
Example of a Parallel Algorithm

Sieve of Eratosthenes

CSE 5351Part II

CSE@UTA-1-

CSE 5351Part II

CSE@UTA-2-

CSE 5351Part II

CSE@UTA-3-

CSE 5351Part II

CSE@UTA-4-

CSE 5351Part II

CSE@UTA-5-

CSE 5351Part II

CSE@UTA-6-

CSE 5351Part II

CSE@UTA-7-

SPMD

Advantages

 Different instructions can be implemented at the same cycle and it has a
coarse grain.

 Looser synchronization requirement than SIMD.

Disadvantages

 Every processor is required to execute the same program, which is not
flexible and the degree of parallelism is reduced.

CSE 5351Part II

CSE@UTA-8-

MPMD

Advantages

 Different processors can execute different programs, thus increasing
the degree of parallelism.

 More general than SPMD.

 Can support coarse grain.

Disadvantages

 It is more difficult to balance the load on each processor to minimize
idle processor time.

CSE 5351Part II

CSE@UTA-9-

Parallel Programming Overview

 Parallel software development has lagged far behind the advances of
parallel hardware.

 The lack of adequate parallel software is the main hurdle to the accep-
tance of parallel computing by the mainstream user community.

 Compared to their sequential counterparts, today’s parallel system
software and application software are few in quantity and primitive in
functionality.

CSE 5351Part II

CSE@UTA-10-

Why Is Parallel Programming Difficult?

 Parallel programming is a more complex intellectual process than
sequential programming.

 It involves all issues in sequential programming, plus many more issues
that are intellectually more challenging.

 There are many different parallel programming models.

 Software environment tools such as compiler, debugger, and profiler are
much more advanced for sequential programs development.

 More people have been practicing sequential programming than parallel
programming.

CSE 5351Part II

CSE@UTA-11-

Advances in Parallel Programming

Despite the above pessimistic review, there has been much progress in the
parallel programming field. Many parallel algorithms have been developed.

 The native models are converging toward two models:

- the single-address space, shared-variable model for PVPs, SMPs, and DSMs,

- and the multiple-address space, message-passing model for MPPs and clusters.

 The SIMD model is useful for special purpose, embedded applications such
as signal, image, and multimedia processing.

 A high-performance parallel computer should be viewed as a huge entity
with single system image.

CSE 5351Part II

CSE@UTA-12-

Parallel Programming Environments

From a user’s viewpoint, a typical parallel processing system has a
structure.

(Sequential or Parallel) Application Algorithm

User (Programmer)

(Sequential or Parallel) Source Program

Compiler (Including Preprocessor,

Assembler, and Linker)

Native Parallel Code

Run-Time Support

and Other Libraries

Parallel Platform (OS and Hardware)

Parallel

Parallel Language
and Other Tools

Programming

CSE 5351Part II

CSE@UTA-13-

Environment Tools

Environment tools are the set of tools normally not associated with an operating
system or a programming language. Environment tools include the following types:

 Job management tools are used to schedule system resources and manage user
jobs.

 Debugging tools are used to detect and locate semantic errors in parallel and
sequential applications.

 Performance tools are used to monitor user applications to identify performance
bottlenecks, which is also known as performance debugging.

CSE 5351Part II

CSE@UTA-14-

Parallel Programming Approaches

There are three means of extension: library subroutines, new language
constructs, and compiler directives.

 Library Subroutines: They provide functions to support parallelism and
interaction operations. Examples of such libraries include the MPI message
passing library and the MPICH, OpenMP, POSIX, Pthreads multithreading
library.

 New Constructs: The programming language is extended with some new
constructs to support parallelism and interaction. An example is the aggregated
array operations in Fortran 90.

 Compiler Directives: The programming language stays the same, but formatted
comments, called compiler directives (or pragmas), are added.

