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. . . the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

– T. S. Eliot, “Little Gidding” (Four Quartets)
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III.3.5 Bézout’s Theorem . . . . . . . . . . . . . . . . . . . 140

Multiplicity of Intersections . . . . . . . . . . . . . . 146
III.3.6 Hilbert Series . . . . . . . . . . . . . . . . . . . . . 149



Contents ix

IV Classical Constructions 151
IV.1 Flexes of Plane Curves . . . . . . . . . . . . . . . . . . . . 151

IV.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . 151
IV.1.2 Flexes on Singular Curves . . . . . . . . . . . . . . 155
IV.1.3 Curves with Multiple Components . . . . . . . . . . 156

IV.2 Blow-ups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
IV.2.1 Definitions and Constructions . . . . . . . . . . . . 162

An Example: Blowing up the Plane . . . . . . . . . 163
Definition of Blow-ups in General . . . . . . . . . . 164
The Blowup as Proj . . . . . . . . . . . . . . . . . . 170
Blow-ups along Regular Subschemes . . . . . . . . . 171

IV.2.2 Some Classic Blow-Ups . . . . . . . . . . . . . . . . 173
IV.2.3 Blow-ups along Nonreduced Schemes . . . . . . . . 179

Blowing Up a Double Point . . . . . . . . . . . . . . 179
Blowing Up Multiple Points . . . . . . . . . . . . . 181
The j-Function . . . . . . . . . . . . . . . . . . . . 183

IV.2.4 Blow-ups of Arithmetic Schemes . . . . . . . . . . . 184
IV.2.5 Project: Quadric and Cubic Surfaces as Blow-ups . 190

IV.3 Fano schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 192
IV.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . 192
IV.3.2 Lines on Quadrics . . . . . . . . . . . . . . . . . . . 194

Lines on a Smooth Quadric over an Algebraically
Closed Field . . . . . . . . . . . . . . . . . . . . . 194

Lines on a Quadric Cone . . . . . . . . . . . . . . . 196
A Quadric Degenerating to Two Planes . . . . . . . 198
More Examples . . . . . . . . . . . . . . . . . . . . 201

IV.3.3 Lines on Cubic Surfaces . . . . . . . . . . . . . . . . 201
IV.4 Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

V Local Constructions 209
V.1 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

V.1.1 The Image of a Morphism of Schemes . . . . . . . . 209
V.1.2 Universal Formulas . . . . . . . . . . . . . . . . . . 213
V.1.3 Fitting Ideals and Fitting Images . . . . . . . . . . 219

Fitting Ideals . . . . . . . . . . . . . . . . . . . . . . 219
Fitting Images . . . . . . . . . . . . . . . . . . . . . 221

V.2 Resultants . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
V.2.1 Definition of the Resultant . . . . . . . . . . . . . . 222
V.2.2 Sylvester’s Determinant . . . . . . . . . . . . . . . . 224

V.3 Singular Schemes and Discriminants . . . . . . . . . . . . . 230
V.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . 230
V.3.2 Discriminants . . . . . . . . . . . . . . . . . . . . . 232
V.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . 234



x Contents

V.4 Dual Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 240
V.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . 240
V.4.2 Duals of Singular Curves . . . . . . . . . . . . . . . 242
V.4.3 Curves with Multiple Components . . . . . . . . . . 242

V.5 Double Point Loci . . . . . . . . . . . . . . . . . . . . . . . 246

VI Schemes and Functors 251
VI.1 The Functor of Points . . . . . . . . . . . . . . . . . . . . . 252

VI.1.1 Open and Closed Subfunctors . . . . . . . . . . . . 254
VI.1.2 K-Rational Points . . . . . . . . . . . . . . . . . . . 256
VI.1.3 Tangent Spaces to a Functor . . . . . . . . . . . . . 256
VI.1.4 Group Schemes . . . . . . . . . . . . . . . . . . . . 258

VI.2 Characterization of a Space by its Functor of Points . . . . 259
VI.2.1 Characterization of Schemes among Functors . . . . 259
VI.2.2 Parameter Spaces . . . . . . . . . . . . . . . . . . . 262

The Hilbert Scheme . . . . . . . . . . . . . . . . . . 262
Examples of Hilbert Schemes . . . . . . . . . . . . . 264
Variations on the Hilbert Scheme Construction . . . 265

VI.2.3 Tangent Spaces to Schemes in Terms of Their Func-
tors of Points . . . . . . . . . . . . . . . . . . . . . . 267
Tangent Spaces to Hilbert Schemes . . . . . . . . . 267
Tangent Spaces to Fano Schemes . . . . . . . . . . . 271

VI.2.4 Moduli Spaces . . . . . . . . . . . . . . . . . . . . . 274

References 279

Index 285



Introduction

What schemes are

The theory of schemes is the foundation for algebraic geometry formu-
lated by Alexandre Grothendieck and his many coworkers. It is the basis
for a grand unification of number theory and algebraic geometry, dreamt
of by number theorists and geometers for over a century. It has strength-
ened classical algebraic geometry by allowing flexible geometric arguments
about infinitesimals and limits in a way that the classic theory could not
handle. In both these ways it has made possible astonishing solutions of
many concrete problems. On the number-theoretic side one may cite the
proof of the Weil conjectures, Grothendieck’s original goal (Deligne [1974])
and the proof of the Mordell Conjecture (Faltings [1984]). In classical alge-
braic geometry one has the development of the theory of moduli of curves,
including the resolution of the Brill–Noether–Petri problems, by Deligne,
Mumford, Griffiths, and their coworkers (see Harris and Morrison [1998]
for an account), leading to new insights even in such basic areas as the the-
ory of plane curves; the firm footing given to the classification of algebraic
surfaces in all characteristics (see Bombieri and Mumford [1976]); and the
development of higher-dimensional classification theory by Mori and his
coworkers (see Kollár [1987]).
No one can doubt the success and potency of the scheme-theoretic meth-

ods. Unfortunately, the average mathematician, and indeed many a be-
ginner in algebraic geometry, would consider our title, “The Geometry of
Schemes”, an oxymoron akin to “civil war”. The theory of schemes is widely
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regarded as a horribly abstract algebraic tool that hides the appeal of ge-
ometry to promote an overwhelming and often unnecessary generality.
By contrast, experts know that schemes make things simpler. The ideas

behind the theory—often not told to the beginner—are directly related
to those from the other great geometric theories, such as differential ge-
ometry, algebraic topology, and complex analysis. Understood from this
perspective, the basic definitions of scheme theory appear as natural and
necessary ways of dealing with a range of ordinary geometric phenomena,
and the constructions in the theory take on an intuitive geometric content
which makes them much easier to learn and work with.
It is the goal of this book to share this “secret” geometry of schemes.

Chapters I and II, with the beginning of Chapter III, form a rapid intro-
duction to basic definitions, with plenty of concrete instances worked out
to give readers experience and confidence with important families of ex-
amples. The reader who goes further in our book will be rewarded with
a variety of specific topics that show some of the power of the scheme-
theoretic approach in a geometric setting, such as blow-ups, flexes of plane
curves, dual curves, resultants, discriminants, universal hypersurfaces and
the Hilbert scheme.

What’s in this book?

Here is a more detailed look at the contents:
Chapter I lays out the basic definitions of schemes, sheaves, and mor-

phisms of schemes, explaining in each case why the definitions are made
the way they are. The chapter culminates with an explanation of fibered
products, a fundamental technical tool, and of the language of the “functor
of points” associated with a scheme, which in many cases enables one to
characterize a scheme by its geometric properties.
Chapter II explains, by example, what various kinds of schemes look like.

We focus on affine schemes because virtually all of the differences between
the theory of schemes and the theory of abstract varieties are encountered
in the affine case— the general theory is really just the direct product of the
theory of abstract varieties à la Serre and the theory of affine schemes. We
begin with the schemes that come from varieties over an algebraically closed
field (II.1). Then we drop various hypotheses in turn and look successively
at cases where the ground field is not algebraically closed (II.2), the scheme
is not reduced (II.3), and where the scheme is “arithmetic”—not defined
over a field at all (II.4).
In Chapter II we also introduce the notion of families of schemes. Families

of varieties, parametrized by other varieties, are central and characteristic
aspects of algebraic geometry. Indeed, one of the great triumphs of scheme
theory—and a reason for much of its success— is that it incorporates this
aspect of algebraic geometry so effectively. The central concepts of limits,
and flatness make their first appearance in section II.3 and are discussed
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in detail, with a number of examples. We see in particular how to take
flat limits of families of subschemes, and how nonreduced schemes occur
naturally as limits in flat families.
In all geometric theories the compact objects play a central role. In many

theories (such as differential geometry) the compact objects can be embed-
ded in affine space, but this is not so in algebraic geometry. This is the
reason for the importance of projective schemes, which are proper—this is
the property corresponding to compactness. Projective schemes form the
most important family of nonaffine schemes, indeed the most important
family of schemes altogether, and we devote Chapter III to them. After
a discussion of properness we give the construction of Proj and describe
in some detail the examples corresponding to projective space over the in-
tegers and to double lines in three-dimensional projective space (in affine
space all double lines are equivalent, as we show in Chapter II, but this is
not so in projective space). We also discuss the important geometric con-
structions of tangent spaces and tangent cones, the universal hypersurface
and intersection multiplicities.
We devote the remainder of Chapter III to some invariants of projec-

tive schemes. We define free resolutions, graded Betti numbers and Hilbert
functions, and we study a number of examples to see what these invariants
yield in simple cases. We also return to flatness and describe its relation to
the Hilbert polynomial.
In Chapters IV and V we exhibit a number of classical constructions

whose geometry is enriched and clarified by the theory of schemes. We be-
gin Chapter IV with a discussion of one of the most classical of subjects in
algebraic geometry, the flexes of a plane curve. We then turn to blow-ups, a
tool that recurs throughout algebraic geometry, from resolutions of singu-
larities to the classification theory of varieties. We see (among other things)
that this very geometric construction makes sense and is useful for such ap-
parently non-geometric objects as arithmetic schemes. Next, we study the
Fano schemes of projective varieties—that is, the schemes parametrizing
the lines and other linear spaces contained in projective varieties— focusing
in particular on the Fano schemes of lines on quadric and cubic surfaces.
Finally, we introduce the reader to the forms of an algebraic variety—
that is, varieties that become isomorphic to a given variety when the field
is extended.
In Chapter V we treat various constructions that are defined locally. For

example, Fitting ideals give one way to define the image of a morphism of
schemes. This kind of image is behind Sylvester’s classical construction of
resultants and discriminants, and we work out this connection explicitly.
As an application we discuss the set of all tangent lines to a plane curve
(suitably interpreted for singular curves) called the dual curve. Finally, we
discuss the double point locus of a morphism.
In Chapter VI we return to the functor of points of a scheme, and give

some of its varied applications: to group schemes, to tangent spaces, and
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to describing moduli schemes. We also give a taste of the way in which
geometric definitions such as that of tangent space or of openness can be
extended from schemes to certain functors. This extension represents the
beginning of the program of enlarging the category of schemes to a more
flexible one, which is akin to the idea of adding distributions to the ordinary
theory of functions.

Since we believe in learning by doing we have included a large num-
ber of exercises, spread through the text. Their level of difficulty and the
background they assume vary considerably.

Didn’t you guys already write a book on schemes?

This book represents a major revision and extension of our book Schemes:
The Language of Modern Algebraic Geometry, published by Wadsworth in
1992. About two-thirds of the material in this volume is new. The intro-
ductory sections have been improved and extended, but the main difference
is the addition of the material in Chapters IV and V, and related material
elsewhere in the book. These additions are intended to show schemes at
work in a number of topics in classical geometry. Thus for example we define
blowups and study the blowup of the plane at various nonreduced points;
and we define duals of plane curves, and study how the dual degenerates
as the curve does.

What to do with this book

Our goal in writing this manuscript has been simply to communicate to the
reader our sense of what schemes are and why they have become the fun-
damental objects in algebraic geometry. This has governed both our choice
of material and the way we have chosen to present it. For the first, we have
chosen topics that illustrate the geometry of schemes, rather than develop-
ing more refined tools for working with schemes, such as cohomology and
differentials. For the second, we have placed more emphasis on instructive
examples and applications, rather than trying to develop a comprehensive
logical framework for the subject.
Accordingly, this book can be used in several different ways. It could be

the basis of a second semester course in algebraic geometry, following a
course on classical algebraic geometry. Alternatively, after reading the first
two chapters and the first half of Chapter III of this book, the reader may
wish to pass to a more technical treatment of the subject; we would recom-
mend Hartshorne [1977] to our students. Thirdly, one could use this book
selectively to complement a course on algebraic geometry from a book such
as Hartshorne’s. Many topics are treated independently, as illustrations, so
that they can easily be disengaged from the rest of the text.
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We expect that the reader of this book will already have some famil-
iarity with algebraic varieties. Good sources for this include Harris [1995],
Hartshorne [1977, Chapter 1], Mumford [1976], Reid [1988], or Shafare-
vich [1974, Part 1], although all these sources contain more than is strictly
necessary.
Beginners do not stay beginners forever, and those who want to apply

schemes to their own areas will want to go on to a more technically oriented
treatise fairly soon. For this we recommend to our students Hartshorne’s
book Algebraic Geometry [1977]. Chapters 2 and 3 of that book contain
many fundamental topics not treated here but essential to the modern
uses of the theory. Another classic source, from which we both learned a
great deal, is David Mumford’s The Red Book of Varieties and Schemes
[1988]. The pioneering work of Grothendieck [Grothendieck 1960; 1961a;
1961b; 1963; 1964; 1965; 1966; 1967] and Dieudonné remains an important
reference.

Who helped fix it

We are grateful to many readers who pointed out errors in earlier versions
of this book. They include Leo Alonso, Joe Buhler, Herbert Clemens, Ves-
selin Gashorov, Andreas Gathmann, Tom Graber, Benedict Gross, Brendan
Hassett, Ana Jeremias, Alex Lee, Silvio Levy, Kurt Mederer, Mircea Mus-
tata, Arthur Ogus, Keith Pardue, Irena Peeva, Gregory Smith, Jason Starr,
and Ravi Vakil.
Silvio Levy helped us enormously with his patience and skill. He trans-

formed a crude document into the book you see before you, providing a
level of editing that could only come from a professional mathematician
devoted to publishing.

How we learned it

Our teacher for most of the matters presented here was David Mumford.
The expert will easily perceive his influence; and a few of his drawings, such
as that of the projective space over the integers, remain almost intact. It was
from a project originally with him that this book eventually emerged. We
are glad to express our gratitude and appreciation for what he taught us.

David Eisenbud
Joe Harris



I
Basic Definitions

Just as topological or differentiable manifolds are made by gluing together
open balls from Euclidean space, schemes are made by gluing together open
sets of a simple kind, called affine schemes. There is one major difference:
in a manifold one point looks locally just like another, and open balls are
the only open sets necessary for the construction; they are all the same
and very simple. By contrast, schemes admit much more local variation;
the smallest open sets in a scheme are so large that a lot of interesting and
nontrivial geometry happens within each one. Indeed, in many schemes
no two points have isomorphic open neighborhoods (other than the whole
scheme). We will thus spend a large portion of our time describing affine
schemes.
We will lay out basic definitions in this chapter. We have provided a series

of easy exercises embodying and applying the definitions. The examples
given here are mostly of the simplest possible kind and are not necessarily
typical of interesting geometric examples. The next chapter will be devoted
to examples of a more representative sort, intended to indicate the ways in
which the notion of a scheme differs from that of a variety and to give a
sense of the unifying power of the scheme-theoretic point of view.

I.1 Affine Schemes

An affine scheme is an object made from a commutative ring. The rela-
tionship is modeled on and generalizes the relationship between an affine
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variety and its coordinate ring. In fact, one can be led to the definition of
scheme in the following way. The basic correspondence of classical algebraic
geometry is the bijection

{affine varieties} ←→
{

finitely generated, nilpotent-free rings
over an algebraically closed field K

}

Here the left-hand side corresponds to the geometric objects we are
naively interested in studying: the zero loci of polynomials. If we start
by saying that these are the objects of interest, we arrive at the restricted
category of rings on the right. Scheme theory arises if we adopt the oppo-
site point of view: if we do not accept the restrictions “finitely generated,”
“nilpotent-free” or “K-algebra” and insist that the right-hand side include
all commutative rings, what sort of geometric object should we put on the
left? The answer is “affine schemes”; and in this section we will show how
to extend the preceding correspondence to a diagram

{affine varieties} ←→
{

finitely generated, nilpotent-free rings
over an algebraically closed field K

}
� �

{affine schemes} ←→ {commutative rings with identity}

We shall see that in fact the ring and the corresponding affine scheme
are equivalent objects. The scheme is, however, a more natural setting for
many geometric arguments; speaking in terms of schemes will also allow us
to globalize our constructions in succeeding sections.
Looking ahead, the case of differentiable manifolds provides a paradigm

for our approach to the definition of schemes. A differentiable manifold M
was originally defined to be something obtained by gluing together open
balls— that is, a topological space with an atlas of coordinate charts. How-
ever, specifying the manifold structure on M is equivalent to specifying
which of the continuous functions on any open subset of M are differen-
tiable. The property of differentiability is defined locally, so the differen-
tiable functions form a subsheaf C ∞(M) of the sheaf C (M) of continuous
functions on M (the definition of sheaves is given below). Thus we may
give an alternative definition of a differentiable manifold: it is a topological
space M together with a subsheaf C ∞(M) ⊂ C (M) such that the pair
(M, C∞(M)) is locally isomorphic to an open subset of Rn with its sheaf
of differentiable functions. Sheaves of functions can also be used to define
many other kinds of geometric structure— for example, real analytic man-
ifolds, complex analytic manifolds, and Nash manifolds may all be defined
in this way. We will adopt an analogous approach in defining schemes: a



I.1 Affine Schemes 9

scheme will be a topological space X with a sheaf O, locally isomorphic to
an affine scheme as defined below.
Let R be a commutative ring. The affine scheme defined from R will be

called SpecR, the spectrum of R. As indicated, it (like any scheme) consists
of a set of points, a topology on it called the Zariski topology, and a sheaf
OSpecR on this topological space, called the sheaf of regular functions, or
structure sheaf of the scheme. Where there is a possibility of confusion we
will use the notation |SpecR| to refer to the underlying set or topological
space, without the sheaf; though if it is clear from context what we mean
(“an open subset of SpecR,” for example), we may omit the vertical bars.
We will give the definition of the affine scheme SpecR in three stages,

specifying first the underlying set, then the topological structure, and fi-
nally the sheaf.

I.1.1 Schemes as Sets

We define a point of SpecR to be a prime—that is, a prime ideal—of
R. To avoid confusion, we will sometimes write [p] for the point of SpecR
corresponding to the prime p of R. We will adopt the usual convention that
R itself is not a prime ideal. Of course, the zero ideal (0) is a prime if R is
a domain.
If R is the coordinate ring of an ordinary affine variety V over an alge-

braically closed field, SpecR will have points corresponding to the points of
the affine variety—the maximal ideals of R—and also a point correspond-
ing to each irreducible subvariety of V. The new points, corresponding to
subvarieties of positive dimension, are at first rather unsettling but turn
out to be quite convenient. They play the role of the “generic points” of
classical algebraic geometry.

Exercise I-1. Find SpecR when R is (a) Z; (b) Z/(3); (c) Z/(6);
(d) Z(3); (e) C[x]; (f) C[x]/(x2).

Each element f ∈ R defines a “function”, which we also write as f , on the
space SpecR: if x = [p] ∈ SpecR, we denote by κ(x) or κ(p) the quotient
field of the integral domain R/p, called the residue field of X at x, and we
define f(x) ∈ κ(x) to be the image of f via the canonical maps

R→ R/p → κ(x).

Exercise I-2. What is the value of the “function” 15 at the point (7) ∈
SpecZ? At the point (5)?

Exercise I-3. (a) Consider the ring of polynomials C[x], and let p(x) be
a polynomial. Show that if α ∈ C is a number, then (x−α) is a prime
of C[x], and there is a natural identification of κ((x−α)) with C such
that the value of p(x) at the point (x − α) ∈ SpecC[x] is the number
p(α).
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(b) More generally, if R is the coordinate ring of an affine variety V over an
algebraically closed field K and p is the maximal ideal corresponding
to a point x ∈ V in the usual sense, then κ(x) = K and f(x) is the
value of f at x in the usual sense.

In general, the “function” f has values in fields that vary from point
to point. Moreover, f is not necessarily determined by the values of this
“function”. For example, if K is a field, the ring R = K[x]/(x2) has only
one prime ideal, which is (x); and thus the element x ∈ R, albeit nonzero,
induces a “function” whose value is 0 at every point of SpecR.
We define a regular function on SpecR to be simply an element of R.

So a regular function gives rise to a “function” on SpecR, but is not itself
determined by the values of this “function”.

I.1.2 Schemes as Topological Spaces

By using regular functions, we make SpecR into a topological space; the
topology is called the Zariski topology. The closed sets are defined as follows.
For each subset S ⊂ R, let

V (S) = {x ∈ SpecR | f(x) = 0 for all f ∈ S} = {[p] ∈ SpecR | p ⊃ S}.
The impulse behind this definition is to make each f ∈ R behave as

much like a continuous function as possible. Of course the fields κ(x) have
no topology, and since they vary with x the usual notion of continuity
makes no sense. But at least they all contain an element called zero, so
one can speak of the locus of points in SpecR on which f is zero; and if
f is to be like a continuous function, this locus should be closed. Since
intersections of closed sets must be closed, we are led immediately to the
definition above: V (S) is just the intersection of the loci where the elements
of S vanish.
For the family of sets V (S) to be the closed sets of a topology it is

necessary that it be closed under arbitrary intersections; from the descrip-
tion above it is clear that for any family of sets Sa we have

⋂
a V (Sa) =

V
(⋃
a Sa

)
, as required. It is worth noting also that, if I is the ideal gener-

ated by S, then V (I) = V (S).
An open set in the Zariski topology is simply the complement of one of

the sets V (S). The open sets corresponding to sets S with just one element
will play a special role, essentially because they are again spectra of rings;
for this reason they get a special name and notation. If f ∈ R, we define
the distinguished (or basic) open subset of X = SpecR associated with f
to be

Xf = |SpecR| \ V (f).

The points of Xf—that is, the prime ideals of R that do not contain f —
are in one-to-one correspondence with the prime ideals of the localization
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Rf of R obtained by adjoining an inverse to f , via the correspondence that
sends p ⊂ R to pRf ⊂ Rf . We may thus identify Xf with the points of
SpecRf , an indentification we will make implicitly throughout the remain-
der of this book.
The distinguished open sets form a base for the Zariski topology in the

sense that any open set is a union of distinguished ones:

U = SpecR \ V (S) = SpecR \
⋂
f∈S

V (f) =
⋃
f∈S

(SpecR)f .

Distinguished open sets are also closed under finite intersections; since a
prime ideal contains a product if and only if it contains one of the factors,
we have ⋂

i=1,...,n

(SpecR)fi = (SpecR)g,

where g is the product f1 · · · fn. In particular, any distinguished open set
that is a subset of the distinguished open set (SpecR)f has the form
(SpecR)fg for suitable g.
SpecR is almost never a Hausdorff space— the open sets are simply too

large. In fact, the only points of SpecR that are closed are those corre-
sponding to maximal ideals of R. In general, it is clear that the smallest
closed set containing a given point [p] must be V (p), so the closure of the
point [p] consists of all [q] such that q ⊃ p. The point [p] is closed if and only
if p is maximal. Thus in the case where R is the affine ring of an algebraic
variety V over an algebraically closed field, the points of V correspond pre-
cisely to the closed points of SpecR, and the closed points contained in
the closure of the point [p] are exactly the points of V in the subvariety
determined by p.

Exercise I-4. (a) The points of SpecC[x] are the primes (x−a), for every
a ∈ C, and the prime (0). Describe the topology. Which points are
closed? Are any of them open?

(b) Let K be a field and let R be the local ring K[x](x). Describe the
topological space SpecR. (The answer is given later in this section.)

To complete the definition of SpecR, we have to describe the structure
sheaf, or sheaf of regular functions on X. Before doing this, we will take
a moment out to give some of the basic definitions of sheaf theory and to
prove a proposition that will be essential later on (Proposition I-12).

I.1.3 An Interlude on Sheaf Theory

Let X be any topological space. A presheaf F on X assigns to each open
set U in X a set, denoted F (U), and to every pair of nested open sets
U ⊂ V ⊂ X a restriction map

resV,U : F (V )→ F (U)
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satisfying the basic properties that

resU,U = identity

and
resV,U ◦ resW,V = resW,U for all U ⊂ V ⊂W ⊂ X.

The elements of F (U) are called the sections of F over U ; elements of
F (X) are called global sections.
Another way to express this is to define a presheaf to be a contravariant

functor from the category of open sets in X (with a morphism U → V
for each containment U ⊆ V ) to the category of sets. Changing the target
category to abelian groups, say, we have the definition of a presheaf of
abelian groups, and the same goes for rings, algebras, and so on.
One of the most important constructions of this type is that of a presheaf

of modules F over a presheaf of rings O on a space X. Such a thing is a
pair consisting of

for each open set U of X, a ring O(U) and an O(U)-module F (U)

and

for each containment U ⊇ V, a ring homomorphism α : O(U)→
O(V ) and a map of sets F (U)→ F (V ) that is a map of O(U)-
modules if we regard F (V ) as an O(U)-module by means of α.

A presheaf (of sets, abelian groups, rings, modules, and so on) is called
a sheaf if it satisfies one further condition, called the sheaf axiom. This
condition is that, for each open covering U =

⋃
a∈A Ua of an open set

U ⊂ X and each collection of elements

fa ∈ F (Ua) for each a ∈ A

having the property that for all a, b ∈ A the restrictions of fa and fb to
Ua ∩ Ub are equal, there is a unique element f ∈ F (U) whose restriction
to Ua is fa for all a.
A trivial but occasionally confusing point deserves a remark. The empty

set ∅ is of course an open subset of SpecR, and can be written as the union
of an empty family (that is, the indexing set A in the preceding paragraph
is empty). Therefore the sheaf axiom imply that any sheaf has exactly one
section over the empty set. In particular, for a sheaf F of rings, F (∅) is
the zero ring (where 0 = 1). Note that the zero ring has no prime ideals at
all— it is the only ring with unit having this property, if one accepts the
axiom of choice— so that its spectrum is ∅.

Exercise I-5. (a) Let X be the two-element set {0, 1}, and make X into
a topological space by taking each of the four subsets to be open. A
sheaf on X is thus a collection of four sets with certain maps between
them; describe the relations among these objects. (X is actually SpecR
for some rings R; can you find one?)
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(b) Do the same in the case where the topology of X = {0, 1} has as
open sets only ∅, {0} and {0, 1}. Again, this space may be realized as
SpecR.

If F is a presheaf on X and U is an open subset of X, we may define a
presheaf F |U on U, called the restriction of F to U, by setting F |U (V ) =
F (V ) for any open subset V of U, the restriction maps being the same as
those of F as well. It is easy to see that, if F is actually a sheaf, so is F |U .
In the sequel we shall work exclusively with presheaves and sheaves of

things that are at least abelian groups, so we will usually omit the phrase
“of abelian groups”. Given two presheaves of abelian groups, one can define
their direct sum, tensor product, and so on, open set by open set; thus, for
example, if F and G are presheaves of abelian groups, we define F ⊕G by

(F ⊕ G )(U) := F (U)⊕ G (U) for any open set U.

This always produces a presheaf, and if F and G are sheaves then F ⊕ G
will be one as well. Tensor product is not as well behaved: even if F and
G are sheaves, the presheaf defined by

(F ⊗ G )(U) := F (U)⊗ G (U)

may not be, and we define the sheaf F ⊗ G to be the sheafification of this
presheaf, as described below.
The simplest sheaves on any topological space X are the sheaves of lo-

cally constant functions with values in a set K—that is, sheaves K where
K (U) is the set of locally constant functions from U to K; if K is a group,
we may make K into a sheaf of groups by pointwise addition. Similarly,
if K is a ring and we define multiplication in K (U) to be pointwise mul-
tiplication, then K becomes a sheaf of rings. When K has a topology, we
can define the sheaf of continuous functions with values in K as the sheaf
C, where C (U) is the set of continuous functions from U to K, again with
pointwise addition. If X is a differentiable manifold, there are also sheaves
of differentiable functions, vector fields, differential forms, and so on.
Generally, if π : Y → X is any map of topological spaces, we may define

the sheaf I of sections of π; that is, for every open set U of X we define
I (U) to be the set of continuous maps σ : U → π−1U such that π ◦σ = 1,
the identity on U (such a map being a section of π in the set-theoretical
sense: elements of F (U) for any sheaf F are called sections by extension
from this case).

Exercise I-6. (For readers familiar with vector bundles.) Let V be a vec-
tor bundle on a topological spaceX. Check that the sheaf of sections of V is
a sheaf of modules over the sheaf of continuous functions on X. (Sheaves of
modules in general may in this way be seen as generalized vector bundles.)

Another way to describe a sheaf is by its stalks. For any presheaf F and
any point x ∈ X, we define the stalk Fx of F at x to be the direct limit
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of the groups F (U) over all open neighborhoods U of x in X—that is, by
definition,

Fx = lim−→x∈U F (U)

=




the disjoint union of F (U) over all open sets U containing x,
modulo the equivalence relation σ ∼ τ if σ ∈ F (U), τ ∈ F (V ),
and there is an open neighborhood W of x contained in U ∩ V
such that the restrictions of σ and τ to W are equal:

resU,Wσ = resV,W τ .




For every x ∈ U there is a map F (U) → Fx, sending a section s to the
equivalence class of (U, s); this class is denoted sx. If F is a sheaf, a section
s ∈ F (U) of F over U is determined by its images in the stalks Fx for all
x ∈ U—equivalently, s = 0 if and only if sx = 0 for all x ∈ U. This follows
from the sheaf axiom: to say that sx = 0 for all x ∈ U is to say that for
each x there is a neighborhood Ux of x in U such that resU,Ux

(s) = 0, and
then it follows that s = 0 in F (U).
This notion of stalks has a familiar geometric content: it is an abstraction

of the notion of rings of germs. For example, if X is an analytic manifold
of dimension n and Oan

X is the sheaf of analytic functions on X, the stalk
of Oan

X at x is the ring of germs of analytic functions at x—that is, the
ring of convergent power series in n variables.

Exercise I-7. Find the stalks of the sheaves you produced for Exercises I-5
and I-6.

Exercise I-8. Topologize the disjoint union F =
⋃

Fx by taking as a
base for the open sets of F all sets of the form

V (U, s) := {(x, sx) : x ∈ U},
where U is an open set and s is a fixed section over U .

(a) Show that the natural map π : F → X is continuous, and that, for
U and s ∈ F (U), the map σ : x 
→ sx from U to F is a continuous
section of π over U (that is, it is continuous and π ◦ σ is the identity
on U).

(b) Conversely, show that any continuous map σ : U → F such that π ◦ σ
is the identity on U arises in this way.
Hint. Take x ∈ U and a basic open set V (V, t) containing σ(x), where
V ⊂ U . What relation does t have to σ?

This construction shows that the sheaf of germs of sections of π : F → X
is isomorphic to F , so any sheaf “is” the sheaf of germs of sections of a
suitable map. In early works sheaves were defined this way. The topological
space F is called the “espace étalé” of the sheaf, because its open sets are
“stretched out flat” over open sets of X .
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A morphism ϕ : F → G of sheaves on a space X is defined simply to
be a collection of maps ϕ(U) : F (U)→ G (U) such that for every inclusion
U ⊂ V the diagram

F (V )
ϕ(V )� G (V )

F (U)

resV,U �

ϕ(U)
� G (U)

resV,U�

commutes. (In categorical language, a morphism of sheaves is just a natural
transformation of the corresponding functors from the category of open sets
on X to the category of sets.)
A morphism ϕ : F → G induces as well a map of stalks ϕx : Fx → Gx

for each x ∈ X . By the sheaf axiom, the morphism is determined by the
induced maps of stalks: if ϕ and ψ are morphisms such that ϕx = ψx for
all x ∈ X, then ϕ = ψ.
We say that a map ϕ : F → G of sheaves is injective, surjective, or

bijective if each of the induced maps ϕx : Fx → Gx on stalks has the
corresponding property. The following exercises show how these notions
are related to their more naive counterparts defined in terms of sections on
arbitrary sets.

Exercise I-9. Show that, if ϕ : F → G is a morphism of sheaves, then
ϕ(U) is injective (respectively, bijective) for all open sets U ⊂ X if and
only if ϕx is injective (respectively, bijective) for all points x ∈ X.

Exercise I-10. Show that Exercise I-9 is false if the condition “injective”
is replaced by “surjective” by checking that in each of the following exam-
ples the maps induced by ϕ on stalks are surjective, but for some open set
U the map ϕ(U) : F (U)→ G (U) is not surjective.

(a) Let X be the topological space C \ {0}, let F = G be the sheaf of
nowhere-zero, continuous, complex-valued functions, and let ϕ be the
map sending a function f to f 2.

(b) Let X be the Riemann sphere CP1 = C∪{∞} and let G be the sheaf of
analytic functions. Let F1 be the sheaf of analytic functions vanishing
at 0; that is, F1(U) is the set of analytic functions on U that vanish
at 0 if 0 ∈ U, and the set of all analytic functions on U if 0 /∈ U.
Similarly, let F2 be the sheaf of analytic functions vanishing at∞. Let
F = F1 ⊕F2, and let ϕ : F → G be the addition map.

(c) Find an example of this phenomenon in which the set X consists of
three points.

These examples are the beginning of the cohomology theory of sheaves;
the reader will find more in this direction in the references on sheaves listed
on page 18.
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If F is a presheaf on X, we define the sheafification of F to be the
unique sheaf F ′ and morphism of presheaves ϕ : F → F ′ such that for
all x ∈ X the map ϕx : Fx → F ′

x is an isomorphism. More explicitly, the
sheaf F ′ may be defined by saying that a section of F ′ over an open set
U is a map σ that takes each point x ∈ U to an element in Fx in such a
way that σ is locally induced by sections of F ; by this we mean that there
exists an open cover of U by open sets Ui and elements si ∈ F (Ui) such
that σ(x) = (si)x for x ∈ Ui. The map F → F ′ is defined by associating
to s ∈ F (U) the function x 
→ sx ∈ Fx. The sheaf F ′ should be thought
of as the sheaf “best approximating” the presheaf F.

Exercise I-11. Here is an alternate construction for F ′: topologize the
disjoint union F =

⋃
Fx exactly as in Exercise I-8; then let F ′ be the

sheaf of sections of the natural map π : F → X . Convince yourself that
the two constructions are equivalent, and that the result does have the
universal property stated at the beginning of the preceding paragraph.

If ϕ : F → G is an injective map of sheaves, we will say that F is a
subsheaf of G. We often write F ⊂ G , omitting ϕ from the notation. If ϕ :
F → G is any map of sheaves, the presheaf Kerϕ defined by (Kerϕ)(U) =
Ker(ϕ(U)) is a subsheaf of F .
The notion of a quotient is more subtle. Suppose F and G are presheaves

of abelian groups, where F injects in G . The quotient of G by F as
presheaves is the presheaf H defined by H (U) = G (U)/F (U). But if
F and G are sheaves, H will generally not be a sheaf, and we must define
their quotient as sheaves to be the sheafification of H , that is, G /F := H ′.
The natural map from H to its sheafification H ′, together with the map
of presheaves G → H , defines the quotient map from G to G /F. This
map is the cokernel of ϕ.
The significance of the sheaf axiom is that sheaves are defined by local

properties. We give two aspects of this principle explicitly.
In our applications to schemes, we will encounter a situation where we

are given a base B for the open sets of a topological space X, and we
will want to specify a sheaf F just by saying what the groups F (U) and
homomorphisms resV,U are for open sets U of our base and inclusions U ⊂
V of basic sets. The next proposition is exactly the tool that says we can
do this.
We say that a collection of groups F (U) for open sets U ∈ B and maps

resV,U : F (V ) → F (U) for V ⊂ U form a B-sheaf if they satisfy the
sheaf axiom with respect to inclusions of basic open sets in basic open sets
and coverings of basic open sets by basic open sets. (The condition in the
definition that sections of Ua, Ub ∈ B agree on Ua ∩ Ub must be replaced
by the condition that they agree on any basic open set V ∈ B such that
V ⊂ Ua ∩ Ub.)
Proposition I-12. Let B be a base of open sets for X.
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(i) Every B-sheaf on X extends uniquely to a sheaf on X.

(ii) Given sheaves F and G on X and a collection of maps

ϕ̃(U) : F (U)→ G (U) for all U ∈ B

commuting with restrictions, there is a unique morphism ϕ : F → G
of sheaves such that ϕ(U) = ϕ̃(U) for all U ∈ B.

Beginning of the proof. For any open set U ⊂ X, define F (U) as the in-
verse limit of the sets F (V ), where V runs over basic open sets contained
in U :

F (U) = lim←−V⊂U, V ∈B
F (V )

=
{
the set of families (fV )V⊂U, V ∈B ∈∏

V⊂U, V ∈B F (V ) such
that resV,W (fV )=fW whenever W ⊂V ⊂U with V,W ∈B.

}
The restriction maps are defined immediately from the universal property
of the inverse limit.

Exercise I-13. Complete the proof of the proposition by checking the
sheaf axioms and showing that, for U ∈ B, the new definition of F agrees
with the old one.

The second application, which is really a special case of the first, says
that to define a sheaf it is enough to give it on each open set of an open
cover, as long as the definitions are compatible.

Corollary I-14. Let U be an open covering of a topological space X. If
FU is a sheaf on U for each U ∈ U , and if

ϕUV : FU |U∩V → FV |U∩V
are isomorphisms satisfying the compatibility conditions

ϕVWϕUV = ϕUW on U ∩ V ∩W,

for all U, V,W ∈ U , there is a unique sheaf F on X whose restriction
to each U ∈ U is isomorphic to FU via isomorphisms ΨU : F |U → FU
compatible with the isomorphisms ϕUV —in other words, such that

ϕUV ◦ΨU |U∩V = ΨV |U∩V : F |U∩V → FV |U∩V
for all U and V in U .

Proof. The open sets contained in some U ∈ U form a base B for the
topology of X. For each such set V we choose arbitrarily a set U that
contains it, and define F (V ) = FU (V ). If for someW ⊂ V the value F (W )
has been defined with reference to a different FU ′ , we use the isomorphism
ϕUU ′ to define the restriction maps. These maps compose correctly because
of the compatibility conditions on the isomorphisms ϕUU ′ . Thus we have a
B-sheaf, and therefore a sheaf.
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The pushforward operation on sheaves is so basic (and trivial) that we
introduce it here: If α : X → Y is a continuous map on topological spaces
and F is a presheaf on X, we define the pushforward α∗F of F by α to
be the presheaf on Y given by

α∗F (V ) := F (α−1(V )) for any open V ⊂ Y.

Of course, the pushforward of a sheaf of abelian groups (rings, modules
over a sheaf of rings, and so on) is again of the same type.

Exercise I-15. Show that the pushforward of a sheaf is again a sheaf.

References for the Theory of Sheaves. Serre’s landmark paper [1955],
which established sheaves as an important tool in algebraic geometry, is still
a wonderful source of information. Godement [1964] and Swan [1964] are
more systematic introductions. Hartshorne [1977, Chapter II] contains an
excellent account adapted to the technical requirements of scheme theory;
it is a simplified version of that found in Grothendieck [1961a; 1961b; 1963;
1964; 1965; 1966; 1967]. Some good references for the analytic case are
Forster [1981] (especially for an introduction to cohomology) and Gunning
[1990].

I.1.4 Schemes as Schemes (Structure Sheaves)

We return at last to the definition of the scheme X = SpecR. We will com-
plete the construction by specifying the structure sheaf OX = OSpecR. As
indicated above, we want the relationship between SpecR and R to gener-
alize that between an affine variety and its coordinate ring; in particular,
we want the ring of global sections of the structure sheaf OX to be R.
We thus wish to extend the ring R of functions on X to a whole sheaf

of rings. This means that for each open set U of X, we wish to give a ring
OX(U); and for every pair of open sets U ⊂ V we wish to give a restriction
homomorphism

resV,U : OX(V )→ OX(U)

satisfying the various axioms above. It is quite easy to say what the rings
OX(U) and the maps resV,U should be for distinguished open sets U and
V : we set

OX(Xf ) = Rf .

If Xf ⊃ Xg, some power of g is a multiple of f (recall that the radical
of (f) is the intersection of the primes containing f). Thus the restriction
map resXf ,Xg

can be defined as the localization map Rf → Rfg = Rg. By
Proposition I-12, this will suffice to define the structure sheaf O, as long
as we verify that it satisfies the sheaf axiom with respect to coverings of
distinguished opens by distinguished opens. Before doing this, in Proposi-
tion I-18 below, we exhibit a simple but fundamental lemma that describes
the coverings of affine schemes by distinguished open sets.
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Lemma I-16. Let X = SpecR, and let {fa} be a collection of elements of
R. The open sets Xfa cover X if and only if the elements fa generate the
unit ideal. In particular, X is quasicompact as a topological space.

Recall that quasicompact means that every open cover has a finite sub-
cover; the quasi is there because the space is not necessarily Hausdorff. In
fact, schemes are almost never Hausdorff! Unfortunately, this fact vitiates
most of the usual advantages of compactness. For example, in contrast to
the situation for compact manifolds, say, the continuous image of one affine
scheme in another need not be closed. For this reason, we will discuss in
Section III.1 a better “compactness” notion, called properness, which will
play just as important a role as compactness does in the usual geometric
theories.

Proof. The Xfa cover X if and only if no prime of R contains all the fa,
which happens if and only if the fa generate the unit ideal; this proves the
first statement. To prove the second, note first that every open cover has
a refinement of the form X =

⋃
Xfa , where each fa ∈ R. Since the Xfa

cover X , the fa generate the unit ideal, so the element 1 can be written
as a linear combination—necessarily finite—of the fa. Taking just the fa
involved in this expansion of 1, we see that the cover X =

⋃
Xfa , and with

it the original cover, has a finite subcover.

Exercise I-17. If R is Noetherian, every subset of SpecR is quasicompact.

Proposition I-18. Let X = SpecR, and suppose that Xf is covered by
open sets Xfa ⊂ Xf .

(a) If g, h ∈ Rf become equal in each Rfa , they are equal.

(b) If for each a there is ga ∈ Rfa such that for each pair a and b the images
of ga and gb in Rfafb are equal, then there is an element g ∈ Rf whose
image in Rfa is ga for all a.

Equivalently, if B is the collection of distinguished open sets SpecRf
of SpecR, and if we set OX(SpecRf ) := Rf , then OX is a B-sheaf. By
Proposition I-12, OX extends uniquely to a sheaf on X.

Definition I-19. The sheaf OX defined in the proposition is called the
structure sheaf of X or the sheaf of regular functions on X.

Proof of Proposition I-18. We begin with the case f = 1, so Rf = R and
Xf = X.
For the first part, observe that if g and h become equal in each Xfa then

g − h is annihilated by a power of each fa. Since by Lemma I-16 we may
assume that the cover is finite, this implies that g − h is annihilated by
a power of the ideal generated by all the fNa for some N. But this ideal
contains a power of the ideal generated by all the fa, which is the unit
ideal. Thus g = h in R.
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For part (b), we will use an argument analogous to the classical partition
of unity to piece together the elements ga into a single element g ∈ R. For
large N the product fNa ga ∈ Rfa is the image of an element ha ∈ R. By
Lemma I-16 we may assume the covering {Xfa} is finite, and it follows that
one N will do for all a. Next, since ga and gb become equal in Xfafb , we
must have

fNb ha = (fafb)Nga = (fafb)Ngb = fNa hb

for large N . Again, since we have assumed the covering {Xfa} is finite, one
N will do for all a and b. By Lemma I-16 the elements fa ∈ R generate the
unit ideal, and hence so do the elements fNa , and we may write

1 =
∑
a

eaf
N
a

for some collection ea ∈ R; this is our partition of unity. We claim that

g =
∑
a

eaha

is the element of R we seek. Indeed, for each b, we have in Rfb

fNb g =
∑
a

fNb eaha =
∑
a

fNa eahb = hb = fNb gb,

so g becomes equal to gb on Xfb , as required.
Returning to the case of arbitrary f , set X ′ = Xf , R′ = Rf , f ′

a = ffa;
thenX ′ = SpecR′ and X ′

f ′a
= Xfa , so we can apply the case already proved

to the primed data.

The proposition is still valid, and has essentially the same proof, if we
replace Rf and Rfa by Mf and Mfa for any R-module M.

Exercise I-20. Describe the points and the sheaf of functions of each of
the following schemes.

(a) X1 = SpecC[x]/(x2). (b) X2 = SpecC[x]/(x2 − x).

(c) X3 = SpecC[x]/(x3 − x2). (d) X4 = SpecR[x]/(x2 + 1) .

In contrast with the situation in many geometric theories (though similar
to the situation in the category of complex manifolds), there may be really
rather few regular functions on a scheme. For example, when we define
arbitrary schemes, we shall see that the schemes that are the analogues
of compact manifolds may have no nonconstant regular functions on them
at all. For this reason, partially defined functions on a scheme X—that
is, elements OX(U) for some open dense subset U —play an unusually
large role. They are called rational functions on X because in the case
X = SpecR with R a domain, and U = Xf , the elements of OX(Xf ) = Rf
are ratios of elements in R. In the cases of most interest, we shall see that
every nonempty open set is dense inX, so the behavior of rational functions
reflects the properties of X as a whole.
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Exercise I-21. Let U be the set of open and dense sets in X . Compute
the ring of rational functions

lim−→U∈U
OX(U) :=


the disjoint union of OX(U) for all U ∈U , modulo the equiva-
lence relation σ ∼ τ if σ ∈ OX(U), τ ∈ OX(V ), and the restric-
tions of σ and τ are equal on some W ∈U contained in U ∩ V


 ,

first in the case where R is a domain and then for an arbitrary Noetherian
ring.

Example I-22. Another very simple example will perhaps help to fix
these ideas. Let K be a field, and let R = K[x](x), the localization of the
polynomial ring in one variable X at the maximal ideal (x). The scheme
X = SpecR has only two points, the two prime ideals (0) and (x) of R. As
a topological space, it has precisely three open sets,

∅ ⊂ U := {(0)} ⊂ {(0), (x)} = X.

U and ∅ are distinguished open sets, since {(0)} = Xx. The sheaf OX is
thus easy to describe. It has values OX(X) = R = K[x](x) and OX(U) =
K(x), the field of rational functions. The restriction map from the first to
the second is the natural inclusion.

Exercise I-23. Give a similarly complete description for the structure
sheaf of the scheme SpecK[x]. (The answer is given in Chapter II.)

I.2 Schemes in General

After this lengthy description of affine schemes, it is easy to define schemes
in general. A scheme X is simply a topological space, called the support of
X and denoted |X | or supp X, together with a sheaf OX of rings onX , such
that the pair (|X |,OX) is locally affine. Locally affine means that |X | is
covered by open sets Ui such that there exist ringsRi, and homeomorphisms
Ui ∼= |SpecRi| with OX |Ui

∼= OSpecRi .
To better understand this definition, we must identify the key properties

of the structure sheaf of an affine scheme. Let X be any topological space
and let O be a sheaf of rings on it. We call the pair (X,O) a ringed space,
and ask when it is isomorphic to an affine scheme (|SpecR|,OSpecR). Note
that if (X,O) were an affine scheme then it would have to be the scheme
SpecR.
Now let (X,O) be any ringed space, and let R = O(X). For any f ∈ R

we can define a set Uf ⊂ X as the set of points x ∈ X such that f maps
to a unit of the stalk Ox. If (X,O) is an affine scheme we must have:

(i) O(Uf ) = R[f−1].
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However, this condition is not enough; it does not even force the existence
of a map between X and |SpecR|. To give such a map, we need to assume
a further condition on O that is posessed by affine schemes:

(ii) The stalks Ox of O are local rings.

A ringed space (X,O) satisfying (ii) is often called a local ringed space.
If (X,O) satisfies (ii), there is a natural mapX → |SpecO(X)| that takes

x ∈ X to the prime ideal of O(X) that is the preimage of the maximal ideal
of Ox. The third condition for (X,O) to be an affine scheme is this:

(iii) The map X → |SpecO(X)| is a homeomorphism.

Given these considerations, we say that a pair (X,O) is affine if it satisfies
(i)–(iii). The definition of scheme given above now becomes: A pair (X,O)
is a scheme if it is locally affine.
Again, where there is no danger of confusion, we will use the same letter

X to denote the scheme and the underlying space |X |, as in the construction
“let p ∈ X be a point.”

Exercise I-24. (a) Take Z = SpecC[x], let X be the result of identifying
the two closed points (x) and (x− 1) of |Z|, and let ϕ : Z → X be the
natural projection. Let O be ϕ∗OZ , a sheaf of rings on X . Show that
(X,O) satisfies condition (i) above for all elements f ∈ O(X) = C[x],
but does not satisfy condition (ii). Note that there is no natural map
X → |SpecC[x]|.

(b) Take Z = SpecC[x, y], the scheme corresponding to the affine plane,
and let X be the open subset obtained by leaving out the origin in
the plane, that is, X = |Z| − {(x, y)}. Let O be the sheaf OZ |X (that
is, O(V ) = OZ(V ) for any open subset V ⊂ X ⊂ |Z|.) Show that
O(X) = C[x, y], that X,O satisfies condition (i) and (ii), and that the
natural map X → |SpecO(X)| is the inclusion X ⊂ |Z|.

Some notation and terminology are in order at this point.
A regular function on an open set U ⊂ X is a section of OX over U . A

global regular function is a regular function on X .
The stalks OX,x of the structure sheaf OX at the points x ∈ X are called

the local rings of OX . The residue field of OX,x is denoted by κ(x). Just
as in the situation of Section I.1.1, a section of OX can be thought of as a
“function” taking values in these fields κ(x): if f ∈ OX(U) and x ∈ U , the
image of f under the composite

OX(U)→ OX,x → κ(x)

is the value of f at x.

Exercise I-25 (the smallest nonaffine scheme). Let X be the topological
space with three points p, q1, and q2. TopologizeX by makingX1 := {p, q1}
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and X2 := {p, q2} open sets (so that, in addition, ∅, {p}, and X itself are
open). Define a presheaf O of rings on X by setting

O(X) = O(X1) = O(X2) = K[x](x), O({p}) = K(x),

with restriction maps O(X) → O(Xi) the identity and O(Xi) → O({p})
the obvious inclusion. Check that this presheaf is a sheaf and that (X,O) is
a scheme. Show that it is not an affine scheme. (Geometrically, the scheme
(X,O) is the “germ of the doubled point” in the scheme called X1 in
Exercise I-44.)

I.2.1 Subschemes

Let U be an open subset of a scheme X. The pair (U,OX |U ) is again
a scheme, though this is not completely obvious. To check it, note that
at least a distinguished open set of an affine scheme is again an affine
scheme: if X = SpecR and U = Xf , then (U,OX |U ) = SpecRf . Since the
distinguished open sets of X that are contained in U cover U, this shows
that (U,OX |U ) is covered by affine schemes, as required. An open subset of
a scheme is correspondingly referred to as an open subscheme of X, with
this structure understood.
The definition of a closed subscheme is more complicated; it is not enough

to specify a closed subspace of X, because the sheaf structure is not defined
thereby.
Consider first an affine scheme X = SpecR. For any ideal I in the ring

R, we may make the closed subset V (I) ⊂ X into an affine scheme by
identifying it with Y = SpecR/I. This makes sense because the primes of
R/I are exactly the primes of R that contain I taken modulo I, and thus
the topological space |SpecR/I| is canonically homeomorphic to the closed
set V (I) ⊂ X. We define a closed subscheme of X to be a scheme Y that
is the spectrum of a quotient ring of R (so that the closed subschemes of
X by definition correspond one to one with the ideals in the ring R).
We can define in these terms all the usual operations on and relations

between closed subschemes of a given scheme X = SpecR. Thus, we say
that the closed subscheme Y = SpecR/I of X contains the closed sub-
scheme Z = SpecR/J if Z is in turn a closed subscheme of Y—that is, if
J ⊃ I. This implies that V (J) ⊂ V (I), but the converse is not true.

