
Big Data Exploration
By Stratos Idreos
CWI, Amsterdam, The Netherlands

Introduction

The Big Data Era. We are now entering the era of data deluge, where the
amount of data outgrows the capabilities of query processing technology.
Many emerging applications, from social networks to scientific experiments,
are representative examples of this deluge, where the rate at which data is
produced exceeds any past experience. For example, scientific analysis such
as astronomy is soon expected to collect multiple Terabytes of data on a daily
basis, while already web-based businesses such as social networks or web
log analysis are confronted with a growing stream of large data inputs.
Therefore, there is a clear need for efficient big data query processing to
enable the evolution of businesses and sciences to the new era of data
deluge.

In this chapter, we focus on a new direction of query processing for big data
where data exploration becomes a first class citizen. Data exploration is
necessary when new big chunks of data arrive rapidly and we want to react
quickly, i.e., with little time to spare for tuning and set-up. In particular, our
discussion focuses on database systems technology, which for several
decades has been the predominant data processing tool.

In this chapter, we introduce the concept of data exploration and we discuss a
series of early techniques from the database community towards the direction
of building database systems which are tailored for big data exploration, i.e.,
adaptive indexing, adaptive loading and sampling-based query processing.
These directions focus on reconsidering fundamental assumptions and on
designing next generation database architectures for the big data era.

In Need for Big Data Query Processing

Let us first discuss the need for efficient query processing techniques over big
data. We briefly discuss the impact of big data both in businesses and in
sciences.

Big Data in Businesses. For businesses, fast big data analysis translates to
better customer satisfaction, better services and in turn it may be the catalyst
in creating and maintaining a successful business. Examples of businesses in
need for analyzing big data include any kind of web and data-based IT
business, ranging from social networks to e-commerce, news, emerging
mobile data businesses, etc. The most typical example in this case is the
need to quickly understand user behavior and data trends; this is necessary in
order to dynamically adapt services to the user needs.

Businesses continuously monitor and collect data about the way users
interact with their systems, e.g., in an e-commerce web site, in a social
network, or in a GPS navigation system, and this data needs to be analyzed
quickly in order to discover interesting trends. Speed here is of essence as
these businesses get multiple Terabytes of data on a daily basis and the kinds
of trends observed might change from day to day or from hour to hour. For
example, social networks and mobile data applications observe rapid changes
on user interests, e.g., every single minute there are 700,000 status updates
on Facebook and 700.000 queries on Google. This results to staggering
amounts of data that businesses need to analyze as soon as possible and
while it is still relevant.

Big Data in Sciences. For sciences, fast big data analysis can push scientific
discovery forward. All sciences nowadays struggle with data management,
e.g., astronomy, biology, etc. At the same time, the expectation is that in the
near future sciences will increase even more their ability to collect data. For
example, the Large Synoptic Survey Telescope project in USA expects a daily
collection of 20 Terabytes, while the Large Hadron Collider in CERN in
Europe already creates an even bigger amount of data. With multiple
Terabytes of data on a daily basis, data exploration becomes essential in
order to allow scientists to quickly focus on data parts where there is a good
probability to find interesting observations.

Big Data Challenges for Query Processing

We continue the discussion by focusing on the challenges that big data bring
for state-of-the-art data management systems.

Existing Technology. Data management technology has a tremendous and
important history of achievements and numerous tools and algorithms to deal
with scalable data processing. Notable recent examples include column-store
database systems (Stonebraker, et al. 2005) (Boncz, Zukowski and Nes
2005) and map-reduce systems (Dean and Ghemawat 2004) as well as
recent hybrids that take advantage of both the structured database technology
and the massively scalable map-reduce technology (Hadapt 2012) (Platfora
2012) (Abouzeid, et al. 2009). All small and major organizations rely on data
management technology to store and analyze their data. Sciences, on the
other hand, rely on a mix of data management technologies and proprietary
tools that accommodate the specialized query processing needs in a scientific
environment.

Big Data Challenges. Regardless of the kind of technology used, the
fundamental problem nowadays is that we cannot consume and make sense
of all these data fast enough. This is a direct side effect of some of the
assumptions that are in inherit in modern data management systems.

First, state-of-the-art database systems assume that there is always enough
workload knowledge and idle time to tune the system with the proper indices,
with the proper statistics and with any other data structure which is expected
to speed up data access. With big data arriving quickly, unpredictably and
with the need to react fast, we do not have the luxury to spend considerable
amounts of time in tuning anymore. Second, database systems are designed
with the main assumption that we should always consume all data in an effort
to provide a correct and complete answer. As the data grows bigger, this
becomes a significantly more expensive task.

Overall, before being able to use a database system for posing queries, we
first need to go through a complex and time consuming installation process to
(a) load data inside the database system and (b) to tune the system. These
steps require not only a significant amount of time (i.e., in the order of several
hours for a decent database size), but also they require expert knowledge as
well as workload knowledge. In other words, we need to know exactly what
kind of queries we are going to pose such as we can tune the system
accordingly. However, when we are in need to explore a big data pile, then we
do not necessarily know exactly what kind of queries we would like to pose
before the exploration process actually progresses; the answer to one query
leads to the formulation of the next query.

Attempts to “throw more silicon” to the problem, i.e., with big data clusters,
can allow for more scalability (until the data grows even bigger) but at the
expense of wasted resources when consuming data which is not really
necessary for the exploration path. This brings yet another critical side effect
of big data into the picture, i.e., energy consumption. Overall, high
performance computing and exploitation of large clusters are complementary
to the approaches described in this chapter; to deal with big data we need
innovations at all fronts.

