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Preface

Opinion and sentiment and their related concepts, such as evaluation, appraisal,
attitude, affect, emotion, and mood, are about our subjective feelings and beliefs.
They are central to human psychology and are key influencers of our behaviors.
Our beliefs and perceptions of reality, as well as the choices we make, are to a
considerable degree conditioned on how others see and perceive the world. For
this reason, our views of the world are very much influenced by others’ views, and
whenever we need to make a decision, we often seek out others’ opinions. This is
true not only for individuals but also true for organizations. From an application
point of view, we naturally want to mine people’s opinions and feelings toward any
subject matter of interest, which is the task of sentiment analysis. More precisely,
sentiment analysis, which is also called opinion mining, is a field of study that aims
to extract opinions and sentiments from natural language text using computational
methods.

The inception and rapid growth of sentiment analysis coincide with those
of social media on the web, such as reviews, forum discussions, blogs, and
microblogs, because for the first time in human history, we now have a huge
volume of opinion data recorded in digital forms. These data, also called user-
generated content, prompted researchers to mine them to discover useful knowl-
edge. This naturally led to the problem of sentiment analysis or opinion mining
because these data are full of opinions. These data are full of opinions is not
surprising, because the primary reason why people post messages on social media
platforms is to express their views and opinions, and therefore sentiment analysis
is at the very core of social media analysis. Since early 2000, sentiment analysis
has grown to be one of the most active research areas in natural language pro-
cessing. It is also widely studied in data mining, web mining, and information
retrieval. In fact, the research has spread from computer science to management
science and social science because of its importance to business and society as a
whole. In recent years, industrial activities surrounding sentiment analysis have
also thrived. Numerous start-ups have emerged. Many large corporations, for
example, Microsoft, Google, Hewlett-Packard, and Adobe, have also built their
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own in-house systems. Sentiment analysis systems have found applications in
almost every business, health, government, and social domain.

Although no silver bullet algorithm can solve the sentiment analysis problem,
many deployed systems are able to provide useful information to support real-
life applications. I believe it is now a good time to document the knowledge
that we have gained in research, and, to some extent, in practice, in a book.
Obviously, I don’t claim that I know everything that is happening in the industry,
as businesses do not publish or disclose their algorithms. However, I have built
a sentiment analysis system myself in a start-up company and served clients on
projects involving social media data sets in a large variety of domains. Over the
years, many developers of sentiment analysis systems in the industry have also
told me roughly what algorithms they were using. Thus, I can claim that I have
a reasonable knowledge of practical systems and their capabilities and firsthand
experience in solving real-life problems. I try to pass along those nonconfidential
pieces of information and knowledge in this book.

In writing this book, I aimed to take a balanced approach, analyzing the sen-
timent analysis problem from a linguistic angle to help readers understand the
underlying structure of the problem and the language constructs commonly used to
express opinions and sentiments and presenting computational methods to analyze
and summarize opinions. Like many natural language processing tasks, most pub-
lished computational techniques use machine learning or data mining algorithms
with the help of text-specific clues or features. However, if we only focus on such
computational algorithms, we will miss the deep insights of the problem, which in
turn will hinder our progress on the computational front. Most existing machine
learning algorithms are black boxes. They do not produce human-interpretable
models. When something goes wrong, it is hard to know the cause and how to
fix it.

In presenting linguistic constructs and perspectives, I do not follow the linguis-
tic tradition in writing because the knowledge and the way that the knowledge is
presented in the traditional linguistics literature are mainly for people to understand
rather than for computers to operationalize to solve real-life problems. Although
the knowledge of human beings and instructions for computers can largely inter-
sect, they also have major differences. As a case in point, when I was working
on the problem of mining opinions from conditional sentences, I read several
linguistics books about conditionals. However, to my surprise, I found almost no
linguistic knowledge that can be operationalized computationally to help solve
the problem. I believe this is partially because the current computation technolo-
gies are not mature enough to have the same understanding capability as people
and partially because much of the linguistic knowledge is not meant for comput-
ers to use. Another feature of this book is that it is not just about studying the
language for human understanding per se, as much of the traditional linguistic
literature does; it is also about practical applications of mining sentiment and
opinion expressed in natural language, for which we not only want to recognize
sentiment or opinion expressions and their polarities (or orientations) but also to
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extract several other pieces of important information associated with sentiment
or opinion. For example, we want to identify the real-world entities or topics that
a sentiment or opinion is about. These entities or topics are called opinion (or
sentiment) targets. Extracting opinion targets is extremely important in practice.
For example, in the sentence “I am disgusted by tax increase for the poor,” if we
only find that the sentence expresses a negative sentiment and/or an emotion of
disgust from the sentence author, it is not that useful in practice. But if we also
find that the negative sentiment is toward ‘tax increase for the poor,’ which is
the target of the negative sentiment or emotion, the information becomes much
more valuable. I hope this book can serve to encourage linguists to develop a
comprehensive theory about sentiment and opinion and their associated concepts.

I write this book as an introductory text to the field of sentiment analysis and
as a research survey. In many places, it is one or the other, and in some other
places, it is a mixture of both. The reason for this mixed or somewhat unusual
presentational style is that there are few mature techniques or algorithms for
sentiment analysis, although numerous researchers have attempted to solve each
subproblem. In many cases, we can see from the accuracy of the results of the
published papers that they are not yet ready for prime time. Another reason for the
mixed presentational style of this book is that most existing research methods are
direct applications of machine learning and data mining algorithms employing text
features. Because many books on machine learning and data mining cover these
algorithms extensively, these algorithms are thus not detailed in this book. This
book also does not detail the basics of linguistics or natural language processing,
such as part-of-speech tagging, syntactic parsing, shallow parsing, and grammar.
Although these topics are very important to sentiment analysis too, again, they
have been covered in numerous books on natural language processing. This book
thus assumes that readers know the basics of machine leaning and natural language
processing.

I tried to cover all major developments of the field in this book. It is thus quite
comprehensive. Evidence of this is that the book cites more than six hundred pub-
lications from all major conferences and journals. I organize the book as follows.
Chapter 1 introduces the book and gives the motivations for the study of senti-
ment analysis. We see that sentiment analysis is a fascinating and yet challenging
problem with almost unlimited practical applications. Chapter 2 defines the senti-
ment analysis problem and discusses many of its related issues. Here we see that
although sentiment analysis is a natural language processing problem, it can be
defined structurally. Through the definition, we can transform unstructured text to
structured data. This facilitates subsequent qualitative and quantitative analyses,
which are critical for real-life applications. We also see that sentiment analysis is
a multifaceted problem with many challenging and interrelated subproblems.

Chapter 3 studies the topic of document-level sentiment classification, which
classifies an opinion document (e.g., a product review) as expressing a posi-
tive or negative sentiment. Chapter 4 studies the same classification problem
but focuses on each individual sentence. Related problems of sentiment rating
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prediction, transfer learning, and multilingual sentiment classification are also
discussed in these two chapters.

Chapters 5 and 6 go to the fine-grained level to study the most important topic
of aspect-based sentiment analysis, which not only classifies sentiment but also
identifies the target of sentiment or opinion. Most practical sentiment analysis or
opinion mining systems in industry are based on this fine-grained level of analysis.
Chapter 5 focuses on aspect sentiment classification, and Chapter 6 focuses on
aspect or target extraction.

Chapter 7 describes research that compiles sentiment lexicons. A sentiment
lexicon is a list of words and phrases (e.g., good, amazing, bad, horrible) that
people often use to express positive or negative opinions. Chapter 8 studies opin-
ions expressed in comparative sentences. Chapter 9 focuses on opinion summa-
rization and opinion search. Chapter 10 looks into a different type of sentiment
(agreement and disagreement) expressed in online debates and discussions, which
involve extensive interactive exchanges among participants. Chapter 11 investi-
gates intention mining, which aims to discover intentions expressed in language.

Chapter 12 switches to a very different topic: detecting fake or deceptive online
opinions. Chapter 13 studies the problem of ranking online reviews based on
their usefulness so that users can view the most useful reviews first. Chapter 14
concludes the book and discusses some future research.

The book is suitable for students, researchers, and practitioners who are inter-
ested in social media analysis and natural language processing in general and
sentiment analysis or opinion mining in particular. It is written not only for the
computer science audience but also for researchers and practitioners in manage-
ment sciences and social sciences. Consumer sentiments and public opinions are
central to many management and social science areas such as marketing, eco-
nomics, communication, and political science. Lecturers can readily use the book
in class for courses on natural language processing, social media analysis, social
computing, and text and data mining. Lecture slides are available online.
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1

Introduction

Sentiment analysis, also called opinion mining, is the field of study that analyzes
people’s opinions, sentiments, appraisals, attitudes, and emotions toward entities
and their attributes expressed in written text. The entities can be products, services,
organizations, individuals, events, issues, or topics. The field represents a large
problem space. Many related names and slightly different tasks, for example, sen-
timent analysis, opinion mining, opinion analysis, opinion extraction, sentiment
mining, subjectivity analysis, affect analysis, emotion analysis, and review mining,
are now all under the umbrella of sentiment analysis. The term sentiment analysis
perhaps first appeared in Nasukawa and Yi (2003), and the term opinion mining
first appeared in Dave et al. (2003). However, research on sentiment and opinion
began earlier (Wiebe, 2000; Das and Chen, 2001; Tong, 2001; Morinaga et al.,
2002; Pang et al., 2002; Turney, 2002). Even earlier related work includes interpre-
tation of metaphors; extraction of sentiment adjectives; affective computing; and
analysis of subjectivity, viewpoints, and affects (Wiebe, 1990, 1994; Hearst, 1992;
Hatzivassiloglou and McKeown, 1997; Picard, 1997; Wiebe et al., 1999). An early
patent on text classification included sentiment, appropriateness, humor, and many
other concepts as possible class labels (Elkan, 2001). Since existing research and
applications of sentiment analysis have focused primarily on written text, it has
been an active research field of natural language processing (NLP). However, the
topic has also been widely studied in data mining, web mining, and information
retrieval because many researchers in these fields deal with text data. My own first
paper (Hu and Liu, 2004) on the topic was published in the proceedings of the
data mining conference KDD (SIGKDD International Conference on Knowledge
Discovery and Data Mining) in 2004. This paper defined the aspect-based senti-
ment analysis and summarization framework and some basic ideas and algorithms
for solving the problem that are commonly used in research and industrial systems
today.

Not surprisingly, there has been some confusion among practitioners and even
researchers about the difference between sentiment and opinion and whether the
field should be called sentiment analysis or opinion mining. Because the field
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originated from computer science rather than linguistics, little discussion has
concerned the difference between the two words. In Merriam-Webster’s dictionary,
sentiment is defined as an attitude, thought, or judgment prompted by feeling,
whereas opinion is defined as a view, judgment, or appraisal formed in the mind
about a particular matter. The difference is quite subtle, and each contains some
elements of the other. The definitions indicate that an opinion is more of a person’s
concrete view about something, whereas a sentiment is more of a feeling. For
example, the sentence “I am concerned about the current state of the economy”
expresses a sentiment, whereas the sentence “I think the economy is not doing
well” expresses an opinion. In a conversation, if someone says the first sentence,
we can respond by saying, “I share your sentiment,” but for the second sentence,
we would normally say, “I agree/disagree with you.” However, the underlying
meanings of the two sentences are related because the sentiment depicted in the
first sentence is likely to be a feeling caused by the opinion in the second sentence.
Conversely, we can also say that the first sentiment sentence implies a negative
opinion about the economy, which is what the second sentence is saying. Although
in most cases opinions imply positive or negative sentiments, some opinions do
not, for example, “I think he will go to Canada next year.”

Regarding the name of the field, sentiment analysis is used almost exclusively
in industry, whereas both opinion mining and sentiment analysis are commonly
employed in academia. In this book, I use the terms sentiment analysis and opinion
mining interchangeably. Furthermore, I use the term opinion to mean the whole
concept of sentiment, evaluation, appraisal, or attitude and associated information,
such as the opinion target and the person who holds the opinion (see the formal
definition in Section 2.1), and I use the term sentiment to mean the underlying
positive or negative feeling implied by opinion. Sentiment analysis mainly focuses
on opinions that express or imply positive or negative sentiments, also called
positive or negative opinions in everyday language. This type of opinion is similar
to the concept of attitude in social psychology. For example, Eagly and Chaiken
(1998, p. 1) defined an attitude as “a psychological tendency that is expressed by
evaluating a particular entity with some degree of favor or disfavor.” In discussing
positive and negative sentiments, we must also consider expressions without any
implied sentiment, which we call neutral expressions. Apart from sentiment and
opinion, there are also the concepts of affect, emotion, and mood, which are
psychological states of mind. We study natural language expressions of such
states in detail in Section 2.3.

Sentences expressing opinions or sentiments are usually subjective sentences as
opposed to objective sentences, which state facts, because opinions and sentiments
are inherently subjective. However, objective sentences can imply positive or
negative sentiments of their authors too, because they may describe desirable or
undesirable facts. For example, based on our commonsense knowledge, we know
that “I bought the car yesterday and it broke today” and “after sleeping on the
mattress for a month, a valley has formed in the middle” describe two undesirable
facts, and we can safely infer that the sentence authors feel negatively about the
car and the mattress. Sentiment analysis also studies such objective sentences.
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In a nutshell, sentiment analysis or opinion mining aims to identify positive and
negative opinions or sentiments expressed or implied in text and also the targets
of these opinions or sentiments (e.g., the car and the mattress in the preceding
sentences). A more formal definition is given in Section 2.1.

Although sentiment analysis studies opinion text, there was almost no research
on it from either the linguistics community or the NLP community before the year
2000. This is partly because almost no opinionated text was recorded in digital
forms before then, although throughout history, spoken or written communication
never had a shortage of opinion. With the explosive growth of the web and social
media in the past fifteen years, we now have a constant flow of opinion data
recorded in digital forms. Without these data, much of the existing research would
not have been possible. It is thus no surprise that the inception and rapid growth
of sentiment analysis coincide with the growth of social media on the web.

