
Chapter 7

An Introduction to Kernel Methods

C. Campbell

Kernel methods give a systematic and principled approach to training
learning machines and the good generalization performance achieved
can be readily justified using statistical learning theory or Bayesian ar-
guments. We describe how to use kernel methods for classification, re-
gression and novelty detection and in each case we find that training can
be reduced to optimization of a convex cost function. We describe al-
gorithmic approaches for training these systems including model selec-
tion strategies and techniques for handling unlabeled data. Finally we
present some recent applications. The emphasis will be on using RBF
kernels which generate RBF networks but the approach is general since
other types of learning machines (e.g., feed-forward neural networks or
polynomial classifiers) can be readily generated with different choices of
kernel.

1 Introduction

Radial Basis Function (RBF) networks have been widely studied because
they exhibit good generalization and universal approximation through
use of RBF nodes in the hidden layer. In this Chapter we will outline
a new approach to designing RBF networks based onkernel methods.
These techniques have a number of advantages. As we shall see, the ap-
proach is systematic and properly motivated theoretically. The learning
machine is also explicitly constructed using the most informative pat-
terns in the data. Because the dependence on the data is clear it is much
easier to explain and interpret the model and data cleaning [16] could
be implemented to improve performance. The learning process involves
optimization of a cost function which is provably convex. This contrasts
with neural network approaches where the exist of false local minima in
the error function can complicate the learning process. For kernel meth-
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ods there are comparatively few parameters required for tuning the sys-
tem. Indeed, recently proposed model selection schemes could lead to
the elimination of these parameters altogether. Unlike neural network ap-
proaches the architecture is determined by the algorithm and not found
by experimentation. It is also possible to give confidence estimates on
the classification accuracy on new test examples. Finally these learning
machines typically exhibit good generalization and perform well in prac-
tice.

In this introduction to the subject, we will focus on Support Vector Ma-
chines (SVMs) which are the most well known learning systems based
on kernel methods. The emphasis will be on classification, regression and
novelty detection and we will not cover other interesting topics, for exam-
ple, kernel methods for unsupervised learning [43], [52]. We will begin
by introducing SVMs for binary classification and the idea of kernel sub-
stitution. The kernel representation of data amounts to a nonlinear pro-
jection of data into a high-dimensional space where it is easier to separate
the two classes of data. We then develop this approach to handle noisy
datasets, multiclass classification, regression and novelty detection. We
also consider strategies for finding the kernel parameter and techniques
for handling unlabeled data. In Section 3, we then describe algorithms for
training these systems and in Section 4, we describe some current appli-
cations. In the conclusion, we will briefly discuss other types of learning
machines based on kernel methods.

2 Kernel Methods for Classification,
Regression, and Novelty Detection

2.1 Binary Classification

From the perspective of statistical learning theory the motivation for con-
sidering binary classifier SVMs comes from theoretical bounds on the
generalization error [58], [59], [10]. For ease of explanation we give the
theorem in the Appendix 1 (Theorem 1) and simply note here that it has
two important features. Firstly, the error bound is minimized by maxi-
mizing themargin,
, i.e., the minimal distance between the hyperplane
separating the two classes and the closest datapoints to the hyperplane
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x1
x2

Figure 1. Themargin is the perpendicular distance between the separating hy-
perplane and a hyperplane through the closest points (these aresupport vectors).
The region between the hyperplanes on each side is called themargin band. x1
andx2 are examples of support vectors of opposite sign.

(Figure 1). Secondly, the upper bound on the generalization error do not
depend on the dimension of the space.

The learning task.Let us consider a binary classification task with dat-
apointsxi (i = 1; : : : ; m) having corresponding labelsyi = �1 and let
the decision function be:

f(x) = sign (w � x + b) (1)

If the dataset is separable then the data will be correctly classified if
yi(w � xi + b) > 0 8i. Clearly this relation is invariant under a positive
rescaling of the argument inside thesign-function, hence we can define a
canonical hyperplanesuch thatw �x+b = 1 for the closest points on one
side andw � x + b = �1 for the closest on the other. For the separating
hyperplanew �x+b = 0 the normal vector is clearlyw= jjwjj. Hence the
margin is given by the projection ofx1 � x2 onto this vector wherex1
andx2 are closest points on opposite sides of the separating hyperplane
(see Figure 1). Sincew � x1 + b = 1 andw � x2 + b = �1 this means the
margin is
 = 1= jjwjj. To maximize the margin, the task is therefore:

min
�
1

2
jjwjj2

�
(2)

subject to the constraints:

yi (w � xi + b) � 1 8i (3)
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and the learning task reduces to minimization of the primal objective
function:

L =
1

2
(w �w)�

mX
i=1

�i (yi(w � xi + b)� 1) (4)

where�i are Lagrange multipliers (hence�i � 0). Taking the derivatives
with respect tob andw gives:

mX
i=1

�iyi = 0 (5)

w =
mX
i=1

�iyixi (6)

and resubstituting these expressions back in the primal gives the Wolfe
dual:

W (�) =
mX
i=1

�i �
1

2

mX
i;j=1

�i�jyiyj (xi � xj) (7)

which must be maximized with respect to the�i subject to the constraint:

�i � 0
mX
i=1

�iyi = 0 (8)

Kernel substitution. This constrained quadratic programming (QP)
problem will give an optimal separating hyperplane with a maximal mar-
gin if the data is separable. However, we have still not exploited the sec-
ond observation from theorem 1: the error bound does not depend on
the dimension of the space. This feature enables us to give an alternative
kernel representation of the data which is equivalent to a mapping into a
high dimensional space where the two classes of data are more readily
separable. This space is calledfeature spaceand must be a pre-Hilbert or
inner product space. For the dual objective function in (7) we notice that
the datapoints,xi, only appear inside an inner product. Thus the mapping
is achieved through a replacement of the inner product:

xi � xj ! � (xi) � �(xj) (9)

The functional form of the mapping�(xi) does not need to be known
since it is implicitly defined by the choice ofkernel:

