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REGULAR ARTICLE

Do arbitrary input–output mappings in parallel distributed processing networks
require localist coding?
Ivan I. Vankova and Jeffrey S. Bowersb

aDepartment of Cognitive Science and Psychology, New Bulgarian University, Sofia, Bulgaria; bSchool of Experimental Psychology,
University of Bristol, Bristol, UK

ABSTRACT
The Parallel Distributed Processing (PDP) approach to cognitive modelling assumes that knowledge
is distributed across multiple processing units. This view is typically justified on the basis of the
computational advantages and biological plausibility of distributed representations. However,
both these assumptions have been challenged. First, there is growing evidence that some
neurons respond to information in a highly selective manner. Second, it has been demonstrated
that localist representations are better suited for certain computational tasks. In this paper, we
continue this line of research by investigating whether localist representations are learned in
tasks involving arbitrary input–output mappings. The results imply that the pressure to learn
local codes in such tasks is weak, but still there are conditions under which feed-forward PDP
networks learn localist representation. Our findings further challenge the assumption that PDP
modelling always goes hand in hand with distributed representations and provide directions for
future research.
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Introduction

One of the main assumptions of the Parallel Distributed
Processing (PDP) approach to understanding cognition is
that information is represented in a distributed manner
(McClelland, Rumelhart, & PDP Research Group, 1986).
That is, each piece of meaningful information (e.g. letter,
word, object, face, etc.) is coded by the simultaneous acti-
vation of multiple processing units (i.e. neurons) and, at the
same time, each unit is involved in representing many
different things. As a result, it is impossible to identify
what a single-unit codes for. Distributed representations
are thus different from both localist representations in psy-
chology and grandmother cells in neuroscience, where the
activation of units is interpretable.

Distributed representations are often claimed to enjoy
a number of computational advantages over localist ones
(Hinton, McClelland, & Rumelhart, 1986). For example,
with distributed representations, similar items are coded
with similar patterns of activation over the same set of
units. This property makes it possible to interpolate
between learned examples and thus to generalise to
novel stimuli. For example, novel and familiar views of
objects produce a similar pattern of activation over a set
of units, and accordingly, it is possible to categorise
objects presented in novel views. By contrast, localist
and grandmother representations are often characterised

as look-up tables that do not have the capacity to gener-
alise (e.g. French, 1992; Poggio & Bizzi, 2004). Distributed
coding also supports graded learning in which perform-
ance improves gradually over time and “graceful degra-
dation” in which lesioning a few units leads to a small
overall decrement on performance, rather than a cata-
strophic forgetting of specific items. Localist represen-
tations, by contrast, are claimed to have difficulties
explaining both these results (e.g. Rogers & McClelland,
2014). Distributed coding schemes are also claimed to
have a greater representational capacity than a localist
coding schemes (Hinton et al., 1986).

In addition to these computational arguments, it is
widely claimed that the brain relies on distributed rep-
resentations. Indeed, grandmother cells are widely dis-
missed as untenable in the neuroscience literature (e.g.
Rolls, in press), and this is taken as evidence against loc-
alist representations in psychology (Plaut & McClelland,
2010). Given these computational and biological claims,
it is no surprise that many theorists have endorsed dis-
tributed representations.

Nevertheless, there are reasons to question some of
these conclusions. First, there is a growing body of
evidence suggesting that some neurons code for infor-
mation in a highly selective manner. A striking example
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was reported byQuiroga, Reddy, Kreiman, Koch, and Fried
(2005) who found some neurons in the hippocampus of
humans that selectively responded to specific persons,
objects or scenes (e.g. a neuron that selectively
responded to photographs of Jennifer Aniston). Other
studies have found neurons in the visual cortex of
monkey that selectively responded to images of body
parts, objects, or faces (Desimone, Albright, Gross, &
Bruce, 1984; Logothetis & Sheinberg, 1996; Logothetis,
Pauls, & Poggio, 1995). Bowers (2009) took these findings
to be consistent with localist representations in the brain,
although the findings are generally taken in support of
sparse distributed representations (Quiroga, 2012;
Waydo, Kraskov, Quiroga, Fried, & Koch, 2006). In either
case, the findings do suggest that some neurons rep-
resent high-level information in a highly selective
manner, and that localist models in psychology should
not be ruled out on the basis of neuroscience.