Over the years, social media systems on the web have provided excellent
platforms to facilitate and enable audience participation, engagement, and com-
munity, which has resulted in our new participatory culture. From reviews and
blogs to YouTube, Facebook, and Twitter, people have embraced these platforms
enthusiastically because they enable their users to freely and conveniently voice
their opinions and communicate their views on any subject across geographic and
spatial boundaries. They also allow people to easily connect with others and to
share their information. This participatory web and communications revolution
has transformed our everyday lives and society as a whole. It has also popularized
two major research areas, namely, social network analysis and sentiment analysis.
Although social network analysis is not a new research area, as it started in the
1940s and 1950s when management science researchers began to study social
actors (people in organizations) and their interactions and relationships, social
media has certainly fueled its explosive growth in the past fifteen years. Sentiment
analysis, conversely, is a new research area that essentially grew out of social
media on the web.

Since the year 2002, research in sentiment analysis has been very active. Apart
from the availability of a large volume of opinion data in social media, opin-
ions and sentiments also have a very wide range of applications simply because
opinions are central to almost all human activities. Whenever we need to make a
decision, we often seek out others’ opinions. This is true not only for individuals
but also for organizations. It is thus no surprise that the industry and applications
surrounding sentiment analysis have flourished since around 2006. On one hand,
this application need provided a strong motivation for research. On the other, senti-
ment analysis also offers numerous challenging and fascinating research problems
whose solutions have never before been attempted. In this book, I systematically
define and discuss these problems and present the current state-of-the-art tech-
niques for studying them.

Because a key function of social media is for people to express their views and
opinions, sentiment analysis is right at the center of research and application of
social media itself. It is now well recognized that, to extract and exploit information
in social media, sentiment analysis is a necessary technology. One can even take a
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sentiment-centric view of social media content analysis because the most important
information that one wants to extract from the social media content is what people
talk about and what their opinions are. These are exactly the core tasks of sentiment
analysis. Furthermore, we can claim that topics, events, and individuals discussed
in social media are unlikely to be important if few people have expressed opinions
about them. Human nature being what it is, everything that we consider important
arouses our inner feelings or emotions, which are expressed with opinions and
sentiments.

Apart from topics and opinions about topics, social media also allows us to
study the participants themselves. We can produce a sentiment profile of each
social media participant based on his or her topical interests and opinions about
these interests expressed in the users’ posts, because a person’s topical interests
and opinions reflect the nature and preferences of the person. Such information
can be used in many applications, for example, recommending products and ser-
vices and determining which political candidates to vote for. Additionally, social
media participants can not only post messages but also interact with one another
through discussions and debates, which involve sentiments such as agreement and
disagreement (or contention). Discovery of such information is also of great impor-
tance. For example, contentious social and political issues and views of opposing
positions can be exploited to frame political issues and to predict election results.

Owing to the importance of opinions in social media, imposters often game the
system by posting fake or deceptive opinions to promote some target products,
services, and ideological agendas. Detecting such fake or deceptive opinions is
an important challenge, which again offers fertile ground for novel research and
applications.

Although sentiment analysis originated from computer science, in recent years,
it has spread to management sciences and social sciences because of its importance
to business and society as a whole. Thus sentiment analysis research not only
advances the field of NLP but also advances research in management science,
political science, and economics, as these fields are all concerned with consumer
and public opinions. It is thus not hard to imagine that sentiment analysis using
social media can profoundly change the direction of research and practice in
these fields. This book serves as an up-to-date and introductory text as well as a
comprehensive survey of this important and fascinating subject.

1.1 Sentiment Analysis Applications

Opinions are very important to businesses and organizations because they always
want to find consumer or public opinions about their products and services. Local
and federal governments also want to know public opinions about their existing
or proposed policies. Such opinions will enable relevant government decision
makers to respond quickly to the fast-changing social, economic, and political
climates. In international politics, every government wants to monitor the social
media of other countries to find out what is happening in these countries and what
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people’s views and sentiments are about current local and international issues and
events. Such information is very useful to diplomacy, international relations, and
economic decision making. Besides businesses, organizations, and government
agencies, individual consumers also want to know the opinions of others about
products, services, and political candidates before purchasing the products, using
the services, and making election decisions.

In the past, when an individual needed opinions, he or she asked friends and
family. When an organization or a business needed public or consumer opinions,
it conducted surveys, opinion polls, and focus groups. When governments wanted
to know what was happening in other countries, they monitored the traditional
news media, for example, newspapers, radio, and TV, in these countries, and even
sent spies to these countries to collect such information. Acquiring and analyzing
public and consumer opinions have long been a huge business for marketing,
public relations, and political campaign firms.

Nowadays, individuals, organizations, and government agencies are increas-
ingly using the content in social media for decision making. If an individual wants
to buy a consumer product, he or she is no longer limited to asking his or her friends
and family for opinions because there are many user reviews and discussions in
public forums on the web about the product. For an organization, it may no longer
be necessary to conduct surveys, opinion polls, or focus groups to gather public
or consumer opinions about the organization’s products and services because an
abundance of such information is publicly available. Governments can also easily
obtain public opinions about their policies and measure the pulses of other nations
simply by monitoring their social media.

In recent years, we have witnessed how opinionated posts on social media sites
have helped reshape business and sway public sentiment, profoundly impacting
our social and political lives. For instance, such posts have mobilized the masses
for political change, such as during the Arab Spring in 2011. However, finding
and monitoring opinion sites on the web and distilling the information contained
in them remains a formidable task because of the diversity of sites. Each site
typically contains a huge volume of opinion text that is not always easily deciphered
from long blogs and forum posts. The average human reader will have difficulty
identifying relevant sites and extracting and summarizing the opinions in them.
Automated sentiment analysis systems are thus needed.

Opinionated documents not only exist on the web (often called external data);
many organizations have internal data, for example, customer feedback collected
from e-mails and call centers and results from surveys conducted by the organi-
zations. It is critical to analyze both kinds of data to tease out the key product and
service issues and to summarize customer opinions.

In recent years, sentiment analysis applications have spread to almost every
possible domain, from consumer products, health care, tourism, hospitality, and
financial services to social events and political elections. There are now hun-
dreds of companies in this space, start-up companies and established large cor-
porations, that have built or are in the process of building their own in-house
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capabilities, such as Google, Microsoft, Hewlett-Packard, Amazon, eBay, SAS,
Oracle, Adobe, Bloomberg, and SAP. I myself have implemented a sentiment
analysis system, called Opinion Parser, and worked on projects for clients in more
than forty domains: automobile, mobile phone, earphone, printer, fridge, washing
machine, stove, Blu-ray, laptop, home theater, television, e-book, GPS, LCD mon-
itor, dieting, hair care product, coffee maker, mattress, paint, cruise, restaurant,
hotel, cosmetics, fashion, drug, soft drink, beer and wine, movie, video editing
software, financial software, search engine, health insurance, banking, invest-
ment, green technology, box-office revenue prediction for new movies, summer
Olympic bidding, governor election, presidential election, and public mood during
the 2008–9 financial crisis.

In addition to business interests, applications are also widespread in government
agencies. Internally, agencies monitor social media to discover public sentiments
and citizen concerns. Such monitoring is especially big in China, where social
media has become the most popular channel for the general public to voice their
opinions about government policies and to expose corruptions, sex scandals, and
other wrongdoings of government officials. It is also the quickest and most popular
way to report negative events in everyday lives. Weibo, which literally means
“microblog” in Chinese and is similar to Twitter, is the most popular platform for
such revelations. Several commercial social media monitoring tools are already
available. The core technology in these tools is sentiment analysis. Externally,
intelligence services discover issues and events being discussed in the social media
of other countries and public sentiment about the issues and events by monitoring
the main social media sites of these countries.

Besides real-life applications, many application-oriented research papers have
also been published. For example, several researchers have used sentiment infor-
mation to predict movie success and box-office revenue. Mishne and Glance (2006)
showed that positive sentiment is a better predictor of movie success than sim-
ple buzz (keyword) count. Sadikov et al. (2009) made the same prediction using
sentiment and other features. Liu et al. (2007) reported a sentiment model for pre-
dicting box-office revenue. The method consists of two steps. The first step builds
a topic model based on probabilistic latent semantic analysis (PLSA) (Hofmann,
1999) using only sentiment words in a set of movie reviews. Sentiment words, also
called opinion words, are words in a language that indicate desirable or undesirable
states. For example, good, great, and beautiful are positive sentiment words, and
bad, awful, and dreadful are negative sentiment words. The second step builds
an autoregressive model employing both the revenues and sentiment topics in the
past few days to predict future revenues. This same revenue prediction problem
was also attempted in Asur and Huberman (2010) using both the tweet volume
and the tweet sentiment. A linear regression–based approach using movie review
text and movie meta-data was reported in Joshi et al. (2010). My own group
also used tweet sentiment to predict movie revenues several years ago and found
that they could be predicted fairly easily and accurately. We simply applied our
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Opinion Parser system to identify and combine positive and negative opinions
about each movie and user intentions to watch it. No additional model or algo-
rithm was used.

Several researchers have also analyzed sentiments of public opinions in the
context of electoral politics. For example, in O’Connor et al. (2010), a sentiment
score was computed based simply on counting positive and negative sentiment
words, which was shown to correlate well with presidential approval, political
election polls, and consumer confidence surveys. In Bermingham and Smeaton
(2011), tweet volume and positive and negative tweets were utilized as the inde-
pendent variables and polling results as values for the dependent variable to train
a linear regression model to predict election results. In Chung and Mustafaraj
(2011) and Gayo-Avello et al. (2011), several limitations of current works on
using Twitter data to predict political elections were discussed, one of them being
poor sentiment analysis accuracy. The works in Diakopoulos and Shamma (2010)
and Sang and Bos (2012) used manually annotated sentiments of tweets for elec-
tion prediction. Tumasjan et al. (2010) even showed that simple party mentions on
Twitter can be a good predictor of election results. In other related works, Yano
and Smith (2010) reported a method for predicting comment volumes of political
blogs, Chen et al. (2010) studied political standpoints, and Khoo et al. (2012)
analyzed sentiment in political news articles about economic policies and political
figures.

Another popular application area is stock market prediction. Das and Chen
(2007) identified opinions from message board posts by classifying each post into
one of three sentiment classes: bullish (optimistic), bearish (pessimistic), or neu-
tral (neither bullish nor bearish). The resulting sentiments across all stocks were
then aggregated and used to predict the Morgan Stanley High-Tech Index. Instead
of using bullish and bearish sentiments, Zhang et al. (2010) identified positive and
negative public moods on Twitter and used them to predict the movement of stock
market indices such as the Dow Jones, S&P 500, and NASDAQ. They showed that
when emotions on Twitter fly high, that is, when people express a lot of hope, fear,
or worry, the Dow goes down the next day. When people have less hope, fear, or
worry, the Dow goes up. Along a similar line, Bollen et al. (2011) used Twitter
moods to predict the movement of the Dow Jones Industrial Average (DJIA). In par-
ticular, the authors analyzed the text content of tweets to generate a six-dimensional
daily time series of public mood: calm, alert, sure, vital, kind, and happy. The result-
ing mood time series were correlated with the DJIA to assess their ability to predict
changes in the DJIA over time. Their results indicate that the accuracy of stan-
dard stock market prediction models can be significantly improved when certain
mood dimensions are included, that is, calm and happiness, but not others. Instead
of treating sentiments from all relevant Twitter authors equally, Bar-Haim et al.
(2011) identified expert investors based on their past predictions of bullish and
bearish stocks. Such expert investors are then used as one of the features in train-
ing stock price movement predictors. Feldman et al. (2011) reported a focused
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investigation of sentiment analysis of stock-related articles. Zhang and Skiena
(2010) used blog and news sentiment to design trading strategies. Si et al. (2013)
combined a topic-based sentiment time series and the index time series to predict
the S&P 100 index’s daily movements using vector autoregression. The topic-
based sentiment analysis system first uses a nonparametric topic model to identify
daily topics related to stocks and then computes people’s sentiments about these
topics.

In addition to research in the preceding three popular application areas, numer-
ous papers have also been published on using sentiment analysis to help other types
of applications. For example, in McGlohon et al. (2010), product reviews were
used to rank products and merchants. In Hong and Skiena (2010), the relationships
between the National Football League betting line and public opinions in blogs
and on Twitter were studied. In Miller et al. (2011), sentiment flow in social net-
works was investigated. In Mohammad and Yang (2011), sentiments in males were
used to find how genders differed on emotional axes. In Mohammad (2011), emo-
tions in novels and fairy tales were tracked. In Sakunkoo and Sakunkoo (2009),
social influences in online book reviews were studied, and in Groh and Hauffa
(2011), sentiment analysis was used to characterize social relations. A deployed
general-purpose sentiment analysis system and some case studies were reported
in Castellanos et al. (2011).

1.2 Sentiment Analysis Research

Pervasive real-life applications provided strong motivations for research, but appli-
cations alone are not enough to generate strong research interests in academia.
Researchers also need challenging technical problems. Sentiment analysis has
provided plenty of such problems, most of which had not been attempted before,
either in the NLP or linguistics communities. The novelty factor coupled with
widespread applications and the availability of social media data attracted numer-
ous researchers to the field. Since the year 2000, the field has grown rapidly to
become one of the most active research areas in NLP, data mining, and web min-
ing and is also widely studied in management sciences (Hu et al., 2006; Archak
et al., 2007; Das and Chen, 2007; Dellarocas et al., 2007; Ghose et al., 2007; Park
et al., 2007; Chen and Xie, 2008). Although sentiment analysis has been studied in
different disciplines, their focuses are not the same. For example, in management
science, the main focus is on the impact of consumer opinions on businesses and
how to exploit such opinions to enhance business practices. However, for NLP and
data mining, the objective is to design effective algorithms and models to extract
opinions from natural language text and to summarize them suitably.

In terms of natural language understanding, sentiment analysis can be regarded
as an important subarea of semantic analysis because its goal is to recognize
topics that people talk about and their sentiments toward the topics. In the next
few subsections, I briefly describe the key research topics covered in this book and
also connect sentiment analysis with some general NLP tasks.
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1.2.1 Different Levels of Analysis

Sentiment analysis research has been mainly carried out at three levels of granu-
larity: document level, sentence level, and aspect level. We briefly introduce them
here.