K(xi;xj) = �(xi) � �(xj) (10)
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Figure 2. A classical RBF network finds the centers of RBF nodes byk-means
clustering (marked by crosses). In contrast an SVM with RBF kernels uses RBF
nodes centered on the support vectors (circled), i.e., the datapoints closest to the
separating hyperplane (the vertical line illustrated).

which is the inner product in the higher dimensional Hilbert space. With
a suitable choice of kernel the data can become separable in feature space
despite being non-separable in the original input space. Thus, for exam-
ple, whereas data forn-parity is non-separable by a hyperplane in input
space it can be separated in the feature space defined by RBF kernels:

K(xi;xj) = e�jjxi�xj jj
2=2�2 (11)

Other choices of kernel are possible, e.g.:

K(xi;xj) = (xi � xj + 1)d K(xi;xj) = tanh(�xi � xj + b)
(12)

which would define polynomial and feedforward neural network classi-
fiers. Each choice of kernel will define a different type of feature space
and the resulting classifiers will perform differently on test data, though
good generalization should be assured from Theorem 1. For an SVM
with RBF kernels the resulting architecture is an RBF network. How-
ever, the method for determining the number of nodes and their centers
is quite different from standard RBF networks with the number of nodes
equal to the number of support vectors and the centers of the RBF nodes
identified with the support vectors themselves (Figure 2).

Feasible kernels implicitly describing this mapping must satisfyMer-
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cer’s conditionsdescribed in more detail in Appendix 2. The class of
mathematical objects which can be used as kernels is very general and
includes, for example, scores produced by dynamic alignment algorithms
[18], [63] and a wide range of functions.

For the given choice of kernel the learning task therefore involves maxi-
mization of the objective function:

W (�) =
mX
i=1

�i �
1

2

mX
i;j=1

�i�jyiyjK(xi;xj) (13)

subject to the constraints of Equation (8). The associatedKarush-Kuhn-
Tucker(KKT) conditions are:

yi (w � xi + b)� 1 � 0 8i

�i � 0 8i

�i (yi(w � xi + b)� 1) = 0 8i (14)

which are always satisfied when a solution is found. Test examples are
evaluated using a decision function given by the sign of:

f(z) =
mX
i=1

yi�iK(xi; z) + b (15)

Since the bias,b, does not feature in the above dual formulation it is
found from the primal constraints:

b = �
1

2

24 max
fijyi=�1g

0@ mX
j2fSVg

yj�jK(xi;xj)

1A
+ min

fijyi=+1g

0@ mX
j2fSVg

yj�jK(xi;xj)

1A35 (16)

using the optimal values of�j. When the maximal margin hyperplane
is found in feature space, only those points which lie closest to the hy-
perplane have�i > 0 and these points are thesupport vectors(all other
points have�i = 0). This means that the representation of the hypoth-
esis is given solely by those points which are closest to the hyperplane
andthey are the most informative patterns in the data. Patterns which are
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Figure 3. A multi-class classification problem can be reduced to a series of
binary classification tasks using a tree structure with a binary decision at each
node.

not support vectors do not influence the position and orientation of the
separating hyperplane and so do not contribute to the hypothesis (Figure
1).

We have motivated SVMs using statistical learning theory but they can
also be understood from a Bayesian perspective [51], [25], [26]. Bayesian
[53] and statistical learning theory can also be used to define confidence
measures for classification. From the latter we find that the confidence
of a classification is directly related to the magnitude off(z) on a test
example [46].

2.2 Multiclass Classification

Many real-life datasets involve multiclass classification and various
schemes have been proposed to handle this [28]. One approach is to
generalize the binary classifier to ann�class classifier with weights and
biases(wk; bk); k = 1; : : : ; n for each class and a decision function [64]:

f(z) = arg max
1�k�n

(wk � z+ bk) (17)

However, this type of classifier has a similar level of performance to
the simpler scheme ofn binary classifiers each of which performs one-
against-all classification. Binary classifiers can also be incorporated into
a directed acyclic graph (Figure 3) so that multiclass classification is de-
composed to binary classification at each node in the tree [34].
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2.3 Allowing for Training Errors: Soft Margin
Techniques

Most real life datasets contain noise and an SVM can fit to this noise
leading to poor generalization. The effect of outliers and noise can be
reduced by introducing asoft margin[8] and two schemes are currently
used. In the first (L1 error norm) the learning task is the same as in Equa-
tions (13,8) except for the introduction of the box constraint:

0 � �i � C (18)

while in the second (L2 error norm) the learning task is as in Equations
(13,8) except for addition of a small positive constant to the leading di-
agonal of the kernel matrix [8], [48]:

K(xi;xi) K(xi;xi) + � (19)

C and� control the trade-off between training error and generalization
ability and are chosen by means of a validation set. The effect of these
soft margins is illustrated in Figure 4 for the ionosphere dataset from the
UCI Repository [57].

The justification for these approaches comes from statistical learning the-
ory (cf. Theorems 2 and 3 in Appendix 1). Thus for theL1 error norm
(and prior to introducing kernels) condition (3) is relaxed by introducing
a positive slack variable�i:

yi (w � xi + b) � 1� �i (20)

and the task is now to minimize the sum of errors
Pm

i=1 �i in addition to
jjwjj2:

min

"
1

2
w �w + C

mX
i=1

�i

#
(21)

This is readily formulated as a primal objective function:

L(w; b; �; �) =
1

2
w �w + C

mX
i=1

�i

�
mX
i=1

�i [yi (w � xi + b)� 1 + �i]�
mX
i=1

ri�i (22)
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with Lagrange multipliers�i � 0 andri � 0. The derivatives with re-
spect tow, b and� give:

@L

@w
= w �

mX
i=1

�iyixi = 0 (23)

@L

@b
=

mX
i=1

�iyi = 0 (24)

@L

@�i
= C � �i � ri = 0 (25)

Resubstituting these back in the primal objective function we obtain the
same dual objective function as before, Equation (13). However,ri > 0
andC��i� ri = 0, hence�i � C and the constraint0 � �i is replaced
by 0 � �i � C. Patterns with values0 < �i < C will be referred to
later asnon-boundand those with�i = 0 or �i = C will be said to beat
bound. For anL1 error norm we find the bias in the decision function of
Equation (15) by using the final KKT condition in Equation (14). Thus
if i is a non-boundpattern it follows thatb = yi �

P
j �jyjK(xi;xj)

assumingyi = �1.

