CSE 5351

of a Parallel Algorithm

Sieve of Eratosthenes

(&) 2134|5678 ]9[10[11112{13[14)15]16[1T)15|19{20|21[22({23|24[25(26|27[2&[29|30

by [2]3 DX s D7 9 1 e 3D s DT DKo D2 1 D2 3 D2 s K12 D29

[e) 2

(]
J
_mn
(3!
-]
o
(Far]

10)111(12)13(14]15(16|17F(18|19|20(21|22(23]24(25]26|27|25|29|30

dy [2]3]a]s[e]7]8 Dol D1 3f1aDis]1 7K 192022l 1252 P2s]29 [

[e) 2134|5678 |9[10[11112{13[14]15]16[1T7)18|19{20|21[22(23|24[25[26|27[2&[29|30

(£} 21314 (56|78 ([910(11)112)13|14|115(16|17F[18|19(20]21(22|21|24 262?2529%

(2} 21314 (56|78 (910(11)112)13|14|15(16|17(1&|19(20|21(22]|21|24[25)|26(27F|25(2Y|30

1 CSE@QUTA



Part 11

CSE 5351

Current
primc Index

" p N

(a)

Pl Index PE Index p Index
/S—hﬂI'Ed Currcnt \\
Memory  PM°
2 4 n-l| n

(b)

CSE@UTA




Part 11

CSE 5351

Time
6 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1400 1.500
| | | | | | | | | | | | | | | |
23
2
(a) 2 1 5 7|11 ] 13 |17[19 1]
23
29
2 7 |17 1
(b)
3 5 11|13 [19
: 29
<) 3 11 lgﬁ_gl
5 7 |13 17|23
3. CSE@UTA




Part || CSE 5351

[ R
/}—J -\\\ PE Current

1 Current prime Index
prime [ndex

k_ nip+1 E-FL",!JJ

\ 2 nip _’/

p N (p N

Current ]
fime Index p Current
P prime Index
-l
I\-E 114 1t n-/I n\_(p-'ljn,"pﬂ n _f/'
(a) (b)

-4- CSE@UTA



Part 11

CSE 5351

Processors

-5-

CSE@UTA




Part || CSE 5351

———— Total nme _
ormnputabon e
——————— S orrnUrl cation arne

Processors

6 CSE@QUTA



Part || CSE 5351

B o

Advantages

« Different instructions can be implemented at the same cycle and it has a
coarse grain.

« Looser synchronization requirement than SIMD.

Disadvantages

« Every processor is required to execute the same program, which is not
flexible and the degree of parallelism is reduced.

-7- CSE@UTA



Part || CSE 5351

B o

Advantages

. Different processors can execute different programs, thus increasing
the degree of parallelism.

. More general than SPMD.

« Can support coarse grain.

Disadvantages

. It is more difficult to balance the load on each processor to minimize
idle processor time.

8- CSE@QUTA



Part || CSE 5351

IS siic1 proaramming overview

. Parallel software development has lagged far behind the advances of
parallel hardware.

« The lack of adequate parallel software is the main hurdle to the accep-
tance of parallel computing by the mainstream user community.

« Compared to their sequential counterparts, today’s parallel system
software and application software are few in quantity and primitive in

functionality.

-9- CSE@QUTA



Part || CSE 5351

IS Paraiie Programming Difficult?

. Parallel programming is a more complex intellectual process than

sequential programming.

It involves all issues in sequential programming, plus many more issues
that are intellectually more challenging.

There are many different parallel programming models.

Software environment tools such as compiler, debugger, and profiler are
much more advanced for sequential programs development.

More people have been practicing sequential programming than parallel
programming.

-10- CSE@QUTA




Part || CSE 5351

_ Parallel Programming

Despite the above pessimistic review, there has been much progress in the
parallel programming field. Many parallel algorithms have been developed.

« The native models are converging toward two models:
- the single-address space, shared-variable model for PVPs, SMPs, and DSMs,

- and the multiple-address space, message-passing model for MPPs and clusters.

. The SIMD model is useful for special purpose, embedded applications such
as signal, image, and multimedia processing.

« A high-performance parallel computer should be viewed as a huge entity
with single system image.

-11- CSE@QUTA



Part 11

CSE 5351

IESESIic: programming Environments

From a user’s viewpoint, a typical parallel processing system has
structure.

(Sequential or Parallel) Application Algorithm

_________ Parallel Languagt
User (Progranmer) |: and Other Tools

L 4

(Sequential or Parallel) Source Prograrﬁ"u,.

Parallel l
Programming T - Run-Time Support
mpiler (Including r_eprocessor, and Other Librarie
Assermbler, and Linker)
Native Parallel Code

Parallel Platform (OS and Hardware)

a

-12-

CSE@QUTA




Part || CSE 5351

IR Environment Tools

Environment tools are the set of tools normally not associated with an operating
system or a programming language. Environment tools include the following types:

« Job management tools are used to schedule system resources and manage user
jobs.