Document level. The task at the document level is to classify whether a whole opin-
ion document expresses a positive or negative sentiment (Pang et al., 2002; Turney,
2002). It is thus known as document-level sentiment classification. For example,
given a product review, the system determines whether the review expresses an
overall positive or negative opinion about the product. This level of analysis
implicitly assumes that each document expresses opinions on a single entity (e.g.,
a single product or service). Thus it is not applicable to documents that evaluate
or compare multiple entities, for which more fine-grained analysis is needed. We
study document-level sentiment analysis in Chapter 3.

Sentence level. The next level is to determine whether each sentence expresses a
positive, negative, or neutral opinion. Note that “neutral opinion” usually means
“no opinion.” This level of analysis is closely related to subjectivity classification
(Wiebe et al., 1999), which distinguishes sentences that express factual information
(called objective sentences) from sentences that express subjective views and
opinions (called subjective sentences). However, subjectivity is not equivalent to
sentiment or opinion because, as we discussed earlier, many objective sentences
can imply sentiments or opinions, for example, “We bought the car last month and
the windshield wiper has fallen off.” Conversely, many subjective sentences may
not express any opinion or sentiment, for example, “I think he went home after
lunch.” We study sentence-level sentiment analysis in Chapter 4.

Aspect level. Neither document-level nor sentence-level analyses discover what
people like and dislike exactly. In other words, they do not tell what each opinion
is about, that is, the target of opinion. For example, if we only know that the
sentence “I like the iPhone 5” is positive, it is of limited use unless we know
that the positive opinion is about the iPhone 5. One may say that if we can
classify a sentence to be positive, everything in the sentence can take the positive
opinion. However, that will not work either, because a sentence can have multiple
opinions, for example, “Apple is doing very well in this poor economy.” It does
not make much sense to classify this sentence as positive or negative because it
is positive about Apple but negative about economy. To obtain this level of fine-
grained results, we need to go to the aspect level. This level of analysis was earlier
called feature level, as in feature-based opinion mining and summarization (Hu
and Liu, 2004; Liu, 2010), which is now called aspect-based sentiment analysis.
Instead of looking at language units (documents, paragraphs, sentences, clauses,
or phrases), aspect-level analysis directly looks at opinion and its target (called
opinion target). Realizing the importance of opinion targets allows us to have a
much better understanding of the sentiment analysis problem. Let us see another
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example sentence: “Although the service is not great, I still love this restaurant.”
This sentence clearly has a positive tone, but we cannot say that this sentence is
entirely positive. We can only say that the sentence is positive about the restaurant
(emphasized), but it is still negative about its service (not emphasized). If someone
reading the opinion cares a lot about the service, he probably will not go to eat
at the restaurant. In applications, opinion targets (e.g., restaurant and service in
the preceding sentence) are often described by entities (e.g., restaurant) and/or
their different aspects (e.g., service of the restaurant). Thus, the goal of this level
of analysis is to discover sentiments on entities and/or their aspects. On the basis
of this level of analysis, a summary of opinions about entities and their aspects
can be produced. We study aspect-level sentiment analysis in Chapters 5 and 6.
Note that in some applications, the user may only be interested in opinions about
entities. In that case, the system can just ignore its aspects. Aspect-level analysis is
what is needed in applications, and almost all real-life sentiment analysis systems
in industry are based on this level of analysis.

Besides different levels of analysis, there are two different types of opinions, that
is, regular opinions and comparative opinions (Jindal and Liu, 2006b):

� A regular opinion expresses a sentiment about a particular entity or an aspect
of the entity, for example, “Coke tastes very good” expresses a positive
sentiment or opinion on the aspect taste of Coke. This is the most common
type of opinion.

� A comparative opinion compares multiple entities based on some of their
shared aspects, for example, “Coke tastes better than Pepsi” compares Coke
and Pepsi based on their tastes (an aspect) and expresses a preference for
Coke (see Chapter 8).

Along with these basic tasks, researchers have also studied opinion summarization
and opinion search, which we study in Chapter 9.

1.2.2 Sentiment Lexicon and Its Issues

Not surprisingly, the most important indicators of sentiments are sentiment words,
also called opinion words. For example, good, wonderful, and amazing are positive
sentiment words, and bad, poor, and terrible are negative sentiment words. Apart
from individual words, there are also phrases and idioms, for example, cost an arm
and a leg. Sentiment words and phrases are instrumental to sentiment analysis. A
list of such words and phrases is called a sentiment lexicon (or opinion lexicon).
Over the years, researchers have designed numerous algorithms to compile such
lexicons. We discuss these algorithms in Chapter 7.

Although sentiment words and phrases are important, they are far from suf-
ficient for accurate sentiment analysis. The problem is much more complex. We
highlight several issues in the following:

1. A positive or negative sentiment word may have opposite orientations
or polarities in different application domains or sentence contexts. By
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orientation or polarity, we mean whether a sentiment or opinion is positive,
negative, or neutral. For example, suck usually indicates negative sentiment,
for example, “This camera sucks,” but it can also imply positive sentiment,
for example, “This vacuum cleaner really sucks.” Thus, we say that the
orientations of sentiment words can be domain dependent or even sentence
context dependent.

2. A sentence containing sentiment words may not express any sentiment. This
phenomenon happens in several types of sentences. Question (interrogative)
sentences and conditional sentences are two main types, for example, “Can
you tell me which Sony camera is good?” and “If I can find a good camera
in the shop, I will buy it.” Both these sentences contain the sentiment word
good, but neither expresses a positive or negative opinion about any spe-
cific camera. However, that is not to say that all conditional sentences and
interrogative sentences express no opinion or sentiment, for example, “Does
anyone know how to repair this terrible printer?” and “If you are looking
for a good car, get a Ford Focus.” We discuss such sentences further in
Chapter 4.

3. Sarcastic sentences with or without sentiment words are hard to deal with,
for example, “What a great car! It stopped working in two days.” Sarcasm
is not so common in consumer reviews about products and services but is
common in political discussions, which make political opinions hard to deal
with. We discuss such sentences also in Chapter 4.

4. Many sentences without sentiment words can imply positive or negative
sentiments or opinions of their authors. For example, “This washer uses a
lot of water” implies a negative opinion about the washer because it uses a lot
of resources (water). Many such sentences are actually objective sentences
that express some factual information. For example, “After sleeping on the
mattress for two days, a valley has formed in the middle” expresses a negative
opinion about the quality of the mattress. This sentence can be regarded as
objective because it states a fact, although valley is used as a metaphor here.
As we can see, these two sentences contain no sentiment words, but they
both express something undesirable, which indicate negative opinions.

All these issues present major challenges. In fact, these are just some of the difficult
problems. More are discussed in Chapter 7.

1.2.3 Analyzing Debates and Comments

There are generally two types of text content in social media: standalone posts,
such as reviews and blogs, and online dialogues, such as debates and discussions.
Online dialogues are conversational and typically involve interactive exchanges
of two or more participants, which are in contrast to standalone posts, which are
mostly independent of one another. Online dialogues are usually full of opin-
ions. In addition to positive and negative sentiments, they also contain agreements
and disagreements (or contentions), which are regarded as an interactive form of
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sentiment or opinion. Furthermore, owing to user interactions, additional analy-
ses can be performed. For instance, we can discover the stance of each person
in a debate, group people into different ideological camps, mine agreement and
disagreement expressions, discover contentious issues, and pairwise user arguing
nature (Mukherjee and Liu, 2012). Because debates or discussions are supposed
to be exchanges of arguments and reasoning among participants who are engaged
in deliberations to achieve some common goals, we can study whether each partic-
ipant indeed behaves accordingly, that is, giving reasoned arguments with justifi-
able claims or just exhibiting dogmatism and egotistic clashes of ideologies. Such
analyses are very useful to social scientists, for example, in the fields of political
science and communications (Mukherjee et al., 2013).

Comments are posts that comment about a published article (e.g., a news article,
a blog post, or a review), a video, a picture, or a piece of music. They often consist
of a mixture of standalone posts and dialogues. From comments about an online
article, we can observe several types of comment posts, for example, reviews of
the article, questions to the author of the article or to other readers, answers to
questions, and discussions among readers and between readers and the article
author. We study the analysis of debates and comments in Chapter 10.

1.2.4 Mining Intentions

Intention is defined as a course of action that a person or a group of persons intends
to follow. Mining intentions expressed in social media have many applications,
for example, making product recommendations and discovering likely voters for a
political candidate. Although intention and sentiment are two different concepts,
they are related in several ways. First, one may attach some sentiment or emotion to
the involved entity in an intention sentence, for example, “I am dying to see Life of
Pi.” Here the intention of the person has reached the emotional level. Second, when
one expresses a desire to get a particular item, one often has a positive opinion
about the item. For example, from “I want to buy an iPhone 5,” it is probably safe
to infer that the person has a good impression about the iPhone 5. These two cases
represent a new kind of sentiment, aspiration. The two example sentences both
expressed positive aspirations. Third, some opinions are expressed as intentions,
for example, “I want to throw this camera out of the window” and “I am going
to return this camera to the shop.” So far, mining of intentions has not received
much research attention, but I believe it has a great potential for applications.
Chapter 11 discusses the problem and presents an intention mining algorithm
based on the idea of transfer learning (Chen et al., 2013).

1.2.5 Opinion Spam Detection and Quality of Reviews

A key feature of social media is that it enables anyone from anywhere in the
world to freely express his views and opinions without disclosing his true identity
and without the fear of undesirable consequences. These opinions are thus highly
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valuable. However, this anonymity comes with a price. It makes it easy for people
with hidden agendas or malicious intentions to game the system by posting fake
opinions to promote or to discredit some target products, services, organizations,
or individuals without disclosing their true intentions, or the person or organization
for whom they are secretly working. Such individuals are called opinion spammers,
and their activity is called opinion spamming (Jindal and Liu, 2007, 2008).

Opinion spamming has become a major issue in social media. In addition to
individuals who give fake opinions in reviews and forum discussions, there are also
commercial companies that are in the business of writing fake reviews and bogus
blogs for their clients. Several high-profile cases of fake reviews have been reported
in the news (Streitfeld, August 25, 2012; Harmon, February 14, 2004; Streitfeld,
January 26, 2012; Kost, September 15, 2012). It is important to detect such
spamming activities to ensure that the opinions on the web are trusted sources of
valuable information. Unlike extraction of positive and negative opinions, opinion
spam detection is not just a NLP problem but also a data mining problem as it
involves analyzing the posting behaviors of reviewers. Besides academic research,
some review hosting companies filter fake reviews on their sites, for example,
Yelp.com and Dianping.com. Chapter 12 studies the problem and the current
state-of-the-art detection algorithms.

A related research problem is to assess the quality or utility of each online
review. The objective here is to identify those reviews that are of high quality
and rank them at the top so that the user can read them first to get the maximum
information. This topic and its associated algorithms are discussed in Chapter 13.

To end this section, I would like to mention that there are several other books on
sentiment analysis or opinion mining: a multiauthor volume edited by Shanahan
et al. (2006), an older survey book by Pang and Lee (2008), a newer survey
book by Liu (2012), and a monograph by Cambria and Hussain (2012). All four
books have excellent contents and have helped me in writing this book. However,
since the first two books were published, there have been significant advances
in the field. Researchers now have a much better understanding of the whole
spectrum of the problem, its structure and core issues. Numerous new models and
methods have also been proposed. The research in the area has not only deepened
but also broadened significantly. Earlier research in the field focused mainly on
document- and sentence-level sentiment and subjectivity classification, which is
insufficient for real-life applications. Practical applications almost always demand
aspect-level analysis. Although the third book, which is also authored by me, is
relatively new, it is a research survey. The last book focuses on using commonsense
knowledge in opinion mining. This new book is much more comprehensive. First,
it includes details of many important algorithms. Following these algorithms,
interested readers can implement a practical sentiment analysis system without
much difficulty. Second, it goes beyond much of the current analysis of standalone
(or independent) posts to cover analysis and mining of interactive social media
forms (e.g., debates and comments) and intentions. These inclusions significantly
broaden the research area and make it more comprehensive.
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1.3 Sentiment Analysis as Mini NLP

Sentiment analysis is commonly seen as a subarea of NLP. Since its inception,
sentiment analysis has expanded the NLP research significantly because it has
introduced many challenging research problems that had not been studied before.
However, research in the past fifteen years seems to indicate that rather than being
a subproblem of NLP, sentiment analysis is actually more like a mini version
of the full NLP or a special case of the full NLP. That is, every subproblem of
NLP is also a subproblem of sentiment analysis, and vice versa. The reason for
this is that sentiment analysis touches every core area of NLP, such as lexical
semantics, coreference resolution, word sense disambiguation, discourse analysis,
information extraction, and semantic analysis. We discuss some of these general
NLP problems in various chapters in the context of sentiment analysis as part of
the approaches proposed by researchers to solve the sentiment analysis problem. In
this sense, sentiment analysis offers an excellent platform for all NLP researchers
to make tangible and focused progress on all fronts of NLP, with the potential of
making a huge research and practical impact. Clearly solving a simpler version of
NLP is much more manageable. It is also much easier to achieve major progresses
and breakthroughs. A NLP researcher of any area can start to solve a corresponding
problem in sentiment analysis without changing his or her research topic or area.
The only thing that he or she needs to change is the corpus, which should be an
opinion corpus.

In general, sentiment analysis is a semantic analysis problem, but it is highly
focused and confined because a sentiment analysis system does not need to fully
“understand” each sentence or document; it only needs to comprehend some
aspects of it, for example, positive and negative opinions and their targets. Owing to
some special characteristics of sentiment analysis, it allows much deeper language
analyses to be performed to gain better insights into NLP than in the general setting
because the complexity of the general setting of NLP is simply overwhelming.
Although general natural language understanding is still far from us, with the
concerted effort of researchers from different NLP areas, we may be able to solve
the sentiment analysis problem, which, in turn, can give us critical insight into
how to deal with general NLP.

Through this book, I would like to encourage researchers from other areas
of NLP to continue working on their favorite NLP problems but using opinion
corpora, which will directly or indirectly help solve the sentiment analysis problem.