The optimal value ofC must be found by experimentation using a vali-
dation set (Figure 4) and it cannot be readily related to the characteristics
of the dataset or model. In an alternative approach [44], a soft margin pa-
rameter,� = 1=mC, can be interpreted as an upper bound on the fraction
of training errors and a lower bound on the fraction of patterns which are
support vectors.

For theL2 error norm the primal objective function is:

L(w; b; �; �) =
1

2
w �w + C

mX
i=1

�2i

�
mX
i=1

�i [yi (w � xi + b)� 1 + �i]�
mX
i=1

ri�i (26)

with �i � 0 and ri � 0. After obtaining the derivatives with respect
to w, b and�, substituting forw and� in the primal objective function
and noting that the dual objective function is maximal whenri = 0; we
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Figure 4. Left: generalization error as a percentage (y-axis) versusC (x-axis)
and right: generalization error as a percentage (y-axis) versus� (x-axis) for
soft margin classifiers based onL1 andL2 error norms respectively. The UCI
ionosphere dataset was used with RBF kernels (� = 1:5) and 100 samplings of
the data.

obtain the following dual objective function after kernel substitution:

W (�) =
mX
i=1

�i �
1

2

mX
i;j=1

yiyj�i�jK(xi;xj)�
1

4C

mX
i=1

�2i (27)

With � = 1=2C this gives the same dual objective function as before
(Equation (13)) but with the substitution of Equation (19). For many
real-life datasets there is an imbalance between the amount of data in
different classes, or the significance of the data in the two classes can be
quite different. For example, for the detection of tumors on MRI scans
it may be best to allow a higher number of false positives if this im-
proved the true positive detection rate. The relative balance between the
detection rate for different classes can be easily shifted [61] by introduc-
ing asymmetric soft margin parameters. Thus for binary classification
with anL1 error norm0 � �i � C+ (yi = +1), and0 � �i � C�
(yi = �1), while K(xi;xi)  K(xi;xi) + �+ (if yi = +1) and
K(xi;xi) K(xi;xi) + �� (if yi = �1) for theL2 error norm.

2.4 Novelty Detection

For many real-world problems the task is not to classify but to detect
novel or abnormal instances. For the above example involving classifica-
tion of tumors it could be the case that the classification system does not
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correctly detect a tumor with a rare shape which is distinct from all mem-
bers of the training set. On the other hand, a novelty detector would still
potentially highlight the object as abnormal. Novelty detection has poten-
tial applications in many problem domains such as condition monitoring
or medical diagnosis. Novelty detection can be viewed as modeling the
supportof a data distribution (rather than having to find a real-valued
function for estimating the density of the data itself). Thus, at its sim-
plest level, the objective is to create a binary-valued function which is
positive in those regions of input space where the data predominantly
lies and negative elsewhere.

One approach [54] is to find a hypersphere with a minimal radiusR and
centrea which contains most of the data: novel test points lie outside the
boundary of this hypersphere. The technique we now outline was origi-
nally suggested by Vapnik [58], [5], interpreted as a novelty detector by
Tax and Duin [54] and used by the latter authors for real life applications
[55]. The effect of outliers is reduced by using slack variables�i to allow
for datapoints outside the sphere and the task is to minimize the volume
of the sphere and number of datapoints outside, i.e.,

min

"
R2 +

1

m�

X
i

�i

#

subject to the constraints:

(xi � a)
T (xi � a) � R2 + �i

and�i � 0, and where� controls the tradeoff between the two terms. The
primal objective function is then:

L(R; a; �i; �i) = R2 +
1

m�

mX
i=1

�i

�
mX
i=1

�i
�
R2 + �i � (xi � xi � 2a � xi + a � a)

�
�

mX
i=1


i�i (28)

with �i � 0 and
i � 0. After kernel substitution the dual formulation
amounts to maximization of:

W (�) =
mX
i=1

�iK(xi;xi)�
mX

i;j=1

�i�jK(xi;xj) (29)
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with respect to�i and subject to
Pm

i=1 �i = 1 and0 � �i � 1=m�.
If m� > 1 then at boundexamples will occur with�i = 1=m� and
these correspond to outliers in the training process. Having completed
the training process a test pointz is declared novel if:

K(z; z)� 2
mX
i=1

�iK(z;xi) +
mX

i;j=1

�i�jK(xi;xj)�R
2 � 0 (30)

whereR2 is first computed by finding an example which isnon-bound
and setting this inequality to an equality.

An alternative approach has been developed by Sch¨olkopf et al. [41].
Suppose we restrict our attention to RBF kernels: in this case the data
lie in a region on the surface of a hypersphere in feature space since
�(x) � �(x) = K(x;x) = 1 from (11). The objective is therefore to
separate off this region from the surface region containing no data. This
is achieved by constructing a hyperplane which is maximally distant from
the origin with all datapoints lying on the opposite side from the origin
and such thatw � xi + b � 0. This construction can be extended to allow
for outliers by introducing a slack variable�i giving rise to the following
criterion:

min

"
1

2
jjwjj2 +

1

m�

mX
i=1

�i + b

#
(31)

subject to:
w � xi + b � ��i (32)

with �i � 0. The primal objective function is therefore:

L(w; �; b; �; �) =
1

2
jjwjj2 +

1

m�

mX
i=1

�i + b

�
mX
i=1

�i(w � xi + b + �i)�
mX
i=1

�i�i (33)

and the derivatives:

@L

@w
= w�

mX
i=1

�ixi = 0 (34)

@L

@�
= ��i � �i +

1

m�
= 0 (35)

