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Abstract. New precipitation (P ) datasets are released regu-
larly, following innovations in weather forecasting models,
satellite retrieval methods, and multi-source merging tech-
niques. Using the conterminous US as a case study, we eval-
uated the performance of 26 gridded (sub-)daily P datasets
to obtain insight into the merit of these innovations. The
evaluation was performed at a daily timescale for the period
2008–2017 using the Kling–Gupta efficiency (KGE), a per-
formance metric combining correlation, bias, and variability.
As a reference, we used the high-resolution (4 km) Stage-IV
gauge-radar P dataset. Among the three KGE components,
the P datasets performed worst overall in terms of correla-
tion (related to event identification). In terms of improving
KGE scores for these datasets, improved P totals (affecting
the bias score) and improved distribution of P intensity (af-
fecting the variability score) are of secondary importance.
Among the 11 gauge-corrected P datasets, the best overall
performance was obtained by MSWEP V2.2, underscoring
the importance of applying daily gauge corrections and ac-
counting for gauge reporting times. Several uncorrected P
datasets outperformed gauge-corrected ones. Among the 15
uncorrected P datasets, the best performance was obtained
by the ERA5-HRES fourth-generation reanalysis, reflecting
the significant advances in earth system modeling during the
last decade. The (re)analyses generally performed better in
winter than in summer, while the opposite was the case for
the satellite-based datasets. IMERGHH V05 performed sub-

stantially better than TMPA-3B42RT V7, attributable to the
many improvements implemented in the IMERG satellite P
retrieval algorithm. IMERGHH V05 outperformed ERA5-
HRES in regions dominated by convective storms, while the
opposite was observed in regions of complex terrain. The
ERA5-EDA ensemble average exhibited higher correlations
than the ERA5-HRES deterministic run, highlighting the
value of ensemble modeling. The WRF regional convection-
permitting climate model showed considerably more accu-
rate P totals over the mountainous west and performed best
among the uncorrected datasets in terms of variability, sug-
gesting there is merit in using high-resolution models to ob-
tain climatological P statistics. Our findings provide some
guidance to choose the most suitable P dataset for a particu-
lar application.

1 Introduction

Knowledge about the spatio-temporal distribution of pre-
cipitation (P ) is important for a multitude of scientific and
operational applications, including flood forecasting, agri-
cultural monitoring, and disease tracking (Tapiador et al.,
2012; Kucera et al., 2013; Kirschbaum et al., 2017). How-
ever, P is highly variable in space and time and there-
fore extremely challenging to estimate, especially in topo-
graphically complex, convection-dominated, and snowfall-
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dominated regions (Stephens et al., 2010; Tian and Peters-
Lidard, 2010; Herold et al., 2016; Prein and Gobiet, 2017).
In the past decades, numerous gridded P datasets have been
developed, differing in terms of design objective, spatio-
temporal resolution and coverage, data sources, algorithm,
and latency (see Tables 1 and 2 for an overview of quasi and
fully global datasets).

A large number of regional-scale studies have evaluated
gridded P datasets to obtain insight into the merit of differ-
ent methods and innovations (see reviews by Gebremichael,
2010, Maggioni et al., 2016, and Sun et al., 2018). However,
many of these studies (i) used only a subset of the avail-
able P datasets, and omitted (re)analyses, which have higher
skill in cold periods and regions (Huffman et al., 1995; Ebert
et al., 2007; Beck et al., 2017c); (ii) focused on a small (sub-
continental) region, limiting the generalizability of the find-
ings; (iii) considered a small number (< 50) of rain gauges or
streamflow gauging stations for the evaluation, limiting the
validity of the findings; (iv) used gauge observations already
incorporated into the datasets as a reference without explic-
itly mentioning this, potentially leading to a biased evalua-
tion; and (v) failed to account for gauge reporting times, pos-
sibly resulting in spurious temporal mismatches between the
datasets and the gauge observations.

In an effort to obtain more generally valid conclusions,
we recently evaluated 22 (sub-)daily gridded P datasets us-
ing gauge observations (∼ 75000 stations) and hydrological
modeling (∼ 9000 catchments) globally (Beck et al., 2017c).
Other noteworthy large-scale assessments include Tian and
Peters-Lidard (2010), who quantified the uncertainty in P
estimates by comparing six satellite-based datasets, Massari
et al. (2017), who evaluated five P datasets using triple collo-
cation at the daily timescale without the use of ground obser-
vations, and Sun et al. (2018), who compared 19 P datasets
at daily to annual timescales. These comprehensive studies
highlighted (among other things) (i) substantial differences
among P datasets and thus the importance of dataset choice;
(ii) the complementary strengths of satellite and (re)analysis
P datasets; (iii) the value of merging P estimates from dis-
parate sources; (iv) the effectiveness of daily (as opposed to
monthly) gauge corrections; and (v) the widespread underes-
timation of P in mountainous regions.

Here, we evaluate an even larger selection of (sub-)daily
(quasi-)global P datasets for the conterminous US
(CONUS), including some promising recently released
datasets: ERA5 (the successor to ERA-Interim; Hersbach
et al., 2018), IMERG (the successor to TMPA; Huffman
et al., 2014, 2018), and MERRA-2 (one of the few reanalysis
P datasets incorporating daily gauge observations; Gelaro
et al., 2017; Reichle et al., 2017). In addition, we evaluate
the performance of a regional convection-permitting climate
model (WRF; Liu et al., 2017). As a reference, we use the
high-resolution, radar-based, gauge-adjusted Stage-IV P

dataset (Lin and Mitchell, 2005) produced by the National
Centers for Environmental Prediction (NCEP). As a per-

formance metric, we adopt the widely used Kling–Gupta
efficiency (KGE; Gupta et al., 2009; Kling et al., 2012).
We shed light on the strengths and weaknesses of different
P datasets and on the merit of different technological and
methodological innovations by addressing 10 pertinent
questions.

