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Chapter 1

The Hidden Markov Model

The hidden Markov model (HMM) [1]–[3] is one of statistical time series

models widely used in various fields. Especially, speech recognition systems

to recognize time series sequences of speech parameters as digit, character,

word, or sentence can achieve success by using several refined algorithms of

the HMM. Furthermore, text-to-speech synthesis systems to generate speech

from input text information has also made substantial progress by using the

excellent framework of the HMM. In this chapter, we briefly describe the

basic theory of the HMM.

1.1 Definition

A hidden Markov model (HMM) is a finite state machine which generates a

sequence of discrete time observations. At each time unit, the HMM changes

states at Markov process in accordance with a state transition probability,

and then generates observational data o in accordance with an output prob-

ability distribution of the current state.

An N -state HMM is defined by the state transition probability A =

{aij}N
i,j=1, the output probability distribution B = {bi(o)}N

i=1, and initial

state probability Π = {πi}N
i=1. For notational simplicity, we denote the

model parameters of the HMM as follow:

λ = (A, B,Π). (1.1)

Figure 1.1 shows examples of typical HMM structure. Figure 1.1 (a)
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Figure 1.1: Examples of HMM structure.

shows a 3-state ergodic model, in which each state of the model can be

reached from every other state of the model in a single transition, and Fig. 1.1

(b) shows a 3-state left-to-right model, in which the state index simply in-

creases or stays depending on time increment. The left-to-right models are

often used as speech units to model speech parameter sequences since they

can appropriately model signals whose properties successively change.

The output probability distribution bi(o) of the observational data o of

state i can be discrete or continuous depending on the observations. In

continuous distribution HMM (CD-HMM) for the continuous observational

data, the output probability distribution is usually modeled by a mixture of

multivariate Gaussian distributions as follows:

bi(o) =
M∑

m=1

wim N (o; μim,Σim) (1.2)

where M is the number of mixture components for the distribution, and

wim, μim and Σim are a weight, a L-dimensional mean vector, and a L ×
L covariance matrix of mixture component m of state i, respectively. A

Gaussian distribution N (o; μim,Σim) of each component is defined by

N (o; μim,Σim) =
1√

(2π)L|Σim|
exp

(
−1

2
(o − μim)�Σ−1

im(o − μim)

)
,

(1.3)
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Figure 1.2: Output distributions.

where L is the dimensionality of the observation data o. Mixture weights

wim satisfy the following stochastic constraint

M∑
m=1

wim = 1, 1 ≤ i ≤ N (1.4)

wim ≥ 0, 1 ≤ i ≤ N, 1 ≤ m ≤ M (1.5)

so that bi(o) are properly normalized as probability density function, i.e.,∫
o

bi(o)do = 1, 1 ≤ i ≤ N. (1.6)

When the observation vector ot is divided into S stochastic-independent

data streams, i.e., o = [o�
1 , o�

2 , . . . , o�
S ]�, bi(o) is formulated by product of

Gaussian mixture densities,

bi(o) =

S∏
s=1

bis(os) (1.7)

=
S∏

s=1

{
Ms∑

m=1

wismN (os; μism,Σism)

}
(1.8)

where Ms is the number of components in stream s, and wism, μism and Σism

are a weight, a L-dimensional mean vector, and a L × L covariance matrix

of mixture component m of state i in stream s, respectively (Fig. 1.2).

1.1.1 Probability Evaluation

When a state sequence of length T is determined as q = (q1, q2, . . . , qT ), the

observation probability of an observation sequence O = (o1, o2, . . . , oT ) of
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length T , given the HMM λ can be simply calculated by multiplying the

output probabilities for each state, that is,

P (O|q, λ) =
T∏

t=1

P (ot|qt, λ) =
T∏

t=1

bqt(ot). (1.9)

The probability of such a a state sequence q can be calculated by multiplying

the state transition probabilities,

P (q|λ) =

T∏
t=1

aqt−1qt (1.10)

where aq0i = πi is the initial state probability. Using Bayes’ theorem, the

joint probability of O and q can be simply written as

P (O, q|λ) = P (O|q, λ)P (q|λ). (1.11)

Hence, the probability of the observation sequence O given the HMM λ is

calculated by using marginalization of state sequences q, that is, by summing

P (O, q|λ) over all possible state sequences q,

P (O|λ) =
∑
all q

P (O, q|λ) =
∑
all q

P (O|q, λ)P (q|λ) (1.12)

=
∑
all q

T∏
t=1

aqt−1aqtbqt(ot). (1.13)

Considering that the state sequences become trellis structure, this probability

of the observation sequence can be transformed as follows:

P (O|λ) =
N∑

i=1

P (o1, . . . , ot, qt = i | λ) · P (ot+1, . . . , oT | qt = i, λ) (1.14)

for ∀ t ∈ [1, T ]. Therefore, we can efficiently calculate the probability of the

observation sequence (Eq. 1.13) using forward and backward probabilities

defined as

αt(i) = P (o1, o2, . . . , ot, qt = i | λ), (1.15)

βt(i) = P (ot+1, ot+2, . . . , oT | qt = i, λ). (1.16)

The forward and/or backward probabilities can be recursively calculated

as follows:
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1. Initialization

α1(i) = πibi(o1), 1 ≤ i ≤ N (1.17)

βT (i) = 1 1 ≤ i ≤ N. (1.18)

2. Recursion

αt+1(i) =

[
N∑

j=1

αt(j)aji

]
bi(ot+1),

1 ≤ i ≤ N,

t = 2, . . . , T
(1.19)

βt(i) =

N∑
j=1

aijbj(ot+1)βt+1(j),
1 ≤ i ≤ N,

t = T − 1, . . . , 1.
(1.20)

Thus, the P (O|λ) is given by

P (O|λ) =

N∑
i=1

αt(i)βt(i) (1.21)

for ∀ t ∈ [1, T ].

1.2 Optimal State Sequence

A single best state sequence q∗ = (q∗1, q
∗
2, . . . , q

∗
T ) for a given observation

sequence O = (o1, o2, . . . , oT ) is also useful for various applications. For

instance, most speech recognition systems use the joint probability of the

observation sequence and the most likely state sequence P (O, q∗|λ) to ap-

proximate the real probability P (O|λ)

P (O|λ) =
∑
all q

P (O, q|λ) (1.22)

�max
q

P (O, q|λ). (1.23)

The best state sequence q∗ = argmaxq P (O, q|λ) can be obtained by a

manner similar to the Dynamic Programming (DP) procedure, which is often

referred to as the Viterbi algorithm. Let δt(i) be the probability of the most

likely state sequence ending in state i at time t

δt(i) = max
q1,q2,...,qt−1

P (o1, . . . , ot, q1, . . . , qt−1, qt = i|λ), (1.24)
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and ψt(i) be the array to keep track. Using these variables, the Viterbi

algorithm can be written as follows:

1. Initialization

δ1(i) = πibi(o1), 1 ≤ i ≤ N, (1.25)

ψ1(i) = 0, 1 ≤ i ≤ N. (1.26)

2. Recursion

δt(j) = max
i

[δt(i)aij] ot,
1 ≤ i ≤ N,

t = 2, . . . , T
(1.27)