@L

@b
= 1�

mX
i=1

�i = 0 (36)
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Since�i; �i � 0 the derivative@L=@� = 0 implies 0 � �i � 1=m�.
After kernel substitution the dual formulation involves minimization of:

W (�) =
1

2

mX
i;k=1

�i�jK(xi;xj) (37)

subject to:

0 � �i �
1

m�

mX
i=1

�i = 1 (38)

To determine the bias we find an example,k say, which is non-bound (�i
and�i are nonzero and0 < �i < 1=m�) and determineb from:

b = �
mX
j=1

�jK(xj;xk) (39)

The support of the distribution is then modeled by the decision function:

f(z) = sign

0@ mX
j=1

�jK(xj; z) + b

1A (40)

In the above models, the parameter� has a neat interpretation as an up-
per bound on the fraction of outliers and a lower bound of the fraction
of patterns which are support vectors [41]. Sch¨olkopf et al. [41] provide
good experimental evidence in favor of this approach including the high-
lighting of abnormal digits in the USPS handwritten character dataset.
The method also works well for other types of kernel. This and the ear-
lier scheme for novelty detection can also be used with anL2 error norm
in which case the constraint0 � �i � 1=m� is removed and an addition
to the kernel diagonal (19) used instead.

2.5 Regression

For real-valued outputs the learning task can also be theoretically moti-
vated from statistical learning theory. Theorem 4 in Appendix 1 gives a
bound on the generalization error to within a margin tolerance�. We can
visualize this as a band or tube of size�(� � 
) around the hypothesis
functionf(x) and any points outside this tube can be viewed as training
errors (Figure 5).
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Figure 5. The�-insensitive band around a nonlinear regression function. The
variables� measure the cost of training errors corresponding to points outside
the band, e.g.,z.

L
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Figure 6. Left figure: a linear�-insensitive loss function versusyi �w � xi � b.
Right figure: a quadratic�-insensitive loss function.

Thus, instead of Equation (3) we now use constraintsyi�w � xi� b � �
andw � xi + b � yi � � to allow for a deviation� between the eventual
targetsyi and the functionf(x) = w � x + b, modeling the data. As be-
fore, we would also minimizejjwjj2 to increase flatness or penalize over-
complexity. To account for training errors we introduce slack variables
�i; b�i for the two types of training error and an�-insensitive loss function
(Figure 6). These slack variables are zero for points inside the tube and
progressively increase for points outside the tube according to the loss
function used. This general approach is called�-SV regression [58] and
is the most common approach to SV regression, though not the only one
[9], [59]. For a linear �-insensitive loss functionthe task is therefore to
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minimize:

min

"
jjwjj2 + C

mX
i=1

�
�i + b�i�

#
(41)

subject to

yi �w � xi � b � � + �i (42)

(w � xi + b)� yi � � + b�i
where the slack variables are both positive�i; b�i � 0. After kernel substi-
tution the dual objective function is:

W (�; b�) =
mX
i=1

yi(�i � b�i)� � mX
i=1

(�i + b�i)
�
1

2

mX
i;j=1

(�i � b�i)(�j � b�j)K(xi; xj) (43)

which is maximized subject to

mX
i=1

b�i = mX
i=1

�i (44)

and:
0 � �i � C 0 � b�i � C (45)

Similarly aquadratic�-insensitive loss functiongives rise to:

min

"
jjwjj2 + C

mX
i=1

�
�2i +

b�2i �
#

(46)

subject to (42), giving a dual objective function:

W (�; b�) =
mX
i=1

yi(�i � b�i)� � mX
i=1

(�i + b�i)
�
1

2

mX
i;j=1

(�i � b�i)(�j � b�j) (K(xi;xj) + Æij=C) (47)

which is maximized subject to (44). The decision function is then:

f(z) =
mX
i=1

(�i � b�i)K(xi; z) + b (48)
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We still have to compute the bias,b, and we do so by considering the
KKT conditions for regression. For a linear loss function prior to kernel
substitution these are:

�i (� + �i � yi +w � xi + b) = 0b�i ��+ b�i + yi �w � xi � b
�

= 0 (49)

wherew =
mP
j=1

yj(�j � b�j)xj, and:

(C � �i) �i = 0

(C � b�i) b�i = 0 (50)

From the latter conditions we see that only when�i = C or b�i = C
are the slack variables non-zero: these examples correspond to points
outside the�-insensitive tube. Hence from Equation (49) we can find the
bias from a non-bound example with0 < �i < C usingb = yi�w�xi��
and similarly for0 < b�i < C we can obtain it fromb = yi �w � xi + �.
Though the bias can be obtained from one such example it is best to
compute it using an average over all points on the margin.

From the KKT conditions we also deduce that�i b�i = 0 since�i andb�i cannot be simultaneously non-zero because we would have non-zero
slack variables on both sides of the band. Thus, given that�i is zero ifb�i > 0 andvice versa, we can use a more convenient formulation for the
actual optimization task, e.g., maximize:

W (
) = ��
mX
i=1

j
ij+
mX
i=1

yi
i �
1

2

mX
i;j=1


i
jK(xi;xj) (51)

subject to
mP
i=1


i = 0 for a linear�-insensitive loss function.

Apart from the formulations given here it is possible to define other loss
functions giving rise to different dual objective functions. In addition,
rather than specifying� a priori it is possible to specify an upper bound
� (0 � � � 1) on the fraction of points lying outside the band and then
find � by optimizing over the primal objective function:

1

2
jjwjj2 + C

 
�m� +

mX
i=1

jyi � f(xi)j

!
(52)

with � acting as an additional parameter to minimize over [38].
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2.6 Enhanced Learning Strategies

Determining the kernel parameters. During the training process the
kernel parameter (e.g.,� in Equation (11)) needs to be specified. If it is
too small, for example, then generalization performance will suffer from
overfitting (Figure 7). The kernel parameter is best found using cross-
validation if sufficient data is available. However, recent model selection
strategies can give a reasonable estimate for the kernel parameter based
on theoretical arguments without use of validation data. As a first at-
tempt, for the hard margin case, the generalization error bound (which
we denote here asE) can be approximated byE ' R2=m
2 [47] where
R is the radius of the smallest ball containing the training data. Let�0i
be the values of the Lagrange multipliers at the optimum ofW (�): From

 = 1=jjwjj we can deduce that
2 = 1=

P
i2fSV g �

0
i since if i is a sup-

port vector thenyi(
P

j2SV �
o
jyj(xi � xj) + b) = 1, thus:

w �w =
X

i;j2fSV g

�oi�
o
jyiyj(xi � xj) (53)

=
X

i2fSV g

�oi (1� yib)

=
X

i2fSV g

�oi

since
P

i2fSV g
�oi yi = 0.