1. What is the most important factor determining a high
KGE score?

2. How do the uncorrected P datasets perform?

3. How do the gauge-based P datasets perform?

4. How do the P datasets perform in summer versus win-
ter?

5. What is the impact of gauge corrections?

6. What is the improvement of IMERG over TMPA?

7. What is the improvement of ERA5 over ERA-Interim?

8. How does the ERA5-EDA ensemble average compare
to the ERA5-HRES deterministic run?

9. How do IMERG and ERA5 compare?

10. How well does a regional convection-permitting climate
model perform?

2 Data and methods

2.1 P datasets

We evaluated the performance of 26 gridded (sub-)daily P
datasets (Tables 1 and 2). All datasets are either fully or
near global, with the exception of WRF, which is limited
to the CONUS. The datasets are classified as either un-
corrected, which implies that temporal variations depend
entirely on satellite and/or (re)analysis data, or corrected,
which implies that temporal variations depend to some de-
gree on gauge observations. We included seven datasets ex-
clusively based on satellite data (CMORPH V1.0, GSMaP-
Std V6, IMERGHHE V05, PERSIANN, PERSIANN-CCS,
SM2RAIN-CCI V2, and TMPA-3B42RT V7), six fully based
on (re)analyses (ERA-Interim, ERA5-HRES, ERA5-EDA,
GDAS-Anl, JRA-55, and NCEP-CFSR, although ERA5 as-
similates radar and gauge data over the CONUS), one incor-
porating both satellite and (re)analysis data (CHIRP V2.0),
and one based on a regional convection-permitting climate
model (WRF).

Among the gauge-based P datasets, six combined gauge
and satellite data (CMORPH-CRT V1.0, GPCP-1DD V1.2,
GSMaP-Std Gauge V7, IMERGDF V05, PERSIANN-
CDR V1R1, and TMPA-3B42 V7), one combined gauge
and reanalysis data (WFDEI-GPCC), three combined gauge,
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Table 1. Overview of the 15 uncorrected (quasi-)global (sub-)daily gridded P datasets evaluated in this study. The 11 gauge-corrected
datasets are listed in Table 2. Abbreviations in the data source(s) column defined as S, satellite; R, reanalysis; A, analysis; and M, regional
climate model. The abbreviation NRT in the temporal coverage column stands for near real time. In the spatial coverage column, “Global”
means fully global coverage including oceans, while “Land” means that the coverage is limited to the terrestrial land surface.

Name Details Data Spatial Spatial Temporal Temporal Reference or website
source(s) resolution coverage resolution coverage

CHIRP V2.01 Climate Hazards group InfraRed Precipitation
(CHIRP) V2.0

S, R, A 0.05◦ Land, 50◦ N/S Daily 1981–NRT3 Funk et al. (2015a)

CMORPH V1.0 CPC MORPHing technique (CMORPH) V1.0 S 0.07◦ 60◦ N/S 30 min 1998–NRT2 Joyce et al. (2004),
Xie et al. (2017)

ERA-Interim European Centre for Medium-range Weather
Forecasts ReAnalysis Interim (ERA-Interim)

R ∼ 0.75◦ Global 3-hourly 1979–NRT4 Dee et al. (2011)

ERA5-HRES5 European Centre for Medium-range Weather
Forecasts ReAnalysis 5 (ERA5) High RESolu-
tion (HRES)

R ∼ 0.28◦ Global Hourly 2008–NRT3,6 Hersbach et al. (2018)

ERA5-EDA5 European Centre for Medium-range Weather
Forecasts ReAnalysis 5 (ERA5) Ensemble Data
Assimilation (EDA) ensemble mean

R ∼ 0.56◦ Global Hourly 2008–NRT3,6 Hersbach et al. (2018)

GDAS-Anl National Centers for Environmental Predic-
tion (NCEP) Global Data Assimilation System
(GDAS) Analysis (Anl)

A ∼ 0.25◦ Global 3-hourly 2015–NRT2 http://www.emc.ncep.
noaa.gov/gmb/gdas/
(last access: August
2018)

GSMaP-Std V6 Global Satellite Mapping of Precipitation
(GSMaP) Moving Vector with Kalman (MVK)
Standard V6

S 0.1◦ 60◦ N/S Hourly 2000–NRT2 Ushio et al. (2009)

IMERGHHE V05 Integrated Multi-satellitE Retrievals for GPM
(IMERG) early run V05

S 0.1◦ 60◦ N/S 30 min 2014–NRT2,7 Huffman et al. (2014,
2018)

JRA-55 Japanese 55 year ReAnalysis (JRA-55) R ∼ 0.56◦ Global 3-hourly 1959–NRT3 Kobayashi et al. (2015)

NCEP-CFSR National Centers for Environmental Prediction
(NCEP) Climate Forecast System Reanalysis
(CFSR)

R ∼ 0.31◦ Global Hourly 1979–2010 Saha et al. (2010)

PERSIANN Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks
(PERSIANN)

S 0.25◦ 60◦N/S Hourly 2000–NRT2 Sorooshian et al. (2000)

PERSIANN-CCS Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks
(PERSIANN) Cloud Classification System
(CCS)

S 0.04◦ 60◦ N/S Hourly 2003–NRT2 Hong et al. (2004)

SM2RAIN-CCI V2 Rainfall inferred from European Space
Agency’s (ESA) Climate Change Initiative
(CCI) satellite near-surface soil moisture V2

S 0.25◦ Land Daily 1998–2015 Ciabatta et al. (2018)

TMPA-3B42RT V7 TRMM Multi-satellite Precipitation Analysis
(TMPA) 3B42RT V7

S 0.25◦ 50◦ N/S 3-hourly 2000–NRT2 Huffman et al. (2007)

WRF8 Weather Research and Forecasting (WRF) M 4 km CONUS Hourly 2000–2013 Liu et al. (2017)
1 The daily variability is based on satellite and reanalysis data. However, the monthly climatology has been corrected using a gauge-based dataset (Funk et al., 2015b). 2 Available until the present with a delay of several hours.
3 Available until the present with a delay of several days. 4 Available until the present with a delay of several months. 5 Rain gauge and ground radar observations were assimilated from 17 July 2009 onwards (Lopez, 2011,
2013). 6 1950–NRT once production has been completed. 7 2000–NRT for the next version. 8 The only dataset included in the evaluation with continental coverage instead of (quasi-)global coverage.

satellite, and (re)analysis data (CHIRPS V2.0, MERRA-2,
and MSWEP V2.2), while one was fully based on gauge
observations (CPC Unified V1.0/RT). For transparency and
reproducibility, we report dataset version numbers through-
out the study for the datasets for which this information
was provided. For the P datasets with a sub-daily tempo-
ral resolution, we calculated daily accumulations for 00:00–
23:59 UTC. P datasets with spatial resolutions< 0.1◦ were
resampled to 0.1◦ using bilinear averaging, whereas those

with spatial resolutions > 0.1◦ were resampled to 0.1◦ using
bilinear interpolation.