Second, under some circumstances, PDP models learn
highly selective (localist) representations that resemble
the highly selective neurons found in the hippocampus
and cortex (Bowers, Vankov, Damian, & Davis, 2014,
2016). For example, we found that PDP models learn loc-
alist codes when trained to code for multiple items at the
same time. In these simulations we used recurrent PDP
models of short-term memory (STM) based on Botvinick
and Plaut (2006). In both papers we varied the number of
items (words in this case) that were co-activated in STM
and carried out single-unit recordings in the hidden layer
(analogous to single cell recording studies in neuro-
science) in order to characterise the learned represen-
tations. The key finding is that the models learned
many localist representations of letters and words, and
that the number of localist codes scaled with the
number of items that had to be kept active in STM.

We argued that these findings not only highlight the
general plausibility of localist coding schemes, but also
provide an explanation as to why the brain might learn
localist codes under some conditions. Specifically, it has
been claimed that co-activating distributed patterns at
the same time leads to a blend pattern that is ambiguous
in that is not possible to reconstruct the constituent pat-
terns that produced the blend – the so-called superposi-
tion catastrophe (Von der Malsburg, 1986). We took our
findings to support this hypothesis, and that the solution
to this might be that the brain learns localist codes when
it is important to code multiple items at the same time
(Bowers, 2002).

Arbitrary input–output mapping

In this article, we consider another condition that may
lead to the development of localist codes, namely,

when networks are trained on arbitrary input–output
mappings. Indeed, it has long been hypothesised that
localist (or highly sparse and selective representations)
codes are better suited for representing arbitrary bits
of information. For example, Marr (1971) and McClelland,
McNaughton, and O’Reilly (1995) argued that the knowl-
edge in the hippocampus is coded in a highly sparse and
selective (although not localist) manner in order to
encode new and arbitrary episodic memories quickly
without suffering catastrophic interference (e.g. learning
to associate a name to a new face). Coltheart, Rastle,
Perry, Langdon, and Ziegler (2001) argued that localist
word codes support the naming of exception words
when the mappings between letters and sounds are irre-
gular. Similarly, Farah (1990) noted that more selective
(although not localist) codes are needed to support the
mapping between objects and their names compared
to objects and their meanings because the former map-
pings are more arbitrary. This was used to explain the
finding that acquired neuropsychological disorders in
object naming can be highly selective (e.g. the selective
inability to name fruits and vegetables; Hillis & Cara-
mazza, 1991).

What are the computational advantages of localist
coding that make it more suitable for representing arbi-
trary input–output mappings? As already discussed, one
of the fundamental characteristics of distributed rep-
resentations is that similar things are represented in
similar ways. While this feature facilitates generalisation
and the parsimonious use of existing computational
resources, it introduces a problem when similar inputs
have to be mapped to very different outputs. In such
cases, it may be beneficial to keep the internal represen-
tations of similar inputs as different as possible. When
this computational pressure is pushed to the extreme,
the solution is to have (close to) orthogonal internal rep-
resentations, and the most efficient way to implement
this is localist codes.

There have already been a few attempts to character-
ise what sorts of representations PDP models learn when
trained on arbitrary input–output mappings and the
results have been mixed. Hinton et al. (1986) trained a
three-layered network to map letters to word meanings
(an arbitrary mapping). The network included 30 input
units, 20 hidden units, and 30 semantic units, and each
word in the letter layer was coded by 3 letter units,
and the meaning of each word was coded as a random
pattern of activation over the 30 semantic units (the
meaning of each word was defined by randomly
setting a semantic unit active with probability 0.2).
After training the model to associate 20 words with 20
different meanings the authors analysed the connection
weights between units and measured performance after
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lesioning single units in the network. The authors found
that each hidden unit was strongly connected to mul-
tiple output units (suggesting distributed coding), and
that lesioning single units tended to cause a slight rise
in the error rate for several different words rather than
the complete failure on one specific word (again
suggesting distributed representations). These findings
were taken to support the conclusion that distributed
codes support arbitrary mappings (for similar con-
clusions, see Plaut & Shallice, 1993).