1.4 My Approach to Writing This Book

In this book, we explore this fascinating topic. Although the book deals with the
natural language text, which is called unstructured data, I try to take a structured
approach to writing this book. The next chapter formally defines the sentiment
analysis problem, which allows us to see a structure for it. From the definition,
we will be able to state the key tasks of sentiment analysis. In the subsequent
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chapters, I describe existing techniques for performing the tasks. The book not
only discusses key research concepts but also looks at the technology from an
application point of view to help practitioners in the field. This practical guidance
is based on my research, consulting, and start-up experiences. When I talk about
industrial systems, I will not reveal the names of companies or their systems for
confidentiality reasons.

Although I try to cover all major ideas and techniques in this book, it has
become an impossible task. In the past decade, a huge number of research papers
(probably more than two thousand) have been published on the topic. Although
most papers appeared at NLP conferences and in NLP journals, many papers have
also been published in data mining, web mining, machine learning, information
retrieval, e-commerce, management science, and many other fields. It is thus
almost impossible to write a book that covers the ideas in every published paper.
I am sorry if your good ideas or techniques are overlooked.

Finally, background knowledge in the following areas will be helpful in reading
this book: NLP (Manning and Schutze, 1999; Indurkhya and Damerau, 2010),
machine learning (Mitchell, 1997; Bishop, 2006), data mining (Tan et al., 2005;
Liu, 2006, 2011; Han et al., 2011), and information retrieval (Manning et al.,
2008). As mentioned earlier, a large number of research papers solve the sentiment
analysis problem by applying machine learning and data mining algorithms with
NLP syntactic and semantic features.
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The Problem of Sentiment Analysis

In this chapter, we define an abstraction of the sentiment analysis problem. This
abstraction gives us a statement of the problem and enables us to see a rich set
of interrelated subproblems. It is often said that if we cannot structure a problem,
we probably do not understand the problem. The objective of the definitions is
thus to abstract a structure from the complex and intimidating unstructured natural
language text. The structure serves as a common framework to unify various exist-
ing research directions and enable researchers to design more robust and accurate
solution techniques by exploiting the interrelationships of the subproblems. From
a practical application point of view, the definitions let practitioners see what
subproblems need to be solved in building a sentiment analysis system, how the
subproblems are related, and what output should be produced.

Unlike factual information, sentiment and opinion have an important character-
istic, namely, they are subjective. The subjectivity comes from many sources. First
of all, different people may have different experiences and thus different opinions.
For example, one person bought a camera of a particular brand and had a very
good experience with it. She naturally has a positive opinion or sentiment about
the camera. However, another person who also bought a camera of the same brand
had some issues with it because he might just be unlucky and got a defective unit.
He thus has a negative opinion. Second, different people may see the same thing
in different ways because everything has two sides. For example, when the price
of a stock is falling, one person may feel very sad because he bought the stock
when the price was high, but another person may be very happy because it is an
opportunity to short sell the stock to make good profits. Furthermore, different
people may have different interests and/or different ideologies. Owing to such
different subjective experiences, views, interests, and ideologies, it is important
to examine a collection of opinions from many people rather than only one opin-
ion from a single person, because such an opinion represents only the subjective
view of that single person, which is usually not sufficient for action. With a large
number of opinions, some form of summary becomes necessary (Hu and Liu,
2004). Thus, the problem definition should also state what kind of summary may

16
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be desired. Along with the problem definitions, the chapter also discusses the
important concepts of affect, emotion, and mood.

Throughout this chapter and the whole book, I mainly use product reviews and
sentences from such reviews as examples to introduce the key concepts, but the
ideas and the resulting definitions are general and applicable to all forms of formal
and informal opinion text such as news articles, tweets (Twitter posts), forum
discussions, blogs, and Facebook posts. They are also applicable to all domains,
including social and political domains. Because product reviews are highly focused
and opinion rich, they allow us to see different issues more clearly than other forms
of opinion text. Conceptually, there is no fundamental difference between product
reviews and other forms of opinion text, except some superficial differences and
the degree of difficulty in dealing with them. For example, tweets are short (at
most 140 characters) and informal, and often include Internet slang and emoticons.
Owing to the length limit, the authors are usually straight to the point. Thus, it is
often easier to achieve a higher sentiment analysis accuracy for tweets. Reviews
are also easier because they are highly focused with little irrelevant information.
Forum discussions are perhaps the hardest to deal with because the users there can
discuss anything and often are involved in interactive exchanges with one another.
Different application domains also have different degrees of difficulty. Opinions
about products and services are usually the easiest to deal with. Opinions about
social and political issues are much harder because of complex topic and sentiment
expressions, sarcasms, and ironies. These often need analysis at the pragmatics
level, which can be difficult without sufficient background knowledge of the local
social and political contexts. These explain why many commercial systems are able
to perform sentiment analysis of opinions about products and services reasonably
well but fare poorly on opinionated social and political texts.

2.1 Definition of Opinion

As discussed in Chapter 1, sentiment analysis mainly studies opinions that express
or imply positive or negative sentiment. We define the problem in this context.
We use the term opinion as a broad concept that covers sentiment, evaluation,
appraisal, or attitude and associated information such as opinion target and the
person who holds the opinion, and we use the term sentiment to mean only the
underlying positive or negative feeling implied by opinion. Owing to the need to
analyze a large volume of opinions, in defining opinion, we consider two levels
of abstraction: a single opinion and a set of opinions. In this section, we focus on
defining a single opinion and describing the tasks involved in extracting an opinion.
Section 2.2 focuses on a set of opinions, where we define opinion summary.

2.1.1 Opinion Definition

We use the following review (Review A) about a camera to introduce the problem
(an ID number is associated with each sentence for easy reference):
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Review A: Posted by John Smith Date: September 10, 2011

(1) I bought a Canon G12 camera six months ago. (2) I simply love it. (3) The picture
quality is amazing. (4) The battery life is also long. (5) However, my wife thinks it is
too heavy for her.

From this review, we notice the following:

Opinion, sentiment, and target. Review A has several opinions with positive
or negative sentiments about the Canon G12 camera. Sentence 2 expresses a
positive sentiment about the Canon camera as a whole. Sentence 3 expresses
a positive sentiment about its picture equality. Sentence 4 expresses a positive
sentiment about its battery life. Sentence 5 expresses a negative sentiment about
the camera’s weight.

These opinions enable us to make a crucial observation about sentiment anal-
ysis. That is, an opinion has two key components: a target g and a sentiment s on
the target, (g, s), where g can be any entity or aspect of the entity on which an
opinion has been expressed, and s is a positive, negative, or neutral sentiment or
a numeric sentiment rating. Positive, negative, and neutral are called sentiment or
opinion orientations. For example, the target of the sentiment in sentence 2 is the
Canon G12 camera, the target of the sentiment in sentence 3 is the picture quality
of Canon G12, and the target of sentence 5 is the weight of Canon G12 (weight is
indicated by heavy). Target is also called topic by some researchers.

Opinion holder. Review A contains opinions from two persons, who are called
opinion sources or opinion holders (Kim and Hovy, 2004; Wiebe et al., 2005). The
holder of the opinions in sentences 2, 3, and 4 is the author of the review (“John
Smith”), but for sentence 5, it is the author’s wife.

Time of opinion. The date of the review was September 10, 2011. This date is
useful because one often wants to know the opinion trend, or how opinions change
over time.

With this example, we can define opinion as a quadruple.

Definition 2.1 (Opinion): An opinion is a quadruple,

(g, s, h, t),

where g is the sentiment target, s is the sentiment of the opinion about the target
g, h is the opinion holder (the person or organization who holds the opinion), and
t is the time when the opinion is expressed.

The four components here are essential. It is generally problematic if any of them
is missing. For example, the time component is often very important in practice
because an opinion two years ago is not the same as an opinion today. Not having an
opinion holder is also problematic. For example, an opinion from a very important
person (VIP) (e.g., the U.S. president) is probably more important than an opinion
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from the average Joe on the street. An opinion from an organization is typically
more important than an opinion from a private individual. For instance, the opinion
implied by “Standard & Poor’s downgraded the credit rating of Greece” is very
important for the international financial market and even the international politics.

One thing that we want to stress about the definition is that opinion has target.
Recognizing this point is important for two reasons: first, in a sentence with
multiple targets (which are usually expressed as nouns or noun phrases), we need
to identify the specific target for each positive or negative sentiment. For example,
“Apple is doing very well in this poor economy” has a positive sentiment and a
negative sentiment. The target for the positive sentiment is Apple, and the target
for the negative sentiment is economy. Second, words or phrases, such as good,
amazing, bad, and poor, that express sentiments (called sentiment or opinion terms
or expressions) and sentiment targets often have some specific syntactic relations
(Hu and Liu, 2004; Zhuang et al., 2006; Qiu et al., 2011) that allow us to design
algorithms to extract both sentiment expressions and sentiment targets, which are
two core tasks of sentiment analysis (see Section 2.1.6).

The opinion defined here is just one type of opinion, called regular opinion
(e.g., “Coke tastes great”). Another type is comparative opinion (e.g., “Coke tastes
better than Pepsi”), which needs a different definition (Liu, 2006, 2011; Jindal and
Liu, 2006b). Section 2.4 further discusses different types of opinions. Chapter 8
defines and analyzes comparative opinions in detail. For the rest of this section,
we focus on only regular opinions, which, for simplicity, we just call opinions.

2.1.2 Sentiment Target

Definition 2.2 (Sentiment target): The sentiment target, also known as the opinion
target, of an opinion is the entity or a part or attribute of the entity that the sentiment
has been expressed upon.

For example, in sentence 3 of Review A, the target is the picture quality of
Canon G12, although the sentence mentioned only the picture quality. The target
is not just the picture quality, because without knowing that the picture quality
belongs to the Canon G12 camera, the opinion in the sentence is of little use.

An entity can be decomposed and represented hierarchically (Liu, 2006, 2011).

Definition 2.3 (Entity): An entity e is a product, service, topic, person, organiza-
tion, issue, or event. It is described with a pair, e: (T, W), where T is a hierarchy of
parts, subparts, and so on, and W is a set of attributes of e. Each part or subpart
also has its own set of attributes.

For example, a particular camera model is an entity, e.g., Canon G12. It has a set
of attributes (e.g., picture quality, size, and weight), and a set of parts (e.g., lens,
viewfinder, and battery). Battery also has its own set of attributes (e.g., battery life
and battery weight). A topic can be an entity too, for example, tax increase, with
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its subtopics or parts tax increase for the poor, tax increase for the middle class,
and tax increase for the rich.

This definition describes an entity hierarchy based on the part-of relation. The
root node is the name of the entity, like Canon G12 in Review A. All the other
nodes are parts and subparts. An opinion can be expressed on any node and any
attribute of the node. For instance, in Review A, sentence 2 expresses a positive
sentiment or opinion about the entity Canon G12 as a whole, and sentence 3
expresses a positive sentiment or opinion about the picture quality attribute of the
camera. Clearly we can also express opinions about any part or component of the
camera.

In the research literature, entities are also called objects, and attributes are
also called features (as in product features) (Hu and Liu, 2004; Liu, 2010). We
choose not to use the terms object and feature in this book because “object” can be
confused with the term object used in grammar, and “feature” can be confused with
feature used in machine learning to mean a data attribute. In recent years, the term
aspect has become popular and covers both part and attribute (see Section 2.1.4).

Entities may be called other names in specific application domains. For exam-
ple, in politics, entities are usually political candidates, issues, and events. There
is no term that is perfect for all application domains. The term entity is cho-
sen because most current applications of sentiment analysis study opinions about
various forms of named entities, for example, products, services, brands, organi-
zations, events, and people.

2.1.3 Sentiment of Opinion

Definition 2.4 (Sentiment): Sentiment is the underlying feeling, attitude, evalua-
tion, or emotion associated with an opinion. It is represented as a triple,

(y, o, i),

where y is the type of the sentiment, o is the orientation of the sentiment, and i is
the intensity of the sentiment.

Sentiment type. Sentiment can be classified into several types. There are
linguistic-based, psychology-based, and consumer research–based classifications.
Here I choose to use a consumer research–based classification because I feel it is
simple and easy to use in practice. Consumer research classifies sentiment broadly
into two categories: rational sentiment and emotional sentiment (Chaudhuri, 2006).

Definition 2.5 (Rational sentiment): Rational sentiments are from rational rea-
soning, tangible beliefs, and utilitarian attitudes. They express no emotions.

We also call opinions expressing rational sentiment the rational opinions. The
opinions in the following sentences imply rational sentiment: “The voice of this
phone is clear” and “This car is worth the price.”
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Definition 2.6 (Emotional sentiment): Emotional sentiments are from nontangi-
ble and emotional responses to entities that go deep into people’s psychological
states of mind.

We also call opinions expressing emotional sentiment emotional opinions.
The opinions in the following sentences imply emotional sentiment: “I love the
iPhone,” “I am so angry with their service people,” “This is the best car ever,”
and “After our team won, I cried.”

Emotional sentiment is stronger than rational sentiment and is usually more
important in practice. For example, in marketing, to guarantee the success of a
new product in the market, positive sentiment from a large population of consumers
has to reach the emotional level. Rational positive sentiment may not be sufficient.

Each of these broad categories can be further divided into smaller categories.
We will discuss some possible subdivisions of rational sentiment in Section 2.4.2
and different emotions in Section 2.3. In applications, the user is also free to design
her own categories.

Sentiment orientation. It can be positive, negative, or neutral. Neutral usually
means the absence of sentiment or no sentiment. Sentiment orientation is also
called polarity, semantic orientation, or valence in the research literature.

Sentiment intensity. Sentiment of each type can still have different levels of
strength or intensity. People often use two ways to express intensity of their feel-
ings in text. The first is to choose sentiment expressions (words or phrases) with
suitable strengths. For example, good is weaker than excellent, and dislike is weaker
than detest. Recall sentiment words are words in a language that are often used to
express positive or negative sentiments. For example, good, wonderful, and amaz-
ing are positive sentiment words, and bad, poor, and terrible are negative senti-
ment words. The second is to use intensifiers and diminishers, which are terms
that change the degree of the expressed sentiment. An intensifier increases the
intensity of a positive or negative expression, whereas a diminisher decreases
the intensity of that expression. Common English intensifiers include very, so,
extremely, dreadfully, really, awfully, terribly, and so on, and common English
diminishers include slightly, pretty, a little bit, a bit, somewhat, barely, and so on.