2.2 Stage-IV gauge-radar data

As a reference, we used the NCEP Stage-IV dataset, which
has a 4 km spatial and hourly temporal resolution and cov-
ers the period 2002 until the present, and merges data from
140 radars and ∼ 5500 gauges over the CONUS (Lin and
Mitchell, 2005). Stage-IV provides highly accurate P esti-
mates and has therefore been widely used as a reference for
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Table 2. Overview of the 11 gauge-corrected (quasi-)global (sub-)daily gridded P datasets evaluated in this study. The 15 uncorrected
datasets are listed in Table 1. Abbreviations in the data source(s) column defined as G, gauge; S, satellite; R, reanalysis; and A, analysis. The
abbreviation NRT in the temporal coverage column stands for near real time. In the spatial coverage column, “global” indicates fully global
coverage including ocean areas, while “land” indicates that the coverage is limited to the terrestrial surface.

Name Details Data Spatial Spatial Temporal Temporal Reference or website
source(s) resolution coverage resolution coverage

CHIRPS V2.0 Climate Hazards group InfraRed Precipita-
tion with Stations (CHIRPS) V2.0

G, S, R, A 0.05◦ Land, 50◦ N/S Daily 1981–NRT2 Funk et al. (2015a)

CMORPH-
CRT V1.0

CPC MORPHing technique (CMORPH)
bias corrected (CRT) V1.0

G, S 0.07◦ 60◦ N/S 30 min 1998–2015 Joyce et al. (2004),
Xie et al. (2017)

CPC Unified
V1.0/RT

Climate Prediction Center (CPC) Unified
V1.0 and RT

G 0.5◦ Land Daily 1979–NRT2 Xie et al. (2007),
Chen et al. (2008)

GPCP-1DD
V1.2

Global Precipitation Climatology Project
(GPCP) 1-Degree Daily (1DD) Combina-
tion V1.2

G, S 1◦ Global Daily 1996–2015 Huffman et al. (2001)

GSMaP-Std
Gauge V7

Global Satellite Mapping of Precipitation
(GSMaP) Moving Vector with Kalman
(MVK) Standard gauge-corrected V7

G, S 0.1◦ 60◦ N/S Hourly 2000–NRT1 Ushio et al. (2009)

IMERGDF V05 Integrated Multi-satellitE Retrievals for
GPM (IMERG) final run V05

G, S 0.1◦ 60◦ N/S 30 min 2014–NRT3,4 Huffman et al. (2014,
2018)

MERRA-2 Modern-Era Retrospective Analysis for Re-
search and Applications 2

G, S, R ∼ 0.5◦ Global Hourly 1980–NRT3 Gelaro et al. (2017),
Reichle et al. (2017)

MSWEP V2.2 Multi-Source Weighted-Ensemble Precipi-
tation (MSWEP) V2.2

G, S, R, A 0.1◦ Global 3-hourly 1979–NRT1 Beck et al. (2017b,
2019)

PERSIANN-
CDR V1R1

Precipitation Estimation from Remotely
Sensed Information using Artificial Neu-
ral Networks (PERSIANN) Climate Data
Record (CDR) V1R1

G, S 0.25◦ 60◦ N/S Daily 1983–2016 Ashouri et al. (2015)

TMPA-3B42
V7

TRMM Multi-satellite Precipitation Analy-
sis (TMPA) 3B42 V7

G, S 0.25◦ 50◦ N/S 3-hourly 2000–2017 Huffman et al. (2007)

WFDEI-GPCC WATCH Forcing Data ERA-Interim
(WFDEI) corrected using Global Precipita-
tion Climatology Centre (GPCC)

G, R 0.5◦ Land 3-hourly 1979–2016 Weedon et al. (2014)

1 Available until the present with a delay of several hours. 2 Available until the present with a delay of several days. 3 Available until the present with a delay of several months.
4 2000–NRT for the next version.

the evaluation of P datasets (e.g., Hong et al., 2006; Habib
et al., 2009; AghaKouchak et al., 2011, 2012; Nelson et al.,
2016; Zhang et al., 2018b). Daily Stage-IV data are available,
but they represent an accumulation period that is incompat-
ible with the datasets we are evaluating (12:00–11:59 UTC
instead of 00:00–23:59 UTC). We therefore calculated daily
accumulations for 00:00–23:59 UTC from 6-hourly Stage-IV
accumulations. The Stage-IV dataset was reprojected from
its native 4 km polar stereographic projection to a regular ge-
ographic 0.1◦ grid using bilinear averaging.

The Stage-IV dataset is a mosaic of regional analyses pro-
duced by 12 CONUS River Forecast Centers (RFCs) and is
thus subject to the gauge correction and quality control per-
formed at each individual RFC (Westrick et al., 1999; Smal-
ley et al., 2014; Eldardiry et al., 2017). To reduce systematic
biases, the Stage-IV dataset was rescaled such that its long-
term mean matches that of the PRISM dataset (Daly et al.,
2008) for the evaluation period (2008–2017). To this end,
the PRISM dataset was upscaled from ∼ 800 m to 0.1◦ us-

ing bilinear averaging. The PRISM dataset has been derived
from gauge observations using a sophisticated interpolation
approach that accounts for topography. It is generally con-
sidered the most accurate monthly P dataset available for
the US and has been used as a reference in numerous studies
(e.g., Mizukami and Smith, 2012; Prat and Nelson, 2015; Liu
et al., 2017). However, the dataset has not been corrected for
wind-induced gauge undercatch and thus may underestimate
P to some degree (Groisman and Legates, 1994; Rasmussen
et al., 2012).