By contrast, Berkeley (1995) reported that a feed-
forward network trained to solve a set of logic problems
(that involved a complex set of input–output mappings)
learned localist representations. After training the
network, Berkeley carried out single-unit recording on
each hidden unit in response to all the trained inputs.
He found that the hidden units were activated in a
“banded” manner (such that a subset of the trained
inputs all drove the hidden unit to a similar level of acti-
vation), and that these bands could often be assigned
featural interpretations. For example, in one of his simu-
lations, all of the input patterns that fell into a band
included the feature unit OR (one feature common to
many of the logical problems). That is, the model
seemed to learn localist representations (in this case an
“OR” unit), with individual units coding for discrete
parts of the logical problem. We found similar banding
patterns in our superposition simulations using this
same method of recording hidden units (Bowers et al.,
2014, 2016).

More recently, a variety of “deep” convolutional net-
works that perform state-of-the-art object recognition
have been shown to learn highly selective object rep-
resentations in their upper layers (Yosinski, Clune,
Nguyen, Fuchs, & Lipson, 2015). These networks consist
of multiple pooling and special “convolutional” layers
which serve as feature maps. Importantly, the units in
the subsequent layers are not fully interconnected and
the weights of the convolutional layers are shared
across many units. This architecture provides an engin-
eering solution to solving spatial invariance as well as
reduce the number of number of connections that
need to be trained (and thus speeds up training). But
importantly, these networks do not have any built-in
mechanisms designed to lead to selective coding (e.g.
“winner-takes-all” lateral inhibition connections), and
accordingly, these results again suggest that the local
codes were learned for adaptive reasons.

Together, these studies show that networks trained
on complex (or arbitrary) input–output patterns one-at-
a-time learn distributed representations under some
conditions and localist representations under others.
However, it is unclear why the different results were

obtained. The goal of the current paper is to explore
the conditions that drive PDP networks to learn selective
representations when trained on arbitrary input–output
mappings one-at-a-time.

Our simulations and findings are as follows. In Simu-
lation 1, in order to manipulate the difficulty of the
input–output mappings, we varied the density and the
similarity of input patterns, the size of the hidden layer,
and the training set size. In Bowers et al. (2014), we
found that the number of localist representations
learnt in a PDP model of STM increased when the
input representations were denser and had increased
overlap, and we hypothesised this could explain the pre-
vious contrasting results. However, for Simulation 1, we
found no local codes in any of our conditions. In Simu-
lation 2, rather than using a single input, we investigated
whether a PDP network would learn localist codes for a
category of inputs (i.e. localist codes for many-to-one
mappings), as this condition is more similar to those
faced by deep networks trained to categorise input pat-
terns. Again, no local codes were learned. Finally, in
Simulation 3 we used more natural stimuli – photos of
human faces – and trained the network to learn both
one-to-one and many-to-one mappings. The analysis
revealed that the network learned localist represen-
tations only in the many-to-one task. Overall, it is clear
that PDP networks can learn localist codes under some
conditions, but we do not yet have a good understand-
ing of the exact conditions required.

Simulation 1

A feed-forward PDP network was trained to store a vari-
able number of arbitrary input–output mappings. The
network consisted of an input layer having 500 units, a
hidden layer of a size that was systematically varied
between 100, 500 and 1000 units, and an output layer
of 50 units. The input layer was fully connected to the
hidden layer and the hidden layer was fully connected
to the output layer. There was also a bias unit, connected
to all the units in the hidden and the output layers. The
activation of ith unit, ai, in the hidden or he output layer
was computed using the sigmoid function:

ai = 1
1+ e−neti

,

where neti is the net input to unit i.
The performance of the network during training was

assessed by applying the cross entropy function to the
output layer:

error =
∑
i

ti ln
ti
ai

( )
+ (1− ti)ln

1− ti
1− ai

( )
,
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where ti is the target value of the ith unit of the output
layer. The network was trained by using a backpropaga-
tion algorithm until the difference between the acti-
vation of the output layer and the target pattern, as
measured by the cross entropy function, dropped
below 0.01 per output unit. The learning rate was set
to 0.01 in all of the simulations.