Exercise I-26. The schemes X1, X2, and X3 of Exercise I-20 may all be
viewed as closed subschemes of SpecC[x]. Show that

X1 ⊂ X3 and X2 ⊂ X3,

but no other inclusions Xi ⊂ Xj hold, even though the underlying sets
of X2 and X3 coincide and the underlying set of X1 is contained in the
underlying set of X2.
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The union of the closed subschemes SpecR/I and SpecR/J is defined as
SpecR/(I∩J), and their intersection as SpecR/(I+J). It is important to
note that the notions of containment, intersection, and union do not satisfy
all the usual properties of their set-theoretical counterparts: for example,
we will see on page 69 an example of closed subschemes X,Y, Z of a scheme
such that X ∪ Y = X ∪ Z and X ∩ Y = X ∩ Z but Y �= Z.
We would now like to generalize the notion of closed subscheme to an

arbitrary scheme X. To do this, the first step must be to replace the ideal
I ⊂ R associated to a closed subscheme Y of an affine scheme X = SpecR
by a sheaf, which we do as follows. We define J = JY/X , the ideal sheaf
of Y in X , to be the sheaf of ideals of OX given on a distinguished open
set V = Xf of X by J (Xf ) = I Rf . Now we can identify the structure
sheaf OY of Y = SpecR/I—more precisely, the pushforward j∗OY , where
j is the inclusion map |Y | ↪→ |X |—with the quotient sheaf OX/J. (You
should spell out this identification.) The sheaf of ideals J may be recovered
as the kernel of the restriction map OX → j∗OY .
One subtle point requires mention: not all sheaves of ideals in OX arise

from ideals of R. For example, in the case of R = K[x](x) considered in
Example I-22, we may define a sheaf of ideals by

J (X) = 0, J (U) = OX(U) for U = {(0)}.
For a sheaf of ideals J coming from an ideal of R we would have

J (U) = J (X)x = J (X)K(x),

so J does not come from any ideal of R. In the definition of a closed
subscheme above, we are only interested in sheaves of ideals that do come
from ideals of R. The theory obviously needs a name for such sheaves: they
are called quasicoherent sheaves of ideals. (This seems a poor name for
such a basic and simple object, but it is firmly rooted in the literature.
It comes from the fact that a sheaf on the spectrum of a Noetherian ring
that corresponds to a finitely generated module has a property called co-
herence; it was thus natural to say that the sheaf coming from a finitely
generated module is coherent, and that coming from an arbitrary module
is quasicoherent.)
More generally, a quasicoherent sheaf of ideals J ⊂ OX on an arbitrary

scheme X is a sheaf of ideals J such that, for every open affine subset U
of X, the restriction J |U is a quasicoherent sheaf of ideals on U.

Now we are ready to define a closed subscheme of an arbitrary scheme as
something that looks locally like a closed subscheme of an affine scheme:

Definition I-27. If X is an arbitrary scheme, a closed subscheme Y of X
is a closed topological subspace |Y | ⊂ |X | together with a sheaf of rings OY
that is a quotient sheaf of the structure sheaf OX by a quasicoherent sheaf
of ideals J, such that the intersection of Y with any affine open subset
U ⊂ X is the closed subscheme associated to the ideal J (U).
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If V ⊂ X is any open set, we say that a regular function f ∈ OX(V )
vanishes on Y if f ∈ J (V ).

In fact, |Y | is uniquely determined by J, so closed subschemes of X
are in one-to-one correspondence with the quasicoherent sheaves of ideals
J ⊂ OX .
The notion of quasicoherence arises in a more general context as well. We

similarly define a quasicoherent sheaf F on X to be a sheaf of OX -modules
(that is, F (U) is an OX(U)-module for each U) such that for any affine set
U and distinguished open subset Uf ⊂ U, the OX(Uf ) = OX(U)f -module
F (Uf ) is obtained from F (U) by inverting f —more precisely, the restric-
tion map F (U) → F (Uf ) becomes an isomorphism after inverting f . F
is called coherent if all the modules F (U) are finitely generated. (A more
restrictive use of the word coherence is also current, but coincides with this
one in the case where X is covered by finitely many spectra of Noetherian
rings, the situation of primary interest.) One might say informally that qua-
sicoherent sheaves are those sheaves of modules whose restrictions to open
affine sets are modules (finitely generated in the case of coherent sheaves)
on the corresponding rings. This is the right analogue in the context of
schemes of the notion of module over a ring; for most purposes, one should
think of them simply as modules.

Exercise I-28. To check that a sheaf of ideals (or any sheaf of modules)
is quasicoherent (or for that matter coherent), it is enough to check the
defining property on each set U of a fixed open affine cover of X.

One of the most important closed subschemes of an affine scheme X is
Xred, the reduced scheme associated to X. This may be defined by setting
Xred = SpecRred, where Rred is R modulo its nilradical—that is, modulo
the ideal of nilpotent elements of R. Recall that the nilradical of a ring R
equals the intersection of all the primes of R (in fact, the intersection of
all minimal primes). Therefore |X | and |Xred| are identical as topological
spaces.

Exercise I-29. Xred may also be defined as the topological space |X | with
structure sheaf OXred associating to every open subset U ⊂ X the ring
OX(U) modulo its nilradical.

To globalize this notion, we may define for any scheme X a sheaf of
ideals N ⊂ OX , called the nilradical ; this is the sheaf whose value on
any open set U is the nilradical of OX(U). Because the construction of
the nilradical commutes with localization, N is a quasicoherent sheaf of
ideals. The associated closed subscheme of X is called the reduced scheme
associated to X and denoted Xred. We say that X is reduced if X = Xred.
Irreducibility is another possible property of schemes; in spite of the

name, it is independent of whether the scheme is reduced. A scheme X is
irreducible if |X | is not the union of two properly contained closed sets.
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Here are some easy but important remarks about reduced and irreducible
schemes.

Exercise I-30. A scheme is irreducible if and only if every open subset is
dense.

Exercise I-31. An affine scheme X = SpecR is reduced and irreducible
if and only if R is a domain. X is irreducible if and only if R has a unique
minimal prime, or, equivalently, if the nilradical of R is a prime.

Exercise I-32. A scheme X is reduced if and only if every affine open
subscheme of X is reduced, if and only if every local ring OX,p is reduced
for closed points p ∈ X. (A ring is called reduced if its only nilpotent
element is 0.)

Exercise I-33. How do you define the disjoint union of two schemes? Show
that the disjoint union of two affine schemes SpecR and SpecS may be
identified with the scheme SpecR× S.

Exercise I-34. An arbitrary scheme X is irreducible if and only if every
open affine subset is irreducible. If it is connected (in the sense that the
topological space |X | is connected), then it is irreducible if and only if every
local ring of OX has a unique minimal prime.

We have now introduced the notion of open subscheme and closed sub-
scheme of a scheme X. A further generalization, a locally closed subscheme
of X , is immediate: it is simply a closed subscheme of an open subscheme
of X. This is as general a notion as we will have occasion to consider in this
book; so that when we speak just of a subscheme of X, without modifiers,
we will mean a locally closed subscheme.

Exercise I-35. Let X be an arbitrary scheme and let Y, Z be closed
subschemes of X . Explain what it means for Y to be contained in Z. Same
question if Y, Z are only locally closed subschemes.

Given a locally closed subscheme Z ⊂ X of a scheme X, we define the
closure Z of Z to be the smallest closed subscheme of X containing Z; that
is, the intersection of all closed subschemes ofX containing Z. Equivalently,
if Z is a closed subscheme of an open subscheme U ⊂ X, the closure Z
is the closed subscheme of X defined by the sheaf of ideals consisting of
regular functions whose restrictions to U vanish on Z.

I.2.2 The Local Ring at a Point

The Noetherian property is fundamental in the theory of rings, and its
extension is equally fundamental in the theory of schemes: we say that a
schemeX is Noetherian if it admits a finite cover by open affine subschemes,
each the spectrum of a Noetherian ring. As usual, one can check that this
is independent of the cover chosen.
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There is a good notion of the germ of a scheme X at a point x ∈ X
which is the intersection, in a natural sense, of all the open subschemes
containing the point. This is embodied in the local ring of X at x, defined
earlier as

OX,x := lim−→x∈U OX(U).

The maximal ideal mX,x of this local ring is the set of all sections that
vanish at x. The local ring is a simple object: to compute it (and to show
in particular that it is a local ring, with the given maximal ideal), we may
begin by replacing X by an affine open neighborhood of x, thus assuming
that X = SpecR and x = [p]. We may next restrict the open subsets U in
the direct limit to the distinguished open sets SpecRf such that f(x) �= 0—
that is, f �∈ p. Thus

OX,x := lim−→f �∈p
Rf = Rp

and
mX,x := lim−→f �∈p

pRf = pRp,

the localization of R at p. We can think of the germ of X at x as being
SpecOX,x; we will study some schemes of this type in the next chapter.
This notion of the local ring of a scheme at a point is crucial to the whole

theory of schemes. We give a few illustrations, showing how to define various
geometric notions in terms of the local ring. Let X be a scheme.
(1) The dimension of X at a point x ∈ X, written dim(X,x), is the

(Krull) dimension of the local ring OX,x—that is, the supremum of lengths
of chains of prime ideals in OX,x. (The length of a chain is the number of
strict inclusions.) The dimension of X, or dimX, itself is the supremum of
these local dimensions.

Exercise I-36. The underlying space of a zero-dimensional Noetherian
scheme is finite.

(2) The Zariski cotangent space to X at x is mX,x/m
2
X,x, regarded as

a vector space over the residue field κ(x) = OX,x/mX,x. The dual of this
vector space is called the Zariski tangent space at x.
To understand this definition, consider first a complex algebraic variety

X that is nonsingular. In this setting the notion of the tangent space to
X at a point p is unambiguous: it may be taken as the vector space of
derivations from the ring of germs of analytic functions at the point into
C. If mX,p is the ideal of regular functions vanishing at p, then such a
derivation induces a C-linear map mX,p/m

2
X,p → C, and the tangent space

may be identified in this way with HomC(mX,p/m2
X,p, C) = (mX,p/m2

X,p)
∗.

See Eisenbud [1995, Ch. 16]. It was Zariski’s insight that this latter vector
space is the correct analogue of the tangent space for any point, smooth or
singular, on any variety; Grothendieck subsequently carried the idea over
to the context of schemes, as in the definition given above. We shall return
to this construction, from a new point of view, in Chapter VI.
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Exercise I-37. If K is a field, the Zariski tangent space to the scheme
SpecK[x1, . . . , xn] at [(x1, . . . , xn)] is n-dimensional.

(3) X is said to be nonsingular (or regular) at x ∈ X if the Zariski tan-
gent space to X at x has dimension equal to dim(X,x); else the dimension
of the Zariski tangent space must be larger, and we say that X is singular
at x. Thus in the case of primary interest, when X is Noetherian, X is
nonsingular at x if and only if the local ring OX,x is a regular local ring.
This fundamental notion represents, historically, one of the important steps
toward the algebraization of geometry. It was taken by Zariski in his classic
paper [1947] (remarkably, this was some years after Krull had introduced
the notion of a regular local ring to generalize the properties of polynomial
rings, one of the rare cases in which the algebraists beat the geometers to
a fundamental geometric notion).

Exercise I-38. A zero-dimensional Noetherian scheme is nonsingular if
and only if it is the union of reduced points.

I.2.3 Morphisms

We will next define morphisms of schemes. In the classical theory a regu-
lar map of affine varieties gives rise, by composition, to a map of coordi-
nate rings going in the opposite direction. This correspondence makes the
two kinds of objects— regular maps of affine varieties and algebra homo-
morphisms of their coordinate algebras—equivalent. The definition given
below generalizes this: we will see that maps between affine schemes are
simply given by maps of the corresponding rings (in the opposite direction).
Given the simple description of morphisms of affine schemes in terms of

maps of rings, it is tempting just to define a morphism of schemes to be
something that is “locally a morphism of affine schemes.” One can make
sense of this, and it gives the correct answer, but it leads to awkward
problems of checking that the definition is independent of the choice of an
affine cover. For this reason, we give a definition below that works without
the choice of an affine cover. Although it may at first appear complicated,
it is quite convenient in practice. It also has the advantage of working
uniformly for all “local ringed spaces”—structures defined by a topological
space with a sheaf of rings whose stalks are local rings.
To understand the motivation behind this definition, consider once more

the case of differentiable manifolds. A continuous map ψ : M → N between
differentiable manifolds is differentiable if and only if, for every differen-
tiable function f on an open subset U ⊂ N, the pullback ψ#f := f ◦ψ is a
differentiable function on ψ−1U ⊂ M. We can express this readily enough
in the language of sheaves. Any continuous map ψ : M → N induces a map
of sheaves on N

ψ# : C (N) −→ ψ∗C (M)
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sending a continuous function f ∈ C (N)(U) on an open subset U ⊂ N
to the pullback f ◦ ψ ∈ C (M)(ψ−1U) = (ψ∗C (M))(U). In these terms,
a differentiable map ψ : M → N may be defined as a continuous map
ψ : M → N such that the induced map ψ# carries the subsheaf C ∞(N) ⊂
C (N) into the subsheaf ψ∗C ∞(M) ⊂ ψ∗C (M). That is, we require that
there be a commutative diagram

C (N)
ψ#
� ψ∗C (M)

C ∞
∪

�

ψ#
� ψ∗C∞(M)

∪

�

We’d like to adapt this idea to the case of schemes. The difference is that
the structure sheaf OX of a scheme X is not a subsheaf of a predefined
sheaf of functions on X. Thus, in order to give a map of schemes, we have
to specify both a continuous map ψ# : X → Y on underlying topological
spaces and a pullback map

ψ# : OX → ψ∗OY .

Of course, some compatibility conditions have to be satisfied by ψ# and ψ.
The problem in specifying them is that a section of the structure sheaf OY
does not take values in a fixed field but in a field κ(q) that varies with the
point q ∈ Y ; in particular, it doesn’t make sense to require that the value
of f ∈ OY (U) at q ∈ U ⊂ Y agree with the value of ψ#f ∈ ψ∗OX(U) =
OX(ψ−1U) at a point p ∈ ψ−1U ⊂ X mapping to q (which is in effect how
ψ# was defined in the case of differentiable functions), since these “values”
lie in different fields. About all that does make sense is to require that f
vanish at q if and only if ψ#f vanishes at p—and this is exactly what we
do require. We thus make the following definition.

Definition I-39. A morphism, or map, between schemes X and Y is a
pair (ψ, ψ#), where ψ : X → Y is a continuous map on the underlying
topological spaces and

ψ# : OY → ψ∗OX

is a map of sheaves on Y satisfying the condition that for any point p ∈ X
and any neighborhood U of q = ψ(p) in Y a section f ∈ OY (U) vanishes at
q if and only if the section ψ#f of ψ∗OX(U) = OX(ψ−1U) vanishes at p.

This last condition has a nice reformulation in terms of the local rings
OX,p and OY,q. Any map of sheaves ψ# : OY → ψ∗OX induces on passing
to the limit a map

OY,q = lim−→q∈U⊂Y OY (U)→ lim−→q∈U⊂Y OX(ψ−1U),

and this last ring naturally maps to the limit

lim−→p∈V⊂X OX(V )
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over all open subsets V containing p, which is OX,p. Thus ψ# induces a
map of the local rings OY,q → OX,p. Saying that a section f ∈ OY (U)
vanishes at q if and only if ψ#f ∈ ψ∗OX(U) = OX(ψ−1U) vanishes at p
is saying that this map OY,q → OX,p sends the maximal ideal mY,q into
mX,p—in other words, that it is a local homomorphism of local rings.
As we mentioned above, a morphism of affine schemes

ψ : X = SpecS −→ SpecR = Y

is the same as a homomorphism of rings ϕ : R → S. Here is the precise
result, along with an important improvement that describes maps from an
arbitrary scheme to an affine scheme.

Theorem I-40. For any scheme X and any ring R, the morphisms

(ψ, ψ#) : X −→ SpecR

are in one-to-one correspondence with the homomorphisms of rings

ϕ : R→ OX(X)

by the association

ϕ = ψ#(SpecR) : R = OSpecR(SpecR)→ ψ∗(OX)(SpecR) = OX(X).

Proof. We describe the inverse association. Set Y = SpecR, and let ϕ :
R → OX(X) be a map of commutative rings. If p ∈ |X | is a point, the
preimage of the maximal ideal under the composite R → OX(X) → OX,p
is a prime ideal, so that ϕ induces a map of sets

ψ : |X | → |Y |,
which is easily seen to be continuous in the Zariski topology. Next, for each
basic open set U = SpecRf ⊂ Y, define the map ψ# : Rf = OY (U) →
(ψ∗OX)(U) to be the composite

Rf → OX(X)ϕ(f) → OX(ψ−1U)

obtained by localizing ψ. By Proposition I-12(ii) this is enough to define a
map of sheaves. Localizing further, we see that if ψ(p) = q, then ψ# defines
a local map of local rings Rq → OX,p, and thus (ψ, ψ#) is a morphism of
schemes. Clearly, the induced map satisfies

ψ#(Y ) = ϕ,

so the construction is indeed the inverse of the given one.

Of course this result says in particular that all the information in the
category of affine schemes is already in the category of commutative rings.

Corollary I-41. The category of affine schemes is equivalent to the cate-
gory of commutative rings with identity, with arrows reversed, the so-called
opposite category.
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Exercise I-42. (a) Using this, show that there exists one and only one
map from any scheme to SpecZ. In the language of categories, this
says that SpecZ is the terminal object of the category of schemes.

(b) Show that the one-point set is the terminal object of the category of
sets.

For example, each point [p] of X = SpecR corresponds to a scheme
Specκ(p) that has a natural map to X defined by the composite map of
rings

R→ Rp → Rp/pp = κ(p)

Of course, the inclusion makes [p] a closed subscheme if and only if p is
a maximal ideal of R (in general, [p] is an infinite intersection of open
subschemes of a closed subscheme).
If ψ : Y → X is a morphism of affine schemes, X = SpecR and Y =

SpecT, and X ′ is a closed subscheme of X, defined by an ideal I in R, then
we define the preimage (sometimes, for emphasis, the “scheme-theoretic
preimage”) ψ−1X ′ of ψ over X ′ to be the closed subscheme of Y defined
by the ideal ϕ(I)T in T. If X ′ is a closed point p of X, we call ψ−1p the
fiber over X ′. (We will soon see how to define fibers over arbitrary points.)
The underlying topological space of the preimage is just the set-theoretic
preimage, while the scheme structure of the preimage gives a subtle and
useful notion of the “correct multiplicity” with which to count the points in
the preimage. The simplest classical example is given later in Exercise II-2;
here we give two others.

Exercise I-43. (a) Let ϕ : X → Y be the map of affine schemes illus-
trated by

0

p
X

Y

That is, X = SpecK[x, u]/(xu) is the union of two lines meeting in
a point p = (x, u), while Y = SpecK[t] is a line, and the map is an
isomorphism on each of the lines of X ; for example, it might be given
by the map of rings

K[t]→ K[x, u]/(xu),
t 
→ x+ u.
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Show that the fiber over the point qa = (t−a), with a �= 0, is the scheme
Spec(K × K) consisting of two distinct points, while the fiber over
q0 —that is, the fiber containing the double point p—is isomorphic to
SpecK[x]/(x2). The fact that the algebraK[x]/(x2) is two-dimensional
(as a vector space overK) reflects the structure of the map locally at p.

(b) Let ϕ : X → Y be the map of affine schemes illustrated by

0

p

X

Y

That is, X = SpecK[x, y, u, v]/((x, y) ∩ (u, v)) is the union of two
planes in four-space meeting in a single point p = (x, y, u, v), while
Y = SpecK[s, t] is a plane, and the map is an isomorphism on each of
the planes of X ; for example, it might be given by the map of rings

K[s, t]→ K[x, y, u, v],
t 
→ x+ u,

s 
→ y + v.

Show that the fiber over the point

qa,b = (s−a, t−b)
is the scheme Spec(K×K) consisting of two distinct points if a or b �= 0,
while the fiber over q0,0 —that is, the fiber containing the “double
point” p—is isomorphic to

SpecK[x, y]/(x2, xy, y2).

The fact that the algebra K[x, y]/(x2, xy, y2) is a three-dimensional
vector space over K instead of a two-dimensional vector space (as one
might expect by analogy with the previous example) reflects a deep
fact about the variety X (that it is not “locally Cohen–Macaulay”).
This example will be taken up again, from the point of view of flatness,
in section II.3.4.
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I.2.4 The Gluing Construction

Using the notion of morphism, we can construct more complicated schemes
(for example, nonaffine schemes) by identifying simpler schemes along open
subsets. This is a basic operation, called the gluing construction.
Suppose we are given a collection of schemes {Xα}I , and an open set

Xαβ in Xα for each β �= α in I. Suppose also that we are given a family of
isomorphisms of schemes

ψαβ : Xαβ → Xβα for each α �= β in I,

satisfying the conditions ψβα = ψ−1
αβ for all α and β,

ψαβ(Xαβ ∩Xαγ) = Xβα ∩Xβγ for all α, β, γ,

and the compatibility condition

ψβγ ◦ ψαβ |(Xαβ∩Xαγ) = ψαγ |(Xαβ∩Xαγ).

Under these circumstances we may define a scheme X by gluing the Xα
along the ψαβ in an obvious way—that is to say, there exists a (unique)
scheme X with a covering by open subschemes isomorphic to the Xα such
that the identity maps on the intersections Xα ∩ Xβ ⊂ X correspond to
the isomorphisms ψαβ .
This construction can be used, for example, to define projective schemes

out of affine ones. Another use is in the theory of toric varieties; see, for
example, Kempf et al. [1973].
In these and indeed in almost all applications, we don’t really need to

give the maps ψαβ explicitly: we are actually given a topological space |X |
and a family of open subsets |Xα|, each endowed with the structure of an
affine scheme—that is, with a structure sheaf OXα —in such a way that
OXα(Xα∩Xβ) is naturally identified with OXβ

(Xα∩Xβ). For example, they
might both be given as subsets of a fixed set. Under these circumstances
it is immediate that the conditions of Corollary I-14 are satisfied, so that
there is a uniquely defined sheaf OX on X extending all the OXα . The pair
(|X |,OX) is then a scheme.
Probably the simplest example of this is the definition of affine space

AnS over an abitrary scheme S. To begin with, for any affine scheme X =
SpecR we define affine n-space over X to be simply SpecR[x1, . . . , xn];
this is denoted by either AnX or AnR. (The geometry of affine spaces and
their subschemes will be taken up in Chapter II.) Next, we note that any
morphism X → Y of affine schemes induces a natural map AnX → AnY . As
a consequence, we may apply the gluing construction as follows: If S is an
arbitrary scheme covered by affine schemes Uα = SpecRα, we define affine
space AnS over S to be the union of the affine spaces AnUα

, with the gluing
maps induced by the identity maps on Uα ∩ Uβ.
We will see two other ways of defining affine space AnS over an arbitrary

base S in Exercises I-47 and I-54 below.
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The following exercise illustrates some of the dangers of the gluing con-
struction: we can, by inappropriate (but legal) gluing, create schemes that
do not arise in any geometric setting.

Exercise I-44. Put Y = SpecK[s] and Z = SpecK[t]. Let U ⊂ Y be the
open set Ys and let V ⊂ Z be the open set Zt. Let ψ : V → U be the
isomorphism corresponding to the map

OY (U) = K[s, s−1]→ K[t, t−1] = OZ(V )

sending s to t, and let γ be the map sending s to t−1. Let X1 be the scheme
obtained by gluing together Y and Z along ψ, and let X2 be the scheme
obtained by gluing along γ instead.
Show that X1 is not isomorphic to X2. In fact, X2 is the scheme cor-

responding to the projective line P1
K (which we will describe in the next

section), while X1 is the affine space with a doubled origin:

In Chapter III we will introduce a condition, called separatedness, that
will preclude schemes such as this X1.

Projective Space. An important example of a scheme constructed by
gluing is projective n-space over a ring R, denoted PnR. It is made by gluing
n+ 1 copies of affine space

AnR = SpecR[x1, . . . , xn]

over R. An extensive treatment of projective schemes will begin in Chapter
III. Here we will use the idea only as an illustration of gluing.
The construction is exactly parallel to the classical construction of pro-

jective space as a variety over a field. Although not logically necessary, it
is convenient to work as follows. Start with the polynomial ring in n + 1
variables R[X0, . . . , Xn] and form the localization

A := R[X0, X
−1
0 , . . . , Xn, X

−1
n ].

Recall that the ring A has a natural grading, that is, a direct-sum decom-
position (as an abelian group) into subgroups A(n), for n ∈ Z, such that

A(n)A(m) ⊂ A(m+n);

here A(n) is spanned by monomial rational fractions of degree n. In par-
ticular, the degree 0 part A(0) is a subring of A. Now take the rings of our
defining affine covering to be R-subalgebras of A(0), the i-th subring being
the subalgebra Ai consisting of all polynomials P/Xdeg(P )

i , where P is a
homogeneous element of R[x0, . . . , xn]. Clearly, Ai is generated over R by
the n algebraically independent elements

X0/Xi, . . . , X̂i/Xi, . . . , Xn/Xi,
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where the hat denotes as usual an element omitted from the list. Ai is thus
isomorphic to the polynomial ring in n variables over R. Further, for i �= j
we have

Ai[(Xj/Xi)−1] = Aj [(Xi/Xj)−1]

as subsets of A; both may be described as the subalgebra of all degree
0 elements having denominator of the form Xai X

b
j . If we use the identity

maps as gluing maps, the compatibility conditions are obvious.
If X = SpecR is an affine scheme, we will often write PnX instead of PnR,

and refer to the space as projective space over X. Any morphism X → Y
of affine schemes induces a natural map PnX → PnY . As a consequence, we
may apply the gluing construction again to define projective space PnS over
an arbitrary scheme S as well. This is straightforward: if S is covered by
affine schemes Uα = SpecRα, we define projective space PnS to be the union
of the projective spaces PnUα

, with the gluing maps induced by the identity
maps on Uα ∩ Uβ.

I.3 Relative Schemes

I.3.1 Fibered Products

There is an extremely important generalization of the idea of preimage of
a set under a function in the notion of the fibered product of schemes. To
prepare for the definition, we first recall the situation in the category of
sets.
The fibered product of two sets X and Y over a third set S—that is, of

a diagram of maps of sets
X

Y
ψ
� S

ϕ
�

is by definition the set

X ×S Y = {(x, y) ∈ X × Y : ϕx = ψy}.
The fibered product is sometimes called the pullback of X (or of X → S)
to Y. This construction generalizes several more elementary ones in a very
useful way:
If S is a point, it gives the usual direct product.
If X,Y are both subsets of S and ϕ,ψ are the inclusions, it gives the

intersection.
If Y ⊂ S and ψ is the inclusion, it gives the preimage of Y in X.
If X = Y, it gives the set on which the maps ϕ,ψ are equal, the equalizer

of the maps.
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Exercise I-45. Check these assertions!

Note that X ×S Y comes with natural projection maps to X and Y
making the diagram

X ×S Y � X

Y
�

ψ
� S

ϕ
�

commute. Indeed, the set X×SY may be defined by the following universal
property: among all sets Z with given maps toX and Y making the diagram

Z � X

Y
�

ψ
� S

ϕ
�

commute, X ×S Y with its projection maps is the unique “most efficient”
choice in the sense that, given the diagram with Z above, there is a unique
map Z → X ×S Y making the diagram

Z

X ×S Y �
�

X
�

Y
� ψ�

�

S

ϕ
�

commute.
In the category of schemes we simply define the fibered product to be a

scheme with this universal property—the universal property guarantees in
particular that such a thing, with its projections toX and Y, will be unique.
We can then define products, intersections, preimages, and equalizers in
terms of the fibered product! However, this begs the question of whether
any such object as the fibered product exists in the category of schemes. It
does, and we will now describe the construction.
First, we treat the affine case. Recall that the category of affine schemes is

opposite to the category of commutative rings, by Corollary I-41. Therefore,
if we have schemes

X = SpecA, Y = SpecB, S = SpecR,

where X and Y map to S (so that A and B are R-algebras), we must define
the fibered product X ×S Y to be

X ×S Y = Spec(A⊗R B).
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This is because the natural diagram

A⊗R B � A

B

�

� R

ϕ
�

has, in an obvious sense, the opposite universal property to the one desired
for the fibered product. In fancy language, the tensor product is a fibered
coproduct, or fibered sum, in the category of commutative rings.
To check that this definition is reasonable, one may note that in the

situation where Y is a closed subscheme of S defined by an ideal I, so that
B = R/I, we have A ⊗R B = A/IA. Thus X ×S Y = SpecA/IA is the
same as the preimage of Y in X, as previously defined.

Exercise I-46. A few simple special cases are a great help when comput-
ing fibered products. Prove the following facts directly from the universal
property of the tensor product of algebras:

(a) For any R-algebra S we have R⊗R S = S.

(b) If S, T are R-algebras and I ⊂ S is an ideal, then

(S/I)⊗R T = (S ⊗R T )/(I ⊗ 1)(S ⊗R T ).
(c) If x1, . . . , xn, y1, . . . , ym are indeterminates then

R[x1, . . . , xn]⊗R R[y1, . . . , ym] = R[x1, . . . , xn, y1, . . . , ym].

Use these principles to solve the remainder of this exercise.

(d) Let m,n be integers. Compute the fibered product

SpecZ/(m)×Spec Z SpecZ/(n).

(e) Compute the fibered product SpecC ×Spec R SpecC.

(f) Show that for any polynomial rings R[x] and R[y] over a ring R, we
have

SpecR[x]×SpecR SpecR[y] = SpecR[x, y].

Note that in example (d) the underlying set of the fibered product is the
fibered product of the underlying sets, but this is not true in (e) and (f).

(g) Consider the ring homomorphisms

R[x]→ R; x 
→ 0

and
R[x]→ R[y]; x 
→ y2.

Show that with respect to these maps we have

SpecR[y]×SpecR[x] SpecR = SpecR[y]/(y2).
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In the general case, we cover S by affine schemes SpecRρ, and cover
their preimages in X and Y by affine schemes SpecAρα and SpecBρβ ,
respectively, so that in a suitable sense the diagram

X

Y
ψ
� S

ϕ
�

is covered by diagrams of the form

SpecAρα

SpecBρβ
ψρβ

� SpecRρ

ϕρα
�

Of course, we already know that the fiber product of this last diagram
is Spec(Aρα⊗Rρ Bρβ). Using the idea of gluing explained at the end of the
preceding section, it is easy but tedious to check that these schemes agree on
overlaps and patch together to form the schemeX×SY as required; we omit
the computation. A different approach will be sketched in section VI.2.1.
One immediate use of the notion of product is an alternative description

of affine space AnS over a scheme S:

Exercise I-47. Let S be any scheme. Let AnZ = SpecZ[x1, . . . , xn] be
affine space over SpecZ, as defined above (this scheme will be discussed
in detail in the next chapter). Show that affine space AnS over S may be
described as a product: AnS = AnZ ×Spec Z S.

We can also use the fibered product to define the fiber of a morphism
ψ : Y → X over an arbitrary point of arbitrary schemes: if p is a point
of X corresponding to a prime ideal p of R, then the fiber of ψ over p is
the fibered product of Y and the one-point scheme Specκ(p). In the case
where X and Y are affine—say, Y = Spec T and X = SpecR—we get

ψ−1(p) = Spec κ(p)×X Y = Spec(Rp/pp ⊗R T ) = Spec(Rp/pp ⊗R T/pT )
as a point set; this is the set of primes of T whose preimages in R are equal
to p. More generally, we define the preimage, or inverse image of a closed
subscheme X ′ of X under ψ to be the fibered product X ′ ×X Y.
Just as in the affine case treated above, the preimage ψ−1X ′ of X ′ is a

closed subscheme of Y . Using the OX -algebra structure on OY , the ideal
sheaf of the preimage may be written as Iψ−1X′ = IX′ ·OY .
Another typical use of the fibered product is in studying the behavior of

varieties under extension of a base field (one usually speaks in this context
of a “base change” rather than a fibered product). In this setting, of which
we will see some examples in the following chapter, the notion is responsible
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for the great flexibility and convenience of the theory of schemes in handling
arithmetic questions.
As in examples (b) and (c) of Exercise I-46, the set of points of the fibered

product of schemes X ×S Y is usually not equal to the fibered product (in
the category of sets) of the sets of points of X and Y. This is no terrible
pathology but simply reflects the fact that the theory of functions f(x, y)
of two variables is much richer than the theory of functions of the form
g(x)h(y). In any case, the definitions of Chapter VI provide a viewpoint
from which this oddity disappears.

I.3.2 The Category of S-Schemes

Just as in the case of sets, we can use the fibered product to define an
absolute product by taking S to be a terminal object in the category of
schemes—that is, a scheme such that every scheme has a unique map to S.
By Exercise I-42 the terminal object in the category of schemes is SpecZ.
However, the absolute product has some rather surprising properties. We
have already seen in Exercise I-46(d) cases (when m and n are relatively
prime) where the product in this sense of nonempty sets may be empty!
There are other peculiarities as well: for example, the dimension of an
irreducible scheme can be defined as the Krull dimension of the coordinate
ring of any of its affine open sets. One might expect the product

X × Y = X ×Spec Z Y

of two schemes to have dimension equal to the sum of the dimensions of X
and Y. But in fact we have the result in the next exercise.

Exercise I-48. Show that if X = SpecZ[x] and Y = SpecZ[y], then

dimX × Y = dimX + dimY − dimSpecZ = dimX + dimY − 1.

This oddity and many like it can be eliminated by a simple but convenient
generalization of our definitions: we often wish to work with schemes X over
a given field (or ring) K, or K-schemes. Of course, we will then use only
morphisms that respect this structure. Informally, this just means that we
consider X together with a K-algebra structure on OX(X) and morphisms
respecting these structures. In this category, SpecK is the terminal object
and the absolute product is the fibered product over SpecK. If K is a
field, the product in the category of K-schemes behaves more in accord
with elementary geometric intuition. For example:

Exercise I-49. Let K be a field. If X and Y are nonempty K-schemes,
then the product X × Y = X ×SpecK Y in the category of K-schemes is
nonempty.

Further, in this case the dimension of SpecK is 0, and one can check
that for schemes built up from spectra of finitely generated K-algebras the
dimension of products is additive, as it should be.
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In order to accommodate families of schemes, we may extend this notion
a little further. A K-algebra structure on OX(X) is nothing but a homo-
morphism of rings from K to OX(X), and by Theorem I-40 this is exactly
the same as a map X → SpecK. Replacing SpecK by an arbitrary scheme
S, we define a scheme over S, or S-scheme, to be a scheme X together
with a morphism X → S. We may think of a scheme over S informally
as a family of schemes “parametrized by points of S”— for each point of
S we have the fiber over that point. A morphism of schemes over S (or
S-morphism) is a commutative diagram

X � Y

S
�

�

If X and Y are schemes over S, then we write MorS(X,Y ) for the set of
S-morphisms. Note that the fibered product X ×S Y of schemes over S is
precisely the ordinary direct product in the category of schemes over S.
As usual, if S = SpecR is affine, we will use the terms “R-scheme” and

“the category of R-schemes” interchangeably with “S-scheme” and “the
category of S-schemes”.
Introducing the category of schemes over S may seem to add a layer of

complication, but in reality it more often removes one. For example, if we
want to do classical algebraic geometry over the complex numbers in scheme
language, it is necessary to work in the category of schemes over C. To see
that this is so, note that in any reasonable sense the point SpecC should
have no nontrivial automorphisms, and the scheme SpecC[x]/(x2 +1) con-
sisting of a pair of points should have automorphism group Z/(2). This
is in fact the case in the category of schemes over C. In the category
of all schemes, however, the automorphism group of the point SpecC is
huge: it is the Galois group of C over Q, and the automorphism group of
SpecC[x]/(x2 +1) is worse. Thus, working in the category of schemes over
C removes the (presumably unwanted) extra structure of the Galois group
Gal(C/Q).

Exercise I-50. Find the automorphism groups of the schemes X1 and X3

of Exercise I-20 in the category of schemes over C.

I.3.3 Global Spec

If S = SpecR is an affine scheme, an affine S-scheme is simply the spectrum
of an R-algebra. We will now extend this construction to describe analogous
objects in the category of S-schemes for arbitrary S.
To begin with, for any scheme S we define a quasicoherent sheaf of OS-

algebras. This is, as you might expect, a sheaf F of OS-algebras, such
that for any affine open U = SpecR ⊂ S and distinguished open subset
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U ′ = SpecRf ⊂ U, we have

F (U ′) = F (U)⊗R OS(U ′) = F (U) ⊗R Rf
as R = OS(U)-algebras. We then associate to any quasicoherent sheaf F
of OS-algebras on a scheme S a scheme X = SpecF, together with a
structure morphism X → S, such that in case S = SpecR is affine we
get simply X = SpecF (S) together with the structure morphism X → S
induced by the R = OS(S)-algebra structure on F (S).
There are a couple ways to do this. One is simply to use the gluing

construction again: we cover S by affine open subsets Uα = SpecRα, and
define X to be the union of the schemes SpecF (Uα), with attaching maps
induced by the restrictions maps F (Uα) → F (Uα ∩ Uβ). This works, but
it’s a mess to verify that the resulting space SpecF is independent of the
choice of cover, and has the further drawback that it can be awkward to
describe the set of points of SpecF. We will give here instead an alternative
construction.
We start with a definition: given a quasicoherent sheaf F of OS-algebras,

we define a prime ideal sheaf in F to be a quasicoherent sheaf of ideals
I � F, such that for each affine open subset U ⊂ S, the ideal I (U) ⊂
F (U) is either prime or the unit ideal. (Observe that for any affine scheme
X, the points of X are simply the prime ideal sheaves of OX .) Now, we will
define X = SpecF in three stages, as we did the spectrum of a ring. First,
as a set, X is the set of prime ideal sheaves in F. Second, as a topological
space: for every open U ⊂ S (not necessarily affine) and section σ ∈ F (U),
let VU,σ ⊂ X be the set of prime ideal sheaves P ⊂ F such that σ /∈ P(U);
take these as a basis for the topology. Finally, we define the structure sheaf
OX on basis open sets by setting

OX(VU,σ) = F (U)[σ−1].

As for the morphism f : X → S: as a set, we associate to a prime ideal
sheaf P ⊂ F its inverse image in OS → F ; and the pullback map on
functions

f# : OS(U)→ OX(f−1(U)) = F (U)

is just the structure map OS → F on U.

Exercise I-51. Show that the points of an affine scheme X are in one-to-
one correspondence with the set of prime ideal sheaves in OX .

Exercise I-52. Show that if f : Y → X is a morphism and P is a prime
ideal sheaf of OY , then f∗(P) is a prime ideal sheaf in f∗OY .

Exercise I-53. Show that if f : Y → X is a morphism, the map on sets
corresponding to f sends P ⊂ OY to (f#)−1(f∗(P)) ⊂ OX .

The simplest example of global Spec gives us yet another construction
of affine space over an arbitrary scheme S:
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Exercise I-54. Let S be any scheme. Show that affine space AnS over S
may be constructed as a global Spec:

AnS = Spec
(
Sym(O⊕n

S )
)
.

I.4 The Functor of Points

One of the intriguing things about schemes is precisely that they have so
much structure that is not conveyed by their underlying sets, so that the
familiar operations on sets such as taking direct products require vigilant
scrutiny lest they turn out not to make sense. It is therefore remarkable that
many of the set-theoretic ideas can be restored through a simple device,
the functor of points. This point of view, while initially adding a layer of
complication to the subject, is often extremely illuminating; as a result it
and its attendant terminology have become pervasive. We will give a brief
introduction to the necessary definitions here and use them occasionally in
the following chapters before returning to them in detail in Chapter VI.
We start with the observation that the points of a scheme do not in

general look anything like one another: we have nonclosed points as well as
closed ones; and if we are working over a non-algebraically closed field, then
even closed points may be distinguished by having different residue fields.
Similarly, if we are working over Z, different points may have residue fields
of different characteristic; and if we extend the notion of point to “closed
subscheme whose underlying topological space is a point,” we have an even
greater variety. And, of course, a morphism between schemes will not at all
be determined by the associated map on underlying point sets.
There is, however, a way of looking at a scheme—via its functor of

points—that reduces it in effect to a set. More precisely, we may think of
a scheme as an organized collection of sets, a functor on the category of
schemes, on which the familiar operations on sets behave as usual. In this
section we will examine this functorial description. A big payoff is that we
will see the category of schemes embedded in a larger category of functors,
in which many constructions are much easier. The advantage of this is
something like the advantage in analysis of working with distributions, not
just ordinary functions; it shifts the problem of making constructions in
the category of schemes to the problem of understanding which functors
come from schemes. Further, many geometric constructions that arise in
the category of schemes can be extended to larger categories of functors in
a useful way.
To introduce the notion of the functor of points, we start out in a general

categorical setting. To begin with, in many categories whose objects are
sets with additional structure, the underlying set |X | of an object X may
be described as the set of morphisms from a universal object to X ; for
example:
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(a) In the category of differentiable manifolds, if Z is the manifold consist-
ing of one point, then for any manifold X we have |X | = Hom(Z,X).

(b) In the category of groups, for any group X we have |X | = Hom(Z, X).

(c) In the category of rings with unit and unit-preserving homomorphisms,
if we set Z = Z[x], then for any ring X with unit we have |X | =
Hom(Z,X).

In general, for any object Z of a category X the association

X 
→ HomX (Z,X)

defines a functor ϕ from the category X to the category of sets. As indi-
cated in the first paragraph above, however, it is not really satisfactory to
call the set ε(X) = HomX (Z,X) the set of points of the object X unless
this functor is faithful—that is, unless for any pair of objects X1 and X2

of X a morphism
f : X1 → X2

is determined by the map of sets

f ′ : HomX (Z,X1)→ HomX (Z,X2).

It may not always be possible to satisfy this condition. For example, let
(Hot) be the category of CW -complexes, where Hom(Hot)(X,Z) is the set
of homotopy classes of continuous maps from X to Z. If Z is the one-point
complex, then

Hom(Hot)(Z,X) = π0(X)

the set of connected components of X, and this does not give a faithful
functor. Nor is it possible to chose a better object Z. Likewise, in the
category of schemes, there is no one object Z that will serve in this capacity.
Grothendieck’s ingenious idea was to remedy this situation by consid-

ering not just one set Mor(Z,X) but all at once! That is, we associate to
each scheme X the “structured set” consisting of all the sets Mor(Z,X), to-
gether with, for each morphism f : Z → Z ′, the mapping from Mor(Z ′, X)
obtained by composing with f .
To put this more formally, the functor of points of a scheme X is the

“representable” functor determined by X ; that is, the functor

hX : (schemes)◦ → (sets),

where (schemes)◦ and (sets) represent the category of schemes with the
arrows reversed and the category of sets, respectively; hX takes each scheme
Y to the set

hX(Y ) = Mor(Y,X)

and each morphism f : Y → Z to the map of sets

hX(Z)→ hX(Y )
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defined by sending an element g ∈ hX(Z) = Mor(Z,X) to the composition
g ◦f ∈Mor(Y,X). The reason for the name “representable functor” is that
we say this functor is represented by the scheme X. The set hX(Y ) is called
the set of Y -valued points of X (if Y = SpecT is affine, we will often write
hX(T ) instead of hX(SpecT ) and call it the set of T -valued points of X).
To introduce one more layer of abstraction, note that this construction

defines a functor

h : (schemes)→ Fun((schemes)◦, (sets))

(where morphisms in the category of functors are natural transformations),
sending

X 
→ hX

and associating to a morphism f : X → X ′ the natural transformation
hX → hX′ that for any scheme Y sends g ∈ hX(Y ) = Mor(Y,X) to the
composition f ◦ g ∈ hX′(Y ) = Mor(Y,X ′).
Of course, when we want to work with schemes over a given base S, we

should take morphisms over S as well. The situation is completely analo-
gous to that above: we describe in this way a functor

X 
→ hX

from the category of S-schemes to the category

Fun((S-schemes)◦, (sets)).

The apparently abstract idea of the functor of points has its root in the
study of solutions of equations. Let X = SpecR be an affine scheme, where
R = Z[x1, x2, . . .]/(f1, f2, . . .). If T is any other ring (one should think of
T = Z, Z/(p), Z(p), Ẑ(p), Qp, R, C, and so on), then a morphism from
SpecT to SpecR is the same as a ring homomorphism from R to T, and
this is determined by the images ai of the xi. Of course, a set of elements
ai ∈ T determines a morphism in this way if and only if they are solutions
to the equations fi = 0. We have shown that

hX(T ) =
{

sequences of elements a1, . . . ∈ T that
are solutions of the equations fi = 0

}
.

Similarly, if X is an arbitrary scheme, so that X is the union of affine
schemes Xa meeting along open subsets, then a map from an affine scheme
Y to X may be described by giving a covering of Y by distinguished affine
open subsets Yfa and maps from Yfa to Xa for each a, agreeing on open sets
(some of the Yfa may, of course, be empty). Thus an element of hX(Y ) may
be described even in this general context as a set of solutions to systems of
equations, corresponding to some of the Xa, with compatibility conditions
satisfied by the solutions on the sets where certain polynomials are non-
zero.
Even with this interpretation, the notion of the functor of points may

seem an arid one: while we can phrase problems in this new language,
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it’s far from clear that we can solve them in it. The key to being able to
work in this setting is the fact that many apparently geometric notions
have natural extensions from the category of schemes to larger categories
of functors. Thus, for example, we can talk about an open subfunctor of
a functor, a closed subfunctor, a smooth functor, the tangent space to a
functor, and so on. These notions will be developed in Chapter VI, where
we will also give a better idea of how they are used.
In this chapter we have used the word “point” in two different ways: we

have both the points of a scheme X, and, for any scheme Y, the set of
Y -valued points of X. It is important not to let this double usage cause
confusion. The two notions are of course very different: for example, if
Y = SpecL for some finite extension L of Q, then we have a map

{Y -valued points of X} −→ |X |
but this map is in general neither injective or surjective: the image will be
the subset of points p ∈ X whose residue field κ(p) is a subfield of L, and the
fiber of the map over such a point p will be the set of ring homomorphisms
from κ(p) to L. Another distinction is that while the set |X | of points of X
is absolute, the set of Y -valued points is relative in the sense that it may
depend on the specification of a base scheme S and the structure morphism
X → S. Finally, in case S = SpecK, the set of K-valued points of X—
that is, the subset of points p ∈ X such that κ(p) = K—is often called
the set of K-rational points of X.
Each of the two notions of “point” has some (but not all) of the properties

we might expect from the behavior of points in the category of sets. For
example, the set of Y -valued points of a product X1×X2 is the product of
the sets of Y -valued points of X1 and X2. However, it is not the case that
the set of Y -valued points of a union X = U ∪ V is the union of the sets
of Y -valued points of U and V (for example, the identity map X → X is
an X-valued point of X not in general contained in U or V ). By contrast,
exactly the opposite situation holds for the set |X | of points of a scheme
X in the ordinary sense.
We have now outlined the basic definitions in the theory of schemes. In

the next chapter we will give many examples, from which the reader may
form some idea of the “look and feel” of schemes.



II
Examples

II.1 Reduced Schemes over Algebraically Closed
Fields

We will start our series of examples with the one that the concept of scheme
is intended to generalize: the classical notion of an affine variety over an
algebraically closed field K. In our present context, this means considering
schemes of the form SpecR, where R is the coordinate ring of a varietyX—
that is, a finitely generated, reduced algebra overK. (Recall that “reduced”
means nilpotent-free.) SpecR is sometimes called the scheme associated to
the variety X : such schemes are sometimes referred to just as varieties. In
later sections we will consider the ways in which schemes may differ from
this basic model.
The K-scheme associated to an affine variety over an algebraically closed

field K is an equivalent object to the variety; either one determines and
is determined by its coordinate algebra, which is the same for both. But
already in this case, classical notions such as the intersection of varieties
and the fibers of maps are given a more precise meaning in the theory of
schemes. We will see examples of this phenomenon in this and succeeding
sections.

II.1.1 Affine Spaces

We start with the scheme AnK := SpecK[x1, . . . , xn], with K an alge-
braically closed field. This scheme is called affine n-space over K.
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We will make use of a standard but nontrivial result from algebra, a form
of Hilbert’s Nullstellensatz; see Eisenbud [1995], for example.

Theorem II-1 (Nullstellensatz). Let K be any field. If m is a maximal
ideal of a polynomial ring K[x1, . . . , xn] (or, geometrically, p is a closed
point of any subvariety of an affine space over a field K), then

K[x1, . . . , xn]/m = κ(p)

is a finite-dimensional vector space over K.

In our case, with K algebraically closed, this implies that κ(p) = K.
Thus, writing λi for the image of xi in κ(p), we see that

m = (x1 − λ1, . . . , xn − λn).

In this way the closed points of AnK correspond to n-tuples of elements ofK,
as one should expect. We will sometimes refer to “the point (λ1, . . . , λn)”
instead of “the point [(x1 − λ1, . . . , xn − λn)].”
To begin with dimension 1, the affine line

A1
K = SpecK[x]

looks almost exactly like its classical counterpart, the algebraic variety
also called the affine line. It contains one closed point for each value λ ∈
K. The Zariski topology on the set of closed points is the same as the
classical Zariski topology on the variety: the open sets are the complements
of finite sets. The scheme A1 differs from the variety only in that the scheme
contains one more point, called the generic point of A1, corresponding to
the ideal (0).

(0)
(x) (x− λ)

The closure of the point (0) is all of A1
K , so that the closed subsets of A1

K

are exactly the finite subsets of A1
K − {(0)}.

The affine plane A2
K = SpecK[x, y] is also similar to its counterpart

variety, but now the additional points of the scheme are more numerous and
behave in more interesting ways. We have as before closed points, coming
from the maximal ideals (x − λ, y − µ), which correspond to the points
(λ, µ) in the ordinary plane. There are now, however, two types of nonclosed
points. To begin with, for each irreducible polynomial f(x, y) ∈ K[x, y] we
have a point corresponding to the prime ideal (f) ⊂ K[x, y], whose closure
consists of the point itself and all the closed points (λ, µ) with f(λ, µ) = 0.
The point (f) is called the generic point of this set; more generally, any
point in a scheme is called the generic point of its closure. As compared to
the variety A2

K , we have added one more point for every irreducible plane
curve. This new point lies in the closure of (the set of closed points on)
that curve, and its closure contains this set of closed points. Finally, we
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have as before a point corresponding to the zero ideal, the generic point of
A2
K , whose closure is all of A2

K .

(0) generic point of A
2

(x) generic point of the x-axis

(x−λ, y−µ)

(f(x, y)) generic point of the curve
(y)

Since K[x, y] = K[x]⊗K K[y], we have by definition

A2
K = A1

K ×SpecK A1
K .

Even here, though it’s clear that the fibered product is the correct notion of
product, the set of points of the fibered product is not the fibered product
of the sets of points of the factors.
The situation with the affine spaces AnK=SpecK[x1, . . . , xn] is a straight-

forward extension of the last case: geometrically, we can see the scheme AnK
as the classical affine n-space, with one point pΣ added for every positive-
dimensional irreducible subvariety Σ of n-space. As above, pΣ will lie in
the closure of the locus of closed points in Σ and contain in its closure all
these points, as well as the generic points of the subvarieties of Σ.
More generally, suppose X ⊂ AnK is any affine variety, with ideal I ⊂

K[x1, . . . , xn] and coordinate ring R = K[x1, . . . , xn]/I. We can associate
to X the affine scheme SpecR; the quotient map K[x1, . . . , xn] → R ex-
presses this as a subscheme of AnK . This scheme is, as in the case of AnK
itself, just like the variety X except that we have added one new generic
point pΣ for every positive-dimensional irreducible subvariety Σ ⊂ X.
Fibers, and more generally preimages, are among the most common ways

that schemes other than varieties may arise even in the context of classical
geometry.

Exercise II-2. Consider the map of the affine line SpecK[x] to itself in-
duced by the ring homomorphism K[x] → K[x] mapping x to x2. Show
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that the scheme-theoretic fiber over the point 0 is the subscheme of the
line defined by the ideal (x2).

Among all schemes, those associated to affine varieties over algebraically
closed fields may be characterized as spectra of rings R that are

– finitely generated

– reduced algebras

– over a field

– that is algebraically closed.

To get a sense of what more general schemes look like, and what they
are good for, we will in the remainder of this section and the next consider
what may happen if we remove these four restrictions. We will consider
primarily examples in which exactly one of the hypotheses fails, since an
understanding of these basic cases will enable one to understand the general
case; we will occasionally mention more complex examples in exercises.

II.1.2 Local Schemes

Our first collection of examples of schemes other than varieties is provided
by the spectra of local rings, called local schemes. The examples we will
consider here are spectra of rings that are reduced algebras over an alge-
braically closed field but not, in general, finitely generated. Local schemes
are for the most part technical tools in the study of other, more geomet-
ric schemes; they are often used to focus attention on the local structure
of an affine scheme. The extra points we have added to classical varieties
show up even more strikingly in the following examples, where in each case
there is only one closed point. It would, of course, be a mistake to try to
picture these schemes as geometric objects with just one point. Rather,
they should be seen as germs of varieties. The phenomenon of having only
one closed point is not some novelty invented by algebraists but is already
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present if one considers such a familiar object as the germ of a point x
on a complex analytic manifold; here one pictures a “sufficiently small”
neighborhood of x, in which, for example, each curve through x can be
plainly distinguished, even though no other definite points beside x belong
to every neighborhood. We will see that the same kind of picture is valid
for the spectrum of a local ring.
Consider first the localization K[x](x) of the ring K[x] at the maximal

ideal (x), and let X = SpecK[x](x). The space |X | has only two points:
the closed point corresponding to the maximal ideal (x), and the open
point corresponding to (0), which contains the point (x) in its closure. The
inclusion of K[x] in K[x](x) induces a map X → A1

K , so that we may think
of X as a subscheme of A1

K (though |X | is neither open nor closed in |A1
K |).