2.3 Evaluation approach

The evaluation was performed at a daily temporal and 0.1◦

spatial resolution by calculating, for each grid cell, KGE
scores from daily time series for the 10-year period from
2008 to 2017. KGE is an objective performance metric com-
bining correlation, bias, and variability. It was introduced in
Gupta et al. (2009) and modified in Kling et al. (2012) and is
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defined as follows:

KGE= 1−
√
(r − 1)2+ (β − 1)2+ (γ − 1)2, (1)

where the correlation component r is represented by (Pear-
son’s) correlation coefficient, the bias component β by the
ratio of estimated and observed means, and the variability
component γ by the ratio of the estimated and observed co-
efficients of variation:

β =
µs

µo
and γ =

σs/µs

σo/µo
, (2)

where µ and σ are the distribution mean and standard devia-
tion, respectively, and the subscripts s and o indicate estimate
and reference, respectively. KGE, r , β, and γ values all have
their optimum at unity.

3 Results and discussion

3.1 What is the most important factor determining a
high KGE score?

Figure 2 presents box-and-whisker plots of KGE scores for
the 26 P datasets. The mean median KGE score over all
datasets is 0.54. The mean median scores for the correlation,
bias, and variability components of the KGE, expressed as
|r−1|, |β−1|, and |γ −1|, are 0.34, 0.18, and 0.16, respec-
tively (see Eq. 1). The datasets thus performed considerably
worse in terms of correlation, which makes sense given that
long-term climatological P statistics are easier to estimate
than day-to-day P dynamics. Due to the squaring of the three
components in the KGE equation (see Eq. 1), the correla-
tion values exert the dominant influence on the final KGE
scores. Indeed, the performance ranking in terms of KGE
corresponds well to the performance ranking in terms of cor-
relation (Fig. 2). These results suggest that in order to get an
improved KGE score, the most important component score
to improve is the correlation. This in turn suggests that, for
existing daily P datasets, improvements to the timing of P
events at the daily scale (dominating the correlation scores)
are more valuable than improvements to P totals (dominat-
ing bias scores) or the intensity distribution (dominating vari-
ability scores).

3.2 How do the uncorrected P datasets perform?

Among the uncorrected P datasets, the (re)analyses per-
formed better overall than the satellite-based datasets (Figs. 1
and 2). The best performance was obtained by ECMWF’s
fourth-generation reanalysis ERA5-HRES (median KGE
of 0.63), with NASA’s most recent satellite-based dataset
IMERGHHE V05 and the ensemble average ERA5-EDA
coming a close equal second (median KGE of 0.62). These
results underscore the substantial advances in earth sys-
tem modeling and satellite-based P estimation over the

last decade. The third-generation, coarser-resolution reanal-
yses (ERA-Interim, JRA-55, and NCEP-CFSR) performed
slightly worse overall (median KGE of 0.55, 0.52, and 0.52,
respectively). ERA-Interim performed slightly better than
other third-generation reanalyses, consistent with earlier
studies focusing on P (Bromwich et al., 2011; Peña Aran-
cibia et al., 2013; Palerme et al., 2017; Beck et al., 2017c) and
other atmospheric variables (Bracegirdle and Marshall, 2012;
Jin-Huan et al., 2014; Zhang et al., 2016). All (re)analyses,
including the new ERA5-HRES, underestimated the variabil-
ity (Figs. 2 and S3 in the Supplement), reflecting the ten-
dency of (re)analyses to overestimate P frequency (Zolina
et al., 2004; Sun et al., 2006; Lopez, 2007; Stephens et al.,
2010; Skok et al., 2015; Beck et al., 2017c). The addi-
tional variability underestimation by ERA5-EDA compared
to ERA5-HRES probably reflects the variance loss induced
by the averaging.

Among the uncorrected satellite-based P datasets, the
new IMERGHHE V05 performed best overall by a sub-
stantial margin (median KGE of 0.62; Figs. 1 and 2), re-
flecting the quality of the new IMERG P retrieval algo-
rithm (Huffman et al., 2014, 2018). The other passive-
microwave-based datasets (CMORPH V1.0, GSMaP-Std V6,
and TMPA-3B42RT V7) obtained median KGE scores
ranging from 0.44 to 0.52. CHIRP V2.0, which com-
bines infrared- and reanalysis-based estimates, performed
similarly to some of the passive-microwave datasets (me-
dian KGE of 0.47). The datasets exclusively based on in-
frared data (PERSIANN and PERSIANN-CCS) performed
markedly worse (median KGE of 0.34 and 0.32, respec-
tively), consistent with previous P dataset evaluations (e.g.,
Hirpa et al., 2010; Peña Arancibia et al., 2013; Cattani et al.,
2016; Beck et al., 2017c). This has been attributed to the in-
direct nature of the relationship between cloud-top temper-
atures and surface rainfall (Adler and Negri, 1988; Vicente
et al., 1998; Scofield and Kuligowski, 2003). The infrared-
based datasets generally exhibited a much larger spatial vari-
ability in performance for all four metrics (Figs. 1 and S1–
S3).

The (uncorrected) satellite soil moisture-based
SM2RAIN-CCI V2 dataset performed comparatively
poorly (median KGE of 0.28; Figs. 1 and 2). The dataset
strongly underestimated the variability (Fig. S3), due to the
noisiness of satellite soil moisture retrievals and the inability
of satellite soil moisture-based algorithms to detect rainfall
exceeding the soil water storage capacity (Zhan et al., 2015;
Wanders et al., 2015; Tarpanelli et al., 2017; Ciabatta et al.,
2018). At high latitudes and elevations, the presence of snow
and frozen soils may have hampered performance (Brocca
et al., 2014), while in arid regions, irrigation may have been
misinterpreted as rainfall (Brocca et al., 2018). In addition,
approximately 25 % (in the eastern CONUS) to 50 % (over
the mountainous west) of the daily rainfall values were based
on temporal interpolation, to fill gaps in the satellite soil
moisture data (Dorigo et al., 2017). Despite these limitations,
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212 H. E. Beck et al.: Daily evaluation of 26 precipitation datasets for the CONUS

Figure 1. KGE scores for the 26 gridded P datasets using the Stage-IV gauge-radar dataset as a reference. White indicates missing data.
Higher KGE values correspond to better performance. Uncorrected datasets are listed in blue, whereas gauge-corrected datasets are listed
in red. Details on the datasets are provided in Tables 1 and 2. Maps for the correlation, bias, and variability components of the KGE are
presented in the Supplement.

the SM2RAIN datasets may provide new possibilities for
evaluation (Massari et al., 2017) and correction (Massari
et al., 2018) of other P datasets, since they constitute a fully
independent, alternative source of rainfall data.