Because more is Different. We cannot use past solutions to solve radically
new problems. The main observation is that with more data, the query-
processing paradigm has to change as well. Processing all data is not
possible; in fact, often it is not even necessary. For example, a scientist in the
astronomy domain is interested in studying parts of the sky at a time
searching for interesting patterns, maybe even looking for specific properties
at a time. This means that the numerous Terabytes of data brought every few
hours by modern telescopes are not relevant all the time. Why should a
scientist spend several hours loading all data in a database? Why should they
spend several hours indexing all the data? Which data parts are of importance
becomes apparent only after going over parts of the data and at least after
partially understudying the trends. To make things worse; in a few hours
several more Terabytes of data will arrive, i.e., before we make sense of the
previous batch of data.

Similarly, in a business analytics setting, changing the processing paradigm
can be of critical importance. As it stands, now analysts or tools need to scan
all data in search for interesting patterns. Yet, in many emerging applications
there is no slack time to waste; answers are needed fast, e.g., when trying to

figure out user behavior or news trends, when observing traffic behavior or
network monitoring for fraud detection.

Data Exploration

With such overwhelming amounts of data, data exploration is becoming a new
and necessary paradigm of query processing, i.e., when we are in search for
interesting patterns often not knowing a priori exactly what we are looking for.
For example, an astronomer wants to browse parts of the sky to look for
interesting effects, while a data analyst of an IT business browses daily data
of monitoring streams to figure out user behavior patterns. What both cases
have in common is a daily stream of big data, i.e., in the order of multiple
Terabytes and the need to observe “something interesting and useful”.

Next generation database systems should interpret queries by their intent,
rather than as a contract carved in stone for complete and correct answers.
The result in a user query should aid the user in understanding the database’s
content and provide guidance to continue the data exploration journey. Data
analysts should be able to stepwise explore deeper and deeper the database,
and stop when the result content and quality reaches their satisfaction point.
At the same time, response times should be close to instant such that they
allow users to interact with the system and explore the data in a
contextualized way as soon as data become available.

With systems that support data exploration we can immediately discard the
main bottleneck that stops us from consuming big data today; instead of
considering a big data set in one go with a slow process, exploration-based
systems can incrementally and adaptively guide users towards the path that
their queries and the result lead. This helps us avoid major inherent costs,
which are directly affected by the amount of data input and thus are
showstoppers nowadays. These costs include numerous procedures, steps
and algorithms spread throughout the whole design of modern data
management systems.

Key Goals: Fast, Interactive, and Adaptive. For efficient data exploration to
work, there are few essential goals.

First the system should be fast to the degree that it feels interactive, i.e., the
user poses a question and a few seconds later an answer appears. Any data
that we load does not have to be complete. Any data structure that we built
does not have to represent all data or all value ranges. The answer itself does
not have to represent a correct and complete result but rather a hint of how
the data looks like and how to proceed further, i.e., what the next query
should be. This is essential in order to engage data analysts in a seamless
way; the system is not the bottleneck anymore.

Second, the system and the whole query processing procedure should be
adaptive in the sense that it adapts to the user requests; it proceeds with
actions that speed up the search towards eventually getting the full answer

the user is looking for. This is crucial in order to be able to finally satisfy the
user needs after having sufficiently explored the data.

Metaphor Example. The observations to be made about the data in this case
resemble an initially empty picture; the user sees one pixel at a time with
every query they pose to the system. The system makes sure it remembers
all pixels in order to guide the user towards areas of the picture where
interesting shapes start to appear. Not all the picture has to be completed for
interesting effects to be seen from a high level point of view, while again not
all the picture is needed for certain areas to be completed and seen in more
detail.

Data Exploration Techniques. In the rest of this chapter, we discuss a string
of novel data exploration techniques that aim to rethink database
architectures with big data in mind. We discuss (a) adaptive indexing to build
indexes on-the-fly as opposed to a priori, (b) adaptive loading to allow for
direct access on raw data without a priori loading steps and (c) database
architectures for approximate query processing to work over dynamic samples
of data.

Adaptive Indexing

In this section, we present adaptive indexing. We discuss the motivation for
adaptive indexing in dynamic big data environments as well as the main
bottlenecks of traditional indexing approaches. This section gives a broad
description of the state-of-the-art in adaptive indexing, including topics such
as updates, concurrency control and robustness.

Indexing. Good performance in state-of-the-art database systems relies
largely on proper tuning and physical design, i.e., creating the proper
accelerator structures, called indices. Indices are exploited at query
processing time to provide fast data access. Choosing the proper indices is a
major performance parameter in database systems; a query may be several
orders of magnitude faster if the proper index is available and is used
properly. The main problem is that the set of potential indices is too large to
be covered by default. As such, we need to choose a subset of the possible
indices and implement only those.

In the past, the choice of the proper index collection was assigned to
database administrators (DBAs). However, as applications became more and
more complex index selection became too complex for human administration
alone. Today, all modern database systems ship with tuning advisor tools.
Essentially those tools provide suggestions regarding which indices should be
created. A human database administrator is then responsible of making and
implementing the final choices.

Offline Indexing. The predominant approach is offline indexing. With offline
indexing, all tuning choices happen up front, assuming sufficient workload
knowledge and idle time. Workload knowledge is necessary in order to

determine the appropriate tuning actions, i.e., to decide which indices should
be created, while idle time is required in order to actually perform those
actions. In other words, we need to know what kind of queries we are going to
ask and we need to have enough time to prepare the system for those
queries.