The training sets were constructed by generating a set
of random input and target patterns and arbitrarily
pairing them. Both the input and the target output pat-
terns were binary (the input and the target unit acti-
vations were either 0 or 1). The training set was either
small (100 input-target vector pairs), medium (500
pairs) or large (1000 pairs). The target patterns were dis-
tributed – they were generated by randomly turning on
half of the output units. The density of the input patterns
was manipulated by randomly turning on 20%, 40%, 60%
or 80% of the input units. In sum, there was a total of 36
conditions under which the network was trained: 4 levels
of input density (20%, 40%, 60%, 80%) × 3 levels of
hidden layer size (100, 200, 400 units) × 3 training set
sizes (100, 500 and 1000). The simulation was repeated
10 times for each of these conditions, each time generat-
ing a new training set. The average number of trials
needed to train the network varied as a function of con-
dition. With regards to density, 19,303, 17,035, 18,651
and 25,215 training trails were required for densities of
20%, 40%, 60% and 80%, respectfully. With regarding
to the training set size, 9767, 17,315 and 34,512 training
trials were required on average for 100, 500 and 1000
training examples, respectively. Finally, with respect to
the size of the hidden layer, 27,301, 16,986 and 14,492
training trials were required for 100, 500 and 1000
hidden units.

Once training was complete the selectivity of the units
in the hidden layer of the network was analysed by using
the metric proposed in Bowers et al. (2014, 2016). That is,
the selectivity of a unit with respect to a particular input
vector was quantified as the minimal difference in its
activation when the network was presented with this
input compared to all other inputs. Thus, the selectivity
of a unit varied between 1 (the unit was maximally acti-
vated only by a given input vector and all other inputs
didn’t activate it all) to −1 (the units was maximally acti-
vated by all inputs but one, which set its activation to 0).
As in our previous work (Bowers et al., 2014, 2016) we
characterised a unit if the absolute value of its selectivity
exceeded 0.5

In order to demonstrate that the localist codes we
found are not spurious, we calculated the number of
local codes before the network was trained and made
sure no local codes were found even then the selectivity
criterion is reduced to 0.1.

The selectivity analysis revealed that the networks did
not learn any localist representations in any of the con-
ditions that varied the difficulty of the arbitrary input–
output mapping. In order to make sure that this
conclusion is not related to the specific value of the
selectivity criterion we adopted (0.5), we also checked
the number of units which absolute selectivity exceeded
0.4 and 0.3 – no such units were found in any of the
conditions.

This finding is surprising given evidence that local
codes do develop in deep networks when trained to cat-
egorise pictures of objects (a case of arbitrary input–
output mapping). The results suggest the variables we
manipulated (input density, hidden layer size and train-
ing set size) are not crucial for learning local coding
schemes. There is another variable that may play a role
in these unexpected results. Deep learning networks net-
works are usually trained to map together many different
instances of a given category onto a single output cat-
egory (e.g. many different images of cats are all
mapped to the category “cat”). In Simulation 1 each
input had its own arbitrary output (i.e. a 1-to-1
mapping) instead. Therefore, in Simulation 2 we
explored the possibility that local codes emerge when
networks area trained on many-to-one mappings.

Simulation 2

In the simulation reported above we found no examples
of localist representations for specific inputs. However,
the highly selective neurons found in neuroscience
often respond to a variety of things belonging to a par-
ticular category (i.e. all photos of Jennifer Aniston). This
raises the question as to whether we will find a similar
outcome when we train the network to map multiple
similar inputs onto the same output.

We also consider the possibility that the emergence of
localist codes for categories of inputs depends on the
similarity of categories to one another (between-group
similarity) and the similarity of the exemplars belonging
to the same category (within-group similarity). We con-
ducted a simulation to assess whether a PDP network
will indeed learn category specific localist represen-
tations when confronted with an arbitrary many-to-one
mapping problem, and, in addition, whether the
number of such representations will be modulated by
between-group and within-group similarity. The training
set consisted of 500 bipolar input patterns organised into
50 categories, 10 patterns per category. All input patterns
belonging to a category were mapped to the same target
pattern. The target patterns were the same as in Simu-
lation 1. In order to manipulate between-group similarity,
we first generated 50 “prototype” bipolar input patterns,
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one for each category. The cosine similarity of the proto-
type patterns was low (average cosine similarity 0.2), or
high (average cosine similarity 0.8). Then, for each proto-
type pattern we generated 10 patterns in which average
similarity was either low (0.2) or high (0.8). The simulation
was repeated 10 times, each time generating a new
training set. The average number of training trials was
14,525 for the high between-group similarity condition,
8975 for low between-group similarity, 8050 for the
high within-group similarity and 15,450 for the low-
within-group similarity condition.

The results of the selectivity analysis revealed no local
codes at any reasonable selectivity level (0.3, 0.4 or 0.5),
suggesting that the nature of the arbitrary input–output
mapping (one-to-one or many-to-one) does not drive
learning localist representations.

