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Preface 
 
Over the years, when reviewing books we found that many had been mainstreamed by 
the publishers in an effort to appeal to everyone, leaving them with very little 
character.  There were only a handful of books that had the conceptual and application 
driven focus we liked, and most of those were lacking in other aspects we cared about, 
like providing students sufficient examples and practice of basic skills. The largest 
frustration, however, was the never ending escalation of cost and being forced into new 
editions every three years.  We began researching open textbooks, however the ability for 
those books to be adapted, remixed, or printed were often limited by the types of licenses, 
or didn’t approach the material the way we wanted. 
 
This book is available online for free, in both Word and PDF format.  You are free to 
change the wording, add materials and sections or take them away.  We welcome 
feedback, comments and suggestions for future development at 
precalc@opentextbookstore.com. Additionally, if you add a section, chapter or problems, 
we would love to hear from you and possibly add your materials so everyone can benefit.   
 
In writing this book, our focus was on the story of functions.  We begin with function 
notation, a basic toolkit of functions, and the basic operation with functions: composition 
and transformation.  Building from these basic functions, as each new family of functions 
is introduced we explore the important features of the function: its graph, domain and 
range, intercepts, and asymptotes.  The exploration then moves to evaluating and solving 
equations involving the function, finding inverses, and culminates with modeling using 
the function.   
 
The "rule of four" is integrated throughout - looking at the functions verbally, 
graphically, numerically, as well as algebraically.  We feel that using the “rule of four” 
gives students the tools they need to approach new problems from various angles.  Often 
the “story problems of life” do not always come packaged in a neat equation.  Being able 
to think critically, see the parts and build a table or graph a trend, helps us change the 
words into meaningful and measurable functions that model the world around us. 
 
There is nothing we hate more than a chapter on exponential equations that begins 
"Exponential functions are functions that have the form f(x)=ax."  As each family of 
functions is introduced, we motivate the topic by looking at how the function arises from 
life scenarios or from modeling.  Also, we feel it is important that precalculus be the 
bridge in level of thinking between algebra and calculus.  In algebra, it is common to see 
numerous examples with very similar homework exercises, encouraging the student 
to mimic the examples.  Precalculus provides a link that takes students from the basic 
plug & chug of formulaic calculations towards building an understanding that equations 
and formulas have deeper meaning and purpose.  While you will find examples and 
similar exercises for the basic skills in this book, you will also find examples of multistep 
problem solving along with exercises in multistep problem solving.  Often times these 
exercises will not exactly mimic the exercises, forcing the students to employ their 
critical thinking skills and apply the skills they've learned to new situations.  By 
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developing students’ critical thinking and problem solving skills this course prepares 
students for the rigors of Calculus. 
 
While we followed a fairly standard ordering of material in the first half of the book, we 
took some liberties in the trig portion of the book.  It is our opinion that there is no need 
to separate unit circle trig from triangle trig, and instead integrated them in the first 
chapter.  Identities are introduced in the first chapter, and revisited throughout. Likewise, 
solving is introduced in the second chapter and revisited more extensively in the third 
chapter.  As with the first part of the book, an emphasis is placed on motivating the 
concepts and on modeling and interpretation. 
 

About the Second Edition 
 
About 4 years and several minor typo revisions after the original release of this book, we 
started contemplating creating a second edition.  We didn’t want to change much; we’ve 
always found it very annoying when new editions change things just for the sake of 
making it seem different.  However, in talking with instructors from around the country, 
we knew there were a few topics that we had left out that other schools need.  We didn’t 
want to suffer the same “content bloat” that many commercial books do, but we also 
wanted to make it easier for more schools to adopt open resources. 
 
We put our plans for a new revision on hold after OpenStax started working on a 
precalculus book, using the first edition of this text as a base.  After the final product 
came out, though, we felt it had strayed a bit far from our original vision.  We had written 
this text, not to be an encyclopedic reference text, but to be a concise, easy-to-read, 
student-friendly approach to precalculus.  We valued contextual motivation and 
conceptual understanding over procedural skills.  Our book took, in places, a non-
traditional approach to topics and content ordering.  Ultimately, we decided to go ahead 
with this second edition. 
 
The primary changes in the second edition are: 

• New, higher resolution graphs throughout 
• New sections added to Chapter 3: 

o 3.4 Factor theorem (includes long division of polynomials) 
o 3.5 Real zeros of polynomials (using rational roots theorem) 
o 3.6 Complex zeros of polynomials 

• Coverage of oblique asymptotes added to the rational equations section (now 3.7) 
• A new section 8.5 on dot product of vectors 
• A new chapter 9 on conic sections 

 
There were many additional refinements, some new examples added, and Try it Now 
answers expanded, but most of the book remains unchanged. 
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Instructor Resources 
 
As part of the Washington Open Course Library project, we developed a full course 
package to accompany this text.  The course shell was built for the IMathAS online 
homework platform, and is available for Washington State faculty at www.wamap.org 
and mirrored for others at www.myopenmath.com.  It contains: 
 

• Online homework for each section (algorithmically generated, free response), 
most with video help associated. 

• Video lessons for each section.  The videos were mostly created and selected by 
James Sousa, of Mathispower4u. 

• A selection of printable class worksheets, activities, and handouts 
• Support materials for an example course (does not include all sections): 

o Suggested syllabus and Day by day course guide 
o Instructor guide with lecture outlines and examples 
o Discussion forums 
o Diagnostic review 
o Chapter review problems 
o Sample quizzes and sample chapter exams 

The course shell was designed to follow Quality Matters (QM) guidelines, but has not yet 
been formally reviewed. 
 
Getting Started 
 
To get started using this textbook and the online supplementary materials, 

• Request an instructor account on WAMAP (in Washington) or MyOpenMath 
(outside Washington). 

• Review the table of contents of the text, and compare it to your course outcomes 
or student learning objectives.  Determine which sections you will need to cover, 
and which to omit.  If there are topics in your outcomes that are not in the text, 
explore other sources like the Stitz/Zeager Precalc or OpenStax Precalc to 
supplement from.  Also check the book’s website, as we may offer additional 
online-only topics. 

• Once your instructor account is approved, log in, and click Add New Course 
• From the “Use content from a template course”, select “Precalculus – 

Lippman/Rasmussen 2nd Ed”.  Note that you might also see two half-book 
templates, one covering chapters 1 – 4, and the other covering chapters 5 – 9.  

• Once you have copied the course, go through and remove any sections you don’t 
need for your course.  Refer to the Training Course Quickstart videos in 
MyOpenMath and WAMAP for more details on how to make those changes. 
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How To Be Successful In This Course 
This is not a high school math course, although for some of you the content may seem 
familiar. There are key differences to what you will learn here, how quickly you will be 
required to learn it and how much work will be required of you. 
 
You will no longer be shown a technique and be asked to mimic it repetitively as the only 
way to prove learning.  Not only will you be required to master the technique, but you 
will also be required to extend that knowledge to new situations and build bridges 
between the material at hand and the next topic, making the course highly cumulative. 
 
As a rule of thumb, for each hour you spend in class, you should expect this course will 
require an average of 2 hours of out-of-class focused study. This means that some of you 
with a stronger background in mathematics may take less, but if you have a weaker 
background or any math anxiety it will take you more.   
 
Notice how this is the equivalent of having a part time job, and if you are taking a 
fulltime load of courses as many college students do, this equates to more than a full time 
job.   If you must work, raise a family and take a full load of courses all at the same time, 
we recommend that you get a head start & get organized as soon as possible.  We also 
recommend that you spread out your learning into daily chunks and avoid trying to cram 
or learn material quickly before an exam.  
 
To be prepared, read through the material before it is covered in class and note or 
highlight the material that is new or confusing.  The instructor’s lecture and activities 
should not be the first exposure to the material.  As you read, test your understanding 
with the Try it Now problems in the book.  If you can’t figure one out, try again after 
class, and ask for help if you still can’t get it.   
 
As soon as possible after the class session recap the day’s lecture or activities into a 
meaningful format to provide a third exposure to the material.  You could summarize 
your notes into a list of key points, or reread your notes and try to work examples done in 
class without referring back to your notes.  Next, begin any assigned homework.  The 
next day, if the instructor provides the opportunity to clarify topics or ask questions, do 
not be afraid to ask.  If you are afraid to ask, then you are not getting your money’s 
worth!  If the instructor does not provide this opportunity, be prepared to go to a tutoring 
center or build a peer study group. Put in quality effort and time and you can get quality 
results. 
 
Lastly, if you feel like you do not understand a topic.  Don’t wait, ASK FOR HELP! 
 
ASK:  Ask a teacher or tutor, Search for ancillaries, Keep a detailed list of questions 
FOR: Find additional resources, Organize the material, Research other learning options 
HELP: Have a support network, Examine your weaknesses, List specific examples & Practice  
 
Best of luck learning! We hope you like the course & love the price. 
David  & Melonie 
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Chapter 5: Trigonometric 
Functions of Angles 
In the previous chapters, we have explored a variety of functions which could be 
combined to form a variety of shapes.  In this discussion, one common shape has been 
missing: the circle.  We already know certain things about the circle, like how to find area 
and circumference, and the relationship between radius and diameter, but now, in this 
chapter, we explore the circle and its unique features that lead us into the rich world of 
trigonometry. 
 

Section 5.1 Circles ...................................................................................................... 337 
Section 5.2 Angles ...................................................................................................... 347 
Section 5.3 Points on Circles using Sine and Cosine.................................................. 362 
Section 5.4 The Other Trigonometric Functions ........................................................ 375 
Section 5.5 Right Triangle Trigonometry ................................................................... 385 

 

Section 5.1 Circles 
 
To begin, we need to find distances.  Starting with the Pythagorean Theorem, which 
relates the sides of a right triangle, we can find the distance between two points. 
 
 

Pythagorean Theorem 
The Pythagorean Theorem states that the sum of the squares of the legs of a right 
triangle will equal the square of the hypotenuse of the triangle.   
 
In graphical form, given the triangle shown, 2 2 2a b c+ = . 

  
 
We can use the Pythagorean Theorem to find the distance between two points on a graph. 
 
 
Example 1 

Find the distance between the points (-3, 2) and (2, 5). 
 
By plotting these points on the plane, we can then draw a 
right triangle with these points at each end of the 
hypotenuse.  We can calculate horizontal width of the 
triangle to be 5 and the vertical height to be 3.   
 
 

a 

b 

c 
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From these we can find the distance between the points using the Pythagorean 
Theorem: 

34

3435 222

=

=+=

dist

dist
 

 
 
Notice that the width of the triangle was calculated using the difference between the x 
(input) values of the two points, and the height of the triangle was found using the 
difference between the y (output) values of the two points.  Generalizing this process 
gives us the distance formula. 
 
 

Distance Formula 
The distance between two points ),( 11 yx  and ),( 22 yx  can be calculated as 

2
12

2
12 )()( yyxxdist −+−=  

 
 
Try it Now 
1. Find the distance between the points (1, 6) and (3, -5). 
 
 
Circles 
 
If we wanted to find an equation to represent a circle with 
a radius of r centered at a point (h, k), we notice that the 
distance between any point (x, y) on the circle and the 
center point is always the same: r.   Noting this, we can 
use our distance formula to write an equation for the 
radius: 

22 )()( kyhxr −+−=  
 
Squaring both sides of the equation gives us the standard equation for a circle. 
 
 

Equation of a Circle 
The equation of a circle centered at the point (h, k) with radius r can be written as 

222 )()( rkyhx =−+−  
 
 
Notice that a circle does not pass the vertical line test.  It is not possible to write y as a 
function of x or vice versa. 
 

r 

(h, k) 

(x, y) 
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Example 2 
Write an equation for a circle centered at the point (-3, 2) with radius 4. 
 
Using the equation from above, h = -3, k = 2, and the radius r = 4.  Using these in our 
formula, 

222 4)2())3(( =−+−− yx   simplified, this gives 
16)2()3( 22 =−++ yx  

 
 
Example 3 

Write an equation for the circle graphed here. 
 
This circle is centered at the origin, the point (0, 0).  By 
measuring horizontally or vertically from the center out to the 
circle, we can see the radius is 3.  Using this information in our 
formula gives: 

222 3)0()0( =−+− yx           simplified, this gives 
922 =+ yx  

 
 
Try it Now 
2. Write an equation for a circle centered at (4, -2) with radius 6. 
 
 
Notice that, relative to a circle centered at the origin, horizontal and vertical shifts of the 
circle are revealed in the values of h and k, which are the coordinates for the center of the 
circle. 
 
 
Points on a Circle 
 
As noted earlier, an equation for a circle cannot be written so that y is a function of x or 
vice versa.  To find coordinates on the circle given only the x or y value, we must solve 
algebraically for the unknown values. 
 
 
Example 4 

Find the points on a circle of radius 5 centered at the origin with an x value of 3. 
 
We begin by writing an equation for the circle centered at the origin with a radius of 5. 

2522 =+ yx  
 
Substituting in the desired x value of 3 gives an equation we can solve for y. 
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416

16925
253

2

22

±=±=

=−=

=+

y

y
y

 

 
There are two points on the circle with an x value of 3:  (3, 4) and (3, -4). 

 
 
Example 5 

Find the x intercepts of a circle with radius 6 centered at the point (2, 4). 
 
We can start by writing an equation for the circle. 

36)4()2( 22 =−+− yx  
 
To find the x intercepts, we need to find the points where y = 0.  Substituting in zero for 
y, we can solve for x. 

36)40()2( 22 =−+−x  
3616)2( 2 =+−x  

20)2( 2 =−x  
202 ±=−x  

522202 ±=±=x  
 
The x intercepts of the circle are ( )0,522 +  and ( )0,522 −  

 
 
Example 6 

In a town, Main Street runs east to west, and Meridian Road runs north to south.  A 
pizza store is located on Meridian 2 miles south of the intersection of Main and 
Meridian.  If the store advertises that it delivers within a 3-mile radius, how much of 
Main Street do they deliver to? 
 
This type of question is one in which introducing a coordinate system and drawing a 
picture can help us solve the problem.  We could either place the origin at the 
intersection of the two streets, or place the origin at the pizza store itself.  It is often 
easier to work with circles centered at the origin, so we’ll place the origin at the pizza 
store, though either approach would work fine. 
 
Placing the origin at the pizza store, the delivery area 
with radius 3 miles can be described as the region 
inside the circle described by 922 =+ yx .   
 
Main Street, located 2 miles north of the pizza store 
and running east to west, can be described by the 
equation y = 2.   
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To find the portion of Main Street the store will deliver to, we first find the boundary of 
their delivery region by looking for where the delivery circle intersects Main Street.  To 
find the intersection, we look for the points on the circle where y = 2.  Substituting y = 2 
into the circle equation lets us solve for the corresponding x values. 
 

236.25

549
92

2

22

±≈±=

=−=

=+

x

x
x

 

 
This means the pizza store will deliver 2.236 miles down Main Street east of Meridian 
and 2.236 miles down Main Street west of Meridian.  We can conclude that the pizza 
store delivers to a 4.472 mile long segment of Main St. 

 
 
In addition to finding where a vertical or horizontal line intersects the circle, we can also 
find where an arbitrary line intersects a circle. 
 
 
Example 7 

Find where the line xxf 4)( =  intersects the circle 16)2( 22 =+− yx . 
 
Normally, to find an intersection of two functions f(x) and g(x) we would solve for the x 
value that would make the functions equal by solving the equation f(x) = g(x).  In the 
case of a circle, it isn’t possible to represent the equation as a function, but we can 
utilize the same idea.   
 
The output value of the line determines the y value:  xxfy 4)( == .  We want the y 
value of the circle to equal the y value of the line, which is the output value of the 
function.  To do this, we can substitute the expression for y from the line into the circle 
equation. 
 

16)2( 22 =+− yx   replace y with the line formula: xy 4=  
16)4()2( 22 =+− xx  expand  

161644 22 =++− xxx  simplify 
164417 2 =+− xx   since this equation is quadratic, we arrange one side to be 0 
012417 2 =−− xx  

 
Since this quadratic doesn’t appear to be easily factorable, we can use the quadratic 
formula to solve for x: 

34
8324

)17(2
)12)(17(4)4()4( 2 ±
=

−−−±−−
=x , or approximately x ≈ 0.966 or -0.731 

 
From these x values we can use either equation to find the corresponding y values.   
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Since the line equation is easier to evaluate, we might choose to use it: 

923.2)731.0(4)731.0(
864.3)966.0(4)966.0(
−=−=−=

===
fy
fy

 

 
The line intersects the circle at the points (0.966, 3.864) and (-0.731, -2.923). 

 
 
Try it Now 
3. A small radio transmitter broadcasts in a 50 mile radius.  If you drive along a straight 

line from a city 60 miles north of the transmitter to a second city 70 miles east of the 
transmitter, during how much of the drive will you pick up a signal from the 
transmitter? 

 
 

Important Topics of This Section 
Distance formula 
Equation of a Circle 
Finding the x coordinate of a point on the circle given the y coordinate or vice versa 
Finding the intersection of a circle and a line 

 
 
Try it Now Answers 
1.  55  
2. 36)2()4( 22 =++− yx  
3. The circle can be represented by 222 50=+ yx .   

Finding a line from (0,60) to (70,0) gives xy
70
6060 −= .   

Substituting the line equation into the circle gives 
2

2 26060 50
70

x x + − = 
 

.   

Solving this equation, we find x = 14 or x = 45.29, corresponding to points (14, 48) 
and (45.29, 21.18).   
The distance between these points is 41.21 miles. 
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Section 5.1 Exercises 
 

1. Find the distance between the points (5,3) and (-1,-5). 

2. Find the distance between the points (3,3) and (-3,-2). 

3. Write an equation of the circle centered at (8 , -10) with radius 8.  

4. Write an equation of the circle centered at (-9, 9)  with radius 16.  

5. Write an equation of the circle centered at (7, -2) that passes through (-10, 0).  

6. Write an equation of the circle centered at (3, -7) that passes through (15, 13). 

7. Write an equation for a circle where the points (2, 6) and (8, 10)  lie along a diameter. 

8. Write an equation for a circle where the points (-3, 3) and (5, 7)  lie along a diameter. 

9. Sketch a graph of ( ) ( )2 22  3  9x y− + + = . 

10. Sketch a graph of ( ) ( )2 21  2 1 6x y+ + − = . 

11. Find the y intercept(s) of the circle with center (2, 3) with radius 3. 

12. Find the x intercept(s) of the circle with center (2, 3) with radius 4. 

13. At what point in the first quadrant does the line with equation   2   5y x= +  intersect a 
circle with radius 3 and center (0, 5)?  

14. At what point in the first quadrant does the line with equation     2y x= +  intersect the 
circle with radius 6 and center (0, 2)?  

15. At what point in the second quadrant does the line with equation   2   5y x= +  intersect a 
circle with radius 3 and center (-2, 0)?  

16. At what point in the first quadrant does the line with equation     2y x= +  intersect the 
circle with radius 6 and center (-1,0)?  

17. A small radio transmitter broadcasts in a 53 mile radius. If you drive along a straight 
line from a city 70 miles north of the transmitter to a second city 74 miles east of the 
transmitter, during how much of the drive will you pick up a signal from the 
transmitter?  

 
18. A small radio transmitter broadcasts in a 44 mile radius. If you drive along a straight 

line from a city 56 miles south of the transmitter to a second city 53 miles west of the 
transmitter, during how much of the drive will you pick up a signal from the 
transmitter?  
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19. A tunnel connecting two portions of a space 

station has a circular cross-section of radius 15 
feet. Two walkway decks are constructed in the 
tunnel. Deck A is along a horizontal diameter 
and another parallel Deck B is 2 feet below Deck 
A. Because the space station is in a weightless 
environment, you can walk vertically upright 
along Deck A, or vertically upside down along 
Deck B. You have been assigned to paint “safety 
stripes” on each deck level, so that a 6 foot 
person can safely walk upright along either deck. 
Determine the width of the “safe walk zone” on 
each deck.  [UW] 

 
 
 
20. A crawling tractor sprinkler is 

located as pictured here, 100 feet 
south of a sidewalk. Once the water 
is turned on, the sprinkler waters a 
circular disc of radius 20 feet and 
moves north along the hose at the 
rate of ½ inch/second. The hose is 
perpendicular to the 10 ft. wide 
sidewalk. Assume there is grass on 
both sides of the sidewalk.  [UW]  

 
a) Impose a coordinate system. 

Describe the initial coordinates 
of the sprinkler and find 
equations of the lines forming and find equations of the lines forming the north 
and south boundaries of the sidewalk. 

b) When will the water first strike the sidewalk? 
c) When will the water from the sprinkler fall completely north of the sidewalk? 
d) Find the total amount of time water from the sprinkler falls on the sidewalk. 
e) Sketch a picture of the situation after 33 minutes.  Draw an accurate picture of the 

watered portion of the sidewalk. 
f) Find the area of grass watered after one hour. 
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21. Erik’s disabled sailboat is floating anchored 3 miles East and 2 miles north of 
Kingsford.  A ferry leaves Kingsford heading toward Eaglerock at 12 mph. Eaglerock 
is 6 miles due east of Kingsford. After 20 minutes the ferry turns, heading due south. 
Bander is 8 miles south and 1 mile west of Eaglerock. Impose coordinates with 
Bander as the origin. [UW] 

 

 
 

 
a) Find equations for the lines along which the ferry is moving and draw in these 

lines. 
b) The sailboat has a radar scope that will detect any object within 3 miles of the 

sailboat. Looking down from above, as in the picture, the radar region looks like a 
circular disk.  The boundary is the “edge” or circle around this disk, the interior is 
everything inside of the circle, and the exterior is everything outside of the circle. 
Give the mathematical description (an equation or inequality) of the boundary, 
interior and exterior of the radar zone.  Sketch an accurate picture of the radar 
zone by determining where the line connecting Kingsford and Eaglerock would 
cross the radar zone. 

c) When does the ferry enter the radar zone? 
d) Where and when does the ferry exit the radar zone? 
e) How long does the ferry spend inside the radar zone? 

 
 
 
 
 
 
 
 

North 

Kingsford Eaglerock 

Bander 
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22. Nora spends part of her summer driving a combine during the wheat harvest. Assume 
she starts at the indicated position heading east at 10 ft/sec toward a circular wheat 
field of radius 200 ft. The combine cuts a swath 20 feet wide and begins when the 
corner of the machine labeled “a” is 60 feet north and 60 feet west of the western-
most edge of the field. [UW] 

 
a) When does Nora’s combine first start cutting the wheat? 
b) When does Nora’s combine first start cutting a swath 20 feet wide? 
c) Find the total amount of time wheat is being cut during this pass across the field. 
d) Estimate the area of the swath cut during this pass across the field. 

 
 
23. The vertical cross-section of a drainage ditch is 

pictured to the right.  Here, R indicates in each 
case the radius of a circle with R = 10 feet, 
where all of the indicated circle centers lie 
along a horizontal line 10 feet above and 
parallel to the ditch bottom. Assume that water 
is flowing into the ditch so that the level above 
the bottom is rising at a rate of 2 inches per 
minute. [UW] 

 
a) When will the ditch be completely full? 
b) Find a piecewise defined function that 

models the vertical cross-section of the ditch. 
c) What is the width of the filled portion of the ditch after 1 hour and 18 minutes? 
d) When will the filled portion of the ditch be 42 feet wide? 50 feet wide? 73 feet 

wide? 
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Section 5.2 Angles 
 
Because many applications involving circles also involve a rotation of the circle, it is 
natural to introduce a measure for the rotation, or angle, between two rays (line segments) 
emanating from the center of a circle.  The angle measurement you are most likely 
familiar with is degrees, so we’ll begin there. 
 
 

Measure of an Angle 
The measure of an angle is a measurement between two  
intersecting lines, line segments or rays, starting at the initial side  
and ending at the terminal side. It is a rotational measure, not a 
linear measure. 

 
 
Measuring Angles 
 

Degrees 
A degree is a measurement of angle.  One full rotation around the circle is equal to 
360 degrees, so one degree is 1/360 of a circle.   
 
An angle measured in degrees should always include the unit “degrees” after the 
number, or include the degree symbol °.  For example, 90 degrees = °90 . 

 
Standard Position 
When measuring angles on a circle, unless otherwise directed, we measure angles in 
standard position:  starting at the positive horizontal axis and with counter-clockwise 
rotation. 

 
 
Example 1 

Give the degree measure of the angle shown on the circle. 
 
The vertical and horizontal lines divide the circle into quarters.  
Since one full rotation is 360 degrees= °360 , each quarter rotation 
is 360/4 = °90  or 90 degrees.   

 
 
Example 2 

Show an angle of °30 on the circle. 
 
An angle of °30 is 1/3 of °90 , so by dividing a quarter rotation into 
thirds, we can sketch a line at °30 . 

initial side 

terminal side 

angle 
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Going Greek 
 
When representing angles using variables, it is traditional to use Greek letters.  Here is a 
list of commonly encountered Greek letters. 
 

θ  ϕ  or φ  α  β  γ  
theta phi alpha beta gamma 

 
 
Working with Angles in Degrees 
 
Notice that since there are 360 degrees in one rotation, an 
angle greater than 360 degrees would indicate more than 1 
full rotation.  Shown on a circle, the resulting direction in 
which this angle’s terminal side points would be the same as 
for another angle between 0 and 360 degrees.   These angles 
would be called coterminal. 
 
 

Coterminal Angles 
After completing their full rotation based on the given angle, two angles are 
coterminal if they terminate in the same position, so their terminal sides coincide 
(point in the same direction). 

 
 
Example 3 

Find an angle θ that is coterminal with °800 , where 0 360θ° ≤ < °  
 
Since adding or subtracting a full rotation, 360 degrees, would result in an angle with 
terminal side pointing in the same direction, we can find coterminal angles by adding or 
subtracting 360 degrees.   An angle of 800 degrees is coterminal with an angle of 800-
360 = 440 degrees.  It would also be coterminal with an angle of 440-360 = 80 degrees. 
 
The angle °= 80θ is coterminal with °800 . 
 
By finding the coterminal angle between 0 and 360 degrees, it can be easier to see 
which direction the terminal side of an angle points in. 

 
 
Try it Now 
1. Find an angle α  that is coterminal with °870 , where °<≤° 3600 α . 
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On a number line a positive number is measured to the right and a negative number is 
measured in the opposite direction (to the left).  Similarly a positive angle is measured 
counterclockwise and a negative angle is measured in the opposite direction (clockwise). 
 
 
Example 4 

Show the angle °− 45 on the circle and find a positive angleα  that is coterminal and 
°<≤° 3600 α . 

 
Since 45 degrees is half of 90 degrees, we can start at the 
positive horizontal axis and measure clockwise half of a 90 
degree angle.   
 
Since we can find coterminal angles by adding or subtracting a 
full rotation of 360 degrees, we can find a positive coterminal 
angle here by adding 360 degrees: 

°=°+°− 31536045  
 
 
Try it Now 
2. Find an angle β  coterminal with 300− °  where 0 360β° ≤ < ° . 

 
 
It can be helpful to have a 
familiarity with the frequently 
encountered angles in one 
rotation of a circle.  It is common 
to encounter multiples of 30, 45, 
60, and 90 degrees.  These values 
are shown to the right.  
Memorizing these angles and 
understanding their properties 
will be very useful as we study 
the properties associated with 
angles 
 
 
 
 
Angles in Radians 
 
While measuring angles in degrees may be familiar, doing so often complicates matters 
since the units of measure can get in the way of calculations.  For this reason, another 
measure of angles is commonly used.  This measure is based on the distance around a 
circle. 

-45° 

315° 

0° 

30° 

60° 
90° 

120° 

150° 

180° 

210° 

240° 
270° 

300° 

330° 

45° 135° 

225° 315° 
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Arclength 
Arclength is the length of an arc, s, along a circle of radius r 
subtended (drawn out) by an angleθ .   
 
It is the portion of the circumference between the initial and  
terminal sides of the angle. 

 
 
The length of the arc around an entire circle is called the circumference of a circle.  The 
circumference of a circle is rC π2= .  The ratio of the circumference to the radius, 
produces the constant π2 .  Regardless of the radius, this ratio is always the same, just as 
how the degree measure of an angle is independent of the radius.   
 
To elaborate on this idea, consider two circles, one with radius 2 and one with radius 3.  
Recall the circumference (perimeter) of a circle is rC π2= , where r is the radius of the 
circle.  The smaller circle then has circumference ππ 4)2(2 =  and the larger has 
circumference ππ 6)3(2 = . 
 
Drawing a 45 degree angle on the two circles, we might be 
interested in the length of the arc of the circle that the angle 
indicates.  In both cases, the 45 degree angle draws out an arc that 
is 1/8th of the full circumference, so for the smaller circle, the 

arclength = 1 1(4 )
8 2

π π= , and for the larger circle, the length of the 

arc or arclength = 1 3(6 )
8 4

π π= . 

 
Notice what happens if we find the ratio of the arclength divided by the radius of the 
circle: 

Smaller circle:  

1
12

2 4

π
π=  

Larger circle: 

3
14

3 4

π
π=  

 
The ratio is the same regardless of the radius of the circle – it only depends on the angle.  
This property allows us to define a measure of the angle based on arclength. 
 
 
 
 
 

θ 
r s 

45° 
2 3 
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Radians 
The radian measure of an angle is the ratio of the length of the circular arc subtended 
by the angle to the radius of the circle.   
 
In other words, if s is the length of an arc of a circle, and r is the radius of the circle, 
then 

radian measure s
r

=  

If the circle has radius 1, then the radian measure corresponds to the length of the arc. 
 
 
Because radian measure is the ratio of two lengths, it is a unitless measure.  It is not 
necessary to write the label “radians” after a radian measure, and if you see an angle that 
is not labeled with “degrees” or the degree symbol, you should assume that it is a radian 
measure. 
 
Considering the most basic case, the unit circle (a circle with radius 1), we know that 1 
rotation equals 360 degrees, °360 .  We can also track one rotation around a circle by 
finding the circumference, rC π2= , and for the unit circle π2=C .  These two different 
ways to rotate around a circle give us a way to convert from degrees to radians.  
 
1 rotation = °360 = π2 radians 
½ rotation = °180  = π radians 

¼ rotation = °90 = 
2
π radians 

 
 
Example 5 

Find the radian measure of one third of a full rotation. 
 
For any circle, the arclength along such a rotation would be one third of the 

circumference, 
3

2)2(
3
1 rrC ππ == .  The radian measure would be the arclength divided 

by the radius: 

Radian measure = 2 2
3 3

r
r
π π

= . 
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Converting Between Radians and Degrees 

1 degree = 
180
π  radians    

or:  to convert from degrees to radians, multiply by radians
180

π
°

 

 

1 radian = 180
π

 degrees 

or:  to convert from radians to degrees, multiply by 180
radiansπ

°  

 
 
Example 6 

Convert 
6
π  radians to degrees. 

Since we are given a problem in radians and we want degrees, we multiply by 
π
°180 . 

Remember radians are a unitless measure, so we don’t need to write “radians.” 

6
π  radians = 30180

6
=

°
⋅
π

π  degrees. 

 
 
Example 7 

Convert 15 degrees to radians. 
 
In this example, we start with degrees and want radians so we use the other conversion

°180
π so that the degree units cancel and we are left with the unitless measure of radians. 

15 degrees = 
12180

15 ππ
=

°
⋅°  

 
 
Try it Now 

3. Convert 
10
7π  radians to degrees. 
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Just as we listed all the common 
angles in degrees on a circle, we 
should also list the corresponding 
radian values for the common 
measures of a circle 
corresponding to degree 
multiples of 30, 45, 60, and 90 
degrees.  As with the degree 
measurements, it would be 
advisable to commit these to 
memory. 
 
We can work with the radian 
measures of an angle the same 
way we work with degrees. 
 
 
 
 
Example 8 

Find an angle β   that is coterminal with 19
4
π , where πβ 20 <≤ . 

 
When working in degrees, we found coterminal angles by adding or subtracting 360 
degrees, a full rotation.  Likewise, in radians, we can find coterminal angles by adding 
or subtracting full rotations of 2π  radians. 
 
19 19 8 112

4 4 4 4
π π π ππ− = − =         

The angle 11
4
π  is coterminal, but not less than 2π , so we subtract another rotation. 

11 11 8 32
4 4 4 4
π π π ππ− = − =  

 

The angle 3
4
π  is coterminal with 19

4
π . 

 
 
Try it Now 

4.  Find an angle φ that is coterminal with 17
6
π

−  where πφ 20 <≤ . 

 
 

0, 2π  

6
π  

4
π  

3
π  2

π  2
3
π  

3
4
π  

5
6
π  

π  

7
6
π  

5
4
π  

4
3
π  3

2
π  

5
3
π  

7
4
π  

11
6
π  
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Arclength and Area of a Sector 
 
Recall that the radian measure of an angle was defined as the ratio of the arclength of a 

circular arc to the radius of the circle, s
r

θ = .  From this relationship, we can find 

arclength along a circle given an angle. 
 
 

Arclength on a Circle 
The length of an arc, s, along a circle of radius r subtended by angleθ  in radians is 
s rθ=  

 
 
Example 9 

Mercury orbits the sun at a distance of approximately 36 million miles.  In one Earth 
day, it completes 0.0114 rotation around the sun.  If the orbit was perfectly circular, 
what distance through space would Mercury travel in one Earth day? 
 
To begin, we will need to convert the decimal rotation value to a radian measure.   
 
 
Since one rotation = 2π  radians, 
0.0114 rotation = 2 (0.0114) 0.0716π =  radians. 
 
Combining this with the given radius of 36 million miles, we can find the arclength: 

(36)(0.0716) 2.578s = =  million miles travelled through space. 
 
 
Try it Now 
5.  Find the arclength along a circle of radius 10 subtended by an angle of 215 degrees. 
 
 
In addition to arclength, we can also use angles to find the area of a sector of a circle.  A 
sector is a portion of a circle contained between two lines from the center, like a slice of 
pizza or pie. 
 
Recall that the area of a circle with radius r can be found using the formula 2A rπ= .  If a 
sector is cut out by an angle of θ , measured in radians, then the fraction of full circle that 

angle has cut out is 
2
θ
π

, since 2π  is one full rotation.  Thus, the area of the sector would 

be this fraction of the whole area:  

Area of sector 
2

2 21
2 2 2

rr rθ θππ θ
π π

 = = = 
 
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Area of a Sector 
The area of a sector of a circle with radius r subtended by an  
angle θ , measured in radians, is  

Area of sector 21
2

rθ=  

 
 
 
Example 10 

An automatic lawn sprinkler sprays a distance of 20 feet while rotating 30 degrees.  
What is the area of the sector of grass the sprinkler waters? 
 
First, we need to convert the angle measure into radians.  Since 30 degrees is one of our 
common angles, you ideally should already know the equivalent radian measure, but if 
not we can convert: 

30 degrees = 30
180 6
π π

⋅ =  radians.  

 

The area of the sector is then Area 21 (20) 104.72
2 6

π = = 
 

 ft2 

 
 
Try it Now 
6.  In central pivot irrigation, a large irrigation 

pipe on wheels rotates around a center point, 
as pictured here1. A farmer has a central pivot 
system with a radius of 400 meters.  If water 
restrictions only allow her to water 150 
thousand square meters a day, what angle 
should she set the system to cover? 

 
 
Linear and Angular Velocity 
 
When your car drives down a road, it makes sense to describe its speed in terms of miles 
per hour or meters per second.  These are measures of speed along a line, also called 
linear velocity.  When a point on a circle rotates, we would describe its angular velocity, 
or rotational speed, in radians per second, rotations per minute, or degrees per hour. 
 
 
 
 
                                                 
1 http://commons.wikimedia.org/wiki/File:Pivot_otech_002.JPG  CC-BY-SA 

r 
θ 

20 ft 30° 
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Angular and Linear Velocity 
As a point moves along a circle of radius r, its angular velocity, ω , can be found as 
the angular rotation θ  per unit time, t. 

t
θω =  

 
The linear velocity, v, of the point can be found as the distance travelled, arclength s, 
per unit time, t. 

sv
t

=  

 
 
Example 11 

A water wheel completes 1 rotation every 5 seconds.  Find the 
angular velocity in radians per second.2 
 
The wheel completes 1 rotation = 2π  radians in 5 seconds, so the 

angular velocity would be 2 1.257
5
πω = ≈ radians per second. 

 
 
Combining the definitions above with the arclength equation, s rθ= , we can find a 
relationship between angular and linear velocities.  The angular velocity equation can be 
solved for θ , giving tθ ω= .  Substituting this into the arclength equation gives 
s r r tθ ω= = .  
 
Substituting this into the linear velocity equation gives 

s r tv r
t t

ω ω= = =  

 
 

Relationship Between Linear and Angular Velocity 
When the angular velocity is measured in radians per unit time, linear velocity and 
angular velocity are related by the equation 
v rω=  

 
 
 
 
 
 

                                                 
2 http://en.wikipedia.org/wiki/File:R%C3%B6mische_S%C3%A4gem%C3%BChle.svg CC-BY 
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Example 12 
A bicycle has wheels 28 inches in diameter.  A tachometer determines the wheels are 
rotating at 180 RPM (revolutions per minute).  Find the speed the bicycle is travelling 
down the road. 
 
Here we have an angular velocity and need to find the corresponding linear velocity, 
since the linear speed of the outside of the tires is the speed at which the bicycle travels 
down the road.  
 
We begin by converting from rotations per minute to radians per minute.  It can be 
helpful to utilize the units to make this conversion 

rotations 2 radians radians180 360
minute rotation minute

π π⋅ =  

 
Using the formula from above along with the radius of the wheels, we can find the 
linear velocity 

radians inches(14 inches) 360 5040
minute minute

v π π = = 
 

 

 
You may be wondering where the “radians” went in this last equation.  Remember that 
radians are a unitless measure, so it is not necessary to include them. 
 
Finally, we may wish to convert this linear velocity into a more familiar measurement, 
like miles per hour. 

inches 1 feet 1 mile 60 minutes5040 14.99
minute 12 inches 5280 feet 1 hour

π ⋅ ⋅ ⋅ =  miles per hour (mph). 

 
 
Try it Now 
7.  A satellite is rotating around the earth at 27,934 kilometers per minute at an altitude of 

242 km above the earth.  If the radius of the earth is 6378 kilometers, find the angular 
velocity of the satellite. 
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Important Topics of This Section 
Degree measure of angle 
Radian measure of angle 
Conversion between degrees and radians 
Common angles in degrees and radians 
Coterminal angles 
Arclength 
Area of a sector 
Linear and angular velocity 

 
 
Try it Now Answers 
1. °=−−= 150360360870α  
 
2. °=+−= 60360300β  
 

3. °=
°

⋅ 126180
10
7

π
π  

 

4. 
6

7
6

12
6

12
6

1722
6

17 πππππππ
=++−=++−  

 

5. 215° = 
180

215π   radians.  525.37
18

215
180

21510 ≈=⋅=
ππs   

 

6. 000,150)400(
2
1 2 =θ .  875.1=θ , or °43.107  

 

7.  v = 27934.  r = 6378+242=6620.   2196.4
6620
27934

===
r
vω  radians per hour.
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Section 5.2 Exercises 
 

1. Indicate each angle on a circle:  30°, 300°, -135°, 70°, 2
3
π , 7

4
π  

 

2. Indicate each angle on a circle:  30°, 315°, -135°, 80°, 7
6
π , 3

4
π  

 
3. Convert the angle 180° to radians. 

 
4. Convert the angle 30° to radians. 

 

5. Convert the angle 5
6
π  from radians to degrees. 

 

6. Convert the angle 11 
6
π  from radians to degrees. 

 
7. Find the angle between 0° and 360° that is coterminal with a 685°  angle.  

 
8. Find the angle between 0° and  360° that is coterminal with a 451°  angle. 

 
9. Find the angle between 0° and 360° that is coterminal with a -1746°  angle. 

 
10. Find the angle between 0° and 360° that is coterminal with a -1400°  angle. 

 

11. Find the angle between 0 and 2π in radians that is coterminal with the angle 26 
9
π . 

 

12. Find the angle between 0 and 2π  in radians that is coterminal with the angle  17 
3
π . 

 

13. Find the angle between 0 and 2π in radians that is coterminal with the angle 3 
2
π

− . 

 

14. Find the angle between 0 and 2π  in radians that is coterminal with the angle  7 
6
π

− .  

 
15. On a circle of radius 7 miles, find the length of the arc that subtends a central angle of 

5 radians.  
 

16. On a circle of radius 6 feet, find the length of the arc that subtends a central angle of 1 
radian.  
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17. On a circle of radius 12 cm, find the length of the arc that subtends a central angle of 
120 degrees. 

 
18. On a circle of radius 9 miles, find the length of the arc that subtends a central angle of 

800 degrees.  
 

19. Find the distance along an arc on the surface of the Earth that subtends a central angle 
of 5 minutes (1 minute = 1/60 degree). The radius of the Earth is 3960 miles.  

 
20. Find the distance along an arc on the surface of the Earth that subtends a central angle 

of 7 minutes (1 minute = 1/60 degree). The radius of the Earth is 3960 miles. 
 

21. On a circle of radius 6 feet, what angle in degrees would subtend an arc of length 3 
feet? 

 
22. On a circle of radius 5 feet, what angle in degrees would subtend an arc of length 2 

feet? 
 

23. A sector of a circle has a central angle of 45°. Find the area of the sector if the radius 
of the circle is 6 cm. 

 
24. A sector of a circle has a central angle of 30°. Find the area of the sector if the radius 

of the circle is 20 cm. 
 

25. A truck with 32-in.-diameter wheels is traveling at 60 mi/h.  Find the angular speed of 
the wheels in rad/min.  How many revolutions per minute do the wheels make?  

 
26. A bicycle with 24-in.-diameter wheels is traveling at 15 mi/h.  Find the angular speed 

of the wheels in rad/min.  How many revolutions per minute do the wheels make? 
 
27. A wheel of radius 8 in. is rotating 15°/sec. What is the linear speed v, the angular 

speed in RPM, and the angular speed in rad/sec? 
 
28. A wheel of radius 14 in. is rotating 0.5 rad/sec. What is the linear speed v, the angular 

speed in RPM, and the angular speed in deg/sec? 
 
29. A CD has diameter of 120 millimeters.  When playing audio, the angular speed varies 

to keep the linear speed constant where the disc is being read.  When reading along 
the outer edge of the disc, the angular speed is about 200 RPM (revolutions per 
minute).  Find the linear speed. 

 
30. When being burned in a writable CD-R drive, the angular speed of a CD is often 

much faster than when playing audio, but the angular speed still varies to keep the 
linear speed constant where the disc is being written.  When writing along the outer 
edge of the disc, the angular speed of one drive is about 4800 RPM (revolutions per 
minute).  Find the linear speed. 
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31. You are standing on the equator of the Earth (radius 3960 miles). What is your linear 

and angular speed? 
 
32. The restaurant in the Space Needle in Seattle rotates at the rate of one revolution 

every 47 minutes. [UW] 
a) Through how many radians does it turn in 100 minutes? 
b) How long does it take the restaurant to rotate through 4 radians? 
c) How far does a person sitting by the window move in 100 minutes if the radius of 

the restaurant is 21 meters? 
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Section 5.3 Points on Circles Using Sine and Cosine 
 
While it is convenient to describe the location of a point on a circle using an angle or a 
distance along the circle, relating this information to the x and y coordinates and the circle 
equation we explored in Section 5.1 is an important application of trigonometry.  
 
A distress signal is sent from a sailboat during a storm, but the transmission is unclear 
and the rescue boat sitting at the marina cannot determine the sailboat’s location.  Using 
high powered radar, they determine the distress signal is coming from a distance of 20 
miles at an angle of 225 degrees from the marina.  How many miles east/west and 
north/south of the rescue boat is the stranded sailboat? 
 
In a general sense, to investigate this, we begin by 
drawing a circle centered at the origin with radius r, 
and marking the point on the circle indicated by some 
angle θ.  This point has coordinates (x, y).   
 
If we drop a line segment vertically down from this 
point to the x axis, we would form a right triangle 
inside of the circle.   
 
No matter which quadrant our angle θ puts us in we 
can draw a triangle by dropping a perpendicular line 
segment to the x axis, keeping in mind that the values 
of x and y may be positive or negative, depending on the quadrant. 
 
Additionally, if the angle θ puts us on an axis, we simply measure the radius as the x or y 
with the other value being 0, again ensuring we have appropriate signs on the coordinates 
based on the quadrant. 
  
Triangles obtained from different radii will all be similar triangles, meaning 
corresponding sides scale proportionally.  While the lengths of the sides may change, as 
we saw in the last section, the ratios of the side lengths will always remain constant for 
any given angle. 
 

1 2

1 2

y y
r r
=  

1 2

1 2

x x
r r
=  

 
 
      
To be able to refer to these ratios more easily, we will give them names.  Since the ratios 
depend on the angle, we will write them as functions of the angle θ . 

(x, y) 

r 

θ 

r1 

θ 
y1 

x1 

r2 

θ 

y2 

x2 
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Sine and Cosine 
For the point (x, y) on a circle of radius r at an angle of θ , we can  
define two important functions as the ratios of the sides of the 
corresponding triangle: 

The sine function:  
r
y

=)sin(θ  

The cosine function:  
r
x

=)cos(θ  

 
 
In this chapter, we will explore these functions using both circles and right triangles.  In 
the next chapter, we will take a closer look at the behavior and characteristics of the sine 
and cosine functions. 
 
 
Example 1 

The point (3, 4) is on the circle of radius 5 at some angle θ.  Find )cos(θ and )sin(θ . 
 
Knowing the radius of the circle and coordinates of the point, we can evaluate the 
cosine and sine functions as the ratio of the sides. 

5
3)cos( ==

r
xθ   

5
4)sin( ==

r
yθ  

 
 
There are a few cosine and sine values which we can determine fairly easily because the 
corresponding point on the circle falls on the x or y axis. 
 
 
Example 2 

Find )90cos( °  and )90sin( °  
 
On any circle, the terminal side of a 90 degree angle 
points straight up, so the coordinates of the 
corresponding point on the circle would be (0, r).  
Using our definitions of cosine and sine, 

00)90cos( ===°
rr

x  

1)90sin( ===°
r
r

r
y  

 
 
 
 

(x, y) 

r 

θ 
y 

x 

r 
90° 
 

(0, r) 
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Try it Now 
1. Find cosine and sine of the angle π . 
 
 
Notice that the definitions above can also be stated as: 
 
 

Coordinates of the Point on a Circle at a Given Angle 
On a circle of radius r at an angle of θ , we can find the coordinates of the point  
(x, y)  at that angle using 

)cos(θrx =  
)sin(θry =  

 
On a unit circle, a circle with radius 1, )cos(θ=x  and )sin(θ=y . 

 
 
Utilizing the basic equation for a circle centered at the origin, 222 ryx =+ , combined 
with the relationships above, we can establish a new identity. 
 