ψt(j) = argmax
i

[δt(i)aij ] ,
1 ≤ i ≤ N,

t = 2, . . . , T.
(1.28)

3. Termination

P (O, q∗|λ) = max
i

[δT (i)] , (1.29)

q∗T = argmax
i

[δT (i)]. (1.30)

4. Path backtracking

q∗t = ψt+1(q
∗
t+1). (1.31)

1.3 Parameter Estimation

There is no known way to analytically solve the model parameter set which

satisfies a certain optimization criterion such as maximum likelihood (ML)

criterion as follows:

λ∗ = argmax
λ

P (O|λ) (1.32)

= argmax
λ

∑
all q

P (O, q|λ). (1.33)

Since this problem is an optimization problem from incomplete data includ-

ing the hidden variable q, it is difficult to determine λ∗ which globally maxi-

mizes likelihood P (O|λ) for a given observation sequence O in a closed form.
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However, a model parameter set λ which locally maximizes P (O|λ) can be

obtained using an iterative procedure such as the expectation-maximization

(EM) algorithm which conducts optimization of the complete dataset. This

optimization algorithm is often referred to as the Baum-Welch algorithm.

In the following, the EM algorithm for the CD-HMM using a single Gaus-

sian distribution are described. The EM algorithm for the HMM with discrete

output distributions or Gaussian mixture distributions can also be derived

straightforwardly.

1.3.1 Auxiliary Function Q

In the EM algorithm, an auxiliary function Q(λ′, λ) of current parameter set

λ′ and new parameter set λ is defined as follows:

Q(λ′, λ) =
∑
all q

P (q|O, λ′) log P (O, q|λ). (1.34)

At each iteration of the procedure, current parameter set λ′ is replaced

by new parameter set λ which maximizes Q(λ′, λ). This iterative procedure

can be proved to increase likelihood P (O|λ) monotonically and converge to

a certain critical point, since it can be proved that the Q-function satisfies

the following theorems:

• Theorem 1

Q(λ′, λ) ≥ Q(λ′, λ′) ⇒ P (O|λ) ≥ P (O|λ′) (1.35)

• Theorem 2

The auxiliary function Q(λ′, λ) has an unique global maximum as a

function of λ, and this maximum is the one and only critical point.

• Theorem 3

A parameter set λ is a critical point of the likelihood P (O|λ) if and

only if it is a critical point of the Q-function.
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1.3.2 Maximization of Q-Function

Using Eq. (1.13), logarithm of likelihood function of P (O, q|λ) can be written

as

log P (O, q|λ) =

T∑
t=1

log aqt−1qt +

T∑
t=1

logN (ot; μqt
,Σqt), (1.36)

where aq0q1 denotes πq1 . The Q-function (Eq. (1.34)) can be written as

Q(λ′, λ) =

N∑
i=1

P (O, q1 = i|λ′) log πi (1.37)

+
N∑

i=1

N∑
j=1

T−1∑
t=1

P (O, qt = i, qt+1 = j|λ′) log aij (1.38)

+

N∑
i=1

T∑
t=1

P (O, qt = i|λ) logN (ot; μqt
,Σqt). (1.39)

The parameter set λ which maximizes above the Q-function subject to

the stochastic constraints
∑N

i=1 πi = 1 and
∑N

j=1 aij = 1 for 1 ≤ i ≤ N can

be derived by using Lagrange multipliers method of Eqs. (1.37)–(1.38) and

partial differential equation of Eq. (1.39):

πi = γ1(i), (1.40)

aij =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

, (1.41)

μi =

T∑
t=1

γt(i) · ot

T∑
t=1

γt(i)

, (1.42)

Σi =

T∑
t=1

γt(i) · (ot − μi)(ot − μi)
�

T∑
t=1

γt(i)

, (1.43)
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where γt(i) and ξt(i, j) are the state occupancy probability of being state i

at time t, and the probability of being state i at time t and state j at time

t + 1, respectively,

γt(i) = P (O, qt = i|λ) (1.44)

=
αt(i)βt(i)

N∑
j=1

αt(j)βt(j)

, (1.45)

ξt(i, j) = P (O, qt = i, qt+1 = j|λ) (1.46)

=
αt(i)aijbj(ot+1)βt+1(j)

N∑
l=1

N∑
n=1

αt(l)alnbn(ot+1)βt+1(n)

. (1.47)





Chapter 2

HMM-Based Speech Synthesis

This chapter describes an HMM-based text-to-speech synthesis (TTS) sys-

tem [4] [5]. In the HMM-based speech synthesis, the speech parameters of a

speech unit such as the spectrum, fundamental frequency (F0), and phoneme

duration are statistically modeled and generated by using HMMs based on

maximum likelihood criterion [6]–[9]. In this chapter, we briefly describe the

basic structure and the algorithms of the HMM-based TTS system.

2.1 Parameter Generation Algorithm

2.1.1 Formulation of the Problem

First, we describe an algorithm to directly generate optimal speech parame-

ters from the HMM in the maximum likelihood sense [6]–[8]. Given a HMM

λ using continuous distributions and length T of a parameter sequence to be

generated, the problem for generating the speech parameters from the HMM

is to obtain a speech parameter vector sequence O = (o1, o2, , . . . , oT ) which

maximizes P (O|λ, T ) with respect to O,

O∗ = argmax
O

P (O|λ, T ) (2.1)

= argmax
O

∑
all q

P (O, q|λ, T ). (2.2)

Since there is no known method to analytically obtain the speech parameter

sequence which maximizes P (O|λ, T ) in a closed form, this problem is ap-

11
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proximated1 by using the most likely state sequence in the same manner as

the Viterbi algorithm, i.e.,

O∗ = argmax
O

P (O|λ, T ) (2.3)

= argmax
O

∑
all q

P (O, q|λ, T ) (2.4)

� argmax
O

max
q

P (O, q|λ, T ). (2.5)

Using Bayes’ theorem, the joint probability of O and q can be simply written

as

O∗ � argmax
O

max
q

P (O, q|λ, T ) (2.6)

= argmax
O

max
q

P (O|q, λ, T )P (q|λ, T ). (2.7)

Hence, the optimization problem of the probability of the observation se-

quence O given the HMM λ and the length T is divided into the following

two optimization problems:

q∗ = argmax
q

P (q|λ, T ) (2.8)

O∗ = argmax
O

P (O|q∗, λ, T ). (2.9)

If the parameter vector at frame t is determined independently of preced-

ing and succeeding frames, the speech parameter sequence O which maxi-

mizes P (O|q∗, λ, T ) is obtained as a sequence of mean vectors of the given op-

timum state sequence q∗. This will cause discontinuity in the generated spec-

tral sequence at transitions of states, resulting in clicks in synthesized speech

which degrade quality of synthesized speech. To avoid this, it is assumed

that the speech parameter vector ot consists of the M-dimensional static

feature vector ct = [ct(1), ct(2), . . . , ct(M)]� (e.g., cepstral coefficients) and

the M-dimensional dynamic feature vectors Δct, Δ2ct (e.g., delta and delta-

delta cepstral coefficients), i.e., ot =
[
c�

t , Δc�
t , Δ2c�

t

]�
and that the dynamic

feature vectors are determined by linear combination of the static feature

1An algorithm to obtain O which maximizes P (O|λ) using EM algorithm is shown
in [10].
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vectors of several frames around the current frame. By setting Δ(0)ct = ct,

Δ(1)ct = Δct, and Δ(2)ct = Δ2ct, the general form Δ(n)ct is defined as

Δ(n)ct =

L
(n)
+∑

τ=−L
(n)
−

w
(n)
t+τct 0 ≤ n ≤ 2, (2.10)

where L
(0)
− = L

(0)
+ = 0 and w

(0)
0 = 1. Then, the optimization problem of the

observation sequence O is considered to be maximizing P (O|q∗, λ, T ) with

respect to C = (c1, c2, . . . , cT ) under the constraints Eq. (2.10).