CSE 5351Part II

CSE@UTA-15-

Example

All three parallel programs perform the same computation as the
sequential C code.

for (i = 0 ; i < N ; i ++) A[i] = b[i] * b[i+1] ;
for (i = 0 ; i < N ; i ++) c[i] = A[i] + A[i+1] ;

(a) A sequential code fragment

id = my_process_id () ;
p = number_of_processes () ;

for (i = id ; i < N ; i = i+p) A[i] = b[i] * b[i+1] ;

barrier () ;

for (i = id ; i < N ; i = i+p) c[i] = A[i] + A[i+1] ;

(b) Equivalent parallel code using library routines

CSE 5351Part II

CSE@UTA-16-

A(0:N-1) = b(0:N-1) * b(1:N)

c(0:N-1) = A(0:N-1) + A(1:N)

(c) Equivalent code in Fortran 90 using array
operations

#pragma parallel

#pragma shared (A, b, c)

#pragma local (i)

{

#pragama pfor iterate (i=0; N ; 1)

for (i = 0 ; i < N ; i ++) A[i] = b[i] * b[i+1] ;

#pragma synchronize

#pragma pfor iterate (i=0; N ; 1)

for (i = 0 ; i < N ; i ++) c[i] = A[i] + A[i+1] ;

}

(d) Equivalent code using pragmas in SGI
Power C

CSE 5351Part II

CSE@UTA-17-

Comparison

Three Approaches to Implementing Parallel Programming System

The approaches and the programming models can all be combined
in various ways on any parallel platform.

Approach Example Advantages Disadvantages

Message-Passing

Library

Express, PVM, MPI Easy to implement,

need not a new

compiler

Overhead,

partitioning required

Language

constructs

Fortran90, Cray

Craft

Allow compiler

check, analysis and

optimization

Hard to implement,

complex compiler

Compiler Directives HPF, OpenMP,

pThread

between a library and language constructs

CSE 5351Part II

CSE@UTA-18-

Processes, Tasks, and Threads

On a parallel computer, a user application is executed as processes, tasks,
or threads.

Definitions of an Abstract Process

A process P is a 4-tuple P = (P, C, D, S), where P is the program (or the
code), C the control state, D the data state, and S the status of the process P.

Program (Code)

Any process is associated with a program. As a concrete example,
consider the following C code:

main() {

int i = 0;

fork(); fork();

printf("Hello!\n");

}

CSE 5351Part II

CSE@UTA-19-

Control and Data States

A program uses two sets of variables: Data variables and Control variables.
The union of these two sets forms the set of program variables.

Control variables are program counters.

For a process with a single thread of control, there is just one control
variable: the program counter.

In multiple threads of control, each control variables may hold the program
counter value of that thread.

Process Status

A process has a certain status at any time.

CSE 5351Part II

CSE@UTA-20-

The process state transition diagram

Another frequently used operation is process switching, which refers to
transferring a running process to either a suspended or ready status and
scheduling the next ready process to run.

CSE 5351Part II

CSE@UTA-21-

Execution Mode

An operating system includes the following components:

- kernel

- Shell

- Utilities

A computer provides two execution modes to execute programs.

- kernel mode, also known as the supervisor mode, the system mode, or the
privileged mode.

- Other programs are executed as a process in the user mode. Such a process is
- called a user process.

The execution mode can be switched back and forth between user and kernel
modes.

Process Context

The context of a process is that part of the program state that is stored in the
processor registers.

A context switch is the action to save the current process context and to load
a new context.

CSE 5351Part II

CSE@UTA-22-

Parallel programming is more complex than sequential programming. Many
additional issues arise.

Homogeneity in Processes

This refers to the similarity of component processes in a parallel program.
There are three basic possibilities:

SPMD: The component processes in a single-program-multiple-data program are
homogeneous, in that the same code is executed by multiple processes on
different data domains.

MPMD: The component processes in a multiple-program-multiple-data program
are heterogeneous, in that multiple processes may execute different codes.

SIMD: Multiple processes execute the same code and must all execute the same
instruction at the same time. In other words, SIMD programs is a special case of
SPMD programs.