Sentiment rating. In practical applications, we often use some discrete ratings to
express sentiment intensity. Five levels (e.g., 1–5 stars) are commonly employed,
which can be interpreted as follows based on the two types of sentiment in
Definitions 2.5 and 2.6:

� emotional positive (+2 or 5 stars)
� rational positive (+1 or 4 stars)
� neutral (0 or 3 stars)
� rational negative (−1 or 2 stars)
� emotional negative (−2 or 1 star)
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Clearly it is possible to have more rating levels based on different intensities
in each type of sentiment. However, they become difficult to differentiate based
on the natural language text alone because of its highly subjective nature and the
fact that people’s spoken or written expressions may not fully match with their
psychological states of mind. For example, the sentence “This is an excellent
phone” expresses a stronger rational evaluation of the phone than the sentence
“This is a good phone,” while “I love this phone” expresses an emotional evaluation
about the phone. However, whether “This is an excellent phone” and “I love this
phone” represent completely different psychological states of mind of the authors
is hard to say. In practice, the five levels are sufficient for most applications. If
these five levels are not enough in some applications, I suggest dividing emotional
positive (and, respectively, emotional negative) into two levels. Such applications
are likely to involve sentiment about social or political events or issues, for which
people can be highly emotional.

2.1.4 Opinion Definition Simplified

Opinion as defined in Definition 2.1, although concise, may not be easy to use
in practice, especially in the domain of online reviews of products, services, and
brands. Let us first look at the sentiment (or opinion) target. The central concept
here is entity, which is represented as a hierarchy with an arbitrary number of
levels. This can be too complex for practical applications because NLP is a very
difficult task. Recognizing parts and attributes of an entity at different levels of
detail is extremely hard. Most applications also do not need such a complex
analysis. Thus, we simplify the hierarchy to two levels and use the term aspect to
denote both part and attribute. In the simplified tree, the root node is still the entity
itself, and the second level (also the leaf level) nodes are different aspects of the
entity.

The definition of sentiment in Definition 2.4 can be simplified too. In many
applications, positive (denoted by +1), negative (denoted by −1), and neutral
(denoted by 0) orientations alone are already enough. In almost all applications,
five levels of ratings are sufficient, for example, 1–5 stars. In both cases, sentiment
can be represented with a single value. The other two components in the triple can
be folded into this value.

This simplified framework is what is typically used in practical sentiment
analysis systems. We now redefine the concept of opinion (Hu and Liu, 2004; Liu,
2010).

Definition 2.7 (Opinion): An opinion is a quintuple,

(e, a, s, h, t),

where e is the target entity, a is the target aspect of entity e on which the opinion
has been given, s is the sentiment of the opinion on aspect a of entity e, h is the
opinion holder, and t is the opinion posting time; s can be positive, negative, or
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neutral, or a rating (e.g., 1–5 stars). When an opinion is only on the entity as a
whole, the special aspect GENERAL is used to denote it. Here e and a together
represent the opinion target.

Sentiment analysis (or opinion mining) based on this definition is often called
aspect-based sentiment analysis, or feature-based sentiment analysis as it was
called earlier in Hu and Liu (2004) and Liu (2010).

We should note that owing to the simplification, the quintuple representation
of opinion may result in information loss. For example, ink is a part of printer. A
printer review might say “The ink of this printer is expensive.” This sentence
does not say that the printer is expensive (expensive here indicates the aspect
price). If one does not care about any attribute of the ink, this sentence just gives
a negative opinion about the ink (which is an aspect of the printer entity). This
results in information loss. However, if one also wants to study opinions about
different aspects of the ink, then the ink needs to be treated as a separate entity.
The quintuple representation still applies, but an extra mechanism will be required
to record the part-of relationship between ink and printer. Of course, conceptually,
we can also extend the flat quintuple relation to a nested relation to make it
more expressive. However, as we explained earlier, too complex a definition can
make the problem extremely difficult to solve in practice. Despite this limitation,
Definition 2.7 does cover the essential information of an opinion sufficiently for
most applications.

In some applications, it may not be easy to distinguish entity and aspect, or there
may be no need to distinguish them. Such cases often occur when people discuss
political or social issues, for example, “I hate property tax increases.” We may
deal with them in two ways. First, because we can regard property tax increase as a
general issue and it thus does not belong to any specific entity, we can treat it as an
entity with the aspect GENERAL. Second, we can regard property tax as an entity
and property tax increases as one of its aspects to form a hierarchical relationship.
Whether to treat an issue or topic as an aspect or an entity can also depend
on the specific context. For example, in commenting about a local government,
one says, “I hate the proposed property tax increase.” Because it is the local
government that imposes and levies property taxes, the specific local government
may be regarded as an entity and the proposed property tax increase as one of its
aspects.

Not all applications need all five components of an opinion. In some appli-
cations, the user may not need the aspect information. For example, in brand
management, the user typically is interested only in opinions about product brands
(entities). This is sometimes called entity-based sentiment analysis. In some other
applications, the user may not need to know the opinion holder or the time of
opinion. Then these components can be ignored.

Definition 2.7 provides a framework to transform unstructured text to struc-
tured data. The quintuple is basically a database schema, based on which the
extracted opinions can be put into a database table. Then a rich set of qualitative,
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quantitative, and trend analyses of opinions can be performed using a whole
suite of database management systems and online analytical processing (OLAP)
tools.

2.1.5 Reason and Qualifier for Opinion

We can in fact perform an even finer-grained analysis of opinions. Let us use the
sentence “This car is too small for a tall person” to explain. It expresses a negative
sentiment about the size aspect of the car. However, only reporting the negative
sentiment for size does not tell the whole story because it can mean too small or
too big. In the sentence, we call “too small” the reason for the negative sentiment
about size. Furthermore, the sentence does not say that the car is too small for
everyone but only for a tall person. We call for a tall person the qualifier of the
opinion. We now define these concepts.

Definition 2.8 (Reason for opinion): A reason for an opinion is the cause or
explanation of the opinion.

In practical applications, discovering the reasons for each positive or negative
opinion can be very important because it may be these reasons that enable one to
perform actions to remedy the situation. For example, the sentence “I do not like
the picture quality of this camera” is not as useful as “I do not like the picture
quality of this camera because the pictures are quite dark.” The first sentence
does not give the reason for the negative sentiment about the picture quality, and
it is thus difficult to know what to do to improve the picture quality. The second
sentence is more informative because it gives the reason or cause for the negative
sentiment. The camera manufacturer can make use of this piece of information
to improve the picture quality of the camera. In most industrial applications, such
reasons are called problems or issues. Knowing the issues allows businesses to
find ways to address them. In this regard, Twitter may not be the best source of
opinions for businesses because of the length limit of each tweet, which makes it
hard for people to express the detailed reasons for their opinions.

Definition 2.9 (Qualifier of opinion): A qualifier of an opinion limits or modifies
the meaning of the opinion.

Knowing the qualifier is also important in practice because it tells what the opinion
is good for. For example, “This car is too small for a tall person” does not say that
the car is too small for everyone but just for tall people. For a person who is not
tall, this opinion does not apply.

However, as we have seen, not every opinion comes with an explicit reason
and/or an explicit qualifier. “The picture quality of this camera is not great” does
not have a reason or a qualifier. “The picture quality of this camera is not good
for night shots” has a qualifier for night shots, but does not give a specific reason
for the negative sentiment. “The picture quality of this camera is not good for
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night shots as the pictures are quite dark” has a reason for the negative sentiment
(the pictures are quite dark) and also a qualifier ( for night shots). Sometimes the
qualifier and the reason may not be in the same sentence and/or may be quite
implicit, for example, “The picture quality of this camera is not great. Pictures
of night shots are very dark” and “I am six feet five inches tall. This car is too
small for me.” Such reasons and qualifiers are very hard to identify and to extract.
An expression can also serve multiple purposes. For example, too small in the
preceding sentence indicates the size aspect of the car, a negative sentiment about
the size, and also the reason for the negative sentiment or opinion.

2.1.6 Objective and Tasks of Sentiment Analysis

With the definitions in Sections 2.1.1–2.1.5, we can now present the core objective
and the key tasks of (aspect-based) sentiment analysis.

Objective of sentiment analysis. Given an opinion document d, discover all
opinion quintuples (e, a, s, h, t) in d. For more advanced analysis, discover the
reason and qualifier for the sentiment in each opinion quintuple.

Key tasks of sentiment analysis. The key tasks of sentiment analysis can be
derived from the five components of the quintuple (Definition 2.7). The first
component is the entity, and the first task is to extract entities. The task is similar to
named entity recognition (NER) in information extraction (Mooney and Bunescu,
2005; Sarawagi, 2008; Hobbs and Riloff, 2010). However, as defined in Definition
2.3, an entity can also be an event, issue, or topic, which is usually not a named
entity. For example, in “I hate tax increase,” the entity is tax increase, which is
an issue or topic. In such cases, entity extraction is basically the same as aspect
extraction, and the difference between entity and aspect becomes blurry. In some
applications, there may not be a need to distinguish them.

After extraction, we need to categorize the extracted entities, as people often
write the same entity in different ways. For example, Motorola may be written as
Mot, Moto, and Motorola. We need to recognize that they all refer to the same
entity. We detail these in Section 6.7.

Definition 2.10 (Entity category and entity expression): An entity category
represents a unique entity, whereas an entity expression or mention is an actual
word or phrase that indicates an entity category in the text.

Each entity or entity category should have a unique name in a particular application.
The process of grouping or clustering entity expressions into entity categories is
called entity resolution or grouping.

For aspects of entities, the problem is basically the same as for entities. For
example, picture, image, and photo refer to the same aspect for cameras. We thus
need to extract aspect expressions and resolve them.
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Definition 2.11 (Aspect category and aspect expression): An aspect category of
an entity represents a unique aspect of the entity, whereas an aspect expression or
mention is an actual word or phrase that indicates an aspect category in the text.

Each aspect or aspect category should also have a unique name in a particular
application. The process of grouping aspect expressions into aspect categories
(aspects) is called aspect resolution or grouping.

Aspect expressions are usually nouns and noun phrases but can also be verbs,
verb phrases, adjectives, adverbs, and other constructions. They can also be explicit
or implicit (Hu and Liu, 2004).

Definition 2.12 (Explicit aspect expression): Aspect expressions that appear in
an opinion text as nouns or noun phrases are called explicit aspect expressions.

For example, picture quality in “The picture quality of this camera is great” is an
explicit aspect expression.

Definition 2.13 (Implicit aspect expression): Aspect expressions that are not
nouns or noun phrases but indicate some aspects are called implicit aspect
expressions.

For example, expensive is an implicit aspect expression in “This camera is expen-
sive.” It implies the aspect price. Many implicit aspect expressions are adjectives
and adverbs used to describe or qualify some specific aspects, for example, expen-
sive (price), and reliably (reliability). They can also be verbs and verb phrases, for
example, “I can install the software easily” and “This machine can play DVDs,
which is its best feature.” Install indicates the aspect of installation, and can play
DVDs indicates the function aspect of playing DVDs. Implicit aspect expressions
are not just adjectives, adverbs, verbs, and verb phrases; they can be arbitrarily
complex. For example, in “This camera will not easily fit in my pocket,” fit in my
pocket indicates the aspect size (and/or shape). In the sentence “This restaurant
closes too early,” closes too early indicates the aspect of closing time of the restau-
rant. In both cases, some commonsense knowledge may be needed to recognize
them.

Aspect extraction is a very challenging problem, especially when it involves
verbs and verb phrases. In some cases, it is even very hard for human beings
to recognize and annotate. For example, in a vacuum cleaner review, one wrote,
“The vacuum cleaner does not get the crumbs out of thick carpets,” which seems
to describe only one very specific aspect, get the crumbs out of thick carpets.
However, in practice, it may be more useful to decompose it into two different
aspects indicated by (1) get the crumbs, and (2) thick carpets. Aspect 1 represents
the suction power of the vacuum cleaner about crumbs, and aspect 2 represents
suction power related to thick carpets. Both aspects are important and useful
because the user may be interested in knowing whether the vacuum can suck
crumbs and whether it works well with thick carpets.
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The third component in the opinion definition is the sentiment. For this, we
need to perform sentiment classification or regression to determine the sentiment
orientation or score on the involved aspect and/or entity. The fourth and fifth
components are opinion holder and opinion posting time, respectively. They also
have expressions and categories as entities and aspects. I will not repeat their
definitions. Note that opinion holder (Bethard et al., 2004; Kim and Hovy, 2004;
Choi et al., 2005) is also called opinion source (Wiebe et al., 2005). For product
reviews and blogs, opinion holders are usually the authors of the posts and are
easy to extract. Opinion holders are more difficult to extract from news articles,
which often explicitly state the person or organization that holds an opinion.

On the basis of the preceding discussion, we can now define a model of entity
and a model of opinion document (Liu, 2006, 2011) and summarize the main
sentiment analysis tasks.

Model of entity. An entity e is represented by itself as a whole and a finite set of its
aspects A = {a1, a2, . . . , an}; e can be expressed in text with any one of a finite set
of its entity expressions {ee1, ee2, . . . , ees}. Each aspect a � A of entity e can be ex-
pressed with any one of a finite set of its aspect expressions {ae1, ae2, . . . , aem}.

Model of opinion document. An opinion document d contains opinions about a
finite set of entities {e1, e2, . . . , er} and a subset of aspects of each entity. The
opinions are from a finite set of opinion holders {h1, h2, . . . , hp} and are given at
a particular time point t.

Given a set of opinion documents D, sentiment analysis performs the following
eight main tasks:

Task 1 (entity extraction and resolution). Extract all entity expressions in D, and
group synonymous entity expressions into entity clusters (or categories). Each
entity expression cluster refers to a unique entity e.

Task 2 (aspect extraction and resolution). Extract all aspect expressions of the enti-
ties, and group these aspect expressions into clusters. Each aspect expression
cluster represents a unique aspect a.