222 ryx =+      substituting the relations above, 
222 ))sin(())cos(( rrr =+ θθ   simplifying, 

22222 ))(sin())(cos( rrr =+ θθ  dividing by 2r  
1))(sin())(cos( 22 =+ θθ   or using shorthand notation 

1)(sin)(cos 22 =+ θθ  
 
Here )(cos2 θ  is a commonly used shorthand notation for 2))(cos(θ .  Be aware that many 
calculators and computers do not understand the shorthand notation. 
 
In Section 5.1 we related the Pythagorean Theorem 222 cba =+  to the basic equation of 
a circle 222 ryx =+ , which we have now used to arrive at the Pythagorean Identity. 
 
 

Pythagorean Identity 
The Pythagorean Identity.  For any angle θ,  1)(sin)(cos 22 =+ θθ . 

 
 
One use of this identity is that it helps us to find a cosine value of an angle if we know 
the sine value of that angle or vice versa.  However, since the equation will yield two 
possible values, we will need to utilize additional knowledge of the angle to help us find 
the desired value. 
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Example 3 

If 
7
3)sin( =θ  and θ  is in the second quadrant, find )cos(θ . 

 
Substituting the known value for sine into the Pythagorean identity, 

1
7
3)(cos

2
2 =






+θ  

1
49
9)(cos2 =+θ  

49
40)(cos2 =θ  

40 40 2 10cos( )
49 7 7

θ = ± = ± = ±  

 
Since the angle is in the second quadrant, we know the x value of the point would be 
negative, so the cosine value should also be negative.  Using this additional information, 

we can conclude that 2 10cos( )
7

θ = − . 

 
 
Values for Sine and Cosine 
 
At this point, you may have noticed that we haven’t found any cosine or sine values from 
angles not on an axis.  To do this, we will need to utilize our knowledge of triangles. 
 

First, consider a point on a circle at an angle of 45 degrees, or 
4
π .  

At this angle, the x and y coordinates of the corresponding point 
on the circle will be equal because 45 degrees divides the first 
quadrant in half.  Since the x and y values will be the same, the 
sine and cosine values will also be equal.  Utilizing the 
Pythagorean Identity, 

1
4

sin
4

cos 22 =





+






 ππ  since the sine and cosine are equal, we can 

     substitute sine with cosine 

1
4

cos
4

cos 22 =





+






 ππ  add like terms 

1
4

cos2 2 =





π    divide 

2
1

4
cos2 =






π    since the x value is positive, we’ll keep the positive root 

 

1 
45° 

y 

x 

(x, y) = (x, x) 
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2
1

4
cos =






π    often this value is written with a rationalized denominator  

 
Remember, to rationalize the denominator we multiply by a term equivalent to 1 to get 
rid of the radical in the denominator. 

2
2

4
2

2
2

2
1

4
cos ===






π   

 

Since the sine and cosine are equal, 
2
2

4
sin =






π  as well.  The (x, y) coordinates for a 

point on a circle of radius 1 at an angle of 45 degrees are 








2
2,

2
2

. 

 
 
Example 4 

Find the coordinates of the point on a circle of radius 6 at an angle of 
4
π . 

 

Using our new knowledge that 
2
2

4
sin =






π  and 

2
2

4
cos =






π , along with our 

relationships that stated )cos(θrx =  and )sin(θry = , we can find the coordinates of 
the point desired: 

23
2
26

4
cos6 =








=






=
πx  

23
2
26

4
sin6 =








=






=
πy  

 
 
Try it Now 
2. Find the coordinates of the point on a circle of radius 3 at an angle of  °90 . 
 
 
Next, we will find the cosine and sine at an angle of 

30 degrees, or 
6
π .  To do this, we will first draw a 

triangle inside a circle with one side at an angle of 30 
degrees, and another at an angle of -30 degrees.  If the 
resulting two right triangles are combined into one 

r 

30° 

(x, y) 
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large triangle, notice that all three angles of this larger triangle will be 60 degrees.   
Since all the angles are equal, the sides will all be equal as 
well.  The vertical line has length 2y, and since the sides are all 

equal we can conclude that 2y = r, or 
2
ry = .  Using this, we 

can find the sine value: 

2
11

2
2

6
sin =⋅===








r
r

r

r

r
yπ

 

 
Using the Pythagorean Identity, we can find the cosine value: 

1
6

sin
6

cos 22 =





+






 ππ  

1
2
1

6
cos

2
2 =






+






π  

4
3

6
cos2 =






π    since the x value is positive, we’ll keep the positive root 

2
3

4
3

6
cos ==






π  

 
The (x, y) coordinates for the point on a circle of radius 1 at an angle of 30 degrees are 










2
1,

2
3

. 

 
By drawing a the triangle inside the unit circle with a 30 degree angle and reflecting it 

over the line y = x, we can find the cosine and sine for 60 degrees, or 
3
π , without any 

additional work. 
 
 
 
 
 
 
 
 
 

By this symmetry, we can see the coordinates of the point on the unit circle at an angle of 

60 degrees will be 








2
3,

2
1

, giving 

30° 
 

2
1  

2
3  

1 

y = x 

30° 
 

2
1  

1 

60° 
 

y = x 

2
3  

60° 

60° 

60° 

r 

r 

y 

y 
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2
1

3
cos =






π  and 

2
3

3
sin =






π  

We have now found the cosine and sine values for all the commonly encountered angles 
in the first quadrant of the unit circle.   
 

Angle 0  
6
π , or 30° 

4
π , or 45° 

3
π , or 60° 

2
π , or 90° 

Cosine 1 3
2

 2
2

 
1
2

 
0 

Sine 0 1
2

 2
2

 3
2

 
1 

 
For any given angle in the first quadrant, there will be an angle in another quadrant with 
the same sine value, and yet another angle in yet another quadrant with the same cosine 
value.  Since the sine value is the y coordinate on the unit circle, the other angle with the 
same sine will share the same y value, but have the opposite x value.  Likewise, the angle 
with the same cosine will share the same x value, but have the opposite y value. 
 
As shown here, angle α has the same sine value as angle θ; the cosine values would be 
opposites.  The angle β has the same cosine value as the angle θ; the sine values would be 
opposites. 
 

)sin()sin( αθ =  and  )cos()cos( αθ −=  )sin()sin( βθ −=  and  )cos()cos( βθ =  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
It is important to notice the relationship between the angles.  If, from the angle, you 
measured the smallest angle to the horizontal axis, all would have the same measure in 
absolute value.  We say that all these angles have a reference angle of θ. 
 
 
 
 

(x, y) 

r 
θ α 

(x, y) 

r 
θ 

β 
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Reference Angle 
An angle’s reference angle is the size of the 
smallest angle to the horizontal axis. 
 
A reference angle is always an angle between 0  

and 90 degrees, or 0 and 
2
π  radians. 

 
Angles share the same cosine and sine values as  
their reference angles, except for signs (positive or  
negative) which can be determined from the  
quadrant of the angle. 

 
 
Example 5 

Find the reference angle of 150 degrees.  Use it to find )150cos( ° and )150sin( ° . 
 
150 degrees is located in the second quadrant.  It is 30 degrees short of the horizontal 
axis at 180 degrees, so the reference angle is 30 degrees. 
 
This tells us that 150 degrees has the same sine and cosine values as 30 degrees, except 

for sign.  We know that 
2
1)30sin( =°  and 

2
3)30cos( =° .  Since 150 degrees is in the 

second quadrant, the x coordinate of the point on the circle would be negative, so the 
cosine value will be negative.  The y coordinate is positive, so the sine value will be 
positive. 

2
1)150sin( =°  and 

2
3)150cos( −=°  

The (x, y) coordinates for the point on a unit circle at an angle of °150  are 






 −
2
1,

2
3

. 

 
 
Using symmetry and reference angles, we can fill in cosine and sine values at the rest of 
the special angles on the unit circle.  Take time to learn the (x, y) coordinates of all the 
major angles in the first quadrant! 

(x, y) 

θ 

θ 

θ 

θ 
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Example 6 

Find the coordinates of the point on a circle of radius 12 at an angle of 
6

7π . 

 
Note that this angle is in the third quadrant, where both x and y are negative.  Keeping 
this in mind can help you check your signs of the sine and cosine function. 
 

36
2

312
6

7cos12 −=






 −
=






=
πx  

6
2
112

6
7sin12 −=






 −=






=
πy  

 
The coordinates of the point are )6,36( −− . 

 
 
Try it Now 

3. Find the coordinates of the point on a circle of radius 5 at an angle of 5
3
π . 

3 1
30 , , ,

6 2 2

π
°

 
 
 

 

2 2
45 , , ,

4 2 2

π
°

 
 
 

 

1 3
60 , ,

3 2 2
,π

°
 
 
 

 
( )90 , , 0 1

2
,π

°  2 1 3
120 , ,

3 2 2
,π

°
 
− 
 

 

3 2 2
135 , ,

4 2 2
,π

°
 
− 
 

 

5 3 1
150 , ,

6 2 2
,π

°
 
− 
 

 

( )180 , , 1 0,π° −  

5 2 2
225 , ,

4 2 2
,π

°
 
− − 
 

 

4 1 3
240 , ,

3 2 2
,π

°
 
− − 
 

 ( )3
270 , , 0 1

2
,π

° −  
5 1 3

300 , ,
3 2 2

,π
°

 
− 

 
 

7 2 2
315 , ,

4 2 2
,π

°
 

− 
 

 

11 3 1
330 , ,

6 2 2
,π

°
 

− 
 

 

( )
( )

0 , 0, 1, 0

360 , 2 , 1, 0π

°

°
 

7 3 1
210 , ,

6 2 2
,π

°
 
− − 
 
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Example 7 
We now have the tools to return to the sailboat question posed at the beginning of this 
section.  
 
A distress signal is sent from a sailboat during a 
storm, but the transmission is unclear and the rescue 
boat sitting at the marina cannot determine the 
sailboat’s location.  Using high powered radar, they 
determine the distress signal is coming from a point 
20 miles away at an angle of 225 degrees from the 
marina.  How many miles east/west and north/south 
of the rescue boat is the stranded sailboat? 
 
We can now answer the question by finding the 
coordinates of the point on a circle with a radius of 20 
miles at an angle of 225 degrees. 

( ) 142.14
2

220225cos20 −≈






 −
=°=x miles 

( ) 142.14
2

220225sin20 −≈






 −
=°=y miles 

 
The sailboat is located 14.142 miles west and 14.142 miles south of the marina. 

 
 
The special values of sine and cosine in the first quadrant are very useful to know, since 
knowing them allows you to quickly evaluate the sine and cosine of very common angles 
without needing to look at a reference or use your calculator.  However, scenarios do 
come up where we need to know the sine and cosine of other angles. 
 
To find the cosine and sine of any other angle, we turn to a computer or calculator.  Be 
aware:  most calculators can be set into “degree” or “radian” mode, which tells the 
calculator the units for the input value.  When you evaluate “cos(30)” on your calculator, 
it will evaluate it as the cosine of 30 degrees if the calculator is in degree mode, or the 
cosine of 30 radians if the calculator is in radian mode.  Most computer software with 
cosine and sine functions only operates in radian mode. 
 
 
 
 
 
 
 
 
 

20 mi 

225° 
 E 

 
W 
 

N 
 

S 
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Example 8 

Evaluate the cosine of 20 degrees using a calculator or computer. 
 
On a calculator that can be put in degree mode, you can evaluate this directly to be 
approximately 0.939693.   
 
On a computer or calculator without degree mode, you would first need to convert the 

angle to radians, or equivalently evaluate the expression 





 ⋅

180
20cos π . 

 
 

Important Topics of This Section 
The sine function 
The cosine function 
Pythagorean Identity 
Unit Circle values 
Reference angles 
Using technology to find points on a circle 

 
 
Try it Now Answers 
1. 1)cos( −=π   0)sin( =π  
 

2. 
313

2
sin3

003
2

cos3

=⋅=





=

=⋅=





=

π

π

y

x
 

 

3. 






 −
=
























2
35,

2
5

3
5sin5,

3
5cos5 ππ  
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Section 5.3 Exercises 
 
1. Find the quadrant in which the terminal point determined by t lies if 

a. sin( ) 0t <   and cos( ) 0t <   b. sin( ) 0t >   and cos( ) 0t <  
 

2. Find the quadrant in which the terminal point determined by t lies if  
a. sin( ) 0t <   and cos( ) 0t >   b. sin( ) 0t >   and cos( ) 0t >  
 

3. The point P is on the unit circle. If the y-coordinate of P is 3
5

, and P is in quadrant II, 

find the x coordinate. 
 

4. The point P is on the unit circle. If the x-coordinate of P is 1
5

, and P is in quadrant 

IV, find the y coordinate. 
  

5. If ( ) 1cos
7

θ =  and θ is in the 4th quadrant, find ( )sin θ . 

6. If ( ) 2cos
9

θ =  and θ is in the 1st quadrant, find ( )sin θ . 

7. If ( ) 3sin
8

θ =  and θ is in the 2nd quadrant, find ( )cos θ .  

8. If ( ) 1sin
4

θ = −  and θ is in the 3rd quadrant, find ( )cos θ .  

 
9. For each of the following angles, find the reference angle and which quadrant the 

angle lies in.  Then compute sine and cosine of the angle. 
a.  225°  b. 300°  c. 135°  d. 210° 
 

10. For each of the following angles, find the reference angle and which quadrant the 
angle lies in.  Then compute sine and cosine of the angle. 
a. 120°  b. 315°  c. 250°  d. 150° 
 

11. For each of the following angles, find the reference angle and which quadrant the 
angle lies in.  Then compute sine and cosine of the angle. 

a. 5
4
π   b. 7

6
π   c. 5

3
π   d. 3

4
π  

 
12. For each of the following angles, find the reference angle and which quadrant the 

angle lies in.  Then compute sine and cosine of the angle. 

a. 4
3
π   b. 2

3
π   c. 5

6
π   d. 7

4
π  

 



374  Chapter 5 
 

13. Give exact values for ( )sin θ  and ( )cos θ  for each of these angles. 

a. 3
4
π

−   b. 23
6
π   c. 

2
π

−   d. 5π  

 
14. Give exact values for ( )sin θ  and ( )cos θ  for each of these angles. 

a. 2
3
π

−  b. 17
4
π   c. 

6
π

−   d. 10π  

 
15. Find an angle θ with 0 360θ< < °  or 0 2θ π< <  that has the same sine value as: 

a. 
3
π   b.  80°  c. 140°  d. 4

3
π   e. 305°  

 
16. Find an angle θ with 0 360θ< < °  or 0 2θ π< <   that has the same sine value as: 

a. 
4
π   b.  15°  c. 160°  d. 7

6
π   e. 340°  

 
17. Find an angle θ with 0 360θ< < °  or 0 2θ π< <  that has the same cosine value as: 

a. 
3
π   b.  80°  c. 140°  d. 4

3
π   e. 305°  

 
18. Find an angle θ with 0 360θ< < °  or 0 2θ π< <  that has the same cosine value as: 

a. 
4
π   b.  15°  c. 160°  d. 7

6
π   e. 340°  

 
19. Find the coordinates of the point on a circle with radius 15 corresponding to an angle 

of 220°. 
 

20. Find the coordinates of the point on a circle with radius 20 corresponding to an angle 
of 280°.  
 

21. Marla is running clockwise around a circular track. She runs at a constant speed of 3 
meters per second. She takes 46 seconds to complete one lap of the track. From her 
starting point, it takes her 12 seconds to reach the northernmost point of the track. Impose 
a coordinate system with the center of the track at the origin, and the northernmost point 
on the positive y-axis. [UW] 

a) Give Marla’s coordinates at her starting point. 
b) Give Marla’s coordinates when she has been running for 10 seconds. 
c) Give Marla’s coordinates when she has been running for 901.3 seconds. 
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Section 5.4 The Other Trigonometric Functions 
 
In the previous section, we defined the sine and cosine functions as ratios of the sides of a 
right triangle in a circle.  Since the triangle has 3 sides there are 6 possible combinations 
of ratios.  While the sine and cosine are the two prominent ratios that can be formed, 
there are four others, and together they define the 6 trigonometric functions. 
 
 

Tangent, Secant, Cosecant, and Cotangent Functions 
For the point (x, y) on a circle of radius r at an angle of θ , we can 
define four additional important functions as the ratios of the 
sides of the corresponding triangle: 

The tangent function:   
x
y

=)tan(θ  

The secant function:   
x
r

=)sec(θ   

The cosecant function:   
y
r

=)csc(θ  

The cotangent function:   
y
x

=)cot(θ  

 
 
Geometrically, notice that the definition of tangent corresponds with the slope of the line 
segment between the origin (0, 0) and the point (x, y).   This relationship can be very 
helpful in thinking about tangent values. 
 
You may also notice that the ratios defining the secant, cosecant, and cotangent are the 
reciprocals of the ratios defining the cosine, sine, and tangent functions, respectively.  
Additionally, notice that using our results from the last section, 

)cos(
)sin(

)cos(
)sin()tan(

θ
θ

θ
θθ ===

r
r

x
y   

 
Applying this concept to the other trig functions we can state the reciprocal identities. 
 
 

Identities 
The other four trigonometric functions can be related back to the sine and cosine 
functions using these basic relationships: 
 

)cos(
)sin()tan(

θ
θθ =      

)cos(
1)sec(
θ

θ =      
)sin(

1)csc(
θ

θ =      1 cos( )cot( )
tan( ) sin( )

θθ
θ θ

= =  

(x, y) 

r 

θ 
y 

x 
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These relationships are called identities.  Identities are statements that are true for all 
values of the input on which they are defined.  Identities are usually something that can 
be derived from definitions and relationships we already know, similar to how the 
identities above were derived from the circle relationships of the six trig functions.  The 
Pythagorean Identity we learned earlier was derived from the Pythagorean Theorem and 
the definitions of sine and cosine.  We will discuss the role of identities more after an 
example. 
 
 
Example 1 

Evaluate )45tan( °  and 







6
5sec π . 

 
Since we know the sine and cosine values for these angles, it makes sense to relate the 
tangent and secant values back to the sine and cosine values. 
 

1

2
2

2
2

)45cos(
)45sin()45tan( ==
°
°

=°  

 
Notice this result is consistent with our interpretation of the tangent value as the slope 
of the line passing through the origin at the given angle: a line at 45 degrees would 
indeed have a slope of 1. 
 

3
2

2
3

1

6
5cos

1
6

5sec −
=

−
=









=







π
π , which could also be written as 

3
32− . 

 
 
Try it Now 

1. Evaluate 







6
7csc π . 

 
 
Just as we often need to simplify algebraic expressions, it is often also necessary or 
helpful to simplify trigonometric expressions.  To do so, we utilize the definitions and 
identities we have established. 
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Example 2 

Simplify ( )
( )θ
θ

tan
sec . 

 
We can simplify this by rewriting both functions in terms of sine and cosine 

( )
( )

( )
( )

( )θ
θ

θ
θ
θ

cos
sin

cos
1

tan
sec

=   To divide the fractions we could invert and multiply 

( )
( )
( )θ
θ

θ sin
cos

cos
1

=    cancelling the cosines, 

( ) ( )θ
θ

csc
sin

1
==    simplifying and using the identity 

 
 

By showing that ( )
( )θ
θ

tan
sec  can be simplified to ( )θcsc , we have, in fact, established a new 

identity:  that ( )
( ) ( )θ
θ
θ csc

tan
sec

= .   

 
Occasionally a question may ask you to “prove the identity” or “establish the identity.”  
This is the same idea as when an algebra book asks a question like “show that  

12)1( 22 +−=− xxx .”  In this type of question, we must show the algebraic 
manipulations that demonstrate that the left and right side of the equation are in fact 
equal.  You can think of a “prove the identity” problem as a simplification problem where 
you know the answer: you know what the end goal of the simplification should be, and 
just need to show the steps to get there. 
 
To prove an identity, in most cases you will start with the expression on one side of the 
identity and manipulate it using algebra and trigonometric identities until you have 
simplified it to the expression on the other side of the equation.  Do not treat the identity 
like an equation to solve – it isn’t!  The proof is establishing if the two expressions are 
equal, so we must take care to work with one side at a time rather than applying 
an operation simultaneously to both sides of the equation. 
 
 
Example 3 

Prove the identity 1 cot( ) sin( ) cos( )
csc( )

α α α
α

+
= + . 

 
Since the left side seems a bit more complicated, we will start there and simplify the 
expression until we obtain the right side.  We can use the right side as a guide for what 
might be good steps to make.  In this case, the left side involves a fraction while the 
right side doesn’t, which suggests we should look to see if the fraction can be reduced.   
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Additionally, since the right side involves sine and cosine and the left does not, it 
suggests that rewriting the cotangent and cosecant using sine and cosine might be a 
good idea. 
 
1 cot( )

csc( )
α

α
+     Rewriting the cotangent and cosecant 

cos( )1
sin( )
1

sin( )

α
α

α

+
=     To divide the fractions, we invert and multiply 

 
cos( ) sin( )1
sin( ) 1

α α
α

 
= + 
 

  Distributing, 

sin( ) cos( ) sin( )1
1 sin( ) 1
α α α

α
= ⋅ + ⋅   Simplifying the fractions, 

sin( ) cos( )α α= +    Establishing the identity. 
 

Notice that in the second step, we could have combined the 1 and cos( )
sin( )

α
α

 before 

inverting and multiplying.  It is very common when proving or simplifying identities for 
there to be more than one way to obtain the same result. 

 
 
We can also utilize identities we have previously learned, like the Pythagorean Identity, 
while simplifying or proving identities. 
 
 
Example 4 

Establish the identity 
( )
( ) ( )θ
θ
θ sin1

sin1
cos2

−=
+

. 

 
Since the left side of the identity is more complicated, it makes sense to start there.  To 
simplify this, we will have to reduce the fraction, which would require the numerator to 
have a factor in common with the denominator.  Additionally, we notice that the right 
side only involves sine.  Both of these suggest that we need to convert the cosine into 
something involving sine. 
 
Recall the Pythagorean Identity told us 1)(sin)(cos 22 =+ θθ .  By moving one of the 
trig functions to the other side, we can establish: 
 

)(cos1)(sin 22 θθ −=   and   )(sin1)(cos 22 θθ −=  
 
Utilizing this, we now can establish the identity.  We start on one side and manipulate: 
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( )
( )θ
θ

sin1
cos2

+
   Utilizing the Pythagorean Identity 

=
( )
( )θ
θ

sin1
sin1 2

+
−

   Factoring the numerator 

( )( ) ( )( )
( )θ

θθ
sin1

sin1sin1
+

+−
=  Cancelling the like factors 

( )θsin1−=    Establishing the identity 
 
 
We can also build new identities from previously established identities.  For example, if 
we divide both sides of the Pythagorean Identity by cosine squared (which is allowed 
since we’ve already shown the identity is true), 

)(cos
1

)(cos
)(sin)(cos

22

22

θθ
θθ

=
+   Splitting the fraction on the left, 

)(cos
1

)(cos
)(sin

)(cos
)(cos

22

2

2

2

θθ
θ

θ
θ

=+  Simplifying and using the definitions of tan and sec 

)(sec)(tan1 22 θθ =+ . 
 
 
Try it Now 
2. Use a similar approach to establish that )(csc1)(cot 22 θθ =+ . 

 
 

Identities 
Alternate forms of the Pythagorean Identity 

)(sec)(tan1 22 θθ =+  

)(csc1)(cot 22 θθ =+  
 
 
Example 5 

If 
7
2)tan( =θ  and θ  is in the 3rd quadrant, find )cos(θ . 

 
There are two approaches to this problem, both of which work equally well. 
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Approach 1 

Since 
x
y

=)tan(θ  and the angle is in the third quadrant, we can imagine a triangle in a 

circle of some radius so that the point on the circle is (-7, -2), so  
7
2

7
2
=

−
−

=
x
y . 

 
Using the Pythagorean Theorem, we can find the radius of the circle:  

222 )2()7( r=−+− , so 53=r .  
 
Now we can find the cosine value: 

53
7)cos( −

==
r
xθ  

 
Approach 2 
Using the )(sec)(tan1 22 θθ =+  form of the Pythagorean Identity with the known 
tangent value, 

)(sec)(tan1 22 θθ =+  

)(sec
7
21 2

2

θ=





+  

)(sec
49
53 2 θ=      

7
53

49
53)sec( ±=±=θ  

 
Since the angle is in the third quadrant, the cosine value will be negative so the secant 
value will also be negative.  Keeping the negative result, and using definition of secant, 

7
53)sec( −=θ  

7
53

)cos(
1

−=
θ

  Inverting both sides 

53
537

53
7)cos( −=−=θ  

 
 
Try it Now 

3. If 
3
7)sec( −=φ  and 

2
π φ π< < , find tan( )φ  and sin( )φ . 

 
  



  Section 5.4 The Other Trigonometric Functions     381 
 

 
Important Topics of This Section 
6 Trigonometric Functions: 

Sine 
Cosine 
Tangent 
Cosecant 
Secant 
Cotangent 

Trig identities 
 
 
Try it Now Answers 

1. 2
2

1
1

6
7sin

1
6

7csc −=
−

=








=







π
π  

 
2. 

     

)(csc1)(cot

)(sin
1

)(sin
)(sin

)(sin
)(cos

1
sin

)(sin)(cos

22

22

2

2

2

2

22

θθ

θθ
θ

θ
θ

θ
θθ

=+

=+

=
+

 

 

3. 
3
7)sec( −=φ .  By definition, 

3
7

)cos(
1

−=
φ

, so 
7
3)cos( −=φ . 

Using Pythagorean Identity with the sec, 
2

2

3
7)(tan1 





−=+ φ .  Solving gives 

3
40)tan(
−

=φ .  We use the negative square root since an angle in the second quadrant 

would have a negative tangent. 

Using Pythagorean Identity with the cos,  1
7
3)(sin

2
2 =






−+φ .  Solving, 

7
40)sin( =φ .       
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Section 5.4 Exercises 

1. If   
4
πθ =  , find exact values for ( ) ( ) ( ) ( )sec ,csc , tan , cot  θ θ θ θ . 

2. If  7  
4
πθ =  , find exact values for ( ) ( ) ( ) ( )sec ,csc , tan , cot  θ θ θ θ . 

3. If  5  
6
πθ =  , find exact values for ( ) ( ) ( ) ( )sec ,csc , tan , cot  θ θ θ θ . 

4. If   
6
πθ =  , find exact values for ( ) ( ) ( ) ( )sec ,csc , tan , cotθ θ θ θ . 

5. If  2  
3
πθ =  , find exact values for ( ) ( ) ( ) ( )sec ,csc , tan , cot  θ θ θ θ . 

6. If  4  
3
πθ =  , find exact values for ( ) ( ) ( ) ( )sec ,csc , tan , cotθ θ θ θ . 

7. Evaluate: a. ( )sec 135°    b. ( )csc 210°    c. ( )tan 60°    d. ( )cot 225°  

8. Evaluate: a. ( )sec 30°      b. ( )csc 315°   c. ( )tan 135°   d. ( )cot 150°  

9. If ( ) 3sin
4

θ = , and θ  is in quadrant II, find ( ) ( ) ( ) ( ) ( )cos , sec ,csc , tan , cotθ θ θ θ θ . 

10. If ( ) 2sin
7

θ = , and θ  is in quadrant II, find ( ) ( ) ( ) ( ) ( )cos , sec ,csc , tan , cotθ θ θ θ θ . 

11. If ( ) 1cos
3

θ = − , and θ  is in quadrant III, find 

( ) ( ) ( ) ( ) ( )sin , sec ,csc , tan , cotθ θ θ θ θ . 

12. If ( ) 1cos
5

θ = , and θ  is in quadrant I, find ( ) ( ) ( ) ( ) ( )sin , sec ,csc , tan , cotθ θ θ θ θ . 

13. If ( ) 12tan
5

θ = , and 0
2
πθ≤ < , find ( ) ( ) ( ) ( ) ( )sin , cos ,sec , csc , cotθ θ θ θ θ . 

14. If ( )tan 4θ = , and 0
2
πθ≤ < , find ( ) ( ) ( ) ( ) ( )sin , cos ,sec , csc , cotθ θ θ θ θ . 
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15. Use a calculator to find sine, cosine, and tangent of the following values: 

a. 0.15  b. 4  c. 70°  d. 283°  

 

16. Use a calculator to find sine, cosine, and tangent of the following values: 

a. 0.5  b. 5.2  c. 10°  d. 195°  

 
Simplify each of the following to an expression involving a single trig function with no 
fractions. 
17. ( )csc( ) tant t  

18. ( )cos( )csct t  

19. ( )
( )

sec
csc  

t
t

 

20. ( )
( )

cot
csc

t
t

 

21. ( ) ( )
( )

sec cos
sin
t t

t
−

 

22. ( )
( ) ( )
tan

sec cos
t

t t−
 

23. ( )
( )

1 cot
1 tan

t
t

+
+

 

24. ( )
( )

1 sin
1 csc

t
t

+
+

 

25. 
( ) ( )

( )

2 2

2

sin cos
cos
t t

t
+

    

26. 
( )

( )

2

2

1 sin
sin

t
t

−
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Prove the identities. 

27. 
( )
( ) ( )

2sin
1 cos

1 cos
θ

θ
θ

= −
+

 

28. 
( )

2
2

1tan ( ) 1
cos

t
t

= −  

29. ( ) ( ) ( ) ( )sec cos sin tana a a a− =  

30. 
( )

( )

2
2

2

1 tan
csc ( ) 

tan
b

b
b

+
=  

31. 
( ) ( )
( ) ( ) ( ) ( )

2 2csc sin
cos cot

csc sin
x x

x x
x x
−

=
+

 

32. ( ) ( )
( ) ( ) ( ) ( )sin cos

sin cos
sec csc

θ θ
θ θ

θ θ
−

=
−

 

33. 
( )

( ) ( ) ( )
2

2

csc 1
1 sin

csc csc
α

α
α α

−
= +

−
 

34. ( ) ( ) ( ) ( )( )1 cot cos sec cscx x x x+ = +  

35. ( )
( )

( )
( )

1 cos sin
sin 1 cos

u u
u u

+
=

−
 

36. ( ) ( )
( ) ( )

2
2

1 sin 12sec
cos 1 sin

t
t

t t
−

= +
−

 

37. 
( ) ( )
( ) ( ) ( ) ( )

4 4sin cos
sin cos

sin cos
γ γ

γ γ
γ γ

−
= +

−
 

38. 
( )( ) ( )( )

( ) ( )
1 cos 1 cos

sin
sin
A A

A
A

+ −
=  
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Section 5.5 Right Triangle Trigonometry 
 
In section 5.3 we were introduced to the sine and cosine function as ratios of the sides of 
a triangle drawn inside a circle, and spent the rest of that section discussing the role of 
those functions in finding points on the circle.  In this section, we return to the triangle, 
and explore the applications of the trigonometric functions to right triangles where circles 
may not be involved. 
 
Recall that we defined sine and cosine as 

r
y

=)sin(θ  

r
x

=)cos(θ  

 
Separating the triangle from the circle, we can make equivalent but more general 
definitions of the sine, cosine, and tangent on a right triangle.  On the right triangle, we 
will label the hypotenuse as well as the side opposite the angle and the side adjacent (next 
to) the angle. 
 
 

Right Triangle Relationships 
Given a right triangle with an angle of θ  
 

hypotenuse
opposite)sin( =θ  

hypotenuse
adjacent)cos( =θ  

adjacent
opposite)tan( =θ  

 
 
A common mnemonic for remembering these relationships is SohCahToa, formed from 
the first letters of “Sine is opposite over hypotenuse, Cosine is adjacent over hypotenuse, 
Tangent is opposite over adjacent.” 
 
 
 
 
 
 
 
 

(x, y) 

r 

θ 
y 

x 

θ 

adjacent 

opposite 
hypotenuse 
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Example 1 
Given the triangle shown, find the value for )cos(α . 
 
The side adjacent to the angle is 15, and the 
hypotenuse of the triangle is 17, so 

17
15

hypotenuse
adjacent)cos( ==α  

 
 
When working with general right triangles, the same rules apply regardless of the 
orientation of the triangle.  In fact, we can evaluate the sine and cosine of either of the 
two acute angles in the triangle. 

 
 
Example 2 

Using the triangle shown, evaluate )cos(α , )sin(α , )cos(β , and )sin(β . 
 

5
3

hypotenuse
 oadjacent t)cos( ==
αα  

5
4

hypotenuse
 opposite)sin( ==
αα  

5
4

hypotenuse
 oadjacent t)cos( ==
ββ  

5
3

hypotenuse
 opposite)sin( ==
ββ  

 
 
Try it Now 
1. A right triangle is drawn with angle α  opposite a side with length 33, angle β  

opposite a side with length 56, and hypotenuse 65.  Find the sine and cosine of α  and
β . 

 
 

α  
β  

Adjacent to α 
Opposite β 
 

Hypotenuse 

Adjacent to β 
Opposite α 
 

α  

15 

8 
17 

α  
β  

3 

5 

4 
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You may have noticed that in the above example that )sin()cos( βα =  and 
)sin()cos( αβ = .  This makes sense since the side opposite α is also adjacent to β.  Since 

the three angles in a triangle need to add to π, or 180 degrees, then the other two angles 

must add to 
2
π , or 90 degrees, so απβ −=

2
, and βπα −=

2
.  Since )sin()cos( βα = , 

then 





 −= απα

2
sin)cos( . 

 
 

Cofunction Identities 
The cofunction identities for sine and cosine are: 







 −= θπθ

2
sin)cos(    






 −= θπθ

2
cos)sin(  

 
 
In the previous examples, we evaluated the sine and cosine on triangles where we knew 
all three sides of the triangle.  Right triangle trigonometry becomes powerful when we 
start looking at triangles in which we know an angle but don’t know all the sides. 
 
 
Example 3 

Find the unknown sides of the triangle pictured here. 
 

Since 
hypotenuse

opposite)sin( =θ ,  
b
7)30sin( =° . 

 
From this, we can solve for the side b. 

7)30sin( =°b  

)30sin(
7

°
=b  

 
To obtain a value, we can evaluate the sine and simplify 

14
2

1
7

==b  

 
To find the value for side a, we could use the cosine, or simply apply the Pythagorean 
Theorem: 

222 7 ba =+  
222 147 =+a  

147=a  
 

30° 

a 

7 

b 
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Notice that if we know at least one of the non-right angles of a right triangle and one side, 
we can find the rest of the sides and angles. 
 
 
Try it Now 

2. A right triangle has one angle of 
3
π  and a hypotenuse of 20.  Find the unknown sides 

and angles of the triangle. 
 
 
Example 4 

To find the height of a tree, a person walks to a point 30 feet from the base of the tree, 
and measures the angle from the ground to the top of the tree to be 57 degrees.  Find the 
height of the tree. 
 
We can introduce a variable, h, to represent the height 
of the tree.  The two sides of the triangle that are most 
important to us are the side opposite the angle, the 
height of the tree we are looking for, and the adjacent 
side, the side we are told is 30 feet long. 
 
The trigonometric function which relates the side 
opposite of the angle and the side adjacent to the angle 
is the tangent. 
 

30adjacent
opposite)57tan( h

==°   Solving for h, 

)57tan(30 °=h    Using technology, we can approximate a value 
2.46)57tan(30 ≈°=h  feet 

 
The tree is approximately 46 feet tall. 

 
 
Example 5 

A person standing on the roof of a 100 foot tall building is looking towards a skyscraper 
a few blocks away, wondering how tall it is.  She measures the angle of declination 
from the roof of the building to the base of the skyscraper to be 20 degrees and the 
angle of inclination to the top of the skyscraper to be 42 degrees.   
 
 
 
 
 

57° 

30 feet 
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To approach this problem, it would be 
good to start with a picture.  Although 
we are interested in the height, h, of the 
skyscraper, it can be helpful to also label 
other unknown quantities in the picture – 
in this case the horizontal distance x 
between the buildings and a, the height 
of the skyscraper above the person. 
 
To start solving this problem, notice we 
have two right triangles.  In the top 
triangle, we know one angle is 42 
degrees, but we don’t know any of the sides of the triangle, so we don’t yet know 
enough to work with this triangle.   
 
In the lower right triangle, we know one angle is 20 degrees, and we know the vertical 
height measurement of 100 ft.  Since we know these two pieces of information, we can 
solve for the unknown distance x. 

x
100

adjacent
opposite)20tan( ==°   Solving for x 

100)20tan( =°x  

)20tan(
100

°
=x  

 
Now that we have found the distance x, we know enough information to solve the top 
right triangle. 

)20tan(
100adjacent

opposite)42tan(
°

===°
a

x
a  

100
)20tan()42tan( °

=°
a  

)20tan()42tan(100 °=° a     

a=
°
°

)20tan(
)42tan(100    

   
Approximating a value, 

4.247
)20tan(

)42tan(100
≈

°
°

=a  feet 

 
Adding the height of the first building, we determine that the skyscraper is about 347 
feet tall. 

 

100 ft 

h 
a 

x 42° 

20° 
100 ft 
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Important Topics of This Section 
SOH  CAH  TOA 
Cofunction identities 
Applications with right triangles  

 
 
Try it Now Answers 

1. 33sin( )
65

α =     56cos( )
65

α =    56sin( )
65

β =    
65
33)cos( =β  

 

2.  
20
Adj

hypoteuse
adjacent

3
cos ==






π    so, 10

2
120

3
cos20adjacent =






=






=
π  

   
20

Opp
hypoteuse
Opposite

3
sin ==






π     so,  310

2
320

3
sin20opposite =








=






=
π

 

    Missing angle = 180-90-60 = 30 degrees  or  6
π .
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Section 5.5 Exercises 
 
Note: pictures may not be drawn to scale. 
 
In each of the triangles below, find ( ) ( ) ( ) ( ) ( ) ( )sin ,cos , tan ,sec ,csc ,cotA A A A A A . 
 
 
1.    2.  
 
 
 
 
 
 
In each of the following triangles, solve for the unknown sides and angles. 
3.      4. 

 
 
 
   

 
  
 
5.  6. 

 
 
 
 

      
 
7.  8.  
  
 
 
 
 
9. A 33-ft ladder leans against a building so that the angle between the ground and the 

ladder is 80°.  How high does the ladder reach up the side of the building?  
  
10. A 23-ft ladder leans against a building so that the angle between the ground and the 

ladder is 80°.  How high does the ladder reach up the side of the building?  
  
  

60° 

a 10 

c 
A 

10° 
b 

a 
12 B 

65° 

b 
a 

10 

B 

A 
8 

10 

A 

10 

4 

30° 

7 
c B 

b 

35° 
7 

c B 

b 

62° 

a 10 

c 
A 
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11. The angle of elevation to the top of a building in New York is found to be 9 degrees 
from the ground at a distance of 1 mile from the base of the building. Using this 
information, find the height of the building. 
 

12. The angle of elevation to the top of a building in Seattle is found to be 2 degrees from 
the ground at a distance of 2 miles from the base of the building. Using this 
information, find the height of the building.  
 

13. A radio tower is located 400 feet from a building. From a window in the building, a 
person determines that the angle of elevation to the top of the tower is 36° and that 
the angle of depression to the bottom of the tower is 23°. How tall is the tower? 
 

14. A radio tower is located 325 feet from a building. From a window in the building, a 
person determines that the angle of elevation to the top of the tower is 43° and that 
the angle of depression to the bottom of the tower is 31°. How tall is the tower? 
 

15. A 200 foot tall monument is located in the distance. From a window in a building, a 
person determines that the angle of elevation to the top of the monument is 15° and 
that the angle of depression to the bottom of the tower is 2°. How far is the person 
from the monument? 
 

16. A 400 foot tall monument is located in the distance. From a window in a building, a 
person determines that the angle of elevation to the top of the monument is 18° and 
that the angle of depression to the bottom of the tower is 3°. How far is the person 
from the monument? 
 

17. There is an antenna on the top of a building.  From a location 300 feet from the base 
of the building, the angle of elevation to the top of the building is measured to be 40°.  
From the same location, the angle of elevation to the top of the antenna is measured 
to be 43°.  Find the height of the antenna. 

   
18. There is lightning rod on the top of a building.  From a location 500 feet from the 

base of the building, the angle of elevation to the top of the building is measured to be 
36°.  From the same location, the angle of elevation to the top of the lightning rod is 
measured to be 38°.  Find the height of the lightning rod. 

 
19. Find the length x.     20. Find the length x. 

                 

 

x 

85 

36° 50° 

x 

82 

63° 39° 
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21. Find the length x.     22. Find the length x.   

                       
 
 
23. A plane is flying 2000 feet above sea level 

toward a mountain. The pilot observes the top of 
the mountain to be 18o above the horizontal, then 
immediately flies the plane at an angle of 20o 
above horizontal. The airspeed of the plane is 
100 mph. After 5 minutes, the plane is directly 
above the top of the mountain. How high is the 
plane above the top of the mountain (when it passes over)? What is the height of the 
mountain?  [UW] 

 
 
24. Three airplanes depart SeaTac Airport. A United flight is heading in a direction 50° 

counterclockwise from east, an Alaska flight is heading 115° counterclockwise from 
east and a Delta flight is heading 20° clockwise from east. [UW] 

a. Find the location of the United flight when it is 20 miles north of SeaTac.  
b. Find the location of the Alaska flight when it is 50 miles west of SeaTac.  
c. Find the location of the Delta flight when it is 30 miles east of SeaTac.   

 

 
 
 

 

(a) The flight paths of 
three airplanes 

(b) Modeling the paths of 
each flight 

Alaska United 

Delta 

Alaska 
United 

Delta 

x 

119 

70° 26° 

x 

115 

56° 35° 
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25. The crew of a helicopter needs to 
land temporarily in a forest and spot 
a flat piece of ground (a clearing in 
the forest) as a potential landing site, 
but are uncertain whether it is wide 
enough. They make two 
measurements from A (see picture) 
finding α = 25° and β = 54°. They 
rise vertically 100 feet to B and 
measure γ = 47°. Determine the width of the clearing to the nearest foot.  [UW] 

 
 
26. A Forest Service helicopter needs to determine 

the width of a deep canyon. While hovering, 
they measure the angle γ = 48° at position B 
(see picture), then descend 400 feet to position 
A and make two measurements: α = 13° (the 
measure of ∠EAD), β = 53° (the measure of 
∠CAD).  Determine the width of the canyon 
to the nearest foot.  [UW] 
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Chapter 6:  
Periodic Functions 
In the previous chapter, the trigonometric functions were introduced as ratios of sides of a 
right triangle, and related to points on a circle.  We noticed how the x and y values of the 
points did not change with repeated revolutions around the circle by finding coterminal 
angles. In this chapter, we will take a closer look at the important characteristics and 
applications of these types of functions, and begin solving equations involving them. 
 

Section 6.1 Sinusoidal Graphs .................................................................................... 395 
Section 6.2 Graphs of the Other Trig Functions ......................................................... 412 
Section 6.3 Inverse Trig Functions ............................................................................. 422 
Section 6.4 Solving Trig Equations ............................................................................ 430 
Section 6.5 Modeling with Trigonometric Equations ................................................. 441 

 

Section 6.1 Sinusoidal Graphs 
 
The London Eye1 is a huge Ferris wheel 135 meters 
(394 feet) tall in London, England, which completes one 
rotation every 30 minutes.  When we look at the 
behavior of this Ferris wheel it is clear that it completes 
1 cycle, or 1 revolution, and then repeats this revolution 
over and over again.   
 
This is an example of a periodic function, because the 
Ferris wheel repeats its revolution or one cycle every 30 
minutes, and so we say it has a period of 30 minutes. 
 
In this section, we will work to sketch a graph of a 
rider’s height above the ground over time and express 
this height as a function of time.   
 
 

Periodic Functions 
A periodic function is a function for which a specific horizontal shift, P, results in the 
original function: )()( xfPxf =+  for all values of x.   When this occurs we call the 
smallest such horizontal shift with P > 0 the period of the function.  

 
 

                                                 
1 London Eye photo by authors, 2010, CC-BY 
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You might immediately guess that there is a connection here to finding points on a circle, 
since the height above ground would correspond to the y value of a point on the circle. 
We can determine the y value by using the sine function.  To get a better sense of this 
function’s behavior, we can create a table of values we know, and use them to sketch a 
graph of the sine and cosine functions.  
 
Listing some of the values for sine and cosine on a unit circle, 
θ 0 

6
π

 
4
π

 
3
π

 
2
π

 
3

2π
 

4
3π

 
6

5π
 

π  

cos 1 

2
3  

2
2  2

1
 

0 
2
1

−  
2
2

−  
2
3

−  
-1 

sin 0 
2
1

 
2
2  

2
3  

1 

2
3  

2
2  2

1
 

0 

 
Here you can see how for each angle, we use the y value of the point on the circle to 
determine the output value of the sine function. 

 
Plotting more points gives the full shape of the sine and cosine functions. 
 

 
 

6
π  

4
π  

3
π  

2
π  

θ 

f(θ) = sin(θ) 
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Notice how the sine values are positive between 0 and π, which correspond to the values 
of sine in quadrants 1 and 2 on the unit circle, and the sine values are negative between π 
and 2π, corresponding to quadrants 3 and 4. 
 

 
 
Like the sine function we can track the value of the cosine function through the 4 
quadrants of the unit circle as we place it on a graph. 
 
Both of these functions are defined for all real numbers, since we can evaluate the sine 
and cosine of any angle.  By thinking of sine and cosine as coordinates of points on a unit 
circle, it becomes clear that the range of both functions must be the interval ]1,1[− . 
 
 

Domain and Range of Sine and Cosine 
The domain of sine and cosine is all real numbers, ( , )−∞ ∞ . 
The range of sine and cosine is the interval [-1, 1]. 

 
 
Both these graphs are called sinusoidal graphs. 
 
In both graphs, the shape of the graph begins repeating after 2π.  Indeed, since any 
coterminal angles will have the same sine and cosine values, we could conclude that 

)sin()2sin( θπθ =+  and )cos()2cos( θπθ =+ . 
 
In other words, if you were to shift either graph horizontally by 2π, the resulting shape 
would be identical to the original function.  Sinusoidal functions are a specific type of 
periodic function. 
 
 

Period of Sine and Cosine 
The periods of the sine and cosine functions are both 2π. 
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Looking at these functions on a domain centered at the vertical axis helps reveal 
symmetries. 
 
sine     cosine 

          
 
The sine function is symmetric about the origin, the same symmetry the cubic function 
has, making it an odd function. The cosine function is clearly symmetric about the y axis, 
the same symmetry as the quadratic function, making it an even function. 
 
 

Negative Angle Identities 
The sine is an odd function, symmetric about the origin, so )sin()sin( θθ −=− . 

The cosine is an even function, symmetric about the y-axis, so )cos()cos( θθ =− . 
 
 
These identities can be used, among other purposes, for helping with simplification and 
proving identities. 

You may recall the cofunction identity from last chapter, 





 −= θπθ

2
cos)sin( .   

 
Graphically, this tells us that the sine and cosine graphs are horizontal transformations of 
each other.  We can prove this by using the cofunction identity and the negative angle 
identity for cosine. 
 







 −=














 −−=






 +−=






 −=

2
cos

2
cos

2
cos

2
cos)sin( πθπθπθθπθ    

 
Now we can clearly see that if we horizontally shift the cosine function to the right by π/2 
we get the sine function. 
 
Remember this shift is not representing the period of the function.  It only shows that the 
cosine and sine function are transformations of each other. 
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Example 1 

Simplify 
)tan(
)sin(

θ
θ− . 

 
We start by using the negative angle identity for sine. 

)tan(
)sin(

θ
θ−   Rewriting the tangent 

)cos(
)sin(

)sin(

θ
θ

θ−  Inverting and multiplying 

)sin(
)cos()sin(

θ
θθ ⋅−  Simplifying we get 

)cos(θ−  
 
 
Transforming Sine and Cosine 
 
 
Example 2 

A point rotates around a circle of radius 3.  
Sketch a graph of the y coordinate of the 
point. 
 
Recall that for a point on a circle of radius 
r, the y coordinate of the point is 

)sin(θry = , so in this case, we get the 
equation )sin(3)( θθ =y .   
 
The constant 3 causes a vertical stretch of 
the y values of the function by a factor of 3.   
 
Notice that the period of the function does not change. 

 
 
Since the outputs of the graph will now oscillate between -3 and 3, we say that the 
amplitude of the sine wave is 3. 
 
 
Try it Now 
1. What is the amplitude of the function )cos(7)( θθ =f ?  Sketch a graph of this 

function. 
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Example 3 
A circle with radius 3 feet is mounted with its center 4 
feet off the ground.  The point closest to the ground is 
labeled P.  Sketch a graph of the height above ground of 
the point P as the circle is rotated, then find a function 
that gives the height in terms of the angle of rotation. 
 
Sketching the height, we note that it will start 1 foot 
above the ground, then increase up to 7 feet above the 
ground, and continue to oscillate 3 feet above and 
below the center value of 4 feet. 
 
Although we could use a transformation of either the 
sine or cosine function, we start by looking for 
characteristics that would make one function easier to 
use than the other.  
 
We decide to use a cosine function because it starts at 
the highest or lowest value, while a sine function starts 
at the middle value.  A standard cosine starts at the 
highest value, and this graph starts at the lowest value, 
so we need to incorporate a vertical reflection.   
 
Second, we see that the graph oscillates 3 above and below the center, while a basic 
cosine has an amplitude of one, so this graph has been vertically stretched by 3, as in 
the last example. 
 
Finally, to move the center of the circle up to a height of 4, the graph has been vertically 
shifted up by 4.  Putting these transformations together, 
 

4)cos(3)( +−= θθh  
 
 

Midline 
The center value of a sinusoidal function, the value that the function oscillates above 
and below, is called the midline of the function, corresponding to a vertical shift. 
 
The function kf += )cos()( θθ  has midline at y = k. 

 
 
Try it Now 
2. What is the midline of the function 4)cos(3)( −= θθf ?  Sketch a graph of the 

function. 
 

3 ft 

4 ft 

P 
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To answer the Ferris wheel problem at the beginning of the section, we need to be able to 
express our sine and cosine functions at inputs of time.  To do so, we will utilize 
composition.  Since the sine function takes an input of an angle, we will look for a 
function that takes time as an input and outputs an angle.  If we can find a suitable )(tθ
function, then we can compose this with our )cos()( θθ =f  function to obtain a sinusoidal 
function of time: ))(cos()( ttf θ= . 
 
 
Example 4 

A point completes 1 revolution every 2 minutes around a circle of radius 5.  Find the x 
coordinate of the point as a function of time, if it starts at (5, 0). 
 
Normally, we would express the x coordinate of a point on a unit circle using

)cos(θrx = , here we write the function )cos(5)( θθ =x . 
 
The rotation rate of 1 revolution every 2 minutes is an 
angular velocity.  We can use this rate to find a formula for 
the angle as a function of time.  The point begins at an 
angle of 0.  Since the point rotates 1 revolution = 2π 
radians every 2 minutes, it rotates π radians every minute.  
After t minutes, it will have rotated: 

tt πθ =)(  radians 
 
Composing this with the cosine function, we obtain a 
function of time. 

)cos(5))(cos(5)( tttx πθ ==  
 
 
Notice that this composition has the effect of a horizontal compression, changing the 
period of the function. 
 
To see how the period relates to the stretch or compression coefficient B in the equation 

( )Bttf sin)( = , note that the period will be the time it takes to complete one full 
revolution of a circle.  If a point takes P minutes to complete 1 revolution, then the 

angular velocity is 
minutes
radians2

P
π .  Then t

P
t πθ 2)( = .  Composing with a sine function, 







== t

P
ttf πθ 2sin))(sin()(  

 
From this, we can determine the relationship between the coefficient B and the period:  

P
B π2
= .   
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Notice that the stretch or compression coefficient B is a ratio of the “normal period of a 
sinusoidal function” to the “new period.”   If we know the stretch or compression 

coefficient B, we can solve for the “new period”: 
B

P π2
= .   

 
Summarizing our transformations so far: 
 
 

Transformations of Sine and Cosine 

Given an equation in the form ( ) kBtAtf += sin)(  or ( ) kBtAtf += cos)(  
A is the vertical stretch, and is the amplitude of the function.  

B is the horizontal stretch/compression, and is related to the period, P, by 
B

P π2
= . 

k is the vertical shift and determines the midline of the function. 
 

 
 
 
Example 5 

What is the period of the function 





= ttf

6
sin)( π ? 

 

Using the relationship above, the stretch/compression factor is 
6
π

=B , so the period 

will be 1262

6

22
=⋅===

π
π

π
ππ

B
P . 

 
 
While it is common to compose sine or cosine with functions involving time, the 
composition can be done so that the input represents any reasonable quantity. 
 
 

y = k 
A 

A 

P 

P 
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Example 6 
A bicycle wheel with radius 14 inches has the bottom-most point on the wheel marked 
in red.  The wheel then begins rolling down the street.  Write a formula for the height 
above ground of the red point after the bicycle has travelled x inches. 
 
The height of the point begins at the lowest value, 0, 
increases to the highest value of 28 inches, and 
continues to oscillate above and below a center height 
of 14 inches.  In terms of the angle of rotation, θ: 

14)cos(14)( +−= θθh  
 
In this case, x is representing a linear distance the 
wheel has travelled, corresponding to an arclength 
along the circle.  Since arclength and angle can be 
related by θrs = , in this case we can write θ14=x , 
which allows us to express the angle in terms of x:  

14
)( xx =θ  

 
Composing this with our cosine-based function from above, 

14
14
1cos1414

14
cos14))(()( +






−=+






−== xxxhxh θ  

 

The period of this function would be ππππ 28142

14
1

22
=⋅===

B
P , the circumference 

of the circle.  This makes sense – the wheel completes one full revolution after the 
bicycle has travelled a distance equivalent to the circumference of the wheel. 

 
 
Example 7 

Determine the midline, amplitude, and period of the function ( ) 12sin3)( += ttf . 
 
The amplitude is 3 

The period is πππ
===

2
22

B
P  

The midline is at 1y =  
 
 
Amplitude, midline, and period, when combined with vertical flips, allow us to write 
equations for a variety of sinusoidal situations. 
 
 
 

θ 

Starting 

Rotated by θ 

14in 

x 



404  Chapter 6 
 

Try it Now 
3. If a sinusoidal function starts on the midline at point (0,3), has an amplitude of 2, and 

a period of 4, write a formula for the function 
 
 
Example 8 

Find a formula for the sinusoidal function 
graphed here. 
 
The graph oscillates from a low of -1 to a 
high of 3, putting the midline at y = 1, 
halfway between. 
 
The amplitude will be 2, the distance from 
the midline to the highest value (or lowest 
value) of the graph. 
 
The period of the graph is 8.  We can measure this from the first peak at x = -2 to the 
second at x = 6.  Since the period is 8, the stretch/compression factor we will use will be 

48
22 πππ

===
P

B  

 
At x = 0, the graph is at the midline value, which tells us the graph can most easily be 
represented as a sine function.  Since the graph then decreases, this must be a vertical 
reflection of the sine function.  Putting this all together, 

 1
4

sin2)( +





−= ttf π  

 
 
With these transformations, we are ready to answer the Ferris wheel problem from the 
beginning of the section. 
 
 
Example 9 

The London Eye is a huge Ferris wheel in London, England, which completes one 
rotation every 30 minutes.  The diameter of the wheel is 120 meters, but the passenger 
capsules sit outside the wheel.  Suppose the diameter at the capsules is 130 meters, and 
riders board from a platform 5 meters above the ground.  Express a rider’s height above 
ground as a function of time in minutes. 
 
It can often help to sketch a graph of the situation before trying to find the equation. 
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With a diameter of 130 meters, the wheel has a 
radius of 65 meters.  The height will oscillate with 
amplitude of 65 meters above and below the 
center. 
 
Passengers board 5 meters above ground level, so 
the center of the wheel must be located 65 + 5 = 
70 meters above ground level.  The midline of the 
oscillation will be at 70 meters. 
 
The wheel takes 30 minutes to complete 1 
revolution, so the height will oscillate with period 
of 30 minutes. 
 
Lastly, since the rider boards at the lowest point, 
the height will start at the smallest value and 
increase, following the shape of a flipped cosine curve. 
Putting these together: 
Amplitude: 65 
Midline: 70 

Period: 30, so 
1530

2 ππ
==B   

Shape: negative cosine 
 
An equation for the rider’s height would be 

( ) 65cos 70
15

h t tπ = − + 
 

 

 
 
Try it Now 
4. The Ferris wheel at the Puyallup Fair2 has a diameter of about 70 

feet and takes 3 minutes to complete a full rotation.  Passengers 
board from a platform 10 feet above the ground.  Write an 
equation for a rider’s height above ground over time.  

 
 
While these transformations are sufficient to represent many situations, occasionally we 
encounter a sinusoidal function that does not have a vertical intercept at the lowest point, 
highest point, or midline.  In these cases, we need to use horizontal shifts.  Since we are 
combining horizontal shifts with horizontal stretches, we need to be careful.  Recall that 
when the inside of the function is factored, it reveals the horizontal shift. 
 
 

                                                 
2 Photo by photogirl7.1, http://www.flickr.com/photos/kitkaphotogirl/432886205/sizes/z/, CC-BY 
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Horizontal Shifts of Sine and Cosine 

Given an equation in the form ( ) khtBAtf +−= )(sin)(  or ( ) khtBAtf +−= )(cos)(  
h is the horizontal shift of the function 

 
 
Example 10 

Sketch a graph of 





 −=

44
sin3)( ππ ttf . 

 
To reveal the horizontal shift, we first need to factor inside the function:  







 −= )1(

4
sin3)( ttf π  

 
This graph will have the shape of a sine function, starting at the midline and increasing, 

with an amplitude of 3.  The period of the graph will be 842

4

22
=⋅===

π
π

π
ππ

B
P .  

Finally, the graph will be shifted to the right by 1.   

 
 
 
In some physics and mathematics books, you will hear the horizontal shift referred to as 
phase shift.  In other physics and mathematics books, they would say the phase shift of 

the equation above is 
4
π , the value in the unfactored form.  Because of this ambiguity, we 

will not use the term phase shift any further, and will only talk about the horizontal shift. 
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Example 11 
Find a formula for the function graphed here. 
 
With highest value at 1 and lowest value at -5, the 
midline will be halfway between at -2.   
 
The distance from the midline to the highest or 
lowest value gives an amplitude of 3. 
 
The period of the graph is 6, which can be 
measured from the peak at x = 1 to the next peak at 
x = 7, or from the distance between the lowest 

points.  This gives 
36

22 πππ
===

P
B . 

 
For the shape and shift, we have more than one option.  We could either write this as: 
 A cosine shifted 1 to the right 
 A negative cosine shifted 2 to the left 
 A sine shifted ½ to the left 
 A negative sine shifted 2.5 to the right 
 
While any of these would be fine, the cosine shifts are easier to work with than the sine 
shifts in this case, because they involve integer values.  Writing these: 

2)1(
3

cos3)( −





 −= xxy π    or 

2)2(
3

cos3)( −





 +−= xxy π  

 
Again, these functions are equivalent, so both yield the same graph. 

 
 
Try it Now 
5. Write a formula for the function graphed here. 
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Important Topics of This Section 
Periodic functions 
Sine and cosine function from the unit circle 
Domain and range of sine and cosine functions 
Sinusoidal functions 
Negative angle identity 
Simplifying expressions 
Transformations 
 Amplitude 
 Midline 
 Period 
 Horizontal shifts 

 
 
Try it Now Answers 
1. 7 

2. -4 

3. ( ) 2sin 3
2

f x xπ = + 
 

 

4. 2( ) 35cos 45
3

h t tπ = − + 
 

 

5. Two possibilities: ( ) 4cos ( 3.5) 4
5

f x xπ = − + 
 

 or ( ) 4sin ( 1) 4
5

f x xπ = − + 
 
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Section 6.1 Exercises 
 
1. Sketch a graph of ( ) ( )3sinf x x= − . 

2. Sketch a graph of ( ) ( )4sinf x x= . 

3. Sketch a graph of ( ) ( )2cosf x x= . 

4.  Sketch a graph of ( ) ( )4cosf x x= − . 
 
For the graphs below, determine the amplitude, midline, and period, then find a formula 
for the function. 

5.    6.   

7.    8.  

9.   10.   
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For each of the following equations, find the amplitude, period, horizontal shift, and 
midline. 
 
11. 3sin(8( 4)) 5y x= + +  
 

12. 4sin ( 3) 7
2

y xπ = − + 
 

 

 
13. 2sin(3 21) 4y x= − +  
 
14. 5sin(5 20) 2y x= + −  
 

15. sin 3
6

y xπ π = + − 
 

 

 

16. 7 78sin 6
6 2

y xπ π = + + 
 

 

 
Find a formula for each of the functions graphed below.   

17.  
       

18.  
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19.  

20.  
  
21. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the temperature is 50 degrees at midnight and the high and low 
temperature during the day are 57 and 43 degrees, respectively. Assuming t is the 
number of hours since midnight, find a function for the temperature, D, in terms of t. 
 

22. Outside temperature over the course of a day can be modeled as a sinusoidal function. 
Suppose you know the temperature is 68 degrees at midnight and the high and low 
temperature during the day are 80 and 56 degrees, respectively. Assuming t is the 
number of hours since midnight, find a function for the temperature, D, in terms of t. 

 
23. A Ferris wheel is 25 meters in diameter and boarded from a platform that is 1 meters 

above the ground. The six o'clock position on the Ferris wheel is level with the 
loading platform. The wheel completes 1 full revolution in 10 minutes. The function 

( )h t  gives your height in meters above the ground t minutes after the wheel begins to 
turn.   

a. Find the amplitude, midline, and period of ( )h t . 

b. Find a formula for the height function ( )h t . 
c. How high are you off the ground after 5 minutes? 

 
24. A Ferris wheel is 35 meters in diameter and boarded from a platform that is 3 meters 

above the ground. The six o'clock position on the Ferris wheel is level with the 
loading platform. The wheel completes 1 full revolution in 8 minutes. The function 

( )h t  gives your height in meters above the ground t minutes after the wheel begins to 
turn.   

a. Find the amplitude, midline, and period of ( )h t . 

b. Find a formula for the height function ( )h t . 
c. How high are you off the ground after 4 minutes? 
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Section 6.2 Graphs of the Other Trig Functions 
 
In this section, we will explore the graphs of the other four trigonometric functions.  
We’ll begin with the tangent function.  Recall that in Chapter 5 we defined tangent as y/x 
or sine/cosine, so you can think of the tangent as the slope of a line through the origin 
making the given angle with the positive x axis.   
 
At an angle of 0, the line would be horizontal with a slope of zero.  As the angle increases 
towards π/2, the slope increases more and more.  At an angle of π/2, the line would be 
vertical and the slope would be undefined.  
Immediately past π/2, the line would have a steep 
negative slope, giving a large negative tangent value.  
There is a break in the function at π/2, where the 
tangent value jumps from large positive to large 
negative.   
 
We can use these ideas along with the definition of 
tangent to sketch a graph.  Since tangent is defined as 
sine/cosine, we can determine that tangent will be 
zero when sine is zero:  at -π, 0, π, and so on.  
Likewise, tangent will be undefined when cosine is 
zero:  at -π/2, π/2, and so on. 
 
The tangent is positive from 0 to π/2 and π to 3π/2, corresponding to quadrants 1 and 3 of 
the unit circle. 
 
Using technology, we can obtain a graph of tangent on a standard grid. 
 
Notice that the graph appears to repeat itself.  For any 
angle on the circle, there is a second angle with the 
same slope and tangent value halfway around the 
circle, so the graph repeats itself with a period of π; 
we can see one continuous cycle from - π/2 to π/2, 
before it jumps and repeats itself.  
  
The graph has vertical asymptotes and the tangent is 
undefined wherever a line at that angle would be 
vertical: at π/2, 3π/2, and so on.  While the domain of 
the function is limited in this way, the range of the 
function is all real numbers. 
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Features of the Graph of Tangent 
The graph of the tangent function )tan()( θθ =m  
The period of the tangent function is π 

The domain of the tangent function is ππθ k+≠
2

, where k is an integer 

The range of the tangent function is all real numbers, ( , )−∞ ∞  
 
 
With the tangent function, like the sine and cosine functions, horizontal 
stretches/compressions are distinct from vertical stretches/compressions.  The horizontal 
stretch can typically be determined from the period of the graph.  With tangent graphs, it 
is often necessary to determine a vertical stretch using a point on the graph. 
 
 
Example 1 

Find a formula for the function graphed here. 
 
The graph has the shape of a tangent 
function, however the period appears to be 8. 
We can see one full continuous cycle from -4 
to 4, suggesting a horizontal stretch.  To 
stretch π to 8, the input values would have to 

be multiplied by
π
8 .  Since the constant k in 

( )( ) tanf a kθ θ= is the reciprocal of the 

horizontal stretch 
π
8 , the equation must have 

form 







= θπθ

8
tan)( af . 

 
We can also think of this the same way we did with sine and cosine.  The period of the 
tangent function is π  but it has been transformed and now it is 8; remember the ratio of 

the “normal period” to the “new period” is 
8
π and so this becomes the value on the 

inside of the function that tells us how it was horizontally stretched. 
 
To find the vertical stretch a, we can use a point on the graph.  Using the point (2, 2) 







=






 ⋅=

4
tan2

8
tan2 ππ aa .   Since 1

4
tan =






π ,   a = 2. 

This function would have a formula 





= θπθ

8
tan2)(f . 
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Try it Now 

1. Sketch a graph of 





= θπθ

6
tan3)(f . 

 
 

For the graph of secant, we remember the reciprocal identity where 
)cos(

1)sec(
θ

θ = .   

Notice that the function is undefined when the cosine is 0, leading to a vertical asymptote 
in the graph at π/2, 3π/2, etc.  Since the cosine is always no more than one in absolute 
value, the secant, being the reciprocal, will always be no less than one in absolute value.  
Using technology, we can generate the graph.  The graph of the cosine is shown dashed 
so you can see the relationship. 
 
 

)cos(
1)sec()(
θ

θθ ==f  

 
 
 
 
 
 
 
 
 

The graph of cosecant is similar.  In fact, since 





 −= θπθ

2
cos)sin( , it follows that 







 −= θπθ

2
sec)csc( , suggesting the cosecant graph is a horizontal shift of the secant 

graph.  This graph will be undefined where sine is 0.  Recall from the unit circle that this 
occurs at 0, π, 2π, etc.  The graph of sine is shown dashed along with the graph of the 
cosecant. 
 
 

)sin(
1)csc()(
θ

θθ ==f  
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Features of the Graph of Secant and Cosecant 
The secant and cosecant graphs have period 2π like the sine and cosine functions. 

Secant has domain ππθ k+≠
2

, where k is an integer 

Cosecant has domain πθ k≠ , where k is an integer 
Both secant and cosecant have range of ),1[]1,( ∞∪−−∞  

 
 
Example 2 

Sketch a graph of 1
2

csc2)( +





= θπθf .  What is the domain and range of this 

function? 
 
The basic cosecant graph has vertical asymptotes at the integer multiples of π.  Because 

of the factor 
2
π  inside the cosecant, the graph will be compressed by 

π
2 , so the vertical 

asymptotes will be compressed to kk 22
=⋅= π

π
θ .  In other words, the graph will have 

vertical asymptotes at the integer multiples of 2, and the domain will correspondingly 
be k2≠θ , where k is an integer. 
 
The basic sine graph has a range of [-1, 1].  The vertical stretch by 2 will stretch this to 
[-2, 2], and the vertical shift up 1 will shift the range of this function to [-1, 3]. 
 
The basic cosecant graph has a range of ),1[]1,( ∞∪−−∞ . The vertical stretch by 2 will 
stretch this to ),2[]2,( ∞∪−−∞ , and the vertical shift up 1 will shift the range of this 
function to ),3[]1,( ∞∪−−∞ . 
 
The resulting graph is shown to the right.  
 
Notice how the graph of the transformed 
cosecant relates to the graph of 

1
2

sin2)( +





= θπθf  shown dashed. 
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Try it Now 

2. Given the graph of 1
2

cos2)( +





= θπθf  shown, sketch the  

graph of  1
2

sec2)( +





= θπθg  on the same axes. 

 
  
 

 
Finally, we’ll look at the graph of cotangent.  Based on its definition as the ratio of cosine 
to sine, it will be undefined when the sine is zero:  at at 0, π, 2π, etc.  The resulting graph 
is similar to that of the tangent.  In fact, it is a horizontal flip and shift of the tangent 
function, as we’ll see shortly in the next example. 
 

 
 
 

Features of the Graph of Cotangent 
The cotangent graph has period π 
Cotangent has domain πθ k≠ , where k is an integer 
Cotangent has range of all real numbers, ( , )−∞ ∞  

 
 
In Section 6.1 we determined that the sine function was an odd function and the cosine 
was an even function by observing the graph and establishing the negative angle 
identities for cosine and sine.  Similarly, you may notice from its graph that the tangent 
function appears to be odd.  We can verify this using the negative angle identities for sine 
and cosine: 

( ) ( )
( )

( )
( ) ( )θ
θ
θ

θ
θθ tan

cos
sin

cos
sintan −=

−
=

−
−

=−  

 
The secant, like the cosine it is based on, is an even function, while the cosecant, like the 
sine, is an odd function. 
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Negative Angle Identities Tangent, Cotangent, Secant and Cosecant 

( ) ( )θθ tantan −=−   ( ) ( )θθ cotcot −=−  
 

( ) ( )θθ secsec =−   ( ) ( )θθ csccsc −=−  
 
 
Example 3 

Prove that ( ) 





 −−=

2
cottan πθθ  

 
( )θtan    Using the definition of tangent 
( )
( )θ
θ

cos
sin

=    Using the cofunction identities 







 −







 −

=
θπ

θπ

2
sin

2
cos

  Using the definition of cotangent 







 −= θπ

2
cot   Factoring a negative from the inside 















 −−=

2
cot πθ   Using the negative angle identity for cot 







 −−=

2
cot πθ  

 
 

Important Topics of This Section 
The tangent and cotangent functions 
 Period 
 Domain 
 Range 
The secant and cosecant functions 
 Period 
 Domain 
 Range 
Transformations  
Negative Angle identities 
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Try it Now Answers 
 

1.  
 
 

2.  
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Section 6.2 Exercises 
 
Match each trigonometric function with one of the graphs. 
1. ( ) ( )tanf x x=   2. ( ) ( ) sec xxf =  

3. ( ) csc( )f x x=   4. ( ) ( )cotf x x=  

  I      II  

III    IV  

 
Find the period and horizontal shift of each of the following functions. 
5. ( ) ( )2 tan 4 32f x x= −  
6. ( ) ( )3tan 6 42g x x= +  

7. ( ) ( )2sec 1
4

h x xπ = + 
 

 

8. ( ) 3sec 2
2

k x x π  = +  
  

  

9. ( ) 6csc
3

m x xπ π = + 
 

 

10. ( ) 5 204csc
3 3

n x xπ π = − 
 
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11. Sketch a graph of #7 above. 
12. Sketch a graph of #8 above. 
13. Sketch a graph of #9 above. 
14. Sketch a graph of #10 above. 
 

15. Sketch a graph of ( ) tan
2

j x xπ =  
 

. 

16. Sketch a graph of ( ) 2 tan
2

p t t π = − 
 

. 

 
Find a formula for each function graphed below. 
  

17. 18.  
 
 

19. 20.  
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21. If tan 1.5x = − , find ( )tan x− . 
22. If tan 3x = , find ( )tan x− . 
23. If sec 2x = , find ( )sec x− . 
24. If sec 4x = − , find ( )sec x− . 
25. If csc 5x = − , find ( )csc x− . 
26. If csc 2x = , find ( )csc x− . 
 
Simplify each of the following expressions completely. 
27. ( ) ( ) ( )cot cos sinx x x− − + −  
28. ( ) ( ) ( )cos tan sinx x x− + − −
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Section 6.3 Inverse Trig Functions 
 
In previous sections, we have evaluated the trigonometric functions at various angles, but 
at times we need to know what angle would yield a specific sine, cosine, or tangent value.  
For this, we need inverse functions.  Recall that for a one-to-one function, if baf =)( , 
then an inverse function would satisfy abf =− )(1 . 
 
You probably are already recognizing an issue – that the sine, cosine, and tangent 
functions are not one-to-one functions.  To define an inverse of these functions, we will 
need to restrict the domain of these functions to yield a new function that is one-to-one.  
We choose a domain for each function that includes the angle zero. 
 

Sine, limited to 



−

2
,

2
ππ

 Cosine, limited to [ ]π,0  Tangent, limited to ,
2 2
π π − 

 
 

     
 
On these restricted domains, we can define the inverse sine, inverse cosine, and inverse 
tangent functions. 
 
 

Inverse Sine, Cosine, and Tangent Functions 

For angles in the interval 



−

2
,

2
ππ

, if ( ) a=θsin , then ( ) θ=− a1sin  

For angles in the interval [ ]π,0 , if ( ) a=θcos , then ( ) θ=− a1cos  

For angles in the interval 





−

2
,

2
ππ

, if ( ) a=θtan , then ( ) θ=− a1tan  

 

( )1sin x−  has domain [-1, 1] and range 



−

2
,

2
ππ

 

( )1cos x−  has domain [-1, 1] and range [ ]π,0  

( )1tan x−  has domain of all real numbers and range 





−

2
,

2
ππ
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The ( )1sin x−  is sometimes called the arcsine function, and notated ( )aarcsin .  
The ( )1cos x−  is sometimes called the arccosine function, and notated ( )aarccos .  
The ( )1tan x−  is sometimes called the arctangent function, and notated ( )aarctan .  
 
The graphs of the inverse functions are shown here: 
 

( )1sin x−    ( )1cos x−    ( )1tan x−  

                       
 
Notice that the output of each of these inverse functions is an angle.   
 
 
Example 1 

Evaluate 

a)  





−

2
1sin 1   b) 








−−

2
2sin 1  c) 








−−

2
3cos 1  d) ( )1tan 1−  

 

a) Evaluating 





−

2
1sin 1  is the same as asking what angle would have a sine value of 

2
1 .  

In other words, what angle θ would satisfy ( )
2
1sin =θ ?   

There are multiple angles that would satisfy this relationship, such as 
6
π  and 

6
5π  , but 

we know we need the angle in the range of ( )1sin x− , the interval 



−

2
,

2
ππ

, so the 

answer will be 
62

1sin 1 π
=






− .   

 
Remember that the inverse is a function so for each input, we will get exactly one 
output. 
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b) Evaluating 







−−

2
2sin 1 , we know that 

4
5π  and 

4
7π  both have a sine value of 

2
2

− , but neither is in the interval 



−

2
,

2
ππ

.  For that, we need the negative angle 

coterminal with 
4

7π .  
42

2sin 1 π
−=








−− . 

 

c) Evaluating 







−−

2
3cos 1 , we are looking for an angle in the interval [ ]π,0  with a 

cosine value of 
2
3

− .  The angle that satisfies this is 
6

5
2
3cos 1 π

=







−− . 

 

d) Evaluating ( )1tan 1− , we are looking for an angle in the interval 





−

2
,

2
ππ

 with a 

tangent value of 1.  The correct angle is ( )
4

1tan 1 π
=− . 

 
 
Try It Now 
1. Evaluate  

a) ( )1sin 1 −−   b) ( )1tan 1 −−   c) ( )1cos 1 −−   d) 





−

2
1cos 1  

 
 
Example 2 

Evaluate ( )97.0sin 1−  using your calculator. 
 
Since the output of the inverse function is an angle, your calculator will give you a 
degree value if in degree mode, and a radian value if in radian mode. 
 
In radian mode, 1sin (0.97) 1.3252− ≈  In degree mode, ( )1sin 0.97 75.93− ≈ °  

 
 
Try it Now 
2. Evaluate ( )4.0cos 1 −−  using your calculator. 
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In Section 5.5, we worked with trigonometry on a right triangle to solve for the sides of a 
triangle given one side and an additional angle.  Using the inverse trig functions, we can 
solve for the angles of a right triangle given two sides. 
 
 
Example 3 

Solve the triangle for the angle θ. 
 
Since we know the hypotenuse and the side adjacent to 
the angle, it makes sense for us to use the cosine function. 
 

( )
12
9cos =θ   Using the definition of the inverse, 







= −

12
9cos 1θ  Evaluating 

7227.0≈θ , or about 41.4096° 
 
 
There are times when we need to compose a trigonometric function with an inverse 
trigonometric function.  In these cases, we can find exact values for the resulting 
expressions 
 
 
Example 4 

Evaluate 













−

6
13cossin 1 π .  

 
a) Here, we can directly evaluate the inside of the composition.   

2
3

6
13cos =






 π  

 
Now, we can evaluate the inverse function as we did earlier. 

32
3sin 1 π

=






−  

 
 
Try it Now 

3. Evaluate 













−−

4
11sincos 1 π . 

 
 
 

12 

9 
θ 
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Example 5 

Find an exact value for 













−

5
4cossin 1 . 

 

Beginning with the inside, we can say there is some angle so 





= −

5
4cos 1θ , which 

means ( )
5
4cos =θ , and we are looking for ( )θsin .  We can use the Pythagorean identity 

to do this.  
  

( ) ( ) 1cossin 22 =+ θθ   Using our known value for cosine 

( ) 1
5
4sin

2
2 =






+θ    Solving for sine 

( )
25
161sin 2 −=θ  

( )
5
3

25
9sin ±=±=θ  

 
Since we know that the inverse cosine always gives an angle on the interval [ ]π,0 , we 

know that the sine of that angle must be positive, so 1 4 3sin cos sin( )
5 5

θ−   = =    
 

 
 
Example 6 

Find an exact value for 













−

4
7tansin 1 . 

 
While we could use a similar technique as in the last example, we 
will demonstrate a different technique here.  From the inside, we 

know there is an angle so ( )
4
7tan =θ .  We can envision this as the 

opposite and adjacent sides on a right triangle. 
 
Using the Pythagorean Theorem, we can find the hypotenuse of 
this triangle: 

222 74 hypotenuse=+  
65=hypotenuse  

 
Now, we can represent the sine of the angle as opposite side divided by hypotenuse. 

7 

4 
θ 
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( )
65
7sin =θ  

 
This gives us our desired composition 

1 7 7sin tan sin( )
4 65

θ−   = =    
. 

 
 
Try it Now  

4. Evaluate 













−

9
7sincos 1 . 

 
 
We can also find compositions involving algebraic expressions 
 
 
Example 7 

Find a simplified expression for 













−

3
sincos 1 x , for 33 ≤≤− x . 

 

We know there is an angle θ so that ( )
3

sin x
=θ .  Using the Pythagorean Theorem, 

( ) ( ) 1cossin 22 =+ θθ   Using our known expression for sine 

( ) 1cos
3

2
2

=+





 θx    Solving for cosine 

( )
9

1cos
2

2 x
−=θ  

( )
3

9
9

9cos
22 xx −

±=
−

±=θ  

Since we know that the inverse sine must give an angle on the interval 



−

2
,

2
ππ

, we 

can deduce that the cosine of that angle must be positive.  This gives us 
 

3
9

3
sincos

2
1 xx −

=













−  
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Try it Now 

5. Find a simplified expression for ( )( )x4tansin 1− , for 
4
1

4
1

≤≤− x . 

 
 

Important Topics of This Section 
Inverse trig functions:  arcsine, arccosine and arctangent 
Domain restrictions 
Evaluating inverses using unit circle values and the calculator 
Simplifying numerical expressions involving the inverse trig functions 
Simplifying algebraic expressions involving the inverse trig functions 

 
 
Try it Now Answers 

1. a) 
2
π

−    b) 
4
π

−     c) π    d) 
3
π  

 
2. 1.9823 or 113.578°  
 

3. 
2
2

4
11sin −=






−

π .  
4

3
2
2cos 1 π

=







−−   

 

4. Let 





= −

9
7sin 1θ  so 

9
7)sin( =θ .  . 

Using Pythagorean Identity, 1cossin 22 =+ θθ , so 1cos
9
7 2

2

=+





 θ .   

Solving, ( )
9

24cos
9
7sincos 1 ==














− θ  . 

 
5. Let ( )x4tan 1−=θ , so x4)tan( =θ .  We can represent this on a  

triangle as 
1
4)tan( x

=θ . 

The hypotenuse of the triangle would be ( ) 14 2 +x .   

( )( )
116

4)sin(4tansin
2

1

+
==−

x

xx θ  

4x 

1 
θ 
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Section 6.3 Exercises 
 
Evaluate the following expressions, giving the answer in radians. 

1. 1 2sin
2

−  
  
 

  2. 1 3sin
2

−  
  
 

  3. 1 1sin
2

−  − 
 

   4. 1 2sin
2

−  
−  
 

  

5. 1 1cos
2

−  
 
 

   6. 1 2cos
2

−  
  
 

  7. 1 2cos
2

−  
−  
 

 8. 1 3cos
2

−  
−  
 

 

9. ( )1tan 1−    10. ( )1tan 3−   11. ( )1tan 3− −  12. ( )1tan 1− −  

 
 
Use your calculator to evaluate each expression, giving the answer in radians. 
13. ( )4.0cos 1 −−  14. ( )8.0cos 1−   15. ( )8.0sin 1 −−  16. ( )6tan 1−  
 
Find the angle θ in degrees. 

17.   18.  
 
 
Evaluate the following expressions. 

19. 













−

4
cossin 1 π     20. 














−

6
sincos 1 π  

21. 













−

3
4cossin 1 π     22. 














−

4
5sincos 1 π  

23. 













−

7
3sincos 1     24. 














−

9
4cossin 1  

25. ( )( )4tancos 1−     26. 













−

3
1sintan 1  

 
Find a simplified expression for each of the following. 

27. 













−

5
cossin 1 x , for 55 ≤≤− x   28. 














−

2
costan 1 x , for 22 ≤≤− x   

29. ( )( )x3tansin 1−     30. ( )( )x4tancos 1−  

12 

19 
θ 

10 
7 

θ 
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Section 6.4 Solving Trig Equations 
 
In Section 6.1, we determined the height of a rider on the London Eye Ferris wheel could 

be determined by the equation ( ) 65cos 70
15

h t tπ = − + 
 

.   

If we wanted to know length of time during which the rider is more than 100 meters 
above ground, we would need to solve equations involving trig functions. 
 
 
Solving using known values 
 
In the last chapter, we learned sine and cosine values at commonly encountered angles.  
We can use these to solve sine and cosine equations involving these common angles. 
 
 
Example 1 

Solve ( )
2
1sin =t  for all possible values of t. 

 

Notice this is asking us to identify all angles, t, that have a sine value of 1
2

.  While 

evaluating a function always produces one result, solving for an input can yield multiple 

solutions.  Two solutions should immediately jump to mind from the last chapter: 
6
π

=t  

and 
6

5π
=t  because they are the common angles on the unit circle with a sin of 1

2
. 

 
Looking at a graph confirms that there are more than these two solutions.  While eight 
are seen on this graph, there are an infinite number of solutions! 

 
Remember that any coterminal angle will also have the same sine value, so any angle 
coterminal with these our first two solutions is also a solution.  Coterminal angles can 
be found by adding full rotations of 2π, so we can write the full set of solutions: 
 

kt ππ 2
6
+=  where k is an integer, and kt ππ 2

6
5

+=  where k is an integer. 
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Example 2 
A circle of radius 25  intersects the line x = -5 at two points.  Find the angles θ  on the 
interval πθ 20 <≤ , where the circle and line intersect.  
 
The x coordinate of a point on a circle can be found as ( )θcosrx = , so the x coordinate 
of points on this circle would be ( )θcos25=x .  To find where the line x = -5 
intersects the circle, we can solve for where the x value on the circle would be -5. 

( )θcos255 =−   Isolating the cosine 

( )θcos
2
1
=

−    Recall that 
2

2
2
1 −
=

− , so we are solving 

 

( )
2

2cos −
=θ    

 
We can recognize this as one of our special cosine values 
from our unit circle, and it corresponds with angles 

4
3πθ =  and 

4
5πθ = . 

 
 
Try it Now 
1. Solve ( )tan 1t =  for all possible values of t. 

 
 
Example 3 

The depth of water at a dock rises and falls with the tide, following the equation 

7
12

sin4)( +





= ttf π

, where t is measured in hours after midnight.  A boat requires a 

depth of 9 feet to tie up at the dock.   Between what times will the depth be 9 feet? 
 
To find when the depth is 9 feet, we need to solve f(t) = 9. 

97
12

sin4 =+





 tπ

  Isolating the sine 

2
12

sin4 =





 tπ

  Dividing by 4 

2
1

12
sin =






 tπ

  We know ( )
2
1sin =θ  when 

6
5

6
πθπθ == or
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While we know what angles have a sine value of 1
2

, because of the horizontal 

stretch/compression it is less clear how to proceed.   
 
To deal with this, we can make a substitution, defining a new temporary variable u to be 

tu
12
π

= , so our equation 
2
1

12
sin =






 tπ

becomes  

( )
2
1sin =u   

 
From earlier, we saw the solutions to this equation were 

ku ππ 2
6
+=  where k is an integer, and  

ku ππ 2
6

5
+=  where k is an integer 

 

To undo our substitution, we replace the u in the solutions with tu
12
π

=  and solve for t.   

 

kt πππ 2
612
+=  where k is an integer, and  kt πππ 2

6
5

12
+=  where k is an integer. 

 
Dividing by π/12, we obtain solutions 
 

kt 242 +=  where k is an integer, and  
kt 2410 +=  where k is an integer.  

 
The depth will be 9 feet and the boat 
will be able to approach the dock 
between 2am and 10am.  
 
Notice how in both scenarios, the 24k 
shows how every 24 hours the cycle will be repeated. 

 
 

In the previous example, looking back at the original simplified equation 
2
1

12
sin =






 tπ

, 

we can use the ratio of the “normal period” to the stretch factor to find the period:  

24122

12

2
=






=







 π

π
π
π

.  Notice that the sine function has a period of 24, which is reflected 

in the solutions: there were two unique solutions on one full cycle of the sine function, 
and additional solutions were found by adding multiples of a full period. 
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Try it Now 
2. Solve 11)5sin(4 =−t  for all possible values of t. 

 
 
Solving using the inverse trig functions 
 
Not all equations involve the “special” values of the trig functions to we have learned.  
To find the solutions to these equations, we need to use the inverse trig functions.  
 
 
Example 4 

Use the inverse sine function to find one solution to ( ) 8.0sin =θ . 
 
Since this is not a known unit circle value, calculating the inverse, ( )8.0sin 1−=θ .  This 
requires a calculator and we must approximate a value for this angle.  If your calculator 
is in degree mode, your calculator will give you an angle in degrees as the output.  If 
your calculator is in radian mode, your calculator will give you an angle in radians.  In 
radians, ( ) 927.08.0sin 1 ≈= −θ , or in degrees, ( )1sin 0.8 53.130θ −= ≈ ° . 

 
 
If you are working with a composed trig function and you are not solving for an angle, 
you will want to ensure that you are working in radians.  In calculus, we will almost 
always want to work with radians since they are unit-less. 
 
Notice that the inverse trig functions do exactly what you would expect of any function – 
for each input they give exactly one output.  While this is necessary for these to be a 
function, it means that to find all the solutions to an equation like ( ) 8.0sin =θ , we need 
to do more than just evaluate the inverse function. 
 
To find additional solutions, it is good to remember four things: 

• The sine is the y-value of a point on the unit circle 
• The cosine is the x-value of a point on the unit circle 
• The tangent is the slope of a line at a given angle 
• Other angles with the same sin/cos/tan will have the same reference angle 

 
 
Example 5 

Find all solutions to ( ) 8.0sin =θ . 
 
We would expect two unique angles on one cycle to have this sine value.  In the 
previous example, we found one solution to be ( ) 927.08.0sin 1 ≈= −θ .  To find the 
other, we need to answer the question “what other angle has the same sine value as an 
angle of 0.927?”   
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We can think of this as finding all the angles where the y-
value on the unit circle is 0.8.  Drawing a picture of the circle 
helps how the symmetry.   
On a unit circle, we would recognize that the second angle 
would have the same reference angle and reside in the second 
quadrant.  This second angle would be located at 

)8.0(sin 1−−= πθ , or approximately 214.2927.0 =−≈ πθ . 
 
To find more solutions we recall that angles coterminal with 
these two would have the same sine value, so we can add full 
cycles of 2π. 
 

kπθ 2)8.0(sin 1 += −  and kππθ 2)8.0(sin 1 +−= −  where k is an integer, 
or approximately, kπθ 2927.0 +=  and kπθ 2214.2 +=  where k is an integer. 

 
 
Example 6 

Find all solutions to ( )
9
8sin −=x  on the interval °<≤° 3600 x . 

 
We are looking for the angles with a y-value of -8/9 on the 
unit circle.  Immediately we can see the solutions will be in 
the third and fourth quadrants. 
 
First, we will turn our calculator to degree mode.  Using the 

inverse, we can find one solution °−≈





−= − 734.62

9
8sin 1x .  

While this angle satisfies the equation, it does not lie in the 
domain we are looking for.  To find the angles in the desired 
domain, we start looking for additional solutions.   
 
First, an angle coterminal with °− 734.62 will have the same sine.  By adding a full 
rotation, we can find an angle in the desired domain with the same sine. 

°=°+°−= 266.297360734.62x  
 
There is a second angle in the desired domain that lies in the third quadrant.  Notice that 

°734.62  is the reference angle for all solutions, so this second solution would be 
°734.62  past °180  

°=°+°= 734.242180734.62x  
 
The two solutions on °<≤° 3600 x  are x = °266.297 and x = °734.242  

 
 
 

 

 

 
θ 

0.8 

0.929 

1 

 

 

 

-8/9 

-67.7° 
1 
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Example 7 
Find all solutions to ( ) 3tan =x  on π20 <≤ x . 
 
Using the inverse tangent function, we can find one solution ( ) 249.13tan 1 ≈= −x .  
Unlike the sine and cosine, the tangent function only attains any output value once per 
cycle, so there is no second solution in any one cycle. 
 
By adding π, a full period of tangent function, we can find 
a second angle with the same tangent value.  Notice this 
gives another angle where the line has the same slope. 
 
If additional solutions were desired, we could continue to 
add multiples of π, so all solutions would take on the form 

πkx += 249.1 , however we are only interested in 
π20 <≤ x . 

391.4249.1 =+= πx  
 
The two solutions on π20 <≤ x  are x = 1.249 and x = 4.391. 

 
 
Try it Now 
3. Find all solutions to ( )tan 0.7x =  on °<≤° 3600 x . 

 
 
Example 8 

Solve ( ) 24cos3 =+t  for all solutions on one cycle, 0 2t π≤ <  
 

( ) 24cos3 =+t  Isolating the cosine 
( ) 2cos3 −=t  

( )
3
2cos −=t   Using the inverse, we can find one solution 

301.2
3
2cos 1 ≈





−= −t  

 
We’re looking for two angles where the x-coordinate on a 
unit circle is -2/3.  A second angle with the same cosine 
would be located in the third quadrant.  Notice that the 
location of this angle could be represented as 301.2−=t . 
To represent this as a positive angle we could find a 
coterminal angle by adding a full cycle. 

π2301.2 +−=t  = 3.982 
 
The equation has two solutions between 0 and 2π, at t = 2.301 and t = 3.982. 

1 

1.249 

4.391 

 

 

 

-2.301 
or 3.982 

2.301 

2
3

−  1 
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Example 9 

Solve ( ) 2.03cos =t  for all solutions on two cycles, 
3

40 π
<≤ t . 

 
As before, with a horizontal compression it can be helpful to make a substitution, tu 3=   
Making this substitution simplifies the equation to a form we have already solved.  

( ) 2.0cos =u  
( ) 369.12.0cos 1 ≈= −u  

 
A second solution on one cycle would be located in the fourth quadrant with the same 
reference angle. 

914.4369.12 =−= πu  
 
In this case, we need all solutions on two cycles, so we need to find the solutions on the 
second cycle.  We can do this by adding a full rotation to the previous two solutions. 

197.112914.4
653.72369.1

=+=
=+=

π
π

u
u  

 
Undoing the substitution, we obtain our four solutions: 
3t = 1.369, so t = 0.456 
3t = 4.914 so t = 1.638 
3t = 7.653, so t = 2.551 
3t = 11.197, so t = 3.732 

 
 
Example 10 

Solve ( ) 2sin3 −=tπ  for all solutions. 
 

( ) 2sin3 −=tπ    Isolating the sine 

( )
3
2sin −=tπ    We make the substitution tu π=  

( )
3
2sin −=u     Using the inverse, we find one solution 

730.0
3
2sin 1 −≈





−= −u   

 
This angle is in the fourth quadrant.  A second angle with the same sine would be in the 
third quadrant with 0.730 as a reference angle: 

871.3730.0 =+= πu  
 

We can write all solutions to the equation ( )
3
2sin −=u  as 

ku π2730.0 +−=  or ku π2871.3 += , where k is an integer. 
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Undoing our substitution, we can replace u in our solutions with tu π=  and solve for t 
 

kt ππ 2730.0 +−=  or  kt ππ 2871.3 +=   Divide by π 
kt 2232.0 +−=  or kt 2232.1 +=  

 
 
Try it Now 

4. Solve 03
2

sin5 =+





 tπ

 for all solutions on one cycle, 40 <≤ t . 

 
 

Solving Trig Equations 
1) Isolate the trig function on one side of the equation 
2) Make a substitution for the inside of the sine, cosine, or tangent (or other trig 

function) 
3) Use inverse trig functions to find one solution 
4) Use symmetries to find a second solution on one cycle (when a second exists) 
5) Find additional solutions if needed by adding full periods 
6) Undo the substitution  

 
 
We now can return to the question we began the section with. 
 