After kernel substitution, RBF kernels giveR ' 1 since the data lie on
the surface of a hypersphere. Hence, an estimate for� could be found
by sequentially training SVMs on a dataset at successively larger values
of �, evaluatingE from the�0i for each case and choosing that value
of � for whichE is minimized. This method [9] will give a reasonable
estimate if the data is spread evenly over the surface of the hypersphere
but it is poor if the data lie in a flat ellipsoid, for example, since the radius
R would be influenced by the largest deviations.

More refined estimates therefore take into account the distribution of
the data. One approach [7] to finding the error bound is to notionally
rescale data in kernel space to compensate for uneven distributions. This
rescaling is achieved using the eigenvalues and eigenvectors of the ma-
trix K(xi;xj). A more complex strategy along these lines has also been
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Figure 7. Generalization error as a percentage (y-axis) versus� (x-axis) from
an experiment using artificial data from the mirror symmetry problem and a
SVM with an RBF kernel (the curve has been smoothed using 100,000 generated
datapoints, allowing repeats). After first overfitting the data the generalization
error passes through a minimum as� increases.

proposed by Sch¨olkopf et al. [42] which leads to an algorithm which
has performed well in practice for a small number of datasets. A very
efficient bound has also been derived recently by Herbrichet al. [20].

The most economical way to use the training data is to use aleave-one-
out cross-validation procedure. In this procedure, single elements from
the data set are sequentially removed, the SVM is trained on the remain-
ingm� 1 elements and then tested on the removed datapoint. Using the
approximation that the set of support vectors does not change for removal
of single patterns, it is possible to derive tight bounds on the generaliza-
tion error. Two examples of these model selection rules are thespan-rule
of Chapelle and Vapnik [7] and a rule proposed by Jaakkola and Haus-
sler [22]. Based on recent studies with a limited number of datasets, these
model selection strategies appear to work well. However, a comparative
study of these different techniques and their application to a wider range
of real-life datasets needs to be undertaken to establish if they are fully
practical approaches.

Handling unlabeled data. For some real-life datasets the datapoints
are initially unlabeled. Since the labels of points corresponding tonon-
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Figure 8. Left figure: generalization error (y-axis) as a percentage versus num-
ber of patterns (x-axis) for random selection (top curve) and selective sampling
(bottom curve).Right figure: monitoring the value of the dual objective function
provides a good stopping criterion for noisefree datasets. It this case the majority
rule for random bit strings was used with 100 samplings of the data each split
into 200 training and 200 test examples.

supportvectors are not actually required for determining an optimal sep-
arating hyperplane these points do not need to be labeled. This issue is
particularly important for practical situations in which labeling data is
expensive or the dataset is large and unlabeled. Since SVMs construct
the hypothesis using a subset of the data containing the most informative
patterns they are good candidates foractiveor selective samplingtech-
niques which would predominantly request the labels for those patterns
which will become support vectors

During the process of active selection the information gained from an
example depends both on the position (available information) and on its
label (unavailable information before querying). Thus we must follow a
heuristic strategy to maximize information gain at each step. Firstly we
note that querying a point within the margin band (Figure 1)alwaysguar-
antees a gain whatever the label of the point: we do not gain by querying
a point outside the band unless the current hypothesis predicts the label
incorrectly. The best points to query are indeed those points which are
closest to the current hyperplane [6]. Intuitively this makes sense since
these are most likely to be maximally ambiguous with respect to the cur-
rent hypothesis and hence the best candidates for ensuring that the infor-
mation received is maximized. Hence a good strategy [6] is to start by
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requesting the labels for a small initial set of data and then successively
querying the labels of points closest to the current hyperplane. For noise-
free datasets, plateauing of the dual objective function provides a good
stopping criterion (since learning non-support vectors would not change
the value ofW (�) - see Figure 8(right)), whereas for noisy datasets emp-
tying of the margin band and a validation phase provide the best stopping
criterion [6]. Active selection works best if the hypothesis modeling the
data issparse(i.e., there are comparatively few support vectors to be
found by the query learning strategy) in which case good generalization
is achieved despite requesting only a subset of labels in the dataset (Fig-
ure 8).

3 Algorithmic Approaches to Training
VMs

For classification, regression or novelty detection we see that the learn-
ing task involves optimization of a quadratic cost function and thus tech-
niques from quadratic programming are most applicable including quasi-
Newton, conjugate gradient and primal-dual interior point methods. Cer-
tain QP packages are readily applicable such as MINOS and LOQO.
These methods can be used to train an SVM rapidly but they have the dis-
advantage that the kernel matrix is stored in memory. For small datasets
this is practical and QP routines are the best choice, but for larger datasets
alternative techniques have to be used. These split into two categories:
techniques in which kernel components are evaluated and discarded dur-
ing learning andworking setmethods in which an evolving subset of data
is used. For the first category the most obvious approach is to sequentially
update the�i and this is the approach used by the Kernel Adatron (KA)
algorithm [15]. For binary classification (with no soft margin or bias) this
is a simple gradient ascent procedure on (13) in which�i > 0 initially
and the�i are subsequently sequentially updated using:

�i  �i� (�i) where �i = �i + �

0@1� yi mX
j=1

�jyjK(xi;xj)

1A (54)

and�(�) is the Heaviside step function. The optimal learning rate� can
be readily evaluated:� = 1=K(xi;xi) and a sufficient condition for con-
vergence is0 < �K(xi;xi) < 2. With the given decision function of
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Equation (15), this method is very easy to implement and can give a
quick impression of the performance of SVMs on classification tasks. It
is equivalent to Hildreth’s method in optimization theory and can be gen-
eralized to the case of soft margins and inclusion of a bias [27]. However,
it is not as fast as most QP routines, especially on small datasets.