Big Data Indexing Problems. However, in dynamic environments with big
data, workload knowledge and idle time are scarce resources. For example, in
scientific databases, new data arrive on a daily or even hourly basis, while
query patterns follow an exploratory path as the scientists try to interpret the
data and understand the patterns observed; there is no time and knowledge
to analyze and prepare a different physical design every hour or even every
day; even a single index may take several hours to create.

Traditional indexing presents three fundamental weaknesses in such cases:
(a) the workload may have changed by the time we finish tuning; (b) there
may be no time to finish tuning properly; and (c) there is no indexing support
during tuning.

Database Cracking. Recently, a new approach, called database cracking,
was introduced to the physical design problem. Cracking introduces the notion
of continuous, incremental, partial and on demand adaptive indexing.
Thereby, indices are incrementally built and refined during query processing.
The net effect is that there is no need for any upfront tuning steps. In turn,
there is no need for any workload knowledge and idle time to set up the
database system. Instead, the system autonomously builds indices during
query processing, adjusting fully to the needs of the users. For example, as a
scientist starts exploring a big data set, query after query, the system follows
the exploration path of the scientist, incrementally building and refining indices
only for the data areas that seem interesting for the exploration path. After a
few queries, performance adaptively improves to the level of a fully tuned
system. From a technical point of view cracking relies on continuously
physically reorganizing data as users pose more and more queries.

Every query is treated as a hint on how data should be stored.

Column-stores. Before we discuss cracking in more detail, we give a short
introduction to column-store databases. Database cracking was primarily
designed for modern column-stores and thus it relies on a number of modern
column-store characteristics. Column-stores store data one column at a time
in fixed-width dense arrays. This representation is the same both for disk and
for main-memory. The net effect compared to traditional row-stores is that
during query processing, a column-store may access only the referenced
data/columns. Similarly, column-stores rely on bulk and vector-wised
processing. Thus, a select operator typically processes a single column in one
go or in a few steps, instead of consuming full tuples one-at-a-time.
Specifically for database cracking the column-store design allows for efficient
physical reorganization of arrays. In effect, cracking performs all physical
reorganization actions efficiently in one go over a single column; it does not
have to touch other columns.

Selection Cracking Example. We now briefly recap the first adaptive
indexing technique, selection cracking, as it was introduced in (Idreos,
Kersten and Manegold, Database Cracking 2007). The main innovation is that
the physical data store is continuously changing with each incoming query q,
using q as a hint on how data should be stored. Assume an attribute A stored
as a fixed-width dense array in a column-store. Say a query requests all
values where A<10. In response, a cracking DBMS clusters all tuples of A
with A<10 at the beginning of the respective column C, while pushing all
tuples with A>=10 to the end. In other words, it partitions on-the-fly and in-
place column C using the predicate of the query as a pivot. A subsequent
query requesting A>=v1 where v1>=10, has to search and crack only the last
part of C where values A>=10 reside. Likewise, a query that requests A<v2,
where v2<10, searches and cracks only the first part of C. All crack actions
happen as part of the query operators, requiring no external administration.

The terminology ``cracking" reflects the fact that the database is partitioned
(cracked) into smaller and manageable pieces.

Data Structures. The cracked data for each attribute of a relational table are
stored in a normal column (array). The very first query on a column copies the
base column to an auxiliary column where all cracking happens. This step is
used such as we can always retrieve the base data in its original form and
order. In addition, cracking uses an AVL-tree to maintain partitioning
information such as which pieces have been created, which values have been
used as pivots, etc.

Continuous Adaptation. The cracking actions continue with every query. In
this way, the system reacts to every single query, trying to adjust the physical
storage, continuously reorganizing columns to fit the workload patterns. As we
process more queries, the more performance improves. In essence, more
queries introduce more partitioning, while pieces become smaller and smaller.
Every range query or more precisely every range select operator needs to
touch at most two pieces of a column, i.e., those pieces that appear at the
boundaries of the needed value range. With smaller pieces, future queries
need less effort to perform the cracking steps and as such performance
gradually improves.

To avoid the extreme status where a column is completely sorted, cracking
poses a threshold where it stops cracking a column for pieces which are
smaller than L1 cache. There are two reasons for this choice. First, the AVL-
tree, which maintains the partitioning information, grows significantly and
causes random access when searching. Second, the benefit brought by
cracking pieces that are already rather small is minimal. As such, if during a
query, a piece smaller than L1 is indicated for cracking, the system completely
sorts this piece with an in-memory quick sort. The fact that this piece is sorted
is marked in the AVL-tree. This way, any future queries, for which the bounds
of the requested range fall within a sorted piece, can simply binary search for
their target bound.

Performance Examples. In experiments with the Skyserver real query and
data logs, a database system with cracking enabled, finished answering
160.000 queries, while a traditional system was still half way creating the
proper indices and without having answered a single query (Halim, et al.
2012). Similarly, in experiments with the business standard TPC-H
benchmark, perfectly preparing a system with all the proper indices took ~3
hours, while a cracking database system could answer all queries in a matter
of a few seconds with zero preparation, while still reaching optimal
performance, similar to that of the fully indexed system (Idreos, Kersten and
Manegold, Self-organizing Tuple Reconstruction In Column-stores 2009).

Being able to provide this instant access to data, i.e., without any tuning, while
at the same time being able to quickly, adaptively and incrementally approach
optimal performance levels in terms of response times, is exactly the property
which creates a promising path for data exploration. The rest of the chapter
discusses several database architecture challenges that arise when trying to
design database kernels where adaptive indexing becomes a first class
citizen.

Sideways Cracking. Column-store systems access one column at a time.
They rely on the fact that all columns of the same table are aligned. This
means that for each column, the value in the first position belongs in the first
tuple, the one in the second position belongs in the second tuple and so on.
This allows for efficient query processing for queries which request multiple
columns of the same table, i.e., for efficient tuple reconstruction.

When cracking physically reorganizes one column, the rest of the columns of
the same table remain intact; they are separate physical arrays As a result,
with cracking, columns of the same table are not aligned anymore. Thus,
when a future query needs to touch more than one columns of the same
table, then the system is forced to perform random access in order to
reconstruct tuples on-the-fly. For example, assume a selection on a column A,
followed by a projection on another column B of the same table. If column A
has been cracked in the past, then the tuple IDs, which is the intermediate
result out of the select operator on A, are in a random order and lead to an
expensive access to fetch the qualifying values from column B.

One approach could be that every time we crack one column, we also crack in
the same way all columns of the same table. However, this defeats the
purpose of exploiting column-stores; it would mean that every single query
would have to touch all attributes of the referenced table as opposed to only
touching the attributes which are truly necessary for the current query.

Sideways cracking solves this problem by working on pairs of columns at a
time (Idreos, Kersten and Manegold, Self-organizing Tuple Reconstruction In
Column-stores 2009) and by adaptively forwarding cracking actions across
the columns of the same table. That is for a pair of columns A and B, during
the cracking steps on A, the B values follow this reorganization. The values of
A and B are stored together in a binary column format, making the physical

reorganization efficient. Attribute A is the head of this column pair, while
attribute B is the tail. When more than two columns are used in a query,
sideways cracking uses bit vectors to filter intermediate results while working
across multiple column-pairs of the same head. For example, in order to do a
selection on attribute A and two aggregations, one on attribute B and one
attribute C, sideways cracking uses pairs AB and AC. Once both pairs are
cracked in the same way using the predicates on A, then they are fully aligned
and they can be used in the same plans without tuple reconstruction actions.

Essentially, sideways cracking performs tuple reconstructions via incremental
cracking and alignment actions as opposed to joins. For each pair, there is a
log to maintain the cracking actions that have taken place in this pair as well
as in other pairs that use the same head attribute. Two column-pairs of the
same head are aligned when they have exactly the same history, i.e., they
have been cracked for the same bounds and in exactly the same order.

Partial Cracking. The pairs of columns created by sideways cracking can
result in a large set of auxiliary cracking data. With big data this is an
important concern. Cracking creates those column pairs dynamically, i.e., only
what is needed is created and only when it is needed. Still though, the storage
overhead may be significant. Partial cracking solves this problem by
introducing partial cracking columns (Idreos, Kersten and Manegold, Self-
organizing Tuple Reconstruction In Column-stores 2009). With partial
cracking, we do not need to materialize complete columns; only the values
needed by the current hot workload set are materialized in cracking columns.
If missing values are requested by future queries, then the missing values are
fetched from the base columns the first time they are requested.

With partial cracking, a single cracking column becomes a logical view of
numerous smaller physical columns. In turn, each one of the small columns, is
cracked and accessed in the same way as described for the original database
cracking technique, i.e., it is continuously physically reorganized as we pose
queries.

Users may pose a storage budget and cracking makes sure it will stay within
the budget by continuously monitoring the access patterns of the various
materialized cracking columns. Each small physical column of a single logical
column is completely independent and can be thrown away and recreated at
any time. For each column, cracking knows how many times it has been
accessed by queries and it uses an LRU policy to throw away columns when
space for a new one is needed.

Updates. Updates pose a challenge since they cause physical changes to the
data which in combination with the physical changes caused by cracking may
lead to significant complexity. The solution proposed in (Idreos, Kersten and
Manegold, Updating a Cracked Database 2007) deals with updates by
deferring update actions for when relevant queries arrive. In the same spirit as
with the rest of the cracking techniques, cracking updates do not do any work
until it is unavoidable, i.e., until a query, which is affected by a pending
update, arrives. In this way, when an update comes, it is simply put aside. For

each column, there is an auxiliary delete column where all pending deletes
are placed and an auxiliary insertions column where all pending inserts are
placed. Actual updates are a combination of a delete and then an insert
action.

Each query needs to check the pending deletes and inserts for pending
actions that may affect it. If there are any, then those qualifying pending
insertions and deletions are merged with the cracking columns on-the-fly. The
algorithm for merging pending updates into cracking columns takes
advantage of the fact that there is no strict order within a cracking column. For
example, each piece in a cracking column contains values within a given
value range but once we know that a new insertion for example should go
within this piece, then we can place it in any position of the piece; within each
cracking piece there is no strict requirement for maintaining any order.

Adaptive Merging. Cracking can be seen as an incremental quicksort where
the pivots are defined by the query predicates. Adaptive merging was
introduced as a complementary technique, which can be seen as an
incremental merge sort where the merging actions are defined by the query
predicates (Graefe and Kuno, Self-selecting, self-tuning, incrementally
optimized indexes 2010). The motivation is mainly towards disk-based
environments and towards providing fast convergence to optimal
performance.

The main design point of adaptive merging is that data is horizontally
partitioned into runs. Each run is sorted in memory with a quicksort action.
This preparation step is done with the first query and results to an initial
column that contains the various runs. From there on, as more queries arrive
data is moved from the initial column to a results column where the final index
is shaped. Every query merges into the results column only data which are
defined by its selection predicates and which are missing from the results
column. If a query is covered fully by the results column, then it does not need
to touch the initial runs. Data that is merged is immediately sorted in place in
the results column; once all data is merged the results column is actually a
fully sorted column. With data pieces being sorted both in the initial column
and in the results column, queries can exploit binary search both during
merging and when accessing only the results column.

Hybrids. Adaptive merging improves over plain cracking when it comes to
convergence speed, i.e., the number of queries needed to reach performance
levels similar to that of a full index is significantly reduced. This behavior is
mainly due to the aggressive sorting actions during the initial phase of
adaptive merging; it allows future queries to access data faster. However,
these sorting actions put a sizeable overhead on the initial phase of a
workload, causing the very first query to be significantly slower. Cracking, on
the other hand, has a much more smooth behavior, making it more lightweight
to individual queries. However, cracking takes much longer to reach the
optimal index status (unless there is significant skew in the workload).

The study in (Idreos, Manegold, et al. 2011) presents these issues and
proposes a series of techniques that blend the best properties of adaptive
merging with the best properties of database cracking. A series of hybrid
algorithms are proposed where one can tune how much initialization overhead
and how much convergence speed is needed. For example, the crack-crack
hybrid (HCC) uses the same overall architecture as adaptive merging, i.e.,
using an initial column and a results column where data is merged based on
query predicates. However, the initial runs are now not sorted; instead, they
are cracked based on query predicates. As a result the first query is not
penalized as with adaptive merging. At the same time, the data placed in the
results column is not sorted in place. Several combinations are proposed
where one can crack, sort or radix cluster the initial column and the result
column. The crack-sort hybrid, which cracks the initial column, while it sorts
the pieces in the result column, brings the best overall balance between
initialization and converge costs (Idreos, Manegold, et al. 2011).

Robustness. Since cracking reacts to queries, its adaptation speed and
patterns depend on the kind of queries that arrive. In fact, cracking
performance crucially depends on the arrival order of queries. That is, we may
run exactly the set of queries twice in slightly different order and the result
may be significantly different in terms of response times even though exactly
the same cracking index will be created. To make this point more clear
consider the following example. Assume a column of 100 unique integers in
[0,99]. Assume a first query that asks for all values v where v<1. As a result,
cracking partitions the column into two pieces. In piece P1 we have all values
in [0,1) and in piece P2 we have all values in [1,99]. The net effect is that the
second piece still contains 99 values, meaning that the partitioning achieved
by the first query is not so useful; any query falling within the second piece still
has to analyze almost all values of the column. Now assume that the second
query requests all values v where v<2. Then, the third query requests all
values v where v<3 and so on. This sequence results in cracking having to
continuously analyze large portions of the column as it always leaves back big
pieces. The net effect is that convergence speed is too slow and in the worst
case cracking degrades to a performance similar to that of a plain scan for
several queries, resulting in a performance which is not robust (Halim, et al.
2012).

To solve the above problem, (Halim, et al. 2012) proposes stochastic
cracking. The main intuition is that stochastic cracking plugs in stochastic
cracking actions during the normal cracking actions that happen during
processing. For example, when cracking a piece of a column for a pivot X,
stochastic cracking adds an additional cracking step where this piece is also
cracked for a pivot which is randomly chosen. As a result the chances of
leaving back big uncracked pieces becomes significantly smaller.

Concurrency Control. Cracking is based on continuous physical
reorganization of the data. Every single query might have side effects. This is
in strong contrast with what normally happens in database systems where
plain queries do not have side effects on the data. Not having any side effects

means that read queries may be scheduled to run in parallel. Database
systems heavily rely on this parallelism to provide good performance when
multiple users access the system simultaneously. On the other hand, with
cracking, every query might change the way data is organized and as a result
it is not safe to have multiple queries working and changing the same data in
parallel.

However, we would like to have both the adaptive behavior of database
cracking, while still allowing multiple users to query big data simultaneously.
The main trick to achieve this is to allow concurrent access on the various
pieces of each cracking column; two different queries may be physically
reorganizing the same column as long as they do not touch the exact same
piece simultaneously (Graefe, Halim, et al. 2012). In this way, each query
may lock a single piece of a cracking column at a time, while other queries
may be working on the other pieces. As we create more and more pieces
there are more opportunities to increase the ability for multiple queries to work
in parallel. This bonds well with the adaptive behavior of database cracking; if
a data area becomes hot, then more queries will arrive to crack it into multiple
pieces and subsequently more queries will be able to run in parallel because
more pieces exist.

Contrary to concurrency control for typical database updates, with adaptive
indexing during read queries we only change the data organization; the data
contents remain intact. For this reason, all concurrency mechanisms for
adaptive indexing may rely on latching as opposed to full-fledged database
locks, resulting in a very lightweight design (Graefe, Halim, et al. 2012).

Summary. Overall, database cracking opens an exciting path towards
database systems that inherently support adaptive indexing. By not requiring
any workload knowledge and any tuning steps, we can significantly reduce
the time it takes to query newly arrived data, assisting data exploration.

Adaptive Loading

The previous section described the idea of building database kernels that
inherently provide adaptive indexing capabilities. Indexing is one of the major
bottlenecks when setting up a database system; but it is not the only one. In
this section, we focus on another crucial bottleneck, i.e., on data loading. We
discuss the novel direction of adaptive loading to enable database systems to
bypass the loading overhead and immediately be able to query data before
even being loaded in a database.

The Loading Bottleneck. Data loading is a necessary step when setting up a
database system. Essentially, data loading copies all data inside the database
system. From this point on, the database fully controls the data; it stores data
in its own format and uses its own algorithms to update and access the data.
Users cannot control the data directly anymore; only through the database
system. The reason to perform the loading step is to enable good
performance during query processing; by having full control on the data, the

database system can optimize and prepare for future data accesses.
However, the cost of copying and transforming all data is significant; it may
take several hours to load a decent data size even with parallel loading.

As a result, in order to use the sophisticated features of a database system,
users have to wait until their data is loaded (and then tuned). However, with
big data arriving at high rates, it is not feasible anymore to reserve several
hours for data loading as it creates a big gap between data creation and data
exploitation.

External Files. One feature that almost all open source and commercial
database products provide is external tables. External files are typically in the
form of raw text-based files in CSV format (comma-separated values). With
the external tables functionality one can simply attach a raw file to a database
without loading the respective data. When a query arrives for this file, the
database system dynamically goes back to the raw file to access and fetch
the data on-the-fly. This is a useful feature in order to delay data loading
actions but unfortunately it is not a functionality that can be used for query
processing. The reason is that it is too expensive to query raw files; there are
several additional costs involved. In particular, parsing and tokenizing costs
dominate the total query processing costs. Parsing and tokenizing are
necessary in order to distinguish the attribute values inside raw files and to
transform them into binary form. For this reason, the external tables
functionality is not being used for query processing.

Adaptive Loading. The NoDB project recently proposed the adaptive loading
direction (Idreos, Alagiannis, et al. 2011) (Alagiannis, et al. 2012); the main
idea is that loading actions happen adaptively and incrementally during query
processing and driven by the actual query needs. Initially, no loading actions
take place; this means that there is no loading cost and that users can
immediately query their data. With every query the system adaptively fetches
any needed data from the raw data files. At any given time, only data needed
by the queries is loaded. The main challenge of the adaptive loading direction
is to minimize the cost to touch the raw data files during query processing,
i.e., to eliminate the reason that makes the external tables fuctionality
unusable for querying.

The main idea is that as we process more and more queries, NoDB can
collect knowledge about the raw files and significantly reduce the data access
costs. For example, it learns about how data resides on raw files in order to
better look for it, if needed, in the future.

Selective Parsing. NoDB pushes selections down to the raw files in order to
minimize the parsing costs. Assume a query that needs to have several
filtering conditions checked for every single row of a data file. In a typical
external files process, the system tokenizes and parses all attributes in each
row of the file. Then, it feeds the data to the typical data flow inside the
database system to process the query. This incurs a maximum parsing and
tokenizing cost. NoDB removes this overhead by performing parsing and
tokenizing selectively on a row-by-row basis, while applying the filtering

predicates directly on the raw file. The net benefit is that as soon any of the
filtering predicates fails, then NoDB can abandon the current row and
continue with the next one, effectively avoiding significant parsing and
tokenizing costs. To achieve all these step, NoDB overloads the scan
operator with the ability to access raw file in addition to loaded data.

Indexing. In addition, during parsing, NoDB creates and maintains an index
to mark positions on top of the raw file. This index is called positional map and
its functionality is to provide future queries with direct access to a location of
the file that is close to what they need. For example, if for a given row we
know the position of the 5th attribute and the current query needs to analyze
the 7th attribute, then the query only needs to start parsing as of the attribute
on the 5th position of the file. Of course, given that we cannot realistically
assume fixed length attributes, the positional map needs to maintain
information on a row-by-row basis. Still though, the cost is kept low, as only a
small portion of a raw file needs to be indexed. For example, experiments in
(Alagiannis, et al. 2012) indicate that once 15% of a raw file is indexed, then
performance reaches optimal levels.

Caching. The data fetched from the raw file is adaptively cached and reused
if similar queries arrive in the future. This allows the hot workload set to
always be cached and the need to fetch raw data appears only during
workload shifts. The policy used for cache replacement is LRU in combination
with adaptive loading specific parameters. For example, integer attributes
have a priority over string attributes in the cache; fetching string attributes
back from the raw file during future queries is significantly less expensive than
fetching integer attributes. This is because the parsing costs for string
attributes are very low compared to those for integer values.

Statistics. In addition, NoDB creates statistics on-the-fly during parsing.
Without proper statistics, optimizers cannot make good choices about query
plans. With adaptive loading, the system is initiated without statistics as no
data is loaded up front. To avoid bad plans and to guarantee robustness,
NoDB immediately calculates statistics the very first time an attribute of a
given raw file is requested by a query. This puts a small overhead at query
time, but it allows us to avoid bad optimization choices.

Splitting Files. When accessing raw files, we are limited in exploiting the
format of the raw files. Typically, data is stored in CSV files where each row
represents an entry in a relational table and each file represents all data in a
single relational table. As a result, every single query that needs to fetch data
from raw files has to touch all data. Even with selective parsing and indexing,
at the low level the system still needs to touch almost all the raw file. If the
data was a priori loaded and stored in a column-store format, then a query
would need to touch only the data columns it really needs. NoDB proposed
the idea of text cracking, where during parsing the raw file is separated into
multiple files and each file may contain one or more of the attributes of the
original raw file (Idreos, Alagiannis, et al. 2011). This process works
recursively and as a result future queries on the raw file, can significantly

reduce the amount of data they need to touch by having to work only on
smaller raw files.

Data Vaults. One area where adaptive loading can have a major impact is
sciences. In the case of scientific data management, several specialized
formats already exist and are in use for several decades. These formats store
data in a binary form and often provide indexing information, e.g., in the form
of clustering data based on date of creation. In order to exploit database
systems for scientific data management, we would need to transform data
from the scientific format into the database format, incurring a significant cost.
The data vaults project provides a two-level architecture that allows exploiting
the metadata in scientific data formats for adaptive loading operations
(Ivanova, Kersten and Manegold 2012). Given that the scientific data is
already in binary format, there are no considerations regarding parsing and
tokenizing costs. During the initialization phase, data vaults load only the
metadata information, resulting in a minimal set up cost. During query
processing time, the system uses the metadata to guide the queries to the
proper files and to transform only the needed data on-the-fly. This way,
without performing any a priori transformation of the scientific data, we can
pose queries through the database system directly and selectively.

Summary. Loading represents a significant bottleneck; it raises a wall
between users and big data. Adaptive loading directions provide a promising
research path towards systems that can be usable immediately as soon as
data arrive by removing loading costs.

Sampling-based Query Processing

Loading and indexing are the two essential bottlenecks when setting up a
database system. However, even after all installation steps are performed,
there are more bottlenecks to deal with; this time bottlenecks appear during
query processing. In particular, the requirements for correctness and
completeness raise a significant overhead; every single query is treated by a
database system as a request to find all possible and correct answers.

This inherit requirement for correctness and completeness has its roots in the
early applications of database systems, i.e., mainly in critical sectors such as
in banking and financial applications where errors cannot be tolerated.
However, with modern big data applications and with the need to explore
data, we can afford to sacrifice correctness and completeness in favor of
improved response times. A query session which may consist of several
exploratory queries can lead in exactly the same result, regardless of whether
the full answer is returned every time; in an exploratory session users are
mainly looking for hints on what the next query should be and a partial answer
may already be informative enough.

In this section, we discuss a number of recent approaches to create database
systems that are tailored for querying with partial answers, sacrificing
correctness and completeness for improved response times.

Sciborg. Sciborg proposed the idea of working over data that is organized in
a hierarchy of samples (Sidirourgos, Kersten and Boncz 2011). The main idea
is that queries can be performed over a sample of the data providing a quick
response time. Subsequently, the user may choose to ask for more detail and
to query more samples. Essentially, this is a promising research path to
enable interactive query processing. The main innovation in Sciborg is that
samples of data are not simply random samples; instead, Sciborg creates
weighted samples driven by past query processing actions and based on the
properties of the data. In this way, it can better follow the needs of the users
by collecting relevant data together such as users can infer interesting
patterns using only a small number of samples.

Blink. Another recent project, Blink, proposes a system where data is also
organized in multiple samples (Agarwal, et al. 2012). The characteristic of
Blink is its seamless integration with cloud technology, being able to scale to
massive amounts of data and processing nodes.

Both the Blink and the Sciborg projects represent a vision to create database
kernels where the system inherently supports query processing over samples.
For example, the user does not have to create a sample explicitly and then
query it, followed by the creation of a different sample, while repeating this
process multiple times. In a database architecture that supports samples at its
core, this whole process is transparent to the user and has the potential to be
much more effective. For example, with tailored database kernels (a) the
samples are created with minimal storage overhead, (b) they adapt
continuously and (c) query results over multiple samples can be merged
dynamically by the system.

One-minute DB Kernels. Another vision in the direction of exploration-based
database kernels is the one-minute database kernels idea (Kersten, et al.
2011). Similar to Sciborg and Blink, the main intuition is that correctness and
completeness are sacrificed in favor of performance; however, contrary to
past approaches, this happens at a very low level, i.e., at the level of
database operators. Every decision in the design of database algorithms can
be reconsidered to avoid expensive actions by sacrificing correctness. For
example, a join operator may choose to drop data from the inner join input as
soon as the size of the hash table exceeds the size of the main memory or
even the size of CPU cache. A smaller hash table is much faster to create and
it is also much faster to probe, avoiding cache misses. Similar decisions can
be made across the whole design of database kernels.

Essentially, the one-minute database kernels approach is equivalent to the
sample-based ideas. The difference is that it pushes the problem at a much
lower level where possibly we may have better control of parameters that
affect performance. One of the main challenges is to be able to provide quality
guarantees for the query results.

dbTouch. One significant bottleneck when querying database systems is the
need to be an expert user; one needs to be aware of the database schema
and needs to be fluent in SQL. When it comes to big data exploration, we
would like to make data accessible to more people and to make the whole
process of discovering interesting patterns as easy as possible. dbTouch
extends the vision of sample-based processing with the notion of creating
database kernels which are tailored for touch-based exploration (Idreos and
Liarou, dbTouch: Analytics at your Fingetips 2013). Data appears in a touch
device in a visual form, while users can simply touch the data to query. For
example, a relational table may be represented as a table shape and a user
may slide a finger over the table to run a number of aggregations. dbTouch is
not about formulating queries; instead it proposes a new database kernel
design which reacts instantly to touch. Users do not pose queries as in normal
systems; in dbTouch users point to interesting data and the system
continuously reacts to every touch. Every touch corresponds to analyzing a
single tuple are a few tuples, while a slide gesture captures multiple tuples. As
such, only a sample of the data is processed every time, while now the user
has full control regarding which data is processed and when; by changing the
direction or the speed of a slide gesture, users can control the exploration
process, while observing running results as they are visualized by dbTouch.

The main challenge with dbTouch is in designing database kernels that can
react instantly to every touch and to provide quick response times even
though the database does not control anymore the order and the kind of data
processed for every query session.

Summary. Overall, correctness and completeness pose a significant
bottleneck during query time; with big data this problem becomes a major
showstopper as it becomes extremely expensive to consume big piles of data.
The novel research directions described in this chapter make a first step
towards a new era of database kernels where performance becomes more
important than correctness and where exploration is the main query
processing paradigm.

Summary

In the presence of big data, query processing is facing significant new
challenges. A particular aspect of those challenges has to do with the fact that
there is not enough time and workload knowledge to properly prepare and
tune database management systems. In addition, producing correct and
complete answers by consuming all data within reasonable time bounds is
becoming harder and harder. In this chapter, we discussed the research
direction of data exploration where adaptive and incremental processing
become first class citizens in database architectures.

Adaptive indexing, adaptive loading and sampling-based database kernels
provide a promising path towards creating dedicated exploration systems. It
represents a widely open research area as we need to reconsider every
single aspect of database design established in the past.

Bibliography
Abouzeid, A., K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and A.
Silberschatz. "HadoopDB: An Architectural Hybrid of MapReduce and DBMS
Technologies for Analytical Workloads." Proceedings of the Very Large
Databases Endowment (PVLDB) 2, no. 1 (2009): 922-933.

Agarwal, Sameer, Aurojit Panda, Barzan Mozafari, Anand P. Iyer, Samuel
Madden, and Ion Stoica. "Blink and It's Done: Interactive Queries on Very
Large Data." Proceedings of the Very Large Databases Endowment (PVLDB)
5, no. 6 (2012): 1902-1905.

Alagiannis, Ioannis, Renata Borovica, Miguel Branco, Stratos Idreos,
and Anastasia Ailamaki. "NoDB: efficient query execution on raw data files."
ACM SIGMOD International Conference on Management of Data. 2012.

Boncz, Peter A., Marcin Zukowski, and Niels Nes. "MonetDB/X100: Hyper-
Pipelining Query Execution." Biennial Conference on Innovative Data
Systems Research (CIDR). 2005. 225-237.

Dean, J., and S. Ghemawat. "MapReduce: Simplified Data Processing on
Large Clusters." USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 2004. 137- 150.

Graefe, Goetz, Felix Halim, Stratos Idreos, and Stefan Manegold Harumi A.
Kuno. "Concurrency Control for Adaptive Indexing." Proceedings of the Very
Large Databases Endowment (PVLDB) 5, no. 7 (2012): 656-667.

Graefe, Goetz, and Harumi A. Kuno. "Self-selecting, self-tuning, incrementally
optimized indexes." International Conference on Extending Database
Technology (EDBT). 2010.

Hadapt. 2012. http://www.hadapt.com/.
Halim, Felix, Stratos Idreos, Panagiotis Karras, and Roland H. C. Yap.
"Stochastic Database Cracking: Towards Robust Adaptive Indexing in Main-
Memory Column-Stores." Proceedings of the Very Large Databases
Endowment (PVLDB) 5, no. 6 (2012): 502-513.

Idreos, Stratos, and Erietta Liarou. "dbTouch: Analytics at your Fingetips."
International Conference on Innovative Data Systems Research (CIDR).
2013.

Idreos, Stratos, Ioannis Alagiannis, Ryan Johnson, and Anastasia Ailamaki.
"Here are my Data Files. Here are my Queries. Where are my Results?"

International Conference on Innovative Data Systems Research (CIDR),.
2011.

Idreos, Stratos, Martin Kersten, and Stefan Manegold. "Database Cracking."
International Conference on Innovative Data Systems Research (CIDR).
2007.

—. "Self-organizing Tuple Reconstruction In Column-stores." ACM SIGMOD
International Conference on Management of Data. 2009.

—. "Updating a Cracked Database ." ACM SIGMOD International Conference
on Management of Data. 2007.

Idreos, Stratos, Stefan Manegold, Harumi Kuno, and Goetz Graefe. "Merging
What’s Cracked, Cracking What’s Merged: Adaptive Indexing in Main-Memory
Column-Stores." Proceedings of the Very Large Databases Endowment
(PVLDB) 4, no. 9 (2011): 585-597.

Ivanova, Milena, Martin L. Kersten, and Stefan Manegold. "Data Vaults: A
Symbiosis between Database Technology and Scientific File Repositories."
International Conference on Scientific and Statistical Database Management
(SSDBM). 2012.

Kersten, Martin, Stratos Idreos, Stefan Manegold, and Erietta Liarou. "The
Researcher’s Guide to the Data Deluge: Querying a Scientific Database in
Just a Few Seconds." Proceedings of the Very Large Databases Endowment
(PVLDB) 4, no. 12 (2011): 174-177.

Platfora. 2012. http://www.platfora.com/.

Sidirourgos, Lefteris, Martin L. Kersten, and Peter A. Boncz. "SciBORQ:
Scientific data management with Bounds On Runtime and Quality."
International Conference on Innovative Data systems Research (CIDR). 2011.

Stonebraker, Michael, et al. "C-Store: A Column-oriented DBMS."
International Conference on Very Large Databases (VLDB). 2005. 553-564.