The subscheme X is “local” in that it is the intersection of all the open
subsets of A1

K containing the point (x); so that, for example, the regular
functions onX are exactly the rational functions on A1

K regular at the point
(x)—that is, they are the elements of OA1

K
(U) for some neighborhood U

of the point 0 = (x) in A1
K . In these senses, X is the germ of A1

K at the
origin.
Next, consider the scheme X = SpecR, where R = K[x, y](x,y) is the

localization of K[x, y] at the maximal ideal (x, y) corresponding to the
point (0, 0). As in the previous example, we have a map X → A2

K , in terms
of which we can think of X as the intersection of all open subschemes of A2

K

containing the closed point (0, 0). Again, X has only one closed point; but
now there are infinitely many nonclosed points, one for every irreducible
curve in the plane passing through the origin. Subschemes of X are thus
germs at (0, 0) of subschemes of A2

K and X itself is the germ of A2
K at the

origin.
There are analogous constructions in AnK , and more generally for any

subscheme of AnK : if X = SpecK[x, . . . , xn]/I ⊂ AnK is the scheme asso-
ciated to the affine variety with ideal I ⊂ K[x, . . . , xn] and m = (x1−a1,
. . . , xn−an) a maximal ideal corresponding to a closed point of X, we can
consider the scheme SpecK[x1, . . . , xn]m/Im as a germ of a neighborhood
of [m] in X. While we can talk about germs of functions on a space at a
point in many contexts, in scheme theory the germ is again a scheme in its
own right.
For some purposes, the local schemes introduced in this way are not

local enough; the local ring of a scheme at a point still contains a lot
of information about the global structure of the scheme. For example, the
germs of a nonsingular variety X at various closed points will not in general
be isomorphic schemes1, although if Xan denotes the complex analytic
variety defined by the same equations (or indeed any analytic manifold),

1This has nothing to do with schemes but is already the case for varieties over C: for
example, it is so already for the general plane curve of degree d ≥ 4.
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the germs of Xan at any two points are isomorphic. This phenomenon
occurs essentially because the open sets used to define the germs of X are
so big. To get a more local picture within the setting of schemes, we can
look at the schemes associated to power series rings: for example, instead
of looking at the germ X = SpecK[x, y](x,y) of a neighborhood of the
origin in A2

K above, we can consider the scheme Y = SpecK[[x, y]]. As in
the previous case, this scheme has one closed point [(x, y)] and one generic
point [(0)] whose closure is all of Y ; in addition, it has one point for every
irreducible power series

∑
ai,jx

iyj in x and y. The maps

K[x, y] ↪→ K[x, y](x,y) ↪→ K[[x, y]]

give maps Y → X → A2
K ; we think of the Y as a “smaller” neighborhood

of the origin than X. (Note, however, that X and Y are neither closed
subschemes nor open subschemes of A2

K .) For example, while the curve
corresponding to the prime ideal (y2−x3−x2) is irreducible in X, because
the curve in A2

K defined by this equation is, the preimage in Y of this curve
is the (nontrivial) union of two curves in Y , as long as the characteristic of
K is not 2, because x2 + x3 has the square root

u = x+ 1
2x

2 − 1
8x

3 + · · ·
in the power series ring. Thus we can factorize y2 − x3 − x2 as

y2 − x3 − x2 = (y − u)(y + u),

so the scheme SpecK[[x, y]]/(y2 − x3 − x2) is reducible. (See the figure on
the next page.)
Of course, Y must have “more” curves than X for such things to be

possible. The following exercise amplifies this fact.

Exercise II-3. (a) With u =
√
x2 + x3 as above, what is the image of

[(y−u)] in SpecK[x, y]? (Hint: it’s a prime ideal containing y2−x3−x2.)

(b) Show that the image of the point (y−∑
n≥1 x

n/n!) of Y is the generic
point of A2

K .

In general, under the map Y → X above, the inverse image of a point
corresponding to an irreducible curve C ⊂ A2

K consists of the set of analytic
branches of C at the origin. (See Walker [1950] or Brieskorn and Knörrer
[1986] for further discussion of branches.)
Here is yet another important example of a local scheme. One problem

with the scheme Y above is that the points described in Exercise II-3(b)
are extraneous from an algebraic point of view. To avoid this, we may work
with the spectrum Z of the ring H ⊂ K[[x, y]] of power series that satisfy
algebraic equations over K(x, y), the field of rational functions. Called the
Henselization of X , the scheme Z sits in between Y and X in the sense
that we have a series of maps

Y → Z → X → A2
K .
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SpecK[x, y]/(y2−x3−x2) ⊂
SpecK[x, y] is irreducible;

its preimage
SpecK[[x, y]]/(y2−x3−x2)
⊂ Spec K[[x, y]] is not.

The usefulness of this construction is thatH is the union of algebras finitely
generated over K, so that Z is the inverse limit of schemes coming from
ordinary varieties. Geometrically, Z is the germ of A2

K in the étale topology,
a concept we will not pursue here; see Artin [1971] for further information.

Exercise II-4. In the case K = C, how does the spectrum of the ring of
convergent power series fit into this picture?

II.2 Reduced Schemes over Non-Algebraically
Closed Fields

We now consider what happens when we look at the spectrum of a finitely
generated, reduced algebra over a field K that is not algebraically closed.
The interest in such structures came originally from number theory, and,
of course, it predates scheme theory very substantially! For example, the
study of rational quadratic forms, an old subject in number theory, can
be thought of as the study of varieties over the rational numbers defined
by a quadratic equation. Cubic forms in three variables over the rationals
still make up a very active number-theoretic research topic, now mostly
pursued through the theory of elliptic curves over Q. The basic objects
themselves are varieties over Q (or schemes over Z, a situation we’ll return
to later), but in the course of handling them, number theorists frequently
make use of all the base rings shown in the following diagram, along with
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many intermediate fields and rings:

Ẑ(p)
� Q̂p � Cp

Z(p)

�

Z

�

� Q

�

� R � C

�

Fp
�

� F̄p

The theory of schemes provides a particularly flexible and convenient frame-
work for handling these many changes of base. Also, a nice variety reduced
mod p may suddenly become something nonreduced—something that re-
quires the theory of schemes more fully (see for example Section II.4.4).
To start with the simplest case, consider A1

R = SpecR[x]. Using the
Nullstellensatz we see that there are two kinds of maximal ideals in R[x]:
those whose residue class field is R, which have the form (x−λ) for λ ∈ R,
and those whose residue class field is C, which have the form (x2 +µx+ν),
for µ and ν ∈ R with µ2 − 4ν < 0. The latter type of ideals may also be
written in the form ((x − z)(x − z̄)), for z ∈ C not real. A closed point
of A1

R thus corresponds either to a real number or to a conjugate pair of
nonreal complex numbers. Finally, A1

R has again a unique nonclosed point
corresponding to the prime (0), whose closure is all of A1

R .
Next, we turn to the affine plane over R, A2

R = SpecR[x, y], and consider
a closed point given by a maximal ideal m of R[x, y]. Again by the Null-
stellensatz the residue class field of m is either R or C, and the composite
map

R → R[x, y]/m ∼= (R or C)

is either the identity or the inclusion of R in C. Taking λ and µ to be the
images of x and y in C, we see that in the former case m = (x−λ, y−µ)
corresponds to the ordinary point (λ, µ) in R2. But in the latter case m
corresponds to both (λ, µ) and (λ̄, µ̄); put differently, the map R[x, y]→ C
sending x, y to λ, µ has the same kernel as the one sending x, y to λ̄, µ̄ since
they differ by the automorphism of C over R.
It is not difficult to give generators for the maximal ideals described

above. If R[x, y]/m ∼= R, then clearly m = (x−λ, y−µ). In the other
case, suppose first that λ is real. Then µ must satisfy an irreducible real
quadratic polynomial equation y2+ay+b = 0, so m contains the ideal
(x−λ, y2+ay+b). But this last ideal is immediately seen to be prime (for
example, by factoring out x−λ first), so m = (x−λ, y2+ay+b). Of course,
a similar result holds if the image of y is real.
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Finally, suppose that µ and λ are both nonreal. Then m contains the
irreducible polynomials f(x) and g(y) satisfied by µ and λ, but since g(y)
factors as

g(y) = (y−µ)(y−µ̄)
in R[x]/(f(x)) ∼= C the ideal (f(x), g(y)) is not prime! The picture here,
over the complex numbers, is as follows:

(λ, µ)(λ̄, µ)

(λ, µ̄)(λ̄, µ̄)

f(x) = 0

g(y) = 0

Im(µ)x−Im(λ) y = Im(µλ̄)

A line whose equation
has real coefficients

The loci defined by f(x) = 0 and g(y) = 0 are unions of two vertical and
two horizontal lines, respectively, and intersect in the four points (λ, µ),
(λ̄, µ), (λ, µ̄), and (λ̄, µ̄). But the polynomial

h(x, y) = Im(µ)x − Im(λ) y − Im(µλ̄)

defining the line joining the two points (λ, µ) and (λ̄, µ̄) has real coefficients.
The ideal

(f(x), h(x, y)) = (g(y), h(x, y)) ⊂ R[x, y]

thus strictly contains the ideal (f(x), g(y)); and this ideal is the maximal
ideal m we seek, as one checks by working in

R[x] ∼= R[x, y]/(h) ∼= R[y]

(for these isomorphisms, note that (µ̄−µ) and (λ̄−λ) are both nonzero).
In sum, then, the closed points of A2

R correspond either to points (λ, µ)
of A2

C with λ and µ real, or to (unordered) pairs of points (z, w) and
(z̄, w̄) ∈ A2

C with at least one of z, w not real. To put it another way, closed
points of A2

R correspond to orbits of the action of complex conjugation on
the points of A2

C . (Note, in particular, that the closed points of A2
R are not

ordered pairs of closed points of A1
R !) Observe also that the residue field is
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R at the points of A2
R corresponding to points (λ, µ) with λ, µ real, while

at points of A2
R corresponding to pairs of complex conjugate points of A2

C

the residue field is C.

Exercise II-5. Show that the nonclosed points of A2
R are all either

(a) [(0)], whose closure is all of A2
R , or

(b) the point [(f)] of A2
R corresponding to an irreducible polynomial f ∈

R[x, y].

Those of type (b) may or may not remain irreducible in C[x, y], so that
a nonclosed point (f) in A2

R will correspond either to a single nonclosed
point in A2

C (if f remains irreducible in C[x, y]) or to two nonclosed points
in A2

C (if f may be written as a product g ḡ with g ∈ C[x, y]). The closed
points in the closure of such a nonclosed point may be either of both types
above or only of the second. Give examples with all these possibilities.

The situation in general follows the lines of these examples: if K is any
field, K̄ its algebraic closure, and G = Gal(K̄/K) the corresponding Galois
group, the points of AnK correspond to orbits of the action ofG on the points
of AnK̄ (see, for example, Nagata [1962, Theorem 10.3]). The closed points
correspond to orbits of closed points, the orbits being finite. The residue
field at the point p corresponding to such an orbit, moreover, is isomorphic
to the fixed field of the action on K̄ of the subgroup Gp fixing a point of that
orbit. For example, the closed points of A1

Q correspond to algebraic numbers
modulo conjugacy; and for a prime number q ∈ Z the closed points of A1

Fq

correspond to the orbits of the Frobenius automorphism of the algebraic
closure of Fq = Z/(q) (namely, 0 and the orbits of the map a 
→ aq on the
multiplicative group K̄∗, which may be described as the inductive limit of
all cyclic groups of order prime to q or as the q-torsion-free part of Q/Z).

Exercise II-6. An inclusion of fields K ↪→ L induces a map AnL → AnK .
Find the images in A2

Q of the following points of A2
Q
under this map.

(a) (x−√2, y−√2)

(b) (x−√2, y−√3)

(c) (x−ζ, y−ζ−1), where ζ is a p-th root of unity, with p prime

(d) (
√
2x−√3y)

(e) (
√
2x−√3y−1)

Where feasible, draw pictures.

Exercise II-7. We say that a subscheme X ⊂ AnK is absolutely irreducible
or geometrically irreducible if the inverse image of X in AnK̄ is irreducible.
(More generally, we say any K-scheme X is absolutely irreducible if the
fiber product X ×SpecK Spec K̄ is irreducible.) Classify the following sub-
schemes of A2

Q = SpecQ[x, y] as reducible, irreducible but not absolutely
irreducible, or absolutely irreducible.



II.3 Nonreduced Schemes 57

(a) V (x2−y2)

(b) V (x2+y2)

(c) V (x2+y2−1)

(d) V (x+y, xy−2)

(e) V (x2−2y2, x3+3y3)

Finally, here is an example that combines the notions of local schemes and
schemes over non-algebraically closed fields. Classically, a plane curve X ⊂
A2

C was said to have a node at the origin if in some analytic neighborhood
of the origin the locus of complex points of Y consisted of two smooth arcs
intersecting transversely at (0, 0). In the language of schemes, this is the
same as saying that the fiber product of X with the formal neighborhood
SpecC[[x, y]]→ SpecC[x, y] = A2

C is isomorphic to SpecC[[u, v]]/(uv).
Consider now a curve in the real plane X ⊂ A2

R . We say in this case that
X has a node at the origin if the corresponding complex curve

X ×Spec R SpecC ⊂ A2
C

does. In this case, the formal neighborhood

X ×Spec R[x,y] SpecR[[x, y]]

may have either one of two nonisomorphic forms: it may be isomorphic
to SpecR[[u, v]]/(uv) or to SpecR[[u, v]]/(u2 + v2). The former is the case
if the locus of real points of X (that is, the locus of points with residue
field R) looks in an analytic neighborhood of (0, 0) like two smooth real
arcs intersecting transversely at (0, 0); classically, such a point was called a
crunode of X. The latter is the case if the origin is isolated as a real point
of X ; this was called an acnode in the past.

Exercise II-8. Verify the assertions made above: specifically, show that if
X is a curve in A2

C with a node at the origin, then the formal neighborhood
X ×Spec C[x,y] SpecC[[x, y]] is isomorphic to SpecC[[u, v]]/(uv); and that if
X ⊂ A2

R is a real plane curve with a node at the origin, then the formal
neighborhood X ×Spec R[x,y] SpecR[[x, y]] has one of the two forms above.
Show that there are infinitely many curvesX ⊂ A2

Q with nodes at the origin
having nonisomorphic formal neighborhoods. (As in the real case, we say
thatX ⊂ A2

Q has a node at the origin if the complex curveX×Spec QSpecC
does.)

II.3 Nonreduced Schemes

We now leave the realm of objects that could be treated in the theory of
varieties to look at some examples of affine schemes SpecR where R is a
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finitely generated algebra over an algebraically closed field K but may have
nilpotents. The phenomena here are much less familiar, and we will spend
rather more effort on them.
Schemes of this type arise already in quite simple geometric contexts: for

example, the multiple points treated below occur already as intersections
of two ordinary varieties and as “degenerate” fibers of maps, as in Exercise
II-2. One of the most important applications of nonreduced schemes is to
the theory of families of varieties: deformation theory and moduli theory.
We will explain how to take limits of one-parameter families of varieties,
and introduce the key notion of flatness. Finally, we will give some examples
of nonreduced schemes that are interesting objects in themselves.
To start with the easiest cases, we will focus first on subschemes of affine

space AnK supported at the origin—equivalently, given by ideals I whose
zero locus V (I) consists, as a set, just of (0, . . . , 0). (Recall that the support
of a scheme is the underlying topological space.)

II.3.1 Double Points

Example II-9. The simplest such scheme is the subscheme X of A1
K de-

fined by the ideal (x2)— that is, the scheme SpecK[x]/(x2), viewed as
a subscheme of A1

K via the map induced by the quotient map K[x] →
K[x]/(x2). This scheme has only one point, corresponding to the ideal (x),
but it differs, both as a subscheme of A1

K and as an abstract scheme, from
the scheme SpecK[x]/(x) = SpecK. As an abstract scheme, we can see
the difference in that there exist regular functions (such as x) on X that
are not equal to zero but that have value 0 at the one point of X ; of course,
any such function will have square 0. As a subscheme of A1

K , the difference
is that a function f ∈ K[x] on A1

K vanishes on X if and only if both f and
its first derivative vanish at 0. The data of a function on X thus consists of
the values at 0 of both a function on A1

K and its first derivative. Possibly
for this reason, X is sometimes called the first-order neighborhood of 0 in
A1
K .

More generally, for any n the ideal (xn) defines a subscheme X ⊂ A1
K

with coordinate ring K[x]/(xn); a function f(x) on A1
K vanishes on X if

and only if the value of f at 0 vanishes together with the values of the first
n− 1 derivatives of f .

Example II-10 (double points). The next step in understanding double
points is to consider subschemes of A2

K = SpecK[x, y] supported at the
origin and isomorphic to the scheme X of Example II-9. Let Y ⊂ A2

K be
such a subscheme, R = OY (Y ) ∼= K[ε]/(ε2) its coordinate ring, and

ϕ : K[x, y]→ R

the surjection defining the inclusion of Y in A2
K . Since the inverse image of

the unique maximal ideal m of R is the ideal (x, y) ⊂ K[x, y] corresponding
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to the origin, and since m2 = 0 in R, the map ϕ vanishes on (x, y)2 =
(x2, xy, y2) and so factors through a map

ϕ̄ : K[x, y]/(x2, xy, y2)→ R.

Equivalently, Y must be contained in the subscheme

SpecK[x, y]/(x2, xy, y2).

But the ring K[x, y]/(x2, xy, y2) is a three-dimensional vector space over
K, whereas R is only two-dimensional. It follows that the kernel of ϕ will
contain a nonzero homogeneous linear form αx + βy, for some α, β ∈ K.
Write

Xα,β = SpecK[x, y]/(x2, xy, y2, αx+βy) ↪→ A2
K .

The subscheme Xα,β can be characterized either as

(i) the subscheme of A2
K associated to the ideal of functions f ∈ K[x, y]

that vanish at the origin and have partial derivatives satisfying

β
∂f

∂x
− α

∂f

∂y
= 0

there (since this implies that f = c(αx+ βy) + higher-order terms); or

(ii) the image of the subscheme X ⊂ A1
K of Example II-9 under the inclu-

sion of A1
K in A2

K given by x 
→ (βx,−αx).
In the classical language, the subscheme Xα,β was said to consist of the

point (0, 0) and an “infinitely near point” in the direction specified by the
line defined by αx + βy = 0. We draw Xα,β as the small arrow in this
traditional picture:

αx+ βy = 0

This is intended to represent a point with a distinguished one-dimensional
subspace of the tangent space to the plane at that point (there is actually
no distinguished tangent vector, despite the impression given by the arrow).

How do schemes such as Xα,β arise in practice? One way is as intersec-
tions of curves. For example, when we want to work with the intersection of
a line L and a conic C that happen to be tangent, it is clearly unsatisfactory
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to take their intersection in the purely set-theoretic sense; a line and a conic
should meet twice. Nor is it completely satisfactory to describe C∩L as their
point of intersection “with multiplicity two”: for example, the intersection
should determine L, as it does in the non-
tangent case. The satisfactory definition
is that C ∩L is the subscheme of A2

K de-
fined by the sum of the ideals IC and IL so
that, for example, the line y = 0 and the
parabola y = x2 will intersect in the sub-
scheme X0,1 = SpecK[x, y]/(x2, y). This
does indeed determine L, as the unique
line in the plane containing X0,1.

Another important way in which subschemes such as Xα,β arise is as
limits of reduced schemes. For example, consider a pair of distinct closed
points (0, 0) and (a, b) in the plane. Their union is the closed subscheme

X = {(0, 0), (a, b)} = SpecS ⊂ A2
K ,

where
S = K[x, y]/((x, y) ∩ (x− a, y − b))

= K[x, y]/(x2 − ax, xy − bx, xy − ay, y2 − by).

By the Chinese Remainder Theorem, S ∼= K ×K; so in particular, S is a
K-algebra of (vector space) dimension 2 over K.
Now suppose the point (a, b) moves toward the point (0, 0) along a curve

(a(t), b(t)), with (a(0), b(0)) = (0, 0), where a and b are polynomials in t;
we write

a(t) = a1t+ a2t
2 + · · · , b(t) = b1t+ b2t

2 + · · · .

(a(t), b(t))

What should be the limit of Xt = {(0, 0), (a(t), b(t))} as t → 0? Using
schemes, we can afford the luxury of the idea that it will continue to be two
points, in a suitable sense: it will be an affine scheme X whose coordinate
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ring is again a two-dimensional vector space over K. We may define X by
taking its ideal to be the limit as t→ 0 of the ideal

It = (x, y) ∩ (x− a(t), y − b(t)).

Of course, this only shifts the burden to describing what is the limit of a
family of ideals! But this is easy: in the current case, for example, we can
take their limit as codimension-2 subspaces of K[x, y], viewed as a vector
space over K. That this limit is again an ideal follows from the continuity
of multiplication. A more delicate description is necessary in the general
case, where the ideals are of infinite codimension; we will discuss this below
when we come to limits of families of one-dimensional schemes and again
in Section III.3.2 in the projective case.
To see what this means in practice, observe first that the generators

x2 − a(t)x, xy − b(t)x, xy − a(t)y, and y2 − b(t)y of the ideal It clearly
have as their limit when t→ 0 the polynomials x2, xy, xy, and y2, so these
polynomials will be in I. In addition, observe that It contains the linear
form

a(t)y − b(t)x = (xy−b(t)x)− (xy−a(t)y)

and hence, for t �= 0, also the polynomial

a(t)y − b(t)x
t

= a1y − b1x+ t(. . .).

The ideal I thus contains the limit a1y−b1x of this polynomial as well; so we
have I ⊃ (x2, xy, y2, a1y − b1x). But the right-hand side of this expression
already has codimension 2 as a vector subspace in the polynomial ring
K[x, y]. Thus I = (x2, xy, y2, a1y − b1x), and correspondingly

lim
t→0

(Xt) = Xα,β with α = b1, β = −a1.

From this we see that X, as a
subscheme of A2

K , “remembers” the
direction of approach of (a(t), b(t));
we think of it as consisting of the
origin together with a tangent di-
rection, along the line with equa-
tion a1y− b1x = 0. This line is the
limit of the lines Lt joining (0, 0) to
(a(t), b(t)); that is, it is the tangent
line to the curve parametrized by
(a(t), b(t)) at the origin, as shown
on the right.
We will see how to generalize this notion of limit in Section II.3.4.
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II.3.2 Multiple Points

The subschemes Xα,β of the preceding examples are called “double points”
in the plane, the double referring to the vector space dimension of their
coordinate rings

R = K[x, y]/(x2, xy, y2, αx+βy) ∼= K[t]/(t2)

as K-modules. In general, if X = SpecR is an affine scheme and R is a
finite-dimensional vector space over a field K, we define the degree of X
relative to K, denoted degK(X) or simply deg(X), to be the dimension of
R as a K-vector space. (Where there is unlikely to be ambiguity about the
field K, we may suppress it in both the language and the notation.) In this
situation we call SpecR a finite K-scheme.

We next consider examples having degree 3 or more. A number of things
are different here. To begin with, all double points over an algebraically
closed field K—that is, schemes of the form SpecR, where R is a local
K-algebra of vector space dimension 2—are isomorphic, since such an R
must be isomorphic to K[x]/(x2). (Proof: Let m be the maximal ideal of
R. Then R/m ∼= K, since K has no finite-dimensional extension. Since R
is two-dimensional, m is one-dimensional. Also m2 = 0—for example, by
Nakayama’s Lemma—so the obvious map from K[x] onto R has x2 in the
kernel and identifies R with K[x]/(x2) as required.) By contrast, this is not
true of triple points: the schemes

SpecK[x]/(x3) and SpecK[x, y]/(x2, xy, y2)

are readily seen to be nonisomorphic. However, any triple point is isomor-
phic to either of these, a fact whose proof we leave as the following exercise.

Exercise II-11. Suppose that K is algebraically closed, and let Z =
SpecK[x1, . . . , xn]/I ⊂ AnK be any subscheme of dimension 0 and de-
gree 3, supported at the origin. Show that Z is isomorphic either to X =
SpecK[x]/(x3) or to

Y = SpecK[x, y]/(x2, xy, y2),

and X,Y are not isomorphic to each other.

In particular, any ring K[x1, . . . , xn]/I of vector space dimension 3 over
K can be generated over K by two linear forms in the xi. In geometric
terms, this says that any triple point in AnK is planar— that is, lies in a
linear subspace A2

K ⊂ AnK . Inside A2
K both types of triple points can be

realized as limits of triples of distinct points. The ones isomorphic to X
above may be obtained from three points coming together in the plane along
a nonsingular curve, while those isomorphic to Y above arise when two
points approach a third from different directions. The following exercises
contain examples of these phenomena.
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Exercise II-12. (i) Show that the subscheme of A2
K given by the ideal

(y−x2, xy) arises as the limit of three points on the conic curve y = x2

and is isomorphic to X above, but is not contained in any line in A2
K .

(i) (ii)

(ii) Show that subschemes of A2
K isomorphic to Y above arise when two

points approach a third from different directions.

Exercise II-13. (For those familiar with the Grassmannian.) The exam-
ples above may lead one to expect that the schemes isomorphic to X are
limits of those isomorphic to Y. In fact, just the opposite is the case, in the
following sense. Let H be the set of finite subschemes of degree 3 of A2

K

supported at the origin; H naturally parametrized by a closed subscheme
of the Grassmannian of codimension-3 subspaces of the six-dimensional
vector space K[x, y]/(x, y)3. Show that H is a surface, with one point cor-
responding to the unique subscheme SpecK[x, y]/(x2, xy, y2) isomorphic to
Y and the rest corresponding to subschemes isomorphic to X. Show that
the scheme H is isomorphic to a two-dimensional cubic cone in P3

K , and
that the vertex is the one point corresponding to Y.

Exercise II-14. Let C be the subscheme of AnK given by the ideal

J = (x2 − x2
1, x3 − x3

1, . . .).

A closed point in C is of the form f(t) = (t, t2, t3, . . . , tn), for t ∈ K;
that is, it has ideal (x1−t, x2−t2, . . .). Consider for t �= 0 the three-point
subscheme

Xt = {f(0), f(t), f(2t)} ⊂ C.

(a) Show that the limit scheme as t→ 0 is

X0 = SpecK[x1, . . . , xn]/(x2 − x2
1, x1x2, x3, x4, . . . , xn)

and is isomorphic to the triple point SpecK[x]/(x3) above.

(b) Show, however, that X0 is not contained in the tangent line to C at
the origin. Rather, the smallest linear subspace of AnK in which X0 lies
is the osculating 2-plane

x3 = x4 = · · · = xn = 0
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to C (recall that this is by definition the limit of the planes spanned by
the tangent line and another point on C near the origin as the point
approaches the origin), while the tangent line to C is the smallest linear
subspace of AnK containing the subscheme defined by the square of the
maximal ideal in the coordinate ring of X0. Thus, in this sense, X0

“remembers” both the tangent line and the osculating 2-plane to C.

Exercise II-15. Consider for t �= 0 the subschemes

Xt = {(0, 0), (t, 0), (0, t)} ⊂ A2
K ,

each consisting of three distinct points in A2
K .

(a) Show that the limit scheme as t→ 0 is

X0 = SpecK[x, y]/(x2, xy, y2).

(b) Show that the restriction of a function f ∈ K[x, y] on A2
K to X0 de-

termines and is determined by the values at the origin of f and its
first derivatives in every direction; thus we think of it as a first-order
infinitesimal neighborhood of the point (0, 0).

(c) Show thatX0 is contained in the union of any two distinct lines through
(0, 0).

(d) Show that X0 is not contained in any nonsingular curve and thus, in
particular, is not the scheme-theoretic intersection of any two nonsin-
gular curves in A2

K .

As we said, both types of triple point are contained in planes inside
any affine space in which they are embedded. But the quadruple point
SpecK[x, y, z]/(x, y, z)2 is not, since its maximal ideal cannot be gener-
ated by two elements. Other new phenomena occur for spatial multiple
points— those not contained in the plane—and multiple points in higher-
dimensional spaces. For example, not every point of degree 21 in 4-space
arises as a limit of sets of 21 distinct points, as the following exercise shows.
(See also Iarrobino [1985].)

Exercise II-16. Consider zero-dimensional subschemes Γ ⊂ A4
K of degree

21 such that

V (m3) ⊂ Γ ⊂ V (m4),

where m is the maximal ideal of the origin in A4
K . Show that there is an

84-dimensional family of such subschemes, and conclude that a general one
is not a limit of a reduced scheme.

Exercise II-17. Classify up to isomorphism subschemes of A2
K of dimen-

sion 0 and degrees 4 and 5 with support at the origin. Which are isomorphic
as schemes over SpecK?
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Exercise II-18. A scheme SpecR supported at a point is called curvilin-
ear if the maximal ideal of the (necessarily local) ring R is generated by one
element; or, equivalently, if its Zariski tangent space has dimension zero or
one. (The name comes from the fact that these are exactly the schemes that
can be contained in a nonsingular curve.) Show that any two subschemes
of A2

K having degree 2 and supported at a point can be transformed into
one another by a linear transformation of the plane, but that this is not
possible for curvilinear schemes of length 3. (Note, however, that any two
curvilinear subschemes of A2

K of the same degree can be carried into one
another by an automorphism of A2

K .)

Exercise II-19. (For those with some familiarity with curves.) There are
infinitely many isomorphism types of degree-7 subschemes supported at
the origin in 3-space and infinitely many types of degree-8 subschemes
supported at the origin in the plane.

As might be expected, the behavior of nonreduced schemes over non-
algebraically closed fields is more complex. The following exercise gives an
example.

Exercise II-20. Classify all schemes of degree 2 and 3 over R supported
at the origin in A2

R . In particular, show that while any such schemeX whose
complexification X ×Spec R SpecC is isomorphic to SpecC[x]/(x3) is itself
isomorphic to SpecR[x]/(x3), there are exactly two nonisomorphic schemes
X whose complexification is isomorphic to SpecC[x, y]/(x2, xy, y2).

Degree and Multiplicity. Recall that on page 62 we defined the degree
of a finite affine K-scheme X = SpecR, where R is a finite-dimensional
vector space over some field K, as the dimension of R over K. When K
is algebraically closed, the degree of such a scheme X measures, in some
sense, its nonreducedness. As the last exercise shows, however, this is not
true in general: SpecC is reduced, but has degree 2 as a scheme over R.
There is an alternative concept, called the multiplicity, which measures

the nonreducedness of X . Unlike the degree, which is a relative notion
dependent on the specification of a base field K ⊂ R, the multiplicity is
an invariant of X alone, and it is defined in a more general situation—
we will define it here for any local ring R that has Krull dimension zero
(equivalently, any local Artinian ring).
So let R be any zero-dimensional local ring, with maximal ideal m. It is

possible to choose ideals of R, say

R ⊃ m = I1 ⊃ I2 ⊃ · · · ⊃ Il−1 ⊃ Il = 0

such that each successive quotient Ij/Ij+1 is isomorphic to R/m as an
R-module. (For example, we could start with the coarser filtration

R ⊃ m ⊃ m2 ⊃ · · · ⊃ 0
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and refine it by choosing arbitrary subspaces of the R/m-vector spaces
mj/mj+1.) Though such a filtration is not unique, the length l is indepen-
dent of the filtration chosen; we define the multiplicity or length of the ring
R and of the zero-dimensional scheme X to be the number l (see for ex-
ample Eisenbud [1995, Section 2.4]). Notice that in the original situation,
when R is an algebra over a field K, finite-dimensional as a vector space
over K, the residue field R/m = κ is a finite extension of K and we have
the relation

degK(X) = [κ : K] mult(X).

For any zero-dimensional scheme X and point p ∈ X we define the
multiplicity of X at p, denoted multp(X), to be the multiplicity of the
local ring OX,p; if X is a finite K-scheme, the degree of X relative to K is
given by

degK(X) =
∑
p∈X

[κ(p) : K] multp(X).

In Chapter III we will see how the notions of degree and multiplicity may
each be extended to positive-dimensional schemes.

II.3.3 Embedded Points

We now consider some examples of nonreduced schemes of higher dimen-
sion; for simplicity we will restrict ourselves to the case where the under-
lying reduced scheme is a line. Even so, the variety of possible behaviors
increases enormously; for example, we can have schemes that look like
reduced schemes except at a point, or schemes that are everywhere nonre-
duced. In this subsection, we consider the former type. By way of termi-
nology, we will say that a scheme X = SpecK[x1 . . . , xn]/I ⊂ AnK has an
embedded component if for some open subset U ⊂ AnK meeting X in a dense
subset of X the closure of X ∩ U (as defined in Section I.2.1 above) does
not equal X ; or if, equivalently, the primary decomposition of the ideal I
contains embedded primes (see the discussion of primary decomposition
that follows). If the embedded prime is maximal—equivalently, if U may
be taken to be the complement of a point—we talk about an embedded
point ; since the schemes X we will discuss below are all one-dimensional,
this is all we will see.
The simplest example of a nonreduced scheme that is reduced except at

one point is X = SpecK[x, y]/(y2, xy) ⊂ A2
K . The ideal I = (y2, xy) ⊂

K[x, y] is the ideal of functions on the plane vanishing along the line y = 0
and in addition vanishing to order 2 at the point (0, 0); in algebraic terms,
this means that (y2, xy) = (y) ∩ (x, y)2. We can thus think of the scheme
X as the line y = 0 with the proviso that a function f on X is defined by
its restriction f(x, 0) to the line y = 0 together with the specification of its
normal derivative at the point (0, 0)— that is, together with the number
∂f/∂y(0, 0).
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It is convenient to realize X as the union of the line defined by y = 0
with a nonreduced point— for example, the “first-order neighborhood of
the origin” defined by the ideal (x2, xy, y2).

Such primary decompositions exist for any scheme: we briefly review
the background from algebra. For more details see, for example, Eisenbud
[1995; Atiyah and Macdonald [1969], or, for perhaps the gentlest treatment
of all, Northcott [1953].

Primary Decomposition. Given any ideal I in a Noetherian ring R, we
define the associated prime ideals of I to be the prime ideals p such that p
is the annihilator of some element of R/I. These primes make up a finite
set.
An ideal q ⊂ p is called primary to p if p is the radical of q (the set of

elements having a power in q) and for any elements f, g in R with fg ∈ q
but f �∈ p we have g ∈ q; equivalently, q is p-primary if p is its radical and
the localization map R/q → Rp/qRp is a monomorphism.
Any ideal I may be expressed as the intersection of primary ideals. Since

the intersection of ideals primary to a given prime ideal is again primary
to that prime, I can even be expressed as an intersection of ideals that are
primary to distinct prime ideals. If this is done in such a way that none of
the primary ideals can be left out, the expression is called a primary decom-
position of I. The primary ideals involved are called primary components
of I.
The associated primes of I are exactly the radicals of the primary com-

ponents. The primary component of I corresponding to a given associated
prime is not uniquely determined by I; it is, however, so determined if the
corresponding prime is minimal among the associated primes. Such primary
components are called isolated components.

Example II-21. Taking I = (y2, xy) as above, the decomposition

I = (y) ∩ (x, y)2

already given expresses I as an intersection of primary ideals (the first is
prime, the second is primary to (x, y)).

Since neither (y) nor (x, y)2 can be omitted from this expression, it is a
primary decomposition and the associated schemes of X (as defined below)
are precisely the line Xred and the reduced point at the origin. The primary
component associated to (x, y) in the decomposition is not unique; it could
have been taken to be (x, y2), or (x+y, y2), or indeed any of an infinite
number of other such ideals, as well as their intersection (x2, xy, y2), or
for that matter the ideal (xn, xy, y2) for any n ≥ 2. Of course, the primary
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component (y) corresponding to (y) is unique, becauseXred is not contained
in any other associated scheme.
Despite this nonuniqueness, there is a well-defined length for the primary

component corresponding to a given associated prime p, which may be
computed, without choosing a primary decomposition, as the length of the
largest ideal of finite length in the ring Rp/IRp. Here the length of a module
M is the maximal length l of a chain

M � M1 � M2 � · · · � Ml−1 � Ml = 0

of submodules of M.

Exercise II-22. The length of the primary component of (xy, y2) at the
origin is 1.

It is easy to translate these matters into the geometry of schemes: any
affine scheme X = SpecR, where R is Noetherian, is the union of “pri-
mary” closed subschemes, called primary components, where a primary
affine scheme is an affine scheme Y such that Yred is irreducible and such
that, if f, g are functions on Y,

fg vanishes on Y but
f does not vanish on Yred

}
=⇒ g vanishes on Y.

In such a primary decomposition of X, the components that are set-theore-
tically maximal—called isolated components—are unique. The others—
called embedded components, because their supports are contained in larger
components—are not unique. Nonetheless, the decomposition does have at
least two nice uniqueness properties:

(1) The set of reduced subschemes associated to primary components in
a minimal primary decomposition is unique; this is called the set of
associated schemes to X.

(2) The “length” of the primary component associated to each of the asso-
ciated schemes of X, called the multiplicity of that associated scheme
in X, is unique.

We may use our example X = SpecK[x, y]/(y2, xy) to illustrate these
notions: we have already observed that X is the union of the line

Xred = SpecK[x, y]/(y)

and the multiple point

Y := SpecK[x, y]/(x2, xy, y2)

and we have seen that this gives a primary decomposition, the multiplicity
of the embedded subscheme at the origin being 1.
As we observed, we can write X in many different ways as the union

of a line and a point: for example, for any α �= 0, we have X = Y ∪ Z,
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where Z = Xred = SpecK[x, y]/(y) is the line and Y is, in the notation of
Section II.3.1, the subscheme X1,α:

Y = SpecK[x, y]/(x2, xy, y2, x+αy).

Choosing two such subschemes Y, Y ′ gives an example of closed subschemes
Y, Y ′ and Z in A2

K such that

Y ∪ Z = Y ′ ∪ Z and Y ∩ Z = Y ′ ∩ Z, but Y �= Y ′.

In the example above,X can be described as the unique subscheme of A2
K

consisting of the (reduced) x-axis plus an embedded point of multiplicity 1
at the origin. But embedded points can carry geometric information, too.

Exercise II-23. Choose a linear embedding of A2
K in A3

K , let P be the
image of A2

K , and let X ′ be the image of X. Show that X ′ determines P
as the unique plane in A3

K containing X ′.

It is also interesting to consider subschemes of A2
K and A3

K supported
on a union of two given lines, with an embedded point of multiplicity 1 at
the intersection of the two lines. In the plane, if we take the two lines to
be the coordinate axes, such a scheme may be given as

X = SpecK[x, y]/(x2y, xy2).

Geometrically, this may be viewed as the union of the two lines defined by
xy = 0 with the point SpecK[x, y]/(x3, x2y, xy2, y3). In 3-space, if we take
the lines to be (x = z = 0) and (y = z = 0), we can get such a scheme
either as

Y1 = SpecK[x, y, z]/(z, x2y, xy2)

or as
Y2 = SpecK[x, y, z]/(z2, xz, yz, xy).

Y1 is the image of the scheme X above under the embedding of A2
K into

A3
K as the plane z = 0, whereas Y2 is the union of the two lines with the

subscheme of A3
K defined by the square of the maximal ideal of the origin

in A3
K .

Exercise II-24. (a) Show that Y1 �∼= Y2.

(b) Show that Y1
∼= X is, up to isomorphism, the unique example contained

in a plane of two lines meeting in a point and having an embedded point
of multiplicity 1 at that intersection point.

(c) Show that Y2 is, up to isomorphism, the unique example contained in
3-space but not in any plane of two lines meeting in a point and having
an embedded point of multiplicity 1 at that intersection point.

One justification for the idea that the multiplicity of the embedded point
at the origin in our scheme X = SpecK[x, y]/(xy, y2) is 1 is that X is the
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limit as t→ 0 of the family of subschemes

Xred ∪ Yt ,

where Yt is the scheme consisting of one reduced point

SpecK[x, y]/(x, y−t) ⊂ A2
K .

This is plausible since the ideal

(x, y−t) ∩ (y) = (xy, y2−ty)
of Xred ∪ Yt naturally seems to approach (xy, y2) at t → 0. However, the
notion of limit that we introduced earlier is not quite strong enough to deal
with this example, since the ideal (x, y−t)∩ (y) of Xred ∪Yt is not of finite
codimension. In the next section we will rectify this, describing the general
context for taking limits of schemes.

II.3.4 Flat Families of Schemes

The notion of a family of schemes is extremely general: we define a family of
schemes to be simply a morphism π : X → B of schemes! The individual
schemes in the family are the fibers of π over points of B. This notion
includes all others that one can think of, such as a scheme defined by
“equations with parameters”, B being the space on which the parameters
vary.
However, the notion of a family as an arbitrary morphism π : X → B is

so general as to be virtually useless, because the fibers of the family may
have nothing in common. For example, given such a family and a closed
point b ∈ B, one could make a new family by replacing X by the disjoint
union of X−π−1b and some other scheme Y, sending all of Y to b. Thus we
must add some condition if we wish to have families of schemes that vary
continuously, in some reasonable sense. What “reasonable” should mean
is not obvious. It seems natural at least to ask that it include the mother
of all continuously varying families, the family of projective plane curves
of a given degree (see Section III.2.8). Other examples are the families
of schemes defined by families of ideals of constant finite codimension in
a polynomial ring, as we considered in the context of limits of multiple
points.
In many geometric theories one gets the right notion of a continuously

varying family by demanding some local triviality of the family; that is,
locally, in some suitable sense, the family should look like the projection of
a direct product to one factor. This is wrong for us on two counts. First,
if we do this naively for schemes, interpreting locally as meaning locally
in the Zariski topology, we get a notion that is far too restrictive to be of
much use. A more sophisticated approach would be to demand this local
triviality analytically; that is, to demand that if x ∈ X and b = π(x),
then the completion of the local ring OX,x should look like a power series
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ring over the completion of the local ring OB,b. This notion is quite useful
(it is called smoothness), but it excludes, for example, the family of plane
curves of a given degree, since a smooth family can’t have singular fibers.
Smoothness also excludes the families treated in the previous section, in
which a disjoint union of distinct points approaches a multiple point; at the
multiple point, the criterion is not met. Thus we must look for something
more general.
The best current candidate for such a general notion is that of flatness.

In order to motivate this definition, we consider first the more intuitive
notion of limits.

Limits. The starting point for understanding the geometric content of
flatness is the notion of the limit of a one-parameter family of schemes.
To set this up, we start with something fairly concrete: A family of

closed subschemes of a given scheme A over a base B is a closed subscheme
X ⊂ B × A, together with the restriction to X of the projection map
B×A→ B; the fibers ofX over b ∈ B are then naturally closed subschemes
of the fibers Ab of B ×A over B.
Let B be a nonsingular, one-dimensional scheme—typically, we think

of SpecR, where R = K[t], K[t](t) or K[[t]], but any Dedekind domain
(including Z or Z(p)) will do. Let 0 ∈ B be any closed point, and write
B∗ = B \ {0} for the complement of 0 in B. Let AnB and AnB∗ be as usual
affine n-space over B and B∗ respectively.
We consider a closed subscheme X ∗ ⊂ AnB∗ = AnZ × B∗, which we

view as a family of closed affine schemes parametrized by B∗ —that is, for
any point b ∈ B∗ we let Xb = π−1(b) be the fiber of the projection map
π : X ∗ → AnB∗ → B∗, and consider these schemes Xb as the members of
a family. (In case B = SpecR with R = K[t] or K[t](t) we can think of
X ∗ as a “family of subschemes of AnK varying with parameter t”.) We ask
the basic question: what is the limit of the schemes Xb as b approaches the
point 0?

X ∗

B∗

A
n
B
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The answer— the only possible answer— is simple enough: since the
limit of the schemes Xb in any reasonable sense must fit into a family
with them, we take X ⊂ AnB to be the closure X ∗ of X ∗ in AnB, and take
the limit limb→0 Xb of the schemes Xb to be the fiber X0 of X over the
point 0 ∈ B.
To make this more concrete, if B = SpecR is affine and t ∈ R a generator

of the maximal ideal m ⊂ R corresponding to the point 0 ∈ B (so that B∗ =
SpecR[t−1]), and I(X ∗) ⊂ R[t−1][x1, . . . , xn] is the ideal of X ∗ ⊂ AnB∗ ,
then the ideal of the subscheme X ⊂ AnB is the intersection

I(X ) = I(X ∗) ∩R[x1, . . . , xn].

To be even more concrete, if we take B = SpecK[t], the limiting scheme
X0 ⊂ AnK is cut out by the limits of polynomials vanishing on the schemes
Xt—in other words, if we view the ideals I(Xt) ⊂ K[x1, . . . , xn] as linear
subspaces of the K-vector space K[x1, . . . , xn] and let V ⊂ K[x1, . . . , xn]
be the limiting position of the planes I(Xt), the ideal I(X0) is generated
by V. Thus this definition of limit generalizes the naive notion used in
Section II.3.1.
For example, take B = SpecK[t] and B∗ = B \{0} = SpecK[t, t−1], and

letXt be the subscheme of A1
K consisting of the two points with coordinates

t and −t—that is, take X ∗ = V (x2 − t2) ⊂ SpecK[t, t−1][x] = A1
B∗ .

Then the closure X of X ∗ in AnB is given again as X = V (x2 − t2) ⊂
SpecK[t][x] = A1

B, and the fiber X0 of X over the point 0 ∈ B is simply
the double point X0 = V (x2) ⊂ A1

K .
The notion of the limit of a family of schemes X ∗ ⊂ AnB∗ depends very

much on the embedding in AnB∗ , not just on the abstract family X ∗ → B∗.
Thus, in the preceding example, the schemes Y ∗ = V (x2 − 1) and Z ∗ =
V (x2−t−2) ⊂ SpecK[t, t−1][x] = A1

B∗ are isomorphic as B∗-schemes to the
scheme X ∗, but the limit of Y ∗ is the two reduced points V (x2−1) ⊂ A1

K

and that of Z ∗ is the empty set.

Examples. The examples of limits we have encountered up to now have all
involved limits of zero-dimensional schemes. Here are a couple of examples
involving positive-dimensional ones. They are instructive also because they
illustrate how embedded points arise naturally in limits of varieties.
The first example is that of three lines through the origin in affine 3-

space A3
K over a field K. We take the three coordinate axes, rotate one

down until it lies in the plane of the other two, and ask what is the limit
of this family. Specifically, in A3

K = SpecK[x, y, z] we let L = V (y, z) be
the x-axis and M = V (x, z) the y-axis, and let Nt be the line

Nt = V (x−y, z−tx).
For t �= 0 we let Xt = L ∪M ∪ Nt. The curves {Xt}t�=0 form a family
X ∗ ⊂ A3

B∗ over the base B∗ = SpecK[t, t−1], and we ask for the limit X0

of this family.
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This is straightforward to calculate, though the answer may initially be
surprising. The ideal of the union of the three coordinate axes is (xy, xz, yz),
so the ideal of the scheme Xt for t �= 0 is generated simply by products of
linear forms:

I(Xt) = (Q1, Q2, Q3),

where
Q1 = z (z − tx),
Q2 = z (z − ty),
Q3 = (z − tx)(z − ty).

When we let t go to zero, we see that the ideal of the limiting scheme
contains z2, the common limit of Q1, Q2 and Q3. In addition, for t �= 0
the ideal I(Xt) contains Q1 −Q3 = tyz − t2xy and Q2 −Q3 = txz − t2xy.
Thus, for t �= 0 the ideal contains

Q1 −Q3

t
= yz − txy and

Q2 −Q3

t
= xz − txy,

and hence the ideal of the limiting scheme X0 contains xz and yz. Finally,
the ideal of Xt contains

x
Q1 −Q3

t
− y

Q2 −Q3

t
= txy (x− y),

and hence the ideal of the limiting scheme contains xy (x − y). Thus we
have

I(X0) ⊃
(
xz, yz, z2, xy (x−y))

and we claim that in fact this is an equality. We will establish this in a
moment, but before we do we should point out the striking fact about this:
the limit scheme X0 of the family of schemes {Xt = L∪M ∪Nt}t�=0 is not
simply the union L ∪M ∪N0. In fact, the ideal of the union is

I(L ∪M ∪N0) =
(
z, xy (x−y)),

so that
I(X0) = I(L ∪M ∪N0) ∩ (x, y, z)2.

In other words, the limit scheme X0 has an embedded point at the origin.
In fact, it’s not hard to see this directly, which in turn allows us to prove

the equality I(X0) = (xz, yz, z2, xy (x−y)): the schemes Xt all have three-
dimensional Zariski tangent space at the origin (0, 0, 0) ∈ A3

K , so X0 must
as well, because if X ⊂ AnB is any closed subscheme and σ : B → X any
section of X → B, the dimension of the Zariski tangent space Tσ(b)X is
an upper-semicontinuous function of b ∈ B. This in turn implies that

I(X0) ⊂ I(L ∪M ∪N0) ∩ (x, y, z)2 =
(
xz, yz, z2, xy (x−y)),

from which equality follows.
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A similar example is the limit of the scheme consisting of two disjoint
lines in A3

K as the lines move to meet in a single point. As the following
exercise shows, their limit actually has an embedded point at the point of
intersection:

Exercise II-25. Let Lt be the line in A3
K defined by the ideal (y, z−t)

and M be the line defined by (x, z); for t �= 0 let Xt be their union. Show
that the limit of Xt as t→ 0 is the scheme

X0 = SpecK[x, y, z]/(z2, xz, yz, xy).

y = z − t = 0 x = z = 0

Xt

y = z = 0

x = z = 0

X0

The following exercise shows that the appearance of the embedded point
in the limit is no accident:

Exercise II-26. (a) Show that there does not exist a family of lines Lt ⊂
A3
K disjoint from M = V (x, z) parametrized by B∗ = SpecK[t, t−1]

such that the limit of M ∪ Lt as t→ 0 is the reduced scheme

X = SpecK[x, y, z]/(z, xy).

(b) Similarly, show that there does not exist a family of lines Lt ⊂ A3
K

parametrized by B∗ = SpecK[t, t−1] such that the limit of M ∪ Lt as
t→ 0 is the scheme

X = SpecK[x, y, z]/(z, x2y, xy2).

Note that in these two examples, as well as those analyzed earlier, the
limit of a union of schemes properly contains the union of their limits. We
will return to this in Chapter V.
Taking the limit of a one-parameter family of subschemes of a given

scheme is a fundamental operation in algebraic geometry. In the examples
occurring throughout the remainder of this book, we will calculate the
ideals of such limits by ad-hoc methods, as we’ve done here. But there
is a general algorithm, best carried out by machines, for performing this
computation. For example, suppose that the base B = SpecK[t], and we
have an ideal I ⊂ K[t][x1, . . . , xn] such that for λ �= 0 the scheme Xλ ⊂
AnK is defined by the ideal

Iλ = (I, t−λ)/(t−λ) ⊂ K[t][x1, . . . , xn]/(t− λ) ∼= K[x1, . . . , xn].
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Then we define an ideal J ⊂ K[t][x1, . . . , xn] by setting

J =
⋃
k

(I : tk);

that is, J is the ideal of polynomials f(t, x1, . . . , xn) such that tkf ∈ I
for some k. This can be computed using Gröbner bases; see Eisenbud [1995,
Chapter XV].

Flatness. The preceding discussion suffices to describe the notion of a
continuously varying family of subschemes of a fixed scheme A (such as
affine or projective space) over a nonsingular one-dimensional base: we say
such a family X ⊂ B × A is continuous if each fiber is the limit of nearby
ones. This notion is still too restrictive, however: it does not suffice, for
example, if the base B is nonreduced, a case that turns out to be of great
utility. To extend the notion to the most general setting, Serre introduced
the following notion:

Definition II-27. A module M over a ring R is flat if for every monomor-
phism of R-modules A→ B the induced map M ⊗RA→M ⊗RB is again
a monomorphism.

In particular, any free module is flat; and thus if R is a field, every module
is flat. It is not hard to show that if R is a Dedekind domain, thenM is flat
if and only if M is torsion-free. We next make the corresponding geometric
definition:

Definition II-28. A family π : X → B of schemes is flat if for every point
x ∈ X the local ring OX,x, regarded as an OB,π(x)-module via the map π#,
is flat.