2.1.2 Solution for the Optimization Problem O∗

First, we describe a solution for the optimization problem O∗ given the opti-

mum state sequence q∗. The speech parameter vector sequence O is rewrit-

ten in a vector form as O =
[
o�

1 , o�
2 , . . . , o�

T

]�
, that is, O is a super-vector

made from all of the parameter vectors. In the same way, C is rewritten

as C =
[
c�

1 , c2,
� , . . . , c�

T

]�
. Then, O can be expressed by C as O = WC

where

W = [w1, w2, . . . , wT ]� (2.11)

wt = [w
(0)
t , w

(1)
t , w

(2)
t ] (2.12)

w
(n)
t = [0M×M

1st
, . . . , 0M×M ,

w(n)(−L
(n)
− )IM×M

(t−L
(n)
− )-th

, . . . , w(n)(0)IM×M
t-th

, . . . , w(n)(L
(n)
+ )IM×M

(t+L
(n)
+ )-th

,

0M×M , . . . , 0M×M
T -th

]�, n = 0, 1, 2, (2.13)

and 0M×M and IM×M are the M × M zero matrix and the M × M identity

matrix, respectively. It is assumed that ct = 0M (t < 1, T < t) where 0M

denotes the M-dimensional zero vector. Using the variable, the probability

P (O|q∗, λ, T ) is written as

P (O|q∗, λ, T ) = P (WC|q∗, λ, T ) (2.14)

=
1√

(2π)3MT |Σ|
exp

(
−1

2
(WC − μ)�Σ−1(WC − μ)

)
,

(2.15)
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where μ =
[
μ�

q∗1
, μ�

q∗2
, . . . , μ�

q∗T

]�
and U = diag[U q∗1 , U q∗2 , . . . , U q∗T ], and μq∗t

and U q∗t are the mean vector and the diagonal covariance matrix of the state

qt of the optimum state sequence q∗. Thus, by setting

∂P (O|q∗, λ, T )

∂C
= 0TM×1, (2.16)

the following equations are obtained,

RC = r, (2.17)

where TM × TM matrix R and TM-dimensional vector r are as follows:

R = W�U−1W , (2.18)

r = W�U−1μ. (2.19)

By solving Eq. (2.17), a speech parameter sequence C which maximizes

P (O|q∗, λ, T ) is obtained. By utilizing the special structure of R, Eq. (2.17)

can be solved by the Cholesky decomposition or the QR decomposition effi-

ciently.

2.1.3 Solution for the Optimization Problem q∗

Next, we describe a solution for the optimization problem q∗ given the model

parameter λ and the length T . The P (q|λ, T ) is calculated as

P (q|λ, T ) =
T∏

t=1

aqt−1qt (2.20)

where aq0q1 = πq1. If the value of P (q|λ, T ) for every possible sequence

q can be obtained, we can solve the optimization problem. However, it is

impractical because there are too many combinations of q. Furthermore, if

state duration is controlled only by self-transition probability, state duration

probability density associated with state i becomes the following geometrical

distribution:

pi(d) = (aii)
d−1(1 − aii), (2.21)

where pi(d) represents probability of d consecutive observations in state i,

and aii is self-transition probability associated with sate i. This exponen-

tial state duration probability density is inappropriate for controlling state
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Figure 2.1: Duration synthesis

and/or phoneme duration. To control temporal structure appropriately,

HMMs should have explicit state duration distributions. The state duration

distributions can be modeled by parametric probability density functions

(pdfs) such as the Gaussian pdfs or Gamma pdfs or Poisson pdfs.

Assume that the HMM λ is left-to-right model with no skip, then the

probability of the state sequence q = (q1, q2, . . . , qT ) is characterized only by

explicit state duration distributions. Let pk(dk) be the probability of being

dk frames at state k, then the probability of the state sequence q can be

written as

P (q|λ, T ) =

K∏
k=1

pk(dk) (2.22)

where K is the total number of states visited during T frames, and

K∑
k=1

dqk
= T. (2.23)

When the state duration probability density is modeled by a single Gaus-

sian pdf,

pk(dk) =
1√
2πσ2

k

exp

(
−(dk − mk)

2

2σ2
k

)
, (2.24)

q∗ which maximizes P (q|λ, T ) under the constraint Eq. (2.23) is obtained by
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using Lagrange multipliers method of Eq. (2.22):

dk = mk + ρ · σ2
k, 1 ≤ k ≤ K, (2.25)

ρ =

(
T −

K∑
k=1

mk

)/
K∑

k=1

σ2
k, (2.26)

where mk and σk are the mean and variance of the duration distribution

of state k, respectively (Fig. 2.1). From Eq. (2.26), it can be seen that it

is possible to control speaking rate via ρ instead of the total frame length

T . When ρ is set to zero, speaking rate becomes average rate, and when ρ

is set to negative or positive value, speaking rate becomes faster or slower,

respectively. It is noted that state durations are not made equally shorter or

longer because variability of a state duration depends on the variance of the

state duration density.

2.2 Examples of Parameter Generation

This section shows several examples of speech parameter sequences generated

from HMMs.

HMMs were trained using speech data uttered by a male speaker MHT

from ATR Japanese speech database. Speech signals were downsampled

from 20kHz to 10kHz and windowed by a 25.6ms Blackman window with

5ms shift, and then mel-cepstral coefficients are obtained by a mel-cepstral

analysis technique. The feature vector consists of 16 mel-cepstral coefficients

including zeroth coefficient and their delta and delta-delta coefficients. Delta

and delta-delta coefficients are calculated as follows:

Δct =
1

2
(ct+1 − ct−1), (2.27)

Δ2ct =
1

2
(Δct+1 − Δct−1)

=
1

4
(ct+2 − 2ct + ct−2). (2.28)

HMMs were 3-state left-to-right triphone models with no skip. Each state of

HMMs had a single or 3-mixture Gaussian output distribution and a Gaus-

sian state duration density. Means and variances of Gaussian state duration
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Figure 2.2: An example of speech parameter sequences generated from a

single-mixture HMM.

densities were calculated using histograms of state duration obtained by a

state-level forced Viterbi alignment of training data to the transcriptions

using HMMs trained by the EM algorithm.
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Figure 2.3: Examples of speech spectral generated from a single-mixture

HMM.

2.2.1 Effect of Dynamic Features

Figure 2.2 shows an example of generated parameter sequences from a single

mixture HMM, which was constructed by concatenating phoneme HMMs

sil, a, i, and sil. HMMs were trained using phonetically balanced 503

sentences. The number of frames was set to T = 80, and the weighting factor

for the score on state duration was set to Wd → ∞, that is, state durations

were determined only by state duration densities, and the sub-optimal state

sequence search was not performed.

In the figure, horizontal axis represents the frame number and vertical

axes represent the values of zeroth, first, and second order mel-cepstral pa-

rameters, and their delta and delta-delta parameters. Dashed lines indicate

means of output distributions, gray areas indicate the region within stan-

dard deviations, and solid lines indicate trajectories of generated parameter

sequences.

Figure 2.3 shows sequences of generated spectra for the same conditions

as used in Fig. 2.2. Without dynamic features, the parameter sequence which

maximize P (O|q, λ, T ) becomes a sequence of mean vectors. As a result, dis-

continuities occur in the generated spectral sequence at transitions of states

as shown in Fig. 2.3 (a). On the other hand, from Fig. 2.2 and Fig. 2.3 (b),
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Figure 2.4: F0 pattern modeling on two spaces.

it can be seen that by incorporating dynamic features, generated parameters

reflect statistical information (means and variances) of static and dynamic

features modeled by HMMs. For example, at the first and last states of

phoneme HMMs, since the variances of static and dynamic features are rela-

tively large, generated parameters vary appropriately according to the values

of parameters of the preceding and following frames. Meanwhile, at the cen-

tral states of HMMs, since the variances of static and dynamic features are

small and the means of dynamic features are close to zero, generated param-

eters are close to means of static features.

2.3 F0 Modelling

In order to synthesize speech, it is necessary to model and generate fun-

damental frequency (F0) patterns as well as spectral sequences. However,

the F0 patterns cannot be modeled by conventional discrete or continuous

HMMs, because the values of F0 are not defined in unvoiced regions, i.e., the

observation sequence of an F0 pattern is composed of one-dimensional con-

tinuous values and a discrete symbol which represents “unvoiced” as showin

in Figure 2.4.

Assuming that there are a single one-dimensional space Ω1 and a single
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zero-dimensional space Ω2 in sample space Ω of F0 patterns, it is considered

that observations of F0 in voiced regions is drawn from Ω1 observations in

unvoiced regions is drawn from Ω2 (as shown in Fig. 2.4).

2.4 Multi-Space Probability Distribution

Consider a sample space Ω shown in Fig. 2.5, which consists of G spaces:

Ω =
G⋃

g=1

Ωg, (2.29)

where Ωg is an ng-dimensional real space Rng , specified by space index g.

While each space has its own dimensionality, some of them may have the

same dimensionality.

Each space Ωg has its probability wg, i.e., P (Ωg) = wg, where
∑G

g=1 wg =

1. If ng > 0, each space has a probability distribution function Ng(x),

x ∈ Rng , where
∫
Ng(x)dx = 1. If ng = 0, Ωg is assumed to contain only

one sample point, and P (Ω) is defined to be P (Ω) = 1.

Each event E, which will be considered here, is represented by a random

vector o which consists of a set of space indices X and a continuous random

variable x ∈ Rn, that is,

o = (X, x), (2.30)

where all spaces specified by X are n-dimensional. On the other hand, X

does not necessarily include all indices which specify n-dimensional spaces

(see o1 and o2 in Fig. 2.5). It is noted that not only the observation vector

x but also the space index set X is a random variable, which is determined

by an observation device (or feature extractor) at each observation. The

observation probability of o is defined by

b(o) =
∑

g∈S(o)

wgNg(V (o)), (2.31)

where

S(o) = X, (2.32)

V (o) = x. (2.33)
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Figure 2.5: Multi-space probability distribution and observations.

It is noted that, although Ng(x) does not exist for ng = 0 since Ωg contains

only one sample point, for simplicity of notation, Ng(x) ≡ 1 is defined for

ng = 0.

Some examples of observations are shown in Fig. 2.5. An observation

o1 consists of a set of space indices X1 = {1, 2, G} and a three-dimensional

vector x1 ∈ R3. Thus the random variable x is drawn from one of three spaces

Ω1, Ω2, ΩG ∈ R3, and its pdf is given by w1N1(x) + w2N 2(x) + wGNG(x).

The probability distribution defined above, which will be referred to as

multi-space probability distribution (MSD), is the same as the discrete distri-

bution when ng ≡ 0. Furthermore, if ng ≡ m > 0 and S(o) ≡ {1, 2, . . . , G},
the multi-space probability distribution is represented by a G-mixture pdf.

Thus the multi-space probability distribution is more general than either

discrete or continuous distributions.

The following example shows that the multi-space probability distribution

conforms to statistical phenomena in the real world (see Fig. 2.6):

A man is fishing in a pond. There are red fishes, blue fishes, and
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Observation sequence

Figure 2.6: Example of multi-space observations.

tortoises in the pond. In addition, some junk articles are in the

pond. When he catches a fish, he is interested in the kind of the

fish and its size, for example, the length and height. When he

catches a tortoise, it is sufficient to measure the diameter if the

tortoise is assumed to have a circular shape. Furthermore, when

he catches a junk article, he takes no interest in its size.

In this case, the sample space consists of four spaces:

Ω1: Two dimensional space corresponding to lengths and heights of red

fishes.

Ω2: Two dimensional space corresponding to lengths and heights of blue

fishes.

Ω3: One dimensional space corresponding to diameters of tortoises.

Ω4: Zero dimensional space corresponding to junk articles.
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Figure 2.7: MSD-HMM

The weights w1, w2, w3, w4 are determined by the ratio of red fishes, blue

fishes, tortoises, and junk articles in the pond. Functions N1(·) and N2(·)
are two-dimensional pdfs for sizes (lengths and heights) of red fishes and

blue fishes, respectively. The function N3(·) is the one-dimensional pdf for

diameters of tortoises. For example, when the man catches a red fish, the

observation is given by o = ({1}, x), where x is a two-dimensional vector

which represents the length and height of the red fish. Suppose that he is

fishing day and night, and during the night, he cannot distinguish between

the colors of fishes, while he can measure their lengths and heights. In this

case, the observation of a fish at night is given by o = ({1, 2}, x).

2.5 MSD-HMM

By using the multi-space distribution, a new kind of HMM is defined which is

called multi-space probability distribution HMM (MSD-HMM). The output

probability in each state of MSD-HMM is given by the multi-space proba-

bility distribution defined in the previous section. An N -state MSD-HMM

λ is specified by the initial state probability distribution π = {πj}N
j=1, the
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state transition probability distribution A = {aij}N
i, j=1, and the state output

probability distribution B = {bi(·)}N
i=1, where

bi(o) =
∑

g∈S(o)

wigNig(V (o)). (2.34)

As shown in Fig. 2.7, each state i has G pdfs Ni1(·), Ni2(·), . . ., NiG(·),
and their weights wi1, wi2, . . ., wiG, where

∑G
g=1 wig = 1.