 
Example 11 

The height of a rider on the London Eye Ferris wheel can be determined by the equation 

( ) 65cos 70
15

h t tπ = − + 
 

.  How long is the rider more than 100 meters above ground?   

 
To find how long the rider is above 100 meters, we first find the times at which the rider 
is at a height of 100 meters by solving h(t) = 100. 

100 65cos 70
15

tπ = − + 
 

  Isolating the cosine 

30 65cos
15

tπ = −  
 

 

30 cos
65 15

tπ =  −  
   We make the substitution tu

15
π

=  

30 cos( )
65

u=
−

   Using the inverse, we find one solution 
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1 30cos 2.051
65

u −  = ≈ − 
  

  
This angle is in the second quadrant.  A second angle 
with the same cosine would be symmetric in the third 
quadrant.  This angle could be represented as u = -2.051, 
but we need a coterminal positive angle, so we add 2π: 

2 2.051 4.230u π= − ≈  
 
Now we can undo the substitution to solve for t 

2.051
15

tπ
=  so t = 9.793 minutes after the start of the ride 

4.230
15

tπ
=  so t = 20.197 minutes after the start of the ride 

 
A rider will be at 100 meters after 9.793 minutes, and again after 20.197 minutes.  From 
the behavior of the height graph, we know the rider will be above 100 meters between 
these times.  A rider will be above 100 meters for 20.197 - 9.793 = 10.404 minutes of 
the ride. 

 
 

Important Topics of This Section 
Solving trig equations using known values 
Using substitution to solve equations 
Finding answers in one cycle or period vs. finding all possible solutions 
Method for solving trig equations 

 
 
Try it Now Answers 

1. From our special angles, we know one answer is 
4
π

=t .  Tangent equations only have 

one unique solution per cycle or period, so additional solutions can be found by 

adding multiples of a full period, π.   kt ππ
+=

4
. 

 
2. 11)5sin(4 =−t  

2
1)5sin( =t .  Let tu 5=  so this becomes 

2
1)sin( =u , which has solutions 

kku ππππ 2
6

5,2
6

++= . Solving kkut ππππ 2
6

5,2
6

5 ++==  gives the solutions 

kt
5

2
30

ππ
+=         kt

5
2

6
ππ

+=      

1 

u = 2.051 

u = -2.051 
or 4.230 
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3. The first solution is °≈= − 992.34)7.0(tan 1x . 

For a standard tangent, the second solution can be found by adding a full period, 
180°, giving °=°+°= 992.21499.34180x . 

 

4. 
5
3

2
sin −=






 tπ .  Let tu

2
π

= , so this becomes ( )
5
3sin −=u . 

Using the inverse, 6435.0
5
3sin 1 −≈





−= −u .  Since we want positive solutions, we 

can find the coterminal solution by adding a full cycle: 6397.526435.0 =+−= πu . 
 
Another angle with the same sin would be in the third quadrant with the reference 
angle 0.6435.   7851.36435.0 =+= πu . 
 

Solving for t, 6397.5
2

== tu π , so 5903.326397.5 =





=
π

t  

and 7851.3
2

== tu π , so 4097.227851.3 =





=
π

t . 

t = 2.4097 or t = 3.5903. 
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Section 6.4 Exercises 
 
Give all answers in radians unless otherwise indicated. 
 
Find all solutions on the interval 0 2θ π≤ < . 
1. ( )2sin 2θ = −   2. ( )2sin 3θ =   3. ( )2cos 1θ =   4. ( )2cos 2θ = −  

5. ( )sin 1θ =    6. ( )sin 0θ =    7. ( )cos 0θ =    8. ( )cos 1θ = −  

 
 
Find all solutions. 
9. ( )2cos 2θ =  10. ( )2cos 1θ = −  11. ( )2sin 1θ = −  12. ( )2sin 3θ = −  
 
 
Find all solutions. 
13. ( )2sin 3 1θ =   14. ( )2sin 2 3θ =   15. ( )2sin 3 2θ = −   

16. ( )2sin 3 1θ = −   17. ( )2cos 2 1θ =   18. ( )2cos 2 3θ =   

19. ( )2cos 3 2θ = −   20. ( )2cos 2 1θ = −   21. cos 1
4
π θ  = − 
 

  

22. sin 1
3
π θ  = − 
 

  23. ( )2sin 1πθ = .   24. 2cos 3
5
π θ  = 
 

  

 
 
Find all solutions on the interval 0 2x π≤ < . 
25. ( )sin 0.27x =  26. ( )sin  0.48x =  27. ( )sin  0.58x =−  28. ( )sin 0.34x = −  

29. ( )cos 0.55x = −  30. ( )sin  0.28x =  31. ( )cos  0.71x =  32. ( )cos 0.07x = −  

 
 
Find the first two positive solutions. 
33. ( )7sin 6 2x =   34. ( )7sin 5  6x =  35. ( )5cos 3 3x = −  36. ( )3cos 4 2x =  

37. 3sin 2
4

xπ  = 
 

  38. 7sin 6
5

xπ  = 
 

 39. 5cos 1
3

xπ  = 
 

 40. 3cos 2
2

xπ  = − 
 
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Section 6.5 Modeling with Trigonometric Functions  
 
Solving right triangles for angles 
 
In Section 5.5, we used trigonometry on a right triangle to solve for the sides of a triangle 
given one side and an additional angle.  Using the inverse trig functions, we can solve for 
the angles of a right triangle given two sides. 
 
 
Example 1 

An airplane needs to fly to an airfield located 300 miles east and 200 miles north of its 
current location.  At what heading should the airplane fly?   In other words, if we ignore 
air resistance or wind speed, how many degrees north of east should the airplane fly? 
 
We might begin by drawing a picture and labeling all of 
the known information.  Drawing a triangle, we see we 
are looking for the angle α.  In this triangle, the side 
opposite the angle α is 200 miles and the side adjacent 
is 300 miles.  Since we know the values for the  
opposite and adjacent sides, it makes sense to use the 
tangent function. 

300
200)tan( =α   Using the inverse, 

588.0
300
200tan 1 ≈






= −α , or equivalently about 33.7 degrees. 

 
The airplane needs to fly at a heading of 33.7 degrees north of east. 

 
 
Example 2 

OSHA safety regulations require that the base of a ladder be placed 1 foot from the wall 
for every 4 feet of ladder length3.  Find the angle such a ladder forms with the ground. 
 
For any length of ladder, the base needs to be one quarter of the distance 
the foot of the ladder is away from the wall.  Equivalently, if the base is    
a feet from the wall, the ladder can be 4a feet long.  Since a is the side 
adjacent to the angle and 4a is the hypotenuse, we use the cosine function. 

4
1

4
)cos( ==

a
aθ   Using the inverse 

52.75
4
1cos 1 ≈





= −θ  degrees 

The ladder forms a 75.52 degree angle with the ground. 
                                                 
3 http://www.osha.gov/SLTC/etools/construction/falls/4ladders.html 

200 

300 
α 

a 

4a 

θ 
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Try it Now 
1. A cable that anchors the center of the London Eye Ferris wheel to the ground must be 

replaced.  The center of the Ferris wheel is 70 meters above the ground and the 
second anchor on the ground is 23 meters from the base of the wheel. What is the 
angle from the ground up to the center of the Ferris wheel and how long is the cable? 

 
 
Example 3 

In a video game design, a map shows the location of other characters relative to the 
player, who is situated at the origin, and the direction they are facing.  A character 
currently shows on the map at coordinates (-3, 5).  If the player rotates 
counterclockwise by 20 degrees, then the objects in the map will correspondingly rotate 
20 degrees clockwise.  Find the new coordinates of the character. 
 
To rotate the position of the character, we can imagine it as 
a point on a circle, and we will change the angle of the 
point by 20 degrees.  To do so, we first need to find the 
radius of this circle and the original angle. 
 
Drawing a right triangle inside the circle, we can find the 
radius using the Pythagorean Theorem: 
( )2 2 23 5

9 25 34

r

r

− + =

= + =
 

 
To find the angle, we need to decide first if we are going to find the acute angle of the 
triangle, the reference angle, or if we are going to find the angle measured in standard 
position.  While either approach will work, in this case we will do the latter.  Since for 
any point on a circle we know )cos(θrx = , using our given information we get 

)cos(343 θ=−   

)cos(
34
3 θ=

−  

°≈






 −
= − 964.120

34
3cos 1θ  

While there are two angles that have this cosine value, the angle of 120.964 degrees is 
in the second quadrant as desired, so it is the angle we were looking for. 
 
Rotating the point clockwise by 20 degrees, the angle of the point will decrease to 
100.964 degrees.  We can then evaluate the coordinates of the rotated point 

 
 

 
The coordinates of the character on the rotated map will be (-1.109, 5.725). 

109.1)964.100cos(34 −≈°=x
725.5)964.100sin(34 ≈°=y
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Modeling with sinusoidal functions 
 
Many modeling situations involve functions that are periodic.  Previously we learned that 
sinusoidal functions are a special type of periodic function.  Problems that involve 
quantities that oscillate can often be modeled by a sine or cosine function and once we 
create a suitable model for the problem we can use that model to answer various 
questions. 
 
 
Example 4 

The hours of daylight in Seattle oscillate from a low of 8.5 hours in January to a high of 
16 hours in July4.  When should you plant a garden if you want to do it during a month 
where there are 14 hours of daylight? 
 
To model this, we first note that the hours of daylight oscillate with a period of 12 

months.  2
12 6

B π π
= =  corresponds to the horizontal stretch, found by using the ratio of 

the original period to the new period. 
 
With a low of 8.5 and a high of 16, the midline will be halfway between these values, at 

25.12
2

5.816
=

+ .   

The amplitude will be half the difference 
between the highest and lowest values: 

75.3
2

5.816
=

− , or equivalently the 

distance from the midline to the high or 
low value, 16-12.25=3.75.   
 
Letting January be t = 0, the graph starts 
at the lowest value, so it can be modeled 
as a flipped cosine graph.  Putting this 
together, we get a model: 

25.12
6

cos75.3)( +





−= tth π  

 
h(t) is our model for hours of day light t months after January.   
 
To find when there will be 14 hours of daylight, we solve h(t) = 14. 
 

25.12
6

cos75.314 +





−= tπ   Isolating the cosine 

                                                 
4 http://www.mountaineers.org/seattle/climbing/Reference/DaylightHrs.html 
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





−= t

6
cos75.375.1 π   Subtracting 12.25 and dividing by -3.75 







=− t

6
cos

75.3
75.1 π    Using the inverse 

0563.2
75.3
75.1cos

6
1 ≈






−= −tπ   multiplying by the reciprocal 

927.360563.2 =⋅=
π

t   t=3.927 months past January 

 
There will be 14 hours of daylight 3.927 months into the year, or near the end of April. 
 
While there would be a second time in the year when there are 14 hours of daylight, 
since we are planting a garden, we would want to know the first solution, in spring, so 
we do not need to find the second solution in this case. 

 
 
Try it Now 
2. The author’s monthly  

gas usage (in therms) is  
shown here.  Find a  
function to model the  
data.   

 
 
 
 
Example 6 

An object is connected to the wall with a spring that has a 
natural length of 20 cm.  The object is pulled back 8 cm past 
the natural length and released.  The object oscillates 3 times 
per second.  Find an equation for the horizontal position of the 
object ignoring the effects of friction.  How much time during each cycle is the object 
more than 27 cm from the wall? 
 
If we use the distance from the wall, x, as the desired output, then the object will 
oscillate equally on either side of the spring’s natural length of 20, putting the midline 
of the function at 20 cm.   
 
If we release the object 8 cm past the natural length, the amplitude of the oscillation will 
be 8 cm.   
 
We are beginning at the largest value and so this function can most easily be modeled 
using a cosine function. 
 

0
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Since the object oscillates 3 times per second, it has a frequency of 3 and the period of 
one oscillation is 1/3 of second. Using this we find the horizontal compression using the 

ratios of the periods: ππ 6
3/1

2
= . 

 
Using all this, we can build our model: 

( ) 206cos8)( += ttx π  
 
To find when the object is 27 cm from the wall, we can solve x(t) = 27 

( ) 206cos827 += tπ    Isolating the cosine 
( )tπ6cos87 =  

( )tπ6cos
8
7
=    Using the inverse 

505.0
8
7cos6 1 ≈





= −tπ   

0268.0
6
505.0

==
π

t  

 
Based on the shape of the graph, we can conclude 
that the object will spend the first 0.0268 seconds 
more than 27 cm from the wall.  Based on the 
symmetry of the function, the object will spend 
another 0.0268 seconds more than 27 cm from the 
wall at the end of the cycle.  Altogether, the object 
spends 0.0536 seconds each cycle at a distance 
greater than 27 cm from the wall. 
 

 
 
In some problems, we can use trigonometric functions to model behaviors more 
complicated than the basic sinusoidal function. 
 
 
Example 7 

A rigid rod with length 10 cm is attached 
to a circle of radius 4cm at point A as 
shown here.  The point B is able to freely 
move along the horizontal axis, driving a 
piston5.  If the wheel rotates 
counterclockwise at 5 revolutions per 
second, find the location of point B as a 
function of time.  When will the point B 
be 12 cm from the center of the circle? 

                                                 
5 For an animation of this situation, see http://www.mathdemos.org/mathdemos/sinusoidapp/engine1.gif  

A 

B 
10 cm 4cm 

θ 
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To find the position of point B, we can begin by finding the coordinates of point A.  
Since it is a point on a circle with radius 4, we can express its coordinates as 

))sin(4),cos(4( θθ , where θ is the angle shown.   
 
The angular velocity is 5 revolutions per second, or equivalently 10π radians per 
second.  After t seconds, the wheel will rotate by 10 tθ π=  radians.  Substituting this, 
we can find the coordinates of A in terms of t.   

))10sin(4),10cos(4( tt ππ  
 
Notice that this is the same value we would have obtained by observing that the period 
of the rotation is 1/5 of a second and calculating the stretch/compression factor:  

ππ 10
5

1
2

""
""

=
new

original . 

 
Now that we have the coordinates of the point A, 
we can relate this to the point B.  By drawing a 
vertical line segment from A to the horizontal 
axis, we can form a right triangle.  The height of 
the triangle is the y coordinate of the point A: 
4sin(10 )tπ .   
 
Using the Pythagorean Theorem, we can find the base length of the triangle: 
( )2 2 24sin(10 ) 10t bπ + =  

2 2100 16sin (10 )b tπ= −  
2100 16sin (10 )b tπ= −  

 
Looking at the x coordinate of the point A, we can see that the triangle we drew is 
shifted to the right of the y axis by 4cos(10 )tπ .  Combining this offset with the length 
of the base of the triangle gives the x coordinate of the point B: 

2( ) 4cos(10 ) 100 16sin (10 )x t t tπ π= + −  
 
To solve for when the point B will be 12 cm from the center of the circle, we need to 
solve x(t) = 12.   

212 4cos(10 ) 100 16sin (10 )t tπ π= + −    Isolate the square root 
212 4cos(10 ) 100 16sin (10 )t tπ π− = −    Square both sides 

( )2 212 4cos(10 ) 100 16sin (10 )t tπ π− = −    Expand the left side 
2 2144 96cos(10 ) 16cos (10 ) 100 16sin (10 )t t tπ π π− + = −  Move all terms to the left 

2 244 96cos(10 ) 16cos (10 ) 16sin (10 ) 0t t tπ π π− + + =  Factor out 16 

( )2 244 96cos(10 ) 16 cos (10 ) sin (10 ) 0t t tπ π π− + + =  
 

A 

B 
10 cm 

b 
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At this point, we can utilize the Pythagorean Identity, which tells us that 
2 2cos (10 ) sin (10 ) 1t tπ π+ = .   

 
Using this identity, our equation simplifies to 
 
44 96cos(10 ) 16 0tπ− + =   Combine the constants and move to the right side 

96cos(10 ) 60tπ− = −   Divide 
60cos(10 )
96

tπ =    Make a substitution 

96
60)cos( =u  

896.0
96
60cos 1 ≈






= −u   By symmetry we can find a second solution 

388.5896.02 =−= πu   Undoing the substitution 
 
10 0.896tπ = , so t = 0.0285 
10 5.388tπ = , so t = 0.1715 
 
The point B will be 12 cm from the center of the circle 0.0285 seconds after the process 
begins, 0.1715 seconds after the process begins, and every 1/5 of a second after each of 
those values. 

 
 

Important Topics of This Section 
Modeling with trig equations 
Modeling with sinusoidal functions 
Solving right triangles for angles in degrees and radians 

 
 
Try it Now Answers 
1. Angle of elevation for the cable is 71.81 degrees and the cable is 73.68 m long 

2. Approximately ( ) 66cos ( 1) 87
6

G t tπ = − + 
 
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Section 6.5 Exercises 
 
In each of the following triangles, solve for the unknown side and angles. 
 
1.   2.  
 
 
 
 
3.  4.  

  
   

 
   
  
Find a possible formula for the trigonometric function whose values are in the following 
tables. 

5. 
x 0 1 2 3 4 5 6 
y -2 4 10 4 -2 4 10 

 
6.  

x 0 1 2 3 4 5 6 
y 1 -3 -7 -3 1 -3 -7 

 
 
7. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the high temperature for the day is 63 degrees and the low 
temperature of 37 degrees occurs at 5 AM. Assuming t is the number of hours since 
midnight, find an equation for the temperature, D, in terms of t. 

8. Outside temperature over the course of a day can be modeled as a sinusoidal function. 
Suppose you know the high temperature for the day is 92 degrees and the low 
temperature of 78 degrees occurs at 4 AM. Assuming t is the number of hours since 
midnight, find an equation for the temperature, D, in terms of t. 

9. A population of rabbits oscillates 25 above and below an average of 129 during the 
year, hitting the lowest value in January (t = 0).  

a. Find an equation for the population, P, in terms of the months since January, t. 
b. What if the lowest value of the rabbit population occurred in April instead? 

 
 

 

A 
5 

8 

B 
c 

B 

7 

3 

A 

c 

A 

b 

7 
15 B 

B 

a 10 

12 
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10. A population of elk oscillates 150 above and below an average of 720 during the year, 
hitting the lowest value in January (t = 0).  

a. Find an equation for the population, P, in terms of the months since January, t. 
b. What if the lowest value of the rabbit population occurred in March instead? 
 

11. Outside temperature over the course of a day can be modeled as a sinusoidal function. 
Suppose you know the high temperature of 105 degrees occurs at 5 PM and the 
average temperature for the day is 85 degrees. Find the temperature, to the nearest 
degree, at 9 AM. 
 

12. Outside temperature over the course of a day can be modeled as a sinusoidal function. 
Suppose you know the high temperature of 84 degrees occurs at 6 PM and the 
average temperature for the day is 70 degrees. Find the temperature, to the nearest 
degree, at 7 AM. 
 

13. Outside temperature over the course of a day can be modeled as a sinusoidal function. 
Suppose you know the temperature varies between 47 and 63 degrees during the day 
and the average daily temperature first occurs at 10 AM. How many hours after 
midnight does the temperature first reach 51 degrees? 

 
14. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the temperature varies between 64 and 86 degrees during the day 
and the average daily temperature first occurs at 12 AM. How many hours after 
midnight does the temperature first reach 70 degrees? 

 
15. A Ferris wheel is 20 meters in diameter and boarded from a platform that is 2 meters 

above the ground. The six o'clock position on the Ferris wheel is level with the 
loading platform. The wheel completes 1 full revolution in 6 minutes. How many 
minutes of the ride are spent higher than 13 meters above the ground? 

  
16. A Ferris wheel is 45 meters in diameter and boarded from a platform that is 1 meter 

above the ground. The six o'clock position on the Ferris wheel is level with the 
loading platform. The wheel completes 1 full revolution in 10 minutes. How many 
minutes of the ride are spent higher than 27 meters above the ground? 

17. The sea ice area around the North Pole fluctuates between about 6 million square 
kilometers in September to 14 million square kilometers in March.  Assuming 
sinusoidal fluctuation, during how many months are there less than 9 million square 
kilometers of sea ice? 

18. The sea ice area around the South Pole fluctuates between about 18 million square 
kilometers in September to 3 million square kilometers in March.  Assuming 
sinusoidal fluctuation, during how many months are there more than 15 million 
square kilometers of sea ice? 
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19. A respiratory ailment called “Cheyne-Stokes Respiration” causes the volume per 
breath to increase and decrease in a sinusoidal manner, as a function of time. For one 
particular patient with this condition, a machine begins recording a plot of volume per 
breath versus time (in seconds). Let ( )b t  be a function of time t that tells us the 
volume (in liters) of a breath that starts at time t. During the test, the smallest volume 
per breath is 0.6 liters and this first occurs for a breath that starts 5 seconds into the 
test. The largest volume per breath is 1.8 liters and this first occurs for a breath 
beginning 55 seconds into the test. [UW] 
a. Find a formula for the function ( )b t  whose graph will model the test data for this 

patient. 
b. If the patient begins a breath every 5 seconds, what are the breath volumes during 

the first minute of the test? 
 

20. Suppose the high tide in Seattle occurs at 1:00 a.m. and 1:00 p.m, at which time the 
water is 10 feet above the height of low tide. Low tides occur 6 hours after high tides. 
Suppose there are two high tides and two low tides every day and the height of the 
tide varies sinusoidally. [UW] 
a. Find a formula for the function   ( )y h t=  that computes the height of the tide above 

low tide at time t. (In other words, y = 0 corresponds to low tide.) 
b. What is the tide height at 11:00 a.m.? 

 
21. A communications satellite orbits the earth t 

miles above the surface. Assume the radius 
of the earth is 3,960 miles. The satellite can 
only “see” a portion of the earth’s surface, 
bounded by what is called a horizon circle. 
This leads to a two-dimensional cross-
sectional picture we can use to study the size 
of the horizon slice: [UW] 
 
a. Find a formula for α in terms of t. 
b. If t = 30,000 miles, what is α? What 

percentage of the circumference of the 
earth is covered by the satellite? What 
would be the minimum number of such 
satellites required to cover the circumference? 

c. If t = 1,000 miles, what is α? What percentage of the circumference of the earth is 
covered by the satellite? What would be the minimum number of such satellites 
required to cover the circumference? 

d. Suppose you wish to place a satellite into orbit so that 20% of the circumference 
is covered by the satellite. What is the required distance t? 
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22. Tiffany is a model rocket enthusiast. She has been working on a pressurized rocket 
filled with nitrous oxide. According to her design, if the atmospheric pressure exerted 
on the rocket is less than 10 pounds/sq.in., the nitrous oxide chamber inside the rocket 
will explode. Tiff worked from a formula /1014.7 hp e−=  pounds/sq.in. for the 
atmospheric pressure h miles above sea level. Assume that the rocket is launched at 
an angle of α above level ground at sea level with an initial speed of 1400 feet/sec. 
Also, assume the height (in feet) of the rocket at time t seconds is given by the 
equation ( ) ( )216 1400siny t t tα= − + .      [UW] 
a. At what altitude will the rocket explode? 
b. If the angle of launch is α = 12°, determine the minimum atmospheric pressure 

exerted on the rocket during its flight. Will the rocket explode in midair? 
c. If the angle of launch is α = 82°, determine the minimum atmospheric pressure 

exerted on the rocket during its flight. Will the rocket explode in midair? 
d. Find the largest launch angle α so that the rocket will not explode. 
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Chapter 7: Trigonometric 
Equations and Identities 
 
In the last two chapters we have used basic definitions and relationships to simplify 
trigonometric expressions and solve trigonometric equations.  In this chapter we will look 
at more complex relationships.  By conducting a deeper study of trigonometric identities 
we can learn to simplify complicated expressions, allowing us to solve more interesting 
applications. 
 

Section 7.1 Solving Trigonometric Equations with Identities .................................... 453 
Section 7.2 Addition and Subtraction Identities ......................................................... 461 
Section 7.3 Double Angle Identities ........................................................................... 477 
Section 7.4 Modeling Changing Amplitude and Midline ........................................... 488 

 

Section 7.1 Solving Trigonometric Equations with Identities 
In the last chapter, we solved basic trigonometric equations.  In this section, we explore 
the techniques needed to solve more complicated trig equations.  Building from what we 
already know makes this a much easier task.  
 
Consider the function 2( ) 2f x x x= + .  If you were asked to solve 0)( =xf , it requires 
simple algebra: 

02 2 =+ xx   Factor 
0)12( =+xx   Giving solutions 

x = 0  or  x = 
2
1

−   

 
Similarly, for ( ) sin( )g t t= , if we asked you to solve 0)( =tg , you can solve this using 
unit circle values: 

0)sin( =t  for ππ 2,,0=t and so on. 
 
Using these same concepts, we consider the composition of these two functions: 

)sin()(sin2))(sin())(sin(2))(( 22 tttttgf +=+=  
 
This creates an equation that is a polynomial trig function.  With these types of functions, 
we use algebraic techniques like factoring and the quadratic formula, along with 
trigonometric identities and techniques, to solve equations. 
 
As a reminder, here are some of the essential trigonometric identities that we have 
learned so far: 
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Identities 
Pythagorean Identities 

1)(sin)(cos 22 =+ tt   )(csc)(cot1 22 tt =+   )(sec)(tan1 22 tt =+  
 
Negative Angle Identities 

)sin()sin( tt −=−   )cos()cos( tt =−   )tan()tan( tt −=−  
)csc()csc( tt −=−   )sec()sec( tt =−   )cot()cot( tt −=−  

 
Reciprocal Identities 

)cos(
1)sec(

t
t =  

)sin(
1)csc(

t
t =  

)cos(
)sin()tan(

t
tt =  

)tan(
1)cot(

t
t =  

 
 
Example 1 

Solve 0)sin()(sin2 2 =+ tt  for all solutions with π20 <≤ t . 
 
This equation kind of looks like a quadratic equation, but with sin(t) in place of an 
algebraic variable (we often call such an equation “quadratic in sine”).  As with all 
quadratic equations, we can use factoring techniques or the quadratic formula.  This 
expression factors nicely, so we proceed by factoring out the common factor of sin(t): 

( ) 01)sin(2)sin( =+tt  
 
Using the zero product theorem, we know that the product on the left will equal zero if 
either factor is zero, allowing us to break this equation into two cases: 

0)sin( =t  or 01)sin(2 =+t  
 
We can solve each of these equations independently, using our knowledge of special 
angles. 

0)sin( =t   01)sin(2 =+t   

 t = 0 or t = π  
2
1)sin( −=t   

   
6

7π
=t  or 

6
11π

=t  

 
Together, this gives us four solutions to 
the equation on π20 <≤ t :   

6
11,

6
7,,0 πππ=t   

 
We could check these answers are 
reasonable by graphing the function and comparing the zeros. 
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Example 2 
Solve 02)sec(5)(sec3 2 =−− tt  for all solutions with π20 <≤ t . 
 
Since the left side of this equation is quadratic in secant, we can try to factor it, and 
hope it factors nicely. 
 
If it is easier to for you to consider factoring without the trig function present, consider 
using a substitution )sec(tu = , resulting in 0253 2 =−− uu , and then try to factor: 

)2)(13(253 2 −+=−− uuuu  
 
Undoing the substitution, 

0)2))(sec(1)sec(3( =−+ tt  
 
Since we have a product equal to zero, we break it into the two cases and solve each 
separately. 
 

01)sec(3 =+t    Isolate the secant 

3
1)sec( −=t     Rewrite as a cosine 

3
1

)cos(
1

−=
t

    Invert both sides 

3)cos( −=t  
 
Since the cosine has a range of [-1, 1], the cosine will never take on an output of -3.  
There are no solutions to this case.   
 
Continuing with the second case, 
 

02)sec( =−t    Isolate the secant 
2)sec( =t     Rewrite as a cosine 

2
)cos(

1
=

t
    Invert both sides 

2
1)cos( =t     This gives two solutions 

3
π

=t  or 
3

5π
=t  

 
These are the only two solutions on the interval.   
By utilizing technology to graph 

2( ) 3sec ( ) 5sec( ) 2f t t t= − − , a look at a graph 
confirms there are only two zeros for this function on 
the interval [0, 2π), which assures us that we didn’t 
miss anything.  
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Try it Now 
1. Solve 01)sin(3)(sin2 2 =++ tt  for all solutions with π20 <≤ t . 

 
 
When solving some trigonometric equations, it becomes necessary to first rewrite the 
equation using trigonometric identities.  One of the most common is the Pythagorean 
Identity, 1)(cos)(sin 22 =+ θθ  which allows you to rewrite )(sin 2 θ  in terms of )(cos2 θ  
or vice versa, 
 
 

Identities 
Alternate Forms of the Pythagorean Identity 

2 2

2 2

sin ( ) 1 cos ( )
cos ( ) 1 sin ( )

θ θ

θ θ

= −

= −  
 
 
These identities become very useful whenever an equation involves a combination of sine 
and cosine functions. 
 
 
Example 3 

Solve 1)cos()(sin2 2 =− tt  for all solutions with π20 <≤ t . 
 
Since this equation has a mix of sine and cosine functions, it becomes more complicated 
to solve.  It is usually easier to work with an equation involving only one trig function.  
This is where we can use the Pythagorean Identity. 
  

1)cos()(sin2 2 =− tt    Using )(cos1)(sin 22 θθ −=  

( ) 1)cos()(cos12 2 =−− tt   Distributing the 2 

1)cos()(cos22 2 =−− tt    
 
Since this is now quadratic in cosine, we rearrange the equation so one side is zero and 
factor. 

01)cos()(cos2 2 =+−− tt   Multiply by -1 to simplify the factoring 

01)cos()(cos2 2 =−+ tt   Factor 
( )( ) 01)cos(1)cos(2 =+− tt    
 
This product will be zero if either factor is zero, so we can break this into two separate 
cases and solve each independently. 
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01)cos(2 =−t  or 01)cos( =+t  

2
1)cos( =t   or 1)cos( −=t  

3
π

=t  or 
3

5π
=t  or π=t  

 
 
Try it Now 
2. Solve )cos(3)(sin2 2 tt =  for all solutions with π20 <≤ t . 

 
 
In addition to the Pythagorean Identity, it is often necessary to rewrite the tangent, secant, 
cosecant, and cotangent as part of solving an equation. 
 
 
Example 4 

Solve )sin(3)tan( xx =  for all solutions with π20 <≤ x . 
 
With a combination of tangent and sine, we might try rewriting tangent 

)sin(3)tan( xx =  

)sin(3
)cos(
)sin( x

x
x

=    Multiplying both sides by cosine 

)cos()sin(3)sin( xxx =  
 
At this point, you may be tempted to divide both sides of the equation by sin(x).  Resist 
the urge.  When we divide both sides of an equation by a quantity, we are assuming the 
quantity is never zero.  In this case, when sin(x) = 0 the equation is satisfied, so we’d 
lose those solutions if we divided by the sine.   
 
To avoid this problem, we can rearrange the equation so that one side is zero1.  

0)cos()sin(3)sin( =− xxx   Factoring out sin(x) from both parts 
( ) 0)cos(31)sin( =− xx    

 
From here, we can see we get solutions when 0)sin( =x  or 0)cos(31 =− x .   
 
Using our knowledge of the special angles of the unit circle,  

0)sin( =x  when x = 0 or x = π.   
 
 

                                                 
1 You technically can divide by sin(x), as long as you separately consider the case where sin(x) = 0.  Since 
it is easy to forget this step, the factoring approach used in the example is recommended. 
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For the second equation, we will need the inverse cosine. 
0)cos(31 =− x  

3
1)cos( =x     Using our calculator or technology 

231.1
3
1cos 1 ≈





= −x   Using symmetry to find a second solution 

052.5231.12 =−= πx   
 
We have four solutions on π20 <≤ x : 
x = 0, 1.231, π, 5.052 

 
 
Try it Now 
3. Solve )cos(2)sec( θθ =  to find the first four positive solutions. 

 
 
Example 5 

Solve  ( ) ( ) ( )2

4 3cos 2cot tan
sec ( )

θ θ θ
θ

+ =  for all solutions with 0 2θ π≤ < . 

 

( ) ( ) ( )2

4 3cos 2cot tan
sec ( )

θ θ θ
θ

+ =  Using the reciprocal identities 

 

)tan(
)tan(

12)cos(3)(cos4 2 θ
θ

θθ =+  Simplifying 

( ) ( )24cos 3cos 2θ θ+ =      Subtracting 2 from each side 

( ) ( )24cos 3cos 2 0θ θ+ − =    
 
This does not appear to factor nicely so we use the quadratic formula, remembering that 
we are solving for cos(θ). 
 

8
413

)4(2
)2)(4(433

)cos(
2 ±−

=
−−±−

=θ  

 
Using the negative square root first, 

175.1
8

413)cos( −=
−−

=θ  

 
This has no solutions, since the cosine can’t be less than -1. 
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Using the positive square root, 

425.0
8

413)cos( =
+−

=θ  

( ) 131.1425.0cos 1 == −θ   By symmetry, a second solution can be found 
152.5131.12 =−= πθ  

 
 

Important Topics of This Section 
Review of Trig Identities 
Solving Trig Equations 
 By Factoring 
 Using the Quadratic Formula 
 Utilizing Trig Identities to simplify 

 
 
Try it Now Answers 
1. Factor as ( )( ) 01)sin(1)sin(2 =++ tt   

01)sin(2 =+t  at 7 11,
6 6

t π π
=  

01)sin( =+t  at 3
2

t π
=  

7 3 11, ,
6 2 6

t π π π
=   

 
2. ( ) )cos(3)(cos12 2 tt =−  

02)cos(3)(cos2 2 =−+ tt  
( )( ) 02)cos(1)cos(2 =+− tt  

02)cos( =+t  has no solutions 

01)cos(2 =−t  at 5,
3 3

t π π
=   

 

3. )cos(2
)cos(

1 θ
θ

=  

)(cos
2
1 2 θ=  

2
2

2
1)cos( ±=±=θ  

3 5 7, , ,
4 4 4 4
π π π πθ =  
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Section 7.1 Exercises 
 
Find all solutions on the interval 0 2θ π≤ < . 
1. ( )2sin 1θ = −  2. ( )2sin  3θ =  3. ( )2cos 1θ =  4. ( )2cos  2θ =−  
 
Find all solutions. 

5. 2sin 1 
4

xπ  = 
 

 6. 2sin  2
3

xπ  = 
 

 7. ( )2cos 2  3t = −  8. ( )2cos 3 1t = −  

9. 3cos  2
5

xπ  = 
 

 10. 8cos 6
2

xπ  = 
 

 11. ( )7sin 3 2t = −  12. ( )4sin 4 1t =  

 
Find all solutions on the interval [0, 2 )π . 
13. ( ) ( ) ( )10sin cos 6cosx x x=   14. ( ) ( ) ( )3sin 15cos sint t t− =  

15. ( )csc 2 9 0x − =     16. ( )sec 2 3θ =  

17. ( ) ( ) ( )sec sin 2sin  0x x x− =   18. ( ) ( ) ( )tan sin sin 0x x x− =  

19. 2 1sin
4

x =      20. 2 1cos
2

θ =  

21. 2sec 7x =      22. 2csc 3t =  

23. 22sin 3sin 1 0w w+ + =     24. ( )28sin 6sin 1 0x x+ + =  

25. ( )22cos cos 1t t+ =     26. ( ) ( )28cos 3 2cosθ θ= −  

27. ( )24cos ( ) 4 15cosx x− =     28. ( ) 29sin 2 4sin ( )w w− =  

29. ( ) ( )212sin cos 6 0t t+ − =    30. ( ) ( )26cos 7sin 8 0x x+ − =  

31. 2cos 6sinφ φ= −     32. 2sin cost t=  

33. ( ) ( )3tan 3tanx x=    34. ( ) ( )3cos cost t= −  

35. ( ) ( )5tan tanx x=     36. ( ) ( )5tan 9 tan 0x x− =  

37. ( ) ( ) ( ) ( )4sin cos 2sin 2cos 1 0x x x x+ − − =  

38. ( ) ( ) ( ) ( )2sin cos sin 2cos 1 0x x x x− + − =  

39. ( ) ( )tan 3sin  0x x− =    40. ( ) ( )3cos cotx x=  

41. ( ) ( )22 tan 3sect t=    42. ( ) ( )21 2 tan tanw w− =  
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Section 7.2 Addition and Subtraction Identities 
In this section, we begin expanding our repertoire of trigonometric identities.   
 
 

Identities 
The sum and difference identities 

)sin()sin()cos()cos()cos( βαβαβα +=−  

)sin()sin()cos()cos()cos( βαβαβα −=+  

)sin()cos()cos()sin()sin( βαβαβα +=+  

)sin()cos()cos()sin()sin( βαβαβα −=−  

 
 
We will prove the difference of angles identity for cosine.  The rest of the identities can 
be derived from this one. 
 
Proof of the difference of angles identity for cosine 
Consider two points on a unit circle: 
P at an angle of α from the positive x axis 
with coordinates ( ))sin(),cos( αα , and Q at 
an angle of β with coordinates 
( ))sin(),cos( ββ . 
 
Notice the measure of angle POQ is α – β.  
Label two more points: 
C at an angle of α – β, with coordinates 
( ))sin(),cos( βαβα −− , 
D at the point (1, 0). 
 
Notice that the distance from C to D is the 
same as the distance from P to Q because 
triangle COD is a rotation of triangle POQ. 
 
Using the distance formula to find the distance from P to Q yields 

( ) ( )22 )sin()sin()cos()cos( βαβα −+−      
 
Expanding this 

)(sin)sin()sin(2)(sin)(cos)cos()cos(2)(cos 2222 ββααββαα +−++−  
 

β 
α - β α 

P 

Q 

C 

D 
O 
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Applying the Pythagorean Identity and simplifying 

)sin()sin(2)cos()cos(22 βαβα −−  
 
Similarly, using the distance formula to find the distance from C to D  

( ) ( )22 0)sin(1)cos( −−+−− βαβα  
 
Expanding this 

)(sin1)cos(2)(cos 22 βαβαβα −++−−−  
 
Applying the Pythagorean Identity and simplifying 

2)cos(2 +−− βα  
 
Since the two distances are the same we set these two formulas equal to each other and 
simplify 

2)cos(2)sin()sin(2)cos()cos(22 +−−=−− βαβαβα  
2)cos(2)sin()sin(2)cos()cos(22 +−−=−− βαβαβα  

)cos()sin()sin()cos()cos( βαβαβα −=+    
 
This establishes the identity. 
 
 
Try it Now 
1. By writing )cos( βα +  as ( )( )βα −−cos , show the sum of angles identity for cosine 

follows from the difference of angles identity proven above. 
 
 
The sum and difference of angles identities are often used to rewrite expressions in other 
forms, or to rewrite an angle in terms of simpler angles. 
 
 
Example 1 

Find the exact value of )75cos( ° . 
 
Since °+°=° 453075 , we can evaluate )75cos( °  as 

)4530cos()75cos( °+°=°    Apply the cosine sum of angles identity 
)45sin()30sin()45cos()30cos( °°−°°=  Evaluate 

2
2

2
1

2
2

2
3

⋅−⋅=     Simply 

4
26 −

=  
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Try it Now 

2. Find the exact value of 






12

sin π . 

 
 
Example 2 

Rewrite 





 −

4
sin πx  in terms of sin(x) and cos(x). 

 







 −

4
sin πx     Use the difference of angles identity for sine 

= ( ) ( ) 





−








4
sincos

4
cossin ππ xx  Evaluate the cosine and sine and rearrange 

( ) ( )xx cos
2
2sin

2
2

−=  

 
 
Additionally, these identities can be used to simplify expressions or prove new identities 
 
 
Example 3 

Prove 
)tan()tan(
)tan()tan(

)sin(
)sin(

ba
ba

ba
ba

−
+

=
−
+

. 

 
As with any identity, we need to first decide which side to begin with.  Since the left 
side involves sum and difference of angles, we might start there 
 

)sin(
)sin(

ba
ba

−
+

    Apply the sum and difference of angle identities 

)sin()cos()cos()sin(
)sin()cos()cos()sin(

baba
baba

−
+

=   

 
Since it is not immediately obvious how to proceed, we might start on the other side, 
and see if the path is more apparent. 
 

)tan()tan(
)tan()tan(

ba
ba

−
+

   Rewriting the tangents using the tangent identity 
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)cos(
)sin(

)cos(
)sin(

)cos(
)sin(

)cos(
)sin(

b
b

a
a

b
b

a
a

−

+
=    Multiplying the top and bottom by cos(a)cos(b) 

 

)cos()cos(
)cos(
)sin(

)cos(
)sin(

)cos()cos(
)cos(
)sin(

)cos(
)sin(

ba
b
b

a
a

ba
b
b

a
a









−









+

=  Distributing and simplifying 

 

)cos()sin()cos()sin(
)cos()sin()cos()sin(

abba
abba

−
+

=   From above, we recognize this 

 

)sin(
)sin(

ba
ba

−
+

=      Establishing the identity 

 
 

These identities can also be used to solve equations. 
 
 
Example 4 

Solve 
2
3)2cos()cos()2sin()sin( =+ xxxx . 

 
By recognizing the left side of the equation as the result of the difference of angles 
identity for cosine, we can simplify the equation 

2
3)2cos()cos()2sin()sin( =+ xxxx  Apply the difference of angles identity 

2
3)2cos( =− xx  

2
3)cos( =−x     Use the negative angle identity 

2
3)cos( =x  

 
Since this is a special cosine value we recognize from the unit circle, we can quickly 
write the answers: 

kx

kx

ππ

ππ

2
6

11

2
6

+=

+=
, where k is an integer 
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Combining Waves of Equal Period 
 
A sinusoidal function of the form )sin()( CBxAxf +=  can be rewritten using the sum of 
angles identity. 
 
 
Example 5 

Rewrite 





 +=

3
3sin4)( πxxf  as a sum of sine and cosine. 

 







 +

3
3sin4 πx     Using the sum of angles identity 

( ) ( ) 













+






=

3
sin3cos

3
cos3sin4 ππ xx  Evaluate the sine and cosine 

( ) ( ) 







⋅+⋅=

2
33cos

2
13sin4 xx   Distribute and simplify 

( ) ( )xx 3cos323sin2 +=  
 
 
Notice that the result is a stretch of the sine added to a different stretch of the cosine, but 
both have the same horizontal compression, which results in the same period. 
 
We might ask now whether this process can be reversed – can a combination of a sine 
and cosine of the same period be written as a single sinusoidal function?  To explore this, 
we will look in general at the procedure used in the example above. 
 

)sin()( CBxAxf +=     Use the sum of angles identity 
( ))sin()cos()cos()sin( CBxCBxA +=   Distribute the A 

)sin()cos()cos()sin( CBxACBxA +=  Rearrange the terms a bit 
)cos()sin()sin()cos( BxCABxCA +=  

 
Based on this result, if we have an expression of the form )cos()sin( BxnBxm + , we 
could rewrite it as a single sinusoidal function if we can find values A and C so that  

)cos()sin( BxnBxm + )cos()sin()sin()cos( BxCABxCA += , which will require that: 

)sin(
)cos(

CAn
CAm

=
=

  which can be rewritten as   
)sin(

)cos(

C
A
n

C
A
m

=

=
  

 
To find A,  
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( ) ( )2222 )sin()cos( CACAnm +=+  
)(sin)(cos 2222 CACA +=  

( ))(sin)(cos 222 CCA +=   Apply the Pythagorean Identity and simplify 
2A=  

 
 

Rewriting a Sum of Sine and Cosine as a Single Sine 
To rewrite )cos()sin( BxnBxm +  as )sin( CBxA +  

222 nmA += , 
A
mC =)cos( , and 

A
nC =)sin(  

 
You can use either of the last two equations to solve for possible values of C.  Since 
there will usually be two possible solutions, we will need to look at both to determine 
which quadrant C is in and determine which solution for C satisfies both equations. 

 
 
Example 6 

Rewrite )2cos(4)2sin(34 xx −  as a single sinusoidal function. 
 

Using the formulas above, ( ) ( ) 6416316434 222 =+⋅=−+=A , so A = 8.   
 
Solving for C, 

2
3

8
34)cos( ==C , so 

6
π

=C  or 
6

11π
=C .   

However, notice 
2
1

8
4)sin( −=

−
=C . Sine is negative in the third and fourth quadrant, 

so the angle that works for both is 
6

11π
=C . 

 
Combining these results gives us the expression 







 +

6
112sin8 πx  

 
 
Try it Now 
3. Rewrite )5cos(23)5sin(23 xx +−  as a single sinusoidal function. 

 
 
Rewriting a combination of sine and cosine of equal periods as a single sinusoidal 
function provides an approach for solving some equations. 
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Example 7 
Solve 1)2cos(4)2sin(3 =+ xx  to find two positive solutions. 
 
Since the sine and cosine have the same period, we can rewrite them as a single 
sinusoidal function.   

( ) ( ) 2543 222 =+=A , so A = 5 
 

5
3)cos( =C , so 927.0

5
3cos 1 ≈





= −C  or 356.5927.02 =−= πC  

Since 
5
4)sin( =C , a positive value, we need the angle in the first quadrant, C = 0.927. 

 
Using this, our equation becomes 

( ) 1927.02sin5 =+x    Divide by 5 

( )
5
1927.02sin =+x    Make the substitution u = 2x + 0.927 

( )
5
1sin =u     The inverse gives a first solution 

201.0
5
1sin 1 ≈





= −u   By symmetry, the second solution is 

940.2201.0 =−= πu   A third solution would be 
485.6201.02 =+= πu     

 
Undoing the substitution, we can find two positive solutions for x. 

201.0927.02 =+x  or  940.2927.02 =+x    or 485.6927.02 =+x  
726.02 −=x    013.22 =x    558.52 =x  

363.0−=x    007.1=x    779.2=x  
 
Since the first of these is negative, we eliminate it and keep the two positive solutions, 

007.1=x  and 779.2=x . 
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The Product-to-Sum and Sum-to-Product Identities 
 
 

Identities 
The Product-to-Sum Identities 

( )

( )

( ))cos()cos(
2
1)cos()cos(

)cos()cos(
2
1)sin()sin(

)sin()sin(
2
1)cos()sin(

βαβαβα

βαβαβα

βαβαβα

−++=

+−−=

−++=

 

 
 
We will prove the first of these, using the sum and difference of angles identities from the 
beginning of the section.  The proofs of the other two identities are similar and are left as 
an exercise. 
 
Proof of the product-to-sum identity for sin(α)cos(β)  
 
Recall the sum and difference of angles identities from earlier  

)sin()cos()cos()sin()sin( βαβαβα +=+  
)sin()cos()cos()sin()sin( βαβαβα −=−  

 
Adding these two equations, we obtain 

)cos()sin(2)sin()sin( βαβαβα =−++  
 
Dividing by 2, we establish the identity 

( ))sin()sin(
2
1)cos()sin( βαβαβα −++=  

 
 
Example 8 

Write )4sin()2sin( tt  as a sum or difference. 
 