This notion is general enough to include the families of plane curves of
given degree but restrictive enough so that the varieties in a flat family have
a lot in common. It is really quite satisfactory, except for the fact that—
initially, at least— it does not seem to be a very “geometric” property. In
fact, however, it is the most natural— indeed, the only possible—extension
of the naive notion of limits introduced above! We will establish this fact,
and then go on to consider other properties of the notion of flatness; see
Eisenbud [1995; Matsumura [1986; Hartshorne [1977] for good technical
discussions.
To begin with, flatness expresses the quality we desire in the cases we

have already considered:

Proposition II-29. Let B = SpecR be a nonsingular, one-dimensional
affine scheme, 0 ∈ B a closed point and B∗ = B \{0}. Let X ⊂ AnB be any
closed subscheme, and π : X → B the projection. The following conditions
are equivalent:

(1) π is flat over 0.
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(2) The fiber X0 = π−1(0) is the limit of the fibers Xb = π−1(b) as b→ 0.

(3) No irreducible component or embedded component of X is supported
on X0.

Proof. We start with the equivalence of (2) and (3). Set X ∗ = π−1(B∗) ⊂
X . Since X ⊂ AnB is closed, it contains the closure of X ∗; so the fiber
X0 = π−1(0) contains the limit of the fibers Xb = π−1(b) as b→ 0, and to
say that X0 = limb→0 Xb is simply to say that we have equality: X = X ∗.
Conversely,X0 properly contains the limit of theXb if and only if X ∗ � X ,
that is, the expression

X = X ∗ ∪X0

as a union of closed subschemes is nontrivial. Thus (2) and (3) are equiva-
lent.
To see that (1) is equivalent to (3), simply observe that OX ,x, regarded

as an OB,0-module, is flat for all x ∈ X0 if and only if OX (X ) is torsion-
free as an R-module (see Bourbaki [1972, I.2.4, Proposition 3.ii]; because
all these rings R are principal ideal domains, this also follows easily from
Matsumura [1986, Theorem 7.6 and its converse on p. 50] or Eisenbud
[1995, Corollary 6.3]).

How general is this interpretation of flatness? To begin with, since the
condition of flatness is local in the domain of a morphism π : X → B,
the assumption that X and B are affine is really no restriction at all. If
we assume that X is of finite type over B, a mild extra finiteness condi-
tion described in Section III.1.1, we can further reduce to the case where
X is a closed subscheme of AnB and π is the restriction to X of the pro-
jection AnB → B. All these are minor hypotheses. The serious restriction
in applying the preceding result is that we take B to be nonsingular and
one-dimensional. We can, however, broaden this substantially with the fol-
lowing lemma, which characterizes flat families of finite type over a reduced
base.

Lemma II-30. Let K be a field, B a reduced K-scheme, b ∈ B a closed
point and X ⊂ AnB a closed subscheme. X is flat over b if and only if for
any nonsingular, one-dimensional K-scheme B′, any closed point 0 ∈ B′

and any morphism ϕ : B′ → B carrying 0 to b, the fiber Xb is the limit of
the fibers Xϕ(b′) as b′ approaches 0—that is, for any ϕ : B′ → B carrying
0 to b, the pullback family

X ′ = X ×B B′ ⊂ AnB′ → B′

is flat over 0.

Proof. Since Xϕ(b′) = X ′
b′ , Proposition II-29 asserts the equivalence of the

limit condition Xb = limb′→0 Xϕ(b′) with the flatness of X ′ over B′. That
said, one direction is clear: in general, if X → B is flat and B′ → B is any
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morphism, the fiber product X ×B B′ → B′ is flat; see Matsumura [1986,
Chapter 2, Section 3]. For the other direction, which is much harder, see
Raynaud and Gruson [1971, Cor. 4.2.10].

When the conditions of Lemma II-30 are met, we will call the fiber Xb
the flat limit of the nearby fibers of X over B.
A word of warning: while for B one-dimensional and 0 ∈ B a nonsin-

gular point there exists a unique flat limit of a given family X ⊂ AnB∗

over B∗ = B \ {0}, two-parameter families may not admit any flat lim-
its at all. Consider for example the degree-2 subschemes of A2

K discussed
earlier. We take as our base the scheme B = SpecK[s, t] = A2

K , with
the origin as our special point 0 ∈ B. For (s, t) �= (0, 0) ∈ B, we let
Xs,t ⊂ SpecK[x, y] = A2

K be the subscheme consisting of the union of the
points (x, y) and (x−s, y−t) ∈ A2

K . These subschemes form a family X ∗

over B∗ = B \ {0}, defined by

X ∗ = V
(
x(x−s), x(y− t), y (x−s), y (y− t)

) ⊂ A2
B∗ .

But we have seen that the limits of the schemesXs,t as (s, t) approaches the
origin along lines of different slope are different double points: all supported
at the origin, of course, but with different tangent lines. The fiber X0 of the
closure X = X ∗ ⊂ A2

B of X ∗ in A2
B over the origin 0 ∈ B must therefore

contain the union of these double points, that is, it must contain the “fat
point” V (x2, xy, y2) ⊂ A2

K . It follows that the closure must be simply the
subscheme

X = V
(
x(x−s), x(y− t), y (x−s), y (y− t)

) ⊂ A2
B,

whose fiber over the origin is V (x2, xy, y2). We see in particular that no
closed subscheme of A2

B containing X ∗ as an open subscheme can be flat
over 0 ∈ B.
The morphism X → B here is the same as the morphism X → Y of

Exercise I-43(b): the scheme X is the union of two planes in affine four-
space A4

K meeting at a point, with the projection X → B an isomorphism
on each plane. In particular, the failure of the family X ∗ ⊂ A2

B∗ to have a
flat limit is very much a function of the embedding in A2

B∗ : outside of the
origin in A2

B, we could include X ∗ in the disjoint union A2
B

∐
A2
B of two

copies of A2
B to obtain a surjective morphism ν : X → B with ν−1(B∗) ∼=

X ∗ as B∗-schemes. Thus the failure of this family to have a flat limit might
be ascribed to our perversity in choosing a bad embedding of X ∗ in A2

B .
The following exercise gives another classic example of a nonflat family,
and one that moreover has no flat limit, irrespective of the embedding.

Exercise II-31. Consider the cone B = V (su − t2) ⊂ SpecK[s, t, u] =
A3
K . Let 0 = (s, t, u) ∈ B be the origin, and let B∗ = B \ {0} as usual.

Set X = SpecK[x, y] = A2
K , and let ϕ : X → B be the map dual to the

inclusion of rings

ϕ# : K[s, t, u]/(su− t2) −→ K[x, y]
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sending s to x2, t to xy, and u to y2. (Equivalently, B is simply the quotient
of X = A2

K by the involution (x, y) 
→ (−x,−y), and ϕ the quotient map.)
Let X ∗ be the inverse image ϕ−1(B∗) ⊂ X . Show that X → B is not flat
over 0.

In fact, the family X ∗ → B∗ has no flat limit, in the sense that there
is no scheme Y and surjection ν : Y → B such that ν−1(B∗) ∼= X ∗

as B∗-schemes. Nor is this really pathological: in Section IV.3.2 we’ll see
examples of naturally occurring families that don’t admit flat limits.
Proposition II-29 and Lemma II-30 together give us a geometric inter-

pretation of the flatness of a morphism ϕ : X → B, at least in case
where X is of finite type over a base B that is reduced and over a field:
it says that ϕ is flat at p if, under any embedding of a neighborhood of
p ∈ X in affine space AnB, the fiber X0 = ϕ−1(0) over 0 = ϕ(p) ∈ B is
(an open subset of) the limit of the fibers Xb as b ∈ B approaches 0 along
any one-parameter family. The wonderful thing about the definition of flat-
ness in general is that it takes this basic notion and extends it, in a very
natural way, to arbitrary morphisms! This is particularly remarkable (and
useful) in case the base space B is a nonreduced scheme. If, for example,
B = SpecK[ε]/(ε2), it makes no sense to talk about the “fibers of X → B
over nearby points”; B has only one point. Nonetheless (as we will see ex-
plicitly in Chapter VI) it does make sense to talk about families X → B of
schemes parametrized by B “varying continuously”; flatness exactly cap-
tures this property. (Even in case the base B has one-dimensional Zariski
tangent space, as in the example B = SpecK[ε]/(ε2), we can’t just use the
criterion that no component of X , irreducible or embedded, is supported
on the inverse image of the reduced point Bred: for example, the morphism
SpecK[x, y]/(x2, xy, y2)→ SpecK[ε]/(ε2) dual to the ring homomorphism
ε 
→ x is not flat.)
In general, if B = SpecR is the spectrum of a local Artinian ring R

with maximal ideal m, 0 = V (m) = Bred ⊂ B its unique point, a flat
morphism ϕ : X → B is called an “infinitesimal deformation” of the fiber
X0 = ϕ−1(0). Such things played an important role in the algebraization
of the theory of curves on surfaces— see, for example, Mumford [1966] and
the discussion in Section VI.2.3.
To conclude this section, we mention (without proof) two facts about

flatness, both of which will reaffirm that flatness is indeed the correct cri-
terion for a family X → B of schemes to be “varying continuously”. The
first is one we mentioned at the outset: we would like families of hypersur-
faces to be flat. Explicitly, if

f(x1, . . . , xn) =
∑

aIx
I

is a polynomial in n variables whose coefficients aI are regular functions
on a scheme B, then the corresponding subscheme V (f) ⊂ AnB should be
flat over B, at least away from the common zero locus V ({aI}) ⊂ B of the
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coefficients. In fact, more is true: the same holds for families of complete
intersections X = V (f1, . . . , fc) ⊂ AnB. We state this as follows:

Proposition II-32. Let R be a local ring with maximal ideal m, B =
SpecR, 0 = [m] ∈ B the unique closed point of B and κ = κ(0) = R/m the
residue field. Let f1, . . . , fc ∈ R[x1, . . . , xn] be polynomials with coefficients
in R, and

X = V (f1, . . . , fc) ⊂ SpecR[x1, . . . , xn] = AnB .

If the fiber X0 = π−1(0) of the projection π : X → B over 0 has codimen-
sion c in Anκ, then X → B is flat.

More generally, we have the following criterion for flatness, which is ex-
tremely useful in practice.

Exercise II-33. (a) Prove that a module M over the ring R = K[t](t) is
flat if and only if t is a nonzerodivisor on M, that is, if and only if M
is torsion-free.

(b) Let A = R[x1, . . . , xn] be a polynomial ring over R = K[t](t), and let
M be an A-module with free presentation

F1
ϕ−→ F0 −→M −→ 0.

Consider the module M̄ := M/Mt over the factor ring Ā := A/tA, and
let

F̄1
ϕ̄−→ F̄0 −→ M̄ −→ 0

be the corresponding presentation. Show that M is flat over R if and
only if every second syzygy of M̄ over Ā can be lifted to a second
syzygy over A in the sense that every element of the kernel of ϕ̄ comes
from an element of the kernel of ϕ. (Something similar is true for any
local base ring R with maximal ideal m if M is finitely generated over
A; this is a form of the “local criterion of flatness”—see, for example,
Eisenbud [1995, Section 6.4] or Matsumura [1986, p. 174].

A second thing that makes flatness a good notion is the generic flatness
theorem, due to Grothendieck (see for example Eisenbud [1995, Section
14.2]. This says that if one has any reasonable family of schemes X → B
over a reduced base, then there is an open dense subset U of B such that
the restricted family π−1U → U is flat (here “reasonable” includes, for
example, any family of subschemes of a fixed affine or projective space).
In some sense this vindicates our choice of flatness as the analogue of the
notion of bundle in topology: it is analogous to the observation that if
f : M → N is a differentiable map of compact C∞ manifolds, then there
is a dense collection of open subsets U of the target space N such that the
restriction of f to each f−1(U) is a fiber bundle. In any event, the generic
flatness theorem certainly assures us that flat families are ubiquitous in
algebraic geometry.
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This concludes our initial discussion of flatness. We will see other ge-
ometric interpretations of flatness when we discuss families of projective
schemes in Chapter IV.

II.3.5 Multiple Lines

We now consider a nonreduced affine scheme X supported on a line and
not having embedded components. We will assume that the multiplicity
of the line (in the sense of the primary decomposition) is 2, and we will
analyze the possibilities.
It is very easy to write down a first example: the scheme

X = SpecK[x, y]/(y2) ⊂ A2
K

obviously has the desired properties. It’s pretty clear that there are no more
examples supported on the line y = 0 in A2

K , but we can construct many in
A3
K . A subscheme X of the sort we want will meet a general plane in A3

K

passing through a point of the reduced line in a double point contained in
that plane. We already know that any double point may be thought of as a
point plus a tangent vector at that point, and this suggests that we obtain
X by choosing a normal direction at each point of the line. For example,
take L := Xred to be the line x = y = 0, with coordinate z. Now, choose a
pair of polynomials p and q in z without common zeros, and at each point
(0, 0, z0) ∈ L take the normal direction to be the one with slope p(z0)/q(z0)
in the normal plane z = z0. It is easy to see that the union over all z of the
double points in the given directions will be contained in the scheme Xp,q
defined by taking

Ip,q = (x2, xy, y2, p(z)x−q(z)y)
and

Xp,q = SpecK[x, y, z]/Ip,q

The simplest nonplanar example would be one where the chosen normal
directions twist just once around L—for example, the one given by the
ideal

IΓ = (x2, xy, y2, zy−x).

z
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Exercise II-34. If p, q are relatively prime polynomials, then the ideal

(x, y)/Ip,q

in the ring
K[x, y, z]/Ip,q

is torsion-free of rank 1 as a K[z]-module; thus Xp,q is primary, with
(Xp,q)red the line SpecK[x, y, z]/(x, y), and Xp,q has multiplicity 2.

At first sight it looks as though these examples will possess many in-
teresting invariants and thus, in particular, be distinct, but this is not so:
we can “untwist” any of the schemes Xp,q by an automorphism of A3

K to
give an isomorphism of it with the planar double line SpecK[y, z]/(y2).
To do this, note that since p and q have no common zeros, we may write
1 = aq + bp for some polynomials a, b ∈ K[z]; thus the matrix(

a b
p −q

)

has unit determinant, so the map A3
K → A3

K given by

(x, y, z) 
→ (x′, y′, z), with x′ := p(z)x− q(z)y, y′ := a(z)x+ b(z)y,

is invertible. Again because the matrix is invertible, we have

(x, y) = (x′, y′) and (x2, xy, y2) = (x′2, x′y′, y′2)

so the ideal of Xp,q is (x, x2, xy, y2) = (x, y2), as required.
More generally, it turns out that there is up to isomorphism only one

affine double line, in the following sense:

Exercise II-35. Prove that if A is a Noetherian K-algebra such that
X = SpecA has no embedded components, has multiplicity 2, and sat-
isfies Xred

∼= A1
K , then X is isomorphic to SpecK[x, y]/(y2).

We will see in the next chapter that this situation contrasts with the one
in projective space: there are many nonisomorphic projective double lines.

II.4 Arithmetic Schemes

Our last collection of examples will be spectra of rings that are finitely
generated and reduced but that do not contain any field at all. In general,
the spectra of rings finitely generated over Z are called arithmetic schemes;
they arise primarily in the context of number theory, although by no means
all schemes of number-theoretic interest are of this type. In these examples
we will see some hint of the amazing unification that schemes allow between
the arithmetic and the geometric points of view.
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II.4.1 Spec Z

We start with the most obvious example, the scheme SpecZ itself. The
prime ideals of Z are, of course, the ideals (p), for p ∈ Z a prime number,
and the ideal (0); the former correspond to closed points of SpecZ, with
residue field Fp, while the latter is a “generic” point, whose closure is all
of SpecZ and whose residue field is Q. The picture is this:

(0)(2) (3) (5) (7) (11)

This bears a formal resemblance to an affine line A1
K over a field; indeed,

this similarity is just the beginning of a long sequence of analogies, and it
is well to bear it in mind while looking at the following examples. However,
the analogy also has its limits: while SpecZ behaves much like A1

K , for
example, it is not an open dense subscheme of any scheme analogous to
P1
K .

II.4.2 Spec of the Ring of Integers in a Number Field

Secondly, consider a scheme of the form SpecA, where A ⊂ K is the ring
of integers in a number field K; we will analyze the example K = Q[

√
3]

and A = Z[
√
3]. As in the case of SpecZ, there are just two types of

points: closed points corresponding to nonzero prime ideals in A, having
finite residue fields, and a generic point corresponding to (0) with residue
field K. What makes this example interesting is the map SpecA→ SpecZ
induced by the inclusion of Z in A. Consider, for example, the fiber over
a point [(p)] ∈ SpecZ. This is just the set of primes in A containing the
ideal pA ⊂ A, and it may behave in any one of three ways (a good basic
reference for the unexplained material here is Serre [1979]):

(1) If p divides the discriminant 12 of K over Q —that is, for p = 2 or 3—
the ideal (p) is the square of an ideal in A: we have

2A = (1 +
√
3)2

and, of course,
3A = (

√
3)2.

The residue fields at the points (1 +
√
3) and (

√
3) ∈ SpecA are the

fields F2 and F3, respectively.

(2) Otherwise, if 3 is a square mod p, the prime (p) will factor into a
product of distinct primes: for example

11A = (4 + 3
√
3)(4− 3

√
3)

and
13A = (4 +

√
3)(4−

√
3).
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The residue fields at these points will again be the prime fields, in this
case F11 and F13, respectively.

(3) Finally, if p > 3 and 3 is not a square mod p—for example, when p = 5
or 7—the ideal pA is still prime and corresponds to a single point in
SpecA. In these eases, the residue field is the quadratic extension of
Fp—for instance, F25 and F49 in the two examples.

In general, as in this example, if K is a quadratic number field, and A
is the ring of algebraic integers in K, then the inclusion Z ⊂ A induces a
map of schemes ψ : SpecA → SpecZ whose fiber over each closed point
(p) ∈ SpecZ is one of the following:

(1) A single, nonreduced point, with coordinate ring isomorphic to A/p2,
whose underlying reduced point p has residue field Fp, if p ramifies in
A—that is, if pA is the square of a prime ideal p of A.

(2) The disjoint union of two reduced points, p and p′, with residue fields
A/p = A/p′ = Fp, if pA is a product of two distinct prime ideals of A.

(3) A single reduced point p, with residue field A/p of degree 2 over Fp, if
p remains prime in A.

In every case the coordinate ring of the fiber has dimension 2 as an Fp-
algebra. That is because A is a free Z-module of rank 2. Of interest here
is the analogy between the map SpecA→ SpecZ and a branched cover of
Riemann surfaces (or, more generally, of one-dimensional schemes over an
algebraically closed field such as C). Essentially, we may think of SpecA as
a two-sheeted cover of SpecZ, with branching over the “ramified” primes,
just as, for example, SpecC[z] is a double cover of SpecC[z2] branched
over the origin. The one apparent difference is that over some points (p) ∈
SpecZ other than ramification points we may have, instead of two distinct
points with multiplicity 1, one point with multiplicity 1 but with a residue
field that is a quadratic extension of the residue field Fp at (p). These are
denoted by uniform gray dots in the picture:

(0)(2) (3) (5) (7) (11) (13)(5) (7)

(1+
√

3) (
√

3)
(5) (7)

(4+3
√

3)

(4−3
√

3)

(4+
√

3)

(4−√
3)

A more inclusive analogy would be with a finite map between one-
dimensional schemes over a non-algebraically closed field. Consider, for
example, the map

SpecR[x][y]/(y2 − x)→ A1
R = SpecR[x]

Looking just at points of A1
R = SpecR[x] with residue field R —that is,

points of the form (x−λ) with λ real—we have ramification over the point
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(x), and for λ �= 0 the inverse image of (x−λ) is either two distinct points
with residue field R (if λ > 0) or one point with residue field C (if λ < 0).
We may continue this analogy a little further by looking at schemes of

the form SpecB, where B ⊂ A ⊂ K is an order in a number field—
that is, a subring of the ring of integers in K having quotient field K. For
example, let A = Z[

√
3] and consider the ring B = Z[11

√
3] and the asso-

ciated scheme SpecB. The map SpecA → SpecZ described above factors
through SpecB, and indeed the map SpecA → SpecB is an isomorphism
except that the two points (4 + 3

√
3) and (4− 3

√
3) ∈ SpecA map to the

same point (11, 11
√
3) ∈ SpecB. We may thus picture SpecB as a sort of

“nodal curve”—that is, the double cover SpecA of SpecZ with two points
identified.

(0)(2) (3) (5) (7) (11) (13)(5) (7)

(1+
√

3) (
√

3)
(5) (7)

(4+3
√

3) =
(4−3

√
3)

Alternatively, consider the case A = Z[
√
3] and B = Z[2

√
3]. Here the

map SpecA → SpecB is one-to-one but not an isomorphism at the point
[(1 +

√
3)] which goes to [(2, 2

√
3)].

Exercise II-36. Show that the point p = [(2, 2
√
3)] is a “cusp” of the

scheme SpecZ[2
√
3] in the sense that it is a singular point and the desin-

gularization SpecA→ SpecB has fiber over p consisting of a double point.

II.4.3 Affine Spaces over Spec Z

Our next example is of a two-dimensional scheme, SpecZ[x]; this is also
denoted A1

Z . The prime ideals in Z[x] are

(i) (0);
(ii) (p), for p ∈ Z prime;
(iii) principal ideals of the form (f), where f ∈ Z[x] is a polynomial ir-

reducible over Q whose coefficients have greatest common divisor 1;
and

(iv) maximal ideals of the form (p, f), where p ∈ Z is a prime and f ∈ Z[x]
a monic polynomial whose reduction mod p is irreducible.

Exercise II-37. Prove this.

Of these, only the last are closed points; the first, of course, has closure
all of A1

Z , while the second and third types have closures we will describe
below.
Probably the best way to picture A1

Z is via the map A1
Z → SpecZ (again

a flat map!). Under this map, points of type (ii) and (iv) above go to
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the corresponding points (p) ∈ SpecZ, while the points of types (i) and
(iii) go to the generic point (0) ∈ SpecZ. Indeed, the fiber of this map
over the point (p) is isomorphic to A1

Fp
= SpecFp[x], the point (p, f) ∈ A1

Z

corresponding to the point in A1
Fp

given by the set of roots of the polynomial
f in the algebraic closure F̄p (recall that points of A1

Fp
correspond to orbits

of the action of the Galois group Gal(F̄p/Fp) on Fp). Similarly, the fiber
over the generic point (0) ∈ SpecZ is the scheme A1

Q = SpecQ[x], with
(f) ∈ A1

Z meeting A1
Q in the point corresponding to the set of roots of f in

Q. The picture thus is as follows:

(0)

(2, x)

(2, x − 1)

(3, x)

(3, x − 1)

(3, x − 2)

(11, x)

(11, x − 1)

(11, x − 2)

(x)

(x − 1)

(x − 2)

?
(4x + 1)

(2) (3) (11)

(2) (3) (11) (0)

The closure of the point (p) ∈ A1
Z is the fiber A1

Fp
over the point (p) ∈

SpecZ. The closures of the other nonclosed points— those of type (iii)
above—are more interesting. These will consist of the point (f) itself in
the fiber A1

Q over (0) together with all the points (p, g) ∈ A1
Z , where g is

a factor of f over F̄p—that is, in each fiber A1
Fp

of A1
Z , the union of the

points of A1
Fp

corresponding to roots of f mod p.

Exercise II-38. What is the point marked with a ? in the picture above?
Why are the closures of the points (4x+1) and (x−2) indicated by curves
meeting tangentially at the point (3, x−2), while they are both transverse
to the closure of (3)? (See the discussion leading up to Exercise II-44 for
one answer.) Why is the closure of the point (4x + 1) drawn as having a
vertical asymptote over the point (2) ∈ SpecZ?
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For another example, consider the ideal generated by a simple linear
polynomial, such as (5x − 49). To continue the analogy between SpecZ
and the affine line over a field, we can think of the closure of this point as
the graph of the function 49/5 on SpecZ; this is a function with a simple
pole at the point (5) and a double zero at (7). (This curve is tangent to the
closed subscheme (x) in A1

Z , as evidenced by the fact that the intersection
of (x) with the subscheme (5x − 49) is not just the point (7, x) but a
nonreduced point supported at this point.)
The closure of the point (x2 − 3) is pictured below in a slightly different

style:

(0)(2) (3) (5) (7) (11) (13)

(3) (5) (7) (11)(2) (0)

(5) (7)

(2, x−1) (3, x) (5, x2−3) (11, x+5)

(11, x−5)

(x2−3)

This closure is just the scheme SpecZ[x]/(x2 − 3) = SpecZ[
√
3] described

above, realized here as a subscheme of A1
Z .

Exercise II-39. Identify the three unlabeled points in the above diagram.

More generally, the scheme AnZ = SpecZ[x1, . . . , xn] can best be viewed
via the natural map AnZ → SpecZ, whose fibers are the schemes AnFp

and
AnQ .

II.4.4 A Conic over Spec Z

Our next example gives a hint of the depth of the unification of geometry
and arithmetic achieved in scheme theory. We consider the scheme

SpecZ[x, y]/(x2 − y2 − 5)

and its morphism to SpecZ.
To begin with, the fiber of this scheme over the generic point [(0)] ∈

SpecZ is the scheme X = SpecQ[x, y]/(x2−y2−5), which we have already
described: its points are the orbits, under the action of the Galois groupG =
Gal(Q̄/Q), of the set of pairs (x, y) of elements of Q̄ satisfying x2−y2 = 5.
The fiber over (p) is similarly the subscheme of the affine plane A2

Fp
over

Fp defined by the equation x2 − y2 = 5—that is, whose points are the
orbits, under the action of the Galois group G = Gal(F̄p/Fp), of the set of
pairs (x, y) of elements of F̄p satisfying x2 − y2 = 5.
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The fibers of this scheme over all primes other than 2 and 5 are nonsin-
gular conics, as is the fiber over the generic point.

Exercise II-40. Are there plane conics over SpecZ that are reducible but
nonsingular? Classify them.

The fibers over (2) and (5) are singular, however: modulo 2, we have

x2 − y2 − 5 = (x + y + 1)2

and modulo 5 we can write

x2 − y2 − 5 = (x+ y)(x− y)

Thus the fiber over (2) is a double line, while the fiber over (5) is a union
of two lines (so that in particular there are two nonclosed points mapping
to the point (5), while there is only one such point mapping to each of the
other points (p) ∈ SpecZ).

(2) (3) (5) (7)

Exercise II-41. (This assumes some knowledge of projective geometry.)
The fiber of X over a point (p) ∈ SpecZ such that p ≡ 1 mod (4), p �= 5, is
really a hyperbola— that is, it meets the “line at infinity” in the fiber A2

Fp

in two points with residue field Fp and is isomorphic to A1
Fp
− {0}. Thus,

for example, the fiber over (p) is the curve x2+y2−5 = 0; its closure in the
projective plane over Fp has equation X2+Y 2−5Z2 = 0, and so meets the
line Z = 0 at ∞ in the two points [1, α, 0] where α2 = p− 1 mod (p). Show
that, by constrast, if p ≡ 3 mod (4),
the fiber is an ellipse; that is, it meets
the line at∞ in one point with residue
field Fp2 .

The preceding picture is very much
in keeping with the geometric analogy:
a surface fibered over a curve— for ex-
ample, the surface V (x2 − y2 − z) ⊂
SpecK[x, y, z] fibered over the z-line
SpecK[z]—will have a finite number
of singular fibers, as in the classic pic-
ture shown on the right.
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II.4.5 Double Points in A
1
Z

Next, we consider some double points over Z. Again, let

X = A1
Z = SpecZ[x].

If Z ⊂ X is a closed subscheme supported at only one point, corresponding
to a prime (p, f), say, we will wish to speak of the degree of Z just as we did
in the case of finite subschemes over a field. In the case of schemes over a
field, we defined the degree to be the dimension of OZ(Z) as a vector space
over K. But in the current case OZ(Z) might contain no field at all— it
might be Z/(p2), for example. More confusing still, its residue field might
not be Z/(p). In the case at hand the cheapest way out of this dilemma
is to note that the cardinality #OZ(Z) is always of the form pd and take
the degree to be d—this is obviously the vector space dimension if OZ(Z)
happens to be a Z/(p) vector space. (A more sophisticated approach is
to define the degree of a reduced closed point first as the vector space
dimension over Z/(p) and then define the degree of Z by multiplying the
degree of the reduced point by the multiplicity of Z at this point.)
Consider for example the subschemes of degree 2 supported at the point

(7, x). These behave in a manner analogous to subschemes of degree 2 in
the affine plane over a field. The ideal I of such a subscheme will always
contain the square of the maximal ideal p = (7, x) and so will be generated
by p2 together with one element of p: thus,

I = Iα,β = (49, 7x, x2, α7+βx)

for some α, β ∈ Z not both divisible by 7. It will depend only on the
congruence classes of α and β in Z/(7); and multiplying the pair (α, β)
simultaneously by a unit in Z/(7) will not change I either. Thus for each
point [α, β] of the projective line over the field of seven elements we get a
double point supported at p.

Exercise II-42. Show that this correspondence is bijective.

The set of subschemes of degree 2 supported at (7, x) may thus be iden-
tified with the projective line P1

K over the field K = F7, much as the set
of subschemes of A2

K over a field K may be identified with the projective
line over that field. (The identification in either case is actually with the
projectivization of the Zariski tangent space to the ambient space at the
point.) There is, however, one difference: whereas all subschemes of A2

K of
degree 2 supported at a point are isomorphic, the subschemes Zα,β defined
by Iα,β look different, even abstractly. We have

Zα,β = SpecZ/(49) if β �= 0

but
Z1,0 = Spec(Z/(7))[x]/(x2)

which are not isomorphic.
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Exercise II-43. Classify (a) the subschemes of degree 3 supported at the
point (7, x) ∈ A1

Z , and (b) the subschemes of degree 4 supported at the
point (2, x2 + x+ 1).

Exercise II-44. Referring to the diagram on page 85, use the preceding
discussion to justify the fact that the curves (4x+1) and (x−2) are drawn
tangent to one another, while the curves (4x + 1) and (11) are drawn
transverse.

Finally, here is an example of a flat family over SpecZ. Recall that in
the preceding section there was a discussion of the family of pairs of lines
M ∪ Lt, where M is the line x = z = 0 and Lt is the line y = z − t = 0.
The key observation there was that the flat limit of the schemes M ∪ Lt
as t approached zero was not the scheme M ∪ L0 but, rather, that scheme
with an embedded point at the origin.
Here is the analogous phenomenon in a family parametrized by SpecZ.

Let U = SpecZ[7−1] = SpecZ − {(7)} be the complement of the point
(7) ∈ SpecZ, and let

W = A3
U := SpecZ[7−1, x, y, z] ⊂ A3

Z

be the corresponding open subscheme of A3
Z . Let N and L be the closed

subschemes of A3
Z given by the ideals (x, z) and (y, z−7), respectively, and

let N ∗ = N ∩W and L ∗ = L ∩W. Let X ∗ be the union of N ∗ and
L ∗ and let X ⊂ A3

Z be the closure of X ∗ in A3
Z . We may then think of

X ∗ as a family of pairs of lines parametrized by U ; and the fiber X7 of
X over (7) ∈ SpecZ is the flat limit of this family “as 7 goes to 0”. The
fiber X7 is, as we expect, supported on the union of the fibers (x = z = 0)
and (y = z = 0) of N and L over (7); but the scheme X7 is not reduced:
exactly as in the picture in the preceding section, it has an embedded point
at the origin.

Exercise II-45. Verify the flatness of X over SpecZ and the descrip-
tion of X7. Can you find analogues over SpecZ of the other flat families
discussed in the preceding section?
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Projective Schemes

Once we have understood affine schemes, the theory of projective schemes
does not really contain so much that is still novel: for the most part it differs
from the classical theory of projective varieties in ways that are completely
analogous to the difference between affine schemes and affine varieties.
We start by introducing two finiteness conditions, finite and of finite

type. We then define and discuss separated and proper morphisms, which
correspond to the attributes of Hausdorffness and compactness in most of
geometry. It is partly because projective varieties and schemes have these
properties that they are fundamental objects in classical algebraic geometry
and in the theory of schemes.
The next part of the chapter is devoted to the introduction of projective

schemes and some examples. Just as in the case of affine schemes, two
approaches to projective schemes are possible: one can define projective
space and then take subschemes, or one can define all projective schemes
on an equal footing, starting with graded algebras. As we did in the affine
case, we adopt the second possibility.
After introducing the basic definitions of projective schemes and sub-

schemes, we describe morphisms of projective schemes, a topic that (as in
the category of varieties) is more subtle than its affine counterpart. We con-
clude the section with some examples of projective schemes, most notably
the Grassmannian.
The final section of the chapter is devoted to three invariants of projec-

tive schemes embedded in projective space that were introduced by David
Hilbert: the Hilbert polynomial, Hilbert function, and free resolution. Us-
ing these, we can sometimes distinguish among similar schemes, such as
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the projective double lines, and we can also shed some new light on the
phenomenon of flatness. Among the invariants of a projective scheme that
can be defined in terms of its Hilbert polynomial is its degree; and in this
connection we discuss the famous Bézout theorem.

III.1 Attributes of Morphisms

III.1.1 Finiteness Conditions

There are two finiteness conditions that play a major role in most nontrivial
results about schemes. They have similar names but very different charac-
ter. The first, finite type, is a straightforward condition satisfied by almost
any morphism arising in a geometric contexts; it is invoked usually just
to preclude infinite-dimensional fibers, or “non-geometric” schemes such as
spectra of local rings. The second condition, finiteness, is by contrast a very
stringent condition: it says that a morphism is proper and that all its fibers
are finite (in particular, zero-dimensional).
First, we say that a morphism ϕ : X → Y of schemes is of finite type if

for every point y ∈ Y there is an open affine neighborhood V = SpecB ⊂ Y
of y and a finite covering

ϕ−1(V ) =
n⋃
i=1

Ui

of its inverse image by affine open sets Ui ∼= SpecAi, such that the map

ϕ#
V : B = OY (V )→ OX(ϕ−1V )→ OX(Ui) = Ai

makes each Ai into a finitely generated algebra over B. Thus, for example,
any subscheme X of AnK or PnK is of finite type over K (meaning the
structure morphism X → SpecK is of finite type), while the spectrum of
a positive-dimensional local K-algebra is not.
A morphism ϕ : X → Y is called finite if for every point y ∈ Y there is

an open affine neighborhood V = SpecB ⊂ Y of y such that the inverse
image ϕ−1(V ) = SpecA is itself affine, and if, via the pullback map

ϕ#
V : B = OY (V )→ OX(ϕ−1V ) = A,

A is a finitely generated B-module. This is a far more restrictive hypothesis
than being of finite type; for one thing, it immediately implies that the
fibers of ϕ are finite, and it implies that the map |ϕ| : |X | → |Y | of
underlying topological spaces is closed, that is, the image of a closed subset
of X is closed in Y. Thus, for example, if Y = SpecB and f ∈ B[x] is
a polynomial, the morphism Spec(B[x]/(f)) → Y is finite if the leading
coefficient of f is a unit, but not otherwise. For all this see Eisenbud [1995,
Chapter 4 and Section 9.1].
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III.1.2 Properness and Separation

Many techniques of geometry yield the most complete results when applied
to compact Hausdorff spaces. Although affine schemes are quasicompact in
the Zariski topology, they do not share the good properties of compact
spaces in other theories because the Zariski topology is not Hausdorff. For
example, the image of a regular map of affine schemes ϕ : X → Y need not
be closed, even though X is quasicompact.
The fact that the Zariski topology is not Hausdorff has another unpleas-

ant consequence. Recall that in the general definition of a manifold, one
starts with a topological space that is Hausdorff and admits a covering by
charts of the standard form (balls in Euclidean space, say). The fact that
the balls themselves are Hausdorff is not enough by itself to guarantee that
the total space is. This is why the line with the doubled origin described
in Exercise I-44 and shown again here

is not a manifold. However, when we work with schemes (or, for that matter,
with varieties) glued together from affine schemes, we cannot afford to
specify that the total space is Hausdorff because even the local pieces are
not. This has the result that given two maps of schemes ϕ,ψ : X → Y, the
set where ϕ and ψ are equal may not be closed. This is illustrated in the
following exercise, which is a typical case.

Exercise III-1. (a) Let Y be the line with doubled origin over a field
K, defined in Exercise I-44, and let ϕ1, ϕ2 : A1

K → Y be the two
obvious inclusions. Show that the locus where ϕ1 and ϕ2 agree (simply
as continuous maps of topological spaces) is not closed.

(b) Now let X = Y ×K Y and let ϕ and ψ be the two projection maps
from X to Y. Show that the set of points at which ϕ and ψ agree is not
closed (note that this is just the diagonal, defined below). Show that
the same is true for the set of closed points at which ϕ and ψ agree,
so this is not a pathology special to schemes but occurs already in the
category of varieties.

Such a pathology cannot happen, however, if X is an affine scheme; nor,
it turns out, can it happen when X is a projective scheme. The desirable
property that these schemes have, which is one of the most important
consequences of the Hausdorff property for manifolds, is expressed by saying
that X is separated as a scheme overK. In general, given any map α : X →
S of schemes, we define the diagonal subscheme ∆ ⊂ X ×S X to be the
subscheme defined locally on X ×S X for each affine open

X ⊃ SpecA
α|SpecA� SpecB ⊂ S
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by the ideal I generated by all elements of the form

a⊗ 1− 1⊗a ∈ A⊗B A.

We then say that α is separated, or that X is separated as a scheme over
S, if ∆ is a closed subscheme of X ×S X.
Exercise III-2. Let Y → S be any map of topological spaces, and let

∆ ⊂ Y ×S Y
be the diagonal. Show that if ∆ is a closed set, then for any commutative
diagram

X
ϕ �

ψ
� Y

S
�

�

of continuous functions the set of points of X where ϕ and ψ agree is closed.
Now prove a similar lemma for regular maps of schemes: show that there
is a naturally defined (that is, maximal) closed subscheme on which ϕ and
ψ agree.

Exercise III-3. Let X be a scheme separated over S. Show that (closed
or open) subschemes of X are again separated over S.

Exercise III-4. Note that from the very definition of the diagonal it fol-
lows that affine morphisms are separated.

We shall see below that projective schemes, to be defined shortly, are also
separated, so at least these features of the properties of Hausdorff spaces
are valid for them as well.
In the case of classical affine varieties—even things as simple as plane

curves— it was realized early in the previous century that the simplest
way to get something that would behave like a compact object—would, in
fact, be compact in the classical topology, in the case of varieties over the
complex numbers—was to take the closure of an affine variety in projective
space. It turns out that if ϕ : X → Y is a map of projective varieties,
then indeed ϕ maps closed subvarieties of X to closed subvarieties of Y.
Somewhat more generally, if we take the product of such a map with an
arbitrary variety Z, to get

ψ := ϕ× 1Z : X × Z → Y × Z

then ψ maps closed subvarieties of X×Z onto closed subvarieties of Y ×Z.
It turns out that this, with the separation property, is the central property of
projective varieties that makes them so useful. But it is a property satisfied
by a slightly larger class of varieties than the projective ones, and it is a
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property that is sometimes easier to verify than projectivity, so it is of great
importance to make a general definition.
If α : X → S is a map of schemes of finite type, we will say that α

is proper, or that X is proper over S, if α is separated and for all maps
T → S, the projection map of the fibered product

X ×S T → T

carries closed subsets onto closed subsets. As usual, if S = SpecR is a ring,
we shall often say “proper over R” when we mean “proper over SpecR”.
The additional property given here, besides that of separation, is some-

times expressed by saying that α is universally closed. The name proper
comes from an old geometric usage: a map α : M → N of Hausdorff spaces
is called proper if the preimage of every compact set is compact. This is a
kind of relative compactness for the map α. It is related to our notion by
the property expressed in the following exercise.

Exercise III-5. Let C be the category of locally compact Hausdorff spaces
which have countable bases for their topologies. Show that a map f : X →
Y in C is universally closed if and only if it is proper in the sense that for
all compact subsets C of Y the subset f−1(C) is compact.

This notion of properness turns out to be the key property in alge-
braic geometry whether of schemes or of varieties— it plays the role played
by “compact and Hausdorff” in other geometric theories. The projective
schemes that we will introduce below are simply the most common exam-
ples of schemes proper over a given scheme B. We will not prove this central
result here; it is not terribly difficult, but it would take us too far afield.
See, for example, Hartshorne [1977, Theorem II.4.9] for a proof.
A finite morphism ϕ : X → Y is necessarily proper; see Eisenbud [1995,

Section 4.4].

III.2 Proj of a Graded Ring

III.2.1 The Construction of Proj S

By far the most important examples of schemes that are not affine are the
schemes projective over an affine scheme SpecA, where A is an arbitrary
commutative ring. (For simplicity we usually say that such a scheme is
projective over A instead of over SpecA.) Such a scheme is obtained from
a graded A-algebra by a process very much analogous to the construction
of a projective variety from its homogeneous coordinate ring. One can also
define schemes projective over an arbitrary base scheme B by starting with
a sheaf of graded OB-algebras, and this generalization has important ap-
plications. But most of the theory quickly reduces to the case where B is
affine, and we will stick with that level of generality here.
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To describe this construction, we start with a positively graded A-algebra
having A as the degree 0 part, that is, an A-algebra S with a grading

S =
∞⊕
ν=0

Sν (as A-modules)

such that
SνSµ ⊂ Sν+µ and S0 = A.

An element of S is called homogeneous of degree ν if it lies in Sν . We will
define an A-scheme X = ProjS from S. The schemes projective over A are
by definition the schemes of the form ProjS, where S is a finitely generated
A-algebra. The algebra S is called the homogeneous coordinate ring of X,
though (like the homogeneous coordinate ring of a projective variety) it is
in fact not determined by X.
In case S is the polynomial ring

S = A[x0, . . . , xr]

overA, with grading defined by giving the elements of A degree 0 and giving
each variable degree 1, the resulting scheme ProjS is called projective r-
space over A and is written PrA. (The following exercises will make it clear
that this is the same scheme PnA as defined in Chapter I.) In case A = K is a
field, the scheme PrK bears the same relation to the variety called projective
space over K as the scheme ArK bears to the variety called affine r-space.
We will suppose for simplicity that, as in the case of the polynomial ring,

the algebra S is generated over A by its elements of degree 1, and we leave
the general case as an exercise. (In a different direction, most of what we
say below also holds if S is not assumed to be finitely generated over A,
but this generalization is less frequently used.)
ProjS may be defined as follows: we write

S+ =
∞⊕
ν=1

Sν

for the ideal generated by homogeneous elements of strictly positive degree
in S. We say that an ideal is homogeneous if it is generated by homo-
geneous elements. The underlying topological space |ProjS| is the set of
homogeneous prime ideals in the ring S that do not contain S+ (these are
sometimes called relevant prime ideals, and S+ is thus called the irrelevant
ideal). The topology of |ProjS| is defined by taking the closed sets to be
the sets of the form

V (I) := {p | p is a relevant prime of S and p ⊃ I}
for some homogeneous ideal I of S.
We will give |ProjS| the structure of a scheme by specifying this structure

on each of a basis of open sets. To do this, let f be any homogeneous element
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of S of degree 1, and let U be the open set

|ProjS| − V (f)

of homogeneous primes of S not containing f (and thus not containing S+).
The points of U may be identified with the homogeneous primes of S[f−1].
On the other hand, these homogeneous primes correspond to all the primes
of the ring of elements of degree 0 in S[f−1], which is denoted by S[f−1]0;
see Exercise III-6(a). Thus we may identify U with the topological space
SpecS[f−1]0 and give it the corresponding structure of an affine scheme.
We will write (ProjS)f for this open affine subscheme of ProjS. If x0, x1, . . .
are elements of degree 1 generating an ideal whose radical is the irrelevant
ideal S+; then the open sets

(ProjS)xi := ProjS − V (xi)

form an affine open cover of ProjS.
If g is another degree 1 element of S, then the overlap (ProjS)f ∩

(ProjS)g is the open affine subset of (ProjS)f given by the spectrum of

S[f−1]0[(g/f)−1] = S[f−1, g−1]0.

Since this expression is symmetric in f and g, we get a natural identification

((ProjS)f )(g/f) = ((ProjS)g)(f/g).

As in the discussion of gluing in Section I.2.4, this makes ProjS into a
scheme.
The scheme X = ProjS has a natural structure map to SpecS0 defined

by the map S0 → OX(X). One case is so important that it deserves a
definition: If B = SpecA is an affine scheme, then a morphism X → B is
projective if it is the structure map ProjS → SpecS0 for a graded ring S
such that S0 = A and S is generated over A by finitely many elements. We
will soon be in a position to generalize this to arbitrary schemes B.
In the rest of this section and the next we present some basic facts about

projective schemes and their closed subschemes. Since these facts and their
proofs are quite parallel to things from the theory of varieties, we present
them as exercises.

Exercise III-6. (a) For any homogeneous ideal I of S and homogeneous
element f of degree 1, the intersection

(I · S[f−1]) ∩ S[f−1]0

is generated by elements obtained by choosing a set of homogeneous
generators of I and multiplying them by the appropriate (negative)
powers of f (see Exercise III-10 for the generalization where f has
arbitrary degree). Thus the homogeneous primes of S[f−1] are in one-
to-one correspondence with all the primes (no homogeneity condition)
of the ring of elements of degree 0 in S[f−1]; the correspondence is
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given by taking a prime p of S[f−1] to q = p∩ S[f−1]0 and taking the
prime q of S[f−1]0 to qS[f−1].

(b) Let S = A[x0, . . . , xr] be the polynomial ring, and let U be the open
affine set (PrA)xi , of PrA = ProjS. By definition,

U = SpecS[x−1
i ]0

Show that

S[x−1
i ]0 = A[x′0, . . . , x

′
r]

the polynomial ring with generators x′j = xj/xi. (Note that x′i = 1, so
that this is a polynomial ring in r variables.) Thus

(PrA)xi = ArA

so projective r-space has an open affine cover by r + 1 copies of affine
r-space, as described in Chapter I.

(c) Consider the map α : S → S[x−1
i ]0 obtained by mapping xi to 1 and

xj to x′j for j �= i. Show from part (a) that if I is a homogeneous ideal
of S, then

I ′ := I · S[x−1
i ] ∩ S[x−1

i ]0 = α(I)′ · S[x−1
i ]0.

The process of making I ′ from I is called dehomogenization. Describe,
as in the classical case, the inverse process, homogenization.

Exercise III-7. If I is a homogeneous ideal of the graded ring S, then we
have an inclusion of underlying sets

|ProjS/I| ⊂ |ProjS|.

Show that the intersection of this subset with an open affine (ProjS)f
is a closed subset of (ProjS)f , and that the corresponding subscheme is
isomorphic to (ProjS/I)f , so that ProjS/I can be realized as a closed
subscheme of ProjS. Every finitely generated A-algebra generated in de-
gree 1 is a factor ring, by a homogeneous ideal, of the polynomial ring
A[x0, . . . , xr] for some r, so we see that every projective scheme over A is
a closed subscheme of a projective space over A. We will see in more detail
the correspondence between ideals in the ring S and closed subschemes of
ProjS in Exercises III-15 and III-16.

Exercise III-8. Show that PrA is the disjoint union of the open set ArA
and the closed set Pr−1

A . In particular, P0
A = SpecA. Thus, for example,

we may picture P1
Z as the union of the affine line ArZ over Z (as pictured
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in Chapter II) with a “point at ∞” isomorphic to SpecZ, as follows:

(0)

(2, x1)

(2, x1−x0)

(3, x1)

(3, x1−x0)

(3, x1−2x0)

(11, x1)

(11, x1−x0)

(11, x1−2x0)

(x1)

(x1−x0)

(x1−2x0)

?
(4x1+x0)

(2) (3) (11)

(2) (3) (11) (0)

Exercise III-9. Add to this diagram pictures of the closures of the points
(4x1 − 5x0), (2x1 − 5x0), and (5) (compare with the diagram of A2

Z in
Section II.4.3). Note: The curve (4x1 − 5x0) should be drawn tangent to
the “point at∞” (x0), while the curve (2x, −5x0) should not— informally,
we could say this is because the function 5/4 has a double pole at (2), while
5/2 has only a simple pole there. (See also the discussion in Exercise II-38.)

Exercise III-10. With notation as above, let h be a homogeneous element
of S of any strictly positive degree. The set

(ProjS)h := ProjS − V (h)

is as above the set of homogeneous primes of S not containing h. Show
that this set is again in one-to-one correspondence with the set of primes
of S[h−1]0 and that in fact there is an isomorphism of SpecS[h−1]0 with
an open (affine) subscheme of ProjS. Show also that a collection

{(ProjS)h}h∈H
of such open affines is an open cover of ProjS if and only if the elements
of H generate an ideal whose radical equals S+.

Exercise III-11. Extend the definition of ProjS to the case where S is
not necessarily generated by elements of degree 1, and show that ProjS is
a projective scheme.
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Exercise III-12. Let S be a graded ring, not necessarily generated in
degree 1. For any positive integer d, define the d-th Veronese subring of S
to be the graded ring

S(d) =
∞⊕
ν=0

Sdν

Show that ProjS is isomorphic to ProjS(d). However, show that if S =
A[x, y], then S(d) is not isomorphic to S as a graded algebra (or even as a
ring). Thus, as in the case of varieties, the correspondence between graded
algebras and projective schemes is not one-to-one.

III.2.2 Closed Subschemes of Proj R

A homogeneous ideal I ⊂ A[x0, . . . , xr] determines a coherent sheaf of ideals
Ĩ ⊂ OPr

A
, and hence a closed subscheme of PrA. The following problems

develop these facts.

Exercise III-13. For each open set

Ui = (PrA)xi = SpecA[x0, . . . , xr, x
−1
i ]0 ∼= ArA,

let Ĩ(Ui) be the ideal I ·A[x0, . . . , xr, x
−1
i ]∩A[x0, . . . , xr, x

−1
i ]0. Show that

this definition may be extended in a unique way to other open sets U in
such a way that Ĩ becomes a coherent sheaf of ideals. We may thus speak
of the closed subscheme V (Ĩ) of PrA associated to a homogeneous ideal I.

Exercise III-14. Conversely, given a closed subscheme X in PrA, we may
define a homogeneous ideal I(X) ⊂ A[x0, . . . , xr ] to be the ideal generated
by all homogeneous polynomials p(x0, . . . , xr) such that for every i setting
the i-th variable equal to 1 gives rise to an element

p(x0, . . . , 1, . . . , xr) ∈ JX(Ui) ⊂ A[x0, . . . , xr, x
−1
i ]0

Show that if I = I(X), then Ĩ = JX .

Note that with Exercise III-7 this shows that every closed subscheme of a
projective scheme is projective: if I ⊂ S = A[x0, . . . , xr] is a homogeneous
ideal, then V (Ĩ) ⊂ PrA is isomorphic to the scheme ProjS/I.

Exercise III-15. The correspondence between subschemes and ideals is
not, as it was in the case of affine schemes, one to one. For example, show
that in P1

K with K a field, the ideals I = (x0) and I ′ = (x2
0, x0x1) both

define the same reduced, one-point subscheme. More generally, show that
if I ⊂ S = K[x1, . . . , xr] is any homogeneous ideal, and for any integer n0

we define an ideal I ′ ⊂ I by

I ′ =
⊕
n≥n0

In

then I and I ′ define the same subscheme of PrK .
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Exercise III-16. To deal with this, define the saturation of a homoge-
neous ideal J ⊂ S := A[x0, . . . , xr] to be the ideal

I = {F ∈ S : F · Sn ⊂ J for some n}
and say that a homogeneous ideal is saturated if it equals its saturation.
Show that there is a bijective correspondence between subschemes of PrA
and saturated ideals.

Exercise III-17. Show that the isomorphism of Exercise III-12 defines
an isomorphism between projective space PrA and a closed subscheme of
PN−1
A , where N = dimA(A[x0, . . . , xr]d). (This is just the scheme-theoretic

version of the Veronese map.)

Exercise III-18. Show that if R is a graded ring finitely generated over
a ring A = R0 (not necessarily generated by its graded part of degree 1),
ProjR is isomorphic to a closed subscheme of some projective space PrA.

We conclude with a definition and a basic theorem.

Definition III-19. A morphism ϕ : X → Y of schemes is said to be
projective if it is the composition of a closed embedding X → PnY with the
structure morphism PnY → Y.

Note that if Y = SpecA is affine, this amounts to saying that X is of the
form ProjS for some finitely generated A-algebra S. The basic fact about
projective morphisms is the one stated above:

Theorem III-20. Projective morphisms are proper.

For a proof see Hartshorne [1977, Theorem II.4.9].

Exercise III-21. Show that a finite morphism ϕ : X → Y is proper, and
locally projective in the sense that Y can be covered by open sets U ⊂ Y
such that the restriction ϕ : V = ϕ−1U → U is projective. (We have
adopted the definition of projective morphism given in Hartshorne [1977,
Section II.4]; what is here called locally projective is called projective by
Grothendieck [1961, EGA II, 5.5].)