2.6 F0 Modelling using MSD-HMM

As described before, becaused the observation sequence of an F0 pattern is

composed of one-dimensional continuous values and a discrete symbol which

represents “unvoiced,” we apply multi-space probability distribution HMM

(MSD-HMM) [11]–[13] to F0 pattern modeling and generation.

In the MSD-HMM for F0 modelling, the observation sequence of F0 pat-

tern is viewed as a mixed sequence of outputs from a one-dimensional space

Ω1 and a zero-dimensional space Ω2 which correspond to voiced and unvoiced

regions, respectively. Each space has the space weight wg (
∑2

g=1 wg = 1).

The space Ω1 has a one-dimensional normal probability density function

N1(x). On the other hand, the space Ω2 has only one sample point. An

F0 observation o consists of a continuous random variable x and a set of

space indices X, that is,

o = (X, x) (2.35)

where X = {1} for voiced region and X = {2} for unvoiced region. Then

the observation probability of o is defined by

b(o) =
∑

g∈S(o)

wgNg(V (o)) (2.36)

where V (o) = x and S(o) = X. It is noted that, although N2(x) does not

exist for Ω2, N2(x) ≡ 1 is defined for simplicity of notation.

Using an HMM in which output probability in each state is given by

Eq. (2.36), called MSD-HMM (Figure 2.7), voiced and unvoiced observations

of F0 can be modeled in a unified model without any heuristic assump-

tion [11]. Moreover, spectrum and F0 can be modeled simultaneously by
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multi-stream MSD-HMM, in which spectral part is modeled by continuous

probability distribution (CD), and F0 part is modeled by MSD (see Fig. 2.8).

In the figure, ct, Xp
t , and xp

t represent the spectral parameter vector, a set

of space indices of F0, and F0 parameter at time t, respectively, and Δ and

Δ2 represent the delta and delta-delta parameters, respectively.

2.6.1 Examples of F0 Generation

Examples of F0 patterns generated for a sentence included in the training

data are shown in Fig. 2.9. In the figure, the dotted lines represent F0

patterns of the real utterance obtained from the database, and the solid

lines represent the generated patterns. It is noted that state durations were

obtained from result of Viterbi alignment of HMMs to real utterance for

comparison with the real utterance. Figure 2.9 (a) shows an F0 pattern

generated from the model before clustering. The generated F0 pattern is

almost identical with the real F0 pattern, since there are a number of models

which is observed only once in the training data, and such models model

only one pattern each. It can be seen from Fig. 2.9 (b), (c), and (d) that the

F0 patterns are close to the real F0 pattern even when context clustering is

performed.
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(d) model after clustering with 1,579 states

A Japanese sentence meaning “unless he gets rid of that arrogant attitude,

there’ll be no getting through the winter” in English.

Figure 2.9: Examples of generated F0 patterns for a sentence included in

training data.

Figure 2.10 shows examples of generated F0 patterns for a test sentence

which is not included in training data. As well as the case of Fig. 2.9, the
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(c) Model after clustering with 1,579 states

A Japanese sentence meaning “eventually I became afraid and fled back

home” in English

Figure 2.10: Examples of generated F0 patterns for a test sentence.

dotted lines represent F0 patterns of the real utterance obtained from the

database, the solid lines represent the generated patterns, and state durations

were obtained from the result of Viterbi alignment of HMMs to real utterance.

It can be seen that the generated F0 patterns are similar to that of natural

utterance even though 34 of the 40 labels occuring in the sentence were not

observed in the training data.
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2.7 Decision-Tree-based Context Clustering

In continuous speech, parameter sequences of particular speech unit (e.g.,

phoneme) can vary according to phonetic context. To manage the varia-

tions appropriately, context dependent models, such as triphone/quinhpone

models, are often employed. In the HMM-based speech synthesis system,

we use more complicated speech units considering prosodic and linguistic

context such as mora, accentual phrase, part of speech, breath group, and

sentence information to model suprasegmental features in prosodic feature

appropriately. However, it is impossible to prepare training data which cover

all possible context dependent units, and there is great variation in the fre-

quency of appearance of each context dependent unit. To alleviate these

problems, a number of techniques are proposed to cluster HMM states and

share model parameters among states in each cluster. Here, we describe a

decision-tree-based state tying algorithm [4], [5], [14], [15]. This algorithm is

often referred to as decision-tree-based context clustering algorithm.

2.7.1 Decision Tree

An example of a decision tree is shown in Fig. 2.11. The decision tree is a

binary tree. Each node (except for leaf nodes) has a context related question,

such as R-silence? (“is the previous phoneme a silence?”) or L-vowel? (“is

the next phoneme vowels?”), and two child nodes representing “yes” and “no”

answers to the question. Leaf nodes have state output distributions. Using

the decision-tree-based context clustering, model parameters of the speech

units for the unseen contexts can be obtained, because any context reaches

one of the leaf nodes, going down the tree starting from the root node then

selecting the next node depending on the answer about the current context.

2.7.2 Construction of Decision Tree

We will briefly review the construction method of the decision tree using the

minimum description length (MDL) criterion [15]. Let S0 be the root node

of a decision tree and U(S1, S2, . . . , SM) be a model defined for the leaf node

set {S1, S2, . . . , SM}. Here, a model is a set of leaf nodes of a decision tree.
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Figure 2.11: An example of decision tree.

A Gaussian pdf Nm, which is obtained by combining several Gaussian pdfs

classified into the node Sm, is assigned to each node Sm. An example of a

decision tree for M = 3 is shown in Fig. 2.11. To reduce computational costs,

we make the following three assumptions:

1. The transition probabilities of HMMs can be ignored in the calculation

of the auxiliary function of the likelihood.

2. Context clustering does not change the frame or state alignment be-

tween the data and the model.

3. The auxiliary function of the log-likelihood for each state can be given

by the sum of the log-likelihood for each data frame weighted by the

state occupancy probability (Eq. 1.45) for each state.
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From these assumptions, the auxiliary function L of the log-likelihood of the

model U is given by

L(U) �
M∑

m=1

T∑
t=1

γt(m) logNm(ot; μm,Σm) (2.37)

=

M∑
m=1

T∑
t=1

γt(m)

(
−(ot − μm)�Σ−1

m (ot − μm) + L log 2π + log |Σm|
2

)

(2.38)

where μm and Σm is the mean vector and the diagonal covariance matrix of

the Gaussian pdf Nm at node Sm, respectively. If the re-estimation of the

HMM parameters using EM algorithm (Eq. 1.43) was conducted fully, the

estimated covariance matrix at convergence point is approximated by

Σm =

∑T
t=1 γt(m)(ot − μm)(ot − μm)�∑T

t=1 γt(m)
, (2.39)

and furthermore since the covariance matrix is assumed to be diagonal,

T∑
t=1

γt(m)(ot − μm)�Σ−1
m (ot − μm) = L

T∑
t=1

γt(m) (2.40)

can be obtained. Thus, the auxiliary function L of the log-likelihood of the

model U can be transformed as follows:

L(U) � −1

2

M∑
m=1

T∑
t=1

γt(m) (L + L log 2π + log |Σm|) . (2.41)

Using Eq. (2.41), the description length [15] of the model U is given by

D(U) ≡ −L(U) + LM log G + C (2.42)

=
1

2

M∑
m=1

Γm (L + L log(2π) + log |Σm|) (2.43)

+ LM log G + C (2.44)

where Γm =
∑T

t=1 γt(m), γt(m) is the state occupancy probability at node

Sm, L is the dimensionality of the observation vector, G =
∑M

m=1 Γm, and C
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Figure 2.12: Splitting of node of decision tree.

is the code length required for choosing the model which is assumed here to

be constant.