Using the product-to-sum identity for a product of sines 

( ))42cos()42cos(
2
1)4sin()2sin( tttttt +−−=  

( ))6cos()2cos(
2
1 tt −−=    If desired, apply the negative angle identity 

( ))6cos()2cos(
2
1 tt −=    Distribute 

)6cos(
2
1)2cos(

2
1 tt −=  
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Try it Now 

4. Evaluate 















12
cos

12
11cos ππ . 

 
 

Identities 
The Sum-to-Product Identities 

( ) ( ) 





 −







 +

=+
2

cos
2

sin2sinsin vuvuvu  

( ) ( ) 





 +







 −

=−
2

cos
2

sin2sinsin vuvuvu  

( ) ( ) 





 −







 +

=+
2

cos
2

cos2coscos vuvuvu  

( ) ( ) 





 −







 +

−=−
2

sin
2

sin2coscos vuvuvu  

 
 
We will again prove one of these and leave the rest as an exercise.   
 
Proof of the sum-to-product identity for sine functions 
We define two new variables: 

βα
βα

−=
+=

v
u

 

 

Adding these equations yields α2=+ vu , giving 
2

vu +
=α  

Subtracting the equations yields β2=− vu , or 
2

vu −
=β  

 
Substituting these expressions into the product-to-sum identity 

( ))sin()sin(
2
1)cos()sin( βαβαβα −++=  gives 

( ) ( )( )vuvuvu sinsin
2
1

2
cos

2
sin +=






 −







 +   Multiply by 2 on both sides 

( ) ( )vuvuvu sinsin
2

cos
2

sin2 +=





 −







 +   Establishing the identity 
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Try it Now 
5. Notice that, using the negative angle identity, ( ) ( ) )sin()sin(sinsin vuvu −+=− .  Use 

this along with the sum of sines identity to prove the sum-to-product identity for 
( ) ( )vu sinsin − . 

 
 
Example 9 

Evaluate )75cos()15cos( °−° . 
 
Using the sum-to-product identity for the difference of cosines, 
 

)75cos()15cos( °−°  







 °−°







 °+°

−=
2

7515sin
2

7515sin2    Simplify 

 
( ) ( )°−°−= 30sin45sin2     Evaluate 

2
2

2
1

2
22 =

−
⋅⋅−=  

 
 
Example 10 

Prove the identity )tan(
)2sin()4sin(
)2cos()4cos( t

tt
tt

−=
+
− . 

 
Since the left side seems more complicated, we can start there and simplify. 
 

)2sin()4sin(
)2cos()4cos(

tt
tt

+
−    Use the sum-to-product identities 







 −







 +







 −







 +

−
=

2
24cos

2
24sin2

2
24sin

2
24sin2

tttt

tttt

 Simplify 

( ) ( )
( ) ( )tt

tt
cos3sin2
sin3sin2−

=     Simplify further 

( )
( )t

t
cos
sin−

=     Rewrite as a tangent 

)tan(t−=     Establishing the identity 
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Example 11 
Solve ( ) ( )sin sin 3 cos( )t t tπ π π+ =  for all solutions with 20 <≤ t . 
 
In an equation like th is, it is not immediately obvious how to proceed.  One option 
would be to combine the two sine functions on the left side of the equation.  Another 
would be to move the cosine to the left side of the equation, and combine it with one of 
the sines.  For no particularly good reason, we’ll begin by combining the sines on the 
left side of the equation and see how things work out. 
 

( ) ( )sin sin 3 cos( )t t tπ π π+ =   Apply the sum to product identity on the left 

3 32sin cos cos( )
2 2

t t t t tπ π π π π+ −    =   
   

 Simplify 

( ) ( )2sin 2 cos cos( )t t tπ π π− =   Apply the negative angle identity 

( ) ( )2sin 2 cos cos( )t t tπ π π=   Rearrange the equation to be 0 on one side 

( ) ( )2sin 2 cos cos( ) 0t t tπ π π− =   Factor out the cosine 

( ) ( )( )cos 2sin 2 1 0t tπ π − =     
 
Using the Zero Product Theorem we know that at least one of the two factors must be 

zero.  The first factor, ( )cos tπ , has period 22
==

π
πP , so the solution interval of 

20 <≤ t  represents one full cycle of this function. 
 

( )cos 0tπ =      Substitute u tπ=  
( ) 0cos =u      On one cycle, this has solutions 

2
π

=u  or 
2

3π
=u     Undo the substitution 

 

2
t ππ = , so 

2
1

=t  

3
2

t ππ = , so 
2
3

=t  

 

The second factor, ( )2sin 2 1tπ − , has period of 1
2
2

==
π
πP , so the solution interval 

20 <≤ t  contains two complete cycles of this function. 
 

( )2sin 2 1 0tπ − =     Isolate the sine 

( ) 1sin 2
2

tπ =     Substitute 2u tπ=  
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2
1)sin( =u      On one cycle, this has solutions 

6
π

=u  or 
6

5π
=u     On the second cycle, the solutions are 

6
13

6
2 πππ =+=u  or 

6
17

6
52 πππ =+=u  Undo the substitution 

 

2
6

t ππ = , so 
12
1

=t  

52
6

t ππ = , so 
12
5

=t  

132
6

t ππ = , so 
12
13

=t  

172
6

t ππ = , so 
12
17

=t  

 
Altogether, we found six solutions on 

20 <≤ t , which we can confirm by 
looking at the graph. 

12
17,

2
3,

12
13,

2
1,

12
5,

12
1

=t  

 
 
 

Important Topics of This Section 
The sum and difference identities 
Combining waves of equal periods 
Product-to-sum identities 
Sum-to-product identities 
Completing proofs 

 
 
Try it Now Answers 

1. 

)sin()sin()cos()cos(
))sin()(sin()cos()cos(
)sin()sin()cos()cos(

))(cos()cos(

βαβα
βαβα
βαβα

βαβα

−
−+

−+−
−−=+
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2. 













−














=






 −=








4
sin

3
cos

4
cos

3
sin

43
sin

12
sin πππππππ  

2
2

2
1

2
2

2
3

−=
4

26 −  

 

3. ( ) ( ) 362323
222 =+−=A .  A = 6 

2
2

6
23)cos( −
=

−
=C , 

2
2

6
23)sin( ==C .  

4
3π

=C  







 +

4
35sin6 πx  

 

4. 













 −+






 +=
















1212
11cos

1212
11cos

2
1

12
cos

12
11cos ππππππ  

( ) 







−−=














+=

2
31

2
1

6
5coscos

2
1 ππ  

=
4

32 −−  

 
5. )sin()sin( vu −     Use negative angle identity for sine 

          Use sum-to-product identity for sine 

        Eliminate the parenthesis 

         Establishing the identity 
 

)sin()sin( vu −+

( ) ( )






 −−







 −+

2
cos

2
sin2 vuvu







 +







 −

2
cos

2
sin2 vuvu
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Section 7.2 Exercises 
 
Find an exact value for each of the following. 
1. ( )sin 75°   2.  ( )sin 195°   3. cos(165 )°    4. cos(345 )°    

5. 7cos
12
π 

 
 

  6. cos
12
π 

 
 

  7. 5sin
12
π 

 
 

  8. 11sin
12
π 

 
 

 

 
Rewrite in terms of ( )sin x  and ( )cos x . 

9. 11sin
6

x π + 
 

 10. 3sin
4

x π − 
 

 11. 5cos
6

x π − 
 

  12. 2cos
3

x π + 
 

 

 
Simplify each expression. 

13. csc  
2

tπ − 
 

 14. sec
2

wπ − 
 

 15. cot
2

xπ − 
 

 16. tan
2

xπ − 
 

 

 
Rewrite the product as a sum. 
17. ( ) ( )16sin 16 sin 11x x    18. ( ) ( )20cos 36 cos 6t t  
19. ( ) ( )2sin 5 cos 3x x     20. ( ) ( )10cos 5 sin 10x x  
 
Rewrite the sum as a product. 
21. ( ) ( )cos 6 cos 4t t+     22. ( ) ( )cos 6 cos 4u u+  
23. ( ) ( )sin 3 sin 7x x+     24. ( ) ( )sin sin 3h h+  
 

25. Given ( ) 2sin
3

a =  and ( ) 1cos
4

b = − , with a and b both in the interval ,
2
π π 

 
: 

 a. Find ( )sin a b+    b. Find ( )cos a b−  
 

26. Given ( ) 4sin
5

a =  and ( ) 1cos
3

b = , with a and b both in the interval 0,
2
π 
 

: 

 a. Find ( )sin a b−    b. Find ( )cos a b+  
 
Solve each equation for all solutions. 
27. ( ) ( ) ( ) ( )sin 3 cos 6 cos 3 sin 6  0.9x x x x− =−  
28. ( ) ( ) ( ) ( )sin 6 cos 11 cos 6 sin 11  0.1x x x x− =−  
29. ( ) ( ) ( ) ( )cos 2 cos sin 2 sin 1x x x x+ =  

30. ( ) ( ) ( ) ( ) 3cos 5 cos 3 sin 5 sin 3
2

x x x x− =  
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Solve each equation for all solutions. 
31. ( ) ( )cos 5 cos 2x x= −  

32. ( ) ( )sin 5 sin 3x x=  

33. ( ) ( ) ( )cos 6 cos 2 sin 4θ θ θ− =  

34. ( ) ( ) ( )cos 8 cos 2 sin 5θ θ θ− =  

 
Rewrite as a single function of the form sin( ) A Bx C+ . 
35. ( ) ( )4sin 6cosx x−    36. ( ) ( )sin 5cosx x− −  

37. ( ) ( )5sin 3 2cos 3x x+    38. ( ) ( )3sin 5 4cos 5x x− +  

 
Solve for the first two positive solutions. 
39. ( ) ( )5sin 3cos 1x x− + =    40. ( ) ( )3sin cos 2x x+ =  

41. ( ) ( )3sin 2 5cos 2 3x x− =    42. ( ) ( )3sin 4 2cos 4 1x x− − =  

 
Simplify. 

43. ( ) ( )
( ) ( )

sin 7 sin 5
cos 7 cos 5

t t
t t
+
+

    44. ( ) ( )
( ) ( )

sin 9 sin 3
cos 9 cos 3

t t
t t
−
+

 

 
Prove the identity. 

44. ( )
( )

tan 1
tan

4 1 tan
x

x
x

π + + =  − 
 

45. ( )
( )

1 tan
tan

4 1 tan
t

t
t

π − − =  + 
 

46. ( ) ( ) ( ) ( )cos cos 2cos cosa b a b a b+ + − =  

47. ( )
( )

( ) ( )
( ) ( )

cos 1 tan tan
cos 1 tan tan

a b a b
a b a b
+ −

=
− +

 

48. ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

tan sin cos sin cos
tan sin cos sin cos

a b a a b b
a b a a b b
+ +

=
− −

 

49. ( ) ( ) ( )2sin sin cos 2 cos(2 )a b a b b a+ − = −  

50. ( ) ( )
( ) ( ) ( )sin sin 1tan

cos cos 2
x y

x y
x y
+  = + +  
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Prove the identity. 

51. ( )
( ) ( ) ( ) ( )cos

1 tan tan
cos cos

a b
a b

a b
+

= −  

52. ( ) ( ) 2 2cos cos cos sinx y x y x y+ − = −  

 
 
53.  Use the sum and difference identities to establish the product-to-sum identity

( ))cos()cos(
2
1)sin()sin( βαβαβα +−−=   

 
54.  Use the sum and difference identities to establish the product-to-sum identity 

( ))cos()cos(
2
1)cos()cos( βαβαβα −++=  

 
55.  Use the product-to-sum identities to establish the sum-to-product identity 

( ) ( ) 





 −







 +

=+
2

cos
2

cos2coscos vuvuvu  

 
56.  Use the product-to-sum identities to establish the sum-to-product identity 

( ) ( ) 





 −







 +

−=−
2

sin
2

sin2coscos vuvuvu  
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Section 7.3 Double Angle Identities 
 
Two special cases of the sum of angles identities arise often enough that we choose to 
state these identities separately. 
 
 

Identities 
The double angle identities 

)cos()sin(2)2sin( ααα =  

1)(cos2
)(sin21

)(sin)(cos)2cos(

2

2

22

−=
−=

−=

α
α

ααα
 

 
 
These identities follow from the sum of angles identities. 
 
Proof of the sine double angle identity  

)2sin( α  
)sin( αα +=     Apply the sum of angles identity 

)sin()cos()cos()sin( αααα +=  Simplify 
)cos()sin(2 αα=    Establishing the identity 

 
 
Try it Now 
1. Show )(sin)(cos)2cos( 22 ααα −=  by using the sum of angles identity for cosine. 

 
 
For the cosine double angle identity, there are three forms of the identity stated because 
the basic form, )(sin)(cos)2cos( 22 ααα −= , can be rewritten using the Pythagorean 
Identity.   Rearranging the Pythagorean Identity results in the equality

)(sin1)(cos 22 αα −= , and by substituting this into the basic double angle identity, we 
obtain the second form of the double angle identity. 
 

)(sin)(cos)2cos( 22 ααα −=   Substituting using the Pythagorean identity 
)(sin)(sin1)2cos( 22 ααα −−=  Simplifying  

)(sin21)2cos( 2 αα −=  
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Example 1 

If 
5
3)sin( =θ  and θ is in the second quadrant, find exact values for )2sin( θ  and 

)2cos( θ . 
 
To evaluate )2cos( θ , since we know the value for sin( )θ  we can use the version of the 
double angle that only involves sine. 

25
7

25
181

5
321)(sin21)2cos(

2
2 =−=






−=−= θθ  

 
Since the double angle for sine involves both sine and cosine, we’ll need to first find 

)cos(θ , which we can do using the Pythagorean Identity. 
1)(cos)(sin 22 =+ θθ  

1)(cos
5
3 2

2

=+





 θ  

25
91)(cos2 −=θ  

5
4

25
16)cos( ±=±=θ    

 
Since θ is in the second quadrant, we know that cos(θ) < 0, so 

5
4)cos( −=θ  

 
Now we can evaluate the sine double angle 

25
24

5
4

5
32)cos()sin(2)2sin( −=






−





== θθθ  

 
 
Example 2 

Simplify the expressions 
a) ( ) 112cos2 2 −°   b) ( ) ( )xx 3cos3sin8  
 
a) Notice that the expression is in the same form as one version of the double angle 
identity for cosine:  1)(cos2)2cos( 2 −= θθ .  Using this, 

( ) ( ) ( )°=°⋅=−° 24cos122cos112cos2 2  
 
b) This expression looks similar to the result of the double angle identity for sine. 

( ) ( )xx 3cos3sin8   Factoring a 4 out of the original expression 
( ) ( )xx 3cos3sin24 ⋅   Applying the double angle identity 
)6sin(4 x  
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We can use the double angle identities to simplify expressions and prove identities. 
 
 
Example 2 

Simplify 
)sin()cos(

)2cos(
tt

t
−

. 

 
With three choices for how to rewrite the double angle, we need to consider which will 
be the most useful.  To simplify this expression, it would be great if the denominator 
would cancel with something in the numerator, which would require a factor of 

)sin()cos( tt −  in the numerator, which is most likely to occur if we rewrite the 
numerator with a mix of sine and cosine. 
 

)sin()cos(
)2cos(

tt
t

−
    Apply the double angle identity 

=
)sin()cos(

)(sin)(cos 22

tt
tt

−
−     Factor the numerator 

( )( )
)sin()cos(

)sin()cos()sin()cos(
tt

tttt
−

+−
=   Cancelling the common factor 

)sin()cos( tt +=     Resulting in the most simplified form 
 
 
Example 3 

Prove 
)(sec2

)(sec)2sec( 2

2

α
αα

−
= . 

 
Since the right side seems a bit more complicated than the left side, we begin there. 

)(sec2
)(sec

2

2

α
α

−
    Rewrite the secants in terms of cosine 

)(cos
12

)(cos
1

2

2

α

α

−
=     

 
At this point, we could rewrite the bottom with common denominators, subtract the 
terms, invert and multiply, then simplify.  Alternatively, we can multiple both the top 
and bottom by )(cos2 α , the common denominator: 

)(cos
)(cos

12

)(cos
)(cos

1

2
2

2
2

α
α

α
α

⋅







−

⋅
=   Distribute on the bottom 
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⋅−
=

)(cos
)(cos)(cos2

)(cos
)(cos

2

2
2

2

2

α
αα

α
α

  Simplify 

1)(cos2
1

2 −
=

α
   Rewrite the denominator as a double angle 

)2cos(
1
α

=     Rewrite as a secant 

)2sec( α=     Establishing the identity 
 
 
Try it Now 
2. Use an identity to find the exact value of ( ) ( )°−° 75sin75cos 22 . 

 
 
As with other identities, we can also use the double angle identities for solving equations. 
 
 
Example 4 

Solve )cos()2cos( tt =  for all solutions with π20 <≤ t . 
 
In general when solving trig equations, it makes things more complicated when we have 
a mix of sines and cosines and when we have a mix of functions with different periods.  
In this case, we can use a double angle identity to rewrite the cos(2t).  When choosing 
which form of the double angle identity to use, we notice that we have a cosine on the 
right side of the equation.  We try to limit our equation to one trig function, which we 
can do by choosing the version of the double angle formula for cosine that only 
involves cosine. 

)cos()2cos( tt =    Apply the double angle identity 
)cos(1)(cos2 2 tt =−   This is quadratic in cosine, so make one side 0 

01)cos()(cos2 2 =−− tt   Factor 
( )( ) 01)cos(1)cos(2 =−+ tt   Break this apart to solve each part separately 
 

01)cos(2 =+t  or 01)cos( =−t  

2
1)cos( −=t   or 1)cos( =t  

3
2π

=t  or 
3

4π
=t  or 0=t  

 
Looking at a graph of cos(2t) and cos(t) shown 
together, we can verify that these three 
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solutions on [0, 2π) seem reasonable. 
Example 5 

A cannonball is fired with velocity of 100 meters per second.  If it is launched at an 
angle of θ, the vertical component of the velocity will be )sin(100 θ  and the horizontal 
component will be )cos(100 θ .  Ignoring wind resistance, the height of the cannonball 
will follow the equation ttth )sin(1009.4)( 2 θ+−=  and horizontal position will follow 
the equation ttx )cos(100)( θ= .   If you want to hit a target 900 meters away, at what 
angle should you aim the cannon? 
 
To hit the target 900 meters away, we want 900)( =tx at the time when the cannonball 
hits the ground, when 0)( =th .  To solve this problem, we will first solve for the time, 
t, when the cannonball hits the ground.  Our answer will depend upon the angleθ .  
  

0)( =th  

0)sin(1009.4 2 =+− tt θ    Factor 

( ) 0)sin(1009.4 =+− θtt    Break this apart to find two solutions 
 

0=t     or 0)sin(1009.4 =+− θt  Solve for t 
)sin(1009.4 θ−=− t  

9.4
)sin(100 θ

=t  

 
This shows that the height is 0 twice, once at t = 0 when the cannonball is fired, and 
again when the cannonball hits the ground after flying through the air.  This second 
value of t gives the time when the ball hits the ground in terms of the angle θ .  We want 
the horizontal distance x(t) to be 900 when the ball hits the ground, in other words when 

9.4
)sin(100 θ

=t .  

 
Since the target is 900 m away we start with  
 

900)( =tx     Use the formula for x(t) 

900)cos(100 =tθ    Substitute the desired time, t from above 

900
9.4

)sin(100)cos(100 =
θθ   Simplify 

900)sin()cos(
9.4

1002

=θθ   Isolate the cosine and sine product 

2100
)9.4(900)sin()cos( =θθ  
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The left side of this equation almost looks like the result of the double angle identity for 
sine: ( ) ( )θθθ cossin2)2sin( = .   
Multiplying both sides of our equation by 2, 
 

2100
)9.4)(900(2)sin()cos(2 =θθ   Using the double angle identity on the left 

2100
)9.4)(900(2)2sin( =θ    Use the inverse sine 

080.1
100

)9.4)(900(2sin2 2
1 ≈






= −θ  Divide by 2 

540.0
2
080.1

==θ , or about 30.94 degrees  

 
 
Power Reduction and Half Angle Identities 
 
Another use of the cosine double angle identities is to use them in reverse to rewrite a 
squared sine or cosine in terms of the double angle.  Starting with one form of the cosine 
double angle identity: 

1)(cos2)2cos( 2 −= αα   Isolate the cosine squared term 
)(cos21)2cos( 2 αα =+   Add 1 

2
1)2cos()(cos2 +

=
αα     Divide by 2 

2
1)2cos()(cos2 +

=
αα   This is called a power reduction identity 

 
 
Try it Now 
3.  Use another form of the cosine double angle identity to prove the identity 

2
)2cos(1)(sin 2 αα −

= . 

 
 
The cosine double angle identities can also be used in reverse for evaluating angles that 

are half of a common angle.  Building from our formula 
2

1)2cos()(cos2 +
=

αα , if we let 

αθ 2= , then 
2
θα =  this identity becomes 

2
1)cos(

2
cos2 +

=





 θθ .  Taking the square 

root, we obtain 

2
1)cos(

2
cos +

±=





 θθ , where the sign is determined by the quadrant.   
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This is called a half-angle identity. 
 
Try it Now 
4.  Use your results from the last Try it Now to prove the identity 

2
)cos(1

2
sin θθ −

±=







. 
 
 

Identities 
Half-Angle Identities 

2
1)cos(

2
cos +

±=





 θθ   

2
)cos(1

2
sin θθ −

±=





  

 
Power Reduction Identities 

2
1)2cos()(cos2 +

=
αα   

2
)2cos(1)(sin 2 αα −

=  

 
 
Since these identities are easy to derive from the double-angle identities, the power 
reduction and half-angle identities are not ones you should need to memorize separately. 
 
 
Example 6 

Rewrite )(cos4 x  without any powers. 
 

( )224 )(cos)(cos xx =     Using the power reduction formula 

2

2
1)2cos(






 +

=
x     Square the numerator and denominator 

( )2cos(2 ) 1
4
x +

=     Expand the numerator 

4
1)2cos(2)2(cos2 ++

=
xx    Split apart the fraction 

4
1

4
)2cos(2

4
)2(cos2

++=
xx    Apply the formula above to )2(cos2 x  

         2 cos(2 2 ) 1cos (2 )
2

xx ⋅ +
=  
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4
1

4
)2cos(2

4
2

1)4cos(

++






 +

=
x

x

  Simplify 

4
1)2cos(

2
1

8
1

8
)4cos(

+++= xx   Combine the constants 

8
3)2cos(

2
1

8
)4cos(

++= xx  

 
 
Example 7 

Find an exact value for ( )°15cos .   
 
Since 15 degrees is half of 30 degrees, we can use our result from above: 

2
1)30cos(

2
30cos)15cos( +°

±=





 °

=°    

 
We can evaluate the cosine.  Since 15 degrees is in the first quadrant, we need the 
positive result. 

2

1
2
3

2
1)30cos( +
=

+°   

2
1

4
3
+=  

 
 

Important Topics of This Section 
Double angle identity 
Power reduction identity 
Half angle identity 
Using identities 
 Simplify equations 
 Prove identities 
 Solve equations 
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Try it Now Answers 

1. 
( )

)(sin)(cos
)sin()sin()cos()cos(

)cos(2cos

22 αα

αααα
ααα

−

−
+=

 

 

2. ( ) ( ) )752cos(75sin75cos 22 °⋅=°−°  = 
2

3)150cos( −
=°  

 
 

3. 

( )2 2

2 2

2 2

2
2

1 cos(2 )
2

1 cos ( ) sin ( )
2

1 cos ( ) sin ( )
2

sin ( ) sin ( )
2

2sin ( ) sin ( )
2

α

α α

α α

α α

α α

−

− −

− +

+

=

 

 
 

4. 

2
)cos(1

2
sin

2
2

2cos1

2
sin

2

2
)2cos(1)sin(

2
)2cos(1)(sin 2

θθ

θ
θ

θα

αα

αα

−
±=






















−

±=







=

−
±=

−
=
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Section 7.3 Exercises 
 

1. If ( ) 1sin
8

x =  and x is in quadrant I, then find exact values for (without solving for x): 

a. ( )sin 2x  b. ( )cos 2x  c. ( )tan 2x   
 

2. If ( ) 2cos
3

x =  and x is in quadrant I, then find exact values for (without solving for x): 

a. ( )sin 2x  b. ( )cos 2x  c. ( )tan 2x   
 
Simplify each expression. 
3. ( )2 2cos 28 sin (28 )° − °     4. ( )22cos 37 1° −  
5. 21 2sin (17 )− °     6. ( )2 2cos 37 sin (37 )° − °  
7. ( )2 2cos 9 sin (9 )x x−     8. ( )2 2cos 6 sin (6 )x x−  
9. ( )4sin 8 cos(8 )x x     10. ( )6sin 5 cos(5 )x x  
 
Solve for all solutions on the interval [0, 2 )π . 
11. ( ) ( )6sin 2 9sin 0t t+ =     12. ( ) ( )2sin 2 3cos 0t t+ =  
13. ( ) ( )29cos 2 9cos 4θ θ= −    14. ( ) ( )28cos 2 8cos 1α α= −  

15. ( ) ( )sin 2 cost t=     16. ( ) ( )cos 2 sint t=  

17. ( ) ( )cos 6 cos 3 0x x− =    18. ( ) ( )sin 4 sin 2 0x x− =  
 
Use a double angle, half angle, or power reduction formula to rewrite without exponents. 
19. 2cos (5 )x       20. 2cos (6 )x    
21. 4sin (8 )x      22. ( )4sin 3x  
23. 2 4cos sinx x     24. 4 2cos sinx x  

 
25. If ( )csc 7x =  and 90 180x° < < ° , then find exact values for (without solving for x): 

a. sin
2
x 

 
 

  b. cos
2
x 

 
 

  c. tan
2
x 

 
 

 

 
26. If ( )sec 4x =  and 270 360x° < < ° , then find exact values for (without solving for x): 

a. sin
2
x 

 
 

  b. cos
2
x 

 
 

  c. tan
2
x 

 
 

 

 
 
 
Prove the identity. 
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27. ( ) ( )2sin cos 1 sin 2t t t− = −  

28. ( ) ( )
22 4sin 1 cos 2 sinx x x− = +  

29. ( ) ( )
( )2

2 tan
sin 2

1 tan
x

x
x

=
+

 

30. ( ) ( ) ( )
( )2

2sin cos
tan 2

2cos 1
x x

x
x

=
−

 

31. ( ) ( ) ( )cot tan 2cot 2x x x− =  

32. ( )
( ) ( )sin 2

tan
1 cos 2

θ
θ

θ
=

+
 

33. ( ) ( )
( )

2

2

1 tan
cos 2

1 tan
α

α
α

−
=

+
 

34. ( )
( ) ( )

( )
( )

1 cos 2 2cos
sin 2 cos 2sin 1

t t
t t t

+
=

− −
 

35. ( ) ( ) ( )2 3sin 3 3sin cos sin ( )x x x x= −  

36. ( ) ( )3 2cos 3 cos ( ) 3sin ( ) cosx x x x= −  
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Section 7.4 Modeling Changing Amplitude and Midline 
 
While sinusoidal functions can model a variety of behaviors, it is often necessary to 
combine sinusoidal functions with linear and exponential curves to model real 
applications and behaviors.  We begin this section by looking at changes to the midline of 
a sinusoidal function.  Recall that the midline describes the middle, or average value, of 
the sinusoidal function. 
 
 
Changing Midlines 
 
 
Example 1 

A population of elk currently averages 2000 elk, and that average has been growing by 
4% each year.  Due to seasonal fluctuation, the population oscillates from 50 below 
average in the winter up to 50 above average in the summer.  Find a function that 
models the number of elk after t years, starting in the winter. 
 
There are two components to the behavior of the elk population:  the changing average, 
and the oscillation.  The average is an exponential growth, starting at 2000 and growing 
by 4% each year.  Writing a formula for this: 

(1 ) 2000(1 0.04)t taverage initial r= + = +  
 
For the oscillation, since the population oscillates 50 above and below average, the 
amplitude will be 50.  Since it takes one year for the population to cycle, the period is 1.  

We find the value of the horizontal stretch coefficient original period 2 2
new period 1

B π π= = = . 

 
The function starts in winter, so the shape of the function will be a negative cosine, 
since it starts at the lowest value.   
 
Putting it all together, the equation would be: 

( ) 50cos(2 )P t t midlineπ= − +  
 
Since the midline represents the average population, we substitute in the exponential 
function into the population equation to find our final equation: 

( ) 50cos(2 ) 2000(1 0.04)tP t tπ= − + +  
 
 
This is an example of changing midline – in this case an exponentially changing midline. 
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Changing Midline 
A function of the form )()sin()( tgBtAtf +=  will oscillate above and below the 
average given by the function g(t). 

 
 
Changing midlines can be exponential, linear, or any other type of function.   Here are 
some examples: 
 
  Linear midline  Exponential midline  Quadratic midline 

  
( )( ) sin ( )f t A Bt mt b= + +    ( )( ) sin ( )tf t A Bt ab= +  ( ) 2( ) sin ( )f t A Bt at= +  

 
 
Example 2 

Find a function with linear midline of the form bmttAtf ++





=

2
sin)( π  that will pass 

through the points given below.   
 

 
 
Since we are given the value of the horizontal compression coefficient we can calculate 

the period of this function: original period 2new period 4
2B
π

π= = = . 

 
Since the sine function is at the midline at the beginning of a cycle and halfway through 
a cycle, we would expect this function to be at the midline at t = 0 and t = 2, since 2 is 
half the full period of 4.  Based on this, we expect the points (0, 5) and (2, 9) to be 
points on the midline. We can clearly see that this is not a constant function and so we 
use the two points to calculate a linear function: bmtmidline += .  From these two 
points we can calculate a slope: 

2
2
4

02
59

==
−
−

=m  

 
Combining this with the initial value of 5, we have the midline: 52 += tmidline . 

t 0 1 2 3 
f(t) 5 10 9 8 
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The full function will have form 52
2

sin)( ++





= ttAtf π .  To find the amplitude, we 

can plug in a point we haven’t already used, such as (1, 10). 

5)1(2)1(
2

sin10 ++





=
πA    Evaluate the sine and combine like terms 

710 += A  
3=A  

 
A function of the form given fitting the data would be  

52
2

sin3)( ++





= tttf π  

 
Alternative Approach 
Notice we could have taken an alternate approach by plugging points (0, 5) and (2, 9) 
into the original equation.  Substituting (0, 5), 

bmA ++





= )0()0(

2
sin5 π    Evaluate the sine and simplify 

b=5  
 
Substituting (2, 9) 

5)2()2(
2

sin9 ++





= mA π    Evaluate the sine and simplify 

529 += m  
m24 =  
2=m , as we found above.  Now we can proceed to find A the same way we did before. 

 
 
Example 3 

The number of tourists visiting a ski and hiking resort 
averages 4000 people annually and oscillates 
seasonally, 1000 above and below the average.  Due to 
a marketing campaign, the average number of tourists 
has been increasing by 200 each year.  Write an 
equation for the number of tourists after t years, 
beginning at the peak season. 
 
Again there are two components to this problem:  the 
oscillation and the average.  For the oscillation, the 
number of tourists oscillates 1000 above and below average, giving an amplitude of 
1000.  Since the oscillation is seasonal, it has a period of 1 year.  Since we are given a 
starting point of “peak season”, we will model this scenario with a cosine function.   
So far, this gives an equation in the form ( ) 1000cos(2 )N t t midlineπ= + . 
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The average is currently 4000, and is increasing by 200 each year.  This is a constant 
rate of change, so this is linear growth, taverage 2004000 += .  This function will act 
as the midline. 
 
Combining these two pieces gives a function for the number of tourists: 

( ) 1000cos(2 ) 4000 200N t t tπ= + +  
 
 
Try it Now 
1. Given the function 2( ) ( 1) 8cos( )g x x x= − + , describe the midline and amplitude 

using words. 
 
 
Changing Amplitude 
 
There are also situations in which the amplitude of a sinusoidal function does not stay 
constant.  Back in Chapter 6, we modeled the motion of a spring using a sinusoidal 
function, but had to ignore friction in doing so.  If there were friction in the system, we 
would expect the amplitude of the oscillation to decrease over time.  In the equation 

kBtAtf += )sin()( , A gives the amplitude of the oscillation, we can allow the amplitude 
to change by replacing this constant A with a function A(t). 
 
 

Changing Amplitude 
A function of the form kBttAtf += )sin()()(  will oscillate above and below the 
midline with an amplitude given by A(t). 

 
 
Here are some examples: 
  Linear amplitude  Exponential amplitude Quadratic amplitude 

  
( )( ) ( )sinf t mt b Bt k= + +    ( )( ) ( )sintf t ab Bt k= +  ( )2( ) ( )sinf t at Bt k= +  
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When thinking about a spring with amplitude decreasing 
over time, it is tempting to use the simplest tool for the job 
– a linear function.  But if we attempt to model the 
amplitude with a decreasing linear function, such as 

ttA −= 10)( , we quickly see the problem when we graph 
the equation )4sin()10()( tttf −= . 
 
While the amplitude decreases at first as intended, the amplitude hits zero at t = 10, then 
continues past the intercept, increasing in absolute value, which is not the expected 
behavior.  This behavior and function may model the situation on a restricted domain and 
we might try to chalk the rest of it up to model breakdown, 
but in fact springs just don’t behave like this.   
 
A better model, as you will learn later in physics and 
calculus, would show the amplitude decreasing by a fixed 
percentage each second, leading to an exponential decay 
model for the amplitude.  
 
 

Damped Harmonic Motion 
Damped harmonic motion, exhibited by springs subject to friction, follows a model 
of the form 

kBtabtf t += )sin()(   or   kBtaetf rt += )sin()( . 
 
 
Example 4 

A spring with natural length of feet inches is pulled back 6 feet and released.  It 
oscillates once every 2 seconds.  Its amplitude decreases by 20% each second.  Find a 
function that models the position of the spring t seconds after being released. 
 
Since the spring will oscillate on either side of the natural length, the midline will be at 
20 feet.  The oscillation has a period of 2 seconds, and so the horizontal compression 
coefficient is B π= . Additionally, it begins at the furthest distance from the wall, 
indicating a cosine model. 
 
Meanwhile, the amplitude begins at 6 feet, 
and decreases by 20% each second, giving 
an amplitude function of ttA )20.01(6)( −= .   
 
Combining this with the sinusoidal 
information gives a function for the position 
of the spring: 

20)cos()80.0(6)( += ttf t π  
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Example 5 
A spring with natural length of 30 cm is pulled out 10 cm and released.  It oscillates 4 
times per second.  After 2 seconds, the amplitude has decreased to 5 cm.  Find a 
function that models the position of the spring. 
 

The oscillation has a period of 1
4

 second, so 2 81
4

B π π= = .  Since the spring will 

oscillate on either side of the natural length, the midline will be at 30 cm.  It begins at 
the furthest distance from the wall, suggesting a cosine model.  Together, this gives  

( ) ( ) cos(8 ) 30f t A t tπ= + . 
 
For the amplitude function, we notice that the amplitude starts at 10 cm, and decreases 
to 5 cm after 2 seconds.  This gives two points (0, 10) and (2, 5) that must be satisfied 
by an exponential function:  10)0( =A  and 5)2( =A .  Since the function is exponential, 
we can use the form tabtA =)( .  Substituting the first point, 010 ab= , so a = 10.  
Substituting in the second point, 

2105 b=   Divide by 10 
2

2
1 b=   Take the square root 

707.0
2
1
≈=b  

 
This gives an amplitude function of ttA )707.0(10)( = .  Combining this with the 
oscillation, 

( ) 10(0.707) cos(8 ) 30tf t tπ= +  
 
 
Try it Now 
2. A certain stock started at a high value of $7 per share, oscillating monthly above and 

below the average value, with the oscillation decreasing by 2% per year. However, the 
average value started at $4 per share and has grown linearly by 50 cents per year.  

 a. Find a formula for the midline and the amplitude. 
 b. Find a function S(t) that models the value of the stock after t years.   
 
 
Example 6 

In AM (Amplitude Modulated) radio, a carrier wave with a high frequency is used to 
transmit music or other signals by applying the to-be-transmitted signal as the amplitude 
of the carrier signal.  A musical note with frequency 110 Hz (Hertz = cycles per second) 
is to be carried on a wave with frequency of 2 KHz (KiloHertz = thousands of cycles 
per second).  If the musical wave has an amplitude of 3, write a function describing the 
broadcast wave. 
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The carrier wave, with a frequency of 2000 cycles per second, would have period 
2000

1  

of a second, giving an equation of the form sin(4000 )tπ .  Our choice of a sine function 
here was arbitrary – it would have worked just was well to use a cosine. 
 
The musical tone, with a frequency of 110 cycles per second, would have a period of 

110
1  of a second.  With an amplitude of 3, this would correspond to a function of the 

form 3sin(220 )tπ .  Again our choice of using a sine function is arbitrary. 
 
The musical wave is acting as the amplitude of the carrier wave, so we will multiply the 
musical tone’s function by the carrier wave function, resulting in the function 

( ) 3sin(220 )sin(4000 )f t t tπ π=  
 

 
 
 

Important Topics of This Section 
Changing midline 
Changing amplitude 
 Linear Changes 
 Exponential Changes 
 Damped Harmonic Motion 

 
 
Try it Now Answers 
1. The midline follows the path of the quadratic 2 1x − and the amplitude is a constant 

value of 8. 
 

2. 
( ) 4 0.5
( ) 7(0.98)t

m t t
A t

= +

=
 

      S(t)= ( ) ttt 5.0424cos)98.0(7 ++π  
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Section 7.4 Exercises 
 
Find a possible formula for the trigonometric function whose values are given in the 
following tables. 

1. x 0 3 6 9 12 15 18 
y -4 -1 2 -1 -4 -1 2 

 

2.  x 0 2 4 6 8 10 12 
y 5 1 -3 1 5 1 -3 

 

 
3. The displacement ( )h t , in centimeters, of a mass suspended by a spring is modeled 

by the function ( ) 8sin(6 )h t tπ= , where t is measured in seconds.  Find the 
amplitude, period, and frequency of this displacement. 

 
4. The displacement ( )h t , in centimeters, of a mass suspended by a spring is modeled 

by the function ( ) 11sin(12 )h t tπ= , where t is measured in seconds.  Find the 
amplitude, period, and frequency of this displacement. 
 

5. A population of rabbits oscillates 19 above and below average during the year, 
reaching the lowest value in January. The average population starts at 650 rabbits and 
increases by 160 each year. Find a function that models the population, P, in terms of 
the months since January, t. 
 

6. A population of deer oscillates 15 above and below average during the year, reaching 
the lowest value in January. The average population starts at 800 deer and increases 
by 110 each year. Find a function that models the population, P, in terms of the 
months since January, t. 
 

7. A population of muskrats oscillates 33 above and below average during the year, 
reaching the lowest value in January. The average population starts at 900 muskrats 
and increases by 7% each month. Find a function that models the population, P, in 
terms of the months since January, t. 
 

8. A population of fish oscillates 40 above and below average during the year, reaching 
the lowest value in January. The average population starts at 800 fish and increases 
by 4% each month. Find a function that models the population, P, in terms of the 
months since January, t. 
  

9. A spring is attached to the ceiling and pulled 10 cm down from equilibrium and 
released. The amplitude decreases by 15% each second. The spring oscillates 18 
times each second. Find a function that models the distance, D, the end of the spring 
is below equilibrium in terms of seconds, t, since the spring was released. 
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10. A spring is attached to the ceiling and pulled 7 cm down from equilibrium and 
released. The amplitude decreases by 11% each second. The spring oscillates 20 
times each second. Find a function that models the distance, D, the end of the spring 
is below equilibrium in terms of seconds, t, since the spring was released. 
 

11. A spring is attached to the ceiling and pulled 17 cm down from equilibrium and 
released. After 3 seconds the amplitude has decreased to 13 cm. The spring oscillates 
14 times each second.  Find a function that models the distance, D the end of the 
spring is below equilibrium in terms of seconds, t, since the spring was released. 
 

12. A spring is attached to the ceiling and pulled 19 cm down from equilibrium and 
released. After 4 seconds the amplitude has decreased to 14 cm. The spring oscillates 
13 times each second.  Find a function that models the distance, D the end of the 
spring is below equilibrium in terms of seconds, t, since the spring was released. 
 
  

Match each equation form with one of the graphs.  
13. a. ( )sin 5xab x+   b. ( )sin 5x mx b+ +    

14. a. ( )sin 5xab x   b. ( )sin(5 )mx b x+  

I   II  III   IV  

  

Find a function of the form sin
2

xy ab c xπ = +  
 

 that fits the data given. 

15. x 0 1 2 3 
y 6 29 96 379 

 

16.  x 0 1 2 3 
y 6 34 150 746 

 

 

Find a function of the form sin
2

y a x m bxπ = + + 
 

 that fits the data given. 

17. x 0 1 2 3 
y 7 6 11 16 

 

18.  x 0 1 2 3 
y -2 6 4 2 

 

 

Find a function of the form cxaby x +





=

2
cos π  that fits the data given. 

19. x 0 1 2 3 
y 11 3 1 3 

 

20.  x 0 1 2 3 
y 4 1 -11 1 
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Chapter 8: Further 
Applications of 
Trigonometry 
In this chapter, we will explore additional applications of trigonometry.  We will begin 
with an extension of the right triangle trigonometry we explored in Chapter 5 to situations 
involving non-right triangles.  We will explore the polar coordinate system and 
parametric equations as new ways of describing curves in the plane.  In the process, we 
will introduce vectors and an alternative way of writing complex numbers, two important 
mathematical tools we use when analyzing and modeling the world around us. 
 

Section 8.1 Non-Right Triangles: Laws of Sines and Cosines ................................... 497 
Section 8.2 Polar Coordinates ..................................................................................... 514 
Section 8.3 Polar Form of Complex Numbers ............................................................ 528 
Section 8.4 Vectors ..................................................................................................... 541 
Section 8.5 Dot Product .............................................................................................. 555 
Section 8.6 Parametric Equations ............................................................................... 564 

 

Section 8.1 Non-Right Triangles: Laws of Sines and Cosines 
 
Although right triangles allow us to solve many applications, it is more common to find 
scenarios where the triangle we are interested in does not have a right angle. 
 
Two radar stations located 20 miles apart 
both detect a UFO located between them.  
The angle of elevation measured by the 
first station is 35 degrees.  The angle of 
elevation measured by the second station 
is 15 degrees.  What is the altitude of the 
UFO? 
 
We see that the triangle formed by the UFO and the two stations is not a right triangle.  
Of course, in any triangle we could draw an altitude, a perpendicular line from one 
vertex to the opposite side, forming two right triangles, but it would be nice to have 
methods for working directly with non-right triangles.  In this section, we will expand 
upon the right triangle trigonometry we learned in Chapter 5, and adapt it to non-right 
triangles. 
 
 
 

15° 35° 
20 miles 
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Law of Sines 
 
Given an arbitrary non-right triangle, we can drop an altitude, which we temporarily label 
h, to create two right triangles.   
 
Using the right triangle relationships,  

b
h

=)sin(α  and 
a
h

=)sin(β .   

 
Solving both equations for h, we get hb =)sin(α  and 

ha =)sin(β .  Since the h is the same in both equations, 
we establish )sin()sin( βα ab = .  Dividing both sides by 
ab, we conclude that 

ba
)sin()sin( βα

=  

 
Had we drawn the altitude to be perpendicular to side b or a, we could similarly establish  

ca
)sin()sin( γα

=  and 
cb

)sin()sin( γβ
=  

 
Collectively, these relationships are called the Law of Sines. 
 
 

Law of Sines 
Given a triangle with angles and sides opposite labeled as shown, the ratio of sine of 
angle to length of the opposite side will always be equal, or, symbolically, 

cba
)sin()sin()sin( γβα

==  

 
For clarity, we call side a the corresponding side of angle α. 
Similarly, we call angle α, the corresponding angle of side a.   
Likewise for side b and angle β, and for side c and angle γ. 

 
 
When we use the law of sines, we use any pair of ratios as an equation.  In the most 
straightforward case, we know two angles and one of the corresponding sides. 
 
 
 
 
 
 
 

α β 

a b 

c 

γ 

α β 

a b 
h 

γ 

c 
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Example 1 
In the triangle shown here, solve for the 
unknown sides and angle. 
 
Solving for the unknown angle is relatively 
easy, since the three angles must add to 180 
degrees.   
 
From this, we can determine that  
γ = 180° – 50° – 30° = 100°. 
 
To find an unknown side, we need to know the corresponding angle, and we also need 
another known ratio. 
 
Since we know the angle 50° and its corresponding side, we can use this for one of the 
two ratios.  To look for side b, we would use its corresponding angle, 30°. 
 

b
)30sin(

10
)50sin( °
=

°    Multiply both sides by b 

)30sin(
10

)50sin(
°=

°b   Divide, or multiply by the reciprocal, to solve for b 

527.6
)50sin(

10)30sin( ≈
°

°=b  

 
Similarly, to solve for side c, we set up the equation 

 
c

)100sin(
10

)50sin( °
=

°   

856.12
)50sin(

10)100sin( ≈
°

°=c  

 
 
Example 2 

Find the elevation of the UFO from the beginning of the section. 
 
To find the elevation of the UFO, we first 
find the distance from one station to the 
UFO, such as the side a in the picture, 
then use right triangle relationships to 
find the height of the UFO, h. 
 
Since the angles in the triangle add to 180 degrees, the unknown angle of the triangle 
must be 180° – 15° – 35° = 130°.  This angle is opposite the side of length 20, allowing 
us to set up a Law of Sines relationship: 
 

50° 

10 b 

30° 
c 

γ 

15° 35° 
20 miles 

h 
a 
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a
)35sin(

20
)130sin( °
=

°   Multiply by a 

)35sin(
20

)130sin(
°=

°a   Divide, or multiply by the reciprocal, to solve for a 

975.14
)130sin(
)35sin(20
≈

°
°

=a   Simplify 

 
The distance from one station to the UFO is about 15 miles.  Now that we know a, we 
can use right triangle relationships to solve for h. 

975.14
)15sin( h

a
h

hypotenuse
opposite

===°   Solve for h 

 
876.3)15sin(975.14 ≈°=h  

 
The UFO is at an altitude of 3.876 miles. 

 
 
In addition to solving triangles in which two angles are known, the law of sines can be 
used to solve for an angle when two sides and one corresponding angle are known. 
 
 
Example 3 

In the triangle shown here, solve for the unknown sides and 
angles. 
 
In choosing which pair of ratios from the Law of Sines to 
use, we always want to pick a pair where we know three of 
the four pieces of information in the equation.  In this case, 
we know the angle 85° and its corresponding side, so we 
will use that ratio.  Since our only other known information 
is the side with length 9, we will use that side and solve for its corresponding angle. 
 

9
)sin(

12
)85sin( β
=

°    Isolate the unknown 

)sin(
12

)85sin(9 β=
°    Use the inverse sine to find a first solution 

 
Remember when we use the inverse function that there are two possible answers. 

°≈





 °

= − 3438.48
12

)85sin(9sin 1β  By symmetry we find the second possible solution 

°=°−°= 6562.1313438.48180β  
 

9 

12 

a 
85° 

β 

α 
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In this second case, if β ≈ 132°, then α would be α = 180° – 85° – 132° = –37°, which 
doesn’t make sense, so the only possibility for this triangle is β = 48.3438°. 
With a second angle, we can now easily find the third angle, since the angles must add 
to 180°, so α = 180° – 85° – 48.3438° = 46.6562°.  
 
Now that we know α, we can proceed as in earlier examples to find the unknown side a. 

a
)6562.46sin(

12
)85sin( °
=

°   

7603.8
)85sin(

)6562.46sin(12
≈

°
°

=a  

 
 
Notice that in the problem above, when we use Law of Sines to solve for an unknown 
angle, there can be two possible solutions.  This is called the ambiguous case, and can 
arise when we know two sides and a non-included angle. In the ambiguous case we may 
find that a particular set of given information can lead to 2, 1 or no solution at all.  
However, when an accurate picture of the triangle or suitable context is available, we can 
determine which angle is desired.  
 
 
Try it Now 
1. Given 121 and ,120,80 ==°= baα , find the corresponding and missing side and 

angles.  If there is more than one possible solution, show both. 
 
 
Example 4 

Find all possible triangles if one side has length 4 opposite an angle of 50° and a second 
side has length 10. 
 
Using the given information, we can look for the angle opposite the side of length 10.   

10
)sin(

4
)50sin( α
=

°  

915.1
4

)50sin(10)sin( ≈
°

=α  

 
Since the range of the sine function is [-1, 1], it is impossible for the sine value to be 
1.915.  There are no triangles that can be drawn with the provided dimensions. 
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Example 5 
Find all possible triangles if one side has length 6 opposite an angle of 50° and a second 
side has length 4. 
 
Using the given information, we can look for the angle opposite the side of length 4.   

4
)sin(

6
)50sin( α
=

°  

511.0
6

)50sin(4)sin( ≈
°

=α   Use the inverse to find one solution 

( ) °≈= − 710.30511.0sin 1α   By symmetry there is a second possible solution 
°=°−°= 290.149710.30180α  

 
If we use the angle °710.30 , the third angle would be °=°−°−° 290.99710.3050180 .  
We can then use Law of Sines again to find the third side. 

c
)290.99sin(

6
)50sin( °
=

°   Solve for c 

c  = 7.730 
 
If we used the angle α = 149.290°, the third angle would be 180° – 50° – 149.290° =  
–19.29°, which is impossible, so the previous triangle is the only possible one. 

 
 
Try it Now 
2. Given 10 and ,100,80 ==°= baα find the missing side and angles.  If there is more 

than one possible solution, show both. 
 
 
Law of Cosines 
 
Suppose a boat leaves port, travels 10 miles, turns 20 degrees, and travels 
another 8 miles.  How far from port is the boat?   
 
Unfortunately, while the Law of Sines lets us address many non-right 
triangle cases, it does not allow us to address triangles where the one 
known angle is included between two known sides, which means it is not 
a corresponding angle for a known side.  For this, we need another tool. 
 
Given an arbitrary non-right triangle, we 
can drop an altitude, which we temporarily 
label h, to create two right triangles.  We 
will divide the base b into two pieces, one 
of which we will temporarily label x.   
 

α γ 

a c 
h 
β 

x b - x 
b 

20° 

10 mi 

8 mi 
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From this picture, we can establish the right triangle relationship 

c
x

=)cos(α , or equivalently, ( )αcoscx =  

 
Using the Pythagorean Theorem, we can establish 
( ) 222 ahxb =+−    and   222 chx =+  
 
Both of these equations can be solved for 2h  

( )222 xbah −−=  and  222 xch −=  
 
Since the left side of each equation is 2h , the right sides must be equal 

( )2222 xbaxc −−=−    Multiply out the right 
( )22222 2 xbxbaxc +−−=−   Simplify 

22222 2 xbxbaxc −+−=−  
bxbac 2222 +−=     Isolate 2a  
bxbca 2222 −+=     Substitute in xc =)cos(α  from above 

)cos(2222 αbcbca −+=  
 
This result is called the Law of Cosines.  Depending upon which side we dropped the 
altitude down from, we could have established this relationship using any of the angles.  
The important thing to note is that the right side of the equation involves an angle and the 
sides adjacent to that angle – the left side of the equation involves the side opposite that 
angle. 
 
 

Law of Cosines 
Given a triangle with angles and opposite sides labeled as shown, 

)cos(2222 αbcbca −+=  

)cos(2222 βaccab −+=  

)cos(2222 γabbac −+=  
 
 
Notice that if one of the angles of the triangle is 90 degrees, cos(90°) = 0, so the formula 

)90cos(2222 °−+= abbac   Simplifies to 
222 bac +=     

 
You should recognize this as the Pythagorean Theorem.  Indeed, the Law of Cosines is 
sometimes called the Generalized Pythagorean Theorem, since it extends the 
Pythagorean Theorem to non-right triangles. 
 

α β 

a b 

c 

γ 
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Example 6 
Returning to our question from earlier, suppose a boat leaves port, 
travels 10 miles, turns 20 degrees, and travels another 8 miles.  How far 
from port is the boat? 
 
The boat turned 20 degrees, so the obtuse angle of the non-right triangle 
shown in the picture is the supplemental angle, 180° - 20° = 160°. 
 
With this, we can utilize the Law of Cosines to find the missing side of 
the obtuse triangle – the distance from the boat to port. 
 

)160cos()10)(8(2108 222 °−+=x   Evaluate the cosine and simplify 
3508.3142 =x     Square root both sides 

730.173508.314 ==x  
 
The boat is 17.73 miles from port. 

 
 
Example 7 

Find the unknown side and angles of this 
triangle. 
 
Notice that we don’t have both pieces of 
any side/angle pair, so the Law of Sines 
would not work with this triangle.   
 
Since we have the angle included between the two known sides, we can turn to Law of 
Cosines.   
 
Since the left side of any of the Law of Cosines equations involves the side opposite the 
known angle, the left side in this situation will involve the side x.  The other two sides 
can be used in either order. 
 

)30cos()12)(10(21210 222 °−+=x   Evaluate the cosine 

2
3)12)(10(21210 222 −+=x   Simplify 

31202442 −=x     Take the square root 

013.63120244 ≈−=x  
 
Now that we know an angle and its corresponding side, we can use the Law of Sines to 
fill in the remaining angles of the triangle.  Solving for angle θ, 
 

θ 

10 x 

30° 
12 

φ
 

20° 

10 mi 

8 mi 
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10
)sin(

013.6
)30sin( θ
=

°
 

013.6
)30sin(10)sin( °

=θ     Use the inverse sine 

°≈





 °

= − 256.56
013.6

)30sin(10sin 1θ  

 
The other possibility for θ would be θ = 180° – 56.256° = 123.744°.  In the original 
picture, θ is an acute angle, so 123.744° doesn’t make sense if we assume the picture is 
drawn to scale. 
 
Proceeding with θ = 56.256°, we can then find the third angle of the triangle: 

°=°−°−°= 744.93256.5630180ϕ . 
 
 
In addition to solving for the missing side opposite one known angle, the Law of Cosines 
allows us to find the angles of a triangle when we know all three sides. 
 
 
Example 8 

Solve for the angle α in the triangle shown. 
 
Using the Law of Cosines, 

)cos()25)(18(2251820 222 α−+=   Simplify 
)cos(900949400 α−=  

)cos(900549 α−=−  

)cos(
900
549 α=

−
−

 

°≈






−
−

= − 410.52
900
549cos 1α  

 
 
Try it Now 
3. Given 20 and ,10,25 ==°= cbα find the missing side and angles.   

 
 
Notice that since the inverse cosine can return any angle between 0 and 180 degrees, 
there will not be any ambiguous cases when using Law of Cosines to find an angle. 
 
 
 

18 

25 

20 α 
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Example 9 
On many cell phones with GPS, an approximate location can be given before the GPS 
signal is received.  This is done by a process called triangulation, which works by using 
the distance from two known points.  Suppose there are two cell phone towers within 
range of you, located 6000 feet apart along a straight highway that runs east to west, and 
you know you are north of the highway.  Based on the signal delay, it can be 
determined you are 5050 feet from the first tower, and 2420 feet from the second.  
Determine your position north and east of the first tower, and determine how far you are 
from the highway. 
 
For simplicity, we start by drawing a picture and 
labeling our given information.  Using the Law 
of Cosines, we can solve for the angle θ.  
 

)cos()6000)(5050(2505060002420 222 θ−+=  
)cos(60600000615015005856400 θ−=  

)cos(60600000554646100 θ−=−  

9183.0
60600000

554646100)cos( =
−
−

=θ  

°== − 328.23)9183.0(cos 1θ  
 
Using this angle, we could then use right 
triangles to find the position of the cell phone 
relative to the western tower. 
 

5050
)328.23cos( x
=°  

2.4637)328.23cos(5050 ≈°=x  feet 

5050
)328.23sin( y
=°  

8.1999)328.23sin(5050 ≈°=y  feet 
 
You are 5050 ft from the tower and °328.23  north of east (or, equivalently, 66.672° east 
of north).  Specifically, you are about 4637 feet east and 2000 feet north of the first 
tower. 
 
Note that if you didn’t know whether you were north or south of the towers, our 
calculations would have given two possible locations, one north of the highway and one 
south. To resolve this ambiguity in real world situations, locating a position using 
triangulation requires a signal from a third tower.  

 
 
 

2420 ft 5050 ft 

6000 ft 
θ 

5050 ft 

23.3° 
y 

x 
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Example 10 
To measure the height of a hill, a woman measures the angle of elevation to the top of 
the hill to be 24 degrees.  She then moves back 200 feet and measures the angle of 
elevation to be 22 degrees.  Find the height of the hill. 
 
As with many problems of this nature, it will be helpful to draw a picture. 

 
Notice there are three triangles formed here – the right triangle including the height h 
and the 22 degree angle, the right triangle including the height h and the 24 degree 
angle, and the (non-right) obtuse triangle including the 200 ft side.  Since this is the 
triangle we have the most information for, we will begin with it.  It may seem odd to 
work with this triangle since it does not include the desired side h, but we don’t have 
enough information to work with either of the right triangles yet. 
 
We can find the obtuse angle of the triangle, since it and the angle of 24 degrees 
complete a straight line – a 180 degree angle.  The obtuse angle must be 180° - 24° = 
156°.  From this, we can determine that the third angle is 2°.  We know one side is 200 
feet, and its corresponding angle is 2°, so by introducing a temporary variable x for one 
of the other sides (as shown below), we can use Law of Sines to solve for this length x. 

 

)2sin(
200

)22sin( °
=

°
x    Setting up the Law of Sines 

)2sin(
200)22sin(

°
°=x    isolating the x value 

77.2146=x ft 
 
Now that we know x, we can use right triangle properties to solve for h. 

77.2146hypotenuse
opposite)24sin( h

x
h
===°  

 
17.873)24sin(77.2146 =°=h ft.   The hill is 873 feet high. 

 

24° 
22° 

200 ft 

h 
156° 

2° 

x 

24° 22° 
200 ft 

h 
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Important Topics of This Section 
Law of Sines 
 Solving for sides 
 Solving for angles 
 Ambiguous case, 0, 1 or 2 solutions 
Law of Cosines 
 Solving for sides 
 Solving for angles 
Generalized Pythagorean Theorem 

 
 
Try it Now Answers 

1. ( ) ( )
121

sin
120

80sin β
=

°  

1st possible solution
2.35
8.16
2.83

=
°=
°=

c
γ
β

 2nd solution 
9.6
2.3

8.96

=
°=
°=

c
γ
β

 

     If we were given a picture of the triangle it may be possible to eliminate one of these 
 

2. ( ) ( )
10

sin
120

80sin β
=

° .  °= 65.5β  or °= 35.174β ; only the first is reasonable. 

°=°−°−°= 35.948065.5180γ  
( ) ( )

c
°

=
° 35.94sin

120
80sin  

25.101,35.94,65.5 =°=°= cγβ  
 
3. )25cos()20)(10(22010 222 °−+=a .  a = 11.725 

( ) ( )
10

sin
725.11
25sin β

=
° .  °= 1.21β  or °= 9.158β ;  

          only the first is reasonable since 25° + 158.9° would exceed 180°. 
°=°−°−°= 9.133251.21180γ  

725.11,9.133,1.21 =°=°= aγβ  
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Section 8.1 Exercises 
 
Solve for the unknown sides and angles of the triangles shown. 

1.    2.  

3.    4.  

5.    6.  

7.    8.  

Assume α  is opposite side a, β  is opposite side b, and γ  is opposite side c.  Solve each 
triangle for the unknown sides and angles if possible.  If there is more than one possible 
solution, give both. 

9. 20, 69, 43 =°=°= bγα     10. 19, 73, 35 =°=°= bγα  

11. 14, 26, 119 ==°= baα     12. 32, 10, 113 ==°= cbγ  

13. 45,105, 50 ==°= baβ     14. 38,49, 67 ==°= baβ  

15. 8.242,2.184, 1.43 ==°= baα    16. 2.242,2.186, 6.36 ==°= baα  

30 

50 30° 
18 

40° 

25 

70° 
90 

100 
65° 

5 6 

75° 

45° 

15 

120° 
6 

25° 

40° 110° 

18 

70° 50° 

10 



510  Chapter 8 
 

Solve for the unknown sides and angles of the triangles shown. 

17.    18.  

19.    20.  

 

Assume α  is opposite side a, β  is opposite side b, and γ  is opposite side c.  Solve each 
triangle for the unknown sides and angles if possible.  If there is more than one possible 
solution, give both. 

21. 13.3, 49.2, 2.41 ==°= baγ    22. 7.15, 6.10, 7.58 ==°= caβ  

23. 7, 6, 120 ==°= cbα     24. 23,18, 115 ==°= baγ  

25. Find the area of a triangle with sides of length 18, 21, and 32. 
 

26. Find the area of a triangle with sides of length 20, 26, and 37. 
 

27. To find the distance across a small lake, a surveyor has 
taken the measurements shown. Find the distance across 
the lake. 

 

 

28. To find the distance between two cities, a satellite 
calculates the distances and angle shown (not to 
scale). Find the distance between the cities. 

 

 

5 

8 

10 13 

11 

20 

30° 16 
10 

60° 
20 28 

800 ft 900 ft 70° 

350 km 370 km 2.1° 
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29. To determine how far a boat is from shore, two radar 
stations 500 feet apart determine the angles out to the 
boat, as shown.  Find the distance of the boat from the 
station A, and the distance of the boat from shore. 

 

 

 

30. The path of a satellite orbiting the earth causes it to 
pass directly over two tracking stations A and B, 
which are 69 mi apart. When the satellite is on one 
side of the two stations, the angles of elevation at A 
and B are measured to be 86.2° and 83.9°, 
respectively.  How far is the satellite from station A 
and how high is the satellite above the ground? 

 

 

31. A communications tower is located at the top of 
a steep hill, as shown. The angle of inclination of 
the hill is 67°. A guy-wire is to be attached to the 
top of the tower and to the ground, 165 m 
downhill from the base of the tower. The angle 
formed by the guy-wire and the hill is 16°. Find 
the length of the cable required for the guy wire. 

 

 

32. The roof of a house is at a 20° angle.  An 8 foot 
solar panel is to be mounted on the roof, and 
should be angled 38° relative to the horizontal 
for optimal results.  How long does the vertical 
support holding up the back of the panel need to 
be? 
 
 

33. A 127 foot tower is located on a hill that is 
inclined 38° to the horizontal.  A guy-wire is to 
be attached to the top of the tower and anchored 
at a point 64 feet downhill from the base of the 
tower.  Find the length of wire needed. 

70° 
A 

60° 
B 

86.2° 83.9° 
A B 

67° 

16° 
165m 

38° 
64 ft 

127 ft 

20° 
38° 

8 ft 
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34. A 113 foot tower is located on a hill that is 

inclined 34° to the horizontal.  A guy-wire is to 
be attached to the top of the tower and anchored 
at a point 98 feet uphill from the base of the 
tower.  Find the length of wire needed. 

 

 

35. A pilot is flying over a straight highway. He 
determines the angles of depression to two 
mileposts, 6.6 km apart, to be 37° and 44°, as 
shown in the figure.  Find the distance of the plane 
from point A, and the elevation of the plane. 

 

 

36. A pilot is flying over a straight highway. He 
determines the angles of depression to two 
mileposts, 4.3 km apart, to be 32° and 56°, as 
shown in the figure.  Find the distance of the 
plane from point A, and the elevation of the plane. 

 

37. To estimate the height of a building, two students find the angle of elevation from a 
point (at ground level) down the street from the building to the top of the building is 
39°. From a point that is 300 feet closer to the building, the angle of elevation (at 
ground level) to the top of the building is 50°. If we assume that the street is level, use 
this information to estimate the height of the building. 
 

38. To estimate the height of a building, two students find the angle of elevation from a 
point (at ground level) down the street from the building to the top of the building is 
35°. From a point that is 300 feet closer to the building, the angle of elevation (at 
ground level) to the top of the building is 53°. If we assume that the street is level, use 
this information to estimate the height of the building. 
 

39. A pilot flies in a straight path for 1 hour 30 min. She then makes a course correction, 
heading 10 degrees to the right of her original course, and flies 2 hours in the new 
direction. If she maintains a constant speed of 680 miles per hour, how far is she from 
her starting position? 
 

34° 
98 ft 

113 ft 

A B 

37° 44° 

A B 

32° 56° 
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40. Two planes leave the same airport at the same time.  One flies at 20 degrees east of 
north at 500 miles per hour.  The second flies at 30 east of south at 600 miles per 
hour.  How far apart are the planes after 2 hours? 
 

41. The four sequential sides of a quadrilateral have lengths 4.5 cm, 7.9 cm, 9.4 cm, and 
12.9 cm.  The angle between the two smallest sides is 117°.  What is the area of this 
quadrilateral? 
 

42. The four sequential sides of a quadrilateral have lengths 5.7 cm, 7.2 cm, 9.4 cm, and 
12.8 cm.  The angle between the two smallest sides is 106°.  What is the area of this 
quadrilateral? 
 
 

43. Three circles with radii 6, 7, and 8, all touch as shown.  Find the 
shaded area bounded by the three circles. 

 

 

44. A rectangle is inscribed in a circle of radius 10 cm as shown.  
Find the shaded area, inside the circle but outside the rectangle. 

 

 

 

55° 
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Section 8.2 Polar Coordinates 
 
The coordinate system we are most familiar with is called the Cartesian coordinate 
system, a rectangular plane divided into four quadrants by horizontal and vertical axes. 
 
In earlier chapters, we often found the Cartesian coordinates of a 
point on a circle at a given angle from the positive horizontal axis.  
Sometimes that angle, along with the point’s distance from the 
origin, provides a more useful way of describing the point’s 
location than conventional Cartesian coordinates. 
 
 

Polar Coordinates 
Polar coordinates of a point consist of an ordered pair, ),( θr , where r is the distance 
from the point to the origin, and θ is the angle measured in standard position. 

 
 
Notice that if we were to “grid” the plane for polar coordinates, it 
would look like the graph to the right, with circles at incremental 
radii, and rays drawn at incremental angles.   
 
 
Example 1 

Plot the polar point 







6
5,3 π . 

 
This point will be a distance of 3 from the origin, at an angle of 

6
5π

.  Plotting this, 

 
 
Example 2 

Plot the polar point 





−

4
,2 π . 

 
Typically we use positive r values, but occasionally we run into 
cases where r is negative.  On a regular number line, we measure 
positive values to the right and negative values to the left.  We 

will plot this point similarly.  To start, we rotate to an angle of 
4
π

.  

Moving this direction, into the first quadrant, would be positive r 
values.  For negative r values, we move the opposite direction, 
into the third quadrant.  Plotting this: 
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Note the resulting point is the same as the polar point 52,
4
π 

 
 

.  In fact, any Cartesian 

point can be represented by an infinite number of different polar coordinates by adding or 
subtracting full rotations to these points.  For example, same point could also be 

represented as 132,
4
π 

 
 

. 

 
 
Try it Now 
1. Plot the following points given in polar coordinates and label them. 

a. 3,
6

A π =  
 

   b. 2,
3

B π = − 
 

 c. 34,
4

C π =  
 

 

 
 
Converting Points 
 
To convert between polar coordinates and Cartesian coordinates, we recall the 
relationships we developed back in Chapter 5. 
 
 

Converting Between Polar and Cartesian Coordinates 
To convert between polar ),( θr and Cartesian (x, y) coordinates, 
we use the relationships 

r
x

=)cos(θ   )cos(θrx =  

r
y

=)sin(θ   )sin(θry =  

x
y

=)tan(θ   222 ryx =+  

 
 

From these relationship and our knowledge of the unit circle, if r = 1 and 
3
πθ = , the 

polar coordinates would be ( , ) 1,
3

r πθ  =  
 

, and the corresponding Cartesian coordinates

1 3( , ) ,
2 2

x y
 

=   
 

. 

 

(x, y) 

r 

θ 
y 

x 
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Remembering your unit circle values will come in very handy as you convert between 
Cartesian and polar coordinates. 
Example 3 

Find the Cartesian coordinates of a point with polar coordinates 





=

3
2,5),( πθr . 

 
To find the x and y coordinates of the point, 

2
5

2
15

3
2cos5)cos( −=






−=






==
πθrx  

2
35

2
35

3
2sin5)sin( =








=






==
πθry  

The Cartesian coordinates are 







−

2
35,

2
5 . 

 
 
Example 4 

Find the polar coordinates of the point with Cartesian coordinates )4,3( −− . 
 
We begin by finding the distance r using the Pythagorean relationship 222 ryx =+  

222 )4()3( r=−+−  
29 16 r+ =  

252 =r  
5=r  

 
Now that we know the radius, we can find the angle using any of the three trig 
relationships.  Keep in mind that any of the relationships will produce two solutions on 
the circle, and we need to consider the quadrant to determine which solution to accept.  
Using the cosine, for example: 

5
3)cos( −

==
r
xθ  

214.2
5
3cos 1 ≈





 −= −θ   By symmetry, there is a second possibility at 

069.4214.22 =−= πθ  
 
Since the point (-3, -4) is located in the 3rd quadrant, we can determine that the second 
angle is the one we need.  The polar coordinates of this point are )069.4,5(),( =θr . 

 
 
Try it Now 
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2. Convert the following. 
a. Convert polar coordinates ( )πθ ,2),( =r  to ),( yx . 
b. Convert Cartesian coordinates )4,0(),( −=yx  to ),( θr . 

Polar Equations 
 
Just as a Cartesian equation like 2xy =  describes a relationship between x and y values 
on a Cartesian grid, a polar equation can be written describing a relationship between r 
and θ values on the polar grid.   
 
 
Example 5 

Sketch a graph of the polar equation θ=r . 
 
The equation θ=r  describes all the points for which the radius r is equal to the angle.  
To visualize this relationship, we can create a table of values. 

 
 
We can plot these points on the plane, and then sketch a 
curve that fits the points.  The resulting graph is a spiral. 
 
Notice that the resulting graph cannot be the result of a 
function of the form y = f(x), as it does not pass the 
vertical line test, even though it resulted from a function 
giving r in terms of θ. 

 
 
Although it is nice to see polar equations on polar grids, it 
is more common for polar graphs to be graphed on the 
Cartesian coordinate system, and so, the remainder of the 
polar equations will be graphed accordingly.   
 
The spiral graph above on a Cartesian grid is shown here. 
 
 
 
Example 6 

Sketch a graph of the polar equation 3=r . 
 
Recall that when a variable does not show up in the 
equation, it is saying that it does not matter what value that 
variable has; the output for the equation will remain the 
same.  For example, the Cartesian equation y = 3 describes 
all the points where y = 3, no matter what the x values are, 
producing a horizontal line. 

θ 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π 
r 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π 
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Likewise, this polar equation is describing all the points at a distance of 3 from the 
origin, no matter what the angle is, producing the graph of a circle. 

The normal settings on graphing calculators and software graph on the Cartesian 
coordinate system with y being a function of x, where the graphing utility asks for f(x), or 
simply y =. 
 
To graph polar equations, you may need to change the mode of your calculator to Polar.  
You will know you have been successful in changing the mode if you now have r as a 
function of θ, where the graphing utility asks for r(θ), or simply r =. 
 
 
Example 7 

Sketch a graph of the polar equation )cos(4 θ=r , and find an 
interval on which it completes one cycle. 
 
While we could again create a table, plot the corresponding 
points, and connect the dots, we can also turn to technology to 
directly graph it.  Using technology, we produce the graph 
shown here, a circle passing through the origin.  
 
Since this graph appears to close a loop and repeat itself, we might ask what interval of 
θ values yields the entire graph.  At θ = 0, 4)0cos(4 ==r , yielding the point (4, 0).  We 
want the next θ value when the graph returns to the point (4, 0).  Solving for when x = 4 
is equivalent to solving 4)cos( =θr . 
 

4)cos( =θr       Substituting the equation for r gives 
4)cos()cos(4 =θθ    Dividing by 4 and simplifying 

1)(cos2 =θ     This has solutions when 
1)cos( =θ  or 1)cos( −=θ   Solving these gives solutions 

0=θ or πθ =  
 
This shows us at 0 radians we are at the point (0, 4), and again atπ  radians we are at the 
point (0, 4) having finished one complete revolution. 
 
The interval πθ <≤0 yields one complete iteration of the circle. 

 
 
Try it Now 
3. Sketch a graph of the polar equation 3sin( )r θ= , and find an interval on which it 

completes one cycle. 
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The last few examples have all been circles.  Next, we will consider two other “named” 
polar equations, limaçons and roses.   
 
 
Example 8 

Sketch a graph of the polar equation 2)sin(4 += θr .  What interval of θ values 
corresponds to the inner loop?  
 
This type of graph is called a limaçon.   
Using technology, we can draw the graph.  The inner loop 
begins and ends at the origin, where r = 0.  We can solve for 
the θ values for which r = 0. 
 

2)sin(40 += θ  
)sin(42 θ=−  

2
1)sin( −=θ  

6
7πθ =  or 

6
11πθ =  

 
This tells us that r = 0, so the graph passes through the 
origin, twice on the interval [0, 2π). 

The inner loop arises from the interval 
6

11
6

7 πθπ
≤≤ .  

This corresponds to where the function 2)sin(4 += θr  
takes on negative values, as we could see if we graphed 
the function in the rθ  plane. 

 
 
Example 9 

Sketch a graph of the polar equation )3cos( θ=r .  What interval 
of θ values describes one small loop of the graph? 
 
This type of graph is called a 3 leaf rose. 
 
We can use technology to produce a graph.  The interval [0, π) 
yields one cycle of this function.  As with the last problem, we 
can note that there is an interval on which one loop of this graph 
begins and ends at the origin, where r = 0.  Solving for θ, 
 

)3cos(0 θ=     Substitute u = 3θ 
)cos(0 u=  

2
π

=u  or 
2

3π
=u  or 

2
5π

=u    
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Undo the substitution, 
 

2
3 πθ =  or  

2
33 πθ =  or 

2
53 πθ =  

6
πθ =  or 

2
πθ =   or 

6
5πθ =  

 
There are 3 solutions on πθ <≤0  which correspond to the 3 times the graph returns to 
the origin, but the first two solutions we solved for above are enough to conclude that 

one loop corresponds to the interval 
26
πθπ

<≤ .    

 
If we wanted to get an idea of how the computer drew this graph, consider when θ = 0. 

cos(3 ) cos(0) 1r θ= = = , so the graph starts at (1,0).  As we found above, at 
6
πθ =  and 

2
πθ = , the graph is at the origin.  Looking at the equation, 

notice that any angle in between 
6
π

 and 
2
π

, for example at 

3
πθ = , produces a negative r: ( )cos 3 cos 1

3
r π π = ⋅ = = − 

 
.   

 
Notice that with a negative r value and an angle with terminal 
side in the first quadrant, the corresponding Cartesian point 
would be in the third quadrant.  Since )3cos( θ=r  is negative 

on 
26
πθπ

<≤ , this interval corresponds to the loop of the graph in the third quadrant. 

 
 
Try it Now 
4. Sketch a graph of the polar equation sin(2 )r θ= .  Would you call this function a 

limaçon or a rose? 
 
 
Converting Equations 
 
While many polar equations cannot be expressed nicely in Cartesian form (and vice 
versa), it can be beneficial to convert between the two forms, when possible.  To do this 
we use the same relationships we used to convert points between coordinate systems. 
 
 
 

θ  r x y 
0 1 1 0 

6
π

 0 0 0 

3
π

 -1 
1
2

−  3
2

−  

2
π

 0 0 0 
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Example 10 

Rewrite the Cartesian equation yyx 622 =+  as a polar equation. 
 
We wish to eliminate x and y from the equation and introduce r and θ.  Ideally, we 
would like to write the equation with r isolated, if possible, which represents r as a 
function of θ. 

yyx 622 =+    Remembering 222 ryx =+  we substitute  

yr 62 =     )sin(θry =  and so we substitute again 

)sin(62 θrr =    Subtract )sin(6 θr  from both sides 

0)sin(62 =− θrr    Factor 
( ) 0)sin(6 =− θrr    Use the zero factor theorem 

)sin(6 θ=r   or  r = 0  Since r = 0 is only a point, we reject that solution. 
 
The solution )sin(6 θ=r  is fairly similar to the one we graphed in Example 7.  In fact, 
this equation describes a circle with bottom at the origin and top at the point (0, 6). 

 
 
Example 11 

Rewrite the Cartesian equation 23 += xy  as a polar equation. 
 

23 += xy     Use )sin(θry =  and )cos(θrx =  
2)cos(3)sin( += θθ rr   Move all terms with r to one side 
2)cos(3)sin( =− θθ rr   Factor out r 

( ) 2)cos(3)sin( =− θθr   Divide 

)cos(3)sin(
2

θθ −
=r  

 
In this case, the polar equation is more unwieldy than the Cartesian equation, but there 
are still times when this equation might be useful. 

 
 
Example 12 

Rewrite the polar equation 
)cos(21

3
θ−

=r  as a Cartesian equation. 
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We want to eliminate θ and r and introduce x and y.  It is usually easiest to start by 
clearing the fraction and looking to substitute values that will eliminate θ. 
 

)cos(21
3

θ−
=r    Clear the fraction 

( ) 3)cos(21 =− θr    Use 
r
x

=)cos(θ  to eliminate θ  

321 =





 −

r
xr    Distribute and simplify 

32 =− xr     Isolate the r 
xr 23+=     Square both sides 

( )22 23 xr +=    Use 222 ryx =+  
( )222 23 xyx +=+  

 
When our entire equation has been changed from r and θ to x and y we can stop unless 
asked to solve for y or simplify. 
 
In this example, if desired, the right side of the equation could be expanded and the 
equation simplified further.  However, the equation cannot be written as a function in 
Cartesian form. 

 
 
Try it Now 
5. a. Rewrite the Cartesian equation in polar form: 23y x= ± −  
    b. Rewrite the polar equation in Cartesian form: 2sin( )r θ=  

 
 
Example 13 

Rewrite the polar equation )2sin( θ=r  in Cartesian form. 
 

)2sin( θ=r     Use the double angle identity for sine 

)cos()sin(2 θθ=r    Use 
r
x

=)cos(θ  and 
r
y

=)sin(θ  

r
y

r
xr ⋅⋅= 2     Simplify 

2

2
r
xyr =     Multiply by r2 

xyr 23 =     Since 222 ryx =+ , 22 yxr +=  

( ) xyyx 2
3

22 =+  
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This equation could also be written as  
( ) xyyx 22/322 =+   or  ( ) 3/222 2xyyx =+  

 
Important Topics of This Section 
Cartesian coordinate system 
Polar coordinate system 
Plotting points in polar coordinates 
Converting coordinates between systems 
Polar equations: Spirals, circles, limaçons and roses 
Converting equations between systems 

 
 
Try it Now Answers 

1.  
 
2. a. ( )( , ) 2,r θ π= converts to  ( )( , ) 2cos( ), 2sin( ) ( 2,0)x y π π= = −  

    b. ( )( , ) 0, 4x y = −  converts to 3( , ) 4, 4,
2 2

r orπ πθ    = −   
   

 

 
3.  3sin( ) 0θ =  at 0=θ  and πθ = . 

It completes one cycle on the interval πθ <≤0 . 
 
 
 
 
 
 
 
4.  This is a 4-leaf rose. 
 
 
 
5. a. 23y x= ± −  can be rewritten as 2 2 3x y+ = , and becomes 3r =  

A 

B 

C 
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    b. 2sin( )r θ= .  2 yr
r

= .  2 2r y= .  2 2 2x y y+ =  



  Section 8.2 Polar Coordinates    525 
 

Section 8.2 Exercises 
 
Convert the given polar coordinates to Cartesian coordinates. 

1. 77,
6
π 

 
 

  2. 36,
4
π 

 
 

  3. 74,
4
π 

 
 

  4. 49,
3
π 

 
 

  

5. 





 −

4
, 6 π

  6. 12,
3
π − 

 
  7. 3,

2
π 

 
 

  8. ( )5,π   

9. 3,
6
π − 

 
  10. 22,

3
π − 

 
  11. (3, 2)   12. (7,1)  

 
Convert the given Cartesian coordinates to polar coordinates. 
13. (4, 2)   14. (8, 8)   15. ( 4, 6)−   16. ( 5,1 )−   

17. (3, 5)−   18. (6, 5)−   19. ( )10, 13− −   20. ( 4, 7)− −  

 
Convert the given Cartesian equation to a polar equation. 
21. 3x =   22. 4y =   23. 24y x=   24. 42y x=  

25. 2 2 4x y y+ =  26. 2 2 3x y x+ =  27. 2 2x y x− =  28. 2 2 3x y y− =  

 
Convert the given polar equation to a Cartesian equation. 
29. ( )3sinr θ=     30. ( )4cosr θ=   

31. 
( ) ( )

4
sin 7cos

r
θ θ

=
+

   32. 
( ) ( )

6
cos 3sin

r
θ θ

=
+

 

33. ( )2secr θ=     34. ( )3cscr θ=    

35. ( )cos 2r r θ= +     36. ( ) ( )2 4sec cscr θ θ=  
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Match each equation with one of the graphs shown. 
37. ( )2 2cosr θ= +   38. ( )2 2sinr θ= +    39. ( )4 3cosr θ= +   

40. ( )3 4cosr θ= +   41. 5r =    42. ( )2sinr θ=  

A   B   C   

D   E    F  

 

Match each equation with one of the graphs shown.   

43. ( )logr θ=   44. ( )cosr θ θ=    45. cos
2

r θ =  
 

  

46. ( ) ( )2sin cosr θ θ=  47. ( )1 2sin 3r θ= +   48. ( )1 sin 2r θ= +  

A   B   C  

D    E    F  
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Sketch a graph of the polar equation. 
49. ( )3cosr θ=   50. ( )4sinr θ=   51. ( )3sin 2r θ=   

52. ( )4sin 4r θ=   53. ( )5sin 3r θ=   54. ( )4sin 5r θ=    

55. ( )3cos 2r θ=   56. ( )4cos 4r θ=   57. ( )2 2cosr θ= +   

58. ( )3 3sinr θ= +   59. ( )1 3sinr θ= +   60. ( )2 4cosr θ= +  

61. 2r θ=    62. 
1r
θ

=     

63. ( )3 secr θ= + , a conchoid  64. 
θ
1

=r , a lituus1 

65. ( ) ( )2sin tanr θ θ= , a cissoid   66. ( )22 1 sinr θ= − , a hippopede   

                                                 
1 This curve was the inspiration for the artwork featured on the cover of this book. 
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Section 8.3 Polar Form of Complex Numbers 
  
From previous classes, you may have encountered “imaginary numbers” – the square 
roots of negative numbers – and, more generally, complex numbers which are the sum of 
a real number and an imaginary number.  While these are useful for expressing the 
solutions to quadratic equations, they have much richer applications in electrical 
engineering, signal analysis, and other fields.  Most of these more advanced applications 
rely on properties that arise from looking at complex numbers from the perspective of 
polar coordinates. 
 
We will begin with a review of the definition of complex numbers. 
 
 

Imaginary Number i 

The most basic complex number is i, defined to be 1−=i , commonly called an 
imaginary number.  Any real multiple of i is also an imaginary number. 

 
 
Example 1 

Simplify 9− . 
 
We can separate 9−  as 19 − .  We can take the square root of 9, and write the 
square root of -1 as i.   

9− = i319 =−  
 
 
A complex number is the sum of a real number and an imaginary number. 
 
 

Complex Number 
A complex number is a number biaz += , where a and b are real numbers 
a  is the real part of the complex number 
b  is the imaginary part of the complex number 

1−=i  
 
 
Plotting a complex number 
We can plot real numbers on a number line.  For example, if we wanted to show the 
number 3, we plot a point: 
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To plot a complex number like i43− , we need more than 
just a number line since there are two components to the 
number.  To plot this number, we need two number lines, 
crossed to form a complex plane.   
 
 
 

Complex Plane 
In the complex plane, the horizontal axis is the real axis and the vertical axis is the 
imaginary axis. 

 
 
Example 2 

Plot the number i43−  on the complex plane. 
 
The real part of this number is 3, and the imaginary part is -
4.  To plot this, we draw a point 3 units to the right of the 
origin in the horizontal direction and 4 units down in the 
vertical direction. 
 
Because this is analogous to the Cartesian coordinate system 
for plotting points, we can think about plotting our complex 
number biaz +=  as if we were plotting the point (a, b) in 
Cartesian coordinates.  Sometimes people write complex 
numbers as z x yi= +  to highlight this relation. 

 
 
Arithmetic on Complex Numbers 
 
Before we dive into the more complicated uses of complex numbers, let’s make sure we 
remember the basic arithmetic involved.  To add or subtract complex numbers, we simply 
add the like terms, combining the real parts and combining the imaginary parts. 
 
 
Example 3 

Add i43−  and i52 + . 
 
Adding )52()43( ii ++− , we add the real parts and the imaginary parts 

ii 5423 +−+  
i+5  

 
 
Try it Now 
1. Subtract i52 +  from i43− . 

real 

imaginary 
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We can also multiply and divide complex numbers. 
 
 
Example 4 

Multiply:  )52(4 i+ . 
 
To multiply the complex number by a real number, we simply distribute as we would 
when multiplying polynomials. 
 

)52(4 i+    Distribute 
= i5424 ⋅+⋅    Simplify 

i208 +=  
 
 
Example 5 

Multiply:  )41)(32( ii +− . 
 
To multiply two complex numbers, we expand the product as we would with 
polynomials (the process commonly called FOIL – “first outer inner last”).   

)41)(32( ii +−   Expand 

= 212382 iii −−+   Since 1−=i , 12 −=i  
= )1(12382 −−−+ ii   Simplify 
= i514 +  

 
 
Example 6 

Divide (2 5 )
(4 )

i
i

+
−

. 

 
To divide two complex numbers, we have to devise a way to write this as a complex 
number with a real part and an imaginary part.   
 
We start this process by eliminating the complex number in the denominator.  To do 
this, we multiply the numerator and denominator by a special complex number so that 
the result in the denominator is a real number.  The number we need to multiply by is 
called the complex conjugate, in which the sign of the imaginary part is changed.  
Here, 4+i  is the complex conjugate of 4–i.  Of course, obeying our algebraic rules, we 
must multiply by 4+i  on both the top and bottom. 
(2 5 ) (4 )
(4 ) (4 )

i i
i i

+ +
⋅

− +
   

 
In the numerator, 
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(2 5 )(4 )i i+ +    Expand 
28 20 2 5i i i= + + +    Since 1−=i , 12 −=i  

8 20 2 5( 1)i i= + + + −   Simplify 
3 22i= +  

 
Multiplying the denominator  
(4 )(4 )i i− +     Expand 

2(16 4 4 )i i i− + −    Since 1−=i , 12 −=i  
(16 ( 1))− −   
=17 
 

Combining this we get 
3 22 3 22

17 17 17
i i+
= +   

 
 
Try it Now 
2.  Multiply i43−  and 2 3i+ . 
 
 
With the interpretation of complex numbers as points in a plane, which can be related to 
the Cartesian coordinate system, you might be starting to guess our next step – to refer to 
this point not by its horizontal and vertical components, but using its polar location, given 
by the distance from the origin and an angle. 
 
 
Polar Form of Complex Numbers 
 
Remember, because the complex plane is analogous to the Cartesian plane that we can 
think of a complex number z x yi= +  as analogous to the Cartesian point (x, y) and recall 
how we converted from (x, y) to polar (r, θ) coordinates in the last section. 
 
Bringing in all of our old rules we remember the following:  
 

r
x

=)cos(θ   )cos(θrx =  

r
y

=)sin(θ   )sin(θry =  

x
y

=)tan(θ   222 ryx =+  

 
 
With this in mind, we can write cos( ) sin( )z x yi r irθ θ= + = + . 
 

x + yi 

r 

θ 
y 

x 
real 

imaginary 
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Example 7 
Express the complex number i4  using polar coordinates.  
 
On the complex plane, the number 4i is a distance of 4 from 

the origin at an angle of 
2
π

, so 





+






=

2
sin4

2
cos44 ππ ii   

 
Note that the real part of this complex number is 0.  

 
 
In the 18th century, Leonhard Euler demonstrated a relationship between exponential and 
trigonometric functions that allows the use of complex numbers to greatly simplify some 
trigonometric calculations.  While the proof is beyond the scope of this class, you will 
likely see it in a later calculus class.  
 
 

Polar Form of a Complex Number and Euler’s Formula 
The polar form of a complex number is )sin()cos( θθ irrz += .  

An alternate form, which will be the primary one used, is θirez =  
 
Euler’s Formula states )sin()cos( θθθ irrrei +=  
 
Similar to plotting a point in the polar coordinate system we need r and θ  to find the 
polar form of a complex number. 

 
 
Example 8 

Find the polar form of the complex number -8. 
 
Treating this is a complex number, we can write it as -8+0i. 
 
Plotted in the complex plane, the number -8 is on the negative 
horizontal axis, a distance of 8 from the origin at an angle of π 
from the positive horizontal axis.   
 
The polar form of the number -8 is πie8 . 
 
Plugging r = 8 and θ = π back into Euler’s formula, we have:  

808)sin(8)cos(88 −=+−=+= iiei πππ  as desired. 
 
 
 
Example 9 
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Find the polar form of i44 +− . 
 
On the complex plane, this complex number would correspond to the point (-4, 4) on a 
Cartesian plane.  We can find the distance r and angle θ as we did in the last section. 
 

222 yxr +=  
222 4)4( +−=r  

2432 ==r  
 

To find θ, we can use 
r
x

=)cos(θ   

2
2

24
4)cos( −=

−
=θ  

This is one of known cosine values, and since the point is 

in the second quadrant, we can conclude that 
4

3πθ = . 

The polar form of this complex number is 
i

e 4
3

24
π

. 
 
 
Example 10 

Find the polar form of i53 −− . 
 
On the complex plane, this complex number would correspond to the point (-3, -5) on a 
Cartesian plane.  First, we find r. 

222 yxr +=  
222 )5()3( −+−=r  

34=r   
 

To find θ, we might use 
x
y

=)tan(θ  

3
5)tan(

−
−

=θ  

0304.1
3
5tan 1 =





= −θ  

 
This angle is in the wrong quadrant, so we need to find a second solution.  For tangent, 
we can find that by adding π. 

1720.40304.1 =+= πθ  
 
The polar form of this complex number is ie 1720.434 . 

Try it Now 
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3.  Write 3 i+  in polar form. 

 
 
Example 11 

Write 
i

e 63
π

 in complex a bi+  form. 
 







+






=

6
sin3

6
cos33 6 πππ

ie
i

   Evaluate the trig functions 

2
13

2
33 ⋅+⋅= i      Simplify 

2
3

2
33 i+=  

 
 
The polar form of a complex number provides a powerful way to compute powers and 
roots of complex numbers by using exponent rules you learned in algebra.  To compute a 
power of a complex number, we: 

1) Convert to polar form 
2) Raise to the power, using exponent rules to simplify 
3) Convert back to a + bi form, if needed 

 
 
Example 12 

Evaluate ( )644 i+− . 
 
While we could multiply this number by itself five times, that would be very tedious.  
To compute this more efficiently, we can utilize the polar form of the complex number.  

In an earlier example, we found that 
i

ei 4
3

2444
π

=+− .  Using this, 
 
( )644 i+−    Write the complex number in polar form 

6

4
3

24 







=

i
e

π

  Utilize the exponent rule mmm baab =)(  

( )
6

4
3

6
24 








=

i
e

π

  On the second factor, use the rule mnnm aa =)(  

( ) 6
4

3
6

24
⋅

=
i

e
π

  Simplify 
i

e 2
9

32768
π

=    
At this point, we have found the power as a complex number in polar form.  If we want 
the answer in standard a + bi form, we can utilize Euler’s formula. 
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





+






=

2
9sin32768

2
9cos3276832768 2

9 πππ

ie
i

 

 

Since 
2

9π
 is coterminal with 

2
π

, we can use our special angle knowledge to evaluate 

the sine and cosine. 







+








2
9sin32768

2
9cos32768 ππ i ii 32768)1(32768)0(32768 =+=  

 
We have found that ( ) ii 3276844 6 =+− . 

 
 
The result of the process can be summarized by DeMoivre’s Theorem.  This is a 
shorthand to using exponent rules. 
 
 

DeMoivre’s Theorem 

If ( ) ( )( )cos sinz r iθ θ= + , then for any integer n, ( ) ( )( )cos sinn nz r n i nθ θ= +  
 
 
We omit the proof, but note we can easily verify it holds in one case using Example 12: 

( ) iiii 32768
2

9sin
2

9cos32768
4

36sin
4

36cos24)44(
66 =














+






=














 ⋅+






 ⋅=+−

ππππ

 
 
Example 13 

Evaluate i9 . 
 
To evaluate the square root of a complex number, we can first note that the square root 

is the same as having an exponent of 
2
1

:  2/1)9(9 ii = . 

 
To evaluate the power, we first write the complex number in polar form.  Since 9i has 
no real part, we know that this value would be plotted along the vertical axis, a distance 

of 9 from the origin at an angle of 
2
π

.  This gives the polar form:  
i

ei 299
π

= . 