III.2.3 Global Proj

Proj of a Sheaf of Graded OX-Algebras. The construction of Proj of
a graded ring S gives rise to a scheme X = ProjS together with a structure
morphism X → B = Spec(S0). Because the association of ProjS to S is
functorial, there is a more general construction that gives rise to schemesX
with structure morphismsX → B to arbitrary schemes B, and that special-
izes to the construction Proj when B is affine: all we have to do for general
B is replace the graded S0-algebra S with a sheaf of algebras over OB .
To carry this out, let B be any scheme. By a quasicoherent sheaf of graded

OB-algebras we will mean a quasicoherent sheaf F of algebras on B, and
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a grading

F =
∞⊕
ν=0

Fν

such that FνFµ ⊂ Fν+µ, and F0 = OB. Thus, for every affine open subset
U ⊂ B with coordinate ring A = OB(U), the ring F (U) will be a graded
A-algebra with 0-th graded piece F (U)0 = A.
Given such a sheaf F, for each affine open subset U ⊂ B we will let

XU → U be the scheme XU = ProjF (U) with the structure morphism
ProjF (U) → Spec(A) = U. For every inclusion U ⊂ V of open subsets
of B, the restriction map F (V ) → F (U) is a homomorphism of graded
rings whose 0-th graded piece is the restriction map OB(V )→ OB(U), and
so induces a map XU → XV commuting with the structure morphisms
XU → U and XV → V and the inclusion U ↪→ V. We may thus glue
together the schemes XU to arrive at a scheme X with structure morphism
X → B; X is denoted ProjF ; and the construction of X is called global
Proj.
As in the case of ordinary Proj, in most situations it will be the case that

the sheaf of algebras F is generated by its first graded piece F1, and that
F1 is coherent (or, somewhat more generally, for some d > 0 the Veronese
subsheaf

F (d) =
∞⊕
ν=0

Fdν

is generated by Fd, and Fd is coherent). Under these hypotheses it follows,
again as in the case of ordinary Proj, that the morphism ProjF → B is
proper.
The simplest example of global Proj gives us yet another construction of

projective space over an arbitrary scheme S. Recall that projective space
PnS over an arbitrary scheme S was defined initially in Chapter I via the
gluing construction: if S is covered by affine schemes Uα = SpecRα, we
define projective space PnS to be the union of the projective spaces PnUα

,
with the gluing maps induced by the identity maps on Uα ∩ Uβ. We can
also define it as a product:

PnS = PnZ ×Spec Z S.

Finally, we can realize it as the global Proj of the symmetric algebra of the
free sheaf of rank n+ 1 on S:

Exercise III-22. Let S be any scheme. Show that projective space PnS
over S may be constructed as a global Proj:

PnS = Proj
(
Sym(O⊕n+1

S )
)
.

In particular, we can realize products of projective spaces over a given
scheme S either as fibered products, or via global Proj: if we denote by
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OPn
S
[X0, . . . , Xm] the sheaf of graded OPn

S
-algebras Sym(O⊕m+1

Pn
S

), then

PnS ×S PmS = ProjOPn
S
[X0, . . . , Xm].

A third way is via the Segre embedding:

Exercise III-23. Let S be any scheme. Show that

PnS ×S PmS ∼= V
({Xi,jXk,l −Xi,lXk,j}

) ⊂ ProjOS [{Xi,j}0≤i≤n;0≤j≤m]

= P(n+1)(m+1)−1
S .

This in turn gives us a way of describing subschemes of such a product,
at least locally over the base:

Exercise III-24. Let S = SpecR be any affine scheme. Show that any
closed subscheme

X ⊂ ProjR[x0, . . . , xn]×S ProjR[y0, . . . , ym] = PnS ×S PmS
may be given as the zero locus of a collection {Fα(x0, . . . , xn; y0, . . . , ym)}
of bihomogeneous polynomials Fα in the two sets of variables (x0, . . . , xn)
and (y0, . . . , ym). In particular, show that the ideal of 2× 2 minors of the
matrix

(
x0
y0

x1
y1

···
···
xn

yn

)
defines the diagonal subset in PnS×S PnS . Deduce that

any projective morphism is separated.

A more serious application of the global Proj construction is the defini-
tion of the blow-up of a scheme X along a closed subscheme Y ⊂ X ; we
will discuss this in full in Chapter V. Another common use of global Proj is
the construction of the projectivization of a vector bundle, which we now
describe.

The Projectivization P(E ) of a Coherent Sheaf E . We saw in Exer-
cise III-22 that projective space PnS over a scheme S is Proj(Sym(O⊕n+1

S )).
We make a similar construction for any coherent sheaf E, and define the
projectivization P(E ) of E to be the B-scheme

P(E ) = Proj(Sym E ) −→ B.

To review the simplest case, let V be an n-dimensional vector space over
a field K, regarded as a vector bundle over the one-point scheme SpecK.
The projectivization of V is a projective space of dimension n over K. The
projectivization of V ∗ is called the the dual projective space to PV. The
K-valued points of P(V ) correspond to one-dimensional quotients of V or
equivalently to hyperplanes in V. TheK-valued points of P(V ∗) correspond
to one-dimensional subspaces of V ; this is what was classically called Pn.
More generally, if E is a locally free sheaf of rank n + 1, then P(E ) is

a projective bundle over B, in the sense that for sufficiently small affine
open subsets U ⊂ B the inverse image of U in P(E ) is isomorphic to pro-
jective space PnU as U -scheme. (When E is not locally free, it is less clear
what the resulting scheme P(E ) will look like.) When B is a variety over



104 III. Projective Schemes

an algebraically closed field K and E the sheaf of sections of a vector bun-
dle E on B, the K-valued points of P(E ∗) correspond to one-dimensional
subspaces of fibers of E, while the K-valued points of P(E ) correspond to
one-dimensional quotients of fibers of E, or equivalently to hyperplanes in
these fibers.
Note that any closed subscheme X ⊂ PnB may be realized as Proj(F ) for

some quasicoherent sheaf F of graded OB-algebras. More generally, if E
is any coherent sheaf, any closed subscheme X ⊂ P(E ) of its projectiviza-
tion may be so realized. Conversely, if F is any quasicoherent sheaf of
graded OB-algebras generated by F1, the surjection Sym(F1) → F gives
an embedding X = ProjF ↪→ P(F1).

Exercise III-25. Let K be a field, P2
K = ProjK[X,Y, Z] the projective

plane over K and (P2
K)∗ = ProjK[A,B,C] the dual projective plane. Let

Σ be the universal line over (P2
K)

∗, that is,

Σ = V (AX +BY + CZ) ⊂ P2
K ×K (P2

K)
∗

viewed as a family over (P2
K)∗. Show that Σ→ (P2

K)∗ is the projectivization
of a locally free sheaf E of rank 2 on (P2

K)
∗, and describe the sheaf E.

Exercise III-26. Let B be any scheme, E a locally free sheaf on B and
E = Spec(SymE ∗) → B the total space of the vector bundle associated
to E. Show that we can complete E → B to a bundle of projective spaces
over B: specifically, show that we have an inclusion on E in the bundle
P(E ∗ ⊕OB) as an open subscheme, with complement a hyperplane bundle
P(E ∗) ⊂ P(E ∗ ⊕OB).

III.2.4 Tangent Spaces and Tangent Cones

Affine and Projective Tangent Spaces. The Zariski tangent spaces to
a scheme are abstract vector spaces. When a scheme X over a field K is
embedded in an ambient space like affine space or projective space over
K, however, we can also associate to a point p of X with residue field K a
corresponding linear subvariety of that affine or projective space, called the
affine tangent space or projective tangent space to X at p. In the case of
an affine scheme X = V (f1, . . . , fk) ⊂ AnK and point p = (a1, . . . , an) ∈ X,
this is the subvariety given as

V

({∑
i

∂fα
∂xi

(a1, . . . , an) · (xi − ai)
}
α=1,...,k

)
.

To understand the relationship between this scheme and the Zariski tangent
space, note that a vector space over a field K is not the same thing as affine
space AnK . But it is true that, given a vector space V of dimension n over
K, we may associate to V a scheme V, isomorphic to affine space AnK , so
that the points of V with residue field K correspond naturally to vectors
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in V : this is just the spectrum of the symmetric algebra of the dual vector
space

V = Spec (Sym(V ∗)) .

We will call V the scheme associated to the vector space V.
This said, the scheme Tp(AnK) associated to the Zariski tangent space to

affine space AnK over a field K at any K-rational point p ∈ AnK (that is, a
closed point with residue field κ(p) = K) may be naturally identified with
the affine space itself, via an identification carrying the origin in Tp(AnK)
to p. Now, suppose X ⊂ AnK is any subscheme, and p ∈ X any K-rational
point. The differential dιp of the inclusion ι : X ↪→ AnK at p represents the
Zariski tangent space Tp(X) as a vector subspace

dιp : Tp(X) ↪→ Tp(AnK).

We take the induced inclusion of schemes

dιp : Tp(X) ↪→ Tp(AnK) = AnK
and compose it with the translation morphism tp : AnK → AnK sending the
origin to p to obtain an inclusion

tp · dιp : Tp(X) ↪→ AnK −→ AnK .

The image of this inclusion is an affine subspace of AnK , which we will call
the affine tangent space to X at p. Again, note that it is a scheme, not a
vector space.
A similar construction will associate to a point p with residue field K

on a projective scheme X ⊂ PnK a linear space Tp(X) ⊂ PnK . One way to
do this is to choose an open subset U ∼= AnK ⊂ PnK containing p, and take
the closure in PnK of the affine tangent space to X ∩U at p. But there is a
more intrinsic way. First, we write our ambient projective space PnK as the
projective space PV associated to a vector space V, that is, as

PnK = ProjS

where
S = SymV ∗

is the symmetric algebra of the dual of a vector space V. Thus, (k + 1)-
dimensional linear subspaces of S1 = V correspond to k-planes in PnK . We
let

I = I(X) ⊂ S

be the homogeneous ideal of X ⊂ PnK , and let m = mp ⊂ S be the ideal of
forms vanishing at the point p ∈ X. Let J be the saturation of the ideal
I + m2 ⊂ S. We define the projective tangent space Tp(X) ⊂ PnK to X at
p to be the subspace

Tp(X) = V (J ∩ S1) ⊂ PnK
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of PnK . By way of explanation, note that J is the ideal of the first-order
neighborhood of p in X—that is, the intersection of X with the “fat point”
P ⊂ PnK defined by the square of the ideal m of p. The projective tangent
space Tp(X) = V (J ∩ S1) is thus the span of this first-order neighborhood
V (J), that is, the smallest linear subspace of PnK containing V (J).

Exercise III-27. Show that this definition coincides with the naive defi-
nition proposed initially.

Since the projective tangent space Tp(X) to a projective scheme X at
a K-rational point p ∈ X is a linear subspace of the ambient projective
space PV, it is of the form Tp(X) = PW for some quotient vector space
V →W → 0. We may ask then what the relationship is between the vector
space W and the Zariski tangent space Tp(X). The answer, which we will
see in Section VI.2.1 is that we have an exact sequence

0 −→ K −→W ∗ −→ Tp(X) −→ 0.

More precisely, if V → U → 0 is the one-dimensional quotient of V cor-
responding to the point p ∈ X ⊂ PV, then the surjection V → U factors
through a surjection ϕ : W → U, and we have a natural identification

Tp(X) = Hom(Kerϕ,U).

In any event, note that we do have a natural identification of the set of
lines through p in Tp(X) with the set of lines through the origin in Tp(X).

Exercise III-28. Let X = V (F ) ⊂ PnK be the hypersurface in PnK given
by the homogeneous polynomial F (Z0, . . . , Zn), and let p = [a0, . . . , an] ∈
X be any point with residue field K. Show that the projective tangent
space Tp(X) is the zero locus V (L) ⊂ PnK of the linear form

L(Z0, . . . , Zn) =
n∑
k=0

∂F

∂Zi
(a0, . . . , an) · Zk.

Tangent Cones. A more accurate reflection of the tangential behavior of
a scheme X at a point p ∈ X is its tangent cone. To define this, let X now
be an arbitrary scheme, p ∈ X and point, OX,p the local ring of X at p
and m = mX,p ⊂ OX,p the maximal ideal in OX,p. We define the tangent
cone TCp(X) to X at p to be the scheme

TCp(X) = Spec
( ∞⊕
α=0

mα/mα+1

)
.

A few observations about this construction are in order. First, we note that
the graded ring B =

⊕
(mα/mα+1) is generated by its first graded piece

B1 = m/m2 = (TpX)∗

so that B is a quotient of the ring

A = Sym((TpX)∗).
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We thus have an inclusion

TCp(X) = SpecB ↪→ SpecA = TpX,

or in other words, the tangent cone to X at p is naturally a subscheme of
the scheme associated to the Zariski tangent space TpX to X at p.

To give a more concrete realization of the tangent cone, suppose that X
is a subscheme of affine space over a field K, that is,

X ⊂ SpecK[x1, . . . , xn]

and let I = I(X) ⊂ K[x1, . . . , xn] be the ideal of X ; suppose moreover
that the point p ∈ X is the origin (x1, . . . , xn) ∈ AnK . For any polynomial
f ∈ K[x1, . . . , xn], write

f(x1, . . . , xn) = fm(x1, . . . , xn) + fm+1(x1, . . . , xn) + · · ·
with fl(x1, . . . , xn) homogeneous of degree l and fm �= 0; the first nonzero
term fm(x1, . . . , xn) is called the leading term of f . Then we have the
following interpretation:

Exercise III-29. Show that the tangent cone

TCp(X) ⊂ TpX ⊂ Tp(AnK) = AnK

is the subscheme defined as the zero locus of the leading terms of all ele-
ments f ∈ I.

Returning to the general case, note that since the ringB =
⊕

(mα/mα+1)
is graded, we can also associate a geometric object to the pair (X, p) by
taking ProjB. This is a subscheme of the projective space P(TpX) ∼= Pnκ(p)

associated to the Zariski tangent space to X at p, called the projectivized
tangent cone to X at p and denoted PTCp(X). In many ways it is more
convenient to deal with, being a projective scheme and of one lower dimen-
sion than the tangent cone; it contains in general slightly less information
(as exercise III-30 below will show, the tangent cone TCp(X) may have an
embedded point at the origin, which the projectivized tangent cone will
miss).

Even though the degree of a general subscheme of projective space will
not be defined until Section III.3.1, we should mention here an important
invariant of a scheme that can be defined in terms of the projectivized
tangent cone to X at p: we define the multiplicity of X at p to be the
degree of the projectivized tangent cone PTCp(X) ⊂ P(TpX) ∼= Pnκ(p).
This definition represents one more example of how schemes arise naturally
and are useful in the context of varieties: in the category of varieties we
can still define the tangent cone (as the reduced scheme associated to our
tangent cone) and projectivized tangent cone, but they do not behave well
in families.
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There are many naturally occurring examples of nonreduced tangent
cones. For example, consider the family of plane cubic curves with equation
Ct = SpecK[x, y]/(y2 − tx2 − x3) (that is, we let B = A1

K = SpecK[t],
and take our family to be C = V (y2 − tx2 − x3) ⊂ A2

B → B). For each t,
the curve Ct may be given parametrically as the image of the map

A1
K = SpecK[λ] −→ A2

K = SpecK[x, y]

given by t 
→ (λ2 − t, λ3 − tλ). For t �= 0, this curve has a node at the
origin— the two points λ = ±√t each map to the origin—and this is
reflected in the tangent cone T(0,0)Ct = V (y2 − tx2), which is the union of
the two lines y = ±√t x. When t = 0, we see that the node of the curve
has degenerated to a cusp, and the tangent cone is now the double line
T(0,0)C0 = V (y2).
For more subtle examples, consider the curves C1 and C2 ⊂ A3

K given
as the images of the maps νi : A1

K → A3
K given by

ν1 : t 
−→ (t3, t4, t5)

and
ν2 : t 
−→ (t3, t5, t7).

In each case, let p be the singular point of Ci.

Exercise III-30. (a) Show that the projectivized tangent cones

PTCp(Ci) ⊂ P2
K

to both curves Ci are curvilinear schemes of degree 3, that is, isomor-
phic to SpecK[s]/(s3), and that they are not contained in any line in
P2
K .

(b) Find an example of a curve C ⊂ A3
K where the projectivized tangent

cone to C at the origin is isomorphic to SpecK[s]/(s3) and contained
in a line.

(c) Find an example of a curve C ⊂ A3
K where the projectivized tangent

cone to C at the origin is isomorphic to SpecK[s, t]/(s2, st, t2).

(d) Find an example of a curve C ⊂ A3
K where the projectivized tangent

cone to C at the origin is contained in a line, but the Zariski tangent
space T0(C) is three-dimensional.

There is another geometric characterization of the tangent cone to a
scheme X at a point p ∈ X : simply put, the tangent cone is the locus of
limiting positions of lines pq joining p to points q �= p ∈ X as q approaches
p. To state this precisely, suppose first that a neighborhood of p in X
is embedded in affine space AnK over a field K. Let T = TpAnK be the
affine space associated to the Zariski tangent space TpAnK to AnK at p, and
consider the incidence correspondence

Σ =
{
(v, q) : v ∈ T p(pq) ⊂ T × (AnK \ {p})

}
.
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Equivalently, in terms of the identification of T with AnK itself, Σ is the
subscheme of AnK × (AnK \ {p}) given by the equations

yi
(
xj − xj(p)

)− yj
(
xi − xi(p)

)
= 0.

Let Γ = π−1
2 (X \ {p}) ⊂ T × (X \ {p}) be the inverse image of X \ {p} in

Σ, and Γ the closure of Γ in T ×X. We have then:

Proposition III-31. The tangent cone TCpX is the fiber of Γ over the
point p ∈ X.

This statement (modulo possible embedded components at the origin in
TCpX) will be proved in Chapter IV. It amounts to the statement that
the projectivization of TCpX is the exceptional divisor of the blow-up of
X at p.
Proposition III-31 is very useful, for example in doing Exercises III-32-

III-34 below.

Exercise III-32. Let V be the vector space of polynomials of degree n on
P1
K = ProjK[X,Y ], that is, homogeneous polynomials of degree n in two

variables X,Y, and let PV ∗ ∼= PnK be the projective space parametrizing
one-dimensional subspaces of V. Let ∆ ⊂ PnK be the discriminant hyper-
surface, that is, the locus of polynomials with a repeated factor with the
reduced scheme structure (we will see in Chapter V how to give equations
for, and hence a natural scheme structure on, ∆). If

F (X,Y ) =
∏

(aiX + biY )mi

is any polynomial of degree n (with the factors aiX+biY pairwise indepen-
dent), what is the support of the tangent cone to ∆ at the point p = [F ]?
(Hint: consider lines in PnK through the point [F ]. How many other points
of intersection with ∆ will a general such line have, and which lines will
have fewer?)

Exercise III-33. More generally, suppose ∆m ⊂ PnK is the locus of poly-
nomials with an m-fold root. Again, what is the support of the tangent
cone to ∆m at a point [F ], where F is as above?

Exercise III-34. This is an exercise from classical geometry. Suppose C ⊂
PnK is a nonsingular curve. The union of the projective tangent lines to C
is the support of a surface S ⊂ PnK , called the tangent developable to C;
this surface will be singular along C (see Harris [1995] for example). What
is the support of its tangent cone at a general point p ∈ C? (Note that if
we take C to be the rational normal curve in PnK , that is, the image of the
n-th Veronese map P1

K → PnK , then this is a special case of exercise III-33
above.)

Exercise III-35. In each of the following, a finite group G acts on the
affine plane A2

K = SpecK[x, y]. The quotient A2
K/G (that is, SpecK[x, y]G)



110 III. Projective Schemes

will have a singularity at the image of the origin (x, y) ∈ A2
K . Describe the

tangent cone in each case.

(a) G = Z/(3), acting by (x, y) 
→ (ζx, ζy), where ζ is a cube root of unity.

(b) G = Z/(3), acting by (x, y) 
→ (ζx, ζ2y), where ζ is a cube root of
unity.

(c) G = Z/(5), acting by (x, y) 
→ (ζx, ζy), where ζ is a fifth root of unity.

We will encounter tangent cones again in our discussion of blowing up:
as we indicated, the projectivized tangent cone PTCp(X) to a scheme X
at a point p ∈ X is the exceptional divisor in the blow-up Blp(X) of X at
p. In particular, tangent cones to arithmetic schemes will come up again in
this way in Section IV.2.4.

III.2.5 Morphisms to Projective Space

Just as there is a simple characterization of morphisms to an affine scheme
(Theorem I-40), there is a simple way of viewing morphisms to projective
space in terms of line bundles, or, equivalently, invertible sheaves, a concept
we will introduce in this section. Invertible sheaves have another geometric
realization in the notion of Cartier divisors, and we will describe this con-
nection as well. See Hartshorne [1977, Chapter II] for further information.
If we understand morphisms to the scheme PnA, we will understand mor-

phisms to an arbitrary projective scheme Y ⊂ PnA, since a morphism to Y
is just a morphism to PnA that factors through Y (a sharp version of this is
given in Exercise III-45); thus we will study morphisms to projective space.
To understand the situation, we first consider morphisms ϕ : X → PnA =

ProjA[x0, . . . , xn] in the category of A-schemes, where X = SpecK is the
spectrum of a field. Since X has only one point, the image p of such a
morphism must be contained in one of the open sets

Ui = (PnA)xi = SpecA
[x0

xi
, . . . ,

xn
xi

] ∼= AnA.

Thus the map corresponds to an n-tuple of scalars (a0, . . . , âi, . . . , an) ∈
Kn. Of course, p may also be contained in another open set Uj ; in this case
aj �= 0 and the coordinates in Uj are

(b0, . . . , bj , . . . , bn) =
(a0

aj
, . . . ,

1
aj

. . . ,
an
aj

)
.

To show the coordinates without prejudice toward one or another of the
Ui, we may say that a map SpecK → PnA corresponds to an (n+1)-tuple
of elements of K, not all zero, with two such (n+1)-tuples corresponding
to the same map if and only if they differ by a scalar; the map above
corresponds to the (n+1)-tuple [α0=a0, . . . , αi=1, . . . , αn=an], or, equiv-
alently, [β0=b0, . . . , βj=1, . . . , βn=bn].
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Having said this, we may extend exactly the same consideration to the
case of a morphism X → PnA, where X is the spectrum of a local A-algebra:

Proposition III-36. If T is a local A-algebra, the morphisms SpecT →
PnA (in the category of A-schemes) are in one-to-one correspondence with
the set of (n+1)-tuples [α0, . . . , αn] ∈ T n+1 such that at least one of the αi
is a unit, modulo the equivalence relation [α0, . . . , αn] ∼ [αα0, . . . , ααn] for
any unit α ∈ T .

Proof. Write PnA = ProjA[x0, . . . , xn]. Given an (n+1)-tuple [α0, . . . , αn]
with αi a unit, we map SpecT to Ui = (PnA)xi ⊂ PnA via the map corre-
sponding to the A-algebra homomorphism[x0

xi
, . . . ,

xn
xi

]
−→ T,

xj
xi


−→ αj
αi
.

Conversely, given a morphism ϕ : SpecT → PnA of A-schemes, let p ∈
SpecT be the unique closed point, and suppose that ϕ(p) ∈ Ui. The preim-
age ϕ−1(Ui) is an open subset of SpecT containing p, and hence in all of
SpecT ; in other words, ϕ(X) ⊂ Ui. The map ϕ is thus given by a map of
A-algebras [x0

xi
, . . . ,

xn
xi

]
→ T

and we may associate to ϕ the (n+1)-tuple[
α0=

x0

xi
, . . . , αi=1, . . . , αn=

xn
xi

]
.

(If the image ϕ(x) is also contained in Uj, we arrive at the (n+1)-tuple[
β0=

x0

xj
, . . . , βj=1, . . . , αn=

xn
xj

]
,

which equals [αα0, . . . , ααn] for α = xi/xj .)

To generalize this further, to affine rings or schemes, we seek a construc-
tion that, locally, reduces to the one above. To this end, we may regard the
(n+1)-tuple (α0, . . . , αn) of the proposition as giving a module homomor-
phism

α : T n+1 → T.

To say that α is surjective is equivalent to saying that any of the αi is a
unit in T . And two such maps are equivalent if they differ by composition
with an automorphism of the module T (that is, multiplication by a unit).
Equivalently, the kernel is a rank-n summand of T n+1.
It turns out that this last sentence generalizes to describe A-morphisms

from an A-scheme X to Pn: they correspond to subsheaves E ⊂ On+1
X of

rank n that are locally direct summands of On+1
X ; or, equivalently, to maps

On+1
X → P → 0,
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where P is a sheaf locally isomorphic to OX (such a sheaf is called invertible,
a term that will be explained in the following discussion), modulo units of
OX acting as automorphisms of P .

Theorem III-37. For any scheme X, we have natural bijections

Mor(X,PnZ)

= {subsheaves K ⊂ On+1
X that locally are summands of rank n}

=
{invertible sheaves P on X, together with an epimorphism On+1

X →P}
{units of OX(X) acting as automorphisms of P} .

Here “natural” means that for any morphism ϕ : X → Y of schemes, the
map Mor(Y,PnZ) → Mor(X,PnZ) given by composition with ϕ commutes
with pullback of invertible sheaves and epimorphisms; in other words, we
have an isomorphism of functors from the category of schemes to the cat-
egory of sets.

Of course, if X → B is a B-scheme, we will be interested in describing
the morphisms of X to PnB over B. This turns out to involve no new ideas:
somewhat surprisingly, for any B-scheme X → B, a B-morphism X → PnB
is exactly the same thing as a morphism X → PnZ ! The point is, since PnB is
the product of PnZ with B, a morphism of any scheme X to PnB is uniquely
determined by the data of a morphism X → B and a morphism X → PnZ.

X ............................� PnB

B
�� PnZ

��

SpecZ
�

�

Thus, after specifying a structure morphism ϕ : X → B we get a bijection

Mor(X,PnZ)↔ MorB(X,PnB).

We now proceed with the proof of Theorem III-37. Because all the terms
in these equalities are defined locally on X, the theorem reduces easily to
the case where X is affine, and this is the case we will actually prove below.
First, we review the corresponding notions about modules. A good basic
reference is Bourbaki [1972, Chap. II-5].
Recall that a module K over a ring T is locally free of rank m if for every

maximal ideal (or, equivalently, every prime ideal) p the Tp-module Kp is
free of rank m. This is the same as the sheaf-theoretic notion.

Exercise III-38. Let K be a finitely generated module over a Noetherian
ring T, and let K̃ be the corresponding coherent sheaf over SpecT. Show
thatK is a locally free module in the sense above if and only if K̃ is a locally
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free coherent sheaf in the sense that there is an affine cover of SpecT by
basic open sets Spec Tfi such that the restriction of K̃ to each of these sets
is free (equivalently, each K[f−1

i ] is free over Tfi = T [f−1
i ]).

An invertible T -module is a finitely generated, locally free T -module of
rank 1.
In commutative algebra, locally free modules are usually called projective

modules; their characteristic property is that if P is a locally free T -module,
then any epimorphism of T -modules M →→ P splits. It follows that if
K ⊂ T n+1 is a submodule, then K is a summand of T n+1 if and only if
T n+1/K is a locally free module; in particular, K is a rank n summand of
T n+1 if and only if T n+1/K is an invertible module.
Before giving the proof of Theorem III-37, we record a result that comes

from an immediate application of the definitions.

Proposition III-39. A morphism of an arbitrary scheme X to projective
space PrZ = ProjZ[x0, . . . , xr] may be given by a collection of maps ϕi :
Ui → (PrZ)xi , where {Ui} is an open cover of X, the (PrZ)xi ⊂ PrZ are the
open subsets of Exercise III-6, and the maps ϕi and ϕj induce the same
map Ui ∩ Uj → (PrZ)xi ∩ (PrZ)xj = Spec(Z[x0, . . . , xr][x−1

i , x−1
j ])0.

The heart of Theorem III-37 is the following result, which is the affine
version of the first equality.

Proposition III-40. If T is any ring, then

Mor(SpecT,PnZ)

= {K ⊂ T n+1 | K is locally a rank n direct summand of T n+1}.

Proof. Suppose, first, that K is a rank n free summand of T n+1, and write
P for the module T n+1/K. This module is locally free of rank 1 and is
generated by the n + 1 images ei of the n + 1 generators of T n+1. Let Ij
be the annihilator of (P/Tej), and let Uj be the complement of V (Ij) in
SpecT, so that the Uj form an open cover of SpecT. Regard T -modules
as sheaves on Spec T. On Uj the map T → P defined by 1 
→ ej is an
isomorphism, and identifying P |Uj with T |Uj via this map, the projec-
tion T n+1|Uj → (T n+1/K)|Uj = P |Uj = T |Uj has a matrix of the form
(tj0, . . . , tjj = 1, . . . , tjn), which defines an element of T n+1

Uj
and thus a

morphism Spec T → AnZ . These morphisms agree on overlaps as in Propo-
sition III-39, so they define a morphism SpecT → PnZ .
Conversely, suppose that we are given a morphism ψ from SpecT to

PnZ . Since PnZ is covered by n + 1 affine n-spaces, ψ is by definition asso-
ciated to an open cover Spec T =

⋃
i=0,...,n Ui and for each j an element

(tj0, . . . , tjj = 1, . . . , tjn) of T n+1|Uj such that tij is a unit on Ui ∩ Uj and
til = tijtjl in T |Ui∩Uj for all i, j, l. Two such T -valued points are the same
if and only if the corresponding elements of T n+1|Uj are equal for each j.
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Let Kj be the kernel of the map T n+1|Uj → T |Uj defined by the matrix
(tj0, . . . , tjj = 1, . . . , tjn), and let

K = {a ∈ T n+1 : a|Uj ∈ Kj for each j}.
To see that K is locally a rank n summand of T n+1, note that any

local ring of T is a local ring of one of the Uj so the result of localizing
the sequence 0 → K → T n+1 → T n+1/K → 0 at any prime ideal p is a
sequence of the form

0→ Kp → T n+1
p → Tp → 0,

and such a sequence must split.

Exercise III-41. The word “locally” can be omitted in the statement of
the proposition, because a submodule of a finitely generated free module
that is locally a direct summand is in fact a direct summand. Prove this.

To derive a version of this with invertible modules, we use the fact that
K ⊂ T n+1 is a direct summand of rank n if and only if T n+1/K is an
invertible module, and identify the set on the right-hand side of the equality
in Proposition III-40 with the set of invertible quotient modules of T n+1.
We may separate the isomorphism class of the quotient from the surjection
that makes it a quotient and look at invertible T -modules P with surjections
T n+1 → P. Two surjections α, β : T n+1 → P have the same kernel if and
only if there is an automorphism σ : P → P such that β = σα. But if
P is an invertible T -module, then HomT (P, P ) = T (reason: the natural
map α : T → HomT (P, P ) taking 1 to the identity is locally the same as
the natural map T → HomT (T, T ), which is an isomorphism, so α is an
isomorphism). Thus the automorphisms of P may be identified with units
of T, and we get the following corollary:

Corollary III-42. If T is any ring, then

Mor(SpecT,PnZ)

=

{
invertible T -modules P with an epimorphism T n+1 → P

}
{isomorphisms} ,

where an isomorphism from ϕ : T n+1 → P to ϕ′ : T n+1 → P is an
isomorphism α : P → P ′ such that αϕ = ϕ′. Note that the set of such iso-
morphisms is either empty or in (non-natural) one-to-one correspondence
with the units of T .

In the classical case of the variety PnK over a fieldK, we can specify points
of PnK by giving (n+1)-tuples of elements of K, not all zero. (In the scheme
PnK , of course, there are other, nonclosed points as well.) Analogously, for
any ring A, an (n+ 1)-tuple (a0, . . . , an) of elements ai ∈ A that generate
the unit ideal defines a surjection An+1 → A of A-modules and thus defines
an A-valued point of PnA.
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Exercise III-43. (a) Show that there are bijections between the sets{
(n+ 1)-tuples of elements of A that generate the unit ideal

}
and{

maps SpecA→ PnA such that the composite SpecA→ PnA → SpecA
is the identity (A-valued points of PnA in the category of A-schemes)

}
.

(b) Show that the image of the morphism SpecA → PnA associated to an
(n+ 1)-tuple (a0, . . . , an) is the closed subscheme

V ({aiXj − ajXi}0≤i,j≤n).

If A is a domain, show that ({aiXj − ajXi}0≤i,j≤n) is a prime ideal.

If A is a domain, Exercise III-43 shows that the image is a reduced and
irreducible closed subscheme of PnA, and in particular corresponds to a point
of |PnA|. The example of the point of P1

Z corresponding to (2, 5) is treated
in Exercise III-9 above. Note that the SpecZ-valued point (2, 5) is not a
SpecZ-valued point of either open set in the standard affine open cover
P1

Z = A1
Z ∪A1

Z of P1
Z, even though the point (2x1−5x0) ∈ |P 1

Z | lies in both!
Finally, if we are working in the category of B-schemes, we may ask for

a generalization of this result describing maps of a given B-scheme X to a
projective bundle. To state the result, let E be any coherent sheaf on B.
We have then:

Theorem III-44. For any B-scheme ϕ : X → B and coherent sheaf E on
B, there is a natural bijection

MorB(X,P(E ))

=
{invertible sheaves P on X, together with an epimorphism ϕ∗E → P}

{isomorphisms} ,

where isomorphism is defined as in Corollary III-42.

We will not prove this here; the proof can be carried out by locally
expressing the coherent sheaf E as a quotient of a free sheaf On+1

B , and
characterizing the subset of morphisms from X to PnB that factor through
the resulting inclusion P(E ) ↪→ PnB.

Exercise III-45. (a) Suppose that Y ⊂ PnA is the closed subscheme de-
fined by homogeneous equations {Fi}. If T is a local A-algebra then, as
we showed above, the morphisms from SpecT to PnA may be identified
with n + 1-tuples of elements of T generating the unit ideal, modulo
units of T. Show that the condition that such an n+1-tuple correspond
to a map to Y is simply that it be a zero of all the polynomials Fi.

(b) The general case of a map from an affine A-scheme to a projective A-
scheme can be reduced to the local one using the following fact: if T is
any A-algebra a morphism SpecT → PnA factors through X if and only
if for all primes p of T the composite morphisms Spec Tp → Spec T →
PnA; factor through X. Prove this.
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Having characterized morphisms of schemes to projective spaces, it is
instructive to look back to other geometric theories for similar characteri-
zations. Recall that in topology the space PnC of n-dimensional subspaces
of a complex (n+1)-dimensional vector space Cn+1 is the classifying space
for subbundles of rank n of a trivial bundle of rank n+1 (and similarly for
PnR). This means that for all spaces X, maps X → PnC correspond to the
rank n subbundles of the trivial bundle on X. The correspondence is easy
to describe: a rank n subbundle J of the trivial bundle V = Cn+1×X on
X corresponds to the map X → PnC that sends a point p ∈ X to the point
of PnC corresponding to the space

Jp ⊂ Vp = Cn × {p} = Cn.

There are other equivalent descriptions, which may be more familiar, in
terms of the rank 1 quotient bundle V /J or the subbundle (V /J )∗ ⊂ V ∗

of rank 1.
Analogous results hold in the category of complex analytic spaces and

maps and in the category of algebraic varieties and regular maps (taking
the subbundles to be complex analytic, or algebraic, respectively). In this
section we give a corresponding result for schemes. The main difference is
that in algebraic geometry, it is traditional to replace vector bundles on Y
by their sheaves of sections.
To see what these sheaves should look like, consider first that if E is

a trivial vector bundle of rank 1 on a scheme X , then a section of E is
the same as a function on X , so the sheaf of sections of E should be OX .
Taking direct sums, we see that the sheaf of sections of a trivial vector
bundle of rank m is the coherent sheaf that is the free OX -module OmX . In
general, since vector bundles are by definition locally trivial, their sheaves
of sections are locally free sheaves of OX -modules of finite rank— locally
free coherent sheaves. It is not hard to go in the other direction as well and
to derive from a locally free coherent sheaf a vector bundle.
Given this equivalence between vector bundles and locally free coherent

sheaves, why work with locally free sheaves? The reason is similar to the
reason for working with schemes instead of varieties even if one is primarily
interested in varieties: locally free coherent sheaves live naturally in the
larger category of coherent sheaves, and working in the larger category
gives us flexibility. Standard constructions in the smaller category (such
as taking the fibers of a morphism of schemes, or taking the cokernel of
a homomorphism of locally free sheaves) are most naturally interpreted in
the larger category.
Like the line bundles to which they correspond, locally free sheaves of

rank 1 play an especially important role and have a special name: they are
called invertible sheaves. The terminology comes from number theory: an
invertible module over a domain T is a finitely generated submodule I of
the quotient field such that, for some other finitely generated submodule
J of the quotient field (called its inverse) we have IJ = T, the unit ideal.
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Over the scheme SpecT, the corresponding sheaf is an invertible sheaf.
More generally, given any invertible sheaf I over an arbitrary scheme X,
the sheaf I ∗ = Hom(I ,OX) is again invertible and the natural map I ⊗
I ∗ → OX is an isomorphism (check locally). For this reason I ∗ is called
the inverse of I .
Knowing that invertible sheaves correspond to line bundles does not at

first seem to help connect them to geometry. Just as in classical algebraic
geometry, however, morphisms of a schemeX to projective space can in fact
be characterized in geometric terms using the related notion of an effective
Cartier divisor. This is defined to be a subschemeD ⊂ X such that at every
point x ∈ X the ideal of D in the local ring OX,x is principal and generated
by a nonzerodivisor. In other words, a subscheme D is an effective Cartier
divisor if and only if its ideal sheaf ID is invertible. Following tradition,
we define the invertible sheaf OX(D) associated to D to be the inverse

OX(D) = I ∗
D.

The invertible sheaves form a group PicX under the tensor product oper-
ation, and under reasonable circumstances— for example, for subschemes
of projective space over a field—every invertible sheaf can be written as
OX(D)⊗IE = OX(D)⊗OX(E)∗ for some effective Cartier divisors D,E.
Note the unfortunate but essentially unambiguous notation: if U is an

open set ofX then O(U) denotes the ring of sections of the sheaf OX defined
over U , while if D is a Cartier divisor O(D) denotes the sheaf above. Of
course we could also manufacture such monstrosities as OX(D)(U). . . .
We may tighten the connection between invertible sheaves and effective

Cartier divisors as follows: If D is an effective Cartier divisor then the
inclusion ID ↪→ OX is a global section of Hom(ID,OX) = OX(D). This
section is regular in the sense that for every open set U ⊂ X no nonzero
element of OX(U) annihilates the restriction of this section to U (Reason:
the image of ID(U) in OX(U) contains a nonzerodivisor.) Thus an effective
Cartier divisor gives rise to an invertible sheaf with a global section.
Conversely, given an invertible sheaf L and a global section σ, we define

the zero locus of that section to be the support of the quotient L /OXσ.
To understand what this means, choose a covering of X by open sets U
such that L |U ∼= OU . The zero locus of σ in U is then the zero locus of the
corresponding element of OU . If the section is regular, it follows that the
zero locus is an effective Cartier divisor. Note that another global section
differing from σ by a unit in OX(X) would give the same Cartier divisor.
We thus have a bijection

{effective Cartier divisors}
�

{invertible sheaves with choice of global section modulo units} .
The reader might wonder about the significance of “effective”. An ef-

fective Cartier divisor D may be defined by giving a nonzerodivisor in
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fU ∈ OX(U) for each set U of an open covering of X , and fU is defined up
to a unit of OX(U). Thus D gives rise to a unique global section of the sheaf
of invertible rational functions modulo invertible regular functions—that
is, the sheaf M ∗

X/O
∗
X , where

∗ denotes the sheaf of multiplicative units,
and MX is the sheafification of the presheaf whose value on an open set U
is the localization OX(U)[S−1

U ] of the ring OX(U) at the multiplicatively
closed set SU of elements that become nonzerodivisors in OX,x for every
x ∈ U . (All that one usually needs to know about this slightly baroque def-
inition is that if U = SpecA for a Noetherian ring A, then MX(U) is the
result of inverting all nonzerodivisors in A. More general cases are subtle;
see for example Kleiman [1979] for information.) We define a Cartier divi-
sor in general to be an arbitrary section of the sheaf M ∗

X/O
∗
X . The Cartier

divisors on X form a group called DivX , and the association D 
→ OX(D)
defines a homomorphism DivX → PicX.
The effective Cartier divisors form a monoid in DivX ; again, in reason-

able circumstances such as for subschemes of a projective space over a field,
the monoid of effective Cartier divisors generates DivX , and in the freest
possible way: DivX may also be realized as the Grothendieck group of the
monoid. The effective Cartier divisors are then just the Cartier divisors
that “effectively” define subschemes.

III.2.6 Graded Modules and Sheaves

The attentive reader may have noticed that Theorem III-37 implies the
existence of a distinguished invertible sheaf on PnZ , namely, the one corre-
sponding to the identity map. In this section we will give descriptions of
this sheaf, which plays a fundamental role in projective geometry.
We begin with a general method for constructing sheaves on schemes

of the form ProjA analogous to the construction of sheaves on SpecA
from modules over A. Let B be a scheme, and let A = A0 ⊕ A1 ⊕ · · ·
be a quasicoherent sheaf of graded OB-algebras. Let P = ProjA . Let M
be a quasicoherent sheaf on B which has the additional structure of a
sheaf of graded A -modules; that is, we have a direct sum decomposition
M = · · ·⊕Mi⊕Mi+1⊕· · · and there are maps Ai⊗Mj → Mi+j satisfying
the usual axioms (associativity, identity, . . . ). We may associate to M a
quasicoherent sheaf M̃ on P as follows: Let U be an affine subset of B,
and consider the graded ring A (U). For each homogeneous element f of
A (U) we have an affine open set PU,f := (ProjA (U))f = Spec(A (U)f )0
of P; the schemes PU,f form an affine open cover of P. The sections M (U)
over U form a graded module over the graded ring A (U). Let MU,f be
the (A (U)f )0-module MU,f = (M (U)⊗A (U) A (U)[f−1])0, and let M̃U,f

the corresponding sheaf on the affine scheme PU,f . These patch together
to define a quasicoherent sheaf on P that we denote by M̃ .
In fact, every quasicoherent sheaf on ProjA corresponds to a sheaf of

graded A modules in this way. However, unlike the correspondence between
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modules over a ring and quasicoherent sheaves over Spec of that ring, the
correspondence is not bijective. For example, as the reader can easily check,
the sheaf associated to a module M is the same as the sheaf associated to
the truncated module M ′ = ⊕n≥n0Mn for any n0. But in good cases this
is the only kind of failure: for example, the association M 
→ M̃ gives a
bijection

{sheaves of finitely generated graded A -modules up to truncation}
�

{quasicoherent sheaves on P} .
To start with the simplest example, if we take M = A we get the struc-

ture sheaf OP . Much more interesting is the deceptively simple modification
obtained by shifting the grading by 1. In general, if M =

⊕
iMi then we

define the n-th twist M (n) of M to be the same module but with degrees
shifted by n, that is

M (n)i = Mn+i.

We define OP(n) to be the sheaf Ã (n) associated to the sheaf of graded
modules A (n). The most important of these is OP(1), called the tautological
sheaf on P.

Exercise III-46. Assume the algebra A is generated in degree 1. Show
that all the sheaves OP(n) are invertible. Show that OP(n) ⊗ OP(m) =
OP(n+m), and in particular OP(n)−1 = OP(n)∗ = OP(−n).
Exercise III-47. Let π : ProjA → SpecA0 be the structure map. Show
that for any quasicoherent sheaf N on SpecA0 the pullback π∗(N ) is the
sheaf assocated to A ⊗A0 N .

Exercise III-48. LetK be a field, and consider the projective space PnK =
ProjK[x0, . . . , xn]. LetH be a hyperplane. Show thatH is a Cartier divisor
on PnK and that the associated invertible sheaf is OPn

K
(1).

III.2.7 Grassmannians

Grassmannians exist in the category of schemes, and behave very much
like Grassmannians in classical algebraic geometry. More precisely, there
is, for any scheme S and positive integers n and k < n, a scheme GS(k, n)
called the Grassmannian over S; the construction is functorial in S, in the
sense that for any morphism T → S, the Grassmannian GT (k, n) is the
fiber product GS(k, n) ×S T. (In particular, there is a scheme GZ(k, n)—
the Grassmannian over SpecZ —such that any Grassmannian may be re-
alized as GS(k, n) = GZ(k, n) × S.) Moreover, in case S = SpecK is the
spectrum of an algebraically closed field the scheme GS(k, n) is the scheme
associated to the classical Grassmann variety G(k, n) over K. In fact, the
constructions, which we will describe briefly below, are themselves exactly
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analogous to the standard constructions of the Grassmannian in the clas-
sical context. Rather, as in the case of projective space, what is new and
different about the Grassmannian as a scheme are the subschemes of it; we
will illustrate this with our discussion of Fano schemes below.
We will begin with the constructions of the Grassmannian GS(k, n) for

S = SpecA an affine scheme (this is also called the Grassmannian over A
and denoted GA(k, n)). At the end, we will observe that the construction
is natural, in the sense that for any morphism T → S of affine schemes we
have

GT (k, n) = GS(k, n)×S T.

It will follow that we can construct Grassmannians over arbitrary schemes
S by gluing together the GrassmanniansGUα(k, n) over a collection of affine
open subsets Uα ⊂ S covering S. Alternatively, we can simply carry out
the construction of the Grassmannian GZ(k, n) over SpecZ, and then for
any scheme S simply define GS(k, n) = S ×GZ(k, n).
In the classical setting, there are two ways of constructing the Grass-

mannian GK(k, n) as a variety over a field K. Abstractly, we may describe
GK(k, n) as a union of open sets, each isomorphic to affine space Ak(n−k)K .
Alternatively, we may describe it at one stroke as the closed subvariety of
projective space PNK given by the Plücker equations. Each of these construc-
tions has an immediate extension to the category of schemes, and they do
yield the same object. Moreover, there is in the language of schemes a third
way to characterize Grassmannians: as Hilbert schemes, or more precisely
as the schemes representing the functors of families of linear subspaces of a
fixed vector space. We will discuss this third construction in Section VI.2.1.
This is in many ways the optimal characterization of the Grassmannian: it
avoids the extraneous introduction of coordinates, gives us immediately a
description of morphisms of an arbitrary scheme Z to GK(k, n), and gives
us a natural definition of equations for subschemes of the Grassmannian
such as Fano schemes and more general Hilbert schemes.
We will start by reviewing the gluing construction of the Grassmannian

as a variety over a field. We begin by realizing the set of k-dimensional
linear subspaces Λ of the n-dimensional vector space Kn over a field K as
the set of k×n matrices M of rank k, modulo multiplication on the left by
invertible k× k matrices. For each subset I ⊂ {1, 2, . . . , n} of cardinality k
we can multiply any matrix M whose I-th minor is nonzero by the inverse
of its I-th submatrix MI , to obtain a matrix M ′ with I-th submatrix equal
to the identity. In this way, we may identify the subset UI ⊂ GK(k, n)
of planes Λ complementary to the subspace of Kn spanned by the basis
vectors {ei}i/∈I with the affine space Ak(n−k)K whose coordinates are the
remaining entries of M ′. We thus have the following recipe for the variety
GK(k, n):
Let W ∼= AknK be the space of k × n matrices, and for each subset I ⊂

{1, 2, . . . , n} of cardinality k, let WI ⊂W be the closed subset of matrices



III.2 Proj of a Graded Ring 121

with I-th submatrix equal to the identity. For each I and J �= I, let WI,J ⊂
WI be the open subset of matrices whose J th minor is nonzero; let ϕI,J :
WI,J →WJ,I be the isomorphism given by multiplication on the left byMJ ·
M−1
I . We then define the Grassmannian GK(k, n) as an abstract variety to

be the union of the affine spaces WI ∼= Ak(n−k)K modulo the identifications
of WI,J with WJ,I given by ϕI,J .
This recipe applies perfectly well to define the Grassmannian GS(k, n)

over any affine scheme S = SpecA, using the gluing construction of Sec-
tion I.2.4: let

W = SpecA[ . . . , xi,j , . . . ] ∼= AknS ,

and for each subset I = (i1, . . . , ik) ⊂ {1, 2, . . . , n} let WI ⊂ W be the
closed subscheme corresponding to matrices whose I-th k× k submatrix is
the identity; that is, the zero locus of the ideal (. . . , xα,iβ − δα,β , . . .). For
each I and J �= I, we define exactly as before open subschemes WI,J =
(WI)detMj ⊂ WI and isomorphisms ϕI,J : WI,J → WJ,I ; and we then
define the Grassmannian GS(k, n) to be the S-scheme obtained by gluing
the affine spaces WI ∼= Ak(n−k)S along the ϕI,J .
An alternative construction of the Grassmannian GS(k, n) is as a sub-

scheme of projective space PNS , where N =
(
n
k

) − 1, given by the Plücker
equations. Again, if we are simply careful about transcribing the classical
construction, it works in this new setting as well.
To set it up, start with the polynomial ring A[ . . . , XI , . . . ] in

(
n
k

)
vari-

ables overA, where the variables are labeled by subsets I = (i1 < · · ·< ik)⊂
{1, . . . , n}. We may think of the variables XI as corresponding to the max-
imal minors of a k × n matrix M. If we specify further that the first k × k
submatrix of M is the identity— that is, M is of the form (Ik, B) where
B is a k× (n− k) matrix— then these are in turn up to sign the minors of
all sizes of the matrix B. For example, the (i, l)-th entry of B is the I-th
minor of M, where I = (1, 2, . . . , ı̂, . . . , k, k+ l); the ((i, j), (l,m))-th minor
of B is the I-th minor of M, where I = (1, 2, . . . , ı̂, . . . , ̂, . . . , k, k+l, k+m);
and so on.
In terms of this description of the coordinatesXI as the minors of all sizes

of a k × (n − k) matrix A, the Plücker relations are simply homogeneous
polynomials in the variables XI obtained by expanding the determinants
of these submatrices in terms of products of complementary minors of com-
plementary submatrices. For example, Cramer’s rule translates into an ex-
pression of the determinant of an l× l submatrix of A as a sum of products
of entries and determinants of (l − 1) × (l − 1) submatrices; in particular,
on the basis of the identification made above we have the relation

−X(1,2,...,ı̂,...,̂,...,k,k+l,k+m)X(1,2,...,k)

= X(1,2,...,ı̂,...,k,k+l)X(1,2,...,̂,...,k,k+m)−X(1,2,...,ı̂,...,k,k+m)X(1,2,...,̂,...,k,k+l).

We take the Plücker ideal J ⊂ A[ . . . , XI , . . . ] to be the ideal generated by
the Plücker relations.
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Another, more intrinsic way to describe the ideal J is simply this: we let
ϕ be the map

A[ . . . , XI , . . . ] −→ A[x1,1, . . . , xk,n]

XI 
−→

∣∣∣∣∣∣∣
x1,i1 . . . x1,ik
...

...
xk,i1 . . . xk,ik

∣∣∣∣∣∣∣
sending each generator XI of A[ . . . , XI , . . . ] to the corresponding minor
of the matrix (xi,j), and we let J = Kerϕ. In either case, we define the
Grassmannian GS(k, n) to be the projective scheme

GS(k, n) = ProjA[ . . . , XI , . . . ]/J ⊂ ProjA[ . . . , XI , . . . ] = P(
n
k)−1

S .

Exercise III-49. Show that the two constructions yield the same scheme
GS(k, n).

This description of GS(k, n) allows us to describe intrinsically the Grass-
mannian G(k, V ) of subspaces of an n-dimensional vector space V over a
field K, and hence more generally to define the Grassmannian G(k,E ) of
k-dimensional subspaces of a locally free sheaf E over a given base scheme
S. In the more general setting, we take the map of sheaves

E ⊗k = E ⊗ E ⊗ · · · ⊗ E −→ ∧kE
given simply by σ1 ⊗ · · · ⊗ σk 
→ σ1 ∧ · · · ∧ σk, and let ϕ be the induced
map on symmetric algebras

ϕ : Sym
(∧kE )∗ −→ Sym

(
E ⊗k)∗.

We then define G(k,E ) to be the subscheme of P(E ∗) = Proj Sym
(∧kE )∗

given by the ideal sheaf Ker(ϕ).

One notational convention: since the Grassmannian arises sometimes in
the context of linear subspaces of a vector space, and sometimes in the
context of subspaces of a projective space, we will adopt the convention that
GS(k, n) is the scheme described above, and GS(k, n) = GS(k+1, n+1).

III.2.8 Universal Hypersurfaces

Definition III-50. Let S be any scheme. By a hypersurface of degree d
in PnS we mean a closed subscheme X ⊂ PnS given locally over S as the zero
locus of a homogeneous polynomial of degree d: that is, for every point
p ∈ S there is an affine neighborhood U = SpecA of p in S and elements
{aI ∈ A} such that the aI generate the unit ideal in A, and

X ∩ PnU = V
(∑

aI x
i0
0 . . . xinn

) ⊂ PnU = ProjA[x0, . . . , xn].
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A hypersurface X ⊂ PnS is flat over S (the condition that the aI generate
the unit ideal in A means that they have no common zeros in S, so that
the dimensions of the fibers of X → S are everywhere n− 1), and of pure
codimension 1 in PnS . Note that the fibers of X → S have no embedded
points.
By a plane curve over a scheme S we will mean a hypersurface in P2

S .
We can now introduce a fundamental object in algebraic geometry: the

universal family of hypersurfaces of degree d in PnS . This is very straight-
forward to define: for any positive d and n, we set N =

(
d+n
n

) − 1, and
let

PNS = ProjOS [{aI}]
be projective space of dimension N over S, with homogeneous coordinates
aI indexed by monomials of degree d in n + 1 variables (x0, . . . , xn). We
then introduce the subscheme X = Xd,n ⊂ PNS ×S PnS given by the single
bihomogeneous polynomial

X = V
(∑
I

aIx
I
)
.