Simulation 3

The goal of simulation 3 was to investigate if a PDP
network can learn localist representations if given a nat-
uralistic training set, rather than random input patterns.
To this end, we used a publicly available database of
photographs of human faces (AT&T Laboratories Cam-
bridge, n. d.). The training set consisted of 400 photos
of faces belonging to 40 people (10 images per
person). The images were black and white and were
scaled down to 45 × 37 pixels. Each pixel was coded by
an input unit with an activation value that varied con-
tinuously from 0 to 1. rather than discretely (either 0 or
1). The target patterns were binary and were generated
by randomly turning half of the output units on.

The simulation was run using both a one-to-one and a
many-to-one mapping task. In the one-to-one mapping
each image of a person was mapped to a unique distrib-
uted target pattern (resulting in 400 target patterns). In
the many-to-one mapping task, we mapped all the
images belonging to a given person to a single target
pattern (which required 40 target patterns, one for
each person). A feed-forward PDP network with 1665
(45 × 37) input units, 500 hidden units and 50 output
units was trained to perform the 2 tasks until the error
at the output layer dropped below 0.01 per unit. Apart
for the larger input layer size, the settings of the
network and the training procedure were the same as
in the previous simulations. The simulation was repeated
10 times; it took 130,228 trials on average to train the
network in the one-to-one mapping condition and
22,560 in the many-to-one mapping condition

The analysis of the hidden layer revealed that the
network learnt local representations for specific people
in the many-to-one condition, and no local codes at all
in the one-to-one condition. In Figure 1(a) we depict

the selectivity values of the 500 hidden units as well as
the images which some of the most selective units
responded to. The results show that PDP networks can
learn some localist representations when the training
set is composed of more naturalistic input patterns in
which the input units coded for information in a continu-
ous (grey-scale) rather than discrete manner. Interest-
ingly, this only happened in the many-to-one mapping
condition and only local codes for groups of things (i.e.
all images of the same person), rather than local codes
of individual images, were found. Figure 1b shows an
example of a highly selective unit that responded only
to the images of a specific person.

General discussion

Our first key result is that PDPmodels trained on arbitrary
input–output mappings learned distributed rather than
localist codes when the input and output units took on
discrete values (standard in most PDP modelling in psy-
chology). This was the case in Simulation 1 in which the
model was trained to map inputs onto unique outputs
(one-to-one mappings) when we varied similarity of
the input patterns, the number of input patterns, as
well as the number of hidden units (varying the difficulty
of the task), and in Simulation 2 in which the model was
trained to map multiple input patterns to a common
output (many-to-one mappings) when we varied the
similarity of the patterns within and between categories
as well as the number of input patterns. This pattern of
results contrasts with our previous work where we
found that PDP models learned localist codes when
trained to co-activate multiple items at the same time
in STM using input and output units that took on
binary values.

The second key result was that PDP models did learn
localist representations under some conditions when
trained on arbitrary mappings with photographs of
faces where the input units took on continuous rather
than binary values. When the model was trained on
one-to-one mappings the model continued to learn no
local codes, but when trained on many-to-one map-
pings, the model learned an average of 6 person-specific
localist representations (out of 20 people). That is, the
model learned localist codes for categories (persons)
rather than local codes for individual photographs.

What is to be made of this pattern of results? The fact
that distributed codes supported a wide range of
complex arbitrary input–outputmappings clearly demon-
strates that the task of mapping between arbitrary
domains does not constitute such as strong a pressure
to learn localist codes as the task of co-activating multiple
items at the same time (Bowers et al., 2014, 2016). In this
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Figure 1. (a) Selectivity of the hidden layer units in Simulation 3. Each unit is represented by a square and its selectivity is indicated by
the degree of lightness of the square, with light grey referring to a unit with high selectivity and black referring to a unit that is non-
selective. The units which selectivity exceeds .3 are labelled with the number of the person that the unit responds to (there were images
of 40 people in the training set, ten images per person). The numbers under the labels show the exact selectivity of the units. Two
examples of the images that selectively activate hidden units are given. (b) Labelled scatter plots of a highly selective (left) and a
non-selective unit (right) in Simulation 3. Each dot in the scatter plots represents a single input pattern and the label indicates the
identification of the input. The activation of the unit varies along the x-axis. Unit 312 responded only to the images of the ninth
person in the faces database.
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earlier work, localist codes were always found when the
model succeeded in co-activating and recalling multiple
familiar and unfamiliar patterns. Indeed, we argued that
localist codes are required in order to solve the superposi-
tion constraint. By contrast, localist codes are not required
for many complex input–output mappings.