« Debugging tools are used to detect and locate semantic errors in parallel and
sequential applications.

« Performance tools are used to monitor user applications to identify performance
bottlenecks, which is also known as performance debugging.

-13- CSE@QUTA



Part || CSE 5351

IS iie1 programming Approaches

There are three means of extension: library subroutines, new language
constructs, and compiler directives.

o Library Subroutines: They provide functions to support parallelism and
Interaction operations. Examples of such libraries include the MPI message
passing library and the MPICH, OpenMP, POSIX, Pthreads multithreading
library.

« New Constructs: The programming language is extended with some new
constructs to support parallelism and interaction. An example is the aggregated
array operations in Fortran 90.

« Compiler Directives: The programming language stays the same, but formatted
comments, called compiler directives (or pragmas), are added.

-14- CSE@QUTA



CSE 5351

Part 11

B cemoe

All three parallel programs perform the same computation as the
sequential C code.

for (i=0;i<N;i++) A[i] =Db[i] * b[i+1] ;
for(i=0;i<N;i++) c[i]=A[i] +A[i+1];
(a) A sequential code fragment

Id =my_process_id () ;

P = number_of processes () ;
for(i=id;i<N;i=i+p) A[i] =Db[i] * b[i+1];
barrier () ;

for(i=id;i<N;i=i+p) c[i] =A[i] +A[i+1];

(b) Equivalent parallel code using library routines

-15- CSE@QUTA



Part |1 CSE 5351

A(0:N-1) = b(0:N-1) * b(L:N)
c(0:N-1) = A(0:N-1) + A(1:N)

(c) Equivalent code in Fortran 90 using array
operations

#pragma parallel

#pragma shared (A, b, c)

#pragma local (1)

{

#pragama pfor iterate (i=0; N ; 1)
for(1=0;1<N;i1++) A[i] =Db[1] * b[i+1] ;
#pragma synchronize

#pragma pfor iterate (i=0; N ; 1)
for(i=0;i<N;i++) c[i] =A[l] + A[i+1];
}

(d) Equivalent code using pragmas in SGI
Power C

-16- CSE@QUTA



Part |1 CSE 5351

Three Approaches to Implementing Parallel Programming System

Approach Example Advantages Disadvantages

Message-Passing Express, PVM, MPIl Easy to implement, Overhead,

Library need not a new partitioning required
compiler
Language Fortran90, Cray Allow compiler Hard to implement,
constructs Craft check, analysis and complex compiler
optimization
Compiler Directives HPF, OpenMP, between a library and language constructs
pThread

~ The approaches and the programming models can all be combined
In various ways on any parallel platform.

-17- CSE@QUTA



Part || CSE 5351

Ohn a garallel computer, a user application is executed as processes, tasks,
or threads.

Definitions of an Abstract Process

A process P is a 4-tuple P = (P, C, D, S), where P is the program (or the
code), C the control state, D the data state, and S the status of the process P.

Program (Code)

Any process is associated with a program. As a concrete example,
consider the following C code:

main() {
Int1=0;
fork(); fork();
printf(""Hello\n"");

}

-18- CSE@QUTA



Part || CSE 5351

Control and Data States

A program uses two sets of variables: Data variables and Control variables.
The union of these two sets forms the set of program variables.

Control variables are program counters.

For a process with a single thread of control, there is just one control
variable: the program counter.

In multiple threads of control, each control variables may hold the program
counter value of that thread.

Process Status

A process has a certain status at any time.

-19- CSE@QUTA



Part || CSE 5351

_ state transition diagram

Looking
for Worls _
Zombie

Activate Finigh f

Exat Bury

Preempt., Timeout

»
( Ready w"' h( Rlllulill_g)
o Schedule

Create Suspend
Wale-up

(N onex st Ela S 51}&11{1&{0
e

Another frequently used operation is process switching, which refers to
transfer_rln% a running process to either a suspended or ready status and
scheduling the next ready process to run.

ernunate

-20- CSE@QUTA



Part || CSE 5351

Execution Mode

An operating system includes the following components:
- kernel

- Shell
- Utilities
A computer provides two execution modes to execute programs.

- kernel mode, also known as the supervisor mode, the system mode, or the
privileged mode.

- Other programs are executed as a process in the user mode. Such a process is
- called a user process.

Thea execution mode can be switched back and forth between user and kernel
modes.

Process Context

The context of a process is that part of the program state that is stored in the
processor registers.

A context switch is the action to save the current process context and to load
a new context.