The scheme X ⊂ PNS ×S PnS , viewed as a family of closed subschemes of
PnS parametrized by PNS , is called the universal hypersurface of degree d in
PnS . By Proposition II-32, X is flat over PNS .
Note that if S = SpecK is the spectrum of an algebraically closed field,

then every hypersurface X ⊂ PnK of degree d is a fiber of X → PNK .
In fact, much more is true: as we will see in Chapter VI, if B is any S-
scheme, and Y ⊂ PnB is any closed subscheme, flat over B, whose fibers are
hypersurfaces of degree d, then there is a unique morphism ϕ : B → PnS
of S-schemes such that Y = X ×Pn

S
B. (This is the meaning of the term

“universal”.)
Universal hypersurfaces are fundamental objects in algebraic geometry,

and arise in a number of contexts. We will see many examples of these
objects, or variants of them, in the following chapter, and will describe them
in more detail in Section V.1.2 and the following discussions of resultants
and discriminants. We will present here a few of the simpler examples and
related constructions.
We start with some notation and terminology. First, we will assume

throughout that S is irreducible (with generic point Q), so that PNS is
irreducible as well (for the most part, we can think of S as the spectrum
of a field K, though there will be occasions when it will be handy to be
able to take S = SpecZ). Let P ∈ PNS be the generic point, and L = κ(P )
its residue field, that is, the function field in N variables over the function
field K = κ(Q) of S. Let XP ⊂ PNL be the fiber of X → PNS over the
generic point P = SpecL; XP is sometimes called the generic hypersurface
of degree d. We will as usual write X (L) = XL(L) for the set of L-valued
points of X , or equivalently the L-rational points of XP . Geometrically,
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these are sections of X → PNS defined over some open subset U ⊂ PNS ;
algebraically, they are simply solutions xi = fi(a) of the equation

∑
I aIx

I,
with the xi rational functions of the aI .
We start with a basic fact:

Exercise III-51. Show that X is irreducible, and smooth as an S-scheme.
(Hint: consider the projection X ⊂ PNS ×SPnS → PnS .) Deduce in particular
that XL ⊂ PnL is smooth as an L-scheme.

Now for some examples:

Exercise III-52. If d = 1, so that PNS = (PnS)∗, the scheme X ⊂ PnS ×S
(PnS)∗ is called, naturally enough, the universal hyperplane. Show that it is
a projective bundle over PnS .

Exercise III-53. Suppose now that d is arbitrary and n = 1, so that
N = d and the scheme X ⊂ PdS ×S P1

S is finite of degree d over PdS . Show
that the generic fiber XL is a single reduced point R, with residue field an
extension of degree d of the function field L of PdK .

The last exercise is a little harder.

Exercise III-54. Suppose now that S is the spectrum of a field K, and
take d = n = 2. Show that X (L) �= ∅.
Hint : Show that we can reduce to the inverse image of the subspace of

PNK = P5
K corresponding to polynomials aX2 + bY 2 + cZ2; or just see the

argument for Proposition IV-84.

It is in fact the case for all n and d that X (L) �= ∅ if and only if d = 1,
as can be seen by an application of the Lefschetz Hyperplane Theorem to
X ⊂ PNK ×K PnK .

III.3 Invariants of Projective Schemes

In this section we assume that K is a field and work with K-schemes,
except when explicit mention is made to the contrary.
Suppose that we are given a scheme in a projective space; how can we

find invariants of it? The simplest idea is to ask: how many independent
forms of degree d vanish on it? Putting the answers together, for various d,
we get what used to be called the postulation of the scheme (presumably
because one was then interested in schemes for which one postulated certain
values for these numbers). Nowadays, it is usual to discuss this informa-
tion in the equivalent form of the Hilbert function. We will discuss here
several variations of the method of Hilbert functions, which yield a wide
range of invariants. Some of the invariants that we produce actually depend
only on the abstract scheme and not on the given projective embedding,
while others depend on the data associated to the embedding; and we will
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comment on these matters along the way. The approach we follow is the
original one used by Hilbert [1890], rather than that of Samuel, which is
more commonly adopted (see, for example, Hartshorne [1977, Chapter I]).
Hilbert’s method requires slightly more technique but yields a stronger and
more easily understood result.
We begin by defining the basic invariants. In the last part of the chapter

we will exhibit a number of simple geometric examples showing what sort
of information the invariants contain.

III.3.1 Hilbert Functions and Hilbert Polynomials

To begin with, suppose that we are given a closed subscheme X ⊂ PrK
described by a saturated ideal I = I(X) ⊂ S = K[x0, . . . , xr] defined as
in Example III-14. Suppose that the homogeneous polynomials F1, . . . , Fn
generate I. Write R = S/I(X) for the homogeneous coordinate ring of X,
and write Rν for the homogeneous component of degree ν.
The basic idea is to associate to X ⊂ PrK a function

H(X, · ) : N → N

called the Hilbert function of X and defined by

H(X, ν) = dimK Rν .

More generally, if M is any finitely generated graded S-module, we define
its Hilbert function to be H(M, ν) := dimKMν. The fundamental result is
as follows.

Theorem III-55 (Hilbert). There exists a unique polynomial P (X, ν) in
ν such that H(X, ν) = P (X, ν) for all sufficiently large ν. More generally,
for any finitely generated graded S-module M there exists a unique polyno-
mial P (M, ν) such that H(M, ν) = P (M, ν) for all sufficiently large ν.

We will indicate below how this may be proved (along the lines of
Hilbert’s original proof [1890]).
The polynomial P (X, ν) is called the Hilbert polynomial of X. As in the

classical case of varieties, it carries basic information about the scheme X.
For example, we will see that its degree is the dimension of X, and in case
X is of dimension 0, its (constant) value is the degree of X. More generally,
we define the degree of any n-dimensional subscheme X of projective space
over a fieldK to be n! times the leading coefficient of the Hilbert polynomial
of X ; this allows us to extend to the larger class of subschemes X ⊂ PrK
the classical notion of degree for varieties.

III.3.2 Flatness II: Families of Projective Schemes

Another aspect of the significance of the Hilbert polynomial is that it gives
us a geometric interpretation of the notion of flatness.
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Proposition III-56. A family X ⊂ PrB of closed subschemes of a projec-
tive space over a reduced connected base B is flat if and only if all fibers
have the same Hilbert polynomial.

A proof of this in the general case would take us too far afield, but the
result is easy when the base is B = SpecK[t](t).

Proof when B = SpecK[t](t). A closed subscheme X ⊂ PrK×B is given by
an ideal I in

K[t](t)[x0, . . . , xr]

which is homogeneous in x0, . . . , xr. Thus each graded piece of the homo-
geneous coordinate ring

R = K[t](t)[x0, . . . , xr]/I

is a module over K[t](t).
As we know, the family X → B is flat if and only if each local ring

OX,x is K[t](t)-torsion-free. This is the same as saying that the torsion
submodule of R goes to zero if we invert any of the xi. It follows that
the torsion submodule is killed by a power of the ideal (x0, . . . , xr) and
thus meets only finitely many graded components of R. But if Rν is a
graded component of R, then since K[t](t) is a principal ideal ring and Rν
is finitely generated as a K[t](t)-module, Rν is torsion-free if and only if it
is free. Further, Rν is free if the number of generators it requires, which by
Nakayama’s Lemma is

dimK Rν ⊗K[t](t) K

is equal to its rank
dimK(t) Rν ⊗K[t](t) K(t)

that is, if and only if the value of the H(X(0), ν) is equal to the value of
H(X(t), ν), where X(0) and X(t) are the fibers of the family X over the two
points (0) and (t) of B. (By the same argument, the Hilbert function itself
is constant if and only if the family of affine cones SpecR is a flat family
over B.)

This proposition shows that flat limits of closed subschemes of projective
space behave better than flat limits in general. For example, though it is
certainly possible that the flat limit of nonempty subschemes of an affine
scheme may be empty, the proposition shows that this is not possible for
flat limits of nonempty subschemes of a projective space. This, together
with the existence and uniqueness of flat limits of closed subschemes in
a one-parameter family (Sections II.3.4 and II.3.4), gives one approach to
proving that projective schemes are proper, using the “valuative criterion.”
For all this, see, for example, Hartshorne [1977, Chap. II].
Of course H(X, ν) contains more information than P (X, ν), but it may

appear that P (X, ν), as a polynomial with only finitely many coefficients, is
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easier to manipulate than the whole Hilbert function. Actually, the Hilbert
function has a finite expression too, in terms of binomial coefficients. To
see this, we will introduce a still finer set of invariants, the graded Betti
numbers of the free resolution of R, in terms of which both the Hilbert
function and the Hilbert polynomial can be written conveniently. (The real
advantage that the Hilbert polynomial has over the Hilbert function is that
the information it contains depends a little less— in a sense we will make
precise—on the details of the embedding of X.)

III.3.3 Free Resolutions

We will write S(−b) for the graded, free module of rank 1 with generator
in degree b; the apparently unfortunate choice of sign is recompensed by
the convenient and eminently memorable formula

S(−b)ν = Sν−b.

We can resolve R, or indeed any graded S-module, by using graded, free
modules, which are direct sums of copies of modules of the form S(−b).
Here is how.
Suppose that F1, . . . , Fn is a minimal set of homogeneous generators for

M. We will write b0j for the degree of Fj . We define an epimorphism

ϕ0 : E0 :=
n⊕
j=1

S(−b0j)→M

by sending the generator of S(−b0j) to Fj ∈ M. Let M (1) be the kernel
of ϕ0. If M (1) �= 0, we repeat the process above with M (1) in place of
M (which could be called M (0)); choosing a minimal set of homogeneous
elements e(1)

i of E0 that generate M (1) with degrees b1i, we map a graded
free module with generators of degrees b1i onto M1, by a map

ϕ1 : E1 :=
m⊕
j=1

S(−b1j)→ E0

sending the i-th generator of E1 to e(1)
i . Continuing in this way, we obtain

a resolution

E : · · · � Ei
ϕi� Ei−1

� · · · ϕ1 � E0,

with

Ei =
⊕
j

S(−bij).

Of course, the process stops if some ϕi is a monomorphism. Hilbert’s fun-
damental discovery was that this always occurs if S is a polynomial ring.
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Theorem III-57 (Hilbert’s syzygy theorem). Let S = K[x0, . . . , xr ]. In
any minimal free resolution as above, ϕi is a monomorphism for some
i ≤ r + 1, the number of variables; in particular, any graded S-module has
a finite, graded, free resolution.

We will not prove this here; see Hilbert [1890] or, for a modern account,
Eisenbud [1995, Section 1.10, Chap. 19] or Matsumura [1986, Theorem
19.5]. The syzygy theorem allows us to prove Theorem III-55.

Proof of Theorem III-55. The Hilbert function of the module S(−b) is easy
to write down. Since

S(−b)ν = Sν−b

has a basis consisting of all monomials of degree ν − b in r + 1 variables,
we see that

H(S(−b), ν) =
(
r + ν − b

r

)
,

where the binomial coefficient is to be interpreted as 0 when the bottom is
larger than the top. For ν ≥ b− r this agrees with the polynomial

P (S(−b), ν) = (r + ν − b)(r + ν − b− 1) · · · (ν − b)
r(r − 1) · · · 1

so we see that H(X, ν) is a polynomial for large ν.
From a finite, free resolution for M as an S-module

E : 0 � Er+1
ϕr+1� Er � · · · � E1

� M � 0,

with
Ei =

⊕
j

S(−bij),

we see that the Hilbert function of M can be written in the form

H(M, ν) =
r∑
i=0

(−1)iH(Ei, ν) =
r∑
i=0

(−1)i
∑
j

H(S(−bij), ν).

Since we have already shown that each H(S(−bij), ν) is a polynomial for
large ν, we see that H(M, ν) is a polynomial for large ν, as required. This
proves Theorem III-55.

The Hilbert function and polynomial are clearly invariants of X ⊂ PrK ,
but it is perhaps not obvious that the graded Betti numbers bij are too.
This follows from Nakayama’s Lemma; see, for example, Eisenbud [1995,
Chap. 19] or Matsumura [1986, Section 19] for a discussion of minimal free
resolutions over a local ring that translates immediately to the graded case.
We have thus three progressively weaker sets of invariants of a projective

scheme: the graded Betti numbers, the Hilbert function, and the Hilbert
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polynomial. To orient the reader, we will list some facts about them that
we will not prove here and that will not be used in an essential way. Then
we will give some examples.
(1) As we have already mentioned, the degree d of the polynomial

P (X, ν) is the dimension of X.
(2) The leading term is of the form

δ(X)
d!

νd

and δ(X) is called the degree of X. It may be identified with the length
of the subscheme in which X meets a general plane in PrK of dimension
r − d. (See, for example, Hartshorne [1977, Chapter I, 7.3 and 7.7].) This
follows from the observation, proved below (Proposition III-59), that the
Hilbert polynomial of a zero-dimensional subscheme of degree δ in PnK is
the constant polynomial δ together with the fact that if Y is a general
hyperplane section of X, then the Hilbert polynomial of Y is the first
difference function of the Hilbert polynomial of X—that is,

P (Y, ν) = P (X, ν)− P (X, ν−1).
(3) In terms of the description given in Section III.2.5 of maps to pro-

jective space, the Hilbert polynomial P (X, ν) of a subscheme X ⊂ PrK
depends only on the invertible sheaf L corresponding to the embedding
X ↪→ PrK , and not on the particular epimorphism Or+1

X → L In fact, for
readers familiar with cohomology of coherent sheaves, P (X, ν) is equal, for
all ν, to the alternating sum of dimensions of cohomology groups

χ(L ⊗ν) =
∑

(−1)i dimK Hi(X,L ⊗ν).

In particular, P (X, 0) = χ(OX) =
∑

(−1)i dimK Hi(OX) is a number
depending onX and not on the embedding! In caseX is a nonsingular curve
over the complex numbers— that is, a Riemann surface— the number

dimK H1(OX) = g = 1− P (X, 0)

is the genus of X, and 1 − P (X, 0) turns out to be the right notion of
genus for any one-dimensional scheme. It is called the arithmetic genus of
the scheme. In the case where the dimension d of X is greater than one, it
was at first felt that the normal case was the case where H i(OX) = 0 for
1 < i < d (and this cohomology group always vanishes for i > d), so the
arithmetic genus of X was by analogy defined as 1 + (−1)dP (X, 0).
(4) The set of all varieties in PrK with Hilbert polynomial equal to a

given polynomial turns out to be itself naturally the set of K-valued points
of a projective scheme, called the Hilbert scheme associated with the given
polynomial. For example, any subscheme X ⊂ PrK with Hilbert polynomial
P (ν) =

(
κ+ν
k

)
(that is, the Hilbert polynomial of a k-plane) is in fact a

k-plane; and the Hilbert scheme of all such subschemes turns out to be the
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Grassmannian G(k, r) = G(k+1, r+1). There are, however, not many other
cases in which these Hilbert schemes have been understood geometrically!
We will return to this construction in Sections VI.2.2 and VI.2.2 of the final
chapter.

Exercise III-58. Let A be a Noetherian ring and X a closed subscheme
of PnA, regarded as a family of schemes over SpecA. Since the fiber Xp of
X over a point p ∈ SpecA is a closed subscheme of Pnκ(p), it has a Hilbert
functionH(Xp, ν). Show that the functionH(Xp, ν), regarded as a function
in p, is upper semicontinuous in the Zariski topology on SpecA; that is, for
any ν and any number m,

{p ∈ SpecA | H(Xp, ν) ≥ m}
is a closed subset of SpecA.

We extend the definition of the Hilbert polynomial to the case of a sub-
scheme X ⊂ PrS of projective space over an arbitrary irreducible base S by
defining the polynomial P (X, ν) to be the Hilbert polynomial of the fiber of
X over the generic point of S. This doesn’t involve anything new—by the
generic flatness theorem of Section II.3.4 combined with Proposition III-56,
or by Exercise III-58, X will be flat over an open dense subset U ⊂ Sred,
and P (X, ν) is simply the common Hilbert polynomial of the fibers of XU
over U—but it’s convenient terminology.

(5) In many ways the invariant provided by the graded Betti numbers
is the most subtle of all, and until very recently nothing was known of its
geometric significance beyond that of the Hilbert function and polynomial.
Now, however, we know in a few cases (and conjecture in a few more) how
they reflect some subtle aspects of the intrinsic geometry of X. See, for
example, Green [1984; Green and Lazarsfeld [1985] for more information.

III.3.4 Examples

Points in the Plane. Already for the case of zero-dimensional subschemes
in the plane we get different information from the Hilbert polynomial,
Hilbert function, and graded Betti numbers.
First of all, we have stated above that the Hilbert polynomial of a sub-

scheme X ⊂ PrK is a polynomial whose degree is equal to the dimension of
X ; so when X is zero-dimensional, the Hilbert polynomial is a constant.
We can easily prove this and somewhat more in the case of points.

Proposition III-59. The Hilbert function of a 0-dimensional subscheme
of degree δ in PrK satisfies

H(X, ν) ≤ δ

for all ν, with equality for large ν. Thus P (X, ν) ≡ δ.
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Proof. We must show that the codimension in K[x0, . . . , xr] of the set of
homogeneous forms of degree ν that vanish on X—that is, codim I(X)ν—
is less than or equal to δ, with equality for large ν. The reason is that van-
ishing at a point is one linear condition on the coefficients of a polynomial,
and thus vanishing at X should be δ linear conditions; for large ν we will
show that these conditions are always linearly independent.
To make this precise, we pass to an affine open set. Changing coordinates,

we may suppose that X is contained in the affine open set xr �= 0, so that a
form F of degree ν belongs to I(X) if and only if F (x0, . . . , xr−1, 1) belongs
to the ideal J ⊂ K[x0, . . . , xr−1] of X in the affine open set xr �= 0. To say
that X is of length δ means that J is of codimension δ in K[x0, . . . , xr−1]
and thus of codimension less than or equal to δ in the space of those poly-
nomials that can be written as F (x0, . . . , xr−1, 1) for F of degree ν—these
are simply the polynomials in K[x0, . . . , xr−1] of degree less than or equal
to ν. This shows at once that H(X, ν) ≤ δ for all ν, with equality if J has
codimension δ in the space of polynomials of degree less than or equal to
ν. But J will have codimension δ in the space of polynomials of degree less
than or equal to ν as soon as a set of representatives for K[x0, . . . , xr−1]/J
can be chosen from among the polynomials of degree less than or equal to
ν, which is certainly true for all large ν.

If X ⊂ PrK is nonempty, I(X) contains nothing of degree 0 (we are
working over a field!), so H(X, 0) = 1. Thus the proposition provides easy
examples where P (X, 0) �= H(X, 0).
We can easily exhibit a family of subschemes of P2

K with constant Hilbert
polynomial but varying Hilbert function. To construct such a family X ⊂
P2
K × SpecK[t], for example, we can take the “constant” points P and Q

given by (x2 = x1 +x0 = 0) and (x2 = x1−x0 = 0), and the variable point
R given by (x1 = x2 − tx0 = 0), and let X be the (disjoint) union of P,Q,
and R in P2

K × SpecK[t].

P Q

R
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We regard X as a flat family over SpecK[t] by means of the projection
to the second factor, whose fibers X(0) and Xλ over the generic point and
over every closed point (t− λ) (as schemes over K(t) and K, respectively)
have Hilbert polynomials P (X(0), ν) = P (Xλ, ν) ≡ 3; but while the Hilbert
function H(Xλ, 1) = 3 for λ = 0, we have H(X0, 1) = 2.

Exercise III-60. Let X̃λ ⊂ A3
K be the cone over the fiber Xλ of the

family X above. Show that there does not exist a flat family X̃ ⊂ A3
K×K

SpecK[t] whose fiber over each point (t− λ) is X̃λ. (There does exist such
a family over the complement of the origin in SpecK[t], however.) What
is the flat limit of the cones X̃λ as λ approaches 0? (See the example in
Section II.3.4.)

Now consider the case where X is a set of four distinct points in the
plane P2

K . We already know that P (X, ν) ≡ 4. We will treat separately the
cases where all the points or all but one of the points lie on a line.

(1) X is contained in a line. Suppose, first, that the points lie on a line
L, with equation l = 0, say. The only line containing X is L, so

H(X, 1) = H(P2
K , 1)− 1 = 2.

If q = 0 is the equation of a conic containing X, then q restricts to a
form of degree 2 on L, vanishing at the four points of X, so q must vanish
identically on L. Thus q = 0 is the union of L and one other line, and the
set of equations of conics containing X is the three-dimensional space of
multiples of l by linear forms. This gives

H(X, 2) = H(P2
K , 2)− 3 = 3.

Starting with ν = 3, however, vanishing at the four points imposes four
independent conditions on forms of degree ν, so H(X, ν) = 4. To prove
this, it is enough, for each 3 point subset X ′ of X, to find a curve of degree
ν that contains X ′ but not the fourth point of X. We may do this with a
curve consisting of ν straight lines, three of these passing through one each
of the points of X ′ and the rest far away from X :
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To compute the minimal free resolution in this and the next examples,
we will use a result of Hilbert, which was generalized and extended to the
local case by Lindsay Burch.

Theorem III-61. If I is the homogeneous ideal of a zero-dimensional sub-
scheme X ⊂ P2

K , then any minimal free resolution of the homogeneous
coordinate ring S/I has the form

0 �
n−1∑
j=1

S(−b2j)
A�

n∑
j=1

S(−b1j) � S.

Further, the j-th generator of I—that is, the image of S(−b1j) in S—is
up to a nonzero scalar the determinant of the matrix A with the j-th row
deleted.

For a proof, see Eisenbud [1995, Section 20.4], for example.
We will make use of this to compute minimal generators of the ideal

I(X) through the following corollary.

Corollary III-62. If I is the homogeneous ideal of a zero-dimensional
subscheme X ⊂ P2

K , and if I contains an element of degree e, then I can
be generated by e+ 1 elements.

Proof. If the minimal number of generators of I is g, then I is generated by
(g−1)× (g−1) determinants of a matrix A whose entries are in the graded
maximal ideal of S and are thus forms of positive degree. Consequently,
no element of I has degree less than g − 1, and we have g ≤ e + 1, as
claimed.

By the theorem, knowing the degrees of the entries of the matrix A is
equivalent to knowing the graded Betti numbers in this case: the b1j are
just the degrees of the minors of A, and b2j is the sum of b1j plus the degree
of the ij-th entry of A.
Applying this to the example at hand, we see that since X lies on a line,

I(X) may be generated by two elements, which may, of course, be taken to
be L and a form of smallest possible degree in I that is not divisible by L.

L = 0

F = 0

As we have noted, this smallest possible degree is 4, and we may, for
example, take F to be the equation of a quartic consisting of four lines,
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each through one point of X.

L = 0

F = 0

Since L and P have no common factor, we see that the minimal free
resolution of S/I(X) has the form

0 −→ S(−5) −→ S(−4)⊕ S(−1) −→ S,

giving the expression for the Hilbert function

H(X, ν) =
(
ν + 2
2

)
−

(
ν + 1
2

)
−

(
ν − 2
2

)
+

(
ν − 3
2

)
.

(2) All but one of the points of X lie on a line. Next, consider the case
where only three of the four points lie on the line L. Now there is no linear
form in I(X), so H(X, 1) = 3.

L = 0

F = 0

Any quadric containing the three points on L must, by the same argu-
ment as before, contain L; so any quadric containing X is the union of L
and a line through the fourth point. Since the space of linear forms corre-
sponding to lines through the fourth point is two-dimensional, the space
of quadrics containing X is two-dimensional and we have H(X, 2) = 4.
Following the same argument as before, we show that H(X, ν) = 4 for all
larger ν, so this is the case for all ν ≥ 2.
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As for the resolution, we see by the corollary above that I(X) requires at
most three generators. But I(X) is not generated by the two independent
quadrics it contains, since these have a common factor; thus it is mini-
mally generated by these two quadrics and another generator, an element
of smallest possible degree not contained in the ideal generated by the two
quadrics or, equivalently, vanishing on a curve not containing L. It is easy
to see that there is a cubic curve with the desired properties; it may be
taken, for example, to be the union of three lines, each passing through one
of the points of L and one passing, in addition, through the fourth point.
Since the minimal generators of I(X) have degrees 2, 2, 3, the matrix A
must be a 2×3 matrix whose entries have degrees as given in the following
diagram (up to a rearrangement of the rows and columns):

 1 2
1 2
0 1


 .

(Of course, the entry of degree 0 must actually be 0, since all the entries
must be in the maximal graded ideal.) Thus the minimal free resolution
has the form

0 � S(−3)⊕ S(−4) A� S(−2)⊕ S(−2)⊕ S(−3) � S.

(3) No three points of X lie on a line. Finally, consider the case where
X consists of four points, no three of which lie on a line. We claim that
the Hilbert function of X is the same as in the previous case: H(X, 1) =
3, H(X, ν) = 4 for ν ≥ 2. The first of these values is obvious, since X lies
on no lines. For the second, it is enough as before to note that there are
quadrics (and thus a fortiori forms of higher degree) containing any subset
of the four points but missing the last; these may be constructed as before
as unions of lines.
Now we compute the free resolution of S/I(X). Taking the two pairs

of opposite sides of the quadrilateral formed by the points gives us two
quadrics q1 and q2 without common factor in the ideal of X.

q2

q1
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Since q1 and q2 are relatively prime, the free resolution of the ideal I they
generate has the form

0 � S(−4) A� S(−2)⊕ S(−2) B � S,

where

B = (q1 q2) A =
(−q2

q1

)
.

Computing the Hilbert function of S/I from this resolution, we see that
it is the same as that of S/I(X), and since I ⊂ I(X), we must have
I = I(X); that is, I(X) is generated by q1 and q2 and X is correspondingly
the intersection of the two conics containing it.
Summing up, we see that all three of the examples look the same from

the point of view of Hilbert polynomials; the first two examples are dis-
tinguished by their Hilbert functions; and the last two examples look the
same from the point of view of Hilbert functions but are distinguished by
their graded Betti numbers. It is not hard to find corresponding examples
of subschemesX of length 4 where the properties distinguished are actually
intrinsic properties of the schemes, not dependent on the embedding. For
example, while the scheme SpecK[x]/(x4) may be embedded in P2

K so as
to have any of the Hilbert functions and Betti numbers above (for instance,
as the subschemes defined by the ideals (x0, x

4
1), (x0x

2
2−x3

1, x0x1, x
2
0), and

(x0x2−x2
1, x

2
0) respectively, the subscheme defined by (x2

0, x
2
1) will always

have the graded Betti numbers and Hilbert function of case 3).

Exercise III-63. Find the Hilbert polynomial, the Hilbert function, and
the graded Betti numbers of all subschemes of the plane of length 3.

Examples: Double Lines in General and in P3
K . So far, most of our

discussion of projective schemes has been parallel to the theory of varieties.
We will now look at one genuinely nonclassical family of examples.
Exercise II-35 asked you to show that all affine double lines are equiv-

alent. This is not true for projective double lines. Here are some simple
examples.
Let K be a field. Consider the graded ring

S = K[u, v, x, y]/(x2, xy, y2, udx− vdy)

and the scheme
X = Xd = ProjS.

To see that X is a double line, we construct an open affine covering of
X. The elements x and y are nilpotent in S, so the radical of the ideal
generated by u and v is the irrelevant ideal of S, and X is covered by Xu
and Xv. From the definitions we see that

Xu = Spec(S[u−1])0.
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To analyze the ring (S[u−1])0, we note that it is a factor ring of

K[u, v, x, y][u−1]0 = K[v′, x′, y′],

where
v′ =

v

u
, x′ =

x

u
, y′ =

y

u
,

and the kernel of the map to (S[u−1])0 is generated by (x′)2, x′y′, (y′)2,
and x′ − (v′)dy′ (see Exercise III-6). Thus

(S[u−1])0 ∼= K[v′, y′]/(y′)2

and Xu is an affine double line. By symmetry, Xv is too, and this proves
that X is a projective double line. Explicitly,

Xv ∼= Spec(S[v−1])0

and
(S[v−1])0 ∼= K[u′′, x′′, y′′]/(x′′2, x′′y′′, y′′2, (u′′)dx′′ − y′′)

∼= K[u′′, x′′, y′′]/(x′′2),

where

u′′ =
u

v
=

1
v′
, x′′ =

x

v
, y′′ =

y

v
.

The simplest way to see that, in contrast to the affine case, not all double
lines are isomorphic to one another, is to show that the isomorphism class
of X depends on the integer d, which may be thought of as specifying how
fast the double line twists around the reduced line inside it. To demonstrate
this, we will show that the ring of global sections OX(X) of the structure
sheaf of X depends on d. To compute it, suppose first that σ ∈ OX(X).
The element σ restricts to an element of OX(Xu), which is isomorphic to
K[v′, y′]/(y′)2 by the above, so we may write

σ|Xu = a(v′) + b(v′)y′

and similarly
σ|Xv = f(u′′) + g(u′′)x′′

for unique polynomials a, b, f , and g with coefficients in K. But on Xu∩Xv
we have

u′′ =
1
v′

and

x′′ =
x

v
=

x′u
v

= (v′)dy′
u

v
= (v′)d−1y′.

Thus f(1/v′) = a(v′), which is only possible if f and a are constant poly-
nomials and f = a. Also, g(1/v′)(v′)d−1 = b(v′), which is only possible if
both g and b have degree less than or equal to d − 1 (and then each of
g and b determines the other). Conversely, any element of OX(Xu) of the
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form a+ b(v′)y′ with a a constant and b a polynomial of degree less than
or equal to d−1 extends uniquely to a global section of OX , so we see that
the dimension of OX(X) is d + 1. This shows that the isomorphism class
of X depends on d, as claimed.
In fact, we will see below that the integer d is the negative of the arith-

metic genus of X, as defined in Section III.3.3. As it turns out, every
projective double line of genus −d, with d ≥ 0, is isomorphic to X.
There are also double lines of positive arithmetic genus— the simplest

example of which is the double conic ProjK[x, y, z]/(xy − z2)2, which has
genus 3—and even continuous families of these when the genus is greater
than or equal to 7. These objects arise naturally in the study of nonsingular
curves: as a nonsingular nonhyperelliptic curve degenerates to a hyperel-
liptic curve, a phenomenon well known in the classical theory of varieties,
the canonical model of the smooth curve approaches a projective double
line (see Bayer and Eisenbud [1995] and Fong [1993] for more details).

Exercise III-64. What is the ring structure of OX(X) for the double line
X above?

Exercise III-65. Compute OX(X) for the double line

X = ProjK[u, v, x, y]/(x2, xy, y2,p(u, v)x+q(u, v)y),

where p and q are any homogeneous polynomials of degree d without com-
mon zeros in P1

K . Prove that this double line is isomorphic to the double
line of the example (and thus does not depend on the choice of p and q).

To calculate the Hilbert polynomial of X, observe that for each d, the
ideal Id = (x2, xy, y2, udx−vdy) contains the ideal

I = (x2, xy, y2).

Since S/I is a free K[u, v]-module on the generators 1, x, and y, we see
that

H(S/I, ν) = H(S/(x, y), ν) + 2H(S/(x, y), ν−1).

Further, we see easily, using this basis, that if we write p = udx − vdy for
the fourth generator of Id as written above, then for any homogeneous form
q = q(x, y, u, v) we have qp ∈ I if and only if q ∈ (x, y). Thus

H(S/Id, ν) = H(S/I, ν)−H(S/(x, y), ν−d−1).

But P (S/(x, y), ν) = ν + 1. Putting all these equalities together, we get

P (X, ν) = 2ν + d+ 1,

so the Hilbert polynomial, and in particular the arithmetic genus

pa(X) = 1− P (X, 0) = −d,
distinguishes between these double lines for different d.
Here is an exercise that will be useful for the following three examples.
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Exercise III-66. Compute the Hilbert polynomials of the following sub-
schemes of P3

K :

(a) The union of two skew lines.

(b) The union of two incident lines.

(c) The subscheme supported on the union of two incident lines with an
embedded point of degree 1 at their point of intersection, not lying in
the plane spanned by the two lines. Also, show that for any point p
on the double line X0 (or on any of the double lines above) there is a
unique subscheme of P3

K consisting of X0 with an embedded point of
degree 1 at p; and compute the Hilbert polynomial of this subscheme.

Given this exercise, we can use the notion of Hilbert polynomial to further
illuminate the example of a family of pairs of skew lines tending to a pair of
incident lines. Recall that in Exercise II-25 we discussed such a family and
showed that the flat limit was not reduced: it was supported on the union of
the incident lines but had an embedded point at their point of intersection.
As the exercise above suggests, if we complete these families in P3

K , we see
that this is necessary from the point of view of Hilbert polynomials.
Consider next a family of pairs of skew lines in P3

K , described as follows.
First, let L ⊂ P3

K be the constant line x = y = 0, and let M ⊂ P3
K be

the line x = tv, y = tu. Let Yt be the union of these two lines. We may
ask then for the flat limit of the family Yt; or in other words, the fiber
Y0 over the origin in A1

K of the union Y of the subschemes L and M of
P3
K × A1

K given by x = y = 0 and x = tv, y = tu, respectively. Of course,
the support of Y0 will be the line L, but it is equally clear that it must
have some nonreduced structure. In fact, the flat limit is none other than
the double line X1 above.

Exercise III-67. Verify that the flat limit Y0 is the double line X1. (By
comparing Hilbert polynomials, it is enough to prove inclusion in one di-
rection.)

An interesting wrinkle on this last construction is to consider a slightly
different family of pairs of skew lines: we let L be as above, and let Mt
be the line given by x = tv, y = −t2u. At first glance it might appear
that the flat limit of the unions Yt = L ∪Mt will be the double line given
by (x2 = y = 0), which is isomorphic to the double line X0 above; but
this cannot be, since the Hilbert polynomials are not equal. The following
exercise gives the real situation.

Exercise III-68. Show that with L and Mt as above, the flat limit as
t→ 0 of the union L ∪M is the double line x2 = y = 0 with an embedded
point of degree 1 located at the point [0, 0, 1, 0].

Exercise III-69. Let L, M, and Nt ⊂ P3
K be the lines u = v = 0, y =

v = 0, and y + u = ty+ (1− t)v = 0, respectively; let Zt be their union in
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P3
K . Find the Hilbert polynomial of Zt and the Hilbert polynomial of Z0.

What is the limit, in the sense discussed above, of the subschemes Zt ⊂ P3
K

as t→ 0?
N1 ( = v-axis)

M ( = u-axis)

L ( = y-axis)
N0

Finally, there are arithmetic analogues of each of the last three examples.
For example, consider the following three families of subschemes of P3

Z

(which are flat families over SpecZ):

(a) Let L ⊂ P3
Z be the constant line x = y = 0, and let M ⊂ P3

Z be the
line x = 7v, y = −7u; let U be the union of these two subschemes.

(b) Let L ⊂ P3
Z be the constant line x = y = 0, and let M ⊂ P3

Z be the
line x = 7v, y = −49u; let U be the union of these two subschemes.

(c) Let L , M, and N ⊂ P3
Z be the subschemes defined by u = v = 0,

y = v = 0, and y+u = 7y−6v = 0, respectively; let U be their union.

Exercise III-70. For each of the subschemes U ⊂ P3
Z above, find the

fiber of U over the point (7) ∈ SpecZ. Compare your answer with that
found in the preceding three exercises.

III.3.5 Bézout’s Theorem

The most classical form of Bézout’s theorem asserts that if plane curves
C,C′ ⊂ P2

K defined by equations of degrees d and e meet in only finitely
many points, then the number of points of intersection is at most de, with
equality if the two curves meet transversely and the field K is algebraically
closed. This important result has gone through many successive generaliza-
tions. In particular, the language of schemes allows us to give a version that
is simultaneously simpler and more general than the original; and, while
this version is not the most general possible, we will focus on this.

For the following, we will work with schemes over a field K. As in the dis-
cussion of degree, we could state Bézout’s theorem for a projective scheme
X ⊂ PnS over any base S, but this conveys no more information than
Bézout’s theorem for schemes over a field, applied to the fibers of X over
the generic points of S. Also, note that we do not assume K is algebraically
closed. We will see in Exercises III-72 through III-75 below examples over
non-algebraically closed fields.
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The statement of Bézout’s theorem is very simple. Recall that by a hy-
persurface in projective space PnK = ProjK[X0, . . . , Xn] over a field K we
mean not any (n − 1)-dimensional subscheme of PnK but specifically the
zero locus V (F ) of a single homogeneous polynomial F. In particular, it
will have pure dimension n − 1 (see Eisenbud [1995], for example); and
while it may be nonreduced (if F has repeated factors) it will have no em-
bedded components. Recall also that the degree of an arbitrary subscheme
X ⊂ PnK of projective space over a field K is defined in terms of its Hilbert
polynomial; and that if in particular the dimension of X is zero, then its
degree is simply the dimension of the space OX(X) of global sections as a
K-vector space.

Theorem III-71 (Bézout’s Theorem for complete intersections). Assume
that Z1, . . . , Zr ⊂ PnK are hypersurfaces of degrees d1, . . . , dr in projective
space over a field K, and that the intersection Γ =

⋂
Zi has dimension

n− r. Then

deg(Γ) =
∏

di.

Thus, for example, if D and E ⊂ P2
K are plane curves of degrees d

and e with no common components, then the intersection Γ = D ∩ E will
have degree de. As an immediate consquence, we can deduce from this the
classical “deg(Γ) ≤ de” form of the theorem, together with the fact that
equality holds if and only if Γ is reduced and each point of Γ has residue
field K.
More generally, we can deduce from Theorem III-71 the general form of

the equality statement of the classical Bézout theorem for complete inter-
sections over an algebraically closed field, in which we express the product∏
di of the degrees of the hypersurfaces as a linear combination of the de-

grees of the irreducible components Γi of the reduced scheme Γred, with
coefficients referred to as the multiplicity of the intersection Z1 ∩ . . . ∩ Zr
along Γi arising from the nonreduced structure. In this form we can further
generalize the statement of Bézout’s theorem to arbitrary proper intersec-
tions in projective space (that is, intersections of subschemes X,Y ⊂ PnK
of pure codimensions k and l such that X ∩ Y has codimension k + l);
but to do this we will need also to define in general the multiplicity of an
intersection along one of its components. We postpone this, and the proof
of Bézout’s theorem for complete intersections, in order to give the reader
a chance to try some examples.

Exercise III-72. Let C ⊂ P2
R be the conic curve given as

C = ProjR[X,Y, Z]/(X2 + Y 2 − Z2) ⊂ ProjR[X,Y, Z]

and let L1, L2 and L3 be the lines given by X, X −Z and X − 2Z respec-
tively. Show that no two of the schemes C ∩ Li are isomorphic, but that
they all have degree 2 as schemes over R.
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The following four exercises describe a situation in which Bézout’s theo-
rem over a non-algebraically closed field arises naturally: an intersection of
universal curves over the product of the schemes parametrizing such curves.
The situation is one that occurs frequently, and is of interest (apart from its
value as an illustration of Bézout) as an example of “generic” intersections.

Exercise III-73. Let K be a field, and let

B = A12
K = SpecK[a, b, c, d, e, f, g, h, i, j, k, l].

Consider the two conic curves Ci ⊂ P2
B given by

C1 = V (aX2 + bY 2 + cZ2 + dXY + eXZ + f Y Z)

⊂ Proj
(
K[a, b, c, d, e, f, g, h, i, j, k, l][X,Y, Z]) = P2

B

and similarly

C2 = V (gX2 + hY 2 + iZ2 + jXY + kXZ + lY Z) ⊂ P2
B.

By considering the projection map

π2 : C1 ∩ C2 ⊂ P2
B = P2

K ×SpecK B −→ P2
K

show that C1 ∩ C2 is an irreducible K-scheme.

Exercise III-74. (a) With C1 and C2 as above, show that the intersection
C1 ∩ C2 is generically reduced by showing that the projection

π1 : C1 ∩ C2 ⊂ P2
B −→ B = A12

K

has a fiber consisting of four distinct (hence reduced and K-rational)
points.

(b) Although part (a) is enough for the application in the following ex-
ercise, deduce that C1 ∩ C2 is everywhere reduced by unmixedness
of complete intersections (see Eisenbud [1995], for example). Alterna-
tively, show that it is nonsingular by a direct tangent space calculation.

Exercise III-75. Let L = K(a, b, c, d, e, f, g, h, i, j, k, l) be the field of
rational functions in 12 variables over K (that is, the function field of
B = A12

K ). Let

C1 = V (aX2 + bY 2 + cZ2 + dXY + eXZ + f Y Z) ⊂ P2
L

and

C2 = V (gX2 + hY 2 + iZ2 + jXY + kXZ + lY Z) ⊂ P2
L;

that is, C1 and C2 are the fibers of C1 and C2 over the generic point of A12
K .

Deduce from the preceding two exercises that the intersection C1 ∩C2 is a
single, reduced point P.
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Exercise III-76. Keeping the notation of the preceding problem, show
that, as Bézout predicts, the intersection C1 ∩C2 has degree 4 as a scheme
over L—that is, the residue field κ(P ) of the point P = C1∩C2 is a quartic
extension of L.
Hint: introduce affine coordinates x = X/Z and y = Y/Z on an open

subset of P2
L, and express κ(P ) as

κ(P ) = L[x]/(R(x))

where R(x) is the resultant of the dehomogenized form of the defining
polynomials for C1 and C2 with respect to x as in Section V.2.

There is an interesting sidelight to this example, which we will mention
in passing. One question we may ask in this situation is, what is the Galois
group of the Galois normalization of the extension L ⊂ κ(P )? To answer
this, at least in case the ground field K = C, we should introduce what we
call the monodromy group of the four points of intersection of two general
conics. Briefly, there is an open subset U ⊂ B over which the fibers of the
projection ϕ : C1∩C2 → B are reduced; and in terms of the classical topol-
ogy, the restriction of the map ϕ to the inverse image of U is a topological
covering space. As such, for any point p ∈ U we have a monodromy action of
the fundamental group π1(U, p) on the points of the fiber ϕ−1(p): to an arc
γ : [0, 1] → U starting and ending at p and any point q ∈ ϕ−1(p) we asso-
ciate the end point of the unique lifting γ̃ : [0, 1]→ ϕ−1(U) of γ to ϕ−1(U)
with γ̃(0) = q. Informally, suppose we allow two conics C1(t), C2(t) ⊂ P2

C to
vary with a real parameter t ∈ [0, 1], keeping them transverse at all times.
As t varies, the four points of the intersection C1(t) ∩ C2(t) vary; and if
the conics return to their original positions—that is, Ci(0) = Ci(1)—we
find that while the intersection C1(0) ∩ C2(0) = C1(1) ∩ C2(1) the four
points individually may not return to their original positions; the resulting
group of permutations of the four is called the monodromy group. It turns
out that the answer to our original problem—that is, the Galois group of
the Galois normalization of κ(P ) over L—coincides with the monodromy
group of the four points, which it is possible to see from this geometric
characterization is the symmetric group on four letters.
More generally, in many enumerative problems that depend on parame-

ters (in this example, the intersection of two conics), the universal solution
turns out to be a single point P, with residue field κ(P ) a finite extension
of the function field L of the scheme (in this case B = A12

K ) parametrizing
the problems. In this situation, we may ask, what is the Galois group of
the Galois normalization of the extension L ⊂ κ(P )? This turns out in gen-
eral to coincide with the monodromy group of the problem. For a general
treatment see Harris [1979].
We will now give a proof of Bézout’s theorem, and also discuss its possible

generalizations. We will prove it by using the Koszul complex to calculate
the Hilbert polynomial of Γ (and in particular its degree). The Koszul
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complex is fully described in Eisenbud [1995, Chapter 17]; we will sketch
the construction here and simply state the properties we need.
First, we introduce the defining equations of the hypersurfaces Zi: we

write
Zi = ProjK[X0, . . . , Xn]/(Fi) ⊂ ProjK[X0, . . . , Xn],

so that
Γ = ProjK[X0, . . . , Xn]/(F1, . . . , Fr).

We now describe a resolution of the homogeneous coordinate ring SΓ as
follows. First, for any subset

I = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , r},
we will denote by |I| = k the number of elements of I, and by

dI =
k∑
α=1

diα

the sum of the degrees of the corresponding polynomials. We then set

Mk =
⊕
|I|=k

S(−dI)

where as usual S = K[X0, . . . , Xn] is the polynomial ring. As there is
a unique I with |I| = 0, we set M0 = S. We will write an element of
Mk as a collection {GI} of polynomials, where I ranges over all multi-
indices of size k; by our definition, {GI} will be homogeneous of degree d
if deg(GI) = d− dI for each I.
We now define a complex

0 −→Mr −→Mr−1 −→ . . . −→M2 −→M1 −→M0 = S.

The map ϕk : Mk → Mk−1 is given by setting ϕk({GI}) equal to the
collection of polynomials {HJ}, where

HJ =
∑
α/∈J

±Fα ·GJ∪{α}

and the sign depends on the number of elements of J less than α.
Notice that the image of ϕ1 : M1 →M0 = S is exactly the ideal of Γ. In

fact, this sequence is a free resolution of the coordinate ring SΓ. This is a
general phenomenon: whenever we have a collection of elements F1, . . . , Fr
in a ring S, we can form a sequence in this way, which is called the Koszul
complex. It is a standard theorem that whenever the collection F1, . . . , Fr
is a regular sequence, then the associated Koszul complex is a resolution
(see Eisenbud [1995, Chapter 17], for example). In the present circum-
stance, where the polynomials Fi are homogeneous, the hypothesis on the
dimension of Γ together with the fact that the polynomial ring S is Cohen–
Macaulay implies that the polynomials F1, . . . , Fr form a regular sequence
in S (just as in the local case), so the sequence above is a resolution.
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Given the Koszul resolution, it is straightforward to describe the Hilbert
polynomial P (Γ, ν). If we write H(Mk, ν) for the Hilbert polynomial of
the module Mk (that is, H(Mk, ν) is the polynomial that agrees with the
dimension of Mk in degree ν when ν is large), then from the exactness of
the Koszul complex we see that

P (Γ, ν) =
∑

(−1)kP (Mk, ν)

depends only on the numbers di and not on the particular polynomials Fi.
For convenience, we will denote the Hilbert polynomial of such a complete
intersection by Pd1,...,dr(ν). (Note that we don’t need to write down the
Koszul complex to see that complete intersections of given multidegree all
have the same Hilbert polynomial; this follows directly from the flatness of
families of complete intersections as stated in Proposition II-32).
Now, simply adding up the contributions of the summands in the Kozsul

complex above, we see that

Pd1,...,dr(ν) =
∑

I⊂{1,...,r}
(−1)|I|

(
n+ ν − dI

n

)

where the sum ranges over all subsets of {1, 2, . . . , r}, including the empty
set and the whole set.
This in a sense the complete answer to the question of the Hilbert poly-

nomial of Γ, but there remains the problem of reading off from it things like
the degree of Γ. To do this, we use an induction on the number r to relate
the functions Pd1,...,dr(ν) and Pd1,...,dr−1(ν). This is simple: in the expres-
sion above for Pd1,...,dr(ν), we simply separate out those terms in which
r ∈ I and those terms in which it is not. The terms in which r /∈ I visibly
add up to Pd1,...,dr−1(ν); and comparing terms in which r ∈ I to the term
corresponding to I \ {r}, we see that these add up to Pd1,...,dr−1(ν − dr).
Thus,

Pd1,...,dr(ν) = Pd1,...,dr−1(ν)− Pd1,...,dr−1(ν − dr).

Now, since
νm − (ν − α)m = mανm−1 +O(νm−2)

(where, following the analysts’ convention, we have written O(νm−2) to
denote a sum of terms of degree at most m− 2), we see that if f(ν) is any
polynomial, written as

f(ν) = cmν
m +O(νm−1)

then
f(ν)− f(ν − α) = mαcmν

m−1 +O(νm−2).

Since the Hilbert polynomial of projective space itself is

P (PnK , ν) =
(
ν + n

n

)
=

1
n!
νn +O(νn−1),
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we can write

Pd1,...,dr(ν) = n(n− 1) · · · (n− r + 1)d1d2 · · · dr 1
n!
νn−r +O(νn−r−1)

=
d1d2 · · · dr
(n− r)!

νn−r +O(νn−r−1).

Hence
deg(Γ) = d1d2 · · ·dr,

as desired.
We could have avoided the final computation in this proof by specializing:

By using the fact established at the outset that complete intersections of
given multidegree all have the same Hilbert polynomial, we can just choose
for each pair (i, j) with 1 ≤ i ≤ r and 1 ≤ j ≤ di a general linear form Li,j
and let Zi = V (Fi) where

Fi =
di∏
j=1

Li,j

for each i. The intersection Γ =
⋂
Zi is then the union of

∏
di reduced lin-

ear subspaces in PnK , and so has degree
∏
di; we conclude that all complete

intersections of multidegree (d1, . . . , dr) do.

Exercise III-77. For another specialization, let Zi ⊂ PnK be the sub-
scheme defined by Fi(X0, . . . , Xn) = Xdi

i . Show directly that the intersec-
tion

⋂
Zi has degree

∏
di. (Hint: you can reduce to the case r = n.)

Multiplicity of Intersections. Bézout’s theorem for complete intersec-
tions (Theorem III-71) gives the degree of a complete intersection of hyper-
surfaces, but in practice we are often interested in intersecting more general
subvarieties or subschemes of projective space. Since we have already de-
fined the degree of any subscheme of projective space, it seems natural
to ask whether the degree of an arbitrary intersection of subschemes X,
Y ⊂ PnK is the product of the degrees of X and Y, always assuming the
intersection is proper, that is, has the expected codimension. This turns
out to be false in general, although it does hold if we make some hypoth-
esis on the singularities of the schemes being intersected: if X and Y are
locally complete intersection subschemes of PnK , or more generally Cohen–
Macaulay subschemes of PnK , we have:

Theorem III-78 (Bézout’s Theorem for Cohen–Macaulay schemes). Let
X and Y ⊂ PnK be Cohen–Macaulay schemes of pure codimensions k and l
in PnK . If the intersection X ∩ Y has codimension k + l, then

deg(X ∩ Y ) = degX degY.

Example III-79. As we indicated, the statement of Theorem III-78 fails
without the hypothesis that X and Y are Cohen–Macaulay, and it’s in-
structive to see an example of this. Perhaps the simplest occurs in P4

K =
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ProjK[Z0, Z1, Z2, Z3, Z4]: we take X = Λ1 ∪ Λ2 the union of the two 2-
planes

Λ1 = V (Z1, Z2) and Λ2 = V (Z3, Z4)

and we take Y the two-plane

Y = V (Z1−Z3, Z2−Z4).

We have already discussed this example in Exercise I-43 and following
Lemma II-30; in particular, we have seen that the scheme X ∩ Y of in-
tersection is the subscheme of the plane Y defined by the square of the
maximal ideal of the origin, and so has degree 3. (Alternatively, since the
projective tangent space to X is all of P4

K , it follows that the Zariski tan-
gent space toX∩Y is two-dimensional, from which we may see immediately
that deg(X ∩Y ) ≥ 3.) But degX deg Y = 2 · 1 = 2, and so Theorem III-78
cannot hold.

What is going on in this example is not mysterious. Express Y as the
intersection of two general hyperplanes H1, H2 containing it, and reparen-
thesize the intersection X ∩ Y as

X ∩ Y = X ∩ (H1 ∩H2) = (X ∩H1) ∩H2.

The first time we intersect, we find that the intersection scheme X∩H1 has
an embedded point at the point (Z1, Z2, Z3, Z4). The second hyperplaneH2

passes through this point, in effect picking up the extra intersection.

This example both demonstrates the need for a refined way of ascribing
multiplicity to a component of the intersection of subschemes of projective
space, and suggests a way to do it. Here is the idea: Suppose we are given
schemes X,Y ⊂ PnK , of pure codimensions k and l, intersecting in a scheme
of codimension k + l. We first reduce to the case where the scheme Y is a
linear subspace of projective space, as follows: choose two complementary
n-dimensional linear subspaces Λ1, Λ2 ⊂ P2n+1

K , and an isomorphism of
PnK with each. (Concretely, we can label the homogeneous coordinates of
P2n+1
K as x0, . . . , xn, y0, . . . , yn and take the linear spaces to be given by

x0 = . . . = xn = 0 and y0 = . . . = yn = 0.) Write X ′ and Y ′ for the
images of X and Y ⊂ PnK under these two embeddings. Let J ⊂ P2n+1

K

be the subscheme defined by the equations of X, written in the variables
xi, together with the equations of Y, written in the variables yi—in other
words, the intersection of the cone over X ′ with vertex Λ2 with the cone
over Y ′ with vertex Λ1. J is called the join ofX ′ and Y ′; set theoretically, it
is the union of the lines joining points of X ′ to points of Y ′. Let ∆ ⊂ P2n+1

K

be the subscheme defined by the equations x0 − y0 = . . . = xn − yn = 0. It
is clear that the scheme X ∩ Y is isomorphic to the scheme J ∩∆, and we
will define the multiplicity of intersection of X and Y along an irreducible
component Z ⊂ X ∩Y to be the intersection multiplicity of J and ∆ along
the corresponding component of J ∩∆. We have thus reduced the problem
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of defining the multiplicity of intersection of X and Y along an irreducible
component Z ⊂ X ∩ Y to the case where Y is a linear space.
We will handle this case, as suggested by the example above, by writing

Y as an intersection of hyperplanes H1 ∩ . . . ∩Hl and intersecting X with
the Hi one at a time. After each step we discard the embedded components
of the intersection. In the end we arrive at a scheme W contained in the
actual intersection X ∩ Y, which has degree satisfying Bézout’s theorem:
deg(W ) = deg(X) deg(Y ). To relate this to the classical language, for each
irreducible component Z of the intersection X ∩ Y, we define the inter-
section multiplicity of X and Y along Z, denoted µZ(X · Y ), to be the
length of the local ring of W at the generic point of W corresponding to
the component Z. We have then:

Theorem III-80 (Bézout’s Theorem with multiplicities). Let X and Y ⊂
PnK be schemes of pure codimensions k and l in PnK . If the intersectionX∩Y
has codimension k + l, then

deg(X ∩ Y ) =
∑
Z

µZ(X · Y ) degZred.

There are other approaches to the definition of the multiplicity µZ(X ·Y )
of intersection of two schemes X and Y ⊂ PnK along a component Z ⊂
X ∩Y ; the classical literature is full of attempts at definitions, and there is
also a modern approach involving the sheaves Tor(OX ,OY ). Most of these
approaches will work as well to define intersection multiplicities of any two
subschemes X, Y of a nonsingular subscheme, as long as the intersection
is proper.

Beyond this, there is a still more general version of Bézout’s theorem
that works for arbitrary subschemes X and Y of pure codimensions k and
l in a nonsingular scheme T, even when the intersection X ∩ Y does not
have codimension k+ l (or even for subschemes X, Y of a possibly singular
scheme T, in case one of the two is locally a complete intersection subscheme
of T ). In this setting, one associates multiplicities to certain subschemes, or
equivalence classes of subschemes, of the actual intersection X ∩Y, in such
as way that (in case T = PnK) the degrees of these subschemes times the
corresponding multiplicities add up to degX degY . For this and further
refinements, see Fulton [1984] and Vogel [1984].

Exercise III-81. In case the idea of taking X reducible in Example III-79
strikes the reader as cheating: show that the same phenomenon occurs if we
take X ⊂ P4

K the cone over a nonsingular rational quartic curve C ⊂ P3
K ,

with Y again a two-plane passing through the vertex.

Exercise III-82. To see that the failure of Theorem III-78 to hold in
general cannot be remedied by replacing deg(X∩Y ) by any other invariant
of the schemeX∩Y in the left hand side of the statement of Theorem III-78,
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find an example of a scheme Γ ⊂ PnK and subschemes X,Y, Z,W ⊂ PnK of
the appropriate dimensions, such that X ∩ Y = Z ∩W = Γ, and

degX deg Y = deg Γ �= degZ degW.

III.3.6 Hilbert Series

As the final note in our discussion of Hilbert functions, Hilbert polynomials
and free resolutions, we mention the Hilbert series of a subscheme X ⊂ PnK ,
or more generally of a graded module M over the coordinate ring S of PnK .
This is simply a very useful vehicle for conveying the information of the
Hilbert polynomial; as an illustration, we will be able to write down the
Hilbert polynomial of a complete intersection in a much more transparent
way.
The Hilbert series HM (t) of a module M is easy to define: if P (M, ν) is

the Hilbert function of M, we let HM (t) be the Laurent series

HM (t) =
∞∑

ν=−∞
P (M, ν)tν .

We define the Hilbert series HX(t) of a subscheme X ⊂ PnK to be the
Hilbert series of its coordinate ring SX = S/I(X). The first thing to note
is that the Hilbert series of projective space itself is simple: we have

HPn
K
(t) = HS(t) =

1
(1− t)n+1

.

Similarly, the Hilbert series of any twist S(d) of S is simply

HS(d)(t) =
td

(1− t)n+1
.

Given any exact sequence of graded S-modules

0 −→Mr −→Mr−1 −→ · · · −→M2 −→M1 −→M0 −→ 0,

we see that their Hilbert series satisfy the relation
r∑
k=0

(−1)kHMk
(t) = 0.

Thus, if we have a free resolution of a scheme X ⊂ PnK

. . . −→
k2⊕
i=1

S(−a2i) −→
k1⊕
i=1

S(−a1i) −→ S −→ SX −→ 0,

we see that the Hilbert series

HX(t) =
∑

(−1)itai,j

(1− t)n+1
.
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(where we adopt the convention that k0 = 1 and a01 = 0). One thing we
see from this is that the Hilbert series of any subscheme of projective space
is a rational function of t.

Exercise III-83. Show that if X ⊂ PnK is a subscheme of dimension m,
then the rational function HX(t), reduced to lowest terms, has numerator

H̃X(t) = (1− t)m+1HX(t);

in particular, this is a polynomial in t. Show that its value at 1 is

H̃X(1) = deg(X).

Now suppose that X ⊂ PnK is a complete intersection of r hypersur-
faces of degrees d1, . . . , dr. By the Koszul resolution above, we see that the
Hilbert series

HX(t) =
∑

(−1)|I|t|I|
(1− t)n+1

.

We can factor this, and cancel factors, writing

HX(t) =
∏

(1− tdi)
(1− t)n+1

=
∏

(1 + t+ · · ·+ tdi−1)
(1− t)n−r+1

.

Hence,

H̃X(t) = (1− t)dim(X)+1HX(t) =
∏

(1 + t+ · · ·+ tdi−1).

Since the value of this polynomial at t = 1 is the product
∏
di, Bézout’s

theorem follows.



IV
Classical Constructions

In this chapter, we illustrate how some geometric constructions from clas-
sical algebraic geometry are carried out in the setting of scheme theory. We
will see in each case how the new language allows us to extend the range of
the definitions (and of the questions we may ask about the objects); how it
enables us to give precise formulations of classical problems; and in some
cases how it helps us to solve them.

IV.1 Flexes of Plane Curves

In this section, we will describe the classical definition of a flex of a nonsin-
gular plane curve C ⊂ P2

K over an algebraically closed fieldK. We will then
indicate how this definition may be extended to the setting of schemes, and
show how this extension sheds light on the geometry of flexes, even in the
classical case.

IV.1.1 Definitions

We need one preliminary definition. Let K be any field, let C,D ⊂ P2
K be

two plane curves without common components, and let p ∈ C ∩ D be a
point of intersection. We define the intersection multiplicity of C and D
at p, denoted µp(C ·D), to be the multiplicity of the component Γ of the
scheme C ∩ D supported at p. Since plane curves are Cohen–Macaulay,
this coincides with the notion of intersection multiplicity introduced in
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Section III.3.5. Note also the relation with the notion of degree: the degree
of Γ as a subscheme of P2

K is the intersection multiplicity µp(C ·D) times
the degree (κ(p) : K) of the residue field as an extension of K. Thus, for
example, the Bézout theorem (III-71) for plane curves asserts that

degC degD =
∑
p∈C∩D

(κ(p) : K)µp(C ·D).

This said, the notion of a flex of a plane curve in classical algebraic
geometry is a straightforward and geometrically reasonable one: if C ⊂
P2

C is a nonsingular plane curve of degree d over the complex numbers, a
point p ∈ C is called a flex if the projective tangent line TpC ⊂ P2

C (see
Section III.2.4) has contact of order 3 or more with C at p; or, in modern
language, if the intersection multiplicity µp(C · TpC) of TpC and C at p
is at least 3. (Here, since we are working over an algebraically closed field,
the intersection multiplicity coincides with the degree of the component of
TpC∩C supported at p, that is, dimC(OTpC∩C,p).) It is a classical theorem
(which we will establish below) that if C is not a line, then C has finitely
many flexes, and that if they are counted with the proper multiplicity the
number is 3d(d− 2).
This simple definition was extended to singular curves— see, for example,

Coolidge [1931]— though the definitions are not always precise by modern
standards. There are also problems with the definition if we consider curves
C ⊂ P2

K over non-algebraically closed fields K, or over fields K of finite
characteristic, or curves that contain a line or a multiple component.
What we will do here is to give a uniform definition of flexes for an

arbitrary plane curve C ⊂ P2
S over any scheme S. First recall from Sec-

tion III.2.8 that by a plane curve of degree d over a scheme S we mean a
subscheme C ⊂ P2

S that is, locally on S, the zero locus V (F ) of a single
homogeneous polynomial

F (X,Y, Z) =
∑

i+j+k=d

aijkX
iY jZk

of degree d whose coefficients aijk are regular functions on S not vanishing
simultaneously. Recall also that if S is affine, we can dispense with the
word “locally”; that is, if S = SpecA, a plane curve C over S is of the form

C = ProjA[X,Y, Z]/(F )

for some polynomial F.
Now, given a plane curve C ⊂ P2

S over S, we will define a closed sub-
scheme F = FC ⊂ C, which we will call the scheme of flexes on C. This
will commute with base change S ′ → S (that is, if we set C ′ = S′ ×S C ⊂
P2
S′ , then FC′ = (π2)−1(FC)) and F will be finite and flat of degree

3d(d − 2) over at least the open subset of S where the relative dimension
of F is zero. The significance of this is that if we have a family of plane
curves, the limits of the flexes of the general fiber are flexes of the special
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fiber (that is, F is closed), and conversely in case F has relative dimen-
sion zero (F is flat). Moreover, in the classical setting—that is, if C is a
nonsingular plane curve over the spectrum S = SpecK of an algebraically
closed field of characteristic zero—the support of F will be the set of flexes
of C as defined classically (and hence in the general case, if s ∈ S is any
point whose residue field κ(s) is algebraically closed of characteristic zero,
the support of the fiber Fs of F over s will be the set of flexes of Cs).
To motivate our definition in the general case, we recall one of the earliest

results in the classical setting: for a nonsingular plane curve C = V (F ) ⊂
P2
K over an algebraically closed field K, given as the zero locus of a poly-

nomial F (X,Y, Z), the flexes of C are the points of its intersection with its
Hessian, the curve defined as the zero locus of the polynomial

H(X,Y, Z) =

∣∣∣∣∣∣∣∣∣∣∣∣

∂2F

∂X2

∂2F

∂X∂Y

∂2F

∂X∂Z

∂2F

∂Y ∂X

∂2F

∂Y 2

∂2F

∂Y ∂Z

∂2F

∂Z∂X

∂2F

∂Z∂Y

∂2F

∂Z2

∣∣∣∣∣∣∣∣∣∣∣∣
.

We leave the proof of this fact as an exercise:

Exercise IV-1. Let K be an algebraically closed field of characteristic
zero, C ⊂ P2

K a plane curve and p ∈ C a nonsingular point of C. Show
that the projective tangent line TpC has contact of order 3 or more with
C at p if and only if H(p) = 0.
Hint: introduce affine coordinates

x =
X

Z
, y =

Y

Z

on the corresponding subset of P2
K and use Euler’s relation to see that the

dehomogenization h(x, y) = H(x, y, 1) of the Hessian determinant is (up to
scalars)

h(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f
∂f

∂x

∂f

∂y

∂f

∂x

∂2f

∂x2

∂2f

∂x∂y

∂f

∂y

∂2f

∂x∂y

∂2f

∂y2

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where f(x, y) = F (x, y, 1) is the dehomogeneization of F.

To define the scheme of flexes of an arbitrary plane curve C ⊂ P2
S in the

general setting, we simply generalize the Hessian and extend this charac-
terization: Suppose that in some affine open subset U = SpecR ⊂ S the
curve

C ∩ P2
U = ProjR[X,Y, Z]
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is the zero locus of the polynomial F ∈ R[X,Y, Z]. We define the Hessian
determinant to be the polynomial

H(X,Y, Z) =

∣∣∣∣∣∣∣∣∣∣∣∣

∂2F

∂X2

∂2F

∂X∂Y

∂2F

∂X∂Z

∂2F

∂Y ∂X

∂2F

∂Y 2

∂2F

∂Y ∂Z

∂2F

∂Z∂X

∂2F

∂Z∂Y

∂2F

∂Z2

∣∣∣∣∣∣∣∣∣∣∣∣
.

Since F, and hence H, is determined by C up to multiplication by a unit
in R = O(U), we may define the Hessian C ′ of C to be the subscheme of
P2
S defined by the Hessian determinant over each affine open U ⊂ S; and

we define the scheme F of flexes of C to be the intersection

F = C ∩ C ′.

We see immediately that this is a closed subscheme of C and that its
formation commutes with base change. In particular, for any point s ∈ S,
the fiber Fs of F over s will be simply the scheme of flexes of the fiber
Cs ⊂ P2

κ(s) of C over s. As the intersection of two plane curves of degrees
d and 3(d− 2) it is finite and flat of degree 3d(d− 2) over at least the open
subset of S where the fiber dimension is zero (by Proposition II-32, families
of complete intersections are flat). And, by Exercise IV-1, a nonsingular
point of a curve C over an algebraically closed field of characteristic zero
lies in F if and only if it is a flex in the classical sense.
One word of warning: our definition does not coincide with the classical

one in the case of a singular curve C ⊂ P2
K : in our definition the singular

points of C will always be in the support of F. (As we will see, this is as
it must be if the flexes of a family of curves are to be closed in the total
space.) As for the classical formulas, we will see below how to derive them
from our definition.
We can go further and relate the scheme structure of F at p to the

geometry of C at p:

Exercise IV-2. Let C ⊂ P2
K be as in Exercise IV-1, and p ∈ C a non-

singular point of C. Show that the projective tangent line TpC ⊂ P2
K to

C at p has intersection multiplicity m ≥ 3 with C at p if and only if the
component Γp of the intersection C ∩ C ′ supported at p is isomorphic to

Γp ∼= SpecK[x]/(xm−2).

As this exercise suggests, we define the multiplicity of a flex p ∈ Csmooth

to be the order of contact of TpC with C at p minus 2. We would like to
apply Bézout’s theorem to deduce that a nonsingular plane curve of degree
d > 1 over an algebraically closed field K has exactly 3d(d − 2) flexes,
counting multiplicity, but there is one further issue: we need to know that
F is a proper subscheme of C, that is, that not every point of C is a
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flex! Although this seems intuitively obvious, it is actually false in positive
characteristic:

Exercise IV-3. Let K be a field of characteristic p, and let C ⊂ P2
K be

the plane curve given by the polynomial XpY +XY p − Zp+1. Show that
C is nonsingular, but that every point of C is a flex.

In characteristic 0, however, our intuition is correct:

Theorem IV-4. If C ⊂ P2
K is any nonsingular plane curve of degree d > 1

over an algebraically closed field K of characteristic zero, then not every
point of C is a flex (so that in particular C has exactly 3d(d − 2) flexes,
counting multiplicity).

Proof. See for example Hartshorne [1977, Chapter IV, Exercise 2.3e] or
Griffiths and Harris [1978, Chapter 2, Section 4].

Flexes of multiplicity m > 1 certainly can occur on nonsingular curves.
This naturally raises the question of whether, on a general curve, all the
flexes are simple (that is, have multiplicity 1). In fact, this is the case:

Exercise IV-5. LetK be an algebraically closed field. Fix an integer d > 2
and let B = PNK the projective space parametrizing plane curves C ⊂ P2

K

of degree d. Show that for a general point [C] ∈ B—that is, for all points
[C] in a dense open set in B—all the flexes on the corresponding curve
C ⊂ P2

K are simple.
Hint: Consider the scheme of flexes F of the universal curve C ⊂ P2

B

(as defined in Section III.2.8). Show that F is irreducible, and deduce that
it is sufficient to exhibit a single plane curve C ⊂ P2

K with a single simple
flex.

Exercise IV-6. Suppose we want to remove the hypothesis that K is al-
gebraically closed in Theorem IV-4 above. How should we define the mul-
tiplicity of a flex point p ∈ C with residue field a finite extension L of K
so as to preserve the conclusion that X has 3d(d− 2) flexes?

IV.1.2 Flexes on Singular Curves

Interesting new questions arise when we consider singular curves. First of
all, every singular point is a flex:

Exercise IV-7. Let C ⊂ P2
K be a plane curve. Show that all singular

points of C are flexes.
Hint: either exhibit a line through a singular point p of C with intersec-

tion multiplicity 3 or more by looking at the tangent cone to C at p (that
is, expanding f around p and taking a component of the zero locus of the
quadratic term); or use Exercise IV-2 and show that the Hessian vanishes
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at p by observing thatX times the first column of the Hessian determinant,
plus Y times the second column, plus Z times the third, vanishes at p.

There are two sorts of questions about flexes on singular curves. First, we
can consider curves C with isolated singularities and no line components,
so that the Hessian C ′ will still meet C in a zero-dimensional scheme Γ, and
thus C will have a finite number of flexes; we ask for the number of flexes
supported at nonsingular points of C. To find this number, we simply have
to find the degree of the part of the scheme Γ whose support is contained
in the singular locus Csing and subtract this from 3d(d − 2). It turns out
that this has a nice answer in particular cases, two of which are expressed
in the following exercise.

Exercise IV-8. Let C ⊂ P2
K be irreducible and reduced, with Hessian

C′. Looking ahead to Definition V-31, let p ∈ C be an ordinary node of C
(“ordinary” here means neither branch of C at p has contact of order 3 or
more with its projective tangent line). Show that the component Γp of the
intersection C ∩C ′ supported at p has degree 6 over the residue field κ(p)
of p. Similarly, show that the component supported at a cusp p of C has
degree 8. What is the degree if p is an ordinary tacnode of C? (For formal
definitions of node, cusp and tacnode see Definition V-31).

Thus, over an algebraically closed field, the number of nonsingular flexes
of a plane curve of degree d not containing any lines and having as singu-
larities δ ordinary nodes and κ cusps is

3d(d− 2)− 6δ − 8κ.

This is an example of the classical Plücker formulas for plane curves.

Exercise IV-9. Verify that if C is reducible (again assuming no com-
ponent of C is a line), we can get the same answer by considering the
components of C individually.

IV.1.3 Curves with Multiple Components

A very different sort of question emerges when we consider curves with
multiple components, for example the curve defined by a power F = Gm of
a polynomial G(X,Y, Z). Of course, for such a curve C the scheme FC of
flexes is positive-dimensional, and typically not that interesting. Rather, the
interesting questions arise when we consider families of curves specializing
to such a multiple curve. We ask: in such a family, where do the flexes go?
To give just an example of such a problem, consider the case of a nonsin-

gular quartic plane curve degenerating to a double conic in a linear family.
Let K be an algebraically closed field of characteristic zero and consider a
curve C over the scheme B = A1

K = SpecK[t]. Suppose U = U(X,Y, Z) is
an irreducible quadric polynomial and G = G(X,Y, Z) any quartic poly-
nomial such that the curves V (U) and V (G) ⊂ P2

K intersect transversely.
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Consider the family π : C → A1
K of quartic plane curves given by the

equation F = U2 + tG = 0—that is, the scheme

π : C = ProjK[t][X,Y, Z]/
(
U(X,Y, Z)2 + tG(X,Y, Z)

)
⊂ ProjK[t][X,Y, Z] = P2

B −→ B.

Let F be the scheme of flexes of the curve C ⊂ P2
B . To set up the

problem, let F ∗ ⊂ P2
B∗ be the inverse image in F of the punctured line

B∗ = SpecK[t, t−1] ⊂ B, and F ′ the closure of F ∗ in P2
B . The scheme F ∗

is finite and flat over B∗, and readily described: if Cµ ⊂ P2
K is the fiber of

C over the point (t−µ) ∈ B = A1
K , then for µ �= 0, the fiber Fµ of F over

(t− µ) will be the 3d(d− 2) = 24 flexes of Cµ. In other words, away from
the origin (t) ∈ B = A1

K the flexes of the curves Cµ themselves form a flat
family.
Let F ′ be the closure of F ∗ in P2

B, and let F ′
0 be the fiber of F ′ over

the origin. Since B is one-dimensional and nonsingular, F ′ will be flat over
all of B; it follows in particular that F ′

0 ⊂ C0 ⊂ P2
K has dimension zero

and degree 24 over K. We may think of F ′
0 as the “limiting position” of

the 24 flexes of the nearby nonsingular curves Cµ as µ approaches zero.
Thus, the naive question, “where do the flexes of a plane quartic go when
the quartic degenerates into a double conic?” translates into the precise
problem: determine the flat limit F ′

0, and in particular its support.
What makes this tricky is that the scheme F ′

0 is not the fiber of F over
the origin. Rather, F will have two components: one, the closure F ′ of F ∗

consisting of the “real” flexes and their limits, and the other supported on
the conic V (t, U) in the special fiber π−1((t)) = P2

K of P2
B. Thus we cannot

hope to gain any clues to the answer simply by looking only at the curve
C0 (indeed, since the group of automorphisms of P2

K carrying C0 into itself
acts transitively on the closed points of the conic (C0)red, we see that the
answer must depend on the family C ).
To answer the question, we first write down the ideal I of the scheme

F (in an affine open subset SpecK[t][x, y] ∼= A2
B ⊂ P2

B), then the ideal
I∗ = I · K[t, t−1][x, y] of F ∗, then the ideal I ′ = I∗ ∩ K[t][x, y] of the
closure F ′, and finally the ideal I ′0 = (I ′, t) of the fiber F ′

0 of F ′ over the
origin (t) ∈ B. To illustrate how such calculations are done, we will carry
out these steps in detail. (You may wish to wait to look at these details
until you have a similar problem of your own to solve!)
To start, if u(x, y) = U(X,Y, 1) and g(x, y) = G(X,Y, 1) are the inhomo-

geneous forms of U and G respectively in the affine open SpecK[t][x, y] ∼=
A2
B ⊂ P2

B , the ideal I is by definition generated by two elements, the equa-
tion u2 − tg and the affine Hessian∣∣∣∣∣∣

u2 − tg 2uux + tgx 2uuy + tgy
2uux + tgx 2uuxx + 2u2

x + tgxx 2uuxy + 2uxuy + tgxy
2uuy + tgy 2uuxy + 2uxuy + tgxy 2uuyy + 2u2

y + tgyy

∣∣∣∣∣∣ .
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Thus, I = (u2 − tg,H), where

H =

∣∣∣∣∣∣
0 2uux + tgx 2uuy + tgy

2uux + tgx 2uuxx + 2u2
x + tgxx 2uuxy + 2uxuy + tgxy

2uuy + tgy 2uuxy + 2uxuy + tgxy 2uuyy + 2u2
y + tgyy

∣∣∣∣∣∣ .
We may expand out H, grouping terms involving like powers of t:

H = 8u2
(−u2

x(uuyy + u2
y) + 2uxuy(uuxy + uxuy)− u2

y(uux + u2
x)
)

+ 8tu
(−gxux(uuyy + u2

y) + gxuy(uuxy + uxuy)

+ gyux(uuxy + uxuy)− gyuy(uuxx + u2
x)
)

+ 4tu2
(−u2

xgyy + uxuygxy − u2
ygxx

)
+ 2t2

(−g2
x(uuyy + u2

y) + 2gxgy(uuxy + uxuy)− g2
y(uuxx + u2

x)
)

+ 4t2u (−gxuxgyy + gxuygxy + gyuxgxy − gyuygxx)

+ t3
(−g2

xgyy + gxg+ygxy − g2
ygxx

)
.

The first two terms on the right may be simplified, yielding the expression

H = 8u3
(−u2

xuyy + uxuyuxy − u2
yuxx

)
+ 8tu2 (−gxuxuyy + gxuyuxy + gyuxuxy − gyuyuxx)

+ 4tu2
(−u2

xgyy + uxuygxy − u2
ygxx

)
+ 2t2

(−g2
x(uuyy + u2

y) + 2gxgy(uuxy + uxuy)− g2
y(uuxx + u2

x)
)

+ 4t2u (−gxuxgyy + gxuygxy + gyuxgxy − gyuygxx)

+ t3
(−g2

xgyy + gxg+ygxy − g2
ygxx

)
.

Now, modulo the other generator u2 − tg of I, we may replace u2 by
−tg in this expression to arrive at a polynomial divisible by t. Thus the
ideal I∗ = I(F ∗) = I ·K[t, t−1][x, y] ⊂ K[t, t−1][x, y], and hence the ideal
I ′ = I(F ′) = I∗ ∩K[t][x, y] ⊂ K[t][x, y], contain as well the element

H ′ = − 8ug
(−u2

xuyy + uxu+yuxy − u2
yuxx

)
− 8tg (−gxuxuyy + gxuyuxy + gyuxuxy − gyuyuxx)

− 4tg
(−u2

xgyy + uxuygxy − u2
ygxx

)
+ 2t

(−g2
x(uuyy + u2

y) + 2gxgy(uuxy + uxuy)− g2
y(uuxx + u2

x)
)

+ 4tu (−gxuxgyy + gxuygxy + gyuxgxy − gyuygxx)

+ t2
(−g2

xgyy + gxg+ygxy − g2
ygxx

)
.

Moreover, if we multiply this generator of I∗ by u and once more replace
u2 by −tg, we arrive again at a polynomial divisible by t; we conclude that
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the ideals I∗ and I ′ contain as well

J = 8g2
(−u2

xuyy + uxu+yuxy − u2
yuxx

)
− 8gu (−gxuxuyy + gxuyuxy + gyuxuxy − gyuyuxx)

− 4gu
(−u2

xgyy + uxuygxy − u2
ygxx

)
+ 2u

(−g2
x(uuyy + u2

y) + 2gxgy(uuxy + uxuy)− g2
y(uuxx + u2

x)
)

− 4tg (−gxuxgyy + gxuygxy + gyuxgxy − gyuygxx)

+ tu
(−g2

xgyy + gxg+ygxy − g2
ygxx

)
.

To continue with this analysis, we have to use the fact that, for any
homogeneous quadratic polynomial U(X,Y, Z), the Hessian∣∣∣∣∣∣∣∣∣∣∣∣

∂2U

∂X2

∂2U

∂X∂Y

∂2U

∂X∂Z

∂2U

∂Y ∂X

∂2U

∂Y 2

∂2U

∂Y ∂Z

∂2U

∂Z∂X

∂2U

∂Z∂Y

∂2U

∂Z2

∣∣∣∣∣∣∣∣∣∣∣∣
is a scalar µ = µ(U), nonzero if U is irreducible (that is, if the curve
V (U) ⊂ P2 is nonsingular), and zero otherwise. It follows that∣∣∣∣∣∣∣∣∣∣∣∣∣

u
∂u

∂x

∂u

∂y

∂u

∂x

∂2u

∂x2

∂2u

∂x∂y

∂u

∂y

∂2u

∂x∂y

∂2u

∂y2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −u2

xuyy + uxu+yuxy − u2
yuxx = λu+ µ,

for some scalar λ. Substituting this in the expression for J, we have

J = 8µg2

+ 8λg2u

− 8gu (−gxuxuyy + gxuyuxy + gyuxuxy − gyuyuxx)

− 4gu
(−u2

xgyy + uxuygxy − u2
ygxx

)
+ 2u

(−g2
x(uuyy + u2

y) + 2gxgy(uuxy + uxuy)− g2
y(uuxx + u2

x)
)

− 4tg (−gxuxgyy + gxuygxy + gyuxgxy − gyuygxx)

+ tu
(−g2

xgyy + gxg+ygxy − g2
ygxx

)
.

Now, we have seen that the ideal I ′ ⊃ (u2 + tg,H ′, J). Restricting to the
fiber over the origin in B—that is, setting t = 0—we see that the ideal
I ′0 = (I ′, t) of the fiber F ′

0 of F ′ contains

u2 + tg ≡ u2 mod (t),

H ′ ≡ ug mod (t, u2),
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and
J ≡ 8µg2 − 2νu mod (t, u2, ug),

where

ν = g2
x(uuyy + u2

y)− 2gxgy(uuxy + uxuy) + g2
y(uuxx + u2

x).

We see from this that I ′0 ⊃ (t, u2, ug, 8µg2 + 2νu). Now, we may write

ν = g2
x(uuyy + u2

y)− 2gxgy(uuxy + uxuy) + g2
y(uuxx + u2

x)

≡ (gxuy − gyux)2 mod (u)

≡
∣∣∣ gx gy
ux uy

∣∣∣2.
In particular, given that V (U) and V (G) intersect transversely, ν cannot

be zero at a point where u = g = 0. We may thus recognize the ideal
(t, u2, ug, 8µg2 + 2νu) as the ideal of a subscheme of the special fiber C0,
supported at the eight points t = U = G = 0 of intersection of the conic
U = 0 and the quartic G = 0 in the plane t = 0 and having degree 3 at
each point. Since 8× 3 = 24, the fiber F ′

0 cannot be any smaller than this,
and so we must have equality, that is,

I ′0 = (t, u2, ug, 8µg2 + 2νu).

In other words:

Proposition IV-10. The scheme F ′
0 is supported at the eight points t =

U = G = 0 of intersection of the conic V (U) and the quartic V (G) in the
plane V (t). At each point, it consists of a curvilinear scheme of degree 3,
tangent to, but not contained in, the conic V (U).

One aspect of this answer is that any closed point of the reduced curve
(C0)red could be a limit of flexes of nonsingular curves for a suitable family
of curves Cµ tending to C0. This is a general phenomenon; in fact, every
point of a multiple component of a curve is a limit of flexes of nearby
nonsingular curves.
The phenomenon described in this example is fairly general. The follow-

ing exercises give two generalizations.

Exercise IV-11. Let K be as before an algebraically closed field of char-
acteristic zero and B = A1

K = SpecK[t]. Let F = V (U) be a nonsingular
conic, and D = V (G) and E = V (H) nonsingular plane curves of degrees d
and d−4 respectively intersecting C transversely, such that F ∩D∩E = ∅,
and the points of E ∩F are not flexes of E. Consider the family π : C → B
of plane curves of degree d given by the equation F = U 2H + tG = 0—
that is, the scheme C = ProjK[t][X,Y, Z]/(U 2H+ tG) ⊂ P2

B. Describe the
limiting position of the flexes of the fiber Cλ over the point (t − λ) ∈ B
as λ goes to zero. In particular, show that of the 3d(d − 2) flexes of Cλ,
3 approach each of the 2d points U = G = t = 0; 9 approach each of the
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2(d−4) points U = H = t = 0, while the remaining 3(d−4)(d−6) approach
flexes of the curve H = t = 0.

Exercise IV-12. With K and B as above, suppose now that F = V (U)
is a nonsingular plane curve of degree e and X = V (G) a nonsingular
plane curve of degree d = 2e intersecting F transversely. Consider the
family π : C → B of plane curves of degree d given by the equation
F = U2 + tG = 0, and once more describe the limiting position of the
flexes of the fiber Cλ as λ goes to zero. In particular, show that of the
3d(d−2) flexes of Cλ, 3 approach each of the de points U = G = t = 0 and
2 approach each of the 3e(e− 2) flexes of G = t = 0.

There is one case, other than that of a curve with multiple components,
in which a plane curve over a field of characteristic 0 may have a positive-
dimensional scheme of flexes: that of a curve C ⊂ P2

K containing a line.
We may ask in this setting the analogous question: given a family of plane
curves specializing to one containing a line— for eample, with K and B
as above, the family π : C → B of plane curves of degree d given by the
equation LF + tG = 0 for L, F and G general polynomials of degrees 1,
d−1 and d respectively—where do the flexes of the general fiber of C → B
go? The answer turns out to be in some ways more subtle than that in the
case of multiple components; we will not describe it here, for lack of some
necessary language, but will mention that (as the reader may verify) the
location of the limiting flexes on the line V (L) is not the intersection of
V (L) with V (G).

To conclude this section, here is an amusing aspect of the geometry of
flexes on plane cubics.

Exercise IV-13. Consider a nonsingular plane cubic curve C ⊂ P2
R over

the real numbers. Show that the scheme of flexes will consist, for some pair
of integers a and b with a+ 2b = 9, of a points with residue field R and b
points with residue field C. Deduce in particular that C must have a real
flex.

In fact, the number a in this problem is 3. For the pleasure of the reader
familiar with the classical theory of elliptic curves, we sketch the argument.
Part of it is simple: the exclusion of 5 and 7 follows from the existence of a
group law on the set of points of C with residue field R, in terms of which
the flexes with residue field R form a subgroup of the group Z/(3)×Z/(3)
of the 9 flexes of C ×R SpecC. To see that a = 3, we observe that the
R-rational points of C form a compact real one-dimensional Lie group, and
hence is isomorphic to S1×G where G is a finite group. For degree reasons,
G can have cardinality at most 2.
More generally, if K is any field and C ⊂ P2

K a nonsingular plane cubic,
the number of flex points p ∈ C with residue field K will be 0, 1, 3 or
9. This phenomenon is strictly limited to cubics, however: it follows from
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Harris [1979] that for any d ≥ 4 and any number δ with 0 ≤ δ ≤ 3d(d− 2),
δ �= 3d(d − 2) − 1, there exists a field K and a nonsingular plane curve
C ⊂ P2

K of degree d whose scheme of flexes contains exactly δ points with
residue field K.

In Chapter V we’ll discuss another object classically associated to a plane
curve C ⊂ P2

S : its dual curve C
∗ ⊂ (P2

S)
∗. We’ll encounter many phenom-

ena analogous to those we have just discovered.

IV.2 Blow-ups

Blowing up is a basic tool in classical algebraic geometry. It is used to
resolve singularities, to resolve the indeterminacy of rational maps, and
to relate birational varieties to one another. Saying that one variety is a
blow-up of another along a given subvariety expresses a relationship that is
simultaneously close enough to relate the structure of the two intimately,
and flexible enough that it is a very common ingredient in the expression
of maps between varieties. In this section, we will extend the definition to
the category of schemes, defining the notion of the blow-up of an arbitrary
(Noetherian) scheme along an arbitrary closed subscheme.
Generalizing the definition of blow-ups in this way actually serves two

purposes. First there is the expected benefit: blowing up schemes other
than varieties is useful for the same reason blowing up varieties is, that is,
for resolving singularities or relating two birational schemes (for example,
we will blow up arithmetic schemes in Section IV.2.4).
In addition we will see that, even in the context of maps between varieties,

the language of schemes—specifically, being able to talk about blow-ups
of a variety X along possibly nonreduced subschemes Y ⊂ X—represents
a highly useful extension of the concept. For example, we will illustrate
this in Section IV.2.3 below, where we extend the classical description of
nonsingular quadric surfaces as blow-ups of the plane to quadric cones,
using this generalized notion of blowing up. Likewise, in Section IV.2.3
we will see a naturally occurring map of varieties that turns out to be a
blow-up along a subscheme. These examples are in fact not special: when
we broaden the definition of “blow-up” in this way, it turns out that any
projective birational morphism of varieties is a blow-up! This is proved in
Hartshorne [1977, Theorem II.7.17].

IV.2.1 Definitions and Constructions

For the following, we will assume the reader is familiar with the basic notion
of blowing up in the classical context, that is, blowing up varieties along
nonsingular subvarieties. (This material is amply covered in, among others,
Harris [1995], Hartshorne [1977, Chapter 1], and Shafarevich [1974].) In the
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simplest circumstances— for example, blowing up a reduced point in the
affine plane over an algebraically closed field K—a blow up map may be
described exactly as it is classically. We start by reviewing an example, the
blow-up of the plane at the origin, to see how the classical construction
of the blow-up via gluing may be carried out as well in the category of
schemes over a field. Generalizing this to the definition of the blow-up
BlY (X)→ X of an arbitrary schemeX along an arbitrary closed subscheme
Y ⊂ X is simply a matter of expressing this standard construction in a
sufficiently natural way. In the following subsection we will give several
characterizations of blow-ups in general: a definition, two constructions,
and a further description in some special cases, such as the blow-up of a
scheme along a regular subscheme (Definition IV-15).

An Example: Blowing up the Plane.

Example IV-14. We start with the blow-up Z of the origin in the affine
plane A2

K = SpecK[x, y] over a field K. This can be most concretely
described as the union of two open sets, each isomorphic to A2

K : we let
U ′ = SpecK[x′, y′] and U ′′ = SpecK[x′′, y′′], and consider the maps
ϕ′ : U ′ → A2

K and ϕ′′ : U ′′ → A2
K dual to the ring homomorphisms

(ϕ′)# : K[x, y] −→ K[x′, y′]
x 
−→ x′

y 
−→ x′y′

and (ϕ′′)# : K[x, y] −→ K[x′′, y′′]
x 
−→ x′′y′′

y 
−→ y′′.

The map ϕ′ gives an isomorphism between the open subsets

U ′
x = SpecK[x′, y′, x′−1] and Ux = SpecK[x, y, x−1],

and similarly ϕ′′ gives an isomorphism between the open subsets U ′′
y =

SpecK[x′, y′, 1
y′ ] and Uy = SpecK[x, y, y−1]. In particular, they give iso-

morphisms of the inverse images

U ′
xy = SpecK[x′, y′, x′−1, y′−1] and U ′′

xy = SpecK[x′′, y′′, x′′−1, y′′−1]

of the intersection Uxy = Ux ∩ Uy = SpecK[x, y, x−1, y−1]. We can thus
identify the open sets U ′

xy ⊂ U ′ and U ′′
xy ⊂ U ′′, and so glue together U ′

and U ′′ to obtain a scheme

Z = U ′ ∪ U ′′ = SpecK[x′, y′]
⋃

U ′
xy

∼=U ′′
xy

SpecK[x′′, y′′],

where the isomorphism U ′
xy
∼= U ′′

xy is given by the ring homormorphism

K[x′, y′, x′−1, y′−1] −→ K[x′′, y′′, x′′−1, y′′−1]
x′ 
−→ x′′y′′

y′ 
−→ x′′−1.

We call the union Z, with its structure morphism ϕ : Z → A2
K , the blow-up

of A2
K at the origin. The inverse image E = ϕ−1(0, 0) ⊂ Z of the origin
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is isomorphic to P1
K (this is called the exceptional divisor of the blow-up),

while ϕ is an isomorphism everywhere else, that is, Z \E ∼= A2
K \ {(0, 0)}.

One way to think of this construction is to observe that the coordinate
rings of the open subsets of the blow-up are enlarged to include the ratios
y′ = y/x and x′′ = x/y respectively. This has a number of consequences. For
one thing, the pair of functions x, y on A2

K define a map f : A2
K \{(0, 0)} →

P1
K on the complement of the origin: in classical language, this is the map

(a, b) 
→ [a, b], or in modern terms it is the map associated to the surjection
O ⊕ O → O given by (f, g) 
→ xf + yg. This map cannot be extended to
a regular map on all of A2

K ; but if we compose f with the isomorphism
Z \ E ∼= A2

K \ {(0, 0)}, we see it does extend to a regular map on all of Z.
This is because the ideal generated by the (pullbacks of the) functions x
and y is locally principal on Z (and generated by a nonzerodivisor), so that
where x and y have common zeroes we can simply divide the homogeneous
vector [x, y] by their common factor to extend the map. Another effect of
the enlarged coordinate rings in the blow-up is to separate the lines through
the origin. That is, if L and L′ are distinct lines through the origin in A2

K ,
the preimages of L \ {(0, 0)} and L′ \ {(0, 0)} have doisjoint closures, as
shown in the picture (these are just the fibers of the map f).

By the same token, if we have a curve C ⊂ A2
K with a node at the origin,

the inverse image of the complement of the origin in C is nonsingular in Z,
meeting the exceptional divisor at two points.

Definition of Blow-ups in General. We will use these observations as
starting points in generalizing the definition of a blow-up to that of an
arbitrary scheme along an arbitrary subscheme. The essential fact is that,
in the blow-up ϕ : BlY (X) → X of a scheme X along the subscheme
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Y ⊂ X, the inverse image of Y is locally principal. To formalize this, we
start with a definition:

Definition IV-15. Let X be any scheme, Y ⊂ X a subscheme. We say
that Y is an Cartier subscheme in X if it is locally the zero locus of a
single nonzerodivisor; that is, if for all p ∈ X there is an affine neighborhood
U = SpecA of p in X such that Y ∩U = V (f) ⊂ U for some nonzerodivisor
f ∈ A. More generally, we say that Y is a regular subscheme if it is locally
the zero locus of a regular sequence of functions on X.

Definition IV-16. Let X be any scheme, Y ⊂ X a subscheme. The blow-
up of X along Y , denoted ϕ : BlY (X)→ X, is the morphism to X charac-
terized by these properties:

(1) The inverse image ϕ−1(Y ) of Y is a Cartier subscheme in BlY (X).

(2) ϕ : BlY (X) → X is universal with respect to this property; that is, if
f : W → X is any morphism such that f−1(Y ) is a Cartier subscheme
in Z, there is a unique morphism g : W → BlY (X) such that f = ϕ◦g.

The inverse image E = ϕ−1(Y ) of Y in BlY X is called the exceptional
divisor of the blow-up, and Y the center of the blow-up.

It is clear that these properties uniquely characterize the blow-up ϕ :
BlY (X) → X of a scheme along a subscheme. It is less clear that the
blow-up exists, but we shall soon see that it does.
In the affine case the blow-up can be realized in a very simple way as

the closure of the graph of a morphism, and we describe this construction
first. We start by generalizing the construction of Example IV-14 to the
blow-up at the origin of affine space over an arbitrary ring.

Example IV-17. Let A be any ring and let AnA = SpecA[x1, . . . , xn].
Consider the schemes

Ui = SpecTi ∼= AnA,

where
Ti = A

[xi
xi
, . . . ,

xn
xi
, xi

]
is the subalgebra of T = A[x1, x

−1
1 , . . . , xn, x

−1
n ] generated over A by the

functions xj/xi and xi. The rings (Ti)xj and (Tj)xi are equal as subrings
of T , so we have commuting isomorphisms

(Ui)xj
∼= (Uj)xi .

Thus we may form a scheme Z that is the union of the Ui with these
open sets identified. Note that the morphisms Ui → AnA corresponding to
the inclusions A[x1, . . . , xn] ↪→ Ti agree on the overlap to give a natural
structure morphism ϕ : Z → AnA.

This example shows many of the properties of the classical blow-up de-
scribed in Example IV-14:
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(1) Let U = AnA \V (x1, . . . , xn) be the compelement of V (x1, . . . , xn) (the
“origin”) in AnA. We have a morphism

α(x1,...,xn) : U → Pn−1
A

given by the functions (x1, . . . , xn); or, more formally, by the surjection

OnU −→ OU ,

(a1, . . . , an) 
−→
∑

aixi.

We claim that Z is the closure in AnA ×A Pn−1
A = Pn−1

A of the graph of
α. To see this, we observe that (Ui)xi ⊂ Z is the graph of the map

α(xi,...,xn)

∣∣
(Ui)xi

: (Ui)xi → (Pn−1
A )xi = SpecA

[x1

xi
, . . . ,

xn
xi

]
,

and that the open sets (Ui)xi are dense in Z.

(2) The preimage E = ϕ−1V (x1, . . . , xn) ⊂ Z of V (x1, . . . , xn) ⊂ AnA
under the structure map ϕ : Z → AnA is isomorphic to Pn−1

A ; and

ϕ : Z \ E ∼−→ AnA \ V (x1, . . . , xn)

is an isomorphism.

(3) Since (x1, . . . , xn)Ti = (xi)Ti, the preimage E ⊂ Z of the origin
V (x1, . . . , xn) ⊂ AnA is locally defined by a single equation.

Proposition IV-18. The morphism ϕ : Z → AnA is the blow-up of AnA
along the subscheme V (x1, . . . , xn).

Proof. We have already observed that Z → AnA satisfies condition (1) of
Definition IV-16. It remains to show that if ψ : W → AnA is any morphism
such that ψ−1V (x1, . . . , xn) is Cartier, then ψ factors through ϕ; that is,
there exists a map α : W → Z with ψ = ϕ ◦ α.
We prove this first when W = SpecR and R is a local ring. Consider

R as an algebra over A[x1, . . . , xn] via the map ψ# : A[x1, . . . , xn] → R.
Since the ideal (x1, . . . , xn)R is principal, Nakayama’s Lemma (Eisenbud
[1995, Corollary 4.8]) implies that it is generated by one of the xi. More
concretely, if we write

(x1, . . . , xn)R = (γ),

we can write
γ = α1x1 + · · ·+ αnxn

for some αi ∈ R, and likewise xi = βiγ. It follows that

γ =
∑
i

αixi =
∑
i

αiβiγ,

from which we see that at least one of the βi must be a unit in R; that is,
(x1, . . . , xn)R = (γ) = (xi) for some i.
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We can now write xj = νjxi (where νj = βjβ
−1
i ) for each j, and we

defined the desired map

α : W → Ui ↪→ Z

as dual to the homomorphisms of rings

A
[x1

xi
, . . . ,

xn
xi
, xi

]
−→ R,

xi
xj


−→ νj .

Now suppose that W is an arbitrary scheme, and ψ : W → AnA a morphism
with ψ−1V (x1, . . . , xn) Cartier. For each point w ∈ W , the previous argu-
ment yields a map α : SpecOW,w → Z whose image lies in one of the affine
open subsets Ui ∼= AnA ⊂ Z covering Z. Such a map can be extended to
the Zariski open neighborhood of w ∈ W on which the images α#(xj/xi)
are regular, so we get a covering of W by open sets Wk and morphisms
αk : Wk → Z such that ϕ ◦ αk = ψ|Wk

.
We will complete the argument by showing that the maps αk agree on

the overlaps Wi ∩Wj , and thus define a morphism α on all of W .
Since the restriction of ϕ to Z \ E → AnA \ V (x1, . . . , xn) is an isomor-

phism, it will suffice to show that the inverse image ψ−1(AnA\V (x1, . . . , xn))
is dense in W . But by hypothesis, ψ−1V (x1, . . . , xn) is a Cartier divisor in
W . The following lemma thus completes the argument.

Lemma IV-19. If X ⊂ Y is a Cartier subscheme of a scheme, then Y \X
is dense in Y (as schemes, not just as topological spaces).

Proof. We may assume that Y is affine, say Y = SpecA, and that X =
V (f) for some nonzerodivisor f ∈ A. To say that there is a proper closed
subscheme Y ′ containing Y \X is to say that the localization map A→ Af
factors through A/I(Y ′). But since f is a nonzerodivisor, this localization
map is a monomorphism.

Exercise IV-20. (a) Show that the conclusion of Lemma IV-19 fails for

X = V (x) ⊂ Y = SpecK[x, y]/(xy, y2).

(b) Show more generally that it characterizes Cartier subschemes among
all locally principal subschemes of Y .

(c) Show that BlY = ∅ if and only if suppY = suppX .

The construction of Proposition IV-18 will yield all blow-ups of affine
schemes as soon as we understand how blow-ups behave on subschemes, or,
more generally, under pullbacks. This follows directly from the definition:

Proposition IV-21. Let X be any scheme, Y ⊂ X a subscheme and
ϕ : BlY (X) → X the blow-up of X along Y. Let ν : X ′ → X be any mor-
phism and set Y ′ = ν−1(Y ) ⊂ X ′. If W is the closure, in the fiber product



168 IV. Classical Constructions

X ′×X BlY X, of the inverse image π−1
1 (X ′ \ Y ′), then π1 : W → X ′ is the

blow-up of X ′ along Y ′.

This lemma is already interesting in the case X ′ = X , where it asserts
that the inverse image of X \ Y in BlY X is dense.
Proposition IV-21 is most often applied in case X ′ ⊂ X is a closed sub-

scheme. In this case W is simply the closure in BlY X of the inverse image
ϕ−1(X ′ \ (X ′ ∩ Y )); it is called the strict transform, or proper transform,
of X ′ in BlY X . (The full inverse image ϕ−1(X ′) ⊂ BlY X is called the
total transform.) Thus we may say that, in the blow-up BlpA2

K , the proper
transforms of the lines through the origin p ∈ A2

K are disjoint (note that
the proper transforms of the lines map isomorphically to the lines them-
selves, as they should, since the origin is a Cartier subscheme on each), and
that the blow-up of a nodal curve at a node is nonsingular at the points
lying over the node.
In case X ′ ⊂ X is an open subscheme, Proposition IV-21 says simply

that the formation of blow-ups does commute with base change, that is,

ϕ−1(X ′) ∼= BlX′∩Y X ′ → X ′.

But more is true: since ϕ−1(X ′ \Y ) is dense, there is a unique such isomor-
phism over X . As a consequence, if π : Z → X is a morphism and suppose
we have a cover of X by open sets U such that π−1U ∼= BlU∩Y U over X ,
then Z ∼= BlY X. In a phrase: blow-ups are determined locally.

Proof of Proposition IV-21. We check first that the inverse image

E′ = π−1
1 (Y ′) ⊂W

of Y ′ is a Cartier subscheme ofW. It is certainly principal: the inverse image
E = ϕ−1(Y ) ⊂ BlY X is locally principal in BlY X, and E′ ⊂W is simply
its inverse image π−1

2 (E) under the projection π2 : W → BlY X. Moreover,
since the associated primes of W are exactly the associated primes of X ′

not containing the ideal of Y ′, the local defining equation of E in BlY X
cannot pull back to a zero divisor on W.
Next, we have to verify that W has the universal property. Suppose T

is any scheme, and f : T → X ′ any morphism such that the inverse image
f−1(Y ′) of Y ′ in T is a Cartier subscheme. In particular, since f−1(Y ′) ⊂ T
is Cartier, no component or embedded component of T maps to Y ′; thus
the closure in T of f−1(X ′ \ Y ′) is all of T.
We have to show that f lifts to a morphism g : T → W (that is, there

exists a morphism g : T → W such that the composition π1 ◦ g = f). We
do this in three steps. First, let

h = ν ◦ f : T → X

be the composition of f with the morphism ν : X ′ → X ; since the inverse
image h−1(Y ) = f−1(Y ′) is Cartier, it follows by the universal property of
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the blow-up BlY X → X that h lifts to a morphism h̃ : T → BlY X. Next,
the pair of maps f : T → X ′ and h̃ : T → BlY X give a map

g̃ : T → X ′ ×X BlY X

whose composition with the projection π1 : X ′×XBlY X → X ′ is f . Finally,
since g̃ maps the inverse image f−1(X ′ \ Y ′) to W, and the closure in T
of f−1(X ′ \ Y ′) is all of T, it follows that the map g̃ : T → X ′ ×X BlY X
factors through the inclusion of W in X ′×X BlY X to give the desired map
g : T →W.

We are now in a position to blow up any closed subscheme of any affine
scheme. If X = SpecA and f1, . . . , fn ∈ A, then (f1, . . . , fn) defines a
morphism

α(f1,...,fn) : U = X \ V (f1, . . . , fn) −→ Pn−1
A ;

more precisely, (f1, . . . , fn) defines a map OnX → OX sending (a1, . . . , an)
to

∑
aifi, which is an epimorphism exactly on U .

Proposition IV-22. Let X = SpecA be an affine scheme, and let

Y = V (f1, . . . , fn) ⊂ X

be a closed subscheme. The blow-up of Y in X is the closure in X×APn−1
A =

Pn−1
A of the graph of the morphism

α(f1,...,fn) : X \ Y → Pn−1
A .

Proof. Consider the embedding X ↪→ AnA = SpecA[x1, . . . , xn] given by
the ring homomorphism

A[x1, . . . , xn] −→ A,

xi 
−→ fi.

Note that under this embedding we haveX∩V (x1, . . . , xn) = Y . By Propo-
sition IV-21, the blow-up of X along Y is the proper transform of X in the
blow-up Z of AnA along V (x1, . . . , xn). By Proposition IV-18, on the other
hand, the blow-up Z of AnA along V (x1, . . . , xn) is the closure of the graph
Γ of the map

α(x1,...,xn) : AnA \ V (x1, . . . , xn)→ Pn−1
A .

Since the graph of α(f1,...,fn) is simply the intersection of Γ with the preim-
age of X ⊂ AnA, its closure is the proper transform of X ⊂ AnA in Z, and
the result follows.

In this proposition we built in the restriction that the subscheme Y ⊂ X
be defined by finitely many functions fi, but this is really unnecessary.
The reader may check that everything works for infinite sets (though the
morphisms go to infinite-dimensional projective spaces).
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The Blowup as Proj. We have now proved the existence of the blow-up
of an affine scheme along a closed subscheme. We could at this point deduce
the existence of blow-ups in general by gluing. However, there is a more
elegant construction of blow-ups via global Proj, which accomplishes this
in one fell swoop.

Theorem IV-23. Let X be a scheme and Y ⊂ X a closed subscheme. Let
I = IY,X ⊂ OX be the ideal sheaf of Y in X. If A is the sheaf of graded
OX-algebras

A =
∞⊕
n=0

I n = OX ⊕I ⊕I 2 ⊕ · · ·

(where the k-th summand is taken to be the k-th graded piece of A ), then
the scheme Proj(A )→ X is the blow-up of X along Y .

Remark. This construction often leads to notational confusion: if f ∈
OX(U) is a regular function vanishing on Y , the symbol “f” could a priori
be used to denote either the section of A0 = OX or the section of A1 = I —
two different sections of A . To avoid this, we will often realize A as a
subsheaf of the sheaf

OX [t] =
∞⊕
n=0

tnOX ,

writing
A = OX ⊕ tI ⊕ t2I 2 ⊕ · · · .

We will use this notation in the proof below.

Proof. We have to show that the morphism

ϕ : B = Proj(A )→ X

satisfies the two conditions that characterize a blow-up: that the preimage
ϕ−1Y of Y in B is Cartier, and that any morphism f : Z → X with f−1Y
Cartier factors uniquely through B. We will write I for the ideal IY of Y
in X .
To show that the preimage of Y in B is Cartier, recall from section I.3.1

that ϕ−1Y is the subscheme of B defined by the ideal sheaf I OB . Since the
structure sheaf OB is the sheaf associated to the sheaf of graded A -modules
A , we see that I OB is the sheaf associated to the graded A -module

I A = I ·OB ⊕I ·I ⊕I ·I 2 ⊕ · · ·
= I ⊕I 2 ⊕I 3 ⊕ · · ·

where the term I ·I d = I d+1 occurs in degree d. This is the truncation
of the graded module

A (1) = O ⊕I ⊕I 2 ⊕ · · ·
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(again the term I d+1 occurs in degree d.) Thus by Exercise III-46, I OB =
OB(1) is invertible.
It remains to show that if f : Z → X is a map such that f−1Y is Cartier,

then f factors uniquely through B. We will assume for simplicity that I is
coherent. We will realize B as a closed subscheme of P(I ) = ProjSym(I )
and produce the desired map from Z to B by giving a natural map from
Z to P(I ) whose image is contained in B.
The maps Symd(I ) → I d give a surjection Sym(I ) → A . Its kernel

is a sheaf of graded ideals of A and thus as in section III.2.2 it identifies
B = ProjA with a closed subscheme of P(I ).
Because f−1Y is Cartier, its ideal I ·OZ is invertible. Thus the natural

surjection
f∗I = I ⊗OX OZ → I ·OZ

corresponds as in Theorem III-44 to a map α : Z → P(I ). Further, by
Lemma IV-19, the complement of f−1Y is dense in Z. Since ϕ is an iso-
morphism on the complement of ϕ−1Y , it follows that α(Z \ f−1Y ) is
contained in B, and thus all of α(Z) is contained in B. The map α is thus
the desired map from Z to B.
Both the fact that f = ϕα and the uniqueness of α follow as well from

the density of Z \ f−1Y in Z and the last sentence of Exercise III-24.

We assumed for simplicity that the ideal sheaf I was coherent (and not
merely quasicoherent); the quasicoherent case could be handled by means
of a straightforward generalization of III-44.
Blowing up gives us another way to interpret the projectivized tangent

cone to a scheme, which we will use later in this section.

Exercise IV-24. Show that the exceptional divisor in the blow-up Blp(X)
of a scheme X at a point p ∈ X is the projectivized tangent cone PTCp(X)
to X at p.

Blow-ups along Regular Subschemes. As we mentioned before the
statement of Theorem IV-23, the construction of a blow-up may not be as
explicit in practice as it appears. The reason is that, even given explicit
equations for a scheme X and a subscheme Y, it may not be obvious how
to express the Rees algebra

A =
∞⊕
n=0

tnI n
Y,X ⊂ OX [t]

in terms of explicit generators and relations. (The generators are clear,
assuming we know locally generators of the ideal sheaf IY,X ; it’s knowing
when we have found all the relations that may be tricky.) There is, however,
one circumstance in which the Rees algebra has a nice description: when
the subscheme Y ⊂ X is a regular subscheme. We will state the result first
in case Y has codimension two.
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Proposition IV-25. Let A be a Noetherian ring and x, y ∈ A; let B be
the Rees algebra

B = A[xt, yt] ⊂ A[t].

If x, y ∈ A is a regular sequence, then

B ∼= A[X,Y ]/(yX − xY )

via the map X 
→ xt, Y 
→ yt.

Proof. First we invert x and set X ′ = x−1X ∈ A[x−1][X,Y ]. The element
yX ′ − Y ∈ A[x−1][X,Y ] = A[x−1][X ′, Y ] generates the kernel of the map

A[x−1][X ′, Y ] −→ A[x−1][t],
X ′ 
−→ t,

Y 
−→ yt.

Since (yX − xY ) = (yX ′ − Y ) in the ring A[x−1][X,Y ], it suffices to show
that x is a nonzerodivisor modulo yX − xY in A[X,Y ]. Notice that, in the
other order, yX−xY is obviously a nonzerodivisor modulo x—it’s congru-
ent to yX , the product of two nonzerodivisors! In general, a permutation
of a regular sequence is not a regular sequence, but in this setting, as in
many others, it is; see Eisenbud [1995, Section 17.1].
In our case we may argue as follows: To show that x is a nonzerodivisor

modulo yX − xY we must show that

M :=
(yX − xY ) : (x)

(yX − xY )
= 0,

where (yX − xY ) : (x) denotes the ideal {f ∈ A[X,Y ] | fx ∈ (yX − xY )}.
Note that yX − xY ≡ yX modulo x, so (x, yX−xY ) is a regular sequence
in A[X,Y ]. Further, yX − xY is clearly a nonzerodivisor (to annihilate it,
a polynomial f(X,Y ) would have to have leading term in X annihilating
x, which is a nonzerodivisor by hypothesis). It follows that the quotient M
is isomorphic to the first homology group of the Koszul complex

0 � A

( −x
yX−xY

)
� A2 (yX−xY x)� A.

By the same argument, this group is isomorphic to

(x) : (yX − xY )
(x)

,

which is 0 since x, yX − xY is a regular sequence. (For a more leisurely
treatment of this last argument, see Eisenbud [1995, Section 17.1].)
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The heart of the proof above is the statement that if I is generated by a
regular sequence of length 2, then the Rees algebra

A⊕ I ⊕ I2 ⊕ · · ·
is isomorphic to the symmetric algebra

SymA(I)

and this in turn is defined by the determinant of the 2× 2 matrix(
x y
X Y

)
.

Similar statements are true for larger regular sequences:

Exercise IV-26. If I = (x1, . . . , xn) ⊂ A is generated by a regular se-
quence, then

A⊕ I ⊕ I2 ⊕ · · · ∼= A[X1, . . . , Xn]/J

where J is generated by the 2× 2 minors of the matrix(
x1 . . . xn
X1 . . . Xn

)
.

IV.2.2 Some Classic Blow-Ups

Example IV-27. Let K be a field, and consider the quadric cone

Q = SpecK[x, y, z]/(xy − z2) ⊂ SpecK[x, y, z] = A3
K .

Let p = (0, 0, 0) ∈ Q be the vertex of the cone Q, and let L be a line
through p lying on Q, for example L = V (x, z). We would like to describe
the blow-ups of Q along both p and L.

We can do this directly, using either Theorem IV-23 or Proposition IV-22.
But perhaps the simplest way is to use Proposition IV-21. To begin with, we
can verify by either Theorem IV-23 or Proposition IV-22 that the blow-up
of A3

K at the origin p is the morphism

ϕ : Ã
3

K = ProjK[x, y, z][A,B,C]/(xB−yA, xC−zA, yC−zB)
−→ SpecK[x, y, z] = A3

K .

The exceptional divisor E = ϕ−1(p) ⊂ Ã3
K is indeed Cartier: for example,

we may write the open subset UA = Ã3
K \ V (A) as

UA = SpecK[x, y, z][b, c]/(xb−y, xc−z) = SpecK[x, b, c]

and in UA, the exceptional divisor E is the zero locus of (the pullback of)
the function x. As in the case of the blow-up of the plane at the origin, the
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proper transforms L̃ of the lines L ⊂ A3
K through p are all disjoint in Ã

3

K ,
and indeed the exceptional divisor E is a copy of P2

K whose K-rational
points correspond bijectively to the set of these lines via the association
L 
→ L̃ ∩ E.
Now, when we pull back the defining equation xy − z2 of Q to A3

K , we
find that it factors: it is twice divisible by the defining equation of E. For
example, in UA,

ϕ#(xy − z2) = x2b− x2c2 = x2(b− c2).

We can express this globally as

ϕ−1(Q) = V ((x, y, z)2) ∪ V (AB − C2)

and by Proposition IV-21 we may conclude that the blow-up BlpQ of Q at
p is the restriction of ϕ to the locus V (AB − C2) ⊂ Ã3

K , that is,

ψ : Q̃ = ProjK[x, y, z][A,B,C]/(xB−yA, xC−zA, yC−zB, AB−C2)
−→ SpecK[x, y, z]/(xy − z2) = Q.

We can picture Q̃ as the disjoint union of the (proper transforms of the)
lines on Q passing through p:

E

L̃

Q̃

L

Q

Now, what about the blow-up BlLQ→ Q of Q along L? To begin with,
note that L is a Cartier subscheme of Q at every point of L except at p,
where it is not (p is a singular point of Q, but a nonsingular point of L). It
follows that the blow-up BlLQ→ Q will be an isomorphism over Q \ {p},
but not an isomorphism. Also, since the inverse image ψ−1(L) ⊂ Q̃ of L
in the blow-up Q̃ = BlpQ → Q of Q at the point p is Cartier, the map
ψ : Q̃ → Q must factor through the blow-up BlLQ → Q. It will by now
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not come as a surprise to the reader to learn that in fact, the two blow-ups
are the same! We leave the verification as the following exercise.

Exercise IV-28. Show that the blow-up BlLA3
K of A3

K along the line L
may be realized as the map

ϕ : BlLA3
K = ProjK[x, y, z][A,B]/(xB − zA) −→ SpecK[x, y, z] = A3

K

(We may visualize this as the disjoint union of the planes in A3
K containing

L.) Use this to describe the blow-up BlLQ → Q, and show that it is
isomorphic to BlpQ→ Q as a Q-scheme.

Another surprisingly rich example is the blow-up of a quadric cone of
dimension 3.

Example IV-29. Consider now the quadric hypersurface

X = V (xw − yz) ⊂ SpecK[x, y, z, w] = A4
K .

X is the cone over the nonsingular quadric surface Q = V (xw − yz) ⊂
ProjK[x, y, z, w] = P3

K . We want to consider blow-ups of X along three
subvarieties: the point p = (0, 0, 0, 0); the plane Λ1 = V (x = y = 0) ⊂ X,
and the plane Λ2 = V (x = z = 0) ⊂ X. What is interesting is that, while
all three blow-ups are isomorphisms over X \ {p}, they are all distinct X-
schemes; also that the blow-ups BlΛ1 X and BlΛ2 X are isomorphic schemes,
but not isomorphic X-schemes.

To begin with, let ϕ : X̃ → X be the blow-up of X at the point p. This
may be described along much the same lines as the blow-up of the quadric
surface at a point in the previous example: all the lines on X through the
point p are made disjoint; X̃ is nonsingular; and the exceptional divisor is
a nonsingular quadric surface naturally identified with Q ⊂ P3

K .
The blow-ups Xi of X along the planes Λi are described in the following

exercise:

Exercise IV-30. Let ϕ1 : X1 = BlΛ1 X → X be the blow-up of X along
the plane Λ1. Show the following assertions.
(a) The scheme X1 is nonsingular.
(b) The map ϕ1 is an isomorphism over X \ {p}.
(c) The fiber C = ϕ−1

1 (p) of X1 over the point p is isomorphic to P1
K .

(d) The exceptional divisor E = ϕ−1
1 (Λ1), which is also the proper trans-

form of Λ1 in X1, is isomorphic to the blow-up of Λ1
∼= A2

K at the
point p.

(e) More generally, the proper transforms Λ̃1,µ of the planes

Λ1,µ = V (x−µz, y−µw)
spanned by the vertex p of X and the lines of one ruling of Q coincide
with their total transforms; they are isomorphic to the blow-ups of Λ1,µ

at the point p, and intersect pairwise along the curve C.
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(f) By contrast, the inverse images ϕ−1
1 (Λ2,µ) of the planes

Λ2,µ = V (x−µy, z−µw)
spanned by the vertex p of X and the lines of the other ruling of Q
have two irreducible components: the proper transforms Λ̃2,µ and the
curve C. (In particular, they are not Cartier subschemes of X1.) The
proper transforms Λ̃2,µ map isomorphically to the planes Λ2,µ, and are
disjoint in X1; thus we may try to visualize X1 as the planes Λ2,µ made
disjoint.

cc

P

ϕϕ

ψ2ψ1

ϕ2ϕ1

X̃

X2X1

X

=
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Since the inverse images of the planes Λ1 and Λ2 are Cartier subschemes
of X̃ (they are of pure codimension one in the nonsingular scheme X̃),
the blow-up X̃ = BlpX → X factors through each of the blow-ups Xi =
BlΛi X → X . In fact:

Exercise IV-31. (a) Show that X̃ = X1 ×X X2 as X-schemes.

(b) Show that the induced map ψi : X̃ → Xi is simply the blow-up of Xi
along the curve C.

The schemesXi are certainly not isomorphic to each other asX-schemes,
since the inverse image of Λ2 in X1 is not Cartier and vice versa, though
they are isomorphic asK-schemes (X has an automorphism exchanging the
planes Λ1 and Λ2). Likewise, neither is isomorphic to X̃ as an X-scheme,
since the inverse images of both Λ1 and Λ2 are Cartier in X̃.

Exercise IV-32. Show that in fact X1 and X2 are not isomorphic to X̃
even as K-schemes. (Hint: one way is to show that Xi contains no two-
dimensional subscheme proper over K.)

Exercise IV-33. Here is an interesting way to realize all three of the blow-
ups described above. Identify A4

K with the affine space associated to the
vector space M of 2× 2 matrices, or of linear maps A : V → W between a
pair of two-dimensional vector spaces over K:

M = Hom(V,W ) =
{(

x y
z w

)}
.

Let PV ∗ be the projective space of one-dimensional quotients of V ∗, that
is, one-dimensional subspaces of V, and similarly let PW ∗ be the projective
space of one-dimensional subspaces of W. Show that X and the blow-ups
X1, X2 and X̃ are, respectively, the schemes associated to the varieties

X = {A : V →W | rankA ≤ 1} ⊂ A4
K ,

X1 = {(A,L) | L ⊂ KerA} ⊂ A4
K × PV ∗,

X2 = {(A,L′) | ImA ⊂ L′} ⊂ A4
K × PW ∗

X̃ = {(A,L,M) | L ⊂ KerA and ImA ⊂ L′} ⊂ A4
K × PV ∗ × PW ∗.

In fact, the results of Example IV-27 and Example IV-29 apply not only
to quadric cones, but to schemes that look locally like them. This is the
content of the following exercises, which will require one further definition:

Definition IV-34. Let K be an algebraically closed field of characteristic
not equal to 2 and X any scheme over K. We say that a point p ∈ X is an
ordinary double point if the formal completion of the local ring OX,p is

ÔX,p ∼= K[[x1, . . . , xn]]/(x2
1 + x2

2 + · · ·+ x2
n).
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For example, an ordinary double point of a curve is what we have been
calling a node. More generally, an ordinary double point of an n-dimensional
scheme X may be characterized as any point such that the projectivized
tangent cone to X at p is a nonsingular quadric hypersurface in PTpX ∼=
PnK .

Exercise IV-35. Suppose now that X has dimension 2 and p ∈ X is
an ordinary double point. Let X̃ = BlpX → X be the blow-up of X at
p. Show that the conclusions of Example IV-29 apply as well to X : that
X̃ is nonsingular; that the exceptional divisor E ⊂ X̃ is a conic curve
in PTpX ∼= P2

K , and that if C ⊂ X is any curve nonsingular at p then
BlC X ∼= X̃ as X-schemes.

Exercise IV-36. Keeping the hypotheses of Exercise IV-35, suppose now
that X has dimension 3 and p ∈ X is an ordinary double point. Let
X̃ = BlpX → X be the blow-up of X at p. Show that the conclusions
of Example IV-29 apply as well to X : that X̃ is nonsingular; that the ex-
ceptional divisor E ⊂ X̃ is a nonsingular quadric surface Q ⊂ PTpX ∼= P3

K ,
and that if S ⊂ X is any surface nonsingular at p then the blow up BlS X
has fiber over p isomorphic to P1

K (and in particular is not isomorphic
to X̃). Show moreover that if S and S ′ ⊂ X are two such surfaces, the
blow-ups BlS X and BlS′ X are isomorphic as X-schemes if and only if the
projectivized tangent planes PTpS and PTpS′ ⊂ PTpX belong to the same
ruling of the quadric Q.

By way of language, for a three-dimensional scheme X with an ordinary
double point p ∈ X, the schemes X ′ → X obtained (locally around p) as
blow-ups of X along surfaces nonsingular at p are called small resolutions
of X at p. In general, a resolution of singularities π : X ′ → X—that is,
a birational morphsim such that X ′ is nonsingular— is called small if for
any subvariety Γ ⊂ X the inverse image π−1(Γ) has dimension at most

dim(π−1(Γ)) ≤ dim(Γ) + dim(X)− 1
2

.

The birational isomorphism between the two small resolutions of a three-
fold X with an ordinary double point is called a flop; see Clemens et al.
[1988].

Let X be a scheme and Y, Z ⊂ X a pair of subschemes. If we blow up X
first along one, then along the proper transform of the other, the order in
which we do it matters. We can now illustrate this with a simple example,
given in the form of a series of exercises.

Exercise IV-37. Let K be a field and A3
K = SpecK[x, y, z]. Let L and

M ⊂ A3
K be the lines V (x, y) and V (x, z) respectively, and N = L ∪M =

V (x, yz) their union. Describe the blow-up X = BlN A3
K → A3

K ; in partic-
ular, show that X has fiber isomorphic to P1

K over every point of N, but
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that it is not nonsingular: it has an ordinary double point p lying over the
origin in A3

K .

Exercise IV-38. Keeping the notations of the preceeding problem, let
Y → A3

K be the blow-up of A3
K along the line L, M̃ ⊂ Y the proper

transform of M in Y and X ′ → Y the blow-up of Y along M̃. Show
that the composite map X ′ → Y → A3

K factors through the blow-up
X = BlN A3

K → A3
K , and that the induced map X ′ → X is one of the

small resolutions of the ordinary double point p ∈ X.

Exercise IV-39. Now let Z → A3
K be the blow-up of A3

K along the line
M, L̃ ⊂ Y the proper transform of L in Z and X ′′ → Z the blow-up of
Z along L̃. Show that the composite map X ′′ → Y → X again factors
through the blow-up X → A3

K , and that the induced map X ′ → X is the
opposite small resolution of the ordinary double point p ∈ X from X ′ → X.
To see directly that X ′ → X and X ′′ → X are not isomorphic X-schemes,
let N ′ and N ′′ be the closures of the inverse image of L \ {0} in X ′ and
X ′′, and compare the fibers of N ′ and N ′′ over 0 ∈ A3

K .

IV.2.3 Blow-ups along Nonreduced Schemes

Up to now, we have dealt only with examples of blow-ups BlY X → X in
which all three objects involved—the original scheme X, the subscheme
Y and the blow-up BlY X—are varieties. In the remaining two parts of
this section, we will consider the behavior of blow-ups in the more general
setting of schemes, giving examples first of blow-ups along non-reduced
subschemes of a scheme X, and then of blow-ups of arithmetic schemes.
We will start here by giving some examples of blow-ups of varieties along
nonreduced subschemes.

Blowing Up a Double Point. Let X = A2
K = SpecK[x, y], and let

Γ ⊂ A2
K be the subscheme given by the ideal I = (x2, y). The blow-up

Z = BlΓ(A2
K) will be ProjA, where A is the ring

A = K[x, y]⊕ I ⊕ I2 ⊕ · · ·
By Proposition IV-25, we can also write Z as

Z = ProjK[x, y][A,B]/(yA− x2B)

which is covered by the open sets

UA = SpecK[x, y][b]/(y − x2b)

and
UB = SpecK[x, y][a]/(ya− x2)

where a = A/B and b = B/A.
We can see immediately some differences between this scheme and the

ordinary blow-up of A2
K at the origin. For one thing, though the fiber of
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each over the origin is isomorphic to A1
K , the scheme Z = BlΓ(A2

K) is
singular at one point P (the point a = x = y = 0 in UB), while the
ordinary blow-up is nonsingular.

We can see more if we express Z in terms of blow-ups with reduced
centers. Briefly, the “recipe” for Z in classical language is this (see figure
below): first, let Z1 be the blow-up of A2

K at the origin; let E ⊂ Z1 be
the exceptional divisor, that is, the inverse image of the origin. Let P be
the point of E lying on the proper transform of the x-axis— that is, the
closure of the preimage of the x-axis in Z1 \ E. Let Z2 be the blow-up of
Z1 at P ; let F ⊂ Z2 be the exceptional divisor of this blow up and (by a
slight abuse of notation) E ⊂ Z2 the proper transform of E in Z2. Then,
in classical language, Z = BlΓ(A2

K) is obtained from Z2 by blowing down
E. In other words:

Proposition IV-40. The blow-up Z ′ of Z = BlΓ(A2
K) at its singular point

P is Z2.

E

Z1

L

P

L

Z2

E

F

L0

Z
L0F

L

a singular point of Z

A
2

L0

L
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We see from this description that the lines through the origin in the plane
are not made disjoint, as they were in the case of the blow-up of A2

K at the
reduced origin: they are made disjoint in the first blow-up, but then meet
each other once more after we blow down E ⊂ Z2. On the other hand,
nonsingular curves through the origin tangent to the x-axis and having
different curvatures are separated: after the first blow-up in this sequence
they meet transversely at the point P ; they are then separated by the
second blow-up and are not affected by the blowing down.

Proof of Proposition IV-40. By Exercise IV-35, the blow-up of Z at its
singular point is the same as the blow-up of Z at the reduced scheme F
associated to the exceptional divisor of Z = BlΓ(A2

K)→ A2
K . This scheme

F is the total transform in Z of the (reduced) origin in A2
K , as we see

directly from the equations.
On the other hand, we claim that Z2 may be obtained by first blowing

up the reduced origin in A2
K to get Z1, and then blowing up the total

transform of Γ in Z1 —the reverse of the previous process. To see this,
observe that by the equations the ideal of Γ in Z1 is the product of the
ideal of E ⊂ Z1 and the ideal of the point P ; since E is Cartier, it follows
that BlΓ′ Z1 = BlP Z1.
With these remarks in place, it now suffices to apply the following lemma:

Lemma IV-41. Let X be a scheme and Y1 and Y2 ⊂ X closed subschemes.
If fi : Zi = BlYi X → X be the blow-ups of X along Y1 and Y2, then

Blf−1
1 (Y2) Z1

∼= Blf−1
2 (Y1) Z2

as X-schemes.

Proof. Let W1 = Blf−1
1 (Y2) Z1, and let g1 : W1 → Z1 be the blow-up

map; define W2 and g2 analogously. Set hi = fi ◦ gi : Wi → X. Since
h−1

1 (Y2) = g−1
1 (f−1

1 (Y2)) ⊂W1 is Cartier, the structure map h1 : W1 → X
factors through Z2; that is, there is a map j1 : W1 → Z2 such that h1 =
f2 ◦ j1. Similarly, since j−1

1 (f−1
2 ((Y1)) = h−1

1 (Y1) = g−1
1 (f−1

1 (Y1)) ⊂ W1 is
also Cartier, the map j1 : W1 → Z2 factors through W2 = Blf2−1(Y1) Z2,
inducing a map k1 : W1 → W2 such that h1 = h2 ◦ k1. In the other
direction, we likewise obtain a map k2 : W2 → W1. Since W1 has no
automorphisms as an X-scheme, k2 ◦ k1 is the identity, and in particular
k1 is an isomorphism.

Compare this lemma with Exercises IV-37 to IV-39, where we saw that
if we replace “total transform” with “proper transform”, the order does
indeed matter.

Blowing Up Multiple Points. We will consider here a few more exam-
ples of blow-ups of the plane along subschemes supported at a point.
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Exercise IV-42. For another example, let Ω1 ⊂ A2
K be the subscheme

defined by the ideal (y, x3) ⊂ K[x, y] and Ω2 the subscheme defined by the
ideal (y2, x3) ⊂ K[x, y]. Consider the blow-ups ϕi : Zi = BlΩi(A

2
K) → A2

K

of the plane at each of these two schemes. Show in that in each case the
scheme Zi is singular, the fiber ϕ−1

i (P ) over the origin P = (x, y) ∈ A2
K is

isomorphic to P1
K . Show also that in each case the blow-up map may be

factored into a sequence of three blow-ups followed by two contractions,
that is, there is a scheme Wi, obtained by blowing up A2

K successively
at three reduced points, and a map Wi → Zi that is constant on the
exceptional divisors of the first two blow-ups and is an isomorphism on
their complement. What is different about the sequence of points blown up
in the two cases?

Not to give a false impression, we should remark that the fibers of blow-
ups, even of nonsingular varieties, need not be projective spaces. (Of course,
given our assertion that any proper birational morphism is a blow-up, this
could hardly be the case.) The subject of the following exercises is a simple
example of other behavior.

Exercise IV-43. Let A2
K = SpecK[x, y] be the affine plane over an alge-

braically closed field K, and let Γ ⊂ A2
K be the subscheme given by

Γ = V (x3, xy, y2).

Let X be the blow-up X = BlΓ(A2
K). Show that X is given as

X = ProjK[x, y][A,B,C]/I

where I is the ideal

I = (yA−x2B, yB−xC, AC−xB2).

Hint: blow up A3
K = Spec[x, y, z] along the subscheme V (z − xy, x3, y2),

which is a regular subscheme, and consider the proper transform of the
plane V (z).

Exercise IV-44. Show that the scheme X of the preceding exercise is
nonsingular, with fiber over the origin (x, y) ∈ A2

K a union of two copies of
P1
K meeting at one point. (In fact,X is the scheme Z2 of Proposition IV-40.)

It is not the case that we have a one-to-one correspondence between ideals
and blow-ups; different ideals may yield the same blow-up. Of course there
are many trivial examples of this— for example, any principal ideal yields
the trivial blow-up. Only slightly less trivially, let X be any Noetherian
scheme, Γ ⊂ X any closed subscheme and I ⊂ OX its ideal sheaf. Let
Γn be the subscheme of X defined by the ideal I n. It follows from the
definition via the universal property that the blow-ups Zn = BlΓn(X) are
all isomorphic. Here are some more interesting examples:
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Exercise IV-45. Let A2
K = SpecK[x, y] be the affine plane over an alge-

braically closed field K. Consider the subschemes Γn ⊂ A2
K given by the

ideals

In = (xn+1, xn−1y, xn−2y2, . . . , xyn−1, yn) = (x, y)n ∩ (xn+1, y).

(In other words, In is the ideal of polynomials vanishing to order n at the
origin, and vanishing to one higher order along the x-axis.) Note that Γ1

is the scheme Γ of Proposition IV-40.
Show that for n ≥ 2 the schemes Xn are isomorphic to one another by

exhibiting ismorphisms ϕn : X → Xn, where X = BlΓ(A2
K) is the blow-up

described in Proposition IV-40.

The j-Function. Here is an example of a blow-up similar to the one we
have just described that arises very naturally. It involves the j-function of
a plane cubic curve; this is a topic we will not mention officially until the
very end of this book, but with which the reader may well be familiar. In
any event, we will assume some acquaintance with j in what follows.
We consider the (flat) family E → A2

K = SpecK[a, b] of plane cubic
curves given by the equation

y2 = x3 + ax+ b.

Now, when the curve Ca,b, given in A2
K = SpecK[x, y] by the equation

y2 = x3 + ax+ b, is nonsingular, we associate to it the scalar

j(Ca,b) = 1728
4a3

4a3 + 27b2
.

As the reader may know, two such curves Ca,b and Ca′,b′ are isomorphic
if and only if the values of the j-function are the same. It is thus of some
interest to understand how the rational map from A2

K = SpecK[a, b] to
A1
K = SpecK[j] behaves— in other words, how the moduli of the curve

Ca,b behaves when it becomes singular. Most of the time this is clear: if
the point (a, b) approaches any point of the curve 4a3 + 27b2 = 0 other
than the origin Q = (a, b) ⊂ SpecK[a, b], the value of j(Ca,b) approaches
infinity. The question of what happens when Ca,b acquires a cusp is more
subtle. To put it another way, we have a morphism

j : A2
K \ {Q} −→ P1

K

(a, b) 
−→ j(Ca,b)

and would like to understand the map in a neighborhood of Q.
The answer is not hard to find: the closure Γ in A2

K × P1
K of the graph

of the map j : A2
K \ {Q} → P1

K is simply the blow-up

ϕ2 : Z2 = BlΩ2(A
2
K)→ A2

K

of the plane along the subscheme whose ideal is generated by the numerator
and denominator of the expression above for j(Ca,b). We can also describe
it in terms of classical blow-ups as follows:
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Exercise IV-46. Factor the projection Γ→ A2
K into blow-ups and blow-

downs at reduced points: explicitly, show that the map j blows up the
origin, then the point of intersection of the exceptional divisor with the
proper transform of the x-axis, then the intersection of the two exceptional
divisors; finally, it blows down the first two exceptional divisors.

From this description we can see many things. For example, consider a
pencil of cubics specializing to a cusp; that is, restrict the family above to
a line through the origin in the plane SpecK[a, b]. Equivalently, consider
for some pair α, β the family of curves Ct given by

y2 = x3 + αtx+ βt.

The limiting value of j(Ct) as t approaches 0 is always j = 0— in terms of
the moduli space M1, the curves approach the curve given by y2 = x3+1—
independently of the slope β/α, as long as β �= 0. Conversely, if we want
to describe families of plane cubics acquiring a cusp whose j-invariants
approach a value other than 0 or ∞, we have to find curves through the
origin in the plane SpecK[a, b] whose proper transform in the triple blow-
up W2 of the plane, described in Exercise IV-46, is separated from the first
two exceptional divisors.
In this case the j-function is so explicitly given that we hardly need

the geometric analysis. But the qualitative picture is very important: the
picture in general when a family a curves of any genus acquires a cusp is the
same. For example, if a pencil of plane curves acquires a cusp, the stable
limit will always have an elliptic tail of j-invariant either 0 or ∞.

IV.2.4 Blow-ups of Arithmetic Schemes

Since we have defined blow-ups so generally, we can use the construction to
relate various arithmetic schemes, as the following examples and exercises
illustrate.
We start by blowing up a reduced point in P1

Z : we let P be the reduced
point P = (3, X) ∈ P1

Z and consider the blow-up Z = BlP (P1
Z) of P1

Z at
P. This is straightforward; as before, the only problem is notational. Since
the scheme P1

Z = ProjZ[X,Y ] we are starting with is not affine, we cover
it by affine open sets UX = SpecZ[y] ∼= A1

Z and UY = SpecZ[x] ∼= A1
Z

where y = Y/X and x = X/Y. Since the point to be blown up lies in the
complement of UX , the inverse image of UX in Z is simply UX .
Next, we describe the blow-up of UY . To avoid confusion, we denote by

A and B the two generators 3 and x of the ideal I = (3, x) of P ∈ UY =
SpecZ[x]; we can then write the ring Z[x]⊕ I ⊕ I2 ⊕ . . . as

∞⊕
n=0

In = (Z[x])[A,B]/(xA − 3B).
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We may describe Proj of this ring as the union of the two open subsets WA
and WB . The first is simpler: setting b = B/A, we have

WA = SpecZ[x][b]/(x− 3b) = SpecZ[b] = A1
Z ,

so that the open set WA ∼= A1
Z, but the map WA → UY ∼= A1

Z ⊂ P1
Z is

not an isomorphism; rather, it’s the map SpecZ[b]→ SpecZ[x] dual to the
ring map sending x to 3b.
As for the other open set, we have

WB = SpecZ[x][a]/(ax − 3),

that is to say, WB is an affine plane conic. For primes p �= 3 the fiber of
WB over (p) ∈ SpecZ is the complement SpecZ/(p)[x, 1

x ] of one point in
A1

Z/(p) (or equivalently, the complement of two points in P1
Z/(p)). The fiber

of WB over (3), on the other hand, is the union of two copies of A1
Z/(3)

meeting at a point.
We have seen that the blow-up Z is a union of three affine opens: two,

UX = SpecZ[y] and WA = SpecZ[b], are each isomorphic to A1
Z, and the

third, WB , is a plane conic in A2
Z. The identifications among these sets are

simple to describe. For example, the open subset U3y = SpecZ[y, 1
y ,

1
3 ] ⊂

SpecZ[y] is identified with the open subset U3b=SpecZ[b, 1
b ,

1
3 ]⊂ SpecZ[b]

via the map dual to the ring isomorphism sending y to 1/3b; this yields a
scheme

Z ′ = UX ∪WA = SpecZ[y]
⋃

Spec Z[y, 1y ,
1
3 ]=Spec Z[b, 1b ,

1
3 ]

SpecZ[b]

whose fiber over (p) ∈ SpecZ for each prime p �= 3 is a copy of P1
Z/(p) (in

fact, the inverse image of SpecZ \ {(3)} = SpecZ[ 1
3 ] in Z ′ is isomorphic to

P1
Spec Z[ 13 ]), and whose fiber over (3) is a disjoint union of two affine lines.
Finally, we glue in the third open set WB = SpecZ[x][a]/(ax − 3), via

the identification of the complement of the single point (3, a, x) in WB
with the corresponding open subset of Z ′ (this is the union of the im-
ages in Z ′ of the open subsets Uy = SpecZ[y, 1

y ] ⊂ UX = SpecZ[y] and
Ub = SpecZ[b, 1

b ] ⊂ WB = SpecZ[b]). This adds one final point: the two
components of the fiber of WB over (3), each isomorphic to A1

Z/(3), are
each glued onto corresponding components of the fiber Z ′ over (3) to yield
two copies of P1

Z/(3) meeting at one point. In sum, the fiber of Z over (p) is
P1

Z/(p) for p �= 3, and two copies of P1
Z/(3) meeting at one point for p = 3,

as shown on the next page.
There is another way to represent this scheme, which avoids the need for

gluing constructions (though we will need the description of the blow-up
via gluing to see that it really is the blow-up). This is expressed in the
following result:

Proposition IV-47. The blow-up Z = BlP (P1
Z) of P1

Z at the point P =
(3, X) is isomorphic to the plane conic

C = ProjZ[S, T, U ]/(ST − 3U 2) ⊂ P2
Z = ProjZ[S, T, U ].
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(x)

(3)

WA = SpecZ[b] = SpecZ[x/3]

(x)

(3)

WB = SpecZ[a, x]/(ax− 3)

(x)

(3)

P

UY = SpecZ[x]

(y)

(3)
UX = SpecZ[y]

P (X)

(Y )

(3)
SpecZ

map collapses fiber over (3)
to the point P
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Proof. Having already described Z as the union of open sets as above, this is
easy: we simply exhibit isomorphisms of these open sets with corresponding
open subsets of C and check that they agree on the overlap. First,

UX = SpecZ[y]−→ UT = SpecZ
[
S

T
,
U

T

]/(
S

T
−3

(
U

T

)2 )
= SpecZ

[
U

T

]

via the isomorphism sending y to U/T ; then

WA = SpecZ[b]−→ US = SpecZ
[
T

S
,
U

S

]/(
T

S
−3

(
U

S

)2 )
= SpecZ

[
U

S

]

via the isomorphism sending b to U/S; and finally

WB = SpecZ[a, x]/(ax− 3) −→ UU = SpecZ
[
S

U
,
T

U

]/(
S

U

T

U
− 3

)

via the isomorphism sending a to S/U and x to T/U .

Exercise IV-48. Describe in similar terms the blow-up of P1
Z at the nonre-

duced subscheme

Γ = V (9, X) ⊂ P1
Z = ProjZ[X,Y ]

Use this description to identify the blow-up with the conic in P2
Z given by

ST − 9U2 in P2
Z = ProjZ[S, T, U ].

In the case of the affine plane over a field, the blow-ups at the subschemes
of degree 2 supported at the origin all looked alike, because the automor-
phism group of A2

K acts transitively on nonzero tangent vectors, and hence
on subschemes of degree 2. The analogous statement is not true for A1

Z,
however. As we saw in Section II.4.5, there are two types of subschemes
of degree 2 supported at such a point, the vertical and the horizontal (or,
more accurately, the non-vertical). They may be distinguished by their co-
ordinate rings, which are Z/(p)[x]/(x2) and Z/(p2), respectively. As the
following exercise shows (in conjunction with the preceding exercise), they
may also be distinguished by their blow-ups.

Exercise IV-49. Consider the blow-up Z = BlΩ(P1
Z) of P1

Z at the nonre-
duced subscheme

Ω = V (3, X2) ⊂ P1
Z = ProjZ[X,Y ].

Show that the fiber of Z over (3) ∈ SpecZ has two components, one of
which is everywhere nonreduced. Use this to show in particular that Z is
not isomorphic to any conic in P2

Z.

Exercise IV-50. Find a curve C ⊂ P3
Z isomorphic to the scheme Z of the

preceding exercise.
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Hint: First represent Z as a subscheme of P1
Z ×P1

Z, then embed P1
Z ×P1

Z

in P3
Z via the Segre embedding. One possible answer is

Z =
{
[a, b, c, d] : rank

(a
b

c

d

3d
a

) ≤ 1
} ⊂ P3

Z ;

that is, the zero locus in P3
Z = ProjZ[a, b, c, d] of the 2 × 2 minors of the

matrix
(
a
b
c
d

3d
a

)
.

Here are some examples of blow-ups of arithmetic schemes of dimension
one, two of which we have already encountered. Recall to begin with that
an order in a number fieldK is a subring of the ring of integers in K having
quotient field K. In the following three exercises, we’ll see that the spectra
of orders in a given number field may be related by blowing up.

Exercise IV-51. Let A = SpecZ[
√
3] and B = SpecZ[11

√
3], as de-

scribed in Section II.4.2. Show that A is the blow-up of B at the point
(11, 11

√
3). (The blow-up along the subscheme (11) is trivial.) Similarly,

show that A is the blow-up of the scheme B′ = SpecZ[2
√
3] at the point

(2, 2
√
3).

In the preceding examples, the normalization of the schemes B and B ′

coincided with the blow up, as is appropriate for schemes we claim are
analogues of curves with a simple node and cusp respectively. To see a case
where this is not so, we naturally look for a curve with a “tacnode”. We
will study such a scheme in the following two exercises.

Exercise IV-52. Let A and B be as in the preceding exercise, and let
C = SpecZ[121

√
3], so that we have morphisms

A −→ B −→ C.

Show that B is the blow-up of C at the (reduced) point (11, 121
√
3). At

the same time, exhibit A as the blow-up of C at a nonreduced scheme
supported at this point.

Exercise IV-53. To justify the analogies between B and C and curves
with a node and tacnode, consider the morphisms π : A→ B and η : A→ C
from A to each. Let P = (4 + 3

√
3) and Q = (4 − 3

√
3) ∈ A be the two

points lying over the singular points (11, 11
√
3) of B and (11, 121

√
3) of C.

Show that the image of the differentials

dπP : TP (A) −→ T(11,11
√

3)(B)

and
dπQ : TQ(A) −→ T(11,11

√
3)(B)

do not coincide, but that the images of

dηP : TP (A) −→ T(11,121
√

3)(C)
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and
dηQ : TQ(A) −→ T(11,121

√
3)(C)

do.

The remainder of this section consists of a project for the reader, using
several of the techniques we have developed for local analysis to distinguish
among arithmetic surfaces.

Example IV-54. Consider the schemes

C1 = ProjZ[X,Y, Z]/(XY −3Z2),

C3 = ProjZ[X,Y, Z]/(XY −27Z2),

C2 = ProjZ[X,Y, Z]/(XY −9Z2),

C4 = ProjZ[X,Y, Z]/(XY −81Z2).

All four are plane conics, that is, they are the zero loci in P2
Z of homo-

geneous quadratic polynomials. Moreover, the inverse images of the open
subset

S = SpecZ[ 13 ] = SpecZ \ {(3)} ⊂ SpecZ

in all four are isomorphic, via (powers of) the automorphism of the ring
Z[ 13 , X, Y, Z] given by (X,Y, Z) 
→ (3X,Y, Z). In particular, each has fiber
over (p) a nonsingular conic in P2

Z/(p) for p �= 3. Finally, in each case the
fiber over (3) is a union of two lines in P2

Z/(3).

We claim, however, that no two of these schemes are isomorphic; and we
will prove this as an illustration of the various techniques developed over
the course of this section. The key is the local structure of each scheme
around the point (3, X, Y ) (which we will, by a slight abuse of notation,
call P in each of the four schemes Ci). We start as follows:

Exercise IV-55. Show that C1 is nonsingular, while C2, C3 and C4 each
have P as a unique singular point.

Thus, C1 cannot be isomorphic to any of the others; and for any two of the
others to be isomorphic, a neighborhood of P in each must be isomorphic.
Now, we cannot use the dimension of the tangent space to Ci at P to

further distinguish among these: TP (C1) is two-dimensional (since C1 is
nonsingular, after all), and dimTP (Ci) = 3 for each of i = 2, 3 and 4. But
the tangent cone does provide a useful tool here:

Exercise IV-56. Show that the projective tangent cone to C2 at P is a
nonsingular plane conic, while the tangent cones to C3 and C4 at P are
each a union of two distinct lines in P2

Z/(3).

Thus C2 cannot be isomorphic to any of the others. Finally, how do we
distinguish C3 and C4? Blowing up provides the answer:

Exercise IV-57. Let C̃3 = BlP (C3) be the blow-up of C3 at P, and C̃4

the blow-up of C4 at P. Show that C̃3 is nonsingular, while C̃4 is not.
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For the reader who wishes to pursue this further, the techniques we have
are in fact sufficient to prove the following statement:

Exercise IV-58. For any positive integer n, let

Cn = ProjZ[X,Y, Z]/(XY − 3nZ2).

Show that for any n �= m, the schemes Cn and Cm are not isomorphic.
Hint: the number of blow-ups required to resolve the singularity of each

is �n2 �; and we can distinguish between n even and n odd by the tangent
cone at the singular point before the last blow-up.

In fact, the above analysis shows something more than is claimed: we see
that the local rings OCn,p (equivalently, the local schemes SpecOCn,p) are
not isomorphic to one another pairwise.

IV.2.5 Project: Quadric and Cubic Surfaces as Blow-ups

It is a classical fact that a nonsingular quadric surfaceQ ⊂ P3
C is isomorphic

to the surface obtained by blowing up two points in the plane P2
C and

blowing down the line joining them— in other words, the blow-up of Q at
a point is isomorphic to the blow-up of P2

C at two points. (This description
arises naturally if we consider the graph Γ of the rational map Q → P2

C

given by projection from a point on Q.) It is likewise well-known, if less
readily seen, that a nonsingular cubic surface S ⊂ P2

C is isomorphic to the
blow-up of the plane at six points, no three collinear and not all six on a
conic.
In the following series of exercises, we will see how to use our notion of

blow-ups along arbitrary subschemes of the plane to extend this description
of smooth quadric and cubic surfaces to some singular ones. We start with
the case of quadric surfaces. Here we ask: what do we get if, instead of
blowing up two points and blowing down the line joining them, we blow up
a nonreduced scheme Γ ⊂ P2

K of degree 2 and dimension 0, and blow down
the unique line containing it? The answer is expressed in the following:

Exercise IV-59. Let K be an algebraically closed field, Q ⊂ P3
K an irre-

ducible quadric, and p ∈ Q any nonsingular closed point. Show that the
blow-up of Q at p is isomorphic to the blow-up of the plane P2

K at a sub-
scheme Γ ⊂ P2

K of dimension zero and degree 2, with Γ reduced if and only
if Q is nonsingular.

The situation over non-algebraically closed fields is illustrated in the
following two exercises.

Exercise IV-60. Let P3
R = ProjR[X,Y, Z,W ] be projective 3-space over

the real numbers, and consider the two quadric surfaces Q1, Q2 ⊂ P3
R given

as the zero loci

Q1 = V (X2 + Y 2 − Z2 −W 2) and Q2 = V (X2 + Y 2 + Z2 −W 2).
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Show that the blow-up of Qi at any closed point with residue field R is
isomorphic to the blow-up of the plane P2

R at a subscheme Γi ⊂ P2
R of

dimension zero and degree 2, with

Γ1
∼= Spec(R × R) and Γ2

∼= Spec(C).

In other words, Γ1 consists of two points with residue field R and Γ2 of one
point with residue field C.

We will return to this in Exercise IV-70 below.

Exercise IV-61. More generally, let K be any field, Q ⊂ P3
K a nonsin-

gular quadric, and p ∈ Q any point with residue field K. Show that the
blow-up of Q at p is isomorphic to the blow-up of the plane P2

K at a sub-
scheme Γ ⊂ P2

K of dimension zero and degree 2. Show moreover that Γ will
consist of two points with residue field K if and only if Q contains a line
L ∼= P1

K ⊂ Q ⊂ P3
K , and that in this case Q ∼= P1

K ×K P1
K .

We turn our attention next to cubic surfaces. As in the case of quadrics,
we ask: if any nonsingular cubic surface S ⊂ P3

K over an algebraically closed
field K is isomorphic to the blow-up of the plane P2

K at six points. Indeed,
if Γ ⊂ P2

K is a collection of six points, no three collinear and not all six on
a conic, there will be a four-dimensional vector space of cubics vanishing
on Γ. This gives a morphism

P2
K \ Γ→ P3

K ,

and by Proposition IV-22 the blow-up S = BlΓ P2
K of P2 at Γ is the closure

in P2
K ×K P3

K of the graph of this morphism. The surface S ⊂ P2
K ×K P3

K

projects isomorphically to P3
K , and its image is a smooth cubic surface;

conversely, every smooth cubic S ⊂ P3
K may be obtained in this way.

What happens when the points of Γ come together? A complete answer
is naturally more complicated here; we will simply sketch some of the pos-
sibilities. A prerequisite for the following exercises is familiarity with the
classical theory of smooth cubic surfaces; see for example Griffiths and
Harris [1978] or Mumford [1976].
We assume throughout that K is an algebraically closed field.

Exercise IV-62. Let Γ ⊂ P2
K be any subscheme of degree 6 consisting of

four reduced points and one double point, with Γ not contained in a conic
and no subscheme of Γ of degree 3 contained in a line. Show that the blow-
up BlΓ P2

K is isomorphic to a cubic surface with one ordinary double point
(defined in Section IV.2.2), and conversely that any cubic surface with one
ordinary double point may be realized in this way. (Use the description
of the blow-up in Proposition IV-40.) How many lines does such a cubic
surface contain?

Exercise IV-63. This time let Γ ⊂ P2
K be any subscheme of degree 6

consisting of three reduced points and one curvilinear triple point, again
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with Γ not contained in a conic and no subscheme of Γ of degree 3 contained
in a line. Show that the blow-up BlΓ P2

K is isomorphic to a cubic surface
with one double point, but this time the double point is not ordinary. (What
is the tangent cone at the double point?) How many lines does such a cubic
surface contain?

Exercise IV-64. For an example of a cubic surface with only one line,
let Γ ⊂ P2

K be any curvilinear subscheme of degree 6 supported at a single
point. Suppose that the (unique) subscheme of Γ of degree 3 is contained in
a line, but the subscheme of degree 4 is not. Show that the blow-up BlΓ P2

K

is isomorphic to a cubic surface that contains a unique line.

IV.3 Fano schemes

IV.3.1 Definitions

In classical geometry, one way to study a projective variety X ⊂ PnK is via
its relation to linear subspaces of PnK . Thus, a number of subvarieties of the
Grassmannians GK(k, n) are associated to such a variety. For example, we
can associate to X ⊂ PnK the loci in GK(k, n) of linear spaces that meet X ;
of tangent spaces to X ; of secants to X ; or of linear spaces contained in X.
All of these subvarieties can now be redefined as subschemes of GS(k, n)
associated to a subscheme X ⊂ PnS , and as such they are endowed with a
richer structure that reflects the geometry of X. Even if we start with a
varietyX ⊂ PnK over an algebraically closed fieldK, the schemes associated
to it in this way may be nonreduced.
In this section we will define and study the scheme Fk(X) ⊂ GS(k, n)

parametrizing linear spaces of dimension k contained in a scheme X ⊂
PnS ; this is called the k-th Fano scheme of X. We will try in particular
to indicate how and when a nonreduced scheme structure may arise, and
how it allows us to extend many classical theorems about Fano varieties.
For example, we’ll see that, if K is any field and X ⊂ P3

K is any cubic
surface not swept out by lines, the Fano scheme of lines on X will have
degree exactly 27 over K, though the set of lines contained in X will have
cardinality 27 only if X is nonsingular, and even then may not if K is
not algebraically closed. More generally, we will see that in many cases the
family of Fano schemes associated to a flat family of varieties X ⊂ PnB → B
is itself flat overB, and so we will be able to make statements about number
and degree in greater generality.
In this chapter we will define Fano schemes by giving their defining ideals,

which are the same ideals that were classically used to define the Fano
variety; the only difference is that we no longer throw away information by
passing to their radicals. However, we will see in Chapter VI that there is a
more intrinsic definition of Fano schemes Fk(X) using the functor of points;
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and this definition gives us in turn a characterization of various aspects of
their geometry (e.g., their tangent spaces) that is more directly related to
the geometry of the schemes X. These descriptions are very useful even in
case both X and Fk(X) are varieties.
Let S be any scheme, and let X ⊂ PnS be any subscheme of projective

space over S; let k < n be any positive integer. The Fano scheme Fk(X) ⊂
G = GS(k, n) of X is a scheme parametrizing the linear subspaces of
dimension k in PnS lying on X. (As always, the word “parametrize” has a
precise meaning, which we will discuss further in Section VI.2.2 below.) We
define the Fk(X) first in case the base scheme S = SpecR is affine. We will
describe them in terms of the description given in Section III.2.7 of G as
the union of affine spaces WI ∼= A(k+1)(n−k)

S .
Recall that in this construction we let

W = SpecR[. . . , xi,j , . . .] ∼= A(k+1)(n+1)
S

(which we think of as the affine space associated to the vector space of
(k + 1) × (n + 1) matrices), and for each multi-index I = (i0, . . . , ik) ⊂
{0, 1, . . . , n} let WI ∼= A(k+1)(n−k)

S ⊂ W be the closed subscheme given by
the ideal (. . . , xiα,jβ − δα,β, . . .) (which we think of as the affine space asso-
ciated to the subspace of matrixes whose I-th submatrix is the identity).
Now, suppose that G(Z0, . . . , Zn) ∈ I(X) is any homogeneous polynomial
in the ideal of X. Applying it to a general linear combination of the rows
of a (k + 1)× (n+ 1) matrix, we obtain a polynomial

HG(u, x) = G
(∑

uix0,i,
∑

uix1,i, . . . ,
∑

uixk,i

)
which we may write out as a linear combination of the monomials uJ =
uj00 u

j1
1 · · ·ujkk in the variables u0, . . . , uk:

HG(u, x) =
∑

HG,J(x) · uJ .
The coefficient polynomials HG,J (x) are then polynomials in the variables
xi,j ; restricting to the subscheme WI ∼= A(k+1)(n−k)

S ⊂ W they are like-
wise regular functions there. We define the Fano scheme Fk(X) to be the
subscheme of G given, in each open subset WI , by the ideal generated
by the polynomials HG,J(x), where G ranges over all elements of the ideal
I(X) ⊂ R[Z0, . . . , Zn] and J indexes monomials of degree d in the variables
u0, . . . , uk.
Alternatively, for any (k + 1)-tuple c = (c0, . . . , ck) of elements of R, we

may define a polynomial HG,c(x) by

HG,c(x) = G
(∑

cix0,i,
∑

cix1,i, . . . ,
∑

cixk,i

)
and take the Fano scheme Fk(X) to be the subscheme of G given in WI
by the ideal generated by the polynomials HG,c(x), where G ranges over
I(X) ⊂ R[Z0, . . . , Zn] and c ranges over Rn+1.
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To complete this definition we would have to check a number of things:
that these subschemes of WI agree on the overlaps of the WI , and that the
subscheme Fk(X) ⊂ G they define does not depend on choice of coordinates
(this is easier if we adopt the second way of generating the ideal of Fk(X)∩
WI , but then of course we have to show the two ways yield the same ideal).
Finally, we should check that the construction is natural, that is, if T → S
is any morphism and XT = X×S T ⊂ PnT , then the Fano scheme Fk(XT ) =
Fk(X)×S T ