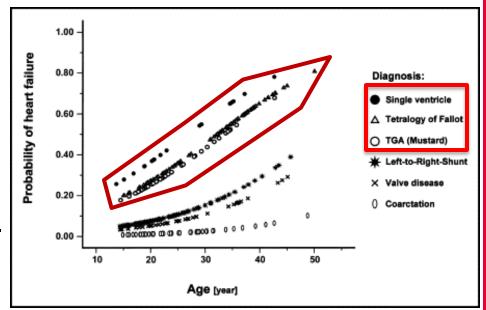
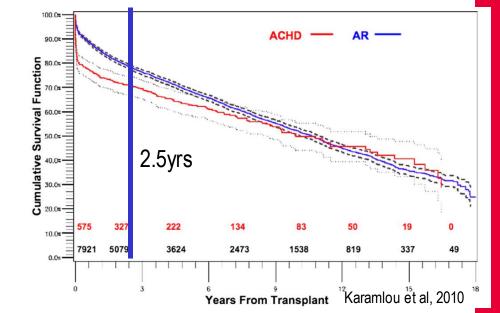


Disclosures

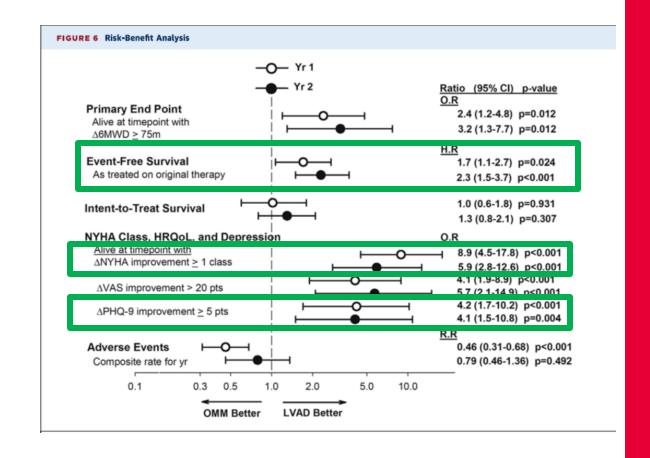
- No financial disclosures
- May discuss off-label or investigational devices

Objectives


- Identify the ACHD populations that may benefit from mechanical device support
- Describe current MCS guidelines and application to ACHD patients
- Describe new mechanical circulatory support on the horizon


ACHD Patients May be Underserved by Devices

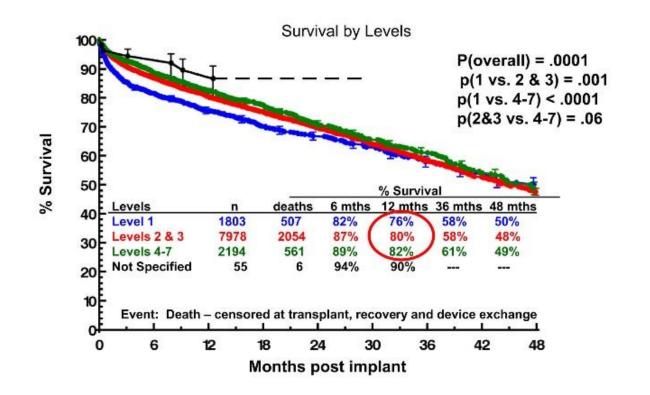
- ACHD comprises 3% of the HF population Burchill, 2016
 - 20% of ACHD may have HF requiring Tx Karamlou et al., 2010.
- 6.8% of heart Tx performed for ACHD Karamlou et al., 2010
 - 41% increase since 1998
 - Long-term tx outcomes are similar to non-ACHD
- ACHD patients wait longer for Tx and have higher waitlist mortality Ross et al., 2016
 - 152 days vs 119 days Davies et al, 2011
 - PRAs, Status 2, etc.
- Few ACHD patients on devices compared to others Everitt et al., 2011
 - 44% ICD vs 75%
 - 9% MCS vs 19%
- Indicates potentially underserved device population



Norozi et al., 2006

What can we learn from non-ACHD MCS?

- LVADs are beginning to overtake
 Optimal Medical Management
 - Better Event-free survival
 - Better improvement in QOL
 - Better improvement in NYHC



What can we learn from non-ACHD MCS?

Early LVADs tend to do better than late LVADs

- 1—Critical cardiogenic shock
- 2—Progressive decline
- 3—Stable but inotrope-dependent
- 4—Resting symptoms
- 5—Exertion-intolerant
- 6—Exertion-limited
- 7—Advanced NYHA Class III

Intermocs CF-LVAD/BiVAD Implants: January 2008 – December 2014, n=12030

How to ACHD MCS Patients Differ from non-ACHD MCS Patients?

- Similar INTERMACS profiles
- Tend to be younger: 42 vs 57 years of age
- Very different MCS strategies
 - BTT instead of DT intention
 - TAH and biVAD usage was more than double in ACHD patients
- Higher rates of certain adverse events (~1.5-4xs)
 - Early and late renal dysfunction
 - Early and late hepatic dysfunction
 - Early and late respiratory failure
 - Late infection
 - Very likely related to the incoming state of the patient

Device Strategy (Pre-implant)	Primary Diagnosis				
	Congenital Heart Disease		Not Congenital Heart Disease		
	N	(%)	N	(%)	
BTT Listed	39	(51%)	3786	(29%)	
BTT Likely	17	(22)	2819	(21%)	
BTT Moderate	6	(8%)	1271	(10%)	
BTT Unlikely	3	(4%)	411	(3%)	
Destination Therapy	10	(13%)	4737	(36%)	
BTR	1	(1%)	100	(1%)	
Rescue Therapy	0	(0%)	76	(1%)	
Other	0	(0%)	12	(0.1%)	
Totals	76	(100%)	13,212	(100%)	

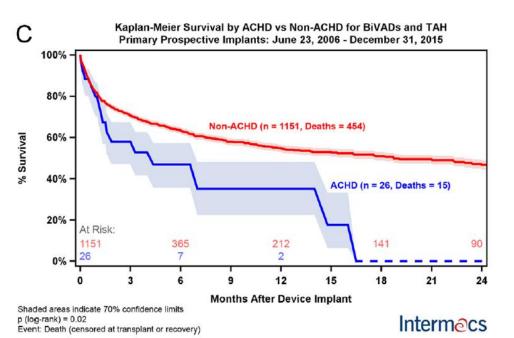
Device Type	Primary Diagnosis				
	Congenital Heart Disease	Not Congenital Heart Disease			
	N (%)	N (%)			
LVAD	59 (78%)	12231 (93%)			
BiVAD	9 (12%)	688 (5%)			
TAH	8 (10%)	293 (2%)			
Totals	76 (100%)	13212 (100%)			

How have ACHD MCS Tx patients fared?

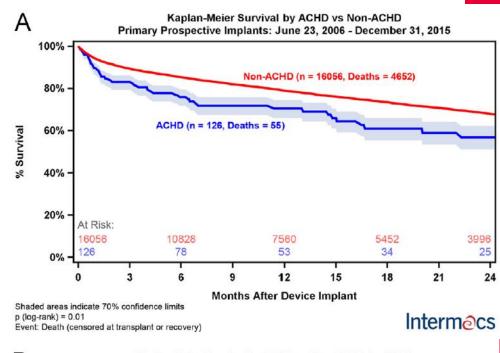
Table 2: Outcomes in the MCS and non-MCS groups

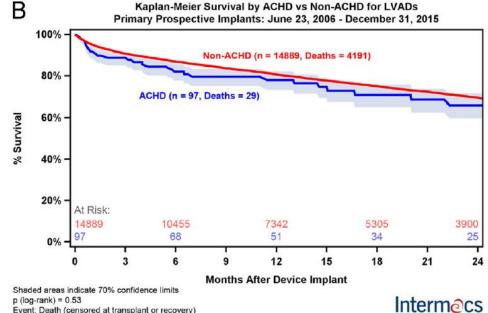
	Non-MCS, <i>n</i> = 1130	MCS, $n = 83$	OR	95% CI	P-value
Graft ischaemic time (min)	205.4 ± 70.5	221.3 ± 75.9			0.06
Cardiac reoperation	161 (14.3)	14 (16.9)	1.22	(0.67, 2.22)	0.51
Non-cardiac operation ^a	178 (15.8)	19 (22.9)	1.58	(0.93, 2.72)	0.09
Transfused	149 (16.2)	50 (60.2)	9.98	(6.22, 15.99)	< 0.001
Chest tube > 2 weeks	54 (4.78)	7 (8.4)	1.83	(0.81, 4.17)	0.14
Post-transplant dialysis	174 (15.4)	17 (20.5)	1.41	(0.81, 2.47)	0.22
Pacemaker	23 (2.0)	4 (4.8)	2.43	(0.82, 7.22)	0.10
Stroke	26 (2.3)	1 (1.2)	0.52	(0.07, 3.86)	0.51
Post-transplant LOS	22.6 ± 30.6	30.6 ± 44.6			0.031
Mortality within 30 days	152 (13.5)	9 (10.8)	0.78	(0.38, 1.60)	0.62

Values are listed as number (percentage) or mean \pm SD, as appropriate. LOS = length of stay. ^aNon-cardiac operation in the same transplant admission.

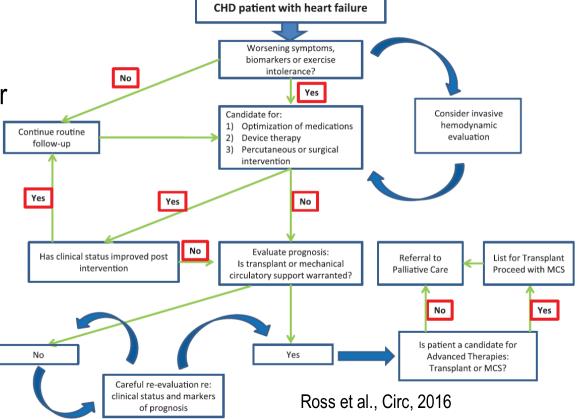

Maxwell et al., Eur J Cardiothorac Surg 2014

- 10x risk for bleeding
- Longer length of stay (~1 week)
- No difference in 30-day mortality

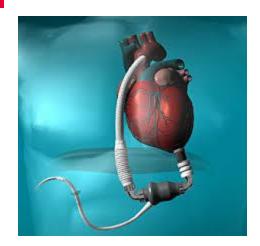

How have ACHD Patients Fared on MCS?


- Survival compared to non-ACHD patients has traditionally been lower overall
 - LVAD results are equal
 - BiVAD/TAH are the primary source of differences
 - Higher INTERMACS levels at implant
 - More renal and pulmonary dysfunction at implant
 - "Last Resort"?

VanderPluym et al., JHLT, 2017


Event: Death (censored at transplant or recovery)

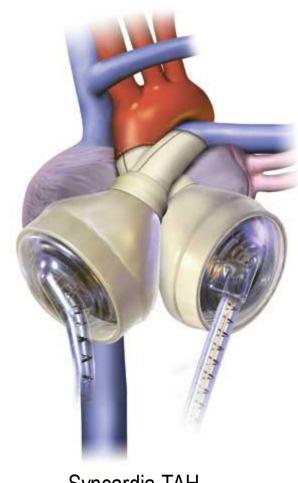
Current MCS Guidelines for Heart Failure* ISHLT, 2013


- All ACHD patients should have thorough imaging and documentation of vascular anatomy to guide decisionmaking
 - Class |
- Patients with complex heart disease, atypical situs, or residual intraventricular shunts who are not candidates for LV support should be considered for TAH
 - Class IIa
- Other issues more likely found in ACHD patients
 - Aortic Valve
 - Mild regurgitation should be fixed or replaced with bioprosthetic at implant (Class I)
 - Intracardiac shunts
 - ASD should be closed at time of implant (Class I)
 - LVAD w/ unrepairable VSD or free wall rupture is not recommended (Class III)
 - Fontan patients
 - Should have an US assessment of liver and aggressive therapy aimed at restoring function (Class I)
 - Confirmed cirrhosis or increased MELD scores are poor candidates (Class III, level B)

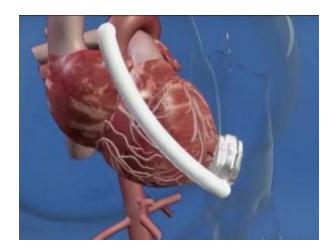
* All Level of Evidence C unless otherwise noted

Nemours. Cardiac Center

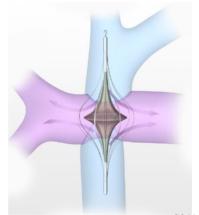
Current Devices



HeartMate II

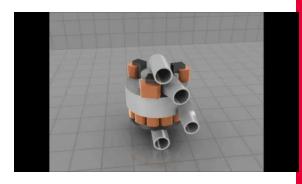


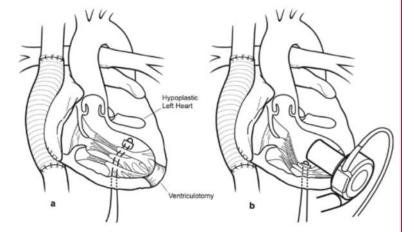
HeartMate III


Syncardia TAH

Heartware H-VAD

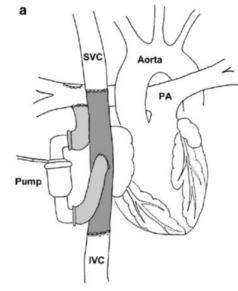
On the Horizon




VADovations REVOLUTION




Summary of Challenges and Prospects for ACHD MCS


- ACHD Patients, particularly Fontan patients may be underserved by MCS and benefit from some level of support in the early stages of HF
- Challenges
 - Physiologic burden leading to organ compromise
 - Liver cirrhosis and coagulopathy
 - Ascites, compromised nutrition and cachexia with consequent poor wound healing
 - Technical challenges of cannula positioning, reconfiguring anatomy
 - RV Trabeculations, TPCP geometry, creation of compliant atria
 - Partner with pediatric congenital surgeons
 - Postoperative bleeding is a significant but manageable risk
- Lessons from non-ACHD
 - VAD early
 - Better outcomes
 - Potentially reverse organ dysfunction?
 - Gain 30 days of status 1A
 - Utilize DT or BTD as an option
 - Continuous flow pumps fare better than those with valves

Woods et al., Ped Card Surg, 2017

Shimizu et al., J Physiol Sci, 2016

What can MCS Do for You?

WE Cardiac Output