 
 

2/1)9(9 ii =    Use the polar form 
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=
2/1

29 






 i
e
π

   Use exponent rules to simplify 

2/1

22/19 







=

i
e
π

 

2
1

22/19
⋅

=
i

e
π

   Simplify 
i

e 43
π

=    Rewrite using Euler’s formula if desired 







+






=

4
sin3

4
cos3 ππ i  Evaluate the sine and cosine 

2
23

2
23 i+=  

 
Using the polar form, we were able to find a square root of a complex number. 

ii
2

23
2

239 +=  

 
Alternatively, using DeMoivre’s Theorem we could write  

2/1

29 






 i
e
π

= 1/2 1 19 cos sin 3 cos sin
2 2 2 2 4 4

i iπ π π π          ⋅ + ⋅ = +                    
 and simplify 

 
 
Try it Now 

4.  Evaluate ( )6
3 i+  using polar form. 

 
 
You may remember that equations like 42 =x have two solutions, 2 and -2 in this case, 
though the square root 4  only gives one of those solutions.  Likewise, the square root 
we found in Example 11 is only one of two complex numbers whose square is 9i.  
Similarly, the equation 3 8z =  would have three solutions where only one is given by the 
cube root.  In this case, however, only one of those solutions, z = 2, is a real value.  To 
find the others, we can use the fact that complex numbers have multiple representations 
in polar form. 
 
 
 
 
 
Example 14 
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Find all complex solutions to 3 8z = . 
 
Since we are trying to solve 3 8z = , we can solve for z as 1/38z = .  Certainly one of 
these solutions is the basic cube root, giving z = 2.  To find others, we can turn to the 
polar representation of 8.   
 
Since 8 is a real number, is would sit in the complex plane on the horizontal axis at an 
angle of 0, giving the polar form ie08 .  Taking the 1/3 power of this gives the real 
solution: 
( ) ( ) 2)0sin(2)0cos(2288 03/103/13/10 =+=== ieee ii  
 
However, since the angle 2π is coterminal with the angle of 0, we could also represent 
the number 8 as ie π28 .  Taking the 1/3 power of this gives a first complex solution: 

( ) ( ) iiieee
iii 31

2
32

2
12

3
2sin2

3
2cos2288 3

2
3/123/13/12 +−=








+






−=






+






===

πππ
ππ

 
For the third root, we use the angle of 4π, which is also coterminal with an angle of 0. 

Altogether, we found all three complex solutions to 3 8z = , 
2, 1 3 , 1 3z i i= − + − −  

 
Graphed, these three numbers would be equally spaced on a 
circle about the origin at a radius of 2.  
 
 
 

 
 
 

Important Topics of This Section 
Complex numbers 
Imaginary numbers 
Plotting points in the complex coordinate system 
Basic operations with complex numbers  
Euler’s Formula 
DeMoivre’s Theorem 
Finding complex solutions to equations 
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Try it Now Answers 
1. (3 4 ) (2 5 ) 1 9i i i− − + = −   

2. (3 4 )(2 3 ) 18i i i− + = +   

3. 3 i+  would correspond with the point ( )3,1  in the first quadrant. 

2 23 1 4 2r = + = =  

( ) 1sin
2

θ = , so 
6
πθ =  

3 i+  in polar form is 62
i

e
π

 

4. ( )6
3 i+ = ( )6

662 2 64cos( ) 64sin( ) 64
i ie e i
π π π π= = + = −  
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Section 8.3 Exercises 
Simplify each expression to a single complex number. 
1. 9−    2. 16−    3. 6 24− −    

4. 3 75− −    5. 2 12
2

+ −    6. 4 20
2

+ −  

 
Simplify each expression to a single complex number. 
7. ( )3 2 (5 3 )i i+ + −     8. ( ) ( )2 4 1 6i i− − + +  

9. ( )5 3 (6 )i i− + − −     10. ( )2 3 (3 2 )i i− − +  

11. ( )2 3 (4 )i i+     12. ( )5 2 (3 )i i−  

13. ( )6 2 (5)i−     14. ( )( )2 4 8i− +  

15. ( )2 3 (4 )i i+ −     16. ( )1 2 ( 2 3 )i i− + − +  

17. ( )4 2 (4 2 )i i− +     18. ( )( )3 4 3 4i i+ −  

19. 
3 4

2
i+

     20. 
6 2

3
i−

 

21. 
5 3
2

i
i

− +
     22. 

6 4i
i
+

 

23. 
2 3
4 3

i
i

−
+

     24. 
3 4
2

i
i

+
−

 

25. 6i    26. 11i    27. 17i    28. 24i  

 
Rewrite each complex number from polar form into a bi+  form. 

29. 23 ie   30. 44 ie   31. 66
i

e
π

  32. 38
i

e
π

   

33. 
5
43

i
e

π

  34. 
7
45

i
e

π

 

 
Rewrite each complex number into polar ire θ  form. 
35. 6    36. 8−    37. 4i−   38. 6i    

39. 2 2i+   40. 4 4i+   41. 3 3i− +   42. 4 4i− −   

43. 5 3i+   44. 4 7i+   45. 3 i− +   46. 2 3i− +  

47. 1 4i− −   48. 3 6i− −   49. 5 i−   50. 1 3i−   
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Compute each of the following, leaving the result in polar ire θ  form. 

51. 6 43 2  
i i

e e
π π  

  
  

  52. 
2 5
3 32 4

i i
e e

π π  
  
  

   53. 

3
4

6

6

3

i

i

e

e

π

π    

54. 

4
3

2

24

6

i

i

e

e

π

π    55. 
10

42
i

e
π 

 
 

   56. 
4

63
i

e
π 

 
 

    

57. 
2
316  

i
e

π

   58.
3
29

i
e

π

 

 
Compute each of the following, simplifying the result into a bi+  form. 
59. ( )82 2i+    60. ( )64 4i+    61. 3 3i− +    

62. 4 4i− −    63. 3 5 3i+    64. 4 4 7i+  

 
Solve each of the following equations for all complex solutions. 
65. 5 2z =   66. 7 3z =   67. 6 1z =   68. 8 1z =  
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Section 8.4 Vectors 
 
A woman leaves home, walks 3 miles north, then 2 miles southeast.  How far is she from 
home, and in which direction would she need to walk to return home?  How far has she 
walked by the time she gets home? 
 
This question may seem familiar – indeed we did a similar problem with a boat in the 
first section of this chapter.  In that section, we solved the problem using triangles.  In 
this section, we will investigate another way to approach the problem using vectors, a 
geometric entity that indicates both a distance and a direction.  We will begin our 
investigation using a purely geometric view of vectors. 
 
A Geometric View of Vectors 
 
 

Vector 
A vector is an object that has both a length and a direction. 
 
Geometrically, a vector can be represented by an arrow that has a fixed length and 
indicates a direction.  If, starting at the point A, a vector, which means “carrier” in 

Latin, moves toward point B, we write AB  to represent the vector. 
 
A vector may also be indicated using a single letter in boldface type, like u, or by 
capping the letter representing the vector with an arrow, like u . 

 
 
Example 1 

Draw a vector that represents the movement from the point P(-1, 2) to the point Q(3,3) 
 
By drawing an arrow from the first point to the second, 
we can construct a vector PQ .  
 
 
 
 

 
 
Try it Now 
1. Draw a vector, , that travels from the origin to the point (3, 5). 
 
 

v
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Using this geometric representation of vectors, we can visualize the addition and scaling 
of vectors.   
 
To add vectors, we envision a sum of two movements.  To find vu 

+ , we first draw the 
vector u , then from the end of u  we drawn the vector v .  This corresponds to the notion 
that first we move along the first vector, and then from that end position we move along 
the second vector.  The sum vu 

+  is the new vector that travels directly from the 
beginning of u  to the end of v in a straight path. 
 
 

Adding Vectors Geometrically 
To add vectors geometrically, draw v  starting from the end of  

.  The sum vu 

+  is the vector from the beginning of  to the  
end of v . 
 
 

 
 
Example 2 

Given the two vectors shown below, draw  
 
 
 
 
 
 
We draw v  starting from the end of , then draw in the sum 

vu 

+  from the beginning of  to the end of v . 
 

 
 
Notice that path of the walking woman from the beginning of the section could be 
visualized as the sum of two vectors.  The resulting sum vector would indicate her end 
position relative to home. 
 
Although vectors can exist anywhere in the plane, if we put the starting point at the origin 
it is easy to understand its size and direction relative to other vectors. 
 
To scale vectors by a constant, such as u3 , we can imagine adding uuu 

++ .  The result 
will be a vector three times as long in the same direction as the original vector.  If we 
were to scale a vector by a negative number, such as u− , we can envision this as the 
opposite of u ; the vector so that )( uu 

−+  returns us to the starting point.  This vector 
u−  would point in the opposite direction as u  but have the same length. 

 

u u

vu 

+

u

u

u  

v  

vu 

+  

u  
v  

u

 

v  

vu 

+  
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Another way to think about scaling a vector is to maintain its direction and multiply its 
length by a constant, so that u3 would point in the same direction but will be 3 times as 
long. 
 
 

Scaling a Vector Geometrically 
To geometrically scale a vector by a constant, scale the length of the vector by the 
constant. 
 
Scaling a vector by a negative constant will reverse the direction of the vector. 

 
 
Example 3 

Given the vector shown, draw u3 , u− , and u2− . 
 
 
The vector u3  will be three times as long.  The vector u−  will have the same length 
but point in the opposite direction.  The vector  will point in the opposite direction 
and be twice as long. 
 
 
 
 
 
 

 
 
By combining scaling and addition, we can find the difference between vectors 
geometrically as well, since )( vuvu 

−+=− . 
 
 
Example 4 

Given the vectors shown, draw  
 
 
 
 
 
 
From the end of u  we draw , then draw in the result.  

 
 
 
 
 

u2−

vu 

−

v−

u

 

u3  
u−  

u2−  

u  
v−  

vu 

−  

u  
v  
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Notice that the sum and difference of two vectors are the two 
diagonals of a parallelogram with the vectors u  and  as edges. 
 
 
 
 
Try it Now 
2. Using vector v from Try it Now #1, draw . 
 
 
Component Form of Vectors 
 
While the geometric interpretation of vectors gives us an intuitive understanding of 
vectors, it does not provide us a convenient way to do calculations.  
For that, we need a handy way to represent vectors.  Since a vector 
involves a length and direction, it would be logical to want to represent 
a vector using a length and an angle θ, usually measured from standard 
position.   
 
 

Magnitude and Direction of a Vector 

A vector u  can be described by its magnitude, or length, u , and an angle θ. 

A vector with length 1 is called unit vector. 
 
 
While this is very reasonable, and a common way to describe vectors, it is often more 
convenient for calculations to represent a vector by horizontal and vertical components. 
 
 

Component Form of a Vector 
The component form of a vector represents the vector using two components.  

yxu ,=
  indicates the vector represents a displacement of x units horizontally and y 

units vertically.   

 
Notice how we can see the magnitude of the vector as the length of the hypotenuse of 
a right triangle, or in polar form as the radius, r. 

 
 
 

v

v2−

u

 θ 
x
 

y 

u  
v  vu 

−  

u  
v  

vu 

+  

u

 θ 
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Alternate Notation for Vector Components 

Sometimes you may see vectors written as the combination of unit vectors  and j


, 
where  i



 points the right and j


 points up.  In other words, 0,1=i


 and . 

 
In this notation, the vector 4,3 −=u  would be written as jiu



 43 −=  since both 
indicate a displacement of 3 units to the right, and 4 units down. 

 
 
While it can be convenient to think of the vector yxu ,=

  as an arrow from the origin to 
the point (x, y), be sure to remember that most vectors can be situated anywhere in the 
plane, and simply indicate a displacement (change in position) rather than a position. 
It is common to need to convert from a magnitude and angle to the component form of 
the vector and vice versa.  Happily, this process is identical to converting from polar 
coordinates to Cartesian coordinates, or from the polar form of complex numbers to the 
a+bi form. 
 
 
Example 5 

Find the component form of a vector with length 7 at an angle of 135 degrees. 
 
Using the conversion formulas )cos(θrx =  and )sin(θry = , we can find the 
components 

2
27)135cos(7 −=°=x  

2
27)135sin(7 =°=y  

 

This vector can be written in component form as 
2

27,
2

27
− . 

 
 
Example 6 

Find the magnitude and angle θ  representing the vector 2,3 −=u . 
 
First we can find the magnitude by remembering the relationship between x, y and r: 

13)2(3 222 =−+=r  
13=r  

 
Second we can find the angle.  Using the tangent, 

i


1,0=j

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3
2)tan( −

=θ  

°−≈





−= − 69.33

3
2tan 1θ , or written as a coterminal positive angle, 326.31°.  This 

angle is in the 4th quadrant as desired. 
 
 
Try it Now 
3. Using vector v from Try it Now #1, the vector that travels from the origin to the point 

(3, 5), find the components, magnitude and angle θ  that represent this vector. 
 
 
In addition to representing distance movements, vectors are commonly used in physics 
and engineering to represent any quantity that has both direction and magnitude, 
including velocities and forces.  
 
 
Example 7 

An object is launched with initial velocity 200 meters per second at an angle of 30 
degrees.  Find the initial horizontal and vertical velocities.  
 
By viewing the initial velocity as a vector, we can resolve the vector into horizontal and 
vertical components.     

205.173
2
3200)30cos(200 ≈⋅=°=x  m/sec 

100
2
1200)30sin(200 =⋅=°=y  m/sec 

 
This tells us that, absent wind resistance, the object will travel horizontally at about 173 
meters each second.  Gravity will cause the vertical velocity to change over time – we’ll 
leave a discussion of that to physics or calculus classes. 

 
 
Adding and Scaling Vectors in Component Form 
 
To add vectors in component form, we can simply add the corresponding components.  
To scale a vector by a constant, we scale each component by that constant. 
 
 
 
 
 
 
 

200 m/s 

30° 
173 m/s 

100 m/s 
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Combining Vectors in Component Form 
To add, subtract, or scale vectors in component form 
If 1 2,u u u=
 , 1 2,v v v=

 , and c is any constant, then 

2211 , vuvuvu ++=+
  

2211 , vuvuvu −−=−
  

21 ,cucuuc =
  

 
 
Example 8 

Given 2,3 −=u  and 4,1−=v , find a new vector vuw  23 −=  
 
Using the vectors given, 

vuw  23 −=  
    4,122,33 −−−=   Scale each vector 

    8,26,9 −−−=    Subtract corresponding components 

    14,11 −=  
 
 
By representing vectors in component form, we can find the resulting displacement 
vector after a multitude of movements without needing to draw a lot of complicated non-
right triangles.  For a simple example, we revisit the problem from the opening of the 
section.  The general procedure we will follow is: 

1) Convert vectors to component form 
2) Add the components of the vectors  
3) Convert back to length and direction if needed to suit the context of the question 

 
 
Example 9 

A woman leaves home, walks 3 miles north, then 2 miles southeast.  How far is she 
from home, and what direction would she need to walk to return home?  How far has 
she walked by the time she gets home? 
 
Let’s begin by understanding the question in a little more depth.  
When we use vectors to describe a traveling direction, we often 
position things so north points in the upward direction, east 
points to the right, and so on, as pictured here. 
 
Consequently, travelling NW, SW, NE or SE, means we are 
travelling through the quadrant bordered by the given directions 
at a 45 degree angle. 
With this in mind, we begin by converting each vector to components.   

N 
NE 

E 

SE 
S 

SW 

W 

NW 
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A walk 3 miles north would, in components, be 3,0 .   
 
A walk of 2 miles southeast would be at an angle of 45° South of East.  Measuring from 
standard position the angle would be 315°.   
 
Converting to components, we choose to use the standard position angle so that we do 
not have to worry about whether the signs are negative or positive; they will work out 
automatically. 

414.1,414.1
2

22,
2
22)315sin(2),315cos(2 −≈

−
⋅⋅=°°  

 
Adding these vectors gives the sum of the movements in component form 

586.1,414.1414.1,414.13,0 =−+  
 
To find how far she is from home and the direction she would need to walk to return 
home, we could find the magnitude and angle of this vector. 

Length = 125.2586.1414.1 22 =+  
 
To find the angle, we can use the tangent 

414.1
586.1)tan( =θ  

°=





= − 273.48

414.1
586.1tan 1θ  north of east 

 
Of course, this is the angle from her starting point to her ending point.  To return home, 
she would need to head the opposite direction, which we could either describe as 
180°+48.273° = 228.273° measured in standard position, or as 48.273° south of west (or 
41.727° west of south).   
 
She has walked a total distance of 3 + 2 + 2.125 = 7.125 miles.  
 
Keep in mind that total distance travelled is not the same as the length of the resulting 
displacement vector or the “return” vector. 

 
 
Try it Now 
4. In a scavenger hunt, directions are given to find a buried treasure.  From a starting 

point at a flag pole you must walk 30 feet east, turn 30 degrees to the north and travel 
50 feet, and then turn due south and travel 75 feet.  Sketch a picture of these vectors, 
find their components, and calculate how far and in what direction you must travel to 
go directly to the treasure from the flag pole without following the map. 

3 
2 
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While using vectors is not much faster than using law of cosines with only two 
movements, when combining three or more movements, forces, or other vector 
quantities, using vectors quickly becomes much more efficient than trying to use 
triangles. 
 
 
Example 10 

Three forces are acting on an object as shown below, each measured in Newtons (N).  
What force must be exerted to keep the object in equilibrium (where the sum of the 
forces is zero)? 

   
 
We start by resolving each vector into components. 
 
The first vector with magnitude 6 Newtons at an angle of 30 degrees will have 
components 

3,33
2
16,

2
36)30sin(6),30cos(6 =⋅⋅=°°  

 
The second vector is only in the horizontal direction, so can be written as 0,7− . 
 
The third vector with magnitude 4 Newtons at an angle of 300 degrees will have 
components 

32,2
2

34,
2
14)300sin(4),300cos(4 −=

−
⋅⋅=°°  

 
To keep the object in equilibrium, we need to find a force vector yx,  so the sum of 

the four vectors is the zero vector, 0,0 .   

3 3, 3 7, 0 2, 2 3 , 0, 0x y+ − + − + =  Add component-wise 

3 3 7 2, 3 0 2 3 , 0, 0x y− + + − + =   Simplify 

3 3 5, 3 2 3 , 0, 0x y− − + =    Solve 

, 0, 0 3 3 5, 3 2 3x y = − − −  

, 3 3 5, 3 2 3 0.196, 0.464x y = − + − + ≈ −  

 

30° 

6 N 
7 N 

4 N 
300° 
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This vector gives in components the force that would need to be applied to keep the 
object in equilibrium.  If desired, we could find the magnitude of this force and 
direction it would need to be applied in. 
Magnitude = 504.0464.0)196.0( 22 =+− N 
 
Angle: 

196.0
464.0)tan(

−
=θ  

°−=






−

= − 089.67
196.0

464.0tan 1θ .   

 
This is in the wrong quadrant, so we adjust by finding the next angle with the same 
tangent value by adding a full period of tangent: 

°=°+°−= 911.112180089.67θ  
 
To keep the object in equilibrium, a force of 0.504 Newtons would need to be applied at 
an angle of 112.911°. 

 
 

Important Topics of This Section 
Vectors, magnitude (length) & direction 
Addition of vectors 
Scaling of vectors 
Components of vectors 
Vectors as velocity 
Vectors as forces 
Adding & Scaling vectors in component form 
Total distance travelled vs. total displacement 

 
 
Try it Now Answers 

1     2.  
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2. °=





=== − 04.59

3
5tan34magnitude5,3 1θv  

 
3.  
 
 
 
 
 
 
 
 

50,301.7375)30sin(50),30cos(5030

75,0)30sin(50),30cos(500,30 321

−=−°°+=

−=°°==

fv

vvv




 

Magnitude = 88.73 feet at an angle of 34.3° south of east.

75 ft 

50 ft 
30 ft 
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Section 8.4 Exercises 
 
Write the vector shown in component form. 

1.   2.  
 
Given the vectors shown, sketch vu 

+ , vu 

− , and u2 . 

3.   4.  
 
Write each vector below as a combination of the vectors u  and v  from question #3. 

5.   6.  
 
From the given magnitude and direction in standard position, write the vector in 
component form. 
7. Magnitude: 6, Direction: 45°  8. Magnitude: 10, Direction: 120°   
9. Magnitude: 8, Direction: 220°  10. Magnitude: 7, Direction: 305° 
 
Find the magnitude and direction of the vector. 
11. 4,0   12. 0,3−   13. 5,6   14. 7,3    

15. 1,2−   16. 13,10−   17. 5,2 −   18. 4,8 −    

19. 6,4 −−   20. 9,1−   
 
Using the vectors given, compute vu 

+ , vu 

− , and vu  32 − . 
21. 5,1, 3,2 =−= vu     22. 1,2, 4,3 −=−= vu    
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23. A woman leaves home and walks 3 miles west, then 2 miles southwest.  How far 
from home is she, and in what direction must she walk to head directly home? 
 

24. A boat leaves the marina and sails 6 miles north, then 2 miles northeast.  How far 
from the marina is the boat, and in what direction must it sail to head directly back to 
the marina? 
 

25. A person starts walking from home and walks 4 miles east, 2 miles southeast, 5 miles 
south, 4 miles southwest, and 2 miles east.  How far have they walked?  If they 
walked straight home, how far would they have to walk? 
 

26. A person starts walking from home and walks 4 miles east, 7 miles southeast, 6 miles 
south, 5 miles southwest, and 3 miles east.  How far have they walked?  If they 
walked straight home, how far would they have to walk? 
 

27. Three forces act on an object: 7,4,1,0, 5,8 321 −==−−= FFF


.  Find the net 

force acting on the object. 
 

28. Three forces act on an object: 7,0,3,8, 5,2 321 −=== FFF


.  Find the net force 

acting on the object. 
 

29. A person starts walking from home and walks 3 miles at 20° north of west, then 5 
miles at 10° west of south, then 4 miles at 15° north of east.  If they walked straight 
home, how far would they have to walk, and in what direction? 
 

30. A person starts walking from home and walks 6 miles at 40° north of east, then 2 
miles at 15° east of south, then 5 miles at 30° south of west.  If they walked straight 
home, how far would they have to walk, and in what direction? 
 

31. An airplane is heading north at an airspeed of 600 km/hr, but there is a wind blowing 
from the southwest at 80 km/hr.  How many degrees off course will the plane end up 
flying, and what is the plane’s speed relative to the ground? 
 

32. An airplane is heading north at an airspeed of 500 km/hr, but there is a wind blowing 
from the northwest at 50 km/hr.  How many degrees off course will the plane end up 
flying, and what is the plane’s speed relative to the ground? 
 

33. An airplane needs to head due north, but there is a wind blowing from the southwest 
at 60 km/hr.  The plane flies with an airspeed of 550 km/hr.  To end up flying due 
north, the pilot will need to fly the plane how many degrees west of north? 
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34. An airplane needs to head due north, but there is a wind blowing from the northwest 

at 80 km/hr.  The plane flies with an airspeed of 500 km/hr.  To end up flying due 
north, the pilot will need to fly the plane how many degrees west of north? 
 

35. As part of a video game, the point (5, 7) is rotated counterclockwise about the origin 
through an angle of 35 degrees.  Find the new coordinates of this point. 
 

36. As part of a video game, the point (7, 3) is rotated counterclockwise about the origin 
through an angle of 40 degrees.  Find the new coordinates of this point. 
 

37. Two children are throwing a ball back and forth straight across the back seat of a car. 
The ball is being thrown 10 mph relative to the car, and the car is travelling 25 mph 
down the road.  If one child doesn't catch the ball and it flies out the window, in what 
direction does the ball fly (ignoring wind resistance)? 
 

38. Two children are throwing a ball back and forth straight across the back seat of a car. 
The ball is being thrown 8 mph relative to the car, and the car is travelling 45 mph 
down the road.  If one child doesn't catch the ball and it flies out the window, in what 
direction does the ball fly (ignoring wind resistance)? 
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Section 8.5 Dot Product 
 
Now that we can add, subtract, and scale vectors, you might be wondering whether we 
can multiply vectors.  It turns out there are two different ways to multiply vectors, one 
which results in a number, and one which results in a vector.  In this section, we'll focus 
on the first, called the dot product or scalar product, since it produces a single numeric 
value (a scalar).  We'll begin with some motivation. 
 
In physics, we often want to know how much of a force is acting in the direction of 
motion.  To determine this, we need to know the angle between direction of force and the 
direction of motion.  Likewise, in computer graphics, the lighting system determines how 
bright a triangle on the object should be based on the angle between object and the 
direction of the light.  In both applications, we're interested in the angle between the 
vectors, so let's start there. 
 
Suppose we have two vectors, 21 , aaa =

  and 21 ,bbb =


.   Using our polar coordinate 

conversions, we could write )sin(),cos( αα aaa 

=  and )sin(),cos( ββ bbb


= .  

Now, if we knew the angles α and β, we wouldn't have much work to do - 
the angle between the vectors would be βαθ −= .  While we certainly 
could use some inverse tangents to find the two angles, it would be great 
if we could find a way to determine the angle between the vector just 
from the vector components. 
 
To help us manipulate βαθ −= , we might try introducing a trigonometric function: 

( ) ( )βαθ −= coscos     
 
Now we can apply the difference of angles identity 

( ) ( ) ( ) ( ) ( )βαβαθ sinsincoscoscos +=  
 

Now )cos(1 αaa 

= , so 
a
a


1)cos( =α , and likewise for the other three components.  

Making those substitutions, 

( )
ba

baba
b
b

a
a

b
b

a
a











22112211cos
+

=+=θ    

( ) 2211cos bababa +=θ


  

 
Notice the expression on the right is a very simple calculation based on the components 
of the vectors.  It comes up so frequently we define it to be the dot product of the two 
vectors, notated by a dot.  This gives us two definitions of the dot product. 
 

β 

θ 

α 
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Definitions of the Dot Product 

2211 bababa +=⋅


   Component definition 

( )θcosbaba








=⋅   Geometric definition 

 
 
The first definition, 2211 bababa +=⋅



 , gives us a simple way to calculate the dot product 

from components.  The second definition, ( )θcosbaba








=⋅ , gives us a geometric 

interpretation of the dot product, and gives us a way to find the angle between two 
vectors, as we desired. 
 
 
Example 1 

Find the dot product 1,52,3 ⋅− . 
 
Using the first definition, we can calculate the dot product by multiplying the x 
components and adding that to the product of the y components. 
 

13215)1)(2()5)(3(1,52,3 =−=−+=⋅−  
 
 
Example 2 

Find the dot product of the two vectors shown. 
 
We can immediately see that the magnitudes of the 
two vectors are 7 and 6.  We can quickly calculate 
that the angle between the vectors is 150°.  Using the geometric definition of the dot 
product, 

( ) 321
2
342)150cos()7)(6(cos =⋅=°==⋅ θbaba







 . 

 
 
Try it Now  
1.  Calculate the dot product  6,23,7 −−⋅−  

 
 
Now we can return to our goal of finding the angle between vectors. 
 
 
 
 

30° 

6  
7  
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Example 3 
An object is being pulled up a ramp in the direction 1,5  by a 

rope pulling in the direction 2,4 .  What is the angle between 
the rope and the ramp? 
 
Using the component form, we can easily calculate the dot product. 

22220)2)(1()4)(5(2,41,5 =+=+=⋅=⋅ba


  
 
We can also calculate the magnitude of each vector. 

2615 22 =+=a ,   2024 22 =+=b


 

 
Substituting these values into the geometric definition, we can solve for the angle 
between the vectors. 

( )θcosbaba








=⋅  

( )θcos202622 =  

°≈







= − 255.15

2026
22cos 1θ . 

 
 
Example 4 

Calculate the angle between the vectors 4,6  and 3,2− . 
 
Calculating the dot product, 01212)3)(4()2)(6(3,24,6 =+−=+−=−⋅  
 
We don't even need to calculate the magnitudes in this case since the dot product is 0. 

( )θcosbaba








=⋅  

( )θcos0 ba




=  

( ) °==













= −− 900cos0cos 11

ba




θ  

 
 
With the dot product equaling zero, as in the last example, the angle between the vectors 
will always be 90°, indicating that the vectors are orthogonal, a more general way of 
saying perpendicular.  This gives us a quick way to check if vectors are orthogonal.  
Also, if the dot product is positive, then the inside of the inverse cosine will be positive, 
giving an angle less than 90°.  A negative dot product will then lead to an angle larger 
than 90° 
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Sign of the Dot Product 
If the dot product is: 
Zero  The vectors are orthogonal (perpendicular). 
Positive The angle between the vectors is less than 90° 
Negative The angle between the vectors is greater than 90° 

 
 
Try it Now  
2.  Are the vectors  3,7−  and 6,2 −−  orthogonal?  If not, find the angle between them. 

 
 
Projections 
 
In addition to finding the angle between vectors, sometimes we 
want to know how much one vector points in the direction of 
another.  For example, when pulling an object up a ramp, we 
might want to know how much of the force is exerted in the direction of motion.  To 
determine this we can use the idea of a projection. 

 
 
In the picture above, u  is a projection of a  onto b



.  In other words, it is the portion of 
a  that points in the same direction as b



.   
 
To find the length of u , we could notice that it is one side of a right triangle.  If we 

define θ to be the angle between a  and u , then 
a
u




=)cos(θ ,  so  ua 

=)cos(θ .   

 
While we could find the angle between the vectors to determine this magnitude, we could 
skip some steps by using the dot product directly.  Since )cos(θbaba









=⋅ , 

b
baa 





 ⋅
=)cos(θ .  Using this, we can rewrite )cos(θau 

=  as 
b

bau 





 ⋅
= .  This gives us 

the length of the projection, sometimes denoted as 
b

bauacompb 









⋅
== . 

 

a  a  

b


 b


 
u  

v  
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To find the vector u  itself, we could first scale b


 to a unit vector with length 1: 
b
b




.  

Multiplying this by the length of the projection will give a vector in the direction of b


 
but with the correct length. 

b
b

ba
b
b

b
ba

b
buaprojb










































⋅

=












 ⋅
== 2  

 
Projection Vector 

The projection of vector a  onto b


 is b
b

baaprojb




























⋅

= 2  

The magnitude of the projection is 
b

baacompb 









⋅
=  

 
 
Example 5 

Find the projection of the vector 2,3 −  onto the vector 6,8 . 
 
We will need to know the dot product of the vectors and the 
magnitude of the vector we are projecting onto. 

121224)6)(2()8)(3(6,82,3 =−=−+=⋅−  

101003664686,8 22 ==+=+=  
 

The magnitude of the projection will be 
5
6

10
12

6,8
6,82,3

==
⋅−

. 

 
To find the projection vector itself, we would multiply that magnitude by 6,8  scaled 
to a unit vector. 

25
18,

25
24

50
36,

50
486,8

50
6

10
6,8

5
6

6,8
6,8

5
6

==== . 

 
Based on the sketch above, this answer seems reasonable. 
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Try it Now 
3. Find the component of the vector  4,3−  that is orthogonal to the vector 4,8−  

 
 
Work 
 
In physics, when a constant force causes an object to move, the mechanical work done 
by that force is the product of the force and the distance the object is moved.  However, 
we only consider the portion of force that is acting in the direction of motion. 
 
This is simply the magnitude of the projection of the force 

vector onto the distance vector, 
d

dF





⋅ .  The work done is the 

product of that component of force times the distance moved, 
the magnitude of the distance vector. 

dFd
d

dFWork










⋅=












 ⋅
=  

 
It turns out that work is simply the dot product of the force vector and the distance vector. 
 
 

Work 

When a force F


 causes an object to move some distance d


, the work done is 

dFWork




⋅=  
 
 
Example 6 

A cart is pulled 20 feet by applying a force of 30 
pounds on a rope held at a 30 degree angle.  How 
much work is done? 
 
Since work is simply the dot product, we can take 
advantage of the geometric definition of the dot product in this case. 

615.519)30cos()20)(30()cos( ≈°=⋅=⋅= θdFdFWork







ft-lbs. 

 
 
Try it Now 
4.  Find the work down moving an object from the point (1, 5) to (9, 14) by the force 

vector 2,3=F


  

30° 

30 pounds  

20 feet 

F


 
d


 
u  
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Important Topics of This Section 
Calculate Dot Product 
   Using component definition 
   Using geometric definition 
Find the angle between two vectors 
Sign of the dot product 
Projections 
Work 

 
 
Try it Now Answers 
1.  41814)6)(3()2)(7(6,23,7 −=−=−+−−=−−⋅−  
 
2.  In the previous Try it Now, we found the dot product was -4, so the vectors are not 

orthogonal.  The magnitudes of the vectors are ( ) 5837 22 =+−  and 

( ) 4062 22 =+− .  The angle between the vectors will be 

°≈






 −
= − 764.94

4058
4cos 1θ  

 
3. We want to find the component of 4,3−  that is orthogonal to the 

vector 4,8− .  In the picture to the right, that component is vector 
v .  Notice that avu 

=+ , so if we can find the projection vector, 
we can find v . 

( ) 2,44,8
80
404,8

4)8(

4,84,3
2

22
2 −=−=−















+−

−⋅−
=
















⋅

== b
b

baaproju b











 . 

 
Now we can solve avu 

=+  for v .   
2,12,44,3 =−−−=−= uav   

 
4. The distance vector is 9,8514,19 =−− .   

The work is the dot product:  4218249,82,3 =+=⋅=⋅= dFWork




a

 b


 
u

 

v
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Section 8.5 Exercises 
 
Two vectors are described by their magnitude and direction in standard position.  Find 
the dot product of the vectors. 
 
1. Magnitude: 6, Direction: 45°;  Magnitude: 10, Direction: 120°   
2. Magnitude: 8, Direction: 220°;  Magnitude: 7, Direction: 305° 
 
Find the dot product of each pair of vectors.   
3. 4,0 ; 0,3−    4. 5,6 ; 7,3    

5. 1,2− ; 13,10−    6. 5,2 − ; 4,8 −  
 
Find the angle between the vectors 
7. 4,0 ; 0,3−    8. 5,6 ; 7,3  

9. 4,2 ; 3,1 −    10. 1,4− ; 2,8 −  

11. 2,4 ; 4,8    12. 3,5 ; 10,6−   
 
13.  Find a value for k so that  7,2  and 4,k  will be orthogonal. 

14.  Find a value for k so that  5,3−  and k,2  will be orthogonal. 
 
15.  Find the magnitude of the projection of 4,8 −  onto 3,1 − . 

16.  Find the magnitude of the projection of 7,2  onto 5,4 . 

17.  Find the projection of 10,6−  onto 3,1 − . 

18.  Find the projection of 4,0  onto 7,3 . 
 
19.  A scientist needs to determine the angle of reflection when a laser hits a mirror.  The 

picture shows the vector representing the laser beam, and a vector that is orthogonal 
to the mirror.  Find the acute angle between these, the angle of reflection. 

 
20. A triangle has coordinates at A: (1,4), B: (2,7), and C: (4,2).  Find the angle at point B. 
 
21.  A boat is trapped behind a log lying parallel to the 

dock.  It only requires 10 pounds of force to pull 
the boat directly towards you, but because of the 
log, you'll have to pull at a 45° angle.  How much 
force will you have to pull with?  (We're going to 
assume that the log is very slimy and doesn't 
contribute any additional resistance.) 
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22.  A large boulder needs to be dragged to a new position.  
If pulled directly horizontally, the boulder would 
require 400 pounds of pulling force to move.  We 
need to pull the boulder using a rope tied to the back 
of a large truck, forming a 15° angle from the ground.  How much force will the 
truck need to pull with? 

 
23.  Find the work done against gravity by pushing a 20 pound cart 10 feet up a ramp that 

is 10° above horizontal.  Assume there is no friction, so the only force is 20 pounds 
downwards due to gravity.   

 
24.  Find the work done against gravity by pushing a 30 pound cart 15 feet up a ramp that 

is 8° above horizontal.  Assume there is no friction, so the only force is 30 pounds 
downwards due to gravity.   

 
25.  An object is pulled to the top of a 40 foot ramp that forms a 10° 

angle with the ground.  It is pulled by rope exerting a force of 
120 pounds at a 35° angle relative to the ground.  Find the 
work done. 

 
26.  An object is pulled to the top of a 30 foot ramp that forms a 20° angle with the 

ground.  It is pulled by rope exerting a force of 80 pounds at a 30° angle relative to 
the ground.  Find the work done. 

 
 
 

15° 

10° 

35° 
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Section 8.6 Parametric Equations 
 
Many shapes, even ones as simple as circles, cannot be represented as an equation where 
y is a function of x.  Consider, for example, the path a moon follows as it orbits around a 
planet, which simultaneously rotates around a sun.  In some cases, polar equations 
provide a way to represent such a path.  In others, we need a more versatile approach that 
allows us to represent both the x and y coordinates in terms of a third variable, or 
parameter. 
 
 

Parametric Equations 
A system of parametric equations is a pair of functions x(t) and y(t) in which the x 
and y coordinates are the output, represented in terms of a third input parameter, t.  

 
 
Example 1 

Moving at a constant speed, an object moves at a steady rate along a straight path from 
coordinates (-5, 3) to the coordinates (3, -1) in 4 seconds, where the coordinates are 
measured in meters.  Find parametric equations for the position of the object. 
 
The x coordinate of the object starts at -5 meters, and goes to +3 meters, this means the 
x direction has changed by 8 meters in 4 seconds, giving us a rate of 2 meters per 
second.  We can now write the x coordinate as a linear function with respect to time, t, 

ttx 25)( +−= .  Similarly, the y value starts at 3 and goes to -1, giving a change in y 
value of 4 meters, meaning the y values have decreased by 
4 meters in 4 seconds, for a rate of -1 meter per second, 
giving equation tty −= 3)( .  Together, these are the 
parametric equations for the position of the object: 

tty
ttx

−=
+−=

3)(
25)(

 

 
Using these equations, we can build a table of t, x, and y values.  Because of the context, 
we limited ourselves to non-negative t values for this example, but in general you can 
use any values. 
 
From this table, we could create three possible graphs: a graph of x vs. t, which would 
show the horizontal position over time, a graph of y vs. t, which would show the vertical 
position over time, or a graph of y vs. x, showing the position of the object in the plane.   
 
 
 
 
 
 

t x y 
0 -5 3 
1 -3 2 
2 -1 1 
3 1 0 
4 3 -1 
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Position of x as a function of time  Position of y as a function of time 

                                 
 
Position of y relative to x 

 
 
Notice that the parameter t does not explicitly show up in this third graph.  Sometimes, 
when the parameter t does represent a quantity like time, we might indicate the direction 
of movement on the graph using an arrow, as shown above. 

 
 
There is often no single parametric representation for a curve. In 
Example 1 we assumed the object was moving at a steady rate 
along a straight line. If we kept the assumption about the path 
(straight line) but did not assume the speed was constant, we might 
get a system like: 

2

2

3)(
25)(

tty
ttx

−=

+−=
 

 
This starts at (-5, 3) when t = 0 and ends up at (3, -1) 
when t = 2.  If we graph the x(t) and y(t) function 
separately, we can see that those are no longer linear, 
but if we graph x vs. y we will see that we still get a 
straight-line path. 

t 
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Example 2 
Sketch a graph of  

tty
ttx
+=
+=

2)(
1)( 2

 

 
We can begin by creating a table of values.  From this table, we 
can plot the (x, y) points in the plane, sketch in a rough graph of 
the curve, and indicate the direction of motion with respect to 
time by using arrows. 

 
 
 
Notice that here the parametric equations describe a shape for which y is not a function of 
x.  This is an example of why using parametric equations can be useful – since they can 
represent such a graph as a set of functions.  This particular graph also appears to be a 
parabola where x is a function of y, which we will soon verify. 
 
 
Example 3 

Sketch a graph of  
( ) 3cos( )
( ) 3sin( )

x t t
y t t

=
=

 

 
These equations should look familiar.  Back when we first 
learned about sine and cosine we found that the coordinates 
of a point on a circle of radius r at an angle of θ will be 

cos( ), sin( )x r y rθ θ= = .  The equations above are in the 
same form, with 3r = , and t used in place of θ. 
 
This suggests that for each value of t, these parametric 
equations give a point on a circle of radius 3 at the angle 
corresponding to t.  At 0t = , the graph would be at 

3cos(0), 3sin(0)x y= = , the point (3,0).  Indeed, these 
equations describe the equation of a circle, drawn 
counterclockwise. 
 

t x y 
-3 10 -1 
-2 5 0 
-1 2 1 
0 1 2 
1 2 3 
2 5 4 
 

(rcos(θ), rsin(θ)) 

r 

θ 
y 

x 
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Interestingly, these similar parametric equations also describe the circle of radius 3: 
( ) 3sin( )
( ) 3cos( )

x t t
y t t

=
=

 

 
The difference with these equations it the graph would start at 3sin(0), 3cos(0)x y= = , 
the point (0,3).  As t increases from 0, the x value will increase, indicating these 
equations would draw the graph in a clockwise direction. 

 
 
While creating a t-x-y table, plotting points and connecting the dots with a smooth curve 
usually works to give us a rough idea of what the graph of a system of parametric 
equations looks like, it's generally easier to use technology to create these tables and 
(simultaneously) much nicer-looking graphs. 
 
 
Example 4 

Sketch a graph of 
)sin(3)(
)cos(2)(

tty
ttx

=
=

. 

 
Notice first that this equation looks very similar to the ones 
from the previous example, except the coefficients are not 
equal.  You might guess that the pairing of cos and sin will 
still produce rotation, but now x will vary from -2 to 2 while 
y will vary from -3 to 3, creating an ellipse. 
 
Using technology we can generate a graph of this equation, 
verifying it is indeed an ellipse. 
 
Similar to graphing polar equations, you must change the MODE on your calculator (or 
select parametric equations on your graphing technology) before graphing a system of 
parametric equations.  You will know you have successfully entered parametric mode 
when the equation input has changed to ask for a x(t)= and y(t)= pair of equations.   

 
 
Try it Now 

1. Sketch a graph of  
)2sin(3)(
)3cos(4)(

tty
ttx

=
=

.  This is an example of a Lissajous figure. 
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Example 5 
The populations of rabbits and wolves on an island over time are given by the graphs 
below.  Use these graphs to sketch a graph in the r-w plane showing the relationship 
between the number of rabbits and number of wolves. 
 

 
For each input t, we can determine the 
number of rabbits, r, and the number of wolves, w, from the respective graphs, and then 
plot the corresponding point in the r-w plane.   
 

 
This graph helps reveal the cyclical interaction between the two populations. 

 
 
Converting from Parametric to Cartesian 
 
In some cases, it is possible to eliminate the parameter t, allowing you to write a pair of 
parametric equations as a Cartesian equation. 
 
It is easiest to do this if one of the x(t) or y(t) functions can easily be solved for t, 
allowing you to then substitute the remaining expression into the second part. 
 
 
Example 6 

Write 
tty

ttx
+=
+=

2)(
1)( 2

 as a Cartesian equation, if possible. 

 
Here, the equation for y is linear, so is relatively easy to solve for t.  Since the resulting 
Cartesian equation will likely not be a function, and for convenience, we drop the 
function notation. 

0
2
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ty += 2   Solve for t 
ty =− 2   Substitute this for t in the x equation 

1)2( 2 +−= yx  
 
Notice that this is the equation of a parabola with x as a function of y, with vertex at 
(1,2), opening to the right.  Comparing this with the graph from Example 2, we see 
(unsurprisingly) that it yields the same graph in the x-y plane as did the original 
parametric equations. 

 
 
Try it Now 

2. Write   
6

3

)(
)(

tty
ttx

=

=
as a Cartesian equation, if possible. 

 
 
Example 7 

Write 
)log()(
2)(

tty
ttx

=
+=  as a Cartesian equation, if possible. 

 
We could solve either the first or second equation for t.  Solving the first, 

2+= tx  

tx =− 2   Square both sides 

( ) tx =− 22   Substitute into the y equation 

( )( )22log −= xy  
 
Since the parametric equation is only defined for 0>t , this Cartesian equation is 
equivalent to the parametric equation on the corresponding domain.  The parametric 
equations show that when t > 0, x > 2 and y > 0, so the domain of the Cartesian equation 
should be limited to x > 2. 

 
 
To ensure that the Cartesian equation is as equivalent as possible to the original 
parametric equation, we try to avoid using domain-restricted inverse functions, such as 
the inverse trig functions, when possible.  For equations involving trig functions, we 
often try to find an identity to utilize to avoid the inverse functions. 
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Example 8 

Write 
)sin(3)(
)cos(2)(

tty
ttx

=
=

 as a Cartesian equation, if possible. 

 
To rewrite this, we can utilize the Pythagorean identity 1)(sin)(cos 22 =+ tt . 

)cos(2 tx =  so )cos(
2

tx
=  

)sin(3 ty =  so )sin(
3

ty
=  

 
Starting with the Pythagorean Identity, 

1)(sin)(cos 22 =+ tt   Substitute in the expressions from the parametric form 

1
32

22

=





+






 yx   Simplify 

1
94

22

=+
yx  

 
This is a Cartesian equation for the ellipse we graphed earlier. 

 
 
Parameterizing Curves 
 
While converting from parametric form to Cartesian can be useful, it is often more useful 
to parameterize a Cartesian equation – converting it into parametric form. 
 
If the Cartesian equation gives one variable as a function of the other, then 
parameterization is trivial – the independent variable in the function can simply be 
defined as t. 
 
 
Example 9 

Parameterize the equation yyx 23 −= . 
 
In this equation, x is expressed as a function of y.  By defining ty =  we can then 
substitute that into the Cartesian equation, yielding ttx 23 −= .  Together, this produces 
the parametric form: 

tty
tttx

=
−=

)(
2)( 3
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Try it Now 
3. Write 322 =+ yx  in parametric form, if possible. 

 
 
In addition to parameterizing Cartesian equations, we also can parameterize behaviors 
and movements. 
 
 
Example 10 

A robot follows the path shown.  Create a table of values for the 
x(t) and y(t) functions, assuming the robot takes one second to 
make each movement. 
 
Since we know the direction of motion, we can introduce 
consecutive values for t along the path of the robot.  Using these 
values with the x and y coordinates of the robot, we can create the 
tables.  For example, we designate the starting point, at (1, 1), as 
the position at t = 0, the next point at (3, 1) as the position at t = 1, 
and so on. 
 
 
 
 
Notice how this also ties back to vectors.  The journey of the robot as it moves through 
the Cartesian plane could also be displayed as vectors and total distance traveled and 
displacement could be calculated. 

 
 
Example 11 

A light is placed on the edge of a bicycle tire as shown and the bicycle starts rolling 
down the street.  Find a parametric equation for the position of the light after the wheel 
has rotated through an angle of θ. 
 

 
 
Relative to the center of the wheel, the position of the light can be found as the 
coordinates of a point on a circle, but since the x coordinate begins at 0 and moves in 
the negative direction, while the y coordinate starts at the lowest value, the coordinates 
of the point will be given by: 

θ 

Starting Rotated by θ 

r 

t 0 1 2 3 4 5 6 
x 1 3 3 2 4 1 1 
 

t 0 1 2 3 4 5 6 
y 1 1 2 2 4 5 4 
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)cos(
)sin(
θ
θ

ry
rx
−=
−=

 

 
The center of the wheel, meanwhile, is moving horizontally.  It remains at a constant 
height of r, but the horizontal position will move a distance equivalent to the arclength 
of the circle drawn out by the angle, θrs = .  The position of the center of the circle is 
then 

ry
rx

=
= θ

 

 
Combining the position of the center of the wheel with the position of the light on the 
wheel relative to the center, we get the following parametric equationw, with θ as the 
parameter: 

( )
( ))cos(1)cos(

)sin()sin(
θθ
θθθθ

−=−=
−=−=

rrry
rrrx

 

 
The result graph is called a cycloid. 