Suppose that node Sm of model U is split into two nodes, Smqy and Smqn,

by using question q (Fig. 2.12). Let U ′ be the model obtained by splitting

the Sm of model U by question q. The description length of model U ′ is

calculated as follows:

D(U ′) =
1

2
Γmqy (L + L log(2π) + log |Σmqy|) (2.45)

+
1

2
Γmqn (L + L log(2π) + log |Σmqn|) (2.46)

+
1

2

M∑
m′ �=m

m′=1

Γm′ (L + L log(2π) + log |Σm′ |) (2.47)

+ L(M + 1) log G + C, (2.48)

where the number of nodes of U ′ is M + 1, Γmqy, Γmqn and Σmqy, Σmqn are

the state occupancy probabilities and the covariance matrices of Gaussian

pdfs at nodes Smqy and Smqn, respectively. Hence, the difference between the

description lengths before and after the splitting as follows:

δm(q) = D(U ′) −D(U) (2.49)

=
1

2
(Γmqy log |Σmqy| + Γmqn log |Σmqn| − Γm log |Σm|) (2.50)

+ L log G. (2.51)

By using this difference, δm(q), we can automatically construct a decision

tree. The process of constructing a decision tree is summarized below.
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Figure 2.13: MDL-based decision-tree building.

1. Define initial model U as U = {S0}.

2. Find node Sm′ in model U and question q′ which minimize δm′(q′).

3. Terminate if δm′(q′) > 0. If δm′(q′) ≤ 0, stop the splitting of the nodes

(Fig. 2.13).

4. Split node Sm′ by using question q′ and replace U with the resultant

node set.

5. Go to step 2.

An example of a decision tree construced for the first state of the F0 part

is shown in Fig. 2.14. In the figure, “sil” represents the silence before and

after the sentence, “silence” represents a class composed of “sil”, pauses

inside the sentence, and silent intervals just bofore unvoiced fricatives, and

“L-*” and “R-*” represent the left and right context of the current phoneme

or accentual phrase. In addition, “1to13 a0” represents that the current

mora is in between first and 13th morae of an accentual phrase of type 0,

and “low-tail” represents that the current accentual phrase is other than

type 0 and the end of a sentence.
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Figure 2.14: An example of a decision tree.

2.8 HMM-based TTS System: Overview

A block-diagram of the HMM-based TTS system is shown in Fig. 2.15. The

system consists of training stage and synthesis stage.

In the training stage, context dependent phoneme HMMs are trained

using a speech database. Spectrum and F0 are extracted at each analysis

frame as the static features from the speech database and modeled by multi-

stream HMMs in which output distributions for the spectral and logF0 parts

are modeled using a continuous probability distribution and the multi-space

probability distribution (MSD) [11], respectively. To model variations in the

spectrum and F0, we take the following phonetic, prosodic, and linguistic

contexts into account:

• the number of morae in a sentence;

• the position of the breath group in a sentence;

• the number of morae in the {preceding, current, and succeeding} breath

groups;

• the position of the current accentual phrase in the current breath group;

• the number of morae and the type of accent in the {preceding, current,

and succeeding} accentual phrases;
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• the part of speech of the {preceding, current, and succeeding} mor-

phemes;

• the position of the current mora in the current accentual phrase;

• the differences between the position of the current mora and the type

of accent;

• {preceding, current, and succeeding} phonemes;

• style (for style-mixed modeling only).

Then, the decision-tree-based context clustering technique [15], [16] is ap-

plied separately to the spectral and logF0 parts of the context-dependent

phoneme HMMs. In the clustering technique, a decision tree is automatically

constructed based on the MDL criterion. We then perform re-estimation pro-

cesses of the clustered context-dependent phoneme HMMs using the Baum-

Welch (EM) algorithm. Finally, state durations are modeled by a multi-

variate Gaussian distribution [17], and the same state clustering technique is

applied to the state duration models.

In the synthesis stage, first, an arbitrarily given text is transformed into

a sequence of context-dependent phoneme labels. Based on the label se-

quence, a sentence HMM is constructed by concatenating context-dependent

phoneme HMMs. From the sentence HMM, spectral and F0 parameter se-

quences are obtained based on the ML criterion [6] in which phoneme dura-

tions are determined using state duration distributions. Finally, by using an

MLSA (Mel Log Spectral Approximation) filter [18] [19], speech is synthesized

from the generated mel-cepstral and F0 parameter sequences.

2.9 Speaker Conversion

In general, it is desirable that speech synthesis systems have the ability to

synthesize speech with arbitrary speaker characteristics and speaking styles.

For example, considering the speech translation systems which are used by a

number of speakers simultaneously, it is necessary to reproduce input speak-

ers’ characteristics to make listeners possible to distinguish speakers of the
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Figure 2.15: HMM-based speech synthesis system system.

translated speech. Another example is spoken dialog systems with multiple

agents. For such systems, each agent should have his or her own speaker

characteristics and speaking styles. From this point of view, a number of

spectral/voice conversion techniques have been proposed [20]–[22].

In the HMM-based speech synthesis method, we can easily change spec-

tral and prosodic characteristics of synthetic speech by transforming HMM

parameters appropriately since speech parameters used in the synthesis stage

are statistically modeled by using the framework of the HMM. In fact, we

have shown in [23]–[26] that the TTS system can generate synthetic speech

which closely resembles an arbitrarily given speaker’s voice using a small

amount of target speaker’s speech data by applying speaker adaptation tech-
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Figure 2.16: Speaker conversion

niques such as MLLR (Maximum Likelihood Linear Regression) algorithm

[27]. In the speaker adaptation, initial model parameters, such as mean vec-

tors of output distributions, are adapted to a target speaker using a small

amount of adaptation data uttered by the target speaker. The initial model

can be speaker dependent or independent. For the case of speaker depen-

dent initial model, since most of speaker adaptation techniques tend to work

insufficiently between two speakers with significant difference in voice char-

acteristics, it is required to select the speaker used for training the initial

model appropriately depending on the target speaker. On the other hand,

using speaker independent initial models, speaker adaptation techniques work

well for most target speakers, though the performance will be lower than us-

ing speaker dependent initial models which matches the target speaker and

has sufficient data. Since the synthetic speech generated from the speaker

independent model can be considered to have averaged voice characteristics

and prosodic features of speakers used for training, we refer to the speaker

independent model as the “average voice model”, and the synthetic speech

generated from the average voice model as “average voice” (Fig. 2.16). In the

next section, we will briefly describe the MLLR adaptation [27].