Task 3 (opinion holder extraction and resolution). Extract the holder expression
of each opinion from the text or structured data and group them. The task is
analogous to tasks 1 and 2.

Task 4 (time extraction and standardization). Extract the posting time of each
opinion and standardize different time formats.

Task 5 (aspect sentiment classification or regression). Determine whether an opin-
ion about an aspect a (or entity e) is positive, negative, or neutral (classification),
or assign a numeric sentiment rating score to the aspect (or entity) (regression).

Task 6 (opinion quintuple generation). Produce all opinion quintuples (e, a, s, h, t)
expressed in D based on the results from tasks 1–5. This task is seemingly very
simple but it is in fact quite difficult in many cases, as Review B (following)
shows.



28 2 The Problem of Sentiment Analysis

For more advanced analysis, we can also perform the following two additional
tasks, which are analogous to task 2:

Task 7 (opinion reason extraction and resolution). Extract reason expressions
for each opinion, and group all reason expressions into clusters. Each cluster
represents a unique reason for the opinion.

Task 8 (opinion qualifier extraction and resolution). Extract qualifier expressions
for each opinion, and group all qualifier expressions into clusters. Each cluster
represents a unique qualifier for the opinion.

Although reasons for and qualifiers of opinions are useful, their extraction and
grouping are very challenging. Little research has been done about them so far.

We use an example review to illustrate the tasks (a sentence ID is again asso-
ciated with each sentence) and the analysis results.

Review B: Posted by bigJohn Date: September 15, 2011

(1) I bought a Samsung camera and my friend brought a Canon camera yesterday.
(2) In the past week, we both used the cameras a lot. (3) The photos from my Samy
are not clear for night shots, and the battery life is short too. (4) My friend was very
happy with his camera and loves its picture quality. (5) I want a camera that can take
good photos. (6) I am going to return it tomorrow.

Task 1 should extract the entity expressions Samsung, Samy, and Canon and group
Samsung and Samy together because they represent the same entity. Task 2 should
extract aspect expressions picture, photo, and battery life and group picture and
photo together as they are synonyms for cameras. Task 3 should find that the holder
of the opinions in sentence 3 is bigJohn (the blog author) and that the holder of
the opinions in sentence 4 is bigJohn’s friend. Task 4 should find that the time
when the blog was posted is September 15, 2011. Task 5 should find that sentence
3 gives a negative opinion on the picture quality of the Samsung camera and a
negative opinion also to its battery life. Sentence 4 gives a positive opinion to the
Canon camera as a whole and also to its picture quality. Sentence 5 seemingly
expresses a positive opinion, but it does not. To generate opinion quintuples for
sentence 4, we need to know what his camera and its refer to. Task 6 should finally
generate the following opinion quintuples:

1. (Samsung, picture_quality, negative, bigJohn, Sept-15-2011)
2. (Samsung, battery_life, negative, bigJohn, Sept-15-2011)
3. (Canon, GENERAL, positive, bigJohn’s_friend, Sept-15-2011)
4. (Canon, picture_quality, positive, bigJohn’s_friend, Sept-15-2011)

With more advanced mining and analysis, we also find the reasons and qualifiers
of opinions. None means unspecified.

1. (Samsung, picture_quality, negative, bigJohn, Sept-15-2011)
Reason for opinion: picture not clear
Qualifier of opinion: night shots
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2. (Samsung, battery_life, negative, bigJohn, Sept-15-2011)
Reason for opinion: short battery life
Qualifier of opinion: none

3. (Canon, GENERAL, positive, bigJohn’s_friend, Sept-15-2011)
Reason for opinion: none
Qualifier of opinion: none

4. (Canon, picture_quality, positive, bigJohn’s_friend, Sept-15-2011)
Reason for opinion: none
Qualifier of opinion: none

2.2 Definition of Opinion Summary

Unlike facts, opinions are subjective (although they may not be all expressed
in subjective sentences). An opinion from a single opinion holder is usually not
sufficient for action. In almost all applications, the user needs to analyze opinions
from a large number of opinion holders. This tells us that a summary of opinions
is necessary. The question is what an opinion summary should be. On the surface,
an opinion summary is just like a multi-document summary because we need
to summarize multiple opinion documents, for example, reviews. It is, however,
very different from a traditional multidocument summary. Although there are
informal descriptions about what a traditional multidocument summary should
be, it is never formally defined. A traditional multidocument summary is often
just “defined” operationally based on each specific algorithm that produces the
summary. Thus different algorithms produce different kinds of summaries. The
resulting summaries are also hard to evaluate. An opinion summary in its core
form, conversely, can be defined precisely based on the quintuple definition of
opinion and easily evaluated. That is, all opinion summarization algorithms should
aim to produce the same summary. Although they may still produce different final
summaries, that is due to their different accuracies. This core form of opinion
summary is called the aspect-based opinion summary (or feature-based opinion
summary) (Hu and Liu, 2004; Liu et al., 2005).

Definition 2.14 (Aspect-based opinion summary): The aspect-based opinion
summary about an entity e is of the following form:

GENERAL: number of opinion holders who are positive about entity e
number of opinion holders who are negative about entity e

Aspect 1: number of opinion holders who are positive about aspect 1 of entity e
number of opinion holders who are negative about aspect 1 of entity e
. . .

Aspect n: number of opinion holders who are positive about aspect n of entity e
number of opinion holders who are negative about aspect n of entity e

where GENERAL represents the entity e itself and n is the total number of aspects
of e.
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The key features of this opinion summary definition are that it is based on
positive and negative opinions about each entity and its aspects and that it is
quantitative. The quantitative perspective is reflected by the numbers of positive
or negative opinions. In an application, the number counts can also be replaced by
percentages. The quantitative perspective is especially important in practice. For
example, 20% of the people being positive about a product is very different from
80% of the people being positive about the product.

To illustrate this form of summary, we summarize a set of reviews of a digital
camera, called digital camera 1, in Figure 2.1. This is called a structured summary,
in contrast to a traditional text summary of a short document generated from one
or multiple long documents. In the figure, 105 reviews expressed positive opinions
about the camera itself, denoted by GENERAL, and 12 expressed negative opin-
ions. Picture quality and battery life are two camera aspects. Seventy-five reviews
expressed positive opinions about the picture quality, and forty-two expressed
negative opinions. We also added <Individual review sentences>, which can be a
link pointing to the sentences and/or the whole reviews that contain the opinions
(Hu and Liu, 2004; Liu et al., 2005). With this summary, one can easily see how
existing customers feel about the camera. If one is interested in a particular aspect
and additional details, one can drill down by following the <Individual review
sentences> link to see the actual opinion sentences or reviews.

In a more advanced analysis, we can also summarize opinion reasons and
qualifiers in a similar way. On the basis of my experience, qualifiers for opinion
statements are rare, but reasons for opinions are quite common. To perform the
task, we need another level of summary. For example, in Figure 2.1, we may
want to summarize the reasons for the poor picture quality based on the sentences
in <Individual review sentences>. We may find that thirty-five people say the
pictures are not bright enough and seven people say that the pictures are blurry.
This kind of summary is useful in practice because both businesses and individual
consumers want to know the main issues of a product. However, this level of detail
is more difficult to extract because a reason is usually a phrase, a clause, or even
a sentence.

Digital Camera 1: 
Aspect: GENERAL

Positive: 105 <Individual review sentences>
Negative: 12 <Individual review sentences>

Aspect: Picture quality
Positive: 75 <Individual review sentences>
Negative: 42 <Individual review sentences>

Aspect: Battery life
Positive: 50      <Individual review sentences>
Negative: 9 <Individual review sentences>

…

Figure 2.1. An aspect-based opinion summary.
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Based on the idea of an aspect-based summary, researchers have proposed many
opinion summarization algorithms and also extended this form of summary to
some other, more specialized forms. We study them in Chapter 9.

2.3 Affect, Emotion, and Mood

We now discuss emotional sentiment, which is about affect, emotion, and mood.
These concepts have been studied extensively in several fields, for example, psy-
chology, philosophy, and sociology. However, investigations in these fields are
seldom concerned with language expressions used to express such feelings. Their
main concerns are people’s psychological states of mind; theorizing what affect,
emotion, and mood are; what constitute basic emotions; what physiological reac-
tions happen (e.g., heart rate changes, blood pressure, sweating); what facial
expressions, gestures, and postures are; and measuring and investigating the impact
of such mental states. These mental states have also been exploited extensively in
application areas such as marketing, economics, and education.

However, even with such extensive research, understanding these concepts
is still slippery and confusing because different theorists often have somewhat
different definitions for them and even do not completely agree with each other
about what emotion, mood, and affect are. For example, on emotion, different
theorists have proposed that there are from two to twenty basic human emotions,
and some do not believe there is such a thing called basic emotions at all (Ortony
and Turner, 1990). In most cases, emotion and affect are regarded as synonymous,
and indeed, all three terms are sometimes used interchangeably. Affect is also used
as an encompassing term covering all topics related to emotion, feeling, and mood.
To make matters worse, in applications, researchers and practitioners use these
concepts loosely in whatever way they feel like to without following any established
definitions. Thus one is often left puzzled by just what an author means when the
word emotion, mood, or affect is used. In most cases, the definition of each term
also uses one or more of the other terms, resulting in circular definitions, which
causes further confusion. The good news for NLP researchers and practitioners is
that in practical applications of sentiment analysis, we needn’t be too concerned
with such an unsettled state of affairs because, in practice, we can pick up and use
whatever emotion or mood states suitable for the applications at hand.

This section first tries to create a reasonable understanding of these concepts
and their relationships for our NLP tasks in general and sentiment analysis in
particular. It then puts these three concepts in the context of sentiment analysis
and discusses how they can be handled in sentiment analysis.

2.3.1 Affect, Emotion, and Mood in Psychology

We start the discussion with the dictionary definitions of affect, emotion, and
mood.1 The concept of feeling is also included, as all three concepts are about

1 http://www.thefreedictionary.com/subjective.
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human feelings. From the definitions, we can see how difficult it is to explain or
articulate these concepts:

� Affect. Feeling or emotion, especially as manifested by facial expression or
body language.

� Emotion. A mental state that arises spontaneously rather than through con-
scious effort and is often accompanied by physiological changes.

� Mood. A state of mind or emotion.
� Feeling. An affective state of consciousness, such as that resulting from

emotions, sentiments, or desires.

These definitions are confusing from a scientific point of view because we do not
see a clear demarcation for each concept. We turn to the field of psychology to
look for a better definition for each of them. The convergence of views and ideas
among theorists in the past twenty years gives us a workable classification scheme.

An affect is commonly defined as a neurophysiological state consciously acces-
sible as the simplest raw (nonreflective) feeling evident in moods and emotions
(Russell, 2003). The key point here is that such a feeling is primitive and not
directed at an object. For example, you are watching a scary movie. If you are
affected, it moves you and you experience a feeling of being scared. Your mind
further processes this feeling and expresses it to yourself and the world around you.
The feeling is then displayed as an emotion, such as crying, shock, and screaming.

Emotion is thus the indicator of affect. Owing to cognitive processing, emotion
is a compound (rather than primitive) feeling concerned with a specific object,
such as a person, an event, a thing, or a topic. It tends to be intense and focused and
lasts a short period of time. Mood, like emotion, is a feeling or affective state, but
it typically lasts longer than emotion and tends to be more unfocused and diffused.
Mood is also less intense than emotion. For example, you may wake up feeling
happy and stay that way for most of the day.

In short, emotions are quick and tense, whereas moods are more diffused and
prolonged feelings. For example, we can get very angry very quickly, but it is
difficult to stay very angry for a long time. The anger emotion may subside into an
irritable mood that can last quite a long time. An emotion is usually very specific,
triggered by noticeable events, which means that an emotion has a specific target. In
this sense, emotion is like a rational sentiment or opinion. Conversely, a mood can
be caused by multiple events, and sometimes it may not have any specific targets or
causes. Mood typically also has a dimension of future expectation. It can involve
a structured set of beliefs about general expectations of a future experience of
pleasure or pain, or of positive or negative affect in the future (Batson et al., 1992).

Because sentiment analysis is not so much concerned with affect as defined
above, in the following we focus only on emotion and mood in the psychological
context. Let us start with emotion. Emotion has been frequently mentioned in
sentiment analysis. Because it has a target or an involved entity (or object), it
fits the sentiment analysis context naturally. Almost all real-life applications are
interested in opinions and emotions about some target entities or objects.
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Table 2.1. Basic emotions from different theorists

Source Basic emotions

Arnold (1960) Anger, aversion, courage, dejection, desire,
despair, fear, hate, hope, love, sadness,

Ekman et al. (1982) Anger, disgust, fear, joy, sadness, surprise

Gray (1982) Anxiety, joy, rage, terror,

Izard (1971) Anger, contempt, disgust, distress, fear, guilt,
interest, joy, shame, surprise

James (1884) Fear, grief, love, rage

McDougall (1926) Anger, disgust, elation, fear, subjection,
tender emotion, wonder

Mowrer (1960) Pain, pleasure

Oatley and Jobnson-Laird (1987) Anger, disgust, anxiety, happiness, sadness

Panksepp (1982) Expectancy, fear, rage, panic

Plutchik (1980) Acceptance, anger, anticipation, disgust, joy,
fear, sadness, surprise

Tomkins (1984) Anger, interest, contempt, disgust, distress,
fear, joy, shame, surprise

Watson (1930) Fear, love, rage

Weiner and Graham (1984) Happiness, sadness

Parrott (2001) Anger, fear, joy, love, sadness, surprise

Theorists in psychology have grouped emotions into categories. However, as
we mentioned earlier, there is still not a set of agreed basic (or primary) emotions
among theorists. In Ortony and Turner (1990), the basic emotions proposed by
several theorists were compiled to show there is a great deal of disagreement. We
reproduce them in Table 2.1.

In Parrott (2001), apart from the basic emotions, secondary and tertiary emo-
tions were also proposed (see Table 2.2). These secondary and tertiary emotions
are useful in some sentiment analysis applications because the set of basic emo-
tions may not be fine-grained enough. For example, in one of the applications that
I worked on, the client was interested in detecting optimism in the financial market.
Optimism is not a basic emotion in the list of any theorist, but it is a secondary
emotion for joy in Table 2.2. Note that although the words in Table 2.2 describe
different emotions or states of mind, they can also be used as part of an emotion
lexicon in sentiment analysis to spot different kinds of emotions. Of course, they
need to be significantly expanded to include those synonymous words and phrases
to form a reasonably complete emotion lexicon. In fact, there are some emotion
lexicons that have been compiled by researchers, which we discuss in Section 4.8.
Note again that for sentiment analysis, we do not need to be concerned with the
disagreement of theorists. For a particular application, we can choose the types of
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Table 2.2. Primary, secondary, and tertiary emotions from Parrott (2001)

Primary
emotion Secondary emotion Tertiary emotion

Anger Disgust Contempt, loathing, revulsion

Envy Jealousy

Exasperation Frustration

Irritability Aggravation, agitation, annoyance, crosspatch,
grouchy, grumpy

Rage Anger, bitter, dislike, ferocity, fury, hatred, hostility,
outrage, resentment, scorn, spite, vengefulness, wrath

Torment Torment

Fear Horror Alarm, fear, fright, horror, hysteria, mortification,
panic, shock, terror

Nervousness Anxiety, apprehension (fear), distress, dread, suspense,
uneasiness, worry

Joy Cheerfulness Amusement, bliss, gaiety, glee, jolliness, joviality, joy,
delight, enjoyment, gladness, happiness, jubilation,
elation, satisfaction, ecstasy, euphoria

Contentment Pleasure

Enthrallment Enthrallment, rapture

Optimism Eagerness, hope

Pride Triumph

Relief Relief

Zest Enthusiasm, excitement, exhilaration, thrill, zeal

Love Affection Adoration, attractiveness, caring, compassion,
fondness, liking, sentimentality, tenderness

Longing Longing

Lust/Sexual desire Desire, infatuation, passion

Sadness Disappointment Dismay, displeasure

Neglect Alienation, defeatism, dejection, embarrassment,
homesickness, humiliation, insecurity, insult, isolation,
loneliness, rejection

Sadness Depression, despair, gloom, glumness, grief,
melancholy, misery, sorrow, unhappy, woe

Shame Guilt, regret, remorse

Suffering Agony, anguish, hurt

Sympathy Pity, sympathy

Surprise Surprise Amazement, astonishment
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Table 2.3. HUMAINE polarity annotations of emotions

Negative and forceful Negative and passive Quiet positive
Anger Boredom Calm
Annoyance Despair Content
Contempt Disappointment Relaxed
Disgust Hurt Relieved
Irritation Sadness Serene

Negative and not in control Positive and lively Caring
Anxiety Amusement Affection
Embarrassment Delight Empathy
Fear Elation Friendliness
Helplessness Excitement Love
Powerlessness Happiness
Worry Joy

Pleasure

Negative thoughts Positive thoughts Reactive
Doubt Courage Interest
Envy Hope Politeness
Frustration Pride Surprised
Guilt Satisfaction
Shame Trust

Agitation
Stress
Shock
Tension

emotions that are useful to the application. We also do not need to worry about
whether they are primary, second, or tertiary.

The emotion annotation and representation language (EARL) proposed by the
Human-Machine Interaction Network on Emotion (HUMAINE) (HUMAINE,
2006) has classified forty-eight emotions into different kinds of positive and
negative orientations or valences (Table 2.3). This is useful to us because sentiment
analysis is mainly interested in expressions with positive or negative orientations or
polarities (also called valences). However, we should take note that some emotions
do not have positive or negative orientations, for example, surprise and interest.
Some psychologists felt that these should not be regarded as emotions (Ortony and
Turner, 1990) simply because they do not have positive or negative orientations or
valences. For the same reason, they are not commonly used in sentiment analysis.

We now turn to mood. The types of mood are similar to the types of emotion,
except that the types of emotions that last only momentarily will not usually
be moods, for example, surprise and shock. Thus, the words or phrases used to
express moods are similar to those for emotions. However, because mood is a
feeling that lasts a relatively long time, is diffused, and may not have a clear
cause or target object, it is hard to recognize unless a person explicitly says it, for
example, “I feel sad today.” We can also monitor one’s writings over a period of
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time to assess his prevailing mood in the period, which can help discover people
with prolonged mental or other medical conditions (e.g., chronic depression) and
even the tendency to commit suicides or crimes.

It is also interesting to discover the mood of the general population, for example,
public mood, and the general atmosphere between organizations or countries, for
example, the mood of U.S. and Russian relations, by monitoring the traditional
news media and/or social media over a period of time.

2.3.2 Affect, Emotion, and Mood in Sentiment Analysis

The preceding discussions are only about people’s states of mind, which are the
subjects of study of psychologists. However, for sentiment analysis, we need to
know how such feelings are expressed in natural language and how they can be
recognized. This leads us to the linguistics of affect, emotion, and mood. Affect
as defined by psychologists as a primitive response or feeling with no target is
not much of interest to us as almost everything written in text or displayed in the
form of facial expressions and other visible signs have already gone through some
cognitive processing to become emotion or mood. However, we note that the term
affect is still commonly used in linguistics and many other fields to mean emotion
and mood.

Wikipedia has a good page describing the linguistic aspect of emotion and
mood. There are two main ways that human beings express themselves: speech
and writing. In addition to choices of grammatical and lexical expressions, which
are common to both speech and writing (see later), speaker emotion can also be
conveyed through paralinguistic mechanisms such as intonations, facial expres-
sions, body movements, biophysical signals, or changes, gestures, and posture. In
writing, special punctuation (e.g., repeated exclamation marks, !!!!), capitalization
of all letters of a word, emoticons, lengthening of words (e.g., sloooooow), and so
on, are frequently used, especially in social media.

Regarding choices of grammatical and lexical expressions, there are several
common ways that people express emotions or moods:

1. use emotion or mood words or phrases such as love, disgust, angry, and
upset

2. describe emotion-related behaviors, for example, “He cried after he saw his
mother” and “After he received the news, he jumped up and down for a few
minutes like a small boy.”

3. use intensifiers – as we discussed in Section 2.1.3, common English inten-
sifiers include very, so, extremely, dreadfully, really, awfully (e.g., awfully
bad), terribly (e.g., terribly good), never (e.g., “I will never buy any product
from them again”), the sheer number of, on earth (e.g., “What on earth do
you think you are doing?”), the hell (e.g., “What the hell are you doing?”),
a hell of a, and so on; to emphasize further, intensifiers may be repeated, for
example, “This car is very very good”
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4. use superlatives – arguably, many superlative expressions also express emo-
tions, for example, “This car is simply the best”

5. use pejorative (e.g., “He is a fascist.”), laudatory (e.g., “He is a saint.”), and
sarcastic expressions (e.g., “What a great car, it broke the second day”)

6. use swearing, cursing, insulting, blaming, accusing, and threatening expres-
sions

My experience is that using these clues is sufficient for recognizing emotion and
mood in text, although in linguistics, adversative forms, honorific and deferential
language, interrogatives, tag questions, and the like may also be employed to
express emotional feelings, but their uses are rare and are also hard to recognize
computationally.

In Sections 3.6 and 4.8, we study existing methods for recognizing or classifying
emotions in text. To design new emotion detection algorithms, in addition to
considering the preceding clues, we should be aware that there is a cognitive gap
between people’s true psychological states of mind and the language that they use
to express such states. There are many reasons (e.g., being polite and do not want
people to know one’s true feelings) that they may not fully match. Thus, language
does not always represent psychological reality. For example, when one says “I
am happy with this car,” one may not have any emotional reaction toward the car,
although the emotion word happy is used. Furthermore, emotion and mood are
difficult to distinguish in written text (Alm, 2008). We normally do not distinguish
them. When we say emotion, we mean emotion or mood.

Because emotions have targets, and most of them also imply positive or nega-
tive sentiment, they can be represented and handled in very much the same way
as rational opinions. Although a rational opinion emphasizes a person’s evalua-
tion about an entity and an emotion emphasizes a person’s feeling caused by an
entity, emotion can essentially be regarded as sentiment with a stronger inten-
sity (see Section 2.1.3). It is often the case that when the sentiment of a person
becomes strong, she becomes emotional. For example, “The hotel manager is not
professional” expresses a rational opinion, whereas “I almost cried when the hotel
manager talked to me in a hostile manner” indicates that the author’s sentiment
reached the emotional level of sadness and/or anger. The sentiment orientation
of an emotion naturally inherits the polarity of the emotion, for example, sad,
anger, disgust, and fear are negative, and love and joy are positive. Clearly, at the
emotional level, sentiment becomes more fine-grained. Additional mechanisms
are needed to recognize different types of emotions in writing, as we discussed
earlier.

Owing to the similarity of emotion and rational opinion in essence, we can
still use the quadruple or quintuple representation of opinion (Definitions 2.1
and 2.7) to represent emotion. However, if we want to be more precise, we can
give it a separate definition based on the quadruple (Definition 2.1) or quintuple
(Definition 2.7) definitions, as the meanings of some components in the tuple are
not exactly the same as they were in the opinion definition, because emotions focus
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on personal feelings, whereas rational opinions focus on evaluations of external
entities.

Definition 2.15 (Emotion): An emotion is a quintuple,

(e, a, m, f, t),

where e is the target entity, a is the target aspect of e that is responsible for the
emotion, m is the emotion type or a pair representing an emotion type and an
intensity level, f is the feeler of the emotion, and t is the time when the emotion is
expressed.

For example, for the emotion expressed in the sentence “I am so upset with the
manager of the hotel,” the entity is the hotel, the aspect is the manager of the hotel,
the emotion type is anger, and the emotion feeler is I (the sentence author). If we
know the time when the emotion was expressed, we can add it to the quintuple
representation. As another example, in “After hearing of his brother’s death, he
burst into tears,” the target entity is his brother’s death, which is an event, and
there is no aspect. The emotion type is sadness and the emotion feeler is he.

In practical applications, we should integrate the analysis of rational opinions
and emotions and also include the sentiment orientation or polarity of each emo-
tion, that is, whether it is positive (desirable) or negative (undesirable) for the
feeler. If that is required, a sentiment component can be included in Definition
2.14 to make it a sextuple.

Cause of emotion. In Section 2.1.5, we discussed the reasons for opinions. In
a similar way, emotions have causes as emotions are usually caused by some
internal or external events. Here we use the word cause instead of reason because
an emotion is an effect produced by a cause (usually an event) rather than a
justification or explanation in support of an opinion. In the preceding sentence, his
brother’s death is the cause for his sadness emotion. Actually, his brother’s death
is both the target entity and the cause. In many cases, the target and the cause of
an emotion are different. For example, in “I am so mad with the hotel manager
because he refused to refund my booking fee,” the target entity is the hotel, the
target aspect is the manager of the hotel, and the cause of the anger emotion is he
refused to refund my booking fee. There is a subtle difference between his brother’s
death and he refused to refund my booking fee. The latter states an action performed
by he (the hotel manager) that causes the sadness emotion. He is the agent of the
undesirable action. The sentiment on the hotel manager is negative. The sentence
also explicitly stated the anger is toward the hotel manager, In the case of his
brother’s death, his brother or death alone is not the target of the emotion. It is the
whole event that is the target and the cause of the sadness emotion.

Unlike rational opinions, in many emotion and mood sentences, the authors may
not explicitly state the entities (e.g., named entities, topics, issues, actions and
events) that are responsible for the emotions or moods, for example, “I felt a bit
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sad this morning” and “There is sadness in her eyes.” The reason is that since
a rational opinion sentence focuses on both the opinion target and the sentiment
on the target, the opinion holder is often omitted (e.g., “The pictures from this
camera are great”) whereas an emotion sentence focuses on the feeling of the
feeler (e.g., “There is sadness in her eyes”). This means that a rational opinion
sentence contains both sentiments and their targets explicitly, but may or may
not give the opinion holder. An emotion sentence always has feelers and emotion
expressions, but may or may not state the emotion target or the cause (e.g., “I love
this car” and “I felt sad this morning”). This does not mean that some emotions
do not have targets and/or causes. They do, but the targets and/or causes may be
expressed in previous sentences or implied by the context, which makes extracting
targets and/or causes difficult. In the case of mood, the causes may be implicit or
even unknown and are thus not stated in the text.

2.4 Different Types of Opinions

Opinions can actually be classified along many dimensions. We discuss some main
classifications in this section.

2.4.1 Regular and Comparative Opinions

The type of opinion that we have defined is called the regular opinion (Liu, 2006,
2011). Another type is comparative opinion (Jindal and Liu, 2006b).

Regular opinion. A regular opinion is often referred to simply as an opinion in
the literature. It has two main subtypes (Liu, 2006, 2011), as follows:

Direct opinion. A direct opinion is an opinion that is expressed directly on an
entity or an entity aspect, for example, “The picture quality is great.”

Indirect opinion. An indirect opinion is an opinion that is expressed indirectly on an
entity or aspect of an entity based on some positive or negative effects on some
other entities. This subtype often occurs in the medical domain. For example,
the sentence “After injection of the drug, my joints felt worse” describes an
undesirable effect of the drug on my joints, which indirectly gives a negative
opinion or sentiment to the drug. In this case, the entity is the drug and the
aspect is effect on joints. Indirect opinions also occur in other domains, although
less frequently. In these cases, they are typically expressed as benefits (positive)
or issues (negative) of entities, for example, “With this machine, I can finish
my work in one hour, which used to take me five hours” and “After switching
to this laptop, my eyes felt much better.” In marketing, benefits of a product
or service are regarded as major selling points of the product or service. Thus,
extracting such benefits is of practical interest.

Current research mainly focuses on direct opinions, which are easier to deal with.
Indirect opinions are often harder to handle. For instance, in the drug domain, the



40 2 The Problem of Sentiment Analysis

system needs to know whether the desirable or undesirable state occurs before or
after using a drug. The sentence “Since my joints were painful, my doctor put me
on this drug” does not express any opinion about the drug because painful joints
happened before using this drug.