All uncorrected P datasets exhibited lower overall perfor-
mance in the western CONUS (Figs. 1, 2, and S1–S3), in line
with previous studies (e.g., Gottschalck et al., 2005; Ebert
et al., 2007; Tian et al., 2007; AghaKouchak et al., 2012;
Chen et al., 2013; Beck et al., 2017c; Gebregiorgis et al.,
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Figure 2. Box-and-whisker plots of KGE scores for the 26 gridded P datasets using the Stage-IV gauge-radar dataset as a reference. The
circles represent the median value, the left and right edges of the box represent the 25th and 75th percentile values, respectively, while the
“whiskers” represent the extreme values. The statistics were calculated for each dataset from the distribution of grid-cell KGE values (no
area weighting was performed). The datasets are sorted in ascending order of the median KGE. Uncorrected datasets are indicated in blue,
whereas gauge-corrected datasets are indicated in red. Details on the datasets are provided in Tables 1 and 2.

2018). This is attributable to the more complex topography
and greater spatio-temporal heterogeneity of P in the west
(Daly et al., 2008), which affects the quality of both the eval-
uated datasets and the reference (Westrick et al., 1999; Smal-
ley et al., 2014; Eldardiry et al., 2017). With the exception of
CHIRP V2.0 (which has been corrected for systematic biases
using gauge observations; Funk et al., 2015b) and WRF (the
high-resolution climate simulation; Liu et al., 2017), the (un-
corrected) datasets exhibited large P biases over the moun-
tainous west (Fig. S2), which is in agreement with earlier
studies using other reference datasets (Adam et al., 2006;
Kauffeldt et al., 2013; Beck et al., 2017a; Beck et al., 2017c)
and reflects the difficulty of retrieving and simulating oro-
graphic P (Roe, 2005). We initially expected bias values to
be higher than unity since PRISM, the dataset used to correct
systematic biases in Stage-IV (see Sect. 2.2), lacks explicit
gauge undercatch corrections (Daly et al., 2008), but this did
not appear to be the case (Figs. 2 and S2).

3.3 How do the gauge-based P datasets perform?

Among the gauge-based P datasets, the best overall per-
formance was obtained by MSWEP V2.2 (median KGE
of 0.81), followed at some distance by IMERGDF V05 (me-
dian KGE of 0.67) and MERRA-2 (median KGE of 0.66;
Figs. 1 and 2). IMERGDF V05 exhibited a small nega-
tive bias, while MERRA-2 slightly underestimated the vari-
ability. The good performance obtained by MSWEP V2.2
underscores the importance of incorporating daily gauge
data and accounting for reporting times (Beck et al.,
2019). While CMORPH-CRT V1.0, CPC Unified V1.0/RT,
GSMaP-Std Gauge V7, and MERRA-2 also incorporate
daily gauge data, they did not account for reporting times, re-
sulting in temporal mismatches and hence lower KGE scores
(Fig. 2). Reporting times in the CONUS range from mid-
night −12 to +9 h UTC for the stations in the comprehen-
sive GHCN-D gauge database (Menne et al., 2012; Fig. 2c
in Beck et al., 2019), suggesting that up to half of the daily
P accumulations may be assigned to the wrong day. In ad-
dition, CMORPH-CRT V1.0, GSMaP-Std Gauge V7, and
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MERRA-2 applied daily gauge corrections using CPC Uni-
fied (Xie et al., 2007; Chen et al., 2008), which has a rel-
atively coarse 0.5◦ resolution, whereas MSWEP V2.2 ap-
plied corrections at 0.1◦ resolution based on the five nearest
gauges for each grid cell (Beck et al., 2019). The good per-
formance of IMERGDF V05 is somewhat surprising, given
the use of monthly rather than daily gauge data, and attests
to the quality of the IMERG P retrieval algorithm (Huffman
et al., 2014, 2018).

Similar to the uncorrected datasets, the corrected estimates
consistently performed worse in the west (Figs. 1, 2, and S1–
S3), due not only to the greater spatio-temporal heterogene-
ity in P (Daly et al., 2008), but also the lower gauge network
density (Kidd et al., 2017). It should be kept in mind that the
performance ranking may differ across the globe depending
on the amount of gauge data ingested and the quality con-
trol applied for each dataset. Thus, the results found here for
the CONUS do not necessarily directly generalize to other
regions.

3.4 How do the P datasets perform in summer versus
winter?

Figure 3 presents KGE values for summer and winter for the
26 P datasets. The following observations can be made.

– The spread in median KGE values among the datasets
is much greater in winter than in summer. In addition,
almost all datasets exhibit a greater spatial variability in
KGE values in winter, as indicated by the wider boxes
and whiskers. This is probably at least partly attributable
to the lower quality of the Stage-IV dataset in winter
(Westrick et al., 1999; Smalley et al., 2014; Eldardiry
et al., 2017).

– All (re)analyses (with the exception of NCEP-CFSR)
including the WRF regional climate model consistently
performed better in winter than in summer. This is be-
cause predictable large-scale stratiform systems domi-
nate in winter (Adler et al., 2001; Ebert et al., 2007;
Coiffier, 2011), whereas unpredictable small-scale con-
vective cells dominate in summer (Arakawa, 2004;
Prein et al., 2015).