At the same time, our findings again highlight that
standard feed-forward PDP networks learn localist
codes under some conditions when trained on items
one-at-a-time. This is in line with earlier work by Berkeley
(1995) who trained networks on logical problems (when
inputs took on discrete values) as well as recent work
with “deep networks” (networks with many hidden
layers) that support state-of-the-art recognition of
images in scenes (Le et al., 2012; Yosinski et al., 2015).
For example, Yosinski et al. (2015) analysed individual
units in deep network that came in first place ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) in
2012 (Krizhevsky, Sutskever, & Hinton, 2012). They
found that the best image for driving a single neuron
was often an easily interpretable image (a localist
code). Perhaps even more impressive, Le et al. (2012)
trained a deep network on 10 million images in an unsu-
pervised manner, and found a unit that selective coded
for faces. The authors wrote:

But perhaps more importantly, it answers an intriguing
question as to whether the specificity of the “grand-
mother neuron” could possibly be learned from
unlabeled data.

The answer appears to be “yes” given their analyses.
What remains unclear to us, however, is why local

codes are learned in some conditions and not others
when trained on items one-at-a-time. Interestingly,
we observed local codes under the same conditions
that these deep networks learn local codes, namely,
when detailed images (with input units that take on
continuous values) are involved in many-to-one map-
pings. But what is it about these conditions that lead
to local codes whereas the one-to-one mappings
with these same images (Simulation 3), or many-to-
one mappings with dense, but discrete input patterns
(Simulation 2) do not? Similarly, what it is about the
input–output mappings employed by Berkeley (1995)
that lead to localist input codes, given that he used
sparse and discrete input patterns? We do not have
any good intuitions about why these contrasting
results are observed.

There are not esoteric questions only relevant to the-
orists interested in specific computational models. We
have used PDP models because the learned represen-
tations are not stipulated (Plaut & McClelland, 2000).
That is, models learn the representations that are best

or most efficient in solving a given task. This opens up
the possibility that PDP models can be used to
advance hypotheses as to when localist or distributed
codes are best suited for solving tasks more generally,
including when the tasks are performed by the brain.
We think we have developed a good understanding
regarding the conditions in which recurrent PDP
models learn localist codes when trained on multiple
items at the same (Bowers et al., 2014, 2016), and
argue that this provides a possible explanation as to
why cortical systems learn selective codes. Our hope is
that the current results provide a first step in developing
a better understanding of the conditions in which PDP
models learn localist codes when trained on items one-
at-a-time may, with similar implications for neuroscience.

It is perhaps worth emphasising that in that all our
previous work, as well as here, we always find a majority
of units that do not respond selectively to inputs. Accord-
ingly, our findings are consistent with the common claim
that PDP networks learn distributed representations, but
contrary to the standard assumption, we have found that
PDP models learn a mixture of localist and distributed
codes under a range of conditions. We would hypoth-
esise that the biological neural systems may also rely
on mixed (localist/distributed) representations when
coding multiple items at the same time (Bowers et al.,
2014, 2016) or when performing some sorts of arbitrary
input–output mappings.

In summary, we take the neuroscience and compu-
tational results to challenge the two main reasons why
distributed representations are favoured over localist
coding. Contrary to the common claim that PDP
models learn distributed codes, and this reflects the
computational advantages of distributed coding, we
and others have shown that a range of neural net-
works often learn localist codes, and this reflects the
computational advantages of localist coding across a
range of conditions. Second, in contrast with the
common claim that the brain codes information in a
distributed manner, a wide variety of data now high-
light how selective neural coding can be. Our compu-
tational work suggests some hypotheses as to why
these results may be observed, and challenge the
widespread view in psychology that distributed rep-
resentations should be preferred on computational
and biological grounds. More generally, we hope our
results inspire more work on the analysis of hidden
layer representations across a range of network archi-
tectures in order to better characterise the compu-
tational tasks that generate distributed and localist
coding. In our view, a better understanding of these
constraints will provide important insights for theories
in both neuroscience and psychology.
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