Parallelism Issues

CSE 5351Part II

CSE@UTA-23-

A data-parallel program refers to an SPMD program in general and a
program that uses only the data-parallel constructs (such as those in
Fortran 90) in particular.

A functional-parallel (also known as task-parallel or control-parallel)
program is usually a synonym for an MPMD program.

Parallel Block

A natural way to express MPMD programs is to use the parbegin and
parend constructs.

parbegin S1 S2 ... Sn parend

is called a parallel block, where S1 S2 ... Sn are its component processes,

which could contain different codes.

CSE 5351Part II

CSE@UTA-24-

Parallel Loop

When all processes in a parallel block share the same code, we can
denote the parallel block with a shorthand notation called a parallel loop as
follows:

parbegin Process(1) . . . Process(n) parend

can be simplified to the following parallel loop :

parfor (i=1; i<=n; i++) { Process(i) }

CSE 5351Part II

CSE@UTA-25-

Heterogeneous Processes

When the number of different codes is small, one can fake MPMD by
using an SPMD program. For instance, the MPMD code parbegin A; B; C;
parend can be expressed as an SPMD parallel loop

parfor (i=0; i<3; i++) {

if (i==0) A;

if (i==1) B;

if (i==2) C;

}

Multi-Code versus Single-Code

MPPs and COWs use MPMD using the multi-code approach.

run A on node 0

run B on node 1

run C on node 2

CSE 5351Part II

CSE@UTA-26-

An SPMD program can be specified using the single-code approach. For
instance, to specify the parallel loop

parfor (i = 0; i < N; i++) { foo(i) }

the user needs to write only one program such as the following:

pid = my_process_id();

numproc = number_of_processes() ;

for (i = pid; i < N; i = i + numproc) foo(i) ;

CSE 5351Part II

CSE@UTA-27-

Data-Parallel Constructs

In data-parallel languages, SPMD parallelism can be specified using
data parallel constructs. For instance, to specify the parallel loop:

parfor (i = 1; i <= N; i++) {C[i]=A[i]+B[i];}

the user can use an array assignment: C = A + B or the following loop:

forall (i = 1, N) C[i]=A[i]+B[i].

CSE 5351Part II

CSE@UTA-28-

Static versus Dynamic Parallelism

A program exhibits static parallelism if its structure and the number of
component processes can be determined before run time (e.g., at compile
time, link time, or load time).

parbegin P, Q, R parend is static if P, Q, R are.

Dynamic parallelism implies that processes can be created and
terminated at run time.

while (C>0) begin fork(foo(C)); C=boo(C); end

Static parallelism can be expressed by the constructs such as parallel
blocks and parallel loops. Dynamic parallelism is usually expressed

through some kind of fork and join operations.

CSE 5351Part II

CSE@UTA-29-

Fork/Join

There have been different versions of fork/join. Example:

Join statement is used to make the parent wait for the child.

Fork and join are very flexible constructs.

CSE 5351Part II

CSE@UTA-30-

Parallelism

Degree of parallelism (DOP) of a parallel program is usually defined
as the number of component processes that can be executed
simultaneously.

Granularity is defined to be the computation workload executed
between two parallelism or interaction operations.

The unit of granularity is number of instructions, number of floating-
point operations, or seconds.

A rough classification is to consider grain size to be fine (small) for
less than 200, medium for 20 to 2000, and large (coarse) for thousands
or more computation operations.

operation-level (or instruction-level) parallelism when the component
processes in a parallel program are as small as just one or a few
computation operations or instructions.

The term block-level refers to the case when the size of individual
processes is a block of assignment statements.

CSE 5351Part II

CSE@UTA-31-

A special case of block-level parallelism is loop-level, where a
loop creates a number of processes, each executing an iteration
consisting of a number of assignment statements.

When the component processes each consist of a procedure
call, we have procedure-level parallelism, sometimes also called
task-level parallelism.

The degree of parallelism and the grain size are often reciprocal

The degree of parallelism and the overhead of communication
and synchronization usually have a proportional relationship.