 
 
 
Example 12 

A moon travels around a planet 
as shown, orbiting once every 10 
days.  The planet travels around 
a sun as shown, orbiting once 
every 100 days.  Find a 
parametric equation for the 
position of the moon, relative to 
the center of the sun, after t days. 
 
For this example, we’ll assume 
the orbits are circular, though in 
real life they’re actually 
elliptical.   
 
 
 
 

6 
30 
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The coordinates of a point on a circle can always be written in the form 

)sin(
)cos(

θ
θ

ry
rx

=
=

 

 
Since the orbit of the moon around the planet has a period of 10 days, the equation for 
the position of the moon relative to the planet will be 







=






=







=






=

ttty

tttx

5
sin6

10
2sin6)(

5
cos6

10
2cos6)(

ππ

ππ

 

 
With a period of 100 days, the equation for the position of the planet relative to the sun 
will be 







=






=







=






=

ttty

tttx

50
sin30

100
2sin30)(

50
cos30

100
2cos30)(

ππ

ππ

 

 
Combining these together, we can find the 
position of the moon relative to the sun as the 
sum of the components. 







+






=







+






=

ttty

tttx

50
sin30

5
sin6)(

50
cos30

5
cos6)(

ππ

ππ

 

 
The resulting graph is shown here. 

 
 
Try it Now 
4. A wheel of radius 4 is rolled around the outside of a circle of radius 7.  Find a 

parametric equation for the position of a point on the boundary of the smaller wheel.  
This shape is called an epicycloid. 
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Important Topics of This Section 
Parametric equations 
Graphing x(t) , y(t) and the corresponding x-y graph 
Sketching graphs and building a table of values 
Converting parametric to Cartesian 
Converting Cartesian to parametric (parameterizing curves) 

 
 
Try it Now Answers 

1.  
 

2. ( )23ty = , so 2xy =  
 

3. 
)sin(3)(
)cos(3)(

tty
ttx

=
=

 

 
4. The center of the small wheel rotates in circle with radius 7+4=11. 

Since the circumference of the small circle is π8  and the circumference of the large 
circle is π22 , in the time it takes to roll around the large circle, the small circle will 

have rotated 
4

11
8
22

=
π
π

 rotations.  We use this as the stretch factor.  The position of a 

point on the small circle will be the combination of the position of the center of the 
small wheel around the center of the large wheel, and the position of the point around 
the small wheel: 

( )

( )

11( ) 11cos 4cos
4

11( ) 11sin 4sin
4

x t t t

y t t t

 = −  
 
 = −  
 
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Section 8.6 Exercises 
 
Match each set of equations with one of the graphs below. 

1. ( )
( ) 2 1

x t t
y t t

 =
 = −

  2. ( )
( ) 2

1x t t
y t t

 = −
 =

  3. ( ) ( )
( ) ( )

4sin
2cos

x t t
y t t

 =
 =

  

4. ( )
( )

2sin( )
4cos( )

x t t
y t t

 =
 =

  5. ( )
( )

2
3 2

x t t
y t t

 = +
 = −

  6. ( )
( )

2 2
3

x t t
y t t

 = − −
 = +

  

A  B  C  

D  E  F  
 
From each pair of graphs in the t-x and t-y planes shown, sketch a graph in the x-y plane. 

7.  8.  
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From each graph in the x-y plane shown, sketch a graph of the parameter functions in the 
t-x and t-y planes. 
 

9.   10.  
 
 
Sketch the parametric equations for 2 2t− ≤ ≤ . 

11. ( )
( ) 2

1 2x t t
y t t

 = +
 =

    12. ( )
( ) 3

2 2x t t
y t t

 = −
 =

  

 
 
Eliminate the parameter t to rewrite the parametric equation as a Cartesian equation 

13. ( )
( )

5
8 2

x t t
y t t

 = −
 = −

    14. ( )
( )

6 3
10

x t t
y t t

 = −
 = −

  

15. 
( )
( )

2 1

3

x t t

y t t

 = +


=
    16. ( )

( ) 2

3 1
2

x t t
y t t

 = −
 =

  

17. ( )
( )

2
1 5

tx t e
y t t

 =
 = −

    18. ( ) ( )
( )

4log
3 2

x t t
y t t

 =
 = +

  

19. ( )
( )

3

2
x t t t
y t t

 = −
 =

    20. ( )
( )

4

2
x t t t
y t t

 = −
 = +

  

21. ( )
( )

2

6

t

t

x t e
y t e

 =
 =

    22. ( )
( )

5

10

x t t
y t t

 =
 =

  

23. ( ) ( )
( ) ( )

4cos
5sin  

x t t
y t t

 =
 =

    24. ( ) ( )
( ) ( )

3sin
6cos

x t t
y t t

 =
 =
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Parameterize (write a parametric equation for) each Cartesian equation  
25. ( ) 23 3y x x= +     26. ( ) ( )2sin 1y x x= +   

27. ( ) ( )3logx y y y= +     28. ( ) 2x y y y= +  

29. 
2 2

1
4 9
x y

+ =     30. 
2 2

1
16 36
x y

+ =   

 
Parameterize the graphs shown. 

31.   32.  
 

33.   34.  
 
35. Parameterize the line from ( 1,5)−  to (2,3)  so that the line is at ( 1,5)−  at t = 0, and at 

(2, 3)  at t = 1. 
 

36. Parameterize the line from (4,1)  to (6, 2)−  so that the line is at (4,1)  at t = 0, and at 
(6, 2)−  at t = 1. 
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The graphs below are created by parameteric equations of the form ( ) ( )
( ) ( )

cos
sin

x t a bt
y t c dt

 =
 =

.  

Find the values of a, b, c, and d to achieve each graph. 
 

37.   38.  
 

39.   40.  
 
41. An object is thrown in the air with vertical velocity 20 ft/s and horizontal velocity 15 

ft/s.  The object’s height can be described by the equation ( ) 216 20y t t t= − + , while 

the object moves horizontally with constant velocity 15 ft/s.  Write parametric 
equations for the object’s position, then eliminate time to write height as a function of 
horizontal position. 
 

42. A skateboarder riding on a level surface at a constant speed of 9 ft/s throws a ball in 
the air, the height of which can be described by the equation ( ) 216 10 5y t t t= − + + .  

Write parametric equations for the ball’s position, then eliminate time to write height 
as a function of horizontal position. 
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43. A carnival ride has a large rotating arm with 
diameter 40 feet centered 35 feet off the ground.  
At each end of the large arm are two smaller 
rotating arms with diameter 16 feet each.  The 
larger arm rotates once every 5 seconds, while 
the smaller arms rotate once every 2 seconds.  If 
you board the ride when the point P is closest to 
the ground, find parametric equations for your 
position over time.  

 
44. A hypocycloid is a shape generated by tracking a fixed 

point on a small circle as it rolls around the inside of a 
larger circle.  If the smaller circle has radius 1 and the 
large circle has radius 6, find parametric equations for 
the position of the point P as the smaller wheel rolls in 
the direction indicated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P 

P 
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Chapter 5 

Section 5.1 

1. 10      3. ( ) ( )2 2 28  10  8x y− + + =  

5. ( ) ( )2 27  2  293x y− + + =    7. ( ) ( )2 25  8 1 3x y− + − =  

9.  
11. (0, 3 5)+  and (0, 3 5)−   13. (1.3416407865, 7.683281573) 
15.  (-1.07335, 2.8533)   17. 29.87 miles 

Section 5.2 

1.  
3. π   5. 150°   7. 325° 

9. 54°   11. 8
9
π   13. 

2
π  

15. 35 miles  17. 8π cm  19. 5.7596 miles 
21. 28.6479°  23. 14.1372 cm2 
25. 3960 rad/min    630.254 RPM 
27. 2.094 in/sec,  π/12 rad/sec,  2.5 RPM 
29. 75,398.22 mm/min = 1.257 m/sec 
31. Angular speed: π/12 rad/hr.  Linear speed: 1036.73 miles/hr 
 
 

30° 

70° 

-135° 
300° 

2𝜋𝜋
3

 

7𝜋𝜋
4
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Section 5.3 

1. a. III   b. II    3. 4
5

−  

5. 4 3
7

−     7. 55
8

−  

9.  a. reference: 45°.  Quadrant III.  ( ) 2sin 225
2

° = − .  ( ) 2cos 225
2

° = −  

b. reference: 60°.  Quadrant IV.  ( ) 3sin 300
2

° = − .  ( ) 1cos 300
2

° =  

c. reference: 45°.  Quadrant II.  ( ) 2sin 135
2

° = .  ( ) 2cos 135
2

° = −  

d. reference: 30°.  Quadrant III.  ( ) 1sin 210
2

° = − .  ( ) 3cos 210
2

° = −  

 

11.  a. reference: 
4
π .  Quadrant III.  5 2sin

4 2
π  = − 

 
.  5 2cos

4 2
π  = − 

 
 

b. reference: 
6
π .  Quadrant III.  7 1sin

6 2
π  = − 

 
.  7 3cos

6 2
π  = − 

 
 

c. reference: 
3
π .  Quadrant IV.  5 3sin

3 2
π  = − 

 
.  5 1cos

3 2
π  = 

 
 

d. reference: 
4
π .  Quadrant II.  3 2sin

4 2
π  = 

 
.  3 2cos

4 2
π  = − 

 
 

13.  a. 3 2sin
4 2
π − = − 

 
     3 2cos

4 2
π − = − 

 
 

b. 23 1sin
6 2
π  = − 

 
     23 3cos

6 2
π  = 

 
 

c. sin 1
2
π − = − 

 
     cos 0

2
π − = 

 
 

d. ( )sin 5 0π =      ( )cos 5 1π = −  

 

15. a. 2
3
π  b. 100°  c. 40°  d. 5

3
π   e. 235° 

17. a. 5
3
π  b. 280°  c. 220°  d. 2

3
π   e. 55° 

19. (-11.491, -9.642) 
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Section 5.4 
1. ( )sec 2θ = , ( )csc 2θ = , ( )tan 1θ = , ( )cot 1θ =  

3. ( ) 2 3sec
3

θ = − , ( )csc 2θ = , ( ) 3tan
3

θ = − , ( )cot 3θ = −  

5. ( )sec 2θ = − , ( ) 2 3csc
3

θ = , ( )tan 3θ = − , ( ) 3cot
3

θ = −  

7.  a. ( )sec 135 2° = −   b. ( )csc 210 2° = −    c. ( )tan 60 3° = .    d. ( )cot 225 1° =  

9. ( ) 7cos
4

θ = − ,  ( ) 4 7sec
7

θ = − , ( ) 4csc
3

θ = , ( ) 3 7tan
7

θ = − , ( ) 7cot
3

θ = −  

11. ( ) 2 2sin
3

θ = − ,  ( )
4

23csc −=θ , ( ) 3sec −=θ , ( )tan 2 2θ = , ( ) 2cot
4

θ =  

13. ( ) 12sin
13

θ = , ( ) 5cos
13

θ = ,  ( ) 13sec
5

θ = , ( ) 13csc
12

θ =  , ( ) 5cot
12

θ =  

15. a. sin(0.15) = 0.1494    cos(0.15) = 0.9888    tan(0.15) = 0.1511  
b. sin(4) = -0.7568    cos(4) = -0.6536    tan(4) = 1.1578 
c. sin(70°) = 0.9397    cos(70°) = 0.3420    tan(70°) = 2.7475 
d. sin(283°) = -0.9744 cos(283°) = 0.2250 tan(283°) = -4.3315 

17. sec( )t  19. tan( )t  21. tan( )t  23. cot( )t  25. ( )2sec( )t  

 
 

Section 5.5 

1. 
( ) ( ) ( )

4
5tan,

41
414cos,

41
415sin === AAA

 

     ( ) ( ) ( )41 41 4sec ,csc ,cot
4 5 5

A A A= = =  

3. 14,  7 3,  60c b B= = = °    5. 5.3171,  11.3257,  28a c A= = = °  
7. 9.0631,  4.2262,  25a b B= = = °   9. 32.4987 ft 
11. 836.2698 ft    13. 460.4069 ft 
15. 660.35 feet    17. 28.025 ft 
19. 143.0427     21. 86.6685 
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Chapter 6 

Section 6.1 

1.    3.     
5. Amp: 3.  Period= 2.  Midline: y= -4.  ( ) ( )3sin 4f t tπ= −  

7. Amp: 2.  Period= 4π.  Midline: y= 1.  ( ) 12cos 1
2

f t t = + 
 

 

9. Amp: 2.  Period= 5.  Midline: y= 3.  ( ) 22cos 3
5

f t tπ = − + 
 

 

11. Amp: 3, Period = 
4
π , Shift: 4 left, Midline: y = 5 

13. Amp: 2, Period = 2
3
π , Shift: 7 right, Midline: y = 4 

15. Amp: 1, Period = 12, Shift: 6 left, Midline: y = -3 

17. ( ) ( )4sin 1
5

f x xπ = + 
 

 

19. ( ) ( )cos 2
5

f x xπ = + 
 

 

21. ( ) 50 7sin
12

D t tπ = −  
 

 

23 a. Amp: 12.5.  Midline:  y = 13.5.  Period: 10 

     b. ( ) 12.5cos 13.5
5

h t tπ = − + 
 

 

     c. ( )5 26h =  meters 
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Section 6.2 
1. II 
3. I 

5. Period: 
4
π .  Horizontal shift: 8 right 

7. Period: 8.  Horizontal shift: 1 left 
9. Period: 6.  Horizontal shift: 3 left 

11.      13.  
 

15.  

17. ( ) 2sec 1 
2

f x xπ = − 
 

    19. ( ) 2csc 1
4

f x xπ = + 
 

 

21. ( )tan 1.5x− =      23. ( )sec 2x− =  

25. ( )csc 5x− =      27.  ( )csc x−  
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Section 6.3 

1. 
4
π    3. 

6
π

−    5. 
3
π    

7. 3
4
π    9. 

4
π    11. 

3
π

−  

13. 1.9823  15. -0.9273  17. 44.427°   

19. 
4
π    21. 

6
π

−   23. 
7
102   25. 

17
1  

27. 
5

25 2x−   29. 
19

3
2 +x
x   

   

Section 6.4 

1. 5 7,
4 4
π π   3. 5,

3 3
π π    5. 

2
π    7. 3,

2 2
π π  

9. 72 , 2
4 4

k kπ ππ π+ + , where k is an integer 

11. 7 112 , 2
6 6

k kπ ππ π+ + , where k is an integer 

13. 2 5 2,
18 3 18 3

k kπ π π π
+ + , where k is an integer 

15. 5 2 7 2,
12 3 12 3

k kπ π π π
+ + , where k is an integer 

17. 5,
6 6

k kπ ππ π+ + , where k is an integer 

19. 2 5 2,
4 3 12 3

k kπ π π π
+ + , where k is an integer 

21. 4 8k+ , where k is an integer 

23. 1 52 , 2
6 6

k k+ + , where k is an integer 

 
25. 0.2734, 2.8682  27. 3.7603, 5.6645  29. 2.1532, 4.1300   
31. 0.7813, 5.5019  33. 0.04829, 0.47531  35. 0.7381, 1.3563 
37. 0.9291, 3.0709  39. 1.3077, 4.6923 
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Section 6.5 
1.  89c = , A = 57.9946°, B = 32.0054° 
3. 1 76b = , A = 27.8181°, B = 62.1819° 

5. ( ) ( )6sin 1 4
2

y x xπ = − + 
 

 

7. ( ) ( )π50 13cos t 5
12

D t  = − − 
 

 

9. a. ( ) 129 25cos
6

P t tπ = −  
 

   b. ( ) 129 25cos ( 3)
6

P t tπ = − − 
 

 

11. 75 degrees    13. 8 
15. 2.80869431742   17.  5.035 months 
 

Chapter 7 

Section 7.1 

1. 7 11,
6 6
π π      3. 5,

3 3
π π  

5. 2  8
3

k+ , and 10 8
3

k+ , where k is an integer 

7. 5
12

kπ π+  and 7
12

kπ π+ , where k is an integer 

9. 0.1339 10k+  and k106614.8 + , where k is an integer 

11. 21.1438
3

kπ
+  and 21.9978

3
kπ

+ , where k is an integer 

13. 3, , 0.644, 2.498
2 2
π π    15. 0.056, 1.515, 3.197, 4.647 

17. 50, , ,  
3 3
π ππ     19. 5 7 11, , ,

6 6 6 6
π π π π  

21. 1.183, 1.958, 4.325, 5.100  23.  3 7 11, ,
2 6 6
π π π  

25. 5, ,
3 3
π ππ      27.  1.823, 4.460 

29. 2.301, 3.983, 0.723, 5.560  31. 3.305, 6.120 
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33. 2 4 50, , , , ,
3 3 3 3
π π π ππ    35. 3 5 70, , , , ,

4 4 4 4
π π π ππ  

37.  
3

4,
6

5, 
3

2,
6

ππππ     39. 0, ,1 .231, 5.052π  

41. 5,
3 3
π π  

Section 7.2 

1. 2 6
4
+     3. 2 6

4
− −  

5. 2 6
4
−     7. 2 6

4
+  

9. ( ) ( )3 1sin cos
2 2

x x−   11. ( ) ( )3 1– cos sin
2 2

x x+  

13. ( )sec t     15. ( )tan x  

17. ( ) ( )( )8 cos 5 cos 27x x−   19. ( ) ( )sin 8 sin 2x x+  

21. ( ) ( )2cos 5 cost t    23. ( ) ( )2sin 5 cos 2x x  

25. a. 2 1 5 15 2 5 3
3 4 3 4 12

   − −  − + − =            
   

      b. 5 1 2 15 5 2 15
3 4 3 4 12

    +   − − + =               
 

27. 20.373
3

kπ
+  and 20.674

3
kπ

+ , where k is an integer 

29. kπ2 , where k is an integer 

31. 4
7 7

kπ π
+ , 3 4

7 7
kπ π

+ , 4
3 3

kπ π
+ , and 4

3
kππ + , where k is an integer 

33. 7
12

kπ π+ , 11
12

kπ π+ , and 
4

kπ , where k is an integer 

35. 2 13sin( 5.3004)x +      or   2 13sin( 0.9828)x −  

37. 29sin(3 0.3805x + )   39. 0.3681, 3.8544    

41. 0.7854, 1.8158    43. ( )tan 6t  
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Section 7.3 

1. a. 3 7
32

   b. 31
32

   c. 3 7
31

  3. ( )cos 56°  

5. cos(34 )°     7. ( )cos 18x  

9. ( )2sin 16x     11. 0, , 2.4189, 3.8643π  

13. 0.7297, 2.4119, 3.8713, 5.5535 

15. 5 3, , ,
6 2 6 2
π π π π  

17. a. 
3

4,
3

2, 0,
9

16,
9

14,
9

10,
9

8,
9

4,
9

2 ππππππππ  

19. 
( )1 cos 10

2
x+

 

21. ( ) ( )xx 32cos
8
116cos

2
1

8
3

+−  

23. ( ) ( ) ( ) ( )1 1 1 1cos 2 cos 4 cos 2 cos 4
16 16 16 16

x x x x− + −  

25. a. 1 2 3
2 7
+    b. 1 2 3

2 7
−    c. 1

7 4 3−
 

 

Section 7.4 

1. ( )3sin 3 1
6

y xπ = − − 
 

 

3. Amplitude: 8,  Period:  1
3

 second,  Frequency: 3 Hz (cycles per second) 

5. ( ) 4019cos 650
6 3

P t t tπ = − + + 
 

  7. ( ) ( )33cos 900 1.07
6

tP t tπ = − + 
 
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9. ( ) ( )10 0.85 cos(36 )tD t tπ=   11. ( ) ( ) ( )17 0.9145 cos 28tD t tπ=  

13. a. IV    b. III    15.  ( )6 4 5sin
2

xy xπ = +  
 

 

17. 3sin 2 7
2

y xπ = − + + 
 

   19. 3
2

cos
2
18 +














= xy

x π  

 
 

Chapter 8 

Section 8.1 

1.   3.    

5.   7.   
  

9. β = 68°, a = 14.711, c = 20.138  11. β  = 28.096°, γ  = 32.904°, c = 16.149 

13. Not possible.   

15. β  = 64.243°, γ  = 72.657°, c = 257.328  OR  β =115.757°, γ = 21.143°, c = 97.238 

17.   19.    

21. °=°== 255.86, 545.52,066.2 βαc    

70° 50° 

10 
60° 

12.26
 

11.305 

120
 

6 

25° 

35° 
4.421 
 

9.059 

65° 

5 6 

49.048° 

65.952° 

6.046 

1
 

40° 

25 

116.668° 

23.222° 

11.042 

60° 
20 28 

24.980 
43.898° 76.102° 

13 

11 

20 

112.620° 

30.510° 

36.870° 



674 

23. °=°== 543.32, 457.27,269.11 γβa  

25. 177.562     27. 978.515 ft 

29. Distance to A: 565.258 ft.  Distance to shore: 531.169 ft 

31. 529.014 m     33. 173.877 feet 

35. 4.642 km, 2.794 km   37. 757.963 ft 

39. 2371.129 miles    41. 65.375 cm2 

43. 7.72 

Section 8.2 

1. 







−−

2
7,

2
37     3. ( )2 2, 2 2−  

5. ( )3 2, 3 2−     7. (0,3)   

9. 3 3 3,
2 2

 
− −  
 

    11. ( 1.248, 2.728)−  

13. ( )2 5, 0.464     15. ( )2 13,2.159  

17. ( )34,5.253     19. ( )269,4.057  

21. ( )θsec3=r     23. ( )
( )2

sin
4cos

r
θ
θ

=  

25. ( )4sinr θ=     27. ( )
( ) ( )( )2 2

cos
cos sin

r
θ

θ θ
=

−
 

29. 2 2 3x y y+ =     31. 7 4y x+ =  

33. 2x =      35. 2 2 2x y x+ = +  
37. A  39. C  41. E  43. C  45. D  47. F 

49.  51.  53.   
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55.  57.  59.  

61.  63.  65.  
 

Section 8.3 
1. 3i       3. 12−  
5. 1 3i+      7. 8 i−  
9. 11 4i− +      11. 12 8i− +  
13. 30 10i−      15. 11 10i+  

17. 20       19. 3 2
2

i+  

21. 3 5
2 2

i+      23. 1 18
25 25

i− −  

25. 1−       27. i  
29. ( ) ( )3cos 2 3sin 2 1.248 2.728i i+ = − +  

31. 3 3 3i+      33. 3 2 3 2– –
2 2

i  

35. 06 ie      37. 
3
24

i
e

π

 

39. 42 2
i

e
π

     41. 
3
43 2

i
e

π

 
43. 0.54034 ie      45. 2.82010 ie  

47. 4.46717 ie      49. 6.086 26 ie  

51. 
5
126

i
e

π

     53. 
7
122

i
e

π

 

55. 
5
21024

i
e

π

     57. 34
i

e
π

 



676 

59. 4096      61. 0.788 1.903i+  
63. 1.771 0.322i+     
65. iiii 092.1355.0, 675.0929.0, 675.0929.0, 092.1355.0, 149.125 −−−+−+≈  

67. 1 3 1 3 1 3 1 31, , , 1, , 
2 2 2 2 2 2 2 2

i i i i+ − + − − − −  

Section 8.4 
1. 4, 2−  

3.  The vectors do not need to start at the same point 
5. 3v u−        7. 3 2,3 2    

9. 6.128, 5.142− −      11. Magnitude: 4, Direction: 90° 

13. Magnitude: 7.810, Direction: 39.806°   

15. Magnitude: 2.236, Direction: 153.435°  

17. Magnitude: 5.385, Direction: 291.801°   

19. Magnitude: 7.211, Direction: 236.310° 

21. 21,132,  8,1,  2,3 −=−−=−=+ vuvuvu   

23. 4.635 miles, 17.764 deg N of E    

25. 17 miles.  10.318 miles 

27. 4, 11netF = − −


 

29. Distance: 2.868.  Direction: 86.474° North of West, or 3.526° West of North 

31. 4.924 degrees.  659 km/hr     

33. 4.424 degrees 

35. (0.081, 8.602) 

37. 21.801 degrees, relative to the car’s forward direction 
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Section 8.5 
1.  529.15)75cos(106 =°⋅⋅  3. 0)0)(4()3)(0( =+−   5. 33)13)(1()10)(2( =+−−  

7. °=






− 90
34

0cos 1   9. °=













−++

−+− 135
)3(142

)3)(4()1)(2(cos
2222

1  

11. °=










++

+− 0
4284

)4)(2()8)(4(cos
2222

1    13. 0)4)(7())(2( =+k ,  k = -14 

15. 325.6
)3(1

)3)(4()1)(8(
22

=
−+

−−+    17. 8.10,6.33,1
)3(1

)3)(10()1)(6(
2

22
−=−

















−+

−+−  

19. The vectors are 3,2  and 2,5 −− .  The acute angle between the vectors is 34.509° 

21. 14.142 pounds  23. 20,0)10sin(10),10cos(10 −⋅°° , so 34.7296 ft-lbs 
25. 277.4350)25cos(12040 =°⋅⋅ ft-lbs 

Section 8.6 
1. C  3. E  5. F   
 

7.   
 

9. x(t)  y(t)  
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11.  

13. 2 2y x= − +     15. 
13

2
xy −

=  

17. 
1

52
y

x e
−

=  or 1 5ln
2
xy  = −  

 
  19. 

3

2 2
y yx  = − 

 
 

21. 3y x=      23. 
2 2

1
4 5
x y   + =   

   
 

25. ( )
( ) 23 3

x t t
y t t

 =
 = +

    27. ( ) ( )
( )

3logx t t t
y t t

 = +
 =

.  

29. ( ) ( )
( ) ( )

2cos
3sin

x t t
y t t

 =
 =

    31. ( )
( )

3

2
x t t
y t t

 =
 = +

 

33. ( )
( ) 2

1x t t
y t t

 = −
 = −

    35. 
( )
( )




−=
+−=

tty
ttx

25
31

 

37. ( ) ( )
( ) ( )

4cos 3
6sin

x t t
y t t

 =
 =

    39. ( ) ( )
( ) ( )

4cos 2
3sin 3

x t t
y t t

 =
 =

 

41. ( )
2

16 20
15 15
x xy x    = − +   

   
  43. 

( ) ( )

( ) ( )

220sin 8sin
5

235 20cos 8cos
5

x t t t

y t t t

π π

π π

  = +   


  = − −   
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Chapter 9 

Section 9.1 
1.   D  3. B 
5.  Vertices (0,±5), minor axis endpoints (±2,0), major length = 10, minor length = 4 

  
7.  Vertices (±2,0), minor axis endpoints (0,±1), major length = 4, minor length = 2 

 
9.  Vertices (±5,0), minor axis endpoints (0,±1), major length = 10, minor length = 2 

 
11.  Vertices (0,±4), minor axis endpoints (±3,0),  major length = 8, minor length = 6 

 
13.  Vertices ( )0, 3 2± , minor axis endpoints ( )2,0± , major length = 6 2 , minor 

length = 2 2  
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15.  
2 2

1
16 4
x y

+ =  17.   
2 2

1
1024 49

x y
+ =  19.   

2 2

1
4 9
x y

+ =  

21.  B  23.  C  25.  F  27.  G 
29.  Center (1,-2), vertices (6,-2) and (-4,-2), minor axis endpoints (1,0) and (1,-4),  major 
length= 10, minor length = 4  

 
31.  Center (-2,3), vertices (-2,8) and (-2,-2), minor axis endpoints (-1,3) and (-3,3),  
major length = 10, minor length = 2 

 
33.  Center (-1,0), vertices (-1,4) and (-1,-4), minor axis endpoints (-1,0) and (3,0),  major 
length = 8, minor length = 4 

 
35.  Center (-1,-2), vertices (3,-2) and (-5,-2), minor axis endpoints (-1,0) and (-1,-4),  
major length = 8, minor length = 4 
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37.  Center (2,-1), vertices (2,5) and (2,-7), minor axis endpoints (6,-1) and (-2,-1), major 
length = 12, minor length = 8 

 

39.  ( ) ( )2
2 1

3 1
16

y
x

+
− + =   41.  

( ) ( )2 24 3
1

16 25
x y+ −

+ =    

43.  2.211083 feet 45.  17 feet 47.  64 feet 49.  (±4,0) 51.  (-6,6) and (-6,-4) 

53.  
2 2

1
9 5
x y

+ =    55.  
2 2

1
11 36
x y

+ =     57.  
2 2

1
49 24
x y

+ =    59.  
2 2

1
4 20
x y

+ =    

61.  
2 2

1
16 8
x y

+ =  63.  
( ) ( )2 22 1

1
12 16

x y+ −
+ =    65.  

( ) ( )2 23 2
1

36 11
x y− −

+ =    

67.  
( ) ( )2 23 1

1
21 25

x y− +
+ =    69.  

( ) ( )2 21 3
1

4 5
x y− −

+ =    71.  
( ) ( )2 22 1

1
289 120

x y+ +
+ =    

73.  31.22 feet  75.  
2 2

1
8640.632025 8638.214

x y
+ =  77.  

2 2

1
25 9
x y

+ =  

79.  The center is at (0,0).  Since a > b, the ellipse is horizontal.  Let (c,0) be the focus on 
the positive x-axis.  Let (c, h) be the endpoint in Quadrant 1 of the latus rectum passing 
through (c,0).   
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The distance between the focus and latus rectum endpoint can be found by substituting 

(c,0) and (c,h) into the distance formula ( ) ( )2 2
1 2 1 2h x x y y= − + −  which yields 

( ) ( )2 20h c c h h= − + − = .  So h is half the latus rectum distance.  Substituting (c,h) into 

the ellipse equation  to find h gives 
2 2

2 2 1c h
a b

+ = .  Solve for h yields 

2 2 2 2 2 2 4
2 2 2 2 2

2 2 2 2 2 21  c a c a c b bh b b b b
a a a a a a

       −
= − = − = = =       

       
.   so 

4 2

2

b bh
a a

= = .  The 

distance of the latus rectum is 
222 bh

a
= . 

 

Section 9.2 
1.   B  3. D   
5.  Vertices (±2,0), transverse length = 4, asymptotes y = ±5/2x, 
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7.  Vertices (0, ±1), transverse length = 2, asymptotes y = ±1/2x,  

 
9.  Vertices (±3,0), transverse length = 6, asymptotes y =±1/3x, 

 
11.  Vertices (0, ±4), transverse length = 8, asymptotes y =±4/3x 

  
13.  Vertices (± 2 ,0), transverse length = 2 2 , asymptotes y =±3x, 

  

15.  
2 2

1
4 9
y x

− =  17.  
2 2

1
16 64
y x

− =  19.  
2 2

1
9 36
x y

− =   21.  
2 2

1
16 16
x y

− =   

23.  C  25.  H  27.  B  29.  A 
31.  Center (1,-2), vertices (6,-2) and (-4,-2), transverse length = 10, asymptotes y 
=±2/5(x-1)-2 
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33.  Center (-2,1), vertices (-2,4) and (-2,-2), transverse length = 6, asymptotes y 
=±3(x+2)+1 

 
35.  Center (1,0), vertices (3,0) and (-1,0), transverse length = 4, asymptotes y =±2(x-1) 

 
37.  Center (-1,2), vertices (-1,4) and (-1,0), transverse length = 4, asymptotes y 
=±1/2(x+1)+2 

  
39.  Center (-2,1), vertices (0,1) and (-4,1), transverse length = 4, asymptotes y 
=±3/2(x+2)+1 
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41.  
( ) ( )2 21 4

1
9 4

y x+ −
− =   43.  

( ) ( )2 22 1
1

16 4
y x− +

− =  

45.  Center (0,0), vertices (±1/3,0), transverse length = 2/3, asymptotes y = ±12x 

 
47.  Center (-1,1), vertices (-1,3/2) and (-1,1/2), transverse length = 1, asymptotes y = ± 
3/2 (x + 1) +1 

 
49.  Foci (0,±5) 51.  Foci (5,6) and (-3,6) 53.  Foci (-4,6) and (-4,-4) 
 

55.  
2 2

1
16 9
x y

− =  57.  
2 2

1
144 25
y x

− =  59.  
2 2

1
225 64
x y

− =  61.  
2 2

1
64 36
x y

− =  

 

63.  
( ) ( )2 22 1

1
16 9

y x− −
− =  65.  

( ) ( )2 21 3
1

25 144
x y+ −

− =  67.  
2 2

1
900 1600
x y

− =  

69. 
2 2

1
900 14400.3636
x y

− =    
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71.  
2 2

1
3025 6975

x y
− =    

73.  2 25 25 0y x− + =  can be put in the form 
2 2

1
5 25
y x

− = − . 2 2  5 25 0x y− + =  can be put 

in the form   
2 2

1
5 25
y x

− =  showing they are conjugate. 

75.  2    77.  No matter the value of k, the foci are at ( )6,0±  

Section 9.3 
1. C 3. A 
 
5. Vertex: (0,0).  Axis of symmetry: y = 0.  Directrix: x = -4.  Focus: (4,0) 
 
7. Vertex: (0,0).  Axis of symmetry: x = 0.  Directrix: y = -1/8.  Focus: (0,1/8) 
 
9. Vertex: (0,0).  Axis of symmetry: y = 0.  Directrix: x = 1/16.  Focus: (-1/16,0) 
 
11. Vertex: (2,-1).  Axis of symmetry: x = 2.  Directrix: y = -3.  Focus: (2,1) 
 
13. Vertex: (-1,4).  Axis of symmetry: x = -1.  Directrix: y = 3.  Focus: (-1,5) 
 
15. )3()1( 2 −−=− xy  17.  )2(12)3( 2 −=− xy  19.  )3(42 −= yx  
 
21.  At the focus, (0,1) 23. 2.25 feet above the vertex. 25. 0.25 ft 
 

27. 






 −−








3
2,

3
1,

3
2,

3
1   29. ( ) ( ) ( ) ( )2,3,2,3,2,3,2,3 −−−−  

 
31. ( ) ( )8,22,8,22 −    
 

33. 







−−








−








−









3
2,

3
5,

3
2,

3
5,

3
2,

3
5,

3
2,

3
5  

 
35. (-64.50476622, 93.37848007) ≈ (-64.50, 93.38)   
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Section 9.4 
1. e = 3.  Directrix: x = 4.  Hyperbola. 3. e = 3/4.  Directrix: y = -2/3.  Ellipse. 
 
5. e = 1. Directrix: x = -1/5.  Parabola. 7. e = 2/7.  Directrix: x = 2.  Ellipse. 
 

9. 
)cos(51

20
θ−

=r   11. 
)sin(

3
11

1

θ+
=r , or 

)sin(3
3

θ+
=r  

 

13. 
)sin(1

2
θ−

=r  

 
15. Hyperbola. Vertices at (-9,0) and (-3,0) 

Center at (-6,0).  a =  3. c = 6, so b = 27  

1
279

)6( 22

=−
+ yx  

 
17. Ellipse. Vertices at (0,3) and (0,-6) 

Center at (0,-1.5).  a = 4.5, c = 1.5, 18=b  

1
25.20

)5.1(
18

22

=
+

+
yx  

 
 
19. Parabola. Vertex at (3,0). p = 3. 

)3(122 −−= xy  
 
 
 
21. a) 

  

x 

y 

d(Q,F1) 
d(Q,F2) 

Q=(x,y) 

F1 F2 

L1 L2 

(c,0) (a,0) 

x = p 
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b) ( ) pxpxLQd +=−−= )(, 1 , ( ) xpLQd −=2,  
 

c) ( ) ( ) )(,, 11 pxeLQedFQd +== . ( ) ( ) )(,, 22 xpeLQedFQd −==  
 

d) ( ) ( ) epxpepxeFQdFQd 2)()(,, 21 =−++=+ , a constant. 
 

e) At Q = (a, 0), ( ) cacaFQd +=−−= )(, 1 , and ( ) caFQd −=2, , so 
( ) ( ) acacaFQdFQd 2)()(,, 21 =−++=+  

Combining with the result above, aep 22 = , so 
e
ap = . 

f) ( ) caFQd −=2, , and ( ) apLQd −=2,    
( )
( ) e

LQd
FQd

=
2

2

,
, , so e

ap
ca
=

−
− .  

)( apeca −=− .  Using the result from (e), 







 −=− a

e
aeca  

eaaca −=−  

a
ce =  
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Index 
 
Absolute Value Functions, 149 

Graphing, 150 
Solving, 151 
Solving Inequalities, 152 

Ambiguous Case, 501 
Amplitude, 399, 402 
Angle, 347 

Coterminal Angles, 348 
Degree, 347 
Radian, 351 
Reference Angles, 369 
Standard Position, 347 

Angular Velocity, 356 
Annual Percentage Rate (APR), 257 
Annual Percentage Yield (APY), 259 
Arclength, 350 
Arcsine, Arccosine and Arctangent, 423 
Area of a Sector, 355 
asymptotes of hyperbola, 598 
Average Rate of Change, 37 
axis of symmetry, 617 
Cauchy's Bound, 203 
central rectangle, 598 
Change of Base, 281, 289 
Circles, 338, 518 

Area of a Sector, 355 
Equation of a Circle, 338 
Points on a Circle, 339, 364 
Polar Coordinates, 518 

Coefficients, 162 
Cofunction Identities, 387 
Common Log, 279 
completing the square, 170 
Completing the square, 170 
Complex Conjugate, 212, 530 
Complex Factorization Theorem, 214 
Complex Number, 210, 528 
Complex Plane, 529 
Component Form, 544 
Composition of Functions, 51 

Formulas, 54 
Tables and Graphs, 52 

Compound Interest, 257 
Concavity, 43 

conic section, 579 
Continuous Growth, 260 
Correlation Coefficient, 144, 145 
Cosecant, 375 
Cosecant Function 

Domain, 415 
Range, 415 

Cosine, 363, 385, 398 
Cotangent, 375 
Cotangent Function 

Domain, 416 
Period, 416 
Range, 416 

Coterminal Angles, 348 
co-vertices, 580 
Damped Harmonic Motion, 492 
Decreasing, 40 
Degree, 162, 347 
Difference of Logs Property, 289 
directrix, 617, 630 
Domain, 22 
Dot Product, 555 
Double Angle Identities, 477 
Double Zero, 183 
Doubling Time, 311 
eccentricity, 630 
ellipse, 580, 617, 630, 631, 632 
Even Functions, 73 
Exponential Functions, 249 

Finding Equations, 253 
Fitting Exponential Functions to Data, 

331 
Graphs of Exponential Functions, 267 
Solving Exponential Equations, 282 
Transformations of Exponential 

Graphs, 270 
Exponential Growth or Decay Function, 

251 
Exponential Property, 289 
Extrapolation, 142 
Extrema, 41, 187 
Factor Theorem, 196 
factored completely, 215 
focal length, 617 
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foci, 598 
Function, 1 

Absolute Value Functions, 149 
Composition of Functions, 51 
Domain and Range, 22 
Exponential Functions, 249 
Formulas as Functions, 8 
Function Notation, 3 
Graphs as Functions, 6 
Horizontal Line Test, 7 
Inverse of a Function, 93 
Linear Functions, 101, 103 
Logarithmic Functions, 277 
One-to-One Function, 2 
Parametric Functions, 564 
Periodic Functions, 395 
Piecewise Function, 29 
Polar Functions, 517 
Power Functions, 159 
Quadratic Functions, 167 
Radical Functions, 239, 240 
Rational Functions, 218, 221 
Sinusoidal Functions, 397 
Solving & Evaluating, 5 
Tables as Functions, 4 
Tangent Function, 413 
Vertical Line Test, 7 

Fundamental Theorem of Algebra, 213 
Half-Angle Identities, 483 
Half-Life, 308 
Horizontal Asymptote, 219, 224 
Horizontal Intercept, 118 
Horizontal Line Test, 7 
Horizontal Lines, 119 
hyperbola, 598 
Imaginary Number, 210, 528 

Complex Conjugate, 212, 530 
Complex Number, 210, 528 
Complex Plane, 529 
Polar Form of Complex Numbers, 531 

Increasing, 40 
Inflection Point, 43 
Intercepts, 173, 181, 182, 186, 225 

Graphical Behavior, 182 
Writing Equations, 186 

Interpolation, 142 

Interval Notation, 24 
Union, 24 

Inverse of a Function, 93 
Properties of Inverses, 96 

Inverse Properties, 289 
Inversely Proportional, 218 
Inversely Proportional to the Square, 218 
Inverses, 239 
irreducible quadratic, 215 
Law of Cosines 

Generalized Pythagorean Theorem, 
503 

Law of Sines 
Ambiguous Case, 501 

Leading Coefficient, 162 
Leading Term, 162 
Least-Square Regression, 143 
Limaçons, 519 
Linear Functions, 101, 103 

Fitting Linear Models to Data, 141 
Graphing, 114 
Horizontal Intercept, 118 
Horizontal Lines, 119 
Least-Square Regression, 143 
Modeling, 129 
Parallel Lines, 120 
Perpendicular Lines, 120 
Veritcal Lines, 119 
Vertical Intercept, 115 

Linear Velocity, 356 
Lissajous Figure, 567 
Local Maximum, 41 
Local Minimum, 41 
Logarithmic Functions, 277 

Change of Base, 281, 289 
Common Log, 279 
Difference of Logs Property, 289 
Exponential Property, 280, 289 
Graphs of Logarithmic Functions, 300 
Inverse Properties, 277, 289 
Logarithmic Scales, 314 
Log-Log Graph, 329 
Moment Magnitude Scale, 318 
Natural Log, 279 
Orders of Magnitude, 317 
Semi-Log Graph, 329 
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Sum of Logs Property, 289 
The Logarithm, 277 
Transformations of the Logarithmic 

Function, 302 
Log-Log Graph, 329 
Long Division, 194 
Long Run Behavior, 161, 163, 219 
major axis, 580 
Mathematical Modeling, 101 
Midline, 400, 402 
minor axis, 580 
Model Breakdown, 143 
Moment Magnitude Scale, 318 
multiplicity, 183 
Natural Log, 279 
Negative Angle Identities, 454 
Newton's Law of Cooling, 313 
Nominal Rate, 257 
oblique asymptote, 230 
Odd Functions, 73 
One-to-One Function, 2, 7 
Orders of Magnitude, 317 
orthogonal, 557 
Parallel Lines, 120 
Parametric Functions, 564 

Converting from Parametric to 
Cartesian, 568 

Lissajous Figure, 567 
Parameterizing Curves, 570 

Period, 395, 402 
Periodic Functions, 395 

Period, 395 
Sinusoidal, 397 

Perpendicular Lines, 120 
Phase Shift, 406 
Piecewise Function, 29 
Polar Coordinates 

Converting Points, 515 
Polar Form of a Conic, 630 
Polar Functions, 517 

Converting To and From Cartesian 
Coordinates, 520 

Limaçons, 519 
Polar Form of Complex Numbers, 531 
Roses, 519 

Polynomial, 162 

Coefficients, 162 
Degree, 162 
Horizontal Intercept, 183, 186 
Leading Coefficient, 162 
Leading Term, 162 
Long Division, 194 
Solving Inequalities, 184 
Term, 162 

Power Functions, 159 
Characterisitcs, 160 

Power Reduction Identities, 483 
Product to Sum Identities, 468 
Projection Vector, 559 
Pythagorean Identity, 364, 379 

Alternative Forms, 379, 454, 456 
Pythagorean Theorem, 337 
Quadratic Formula, 175 
Quadratic Functions, 167 

Quadratic Formula, 175 
Standard Form, 169, 170 
Transformation Form, 169 
Vertex Form, 169 

Radian, 351 
Radical Functions, 239, 240 
Range, 22 
Rate of Change, 36 

Average, 37 
Using Function Notation, 38 

Rational Functions, 218, 221 
Intercepts, 225 
Long Run Behavior, 223 

Rational Roots Theorem, 204 
Reciprocal Identities, 454 
Reference Angles, 369 
Remainder Theorem, 196 
roots, 164 
Roses, 519 
Scalar Product, 555 
Secant, 375 
Secant Function 

Domain, 415 
Range, 415 

Semi-Log Graph, 329 
Set-Builder Notation, 24 
Short Run Behavior, 164, 167, 173, 181, 

219 



694   Index 
 

Sign of the Dot Product, 558 
Sine, 363, 385, 398 
Single Zero, 183 
Sinusoidal Functions, 397 

Amplitude, 399, 402 
Damped Harmonic Motion, 492 
Midline, 400, 402 
Modeling, 443 
Period, 395, 402 
Phase Shift, 406 
Solving Trig Equations, 437 

slant asymptote, 230 
Slope, 103, 104, 115 

Decreasing, 103 
Increasing, 103 

Standard Form, 169, 170 
Standard Position, 347 
Sum and Difference Identities, 461 
Sum of Logs Property, 289 
Sum to Product Identities, 469 
synthetic division, 198 
Tangent, 375, 385 
Tangent Function, 413 

Domain, 413 
Period, 413 
Range, 413 

Term, 162 
The Logarithm, 277 
Toolkit Functions, 11 

Domains and Ranges of Toolkit 
Functions, 27 

Transformation Form, 169 
Transformations of Functions, 64 

Combining Horizontal 
Transformations, 79 

Combining Vertical Transformations, 
79 

Horizontal Reflections, 71 
Horizontal Shifts, 67 
Horizontal Stretch or Compression, 77 
Vertical Reflections, 71 
Vertical Shifts, 65 
Vertical Stretch or Compression, 75 

transverse axis, 598 
Trigonometric Identities, 376 

Alternative Forms of the Pythagorean 
Identity, 379, 454, 456 

Cofunction Identities, 387 
Double Angle Identities, 477 
Half-Angle Identities, 483 
Negative Angle Identities, 454 
Power Reduction Identities, 483 
Product to Sum Identities, 468 
Pythagorean Identity, 364 
Reciprocal Identities, 454 
Sum and Difference Identities, 461 
Sum to Product Identities, 469 

Trigonometry 
Cosecant, 375 
Cosine, 363, 385, 398 
Cotangent, 375 
Right Triangles, 385, 597 
Secant, 375 
Sine, 363, 385, 398 
SohCahToa, 385 
Solving Trig Equations, 437 
Tangent, 375, 385 
The Pythagorean Theorem, 337 
Unit Circle, 369 

Triple Zero, 183 
Unit Circle, 369 
Vector, 541, 544 

Adding Vectors Geometrically, 542 
Adding, Subtracting, or Scaling 

Vectors in Component Form, 547 
Geometrically Scaling a Vector, 543 

Vertex, 167, 169 
Vertex Form, 169 
Vertical Asymptote, 219, 222 
Vertical Intercept, 115 
Vertical Line Test, 7 
Vertical Lines, 119 
Vertices, 580, 598, 617 
Work, 560 
zeros, 164 

 