– All satellite P datasets (with the exception of PER-
SIANN) consistently performed better in summer than
in winter. Satellites are ideally suited to detect the in-
tense, localized convective storms which dominate in
summer (Wardah et al., 2008; AghaKouchak et al.,
2011). Conversely, there are major challenges associ-
ated with the retrieval of snowfall (Kongoli et al., 2003;
Liu and Seo, 2013; Skofronick-Jackson et al., 2015; You
et al., 2017) and light rainfall (Habib et al., 2009; Kub-
ota et al., 2009; Tian et al., 2009; Lu and Yong, 2018),
affecting the performance in winter.

– The datasets incorporating both satellite and reanal-
ysis estimates (CHIRP V2.0, CHIRPS V2.0, and
MSWEP V2.2) performed similarly in both seasons,
taking advantage of the accuracy of satellite retrievals
in summer and reanalysis outputs in winter (Ebert et al.,
2007; Beck et al., 2017b). The fully gauge-based CPC
Unified V1.0/RT also performed similarly in both sea-
sons.

3.5 What is the impact of gauge corrections?

Differences in median KGE values between uncorrected and
gauge-corrected versions of P datasets ranged from −0.07
(GSMaP-Std Gauge V7) to +0.20 (CMORPH-CRT V1.0;
Table 3). GSMaP-Std Gauge V7 shows a large positive bias
in the west (Fig. S2), suggesting that its gauge-correction
methodology requires re-evaluation. The substantial im-
provements in median KGE for CHIRPS V2.0 (+0.13) and
CMORPH-CRT V1.0 (+0.20) reflect the use of sub-monthly
gauge data (5-day and daily, respectively). Conversely, the
datasets incorporating monthly gauge data (IMERGDF V05
and WFDEI-GPCC) exhibited little to no improvement in
median KGE (+0.05 and −0.01, respectively), suggest-
ing that monthly corrections provide little to no benefit
at the daily timescale of the present evaluation (Tan and
Santo, 2018). These results, combined with the fact that sev-
eral uncorrected P datasets outperformed gauge-corrected
ones (Fig. 2), suggest that a P dataset labeled as “gauge-
corrected” is not necessarily always the better choice.

3.6 What is the improvement of IMERG over TMPA?

IMERG (Huffman et al., 2014, 2018) is NASA’s latest satel-
lite P dataset and is foreseen to replace the TMPA dataset
(Huffman et al., 2007; Table 1). The following main improve-
ments were implemented in IMERG compared to TMPA:
(i) forward and backward propagation of passive microwave
data using CMORPH-style motion vectors (Joyce et al.,
2004); (ii) infrared-based rainfall estimates derived using the
PERSIANN-CCS algorithm (Hong et al., 2004); (iii) cali-
bration of passive microwave-based P estimates to the Com-
bined GMI-DPR P dataset (available up to almost 70◦ lat-
itude) during the GPM era and the Combined TMI-PR P

dataset (available up to 40◦ latitude) during the TRMM era;
(iv) adjustment of the Combined estimates by GPCP monthly
climatological values (Adler et al., 2018) to ameliorate low
biases at high latitudes; (v) merging of infrared- and pas-
sive microwave-based P estimates using a CMORPH-style
Kalman filter; (vi) use of passive microwave data from re-
cent instruments (DMSP-F19, GMI, and NOAA-20); (vii) a
30 min temporal resolution (instead of 3-hourly); (viii) a 0.1◦

spatial resolution (instead of 0.25◦); and (ix) greater coverage
(essentially complete up to 60◦ instead of 50◦ latitude).

These changes have resulted in considerable performance
improvements: IMERGHH V05 performed better overall
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Figure 3. Box-and-whisker plots of KGE scores for summer (June–August) and winter (December–February) using the Stage-IV gauge-
radar dataset as a reference. The circles represent the median value, the left and right edges of the box represent the 25th and 75th percentile
values, respectively, while the “whiskers” represent the extreme values. The statistics were calculated for each dataset from the distribution
of grid-cell KGE values (no area weighting was performed). The datasets are sorted in ascending order of the overall median KGE (see
Fig. 2). Uncorrected datasets are indicated in blue, whereas gauge-corrected datasets are indicated in red. Details on the datasets are provided
in Tables 1 and 2.

Table 3. Difference in median KGE between uncorrected and gauge-corrected versions of P datasets. Tables 1 and 2 provide details of the
datasets.

Uncorrected dataset Corrected dataset 1KGE Correction approach Reference

IMERGHHE V05 IMERGDF V05 +0.05 Monthly corrections using GPCC Huffman et al. (2018)
CHIRP V2.0 CHIRPS V2.0 +0.13 5-day corrections using compiled database Funk et al. (2015a)
CMORPH V1.0 CMORPH-CRT V1.0 +0.20 Daily corrections using CPC Unified Xie et al. (2017)
ERA-Interim WFDEI-GPCC −0.01 Monthly corrections using GPCC Weedon et al. (2014)
GSMaP-Std V6 GSMaP-Std Gauge V7 −0.07 Daily corrections using CPC Unified Mega et al. (2014)

than TMPA-3B42RT V7 in terms of median KGE (0.62 ver-
sus 0.46), correlation (0.69 versus 0.59), bias (0.99 versus
1.09), and variability (1.05 versus 1.07; Figs. 1, 2, and 4a).
The improvement is particularly pronounced over the north-
ern Great Plains (Fig. 4a), where TMPA-3B42RT V7 exhibits
a large positive bias (Fig. S2). In the west, however, there
are still some small regions over which TMPA-3B42RT V7
performed better (Fig. 4a). Overall, our results indicate that
there is considerable merit in using IMERGHHE V05 instead

of TMPA-3B42RT V7 over the CONUS. Previous studies
comparing (different versions of) the same two datasets over
the CONUS (Gebregiorgis et al., 2018), Bolivia (Satgé et al.,
2017), mainland China (Tang et al., 2016a), southeast China
(Tang et al., 2016b), Iran (Sharifi et al., 2016), India (Prakash
et al., 2016), the Mekong River basin (Wang et al., 2017), the
Tibetan Plateau (Ran et al., 2017), and the northern Andes
(Manz et al., 2017) reached largely similar conclusions.
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Figure 4. (a) KGE scores obtained by IMERGHHE V05 minus those obtained by TMPA-3B42RT V7. (b) KGE scores obtained by ERA5-
HRES minus those obtained by ERA-Interim. (c) Correlations (r) obtained by ERA5-EDA minus those obtained by ERA5-HRES. (d) KGE
scores obtained by IMERGHHE V05 minus those obtained by ERA5-HRES. Note the different color scales. The Stage-IV gauge-radar
dataset was used as a reference. The KGE and correlation values were calculated from daily time series.

