templates, but rather compute them statically.
As we showed in our evaluation, for some cases there are
hundreds or even thousands of paths in which an injection API
call site can be reached, therefore constructing valid signatures
for every individual path would not be feasible.

DLint [5] is a dynamic checker to find violations of code
quality rules, including uses of eval missed by static analyses.
Dynamic [8] and hybrid (static and dynamic) [3] information
flow analyses for JavaScript track how values at some program
location influence values at another program location. The
FLAX system [26] and a system proposed by Lekies et al. [14]
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use dynamic taint analysis to detect vulnerabilities caused by
missing input validation and then generate inputs that exploit
these vulnerabilities. Jin et al. [12] use a static taint analysis
to detect code injection vulnerabilities. In contrast to these
approaches, we do not require an information flow (or taint)
analysis, but instead perform lightweight runtime checks at
possible injection locations, without dynamically tracking the
values that flow into these locations.

Several approaches rewrite JavaScript code to enforce se-
curity policies. Yu et al. [35] propose a rewriting technique
based on edit automata that replaces or modifies particular
calls. Gatekeeper [7] is a sound static analysis to enforce
security and reliability policies, such as to not call particular
functions. Instead of conservatively preventing all possibly
insecure behavior, our approach defers checks to runtime
when hitting limitations of purely static analysis. Other tech-
niques [11], [19] replace eval calls with simpler, faster, and
safer alternatives. Their main goal is to enable more precise
static analysis, whereas our focus is on preventing injections
at runtime.

C. Program Analysis for Other Languages

CSAS [25] uses a type system to insert runtime checks
that prevent injections into template-based code generators.
Livshits et al. [15] propose to automatically place sanitizers
into .NET server applications. Similar to our work, these
approaches at first statically address some code locations and
use runtime mechanisms only for the remaining ones. CSAS
differs from our work by checking code generators instead
of final code. The approach in [15] addresses the problem of
placing generic sanitizers, whereas we insert runtime checks
specific to an injection call site.

There are several purely dynamic approaches to prevent
injections. XSS-Guard [2] modifies server applications to
compute a shadow response along each actual response and
compares both responses to detect unexpected, injected con-
tent. In contrast to their approach, which compares two strings
with each other, our runtime mechanism compares runtime
strings against statically extracted templates. ScriptGuard [27]
learns during a training phase which sanitizers to use for
particular program paths and detects incorrect sanitization
by comparing executions against the behavior seen during
training. Their approach is limited by the executions observed
during training and needs to check all execution paths, whereas
our approach statically identifies some locations as safe from
injections. Su and Wassermann [31] formalize the problem
of command injection attacks and propose a grammar-based
dynamic analysis to prevent them. Their work shares the idea
to reject runtime values based on a grammar that defines which
parts of a string may be influenced by attacker-controlled
values. Their analysis tracks input data with special marker
characters, which may get lost on string operations, such as
substring, leading to missed injections. Our analysis does not
need to track input values through the program, but instead
uses statically computed templates.
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Constraint-based static string analysis, e.g., Z3-str [37] is a
more heavy-weighted alternative to our static analysis. Even
though such techniques have the potential of producing more
precise templates, we opted for efficiency, enabling us to apply
the analysis easily to thousands of npm modules.

Analyses by Wassermann et al. address the problem of
finding program inputs that trigger SQL injections [34] and
XSS vulnerabilities [33] in PHP code. Ardilla [13] finds and
exploits injection vulnerabilities in PHP through a combination
of taint analysis and test generation. Instead of triggering
attacks, our work addresses the problem of preventing attacks.
Similar to our preliminary study of dependences on injection
APIs, a recent work analyzes the usage of the unsafe API in
Java [18].

X. CONCLUSIONS

Our exploration of security issues in NODE.JS applications
confirms that injection vulnerabilities are both present and
not adequately addressed. This paper presents SYNODE, an
automated technique for mitigating injection vulnerabilities in
NODE.JS applications. To aid with its adoption, our techniques
require virtually no involvement on the part of the developer.
At the same time, it effectively prevents a range of attacks with
very few false positives (false positive rate under 10%) and
sub-millisecond overheads. We find that, despite the severity
of these injection issues, NODE.JS developers are reluctant to
use analysis tools on a consistent basis. To match the realities
of the situation, our technique can be deployed automatically
as part of module installation, further easing the process
of deployment. Our work represents an important first step
toward securing the increasingly important class of NODE.JS
applications, and we hope it will inspire future work in this
space.
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The following table lists recurring usage patterns of exec and eval that we found during the study described in Section III.

APPENDIX

Type Class Description Example Perc.  Easy to
refactor
exec  OS com- Run an installed command, ei- exec(’curl -f -s -S --negotiate -u : °’ 58% yes
mand ther standard (e.g. grep, git) or + url)
custom.
exec  Piped Combine the multiple unix-like =~ var c¢md = ’echo | dmenu -p "Password:" ° 20% no
com- commands using pipes. + dmenulrgs;
mands return exec(cmd);
exec Script Execute a local script using a exec(’./bin.js’, error => { 10% yes
relative path. t.error(error, ’Should run without error.?’);
t.end();
3
exec  Terminal Run custom commands as they exec( 6% yes
emulator are provided by the user. process.argv.slice(2)
)3
eval  Library Load external JavaScript code. var _map = view.map 7 29% yes
eval(’(’ + view.map + ’)?)
undefined;
eval  JSON Legacy way to parse JSON files.  var body = eval(reg.body); 23% yes
eval  Higher- Generates functions on-the-fly. opts.filter = ’function filter (doc) {°’; 17% no
order opts.filter +=
opts.collection.map(function (c¢) {
return ’if (doc.type === \’?
+ C
+ °\?) {return true;}’;
}).join(’\n’);
opts.filter += ’return false;l}’;
eval (opts.filter);
eval Read Access an object’s property. eval(’origin0bj’ 6% yes
+ generateObjectPath(value)
+ 7))
eval Engine Use a specific functionality to eval (’ (function *(){})’); 6% no
check check engine’s support.
eval Calculation Use eval to compute mathe- eval (’(? 4% yes
matical expressions. + this.executionTimes.join(’+?)
+ )/
+ this.executionTimes.length);
eval  Call Call a given method. eval(_js + ’=extend(’ + _js + ’,_0);’); 4% yes
eval  Adhoc Generates code on the fly for  var expression = 3% no
object convenience. eval (
creation )k
+ param.toLowerCase ()
.replace(/\//gi, >\\\\?)
+ .x/ig?);
eval Write Write an object’s property. eval(’theme = {2 + i + ?:[> 4+ v + ?]}°); 3% yes
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