With explicit allocation, the user needs to explicitly specify how
to allocate data and workload.

With implicit allocation, this task is done by the compiler and the
runtime system. Various combinations are possible.

In distributed memory systems, a popular method is the owner-
compute rule: how to allocate data so that most of time, data
needed by a process are nearby.

CSE 5351Part II

CSE@UTA-32-

Point to Point Communication

Communication through shared variable:

In a shared-memory program, one process can compute a value of
a shared variable and store it in the shared memory. Later on
another process can get this value by referencing the variable.

Communication through parameter passing:

Data values can be passed as parameters between the child
process and the parent.

Communicate through message passing:

In a multicomputer model, processes exchnage data through send
and receive.

CSE 5351Part II

CSE@UTA-33-

Message Passing /Communication Issues

An interaction or communication is an activity or operation that
processes perform to affect the behavior of one another.

Three most frequently used types of interactions:
- synchronization

- Point to point communication

- Aggregation (collective)

Synchronization

A synchronization operation causes processes to wait for one
another, or allows processes that are waiting to resume execution.

CSE 5351Part II

CSE@UTA-34-

Aggregation

An aggregation operation is a set of steps used to merge partial results
computed by the component processes of a parallel program to generate a
complete result.

Consider the inner product of two vectors A and B.

parfor (i=0; i <n; i++)

X[i]= A[i] * B[i];

X[i] = X[i] + X[i-1];

barrier();

inner_product = aggregate_sum(X[i]);

This summation operation is called a reduction

CSE 5351Part II

CSE@UTA-35-

A recursive doubling reduction operation

Suppose there are n processes P(0), P(1),..., P(n–1). An array element a[i]
is initially distributed to process P(i).

Sum = a[i]; // Each process has a local variable Sum

for (j=1; j<n; j=j*2) { // there are log(n) supersteps

if (i % j == 0) {

get Sum of process P(i+j) into a local variable tmp;

Sum = Sum + tmp;

}

}

CSE 5351Part II

CSE@UTA-36-

Message-Passing Modes

A two-party communication is called a point-to-point communication,
when one process sends a message to another process. A multiparty
communication is often called a collective communication. Either type of
communication can be:

Synchronous: All participants must arrive before the interaction begins. A
simple way to tell if an interaction is synchronous is the two-barrier test:

Blocking: A participant can enter an interaction as soon as it arrives,
regardless of where the other parties are. It can exit the interaction when it has
finished its portion of the interaction. Other parties may have not finished (or
even entered) the interaction code.

Nonblocking: A participant can enter an interaction as soon as it arrives. It
can exit the interaction before it has finished its portion of the interaction. An
example is a nonblocking send, whose completion implies only that the process
has requested to send. The message is not necessarily sent out.

CSE 5351Part II

CSE@UTA-37-

Communication Patterns

The pattern of an interaction refers to which participants affect which
other participants.

The pattern is static if can be determined at compile time. Otherwise it is
a dynamic.

In an n-party interaction, if the pattern can be specified as a simple
function of the process index, we say the interaction has a regular pattern.

- One-to-One

- One-to-Many

- Many-to-One

- Many-to-Many

A class of irregular communications is the h-relation.

CSE 5351Part II

CSE@UTA-38-

Point-to-point and collective communication operations

CSE 5351Part II

CSE@UTA-39-

Health and medical Applications on supercomputing

1. Google

2. Google scholar

3. Citeceer

4. UTA Library

1. IEEE Xplore Database

2. Elsevier database, Science Direct

3. ACM database

4. Springer

CSE 5351Part II

CSE@UTA-40-

Searching for papers

1. Medical imaging

2. Telemedicine

3. Tele surgery

4. DNA sequencing

5. Genome Assembly

6. Drug Discovery

7. Genetics

8. Brain Simulation

9. Computational Biology

10. Medical Diagnosis

11. Data mining for healthcare

12. Human body Simulation

13. Models of human physiology

14. Heart, lung and other organ Modelling