3.7 What is the improvement of ERA5 over
ERA-Interim?

ERA5 (Hersbach et al., 2018) is ECMWF’s recently re-
leased fourth-generation reanalysis and the successor to
ERA-Interim, generally considered the most accurate third-
generation reanalysis (Bromwich et al., 2011; Bracegirdle
and Marshall, 2012; Jin-Huan et al., 2014; Beck et al., 2017c;
Table 1). ERA5 features several improvements over ERA-
Interim, such as (i) a more recent model and data assimi-
lation system (IFS Cycle 41r2 from 2016 versus IFS Cy-
cle 31r2 from 2006), including numerous improvements in
model physics, numerics, and data assimilation; (ii) a higher
horizontal resolution (∼ 0.28◦ versus ∼ 0.75◦); (iii) more
vertical levels (137 versus 60); (iv) assimilation of substan-
tially more observations, including gauge (Lopez, 2013) and
ground radar (Lopez, 2011) P data (from 17 July 2009 on-
wards); (v) a longer temporal span once production has com-
pleted (1950–present versus 1979–present) and a near-real-
time release of the data; (vi) outputs with a higher temporal
resolution (hourly versus 3-hourly); and (vii) corresponding
uncertainty estimates.

As a result of these changes ERA5-HRES performed
markedly better than ERA-Interim in terms of P across most
of the CONUS, especially in the west (Figs. 1 and 4b).
ERA5-HRES obtained a median KGE of 0.63, whereas
ERA-Interim obtained a median KGE of 0.55 (Fig. 2). Im-

provements were evident for all three KGE components (cor-
relation, bias, and variability). It is difficult to say how much
of the performance improvement of ERA5 is due to the as-
similation of gauge and radar P data. We suspect that the
performance improvement is largely attributable to other fac-
tors, given that (i) the impact of the P data assimilation is
limited overall due to the large amount of other observations
already assimilated (Lopez, 2013); (ii) radar data were dis-
carded west of 105◦W for quality reasons (Lopez, 2011);
and (iii) performance improvements were also found in re-
gions without assimilated gauge observations (e.g., Nevada;
Fig. 4b; Lopez, 2013, their Fig. 3). Nevertheless, we expect
the performance difference between ERA5 and ERA-Interim
to be less in regions with fewer or no assimilated gauge ob-
servations (i.e., outside the US, Canada, Argentina, Europe,
Iran, and China; Lopez, 2013, their Fig. 3).

So far, only three other studies have compared the perfor-
mance of ERA5 and ERA-Interim. The first study compared
the two reanalyses for the CONUS by using them to drive a
land surface model (Albergel et al., 2018). The simulations
using ERA5 provided substantially better evaporation, soil
moisture, river discharge, and snow depth estimates. The au-
thors attributed this to the improved P estimates, which is
supported by our results. The second and third studies eval-
uated incoming shortwave radiation and precipitable water
vapor estimates from the two reanalyses, respectively, with
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both studies reporting that ERA5 provides superior perfor-
mance (Urraca et al., 2018; Zhang et al., 2018a).

3.8 How does the ERA5-EDA ensemble average
compare to the ERA5-HRES deterministic run?

Ensemble modeling involves using outputs from multiple
models or from different realizations of the same model; it
is widely used in climate, atmospheric, hydrological, and
ecological sciences to improve accuracy and quantify un-
certainty (Gneiting and Raftery, 2005; Nikulin et al., 2012;
Strauch et al., 2012; Cheng et al., 2012; Beck et al., 2013,
2017a). Here, we compare the P estimation performance of
a high-resolution (∼ 0.28◦) deterministic reanalysis (ERA5-
HRES) to that of a reduced-resolution (∼ 0.56◦) ensemble
average (ERA5-EDA; Table 1). The ensemble consists of 10
members generated by perturbing the assimilated observa-
tions (Zuo et al., 2017) as well as the model physics (Ol-
linaho et al., 2016; Leutbecher et al., 2017). The ensemble
average was derived by equal weighting of the members.

Compared to ERA5-HRES, we found ERA5-EDA to per-
form similarly in terms of median KGE (0.62 versus 0.63),
better in terms of median correlation (0.72 versus 0.69) and
bias (0.96 versus 0.93), but worse in terms of median vari-
ability (0.80 versus 0.90; Figs. 1, 2, and 4c). The deteriora-
tion of the variability is probably at least partly due to the av-
eraging, which shifts the distribution toward medium-sized
events. The improvement in correlation is evident over the
entire CONUS (Fig. 4c), and corresponds to a 9 % overall in-
crease in the explained temporal variance, demonstrating the
value of ensemble modeling. We expect the improvement to
increase with increasing diversity among ensemble members
(Brown et al., 2005; DelSole et al., 2014).