2.9.1 MLLR Adaptation

In the MLLR adaptation, which is the most popular linear regression adapta-

tion, mean vectors of state output distributions for the target speaker’s model

are obtained by linearly transforming mean vectors of output distributions
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of the average voice model (Fig. 2.17),

bi(o) = N (o; ζμi + ε,Σi) = N (o; Wξi,Σi) (2.52)

where μi are the mean vectors of output distributions for the average voice

model. W = [ζ, ε] are L× (L + 1) transformation matrices which transform

average voice model into the target speaker for output distributions, and

ξi = [μ�
i , 1]� are (L + 1)-dimensional extended mean vectors. ζ and ε are

L × L matrix and L-dimensional vector, respectively.

The MLLR adaptation estimates the transformation matrices W so as

to maximize likelihood of adaptation data O. The problem of the MLLR

adaptation based on ML criterion can be expressed as follows:

W̃ = argmax
W

P (O|λ, W ) (2.53)

where λ is the parameter set of HMM. Re-estimation formulas based on

Baum-Welch algorithm of the transformation matrices W can be derived as

follows:

wl = ylGl
−1 (2.54)

where wl is the l-th row vector of W , and (L + 1)-dimensional vector yl,
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(L + 1) × (L + 1) matrix Gl are given by

yl =

R∑
r=1

T∑
t=1

γt(r)
1

Σr(l)
ot(l) ξ�

r (2.55)

Gl =

R∑
r=1

T∑
t=1

γt(r)
1

Σr(l)
ξr ξ�

r (2.56)

where Σr(l) is the l-th diagonal element of diagonal covariance matrix Σr,

and ot(l) is the l-th element of the observation vector ot. Note that W is

tied across R distributions. When 1 ≤ R < L, we need to use generalized

inverses with singular value decomposition.

Furthermore, we can straightforwardly apply this algorithm to the multi-

space probability distribution (MSD) [25] for adapting F0 parameters to the

target speaker. In the F0 adaptation of MSD-HMMs, only the mean vectors

of distributions included in the voiced space are adapted. Therefore, only

state occupancy counts for the voiced space are considered for tying the

regression matrices.



Chapter 3

Mel-Cepstral Analysis and

Synthesis

The speech analysis/synthesis technique is one of the most important issues in

vocoder based speech synthesis system, since characteristics of the spectral

model, such as stability of synthesis filter and interpolation performance

of model parameters, influence quality of synthetic speech, and even the

structure of the speech synthesis system. From these points of view, the

mel-cepstral analysis/synthesis technique [18], [19], [28] is adopted for spectral

estimation and speech synthesis in the HMM-based speech synthesis system.

This chapter describes the mel-cepstral analysis/synthesis technique, how

feature parameters, i.e., mel-cepstral coefficients, are extracted from speech

signal and speech is synthesized from the mel-cepstral coefficients.

3.1 Discrete-Time Model of Speech Produc-

tion

To treat a speech waveform mathematically, a discrete-time model is gen-

erally used to represent sampled speech signals, as shown in Fig. 3.1. The

transfer function H(z) models the structure of vocal tract. The excitation

source is chosen by a switch which controls voiced/unvoiced characteristics

of speech. The excitation signal is modeled as either a quasi-periodic train of

pulses for voiced speech, or a random noise sequence for unvoiced sounds. To

39
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Figure 3.1: Discrete-time model for speech production.

produce speech signals x(n), the parameters of the model must change with

time. For many speech sounds, it is reasonable to assume that the general

properties of the vocal tract and excitation remain fixed for periods of 5–10

msec. Under such an assumption, the excitation e(n) is filtered by a slowly

time-varying linear system H(z) to generate speech signals x(n).

The speech x(n) can be computed from the excitation e(n) and the im-

pulse response h(n) of the vocal tract using the convolution sum expression

x(n) = h(n) ∗ e(n) (3.1)

where the symbol ∗ stands for discrete convolution. The details of digital

signal processing and speech processing are given in [29] and [30].

3.2 Mel-Cepstral Analysis

3.2.1 Spectral Model

In the mel-cepstral analysis, the vocal tract transfer function H(z) is mod-

eled by M-th order mel-cepstral coefficients c = [c(0), c(1), . . . , c(M)]� (the
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Table 3.1: Examples of α for approximating auditory frequency scales.

Sampling frequency 8 kHz 10 kHz 12 kHz 16 kHz

Mel scale 0.31 0.35 0.37 0.42

Bark scale 0.42 0.47 0.50 0.55

superscript ·� denotes matrix transpose) as follows:

H(z) = exp c�z̃ (3.2)

= exp
M∑

m=0

c(m)z̃−m, (3.3)

where z̃ = [1, z̃−1, . . . , z̃−M ]�. The system z̃−1 is defined by a first order

all-pass function

z̃−1 =
z−1 − α

1 − αz−1
, |α| < 1 (3.4)

and the warped frequency scale β(ω) is given as its phase response:

β(ω) = tan−1 (1 − α2) sin ω

(1 + α2) cos ω − 2α
. (3.5)

The phase response β(ω) gives a good approximation to auditory frequency

scale with an appropriate choice of α. Table 3.1 shows examples of α for

approximating the auditory frequency scales at several sampling frequencies.

An example of frequency warping is shown in Fig. 3.2. In the figure, it can

be seen that, when sampling frequency is 16 kHz, the phase response β(ω)

provides a good approximation to mel scale for α = 0.42.

3.2.2 Spectral Criterion

In the unbiased estimation of log spectrum (UELS) [31], [32], it has been

shown that the power spectral estimate |H(ejω)|2, which is unbiased in a

sense of relative power, is obtained in such a way that the following criterion

E is minimized:

E =
1

2π

∫ π

−π

{exp R(ω) − R(ω) − 1} dω (3.6)
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Figure 3.2: Frequency warping by all-pass system.

where

R(ω) = log IN(ω) − log
∣∣H(ejω)

∣∣2 (3.7)

and IN(ω) is the modified periodogram of weakly stationary process x(n)

given by

IN(ω) =

∣∣∣∣∣
N−1∑
n=0

w(n)x(n)e−jωn

∣∣∣∣∣
2

N−1∑
n=0

w2(n)

(3.8)

where w(n) is the window whose length is N . It is noted that the criterion

of Eq. (3.6) has the same form as that of maximum-likelihood estimation for

a normal stationary AR process [33].

Since the criterion of Eq. (3.6) is derived without assumption of any

specific spectral models, it can be applied to the spectral model of Eq. (3.3).