-21- CSE@QUTA



Part || CSE 5351

Parallel programming is more complex than sequential programming. Many
additional issues arise.

Homogeneity in Processes

This refers to the similarity of component processes in a parallel program.
There are three basic possibilities:

SPMD: The component processes in a single-program-multiple-data program are
homogeneous, in that the same code is executed by multiple processes on
different data domains.

MPMD: The component processes in a multiple-program-multiple-data program
are heterogeneous, in that multiple processes may execute different codes.

SIMD: Multiple processes execute the same code and must all execute the same
Instruction at the same time. In other words, SIMD programs is a special case of
SPMD programs.

-22- CSE@QUTA



Part || CSE 5351

A data-parallel program refers to an SPMD program in general and a
Ero ram that uses only the data-parallel constructs (such as those in

ortran 90) in particular.

A functional-parallel (also known as task-parallel or control-parallel)
program is usually a synonym for an MPMD program.

Parallel Block

A natural Wa%/ to express MPMD programs is to use the parbegin and
parend constructs.

parbegin S; S, ... S, parend

Is called a parallel block, where S; S, ... S, are its component processes,
which could contain different codes.

-23- CSE@QUTA



Part || CSE 5351

When all processes in a parallel block share the same code, we can
]gelrlmte the parallel block with a shorthand notation called a parallel loop as
ollows:

parbegin Process(1) . . . Process(n) parend

can be simplified to the following parallel loop :

parfor (i=1; i<=n; i++) { Process(i) }

-24- CSE@QUTA



Part || CSE 5351

When the number of different codes is small, one can fake MPMD lé):y
using an SPMD program. For instance, the MPMD code parbegin A; B
parend can be expressed as an SPMD parallel loop

parfor (1=0; 1<3; 1++) {

if (i==0) A;
if (i==1) B;
if (i==2) C;

}

Multi-Code versus Single-Code
MPPs and COWs use MPMD using the multi-code approach.

run Aon node 0
run B on node 1
run C on node 2

-25- CSE@QUTA



Part || CSE 5351

~An SPMD program can be specified using the single-code approach. For
Instance, to specify the parallel loop

parfor (i=0; 1 <N; i++) { foo(i) }
the user needs to write only one program such as the following:

pid = my_process_id();
numproc = number_of processes() ;
for (1=pid; 1 <N; 1 =1+ numproc) foo(i) ;

-26- CSE@QUTA



Part || CSE 5351

In data-parallel languages, SPMD parallelism can be specified using
data parallel constructs. For instance, to specify the parallel loop:

parfor (i =1; i <= N; i++) {C[i]=A[i]+B][i];}
the user can use an array assignment: C = A + B or the following loop:

forall (i =1, N) C[i]=A[i]+Bli].

-27- CSE@QUTA



Part || CSE 5351

_us Dynamic Parallelism

A program exhibits static parallelism If its structure and the number of
component processes can be determined before run time (e.g., at compile
time, link time, or load time).

parbegin P, Q, R parend is static if P, Q, R are.

Dynamic parallelism implies that processes can be created and
terminated at run time.

while (C>0) begin fork(foo(C)); C=boo(C); end

Static parallelism can be expressed by the constructs such as parallel
blocks and parallel loops. Dynamic parallelism is usually expressed
through some kind of fork and join operations.

-28- CSE@QUTA



Part || CSE 5351

There have been different versions of fork/join. Example:

Process A: Process B: Process C:
begin begin begin
Z=1; fork(C): Y = boo(Z):
fork(B). X =foo(Z); end
T = foo(3): join(C):
end output(X+Y);

end

Join statement is used to make the parent wait for the child.

Fork and join are very flexible constructs.

-29- CSE@QUTA



Part || CSE 5351

Degree of parallelism (DOP) of a parallel program is usually defined
as the number of component processes that can be executed
simultaneously.

Granularity Is defined to be the computation workload executed
between two parallelism or interaction operations.

The unit of granularity is number of instructions, number of floating-
point operations, or seconds.

A rough classification is to consider grain size to be fine (small) for
less than 200, medium for 20 to 2000, and large (coarse) for thousands
Or more computation operations.

operation-level (or instruction-level) parallelism when the component
processes In a parallel program are as small as just one or a few
computation operations or instructions.

The term block-level refers to the case when the size of individual
processes Is a block of assignment statements.

-30- CSE@QUTA



Part || CSE 5351

A special case of block-level parallelism is loop-level, where a
loop creates a number of processes, each executing an iteration
consisting of a number of assignment statements.

When the component processes each consist of a procedure
call, we have procedure-level parallelism, sometimes also called
task-level parallelism.

The degree of parallelism and the grain size are often reciprocal

The degree of parallelism and the overhead of communication
and synchronization usually have a proportional relationship.

With explicit allocation, the user needs to explicitly specify how
to allocate data and workload.