3.9 How do IMERG and ERA5 compare?

IMERGHHE V05 (Huffman et al., 2014, 2018) and ERA5-
HRES (Hersbach et al., 2018) represent the state-of-the-art
in terms of satellite P retrieval and reanalysis, respectively
(Table 1). Although the datasets exhibited similar perfor-
mance overall (median KGE of 0.62 and 0.63, respectively;
Figs. 1 and 2), regionally there were considerable differences
(Fig. 4d). Compared to ERA5-HRES, IMERGHHE V05 per-
formed substantially worse over regions of complex terrain
(including the Rockies and the Appalachians), in line with
previous evaluations focusing on India (Prakash et al., 2018)
and western Washington state (Cao et al., 2018). In con-
trast, ERA5-HRES performed worse across the southern–
central US, where P predominantly originates from small-
scale, short-lived convective storms which tend to be poorly
simulated by reanalyses (Adler et al., 2001; Arakawa, 2004;
Ebert et al., 2007). The patterns in relative performance be-
tween IMERGHHE V05 and ERA5-HRES (Fig. 4d) cor-
respond well to those found between TMPA 3B42RT and
ERA-Interim (Beck et al., 2017b, their Fig. 4) and be-

tween CMORPH and ERA-Interim (Beck et al., 2019, their
Fig. 3d), suggesting that our conclusions can be generalized
to other satellite- and reanalysis-based P datasets. Our find-
ings suggest that topography and climate should be taken
into account when choosing between satellite and reanaly-
sis datasets. Furthermore, our results demonstrate the poten-
tial to improve continental- and global-scale P datasets by
merging satellite- and reanalysis-based P estimates (Huff-
man et al., 1995; Xie and Arkin, 1996; Sapiano et al., 2008;
Beck et al., 2017b, 2019; Zhang et al., 2018b).

3.10 How well does a regional convection-permitting
climate model perform?

In addition to the (quasi-)global P datasets, we evaluated the
performance of a state-of-the-art climate simulation for the
CONUS (WRF; Liu et al., 2017; Table 1). The WRF sim-
ulation has the potential to produce highly accurate P esti-
mates since it has a high 4 km resolution, which allows it
to account for the influence of mesoscale orography (Doyle,
1997), and is “convection-permitting”, which means it does
not rely on highly uncertain convection parameterizations
(Kendon et al., 2012; Prein et al., 2015). In terms of variabil-
ity, WRF performed third best, being outperformed only (and
very modestly) by the gauge-based CPC Unified V1.0/RT
and MSWEP V2.2 datasets (Figs. 1 and 2). In terms of
bias, the simulation produced mixed results. WRF is the
only uncorrected dataset that does not exhibit large biases
over the mountainous west (Fig. S2). However, large pos-
itive biases were obtained over the Great Plains region, as
also found by Liu et al. (2017) using the same reference data.
In terms of correlation, WRF performed worse than third-
generation reanalyses (ERA-Interim, JRA-55, and NCEP-
CFSR; Figs. 2 and S1). This is probably because WRF is
forced entirely by lateral and initial boundary conditions
from ERA-Interim (Liu et al., 2017), whereas the reanaly-
ses assimilate vast amounts of in situ and satellite observa-
tions (Saha et al., 2010; Dee et al., 2011; Kobayashi et al.,
2015). Overall, there appears to be some merit in using high-
resolution, convection-permitting models to obtain climato-
logical P statistics.

4 Conclusions

To shed some light on the strengths and weaknesses of dif-
ferent precipitation (P ) datasets and on the merit of dif-
ferent technological and methodological innovations, we
comprehensively evaluated the performance of 26 gridded
(sub-)daily P datasets for the CONUS using Stage-IV gauge-
radar data as a reference. The evaluation was carried out at
a daily temporal and 0.1◦ spatial scale for the period 2008–
2017 using the KGE, an objective performance metric com-
bining correlation, bias, and variability. Our findings can be
summarized as follows.
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1. Across the range of KGE scores for the datasets exam-
ined the most important component is correlation (re-
flecting the identification of P events). Of secondary
importance are the P totals (determining the bias score)
and the distribution of P intensity (affecting the vari-
ability score).

2. Among the uncorrected P datasets, the (re)analyses
performed better on average than the satellite-
based datasets. The best performance was obtained
by ECMWF’s fourth-generation reanalysis ERA5-
HRES, with NASA’s most recent satellite-derived
IMERGHHE V05 and the ensemble average ERA5-
EDA coming a close equal second.

3. Among the gauge-based P datasets, the best overall per-
formance was obtained by MSWEP V2.2, followed by
IMERGDF V05 and MERRA-2. The good performance
of MSWEP V2.2 highlights the importance of incor-
porating daily gauge observations and accounting for
gauge reporting times.

4. The spread in performance among the P datasets was
greater in winter than in summer. The spatial variabil-
ity in performance was also greater in winter for most
datasets. The (re)analyses generally performed better in
winter than in summer, while the opposite was the case
for the satellite-based datasets.

5. The performance improvement gained after applying
gauge corrections differed strongly among P datasets.
The largest improvements were obtained by the datasets
incorporating sub-monthly gauge data (CHIRPS V2.0
and CMORPH-CRT V1.0). Several uncorrected P

datasets outperformed gauge-corrected ones.

6. IMERGHH V05 performed better than TMPA-
3B42RT V7 for all metrics, consistent with previous
studies and attributable to the many improvements
implemented in the new IMERG algorithm.

7. ERA5-HRES outperformed ERA-Interim for all metrics
across most of the CONUS, demonstrating the signifi-
cant advances in climate and earth system modeling and
data assimilation during the last decade.

8. The reduced-resolution ERA5-EDA ensemble average
showed higher correlations than the high-resolution
ERA5-HRES deterministic run, supporting the value of
ensemble modeling. However, a side effect of the aver-
aging is that the P distribution shifted toward medium-
sized events.

9. IMERGHHE V05 and ERA5-HRES showed comple-
mentary performance patterns. The former performed
substantially better in regions dominated by convective
storms, while the latter performed substantially better in
regions of complex terrain.

10. Regional convection-permitting climate model WRF
performed best among the uncorrected P datasets in
terms of variability. This suggests there is some merit in
employing high-resolution, convection-permitting mod-
els to obtain climatological P statistics.

Our findings provide some guidance to decide which P
dataset should be used for a particular application. We found
evidence that the relative performance of different datasets is
to some degree a function of topographic complexity, climate
regime, season, and rain gauge network density. Therefore,
care should be taken when extrapolating our results to other
regions. Additionally, results may differ when using another
performance metric or when evaluating other timescales or
aspects of the datasets. Similar evaluations should be carried
out with other performance metrics and in other regions with
ground radar networks (e.g., Australia and Europe) to ver-
ify and supplement the present findings. Of particular impor-
tance in the context of climate change is the further evalua-
tion of P extremes.
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