Now taking the gain factor K outside from H(z) in Eq. (3.3) yields

H(z) = K · D(z) (3.9)
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where

K = exp α�c (3.10)

= exp
M∑

m=0

(−α)mc(m) (3.11)

D(z) = exp c�
1 z̃ (3.12)

= exp
∑
m=1

c1(m)z̃−m (3.13)

and

α = [1, (−α), (−α)2, · · · , (−α)M ]� (3.14)

c1 = [c1(0), c1(1), · · · , c1(M)]�. (3.15)

The relationship between the coefficients c and c1 is given by

c1(m) =

{
c(0) − α�c, m = 0

c(m), 1 ≤ m ≤ M.
(3.16)

If the system H(z) is considered to be a synthesis filter of speech, D(z)

must be stable. Hence, assuming that D(z) is the minimum-phase system

yields the relationship

1

2π

∫ π

−π

log
∣∣H(ejω)

∣∣2 dω = log K2. (3.17)

Using the above equation, the spectral criterion of Eq. (3.6) becomes

E = ε/K2 − 1

2π

∫ π

−π

log IN(ω)dω + log K2 − 1 (3.18)

where

ε =
1

2π

∫ π

−π

IN(ω)

|D(ejω)|2
dω. (3.19)

Consequently, omitting the constant terms, the minimization of E with re-

spect to c leads to the minimization of ε with respect to c1 and the mini-

mization of E with respect to K. By taking the derivative of E with respect

to K and setting the result to zero, K is obtained as follows:

K =
√

εmin (3.20)
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x(n) e(n)1/D(z)

ε = E[e2(n)] → min

Input Prediction Error

Figure 3.3: Time domain representation of mel-cepstral analysis.

where εmin is the minimum value of ε. It has been shown that the minimiza-

tion of Eq. (3.19) leads to the minimization of the residual energy [34], as

shown in Fig. 3.3.

There exists only one minimum point because the criterion E is convex

with respect to c. Consequently, the minimization problem of E can be solved

using efficient iterative algorithm based on FFT and recursive formulas. In

addition, the stability of model solution H(z) is always guaranteed [35].

3.3 Synthesis Filter

To synthesize speech from the mel-cepstral coefficients, it is needed to realize

the exponential transfer function D(z). Although the transfer function D(z)

is not a rational function, the MLSA (Mel Log Spectral Approximation)

filter [18], [19] can approximate D(z) with sufficient accuracy.

The complex exponential function exp w is approximated by a rational

function

exp w � RL(w) =

1 +
L∑

l=1

AL,l w
l

1 +

L∑
l=1

AL,l (−w)l

. (3.21)

For example, if AL,l (l = 1, 2, . . . , L) are chosen as

AL,l =
1

l!

(
L

l

)/(
2L

l

)
(3.22)

then Eq. (3.21) is the [L/L] Padé approximant of exp w at w = 0. Thus D(z)

is approximated by

D(z) = exp F (z) � RL(F (z)) (3.23)
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where

F (z) = z̃�c1 =

M∑
m=0

c1(m)z̃−m. (3.24)

It is noted that AL,l(l = 1, 2, . . . , L) have fixed values whereas c1(m) are

variable.

To remove a delay-free loop from F (z), Eq. (3.24) is modified as

F (z) = z̃�c1 (3.25)

= z̃�AA−1c1 (3.26)

= Φ�b (3.27)

=

M∑
m=1

b(m)Φm(z) (3.28)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 α 0 · · · 0

0 1 α
. . .

...

0 0 1
. . . 0

...
. . .

. . . α

0 · · · · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.29)

A−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 (−α) (−α)2 · · · (−α)M

0 1 (−α)
. . .

...

0 0 1
. . . (−α)2

...
. . .

. . . (−α)

0 · · · · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3.30)

The vector Φ is given by

Φ = A�z̃ (3.31)

= [1,Φ1(z),Φ2(z), · · · ,ΦM(z)]� (3.32)

where

Φm(z) =
(1 − α2)z−1

1 − αz−1
z̃−(m−1), m ≥ 1. (3.33)
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The coefficients b can be obtained from c1 using the transformation

b = A�c1 (3.34)

= [0, b(1), b(2), · · · , b(M)]�. (3.35)

The matrix operation in Eq. (3.34) can be replaced with the recursive for-

mula:

b(m) =

{
c1(M), m = M

c1(m) − αb(m + 1), 0 ≤ m ≤ M − 1.
(3.36)

Since the first element of b equals zero because of the constraint

α�c1 = 0, (3.37)

the value of impulse response of F (z) is 0 at time 0, that is, F (z) has no

delay-free path.

Figure 3.4 shows the block diagram of the MLSA filter RL(F (z)) � D(z).

Since the transfer function F (z) has no delay-free path, RL(F (z)) has no

delay-free loops, that is, RL(F (z)) is realizable.

If b(1), b(2), . . . , b(M) are bounded, |F (ejω)| is also bounded, and there

exists a positive finite value r such that

max
ω

|F (ejω)| < r. (3.38)

The coefficients AL,l can be optimized to minimize the maximum of the

absolute error max
|w|=r

|EL(w)| using a complex Chebyshev approximation tech-

nique [36], where

EL(w) = log(exp w) − log(RL(w)). (3.39)

The coefficients obtained with L = 5, r = 6.0 are shown in Table 3.2. When

|F (ejω)| < r = 6.0, The log approximation error

∣∣EL(F (ejω))
∣∣ =

∣∣log(D(ejω)) − log R5(F (ejω))
∣∣ (3.40)

does not exceed 0.2735 dB. The coefficients optimized for L = 4, r = 4.5 are

also shown in Table 3.3. In this case, the log approximation error does not

exceed 0.24 dB when |F (ejω)| < r = 4.5.



3.3. SYNTHESIS FILTER 47

��
��

1 − α2
����α ����α ����α

����b(1) ����b(2) ����b(3)

z−1 z−1 z−1 z−1

Input
� �+ � � �+ � � �+� � �� �

�
�

��

	
	

	
		


� �
�

�
���

�+−

	
	

	
		


� �
�

�
���

�+−

� � ��+
� ��+

Output

(a) Basic filter F (z) (M = 3).

F (z) F (z) F (z) F (z)� � �

�� �� �� ���� �� �� ��

�+�
Input

�

� �+ �
Output

AL,1 AL,2 AL,3 AL,4

− −

�
�

�
�

��
��� ��� ���

��
��� ��� ���

(b) RL(F (z)) � exp F (z) = D(z) (L = 4).

Figure 3.4: Realization of the exponential transfer function D(z).
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Figure 3.5: Tow-stage cascade structure.

When F (z) is expressed as

F (z) = F1(z) + F2(z), (3.41)

the exponential transfer function is approximated in a cascade form

D(z) = exp F (z) (3.42)

= exp F1(z) · exp F2(z) (3.43)

� RL(F1(z)) · RL(F2(z)) (3.44)
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Table 3.2: Optimized coefficients of RL(w) for L = 5, r = 6.0.

l AL,l

1 4.999391× 10−1

2 1.107098× 10−1

3 1.369984× 10−2

4 9.564853× 10−4

5 3.041721× 10−4

Table 3.3: Optimized coefficients of RL(w) for L = 4, r = 4.5.

l AL,l

1 4.999273× 10−1

2 1.067005× 10−1

3 1.170221× 10−2

4 5.656279× 10−4

as shown in Fig. 3.5. If

max
ω

∣∣F1(e
jω)
∣∣ , max

ω

∣∣F2(e
jω)
∣∣ < max

ω

∣∣F (ejω))
∣∣ , (3.45)

it is expected that RL(F1(e
jω)) · RL(F2(e

jω)) approximates D(ejω) more ac-

curately than RL(F (ejω)). In the experiments in later sections, the following

functions

F1(z) = b(1)Φ1(z), (3.46)

F2(z) =

M∑
m=2

b(m)Φm(z) (3.47)

were adopted.
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