Comparative opinion. A comparative opinion expresses a relation of similarities
or differences between two or more entities and/or a preference of the opinion
holder based on some shared aspects of the entities (Jindal and Liu, 2006a, 2006b).
For example, the sentences “Coke tastes better than Pepsi” and “Coke tastes
the best” express two comparative opinions. A comparative opinion is usually
expressed using the comparative or superlative form of an adjective or adverb,
although not always (e.g., prefer). The definitions in Sections 2.1 and 2.2 do not
cover comparative opinion. Comparative opinions have many types. We define
and discuss them in Chapter 8.

2.4.2 Subjective and Fact-Implied Opinions

Opinions and sentiments are by nature subjective because they are about people’s
subjective views, appraisals, evaluations, and feelings. But when they are expressed
in actual text, they do not have to appear as subjective sentences. People can use
objective or factual sentences to express their happiness and displeasure because
facts can be desirable or undesirable. Conversely, not all subjective sentences
express positive or negative sentiments, for example, “I think he went home,”
which is a belief and has no orientation. On the basis of subjectivity, we can
classify opinions into two types, subjective opinions and fact-implied opinions.
We define them as follows.

Subjective opinion. A subjective opinion is a regular or comparative opinion
given in a subjective statement, for example,

“Coke tastes great.”
“I think Google’s profit will go up next month.”
“This camera is a masterpiece.”
“We are seriously concerned about this new policy.”
“Coke tastes better than Pepsi.”

We broadly classified subjective opinions into two categories: rational opinions
and emotional opinions (Section 2.1.3). We have seen different emotions in
Section 2.3. Rational opinions can also be categorized. Here we discuss one
classification scheme based on the appraisal system of Martin and White (2005),
who categorized opinions (which they called attitudes) into three types: affect,
judgment, and appreciation. Affect concerns emotions, and judgment concerns
opinions about intelligent entities, such as people in the social and ethical domain,
and appreciation concerns opinions about nonintelligent entities in the aesthetic
domain. Here we only discuss judgment and appreciation.
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Judgment can be further divided into normality, capacity, tenacity, veracity,
and propriety:

� Normality is about how special one is. It covers positive opinions related
to concepts such as lucky, fortunate, cool, predictable, fashionable, and cel-
ebrated and negative opinions related to concepts such as unlucky, odd,
eccentric, unpredictable, and obscure.

� Capacity is about how capable one is. It covers positive opinions related
to concepts such as powerful, vigorous, insightful, clever, and accomplished
and negative opinions related to concepts such as weak, unsound, crippled,
silly, foolish, and ignorant.

� Tenacity is about how dependable one is. It covers positive opinions related
to concepts such as brave, cautious, dependable, and adaptable and negative
opinions related to concepts such as cowardly, rash, impatient, undependable,
and stubborn.

� Veracity is about how honest one is. It covers positive opinions related to
concepts such as truthful, honest, credible, frank, and candid and negative
opinions related to concepts such as dishonest, deceitful, lying, deceptive,
and manipulative.

� Propriety is about how ethical one is. It covers positive opinions related to
concepts such as moral, ethical, law abiding, fair, modest, and polite and
negative opinions related to concepts such as immoral, evil, corrupt, unfair,
arrogant, and rude.

Appreciation can be divided into reaction, composition, and valuation. Reaction
and composition also have two subtypes each.

� Reaction (impact) is about the question “did it attract me?” It covers positive
opinions related to concepts such as arresting, engaging, fascinating, excit-
ing, and lively and negative opinions related to concepts such as dull, boring,
tedious, uninviting, and unremarkable.

� Reaction (quality) is about the question “did I like it?” It covers positive
opinions related to concepts such as fine, good, lovely, beautiful, and welcome
and negative opinions related to concepts such as bad, yuk, plain, ugly, and
repulsive.

� Composition (balance) is about the question “did it hang together?” It covers
positive opinions related to concepts such as balanced, harmonious, consis-
tent, logical, and curvaceous and negative opinions related to concepts such
as unbalanced, discordant, uneven, contradictory, and distorted.

� Composition (complexity) is about the question “was it hard to follow?” It
covers positive opinions related to concepts such as simple, pure, elegant,
intricate, precise, and detailed and negative opinions related to concepts such
as ornate, extravagant, byzantine, plain, monolithic, and simplistic.
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� Valuation is about the question “was it worthwhile?” It covers positive opin-
ions related to concepts such as deep, profound, innovative, valuable, price-
less, worthwhile, timely, and helpful and negative opinions related to con-
cepts such as shallow, fake, conventional, pricey, worthless, shoddy, dated,
and useless.

In applications, we can choose some of these categories based on our application
needs. We are also free to design our own scheme as there is no universally accepted
classification. There is another linguistic-based classification scheme in Asher
et al. (2009). However, such generic classifications are too coarse for real-life appli-
cations. For example, based on the definition of valuation, the opinions expressed
in the following four sentences all belong to the category of valuation:

“This camera is pricey.”
“The cost of this camera is very high.”
“This camera is innovative.”
“This camera is useless.”

However, they talk about different things with different sentiment targets. In normal
applications, they should not be grouped together because they have very different
target aspects. Only sentences 1 and 2 have the same target aspect of price (or
cost). The target aspects of sentences 3 and 4 are quite different.

Fact-implied opinion. A fact-implied opinion is a regular or comparative opinion
implied in an objective or factual statement. Such an objective statement expresses
a desirable or undesirable fact or action. This type of opinion can be further divided
into two subtypes:

1. Personal fact-implied opinion. Such an opinion is implied by a factual
statement about someone’s personal experience, for example,

“I bought the mattress a week ago, and a valley has formed in the middle.”
“I bought the toy yesterday and I have already thrown it into the trash can.”
“My dad bought the car yesterday and it broke today.”
“The battery life of this phone is longer than my previous Samsung phone.”

Although factual, these sentences tell us whether the opinion holder is posi-
tive or negative about the product or his preference among different products.
Thus, the opinions implied by these factual sentences are no different from
subjective opinions.

2. Nonpersonal fact-implied opinion. This type is entirely different as it does
not imply any personal opinion. It often comes from fact reporting, and the
reported fact does not give any opinion from anyone, for example,

“Google’s revenue went up by 30%.”
“The unemployment rate came down last week.”
“Google made more money than Yahoo! last month.”
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Unlike personal facts, these sentences do not express any experience or evaluation
from any person. For instance, the first sentence does not have the same meaning
as an opinion from a person who has used a Google product and expresses a
desirable or undesirable fact about the Google product. Because these sentences
do not give any personal opinion, they do not have opinion holders, although they
do have sources of information. For example, the source of the information in the
first sentence is likely to be Google itself, but it is a fact, not Google’s subjective
opinion.

We can still treat them as a type of opinion sentence for the following two
reasons:

1. Each of the sentences does indicate a desirable and/or undesirable state for
the involved entities or topics (i.e., Google, Yahoo!, and unemployment rate)
based on commonsense knowledge.

2. The persons who post the sentences might be expressing positive or negative
opinions implicitly about the involved entities. For example, the person who
posted the first sentence on Twitter is likely to have a positive sentiment
about Google; otherwise, the person would probably not post the fact. This
kind of post occurs very frequently on Twitter, where Twitter users pick up
some news headlines from the traditional media and post them on Twitter.
Many people may also re-tweet them.

As we can see, it is important to distinguish personal facts and nonpersonal facts, as
opinions induced from nonpersonal facts represent a very different type of opinion
and need special treatment. How we deal with such facts depends on applications.
My recommendation is to assign it the positive or negative orientation based
on our commonsense knowledge of whether the sentence is about a desirable or
undesirable fact to the involved entity, for example, Google. Users of the sentiment
analysis system should be made aware of the convention so that they can make
use of the opinion appropriately based on their applications.

Sometimes the author who posts such a fact may also give an explicit opinion,
for example,

“I am so upset that Google’s share price went up today.”

The clause Google’s share price went up today gives a nonpersonal fact-implied
positive opinion about Google, but the author is negative about it. This is called
a meta-opinion, an opinion about an opinion. We discuss how to deal with meta-
opinions in Section 2.4.4.

If we turn the preceding facts into subjective sentences, the meanings become
very different, for example,

“I think that Google’s revenue will go up by at least 30% in the next quarter.”
“The unemployment rate will come down soon.”
“I think Google will make more money than Yahoo!”

These sentences express only personal opinions.
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Subjective opinions are usually easier to deal with because the number of words
and phrases that can be used to explicitly express subjective feelings is limited, but
this is not the case for fact-implied opinions. There seem to be an infinite number
of desirable and undesirable facts, and every domain is different. However, there
are still some patterns that can be exploited to infer opinions from facts. We discuss
them in Chapter 5. Much of the existing research has focused only on subjective
opinions, and only limited work has been done about fact-implied opinions (Zhang
and Liu, 2011b).

2.4.3 First-Person and Non-First-Person Opinions

In some applications, it is important to distinguish statements expressing one’s
own opinions from statements expressing beliefs about someone else’s opinions.
For example, in a political election, one votes based on one’s belief about each
candidate’s stances on issues rather than based on the true stances of the candidate,
which may or may not be the same.

1. First-person opinion. Such an opinion states one’s own attitude toward an
entity. It can be from a person, a representative of a group, or an organization.
Here are some example sentences expressing first-person opinions:

“Tax increase is bad for the economy.”
“I think Google’s profit will go up next month.”
“We are seriously concerned about this new policy.”
“Coke tastes better than Pepsi.”

Notice that not every sentence needs to explicitly use the first-person pronoun
I or we or to mention an organization name.

2. Non-first-person opinion. Such an opinion is expressed by a person stating
someone else’s opinion. That is, it is a belief of someone else’s opinion about
some entities or topics, for example,

“I think John likes Lenovo PCs.”
“Jim loves his iPhone.”
“President Obama supports tax increase.”
“I believe Obama does not like wars.”

2.4.4 Meta-Opinions

Meta-opinions are opinions about opinions. That is, a meta-opinion’s target is also
an opinion, which is usually contained in a subordinate clause. The opinion in the
subordinate clause can express either a fact with an implied opinion or a subjective
opinion. Let us see some examples:

“I am so upset that Google’s profit went up.”
“I am very happy that my daughter loves her new Ford car.”
“I am so sad that Germany lost the game.”
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These sentences look quite different from opinion sentences before. But they still
follow the same opinion definition in Definition 2.7. It is just that the target of
the meta-opinion in the main clause is now an opinion itself in the subordinate
clause. For example, in the first sentence, the author is negative about Google’s
profit went up, which is the target of the meta-opinion in the main clause. So
the meta-opinion is negative. However, its target is a regular fact-implied positive
opinion about Google’s profit. In practice, these two types of opinions should
be treated differently. Because meta-opinions are rare, there is little research or
practical work on them.

2.5 Author and Reader Standpoint

We can look at an opinion from two perspectives: that of the author (opinion
holder) who posts the opinion and that of the reader who reads the opinion.
Because opinions are subjective, naturally the author and the reader may not see
the same thing in the same way. Let us use the following two example sentences
to illustrate the point:

“This car is too small for me.”
“Google’s profits went up by 30%.”

Because the author or the opinion holder of the first sentence felt the car was too
small, a sentiment analysis system should output a negative opinion about the size
of the car. However, this does not mean that the car is too small for everyone. A
reader may actually like the small size and feel positive about it. This causes a
problem because if the system outputs only a negative opinion about the size, the
reader will not know whether it was too small or too large, and then she would
not see this positive aspect for her. Fortunately, this problem can be dealt with by
mining and summarizing opinion reasons (see Section 2.1.5). Here too small not
only indicates a negative opinion about the size but also the reason for the negative
opinion. With the reason, the reader can see a more complete picture of the opinion,
which will help her to make a better decision. In a slightly related work, Greene
and Resnik (2009) studied the influence of syntactic choices on perceptions of
implicit sentiments. For example, for the same story, different headlines can imply
different sentiments.

The second sentence represents a nonpersonal fact-implied opinion. As dis-
cussed in Section 2.4.2, the person who posts the fact is likely to be positive
about Google. However, the readers may have different feelings. Those who have
financial interests in Google should feel happy, but Google’s competitors will not
be thrilled. In Section 2.4.2, we choose to assign positive sentiment to the opinion
because our commonsense knowledge says that the fact is desirable for Google.
Users can decide how to use the opinion based on their application needs.

2.6 Summary

This chapter mainly defined the concepts of opinion and sentiment, the main
tasks of sentiment analysis, and the framework of opinion summarization. The
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definitions abstracted a structure from the complex unstructured natural language
text that forms the foundation of the field and serves as a common framework
to unify various research directions. It also showed that sentiment analysis is a
multifaceted problem with many interrelated subproblems rather than just a single
problem. Researchers can exploit the relationships to design more robust and
accurate solution techniques for sentiment analysis, and practitioners can see what
is needed in building a sentiment analysis system. This chapter also classified
and discussed various types of opinions, which may require different solution
techniques to analyze them. Along with these definitions and discussions, the
important concepts of affect, emotion, and mood were introduced and defined.
They are closely related to, but are also different from, conventional rational
opinions. Opinions emphasize evaluation or appraisal of some target objects,
events, or topics (which are collectively called entities in this chapter), whereas
emotions emphasize people’s feelings caused by such entities. In almost all cases,
emotions can be regarded as sentiments with strong intensities that have aroused
people’s inner or basic feelings. Emotions are also more fine-grained than positive
or negative opinions, as there are many types of emotions. However, there are
also emotions that do not have a positive or negative orientation or polarity, for
example, surprise. Although one can be positively or negatively surprised, it is also
possible that one is just surprised without a positive or negative polarity of feeling.
As we mentioned in Section 2.3, there is still not a set of basic emotions on which
all researchers agree, but this conceptual confusion among psychologists does not
concern us too much as we can pick and choose emotion or mood types useful to
our particular applications and deal with them just as we would with any other
opinion.

After reading this chapter, I am sure that you would agree with me that on one
hand, sentiment analysis is a highly challenging area of research involving many
different tasks and perspectives, and on the other, it is also highly subjective in
nature. Thus, I do not expect that you completely agree with me on everything in
the chapter. I also do not claim that this chapter covered all the important aspects
of sentiment and opinion. My goal is to present a reasonably precise definition of
sentiment analysis (or opinion mining) and its related concepts, issues, and tasks.
I hope I have succeeded to some extent.