3.1 Chunking and Decomposition

Rather than sequentially updating the�i the alternative is to update the
�i in parallel but using only a subset orchunkof data at each stage.
Thus a QP routine is used to optimize the objective function on an initial
arbitrary subset of data. The support vectors found are retained and all
other datapoints (with�i = 0) discarded. A new working set of data is
then derived from these support vectors and additional datapoints which
maximally violate the storage constraints. Thischunkingprocess is then
iterated until the margin is maximized. Of course, this procedure may still
fail because the dataset is too large or the hypothesis modeling the data is
not sparse (most of the�i are non-zero, say). In this casedecomposition
[31] methods provide a better approach: these algorithms only use a fixed
size subset of data with the�i for the remainder kept fixed.

3.2 Decomposition and Sequential Minimal
Optimization

The limiting case of decomposition is the Sequential Minimal Optimiza-
tion (SMO) algorithm of Platt [33] in which only two�i are optimized
at each iteration. The smallest set of parameters which can be optimized

with each iteration is plainly two if the constraint
mP
i=1

�iyi = 0 is to hold.

Remarkably, if only two parameters are optimized and the rest kept fixed
then it is possible to derive an analytical solution which can be executed
using few numerical operations. The algorithm therefore selects two La-
grange multipliers to optimize at every step and separate heuristics are
used to find the two members of the pair. Due to its decomposition of the
learning task and speed it is probably the method of choice for training
SVMs and hence we will describe it in detail here for the case of binary
classification.
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The outer loop. The heuristic for the first member of the pair provides
the outer loop of the SMO algorithm. This loop iterates through the en-
tire training set to determining if an example violates the KKT conditions
and, if it does, to find if it is a candidate for optimization. After an initial
pass through the training set the outer loop does not subsequently iterate
through the entire training set. Instead it iterates through those examples
with Lagrange multipliers corresponding to non-bound examples (neither
0 norC). Examples violating the KKT conditions are candidates for im-
mediate optimization and update. The outer loop makes repeated passes
over the non-bound examples until all of the non-bound examples obey
the KKT conditions. The outer loop then iterates over the entire training
set again. The outer loop keeps alternating between single passes over
the entire training set and multiple passes over the non-bound subset un-
til the entire training set obeys the KKT conditions at which point the
algorithm terminates.

The inner loop. During the pass through the outer loop let us suppose
the algorithm finds an example which violates the KKT conditions (with
an associated Lagrange multiplier we shall denote�1 for convenience).
To find the second member of the pair,�2, we proceed to the inner loop.
SMO selects the latter example to maximize the step-length taken during
the joint 2-variable optimization process outlined below. To achieve this
SMO keeps a record of each value ofEi = f(xi) � yi (wheref(x) =
w � x + b) for every non-bound example in the training set and then
approximates the step-length by the absolute value of the numerator in
equation (56) below, i.e.,jE1 � E2j. Since we want to maximize the
step-length, this means we choose the minimum value ofE2 if E1 is
positive and the maximum value ofE2 if E1 is negative. As we point
out below, this step may not make an improvement. If so, SMO iterates
through the non-bound examples searching for a second example that
can make an improvement. If none of the non-bound examples gives an
improvement, then SMO iterates through the entire training set until an
example is found that makes an improvement. Both the iteration through
the non-bound examples and the iteration through the entire training set
are started at random locations to avoid an implicit bias towards examples
at the beginning of the training set.
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The update rules. Having described the outer and inner loops for SMO
we now describe the rules used to update the chosen pair of Lagrange

multipliers (�1; �2). The constraint
NP
i=1

�iyi = 0 gives:

�1y1 + �2y2 = �
X
i6=1;2

�iyi (55)

Sinceyi = �1 we have two possibilities. Firstlyy1 = y2 in which case
�1 + �2 is equal to some constant:�1 + �2 = �, say, ory1 6= y2 in
which case�1 � �2 = �. The next step is to find the maximum of the
dual objective function with only two Lagrange multipliers permitted to
change. Usually this leads to a maximum along the direction of the linear
equality constraint though this not always the case as we discuss shortly.
We first determine the candidate value for second Lagrange multiplier�2
and then the ends of the diagonal line segment in terms of�2:

�new2 = �old2 �
y2(E1 � E2)

�
; (56)

whereEi = f old(xi)� yi and

� = 2K(x1;x2)�K(x1;x1)�K(x2;x2): (57)

If noise is present and we use aL1 soft margin then the next step is to
determine the two ends of the diagonal line segment. Thus ify1 6= y2 the
following bounds apply:

L = max(0; �old2 � �
old
1 ); H = min(C;C + �old2 � �

old
1 ); (58)

and ify1 = y2 then:

L = max(0; �old1 + �old2 � C); H = min(C; �old2 + �old1 ): (59)

The constrained maximum is then found by clipping the unconstrained
maximum to the ends of the line segment:

�new;clipped2 =

8><>:
H; if �new2 � H;
�new2 ; if L < �new2 < H;
L; if �new2 � L:

(60)
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Next the value of�1is determined from the clipped�2:

�new1 = �old1 + y1y2(�
old
2 � �

new;clipped
2 ): (61)

This operation moves�1 and�2 to the end point with the highest value
of W (�). Only whenW (�) is the same at both ends will no improve-
ment be made. After each step, the biasb is recomputed so that the KKT
conditions are fulfilled for both examples. If the new�1 is a non-bound
variable thenb1 is determined from:

b1 = bold1 � E1 � y1(�
new
1 � �old1 )K(x1;x1)

�y2(�
new;clipped
2 � �old2 )K(x1;x2): (62)

Similarly if the new�2 is non-bound thenb2 is determined from:

b2 = bold2 � E2 � y1(�
new
1 � �old1 )K(x1;x2)

�y2(�
new;clipped
2 � �old2 )K(x2;x2): (63)

If b1 and b2 are valid they should be equal. When both new Lagrange
multipliers are at bound and ifL is not equal toH, then all thresholds
on the interval betweenb1 andb2 are consistent with the KKT conditions
and we choose the threshold to be halfway in betweenb1 andb2.

The SMO algorithm has been refined to improve speed [24] and general-
ized to cover the above three tasks of classification [33], regression [49],
and novelty detection [41].

4 Applications

SVMs have been successfully applied to a number of applications rang-
ing from particle identification [2], face detection [32], and text catego-
rization [23], [13], [11] to engine knock detection [37], bioinformatics
[4], [65], and database marketing [3]. In this section, we discuss three
successful application areas as illustrations: machine vision, handwritten
character recognition and bioinformatics. This is a rapidly changing area
so more contemporary accounts are best obtained from relevant websites
(e.g., [17]).

Machine vision. SVMs are very suited to the binary or multiclass clas-
sification tasks which commonly arise in machine vision. As an example
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we consider a multiclass classification task involving face identification
[14]. This experiment used the standard ORL dataset [30] consisting of
10 images per person from 40 different persons. Three methods were
tried: a direct SVM classifier which learnt the original images directly
(apart from some local rescaling), a classifier which used more exten-
sive preprocessing involving rescaling, local sampling and local princi-
pal component analysis, and an invariant SVM classifier which learnt
the original images plus a set of images which have been translated and
zoomed. For the invariant SVM classifier the training set of 200 im-
ages (5 per person) was increased to 1400 translated and zoomed ex-
amples and an RBF kernel was used. On the test set these three methods
gave generalization errors of 5.5%, 3.7% and 1.5% respectively. This
was compared with a number of alternative techniques [14] with the
best result among the latter being 2.7%. Face and gender detection have
also been successfully achieved. 3D object recognition [36] is another
successful area of application including 3D face recognition, pedestrian
recognition, etc.

Handwritten digit recognition. The United States Postal Service
(USPS) dataset consists of 9298 handwritten digits each consisting of a
16�16 vector with entries between�1 and1. An RBF network and an
SVM were compared on this dataset. The RBF network had spherical
Gaussian RBF nodes with the same number of Gaussian basis functions
as there were support vectors for the SVM. The centroids and variances
for the Gaussians were found using classicalk-means clustering. For
the SVM Gaussian kernels were used and the system was trained with
a soft margin (withC = 10:0). A set of one-against-all classifiers were
used since this is a multi-class problem. With a training set of 7291, the
number of errors on the test set of 2007 was:

Digit 0 1 2 3 4 5 6 7 8 9
Classical RBF 20 16 43 38 46 31 15 18 37 26
SVM 16 8 25 19 29 23 14 12 25 16

and the SVM therefore outperformed the RBF network on all digits.
SVMs have also been applied to the much larger NIST dataset of hand-
written characters consisting of 60,000 training and 10,000 test images
each with 400 pixels. SVMs with polynomial kernels perform at a com-
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parable level to the best alternative techniques [59] with an 0.8% error
on the test set.

Bioinformatics. Large-scale DNA sequencing projects are producing
large volumes of data and there is a considerable demand for sophis-
ticated methods for analyzing biosequences. Bioinformatics presents a
large number of important classification tasks such as prediction of pro-
tein secondary structure, classification of gene expression data, recog-
nizing splice junctions, i.e., the boundaries between exons and introns,
etc. SVMs have been found to be very effective on these tasks. For ex-
ample, SVMs outperformed four standard machine learning classifiers
when applied to the functional classification of genes using gene expres-
sion data from DNA microarray hybridization experiments [4]. Several
different similarity metrics and kernels were used and the best perfor-
mance was achieved using an RBF kernel (the dataset was very imbal-
anced so asymmetric soft margin parameters were used). A second suc-
cessful application has been protein homology detection to determine
the structural and functional properties of new protein sequences [21].
Determination of these properties is achieved by relating new sequences
to proteins with known structural features. In this application the SVM
outperformed a number of established systems for homology detection
for relating the test sequence to the correct families. As a third applica-
tion we also mention the detection of translation initiation sites [65] (the
points on nucleotide sequences where regions encoding proteins start).
SVMs performed very well on this task using a kernel function specifi-
cally designed to include prior biological information.

5 Conclusion

Kernel methods have many appealing features. We have seen that they
can be applied to a wide range of classification, regression and novelty
detection tasks but they can also be applied to other areas we have not
covered such as operator inversion and unsupervised learning. They can
be used to generate many possible learning machine architectures (RBF
networks, feedforward neural networks) through an appropriate choice
of kernel. In particular the approach is properly motivated theoretically
and systematic in execution.
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Our focus has been on SVMs but the concept of kernel substitution of
the inner product is a powerful idea separate from margin maximization
and it can be used to define many other types of learning machines which
can exhibit superior generalization [19], [29] or which use few patterns
to construct the hypothesis [56]. We have not been able to discuss these
here but they also perform well and appear very promising. The excellent
potential of this approach certainly suggests it will remain and develop
as an important set of tools for machine learning.
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Appendices

Appendix 1: Generalization Bounds

The generalization bounds mentioned in Section 2 are derived within the
framework of probably approximately correct orpac learning. The prin-
cipal assumption governing this approach is that the training and test data
are independently and identically (iid) generated from a fixed distribution
denotedD. The distribution over input-output mappings will be denoted
(x; y) 2 X � f�1; 1g and we will further assume thatX is an inner
product space. With these assumptionspac-learnability can be described
as follows. Consider a class of possible target conceptsC and a learner
L using a hypothesis spaceH to try and learn this concept class. The
classC is pac-learnable byL if for any target conceptc 2 C,L will with
probability(1�Æ) output a hypothesish 2 H with a generalization error
errD(h) < �(m;H; Æ) given a sufficient number,m, of training examples
and computation time. Thepacbound�(m;H; Æ) is derived using prob-
abilistic arguments [1], [62] and bounds the tail of the distribution of the
generalization errorerrD(h).

For the case of a thresholding learnerL with unit weight vector on an
inner product spaceX and a margin
 2 <+ the following theorem can
be derived if the dataset is linearly separable:
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Theorem 1 Suppose examples are drawn independently according to a
distribution whose support is contained in a ball in<n centered at the ori-
gin, of radiusR. If we succeed in correctly classifyingm such examples
by a canonical hyperplane, then with confidence1� Æ the generalization
error will be bounded from above by [47]:

�(m;H; Æ) =
2

m

 
64R2


2
log

�

em

8R2

�
log

 
32m


2

!
+ log

�
4

Æ

�!
(64)

provided64R2=
2 < m. This result is not dependent on the dimension-
ality of the space and also states that the bound is reduced by maximizing
the margin
. Though this is our main result motivating maximization of
the margin for SVMs it does not handle the case of non-separable data
or the existence of noise. As pointed out in the main text these instances
are handled by introducing anL1 or L2 soft margin. The following two
bounds do not depend on the training data being linearly separable and
cover these two cases [48]:

Theorem 2 Suppose examples are drawn independently according to a
distribution whose support is contained in a ball in<n centered at the
origin, of radiusR. There is a constantc such that with confidence1� Æ
the generalization error will be bounded from above by:

�(m;H; Æ) =
c

m

 
R2 + jj�jj2

1
log (1=
)


2
log2(m) + log

�
1

Æ

�!
(65)

where� is the margin slack vector.

Theorem 3 Suppose examples are drawn independently according to a
distribution whose support is contained in a ball in<n centered at the
origin, of radiusR. There is a constantc such that with confidence1� Æ
the generalization error will be bounded from above by:

�(m;H; Æ) =
c

m

 
R2 + jj�jj2

2


2
log2(m) + log

�
1

Æ

�!
(66)

where� is the margin slack vector.

For both these theorems we see that maximizing the margin alone does
not necessarily reduce the bound and it is necessary to additionally re-
duce the norms of the slack variables.
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Both these theorems can be adapted to the case of regression. However,
in contrast to Theorems 1-3 above it is no longer appropriate to fix the
norm of the weight vector since invariance under positive rescaling of
the weight vector only holds for a thresholding decision function. For
regression the relevant theorem for anL2 norm on the slack variables is
then:

Theorem 4 Suppose examples are drawn independently according to a
distribution whose support is contained in a ball in<n centered at the
origin, of radiusR. Furthermore fix
 � � where� is a positive real
number. There is a constantc such that with probability1 � Æ overm
random examples, the probability that a hypothesis with weight vectorw

has output more than� away from its true value is bounded above by:

�(m;H; Æ) =
c

m

 
jjwjj2

2
R2 + jj�jj2

2


2
log2(m) + log

�
1

Æ

�!
(67)

where� = �(w; �; 
) is the margin slack vector. This theorem motivates
the loss functions used in Section 2.5 on regression.

Finally, we note that the above classification theorems have also been
extended to estimation of the support of a distribution [41]. However,
current bounds are not good indicators of the probability of occurrence
of novel points outside a distribution and hence we do not quote them
here for this reason.

Appendix 2: Kernel Substitution and Mercer’s
Theorem

In Section 2, we introduced the idea of kernel substitution, equivalent
to introducing an implicit mapping of the data into a high-dimensional
feature space. By this means, nonlinear datasets which are unlearnable
by a linear learning machine in input space become learnable in feature
space. In input space the hypothesis modeling the data is of the form:

f(x) = w � x+ b (68)
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For binary classification, for example, we saw in Section 2.3 that the
weight vectorw can be written as:

w =
mX
i=1

�iyixi (69)

If the dataset is separable, the separating hyperplane passes through the
convex hull defined by the datapoints and hence it is apparent thatw
can be expressed as such an expansion in terms of the datapoints. With
this expansion the decision function of Equation (68) can therefore be
rewritten:

f(x) =
mX
i=1

�iyi(xi � xj) + b (70)

For the learning task of Equations (8,13) and this decision function the
datapoints only appear in the form of inner products, justifying kernel
substitution and with the choice of kernel implicitly selecting a particular
feature space:

K(xi;xj) = �(xi) � �(xj) (71)

This raises the issue of which types of kernel function are allowed. The
requirements on the kernel function are defined by the two theorems be-
low. First we observe that the kernel function is symmetric. In addition
we also note from that for a real vectorv we have

vTKv =

�����
�����
mX
i=1

vi�(xi)

�����
�����
2

2

� 0 (72)

where the matrixK has componentsK(xi;xj), (i = 1; : : : ; m; j =
1; : : : ; m). This suggests the following theorem which can be proved:

Theorem 5 Let K(x;y) be a real symmetric function on a finite in-
put space, then it is a kernel function if and only if the matrixK with
componentsK(xi;xj) is positive semi-definite.

More generally, forC a compact subset of<N we have:

Theorem 6 (Mercer’s theorem) If K(x;y) is a continuous symmetric
kernel of a positive integral operatorT , i.e.,

(Tf)(y) =
Z
C
K(x;y)f(x)dx (73)
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with: Z
C�C

K(x;y)f(x)f(y)dxdy � 0 (74)

for all f 2 L2(C) then it can be expanded in a uniformly convergent
series in the eigenfunctions j and positive eigenvalues�j of T , thus:

K(x;y) =
neX
j=1

�j j(x) j(y) (75)

wherene is the number of positive eigenvalues.

This theorem holds for general compact spaces, and generalizes the re-
quirement to infinite feature spaces. Equation (74) generalizes the semi-
positivity condition for finite spaces given in Theorem 5. The expansion
in Equation (75) is a generalization of the usual concept of an inner prod-
uct in Hilbert space with each dimension rescaled by

q
�j.
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