With implicit allocation, this task is done by the compiler and the
runtime system. Various combinations are possible.

In distributed memory systems, a popular method is the owner-
compute rule: how to allocate data so that most of time, data
needed by a process are nearby.

-31- CSE@QUTA



Part || CSE 5351

Communication through shared variable:

In a shared-memory program, one process can compute a value of
a shared variable ‘and store it in the shared memory. Later on
another process can get this value by referencing the variable.

Communication through parameter passing:

Data values can be passed as parameters between the child
process and the parent.

Communicate through message passing:

In a multicomputer model, processes exchnage data through send
and receive.

-32- CSE@QUTA



Part || CSE 5351

_assing /[Communication Issues

An interaction or communication iIs an activity or operation that
processes perform to affect the behavior of one another.

Three most frequently used types of interactions:
- synchronization

- Point to point communication
- Aggregation (collective)

Synchronization

A synchronization operation causes processes to wait for one
another, or allows processes that are waiting to resume execution.

-33- CSE@QUTA



Part || CSE 5351

An aggregation operation is a set of steps used to merge partial results
computed by the component processes of a parallel program to generate a
complete result.

Consider the inner product of two vectors A and B.

parfor (i=0; 1 <n; i++)
X[i]=Al] * B[IJ;

X[i] = X[i] + X[i-1];
barrier();
inner_product = aggregate_sum(X[i]);

This summation operation is called a reduction

-34- CSE@QUTA



Part || CSE 5351

_ubling reduction operation

Sulqpose there are n processes PEQ), P(1),..., P(n-1). An array element a[i]
|

Is initially distributed to process P(i).
Sum = a[i]; /[ Each process has a local variable Sum
for (J=1; j<n; j=J*2) { // there are log(n) supersteps
If (1% j==0){

get Sum of process P(i+]) into a local variable tmp;
Sum = Sum + tmp;

}
}

e L:E‘// Vo Vo

+f +\+

-35- CSE@QUTA



CSE 5351

sage-Passing Modes

A two-party communication is called a point-to-point communication,
when one process sends a message to another process. A multiparty
communication is often called a collective communication. Either type of
communication can be:

~Synchronous: All participants must arrive before the interaction begins. A
simple way to tell if an interaction is synchronous is the two-barrier test:

Blocking: A participant can enter an interaction as soon as it arrives,
regardless of where the other parties are. It can exit the interaction when it has
finished its CPortlo_n of the interaction. Other parties may have not finished (or
even entered) the interaction code.

Nonblocking: A participant can enter an interaction as soon as it arrives. It
can exit the interaction before it has finished its portion of the interaction. An
example is a nonblocking send, whose completion implies only that the process
has requested to send. The message is not necessarily sent out.

-36- CSE@QUTA



Part || CSE 5351

IR Communication patterns

The pattern of an interaction refers to which participants affect which
other participants.

The pattern is static if can be determined at compile time. Otherwise it is
a dynamic.

In an n-party interaction, if the pattern can be specified as a simple
function of the process index, we say the interaction has a regular pattern.

- One-to-One

- One-to-Many

- Many-to-One

- Many-to-Many

A class of irregular communications is the h-relation.

-37- CSE@QUTA



Part 11

CSE 5351

Fl1
— P2
P3

{(a) Point-to-point : F1 sends 1 to F3

Pl
— = P2
P3

Pl
|
P3

{c) Scatter: P1 sewuls one
value to each node

Pl
|
P3

Fl1
— p2
P3

{e) Total exchange: each node

sends a distinct message
to every node

{g) Feduction: P1 gets the sun
1+3+5=9

Pl
|
P3

{d) Gather: Pl gets one value

Pl
—== p2

P3

{b) Broadcast : P1 sends 1 to all

Pl
—= P2
P3

from each node

(f) Shift: each node sends one
value to the next alul receives
one from the previous

Pl :
— P2
P3

(h) Scan: Pl gets 1, P2 gets 1 + 3 =4,

and P53 gets 1 +3+5=9

Point-to-point and collective communication operations

-38-

CSE@QUTA




Part 11

CSE 5351

Health and medical Applications on supercomputing

Google
Google scholar
Citeceer
UTA Library
. |EEE Xplore Database
.. Elsevier database, Science Direct
s ACM database
.. Springer

-30-

CSE@QUTA




Part 11

CSE 5351

10.

11.

12.

13.

14.

Searching for papers

Medical imaging
Telemedicine

Tele surgery

DNA sequencing

Genome Assembly

Drug Discovery

Genetics

Brain Simulation
Computational Biology
Medical Diagnosis

Data mining for healthcare
Human body Simulation
Models of human physiology
Heart, lung and other organ Modelling

-40-

CSE@QUTA




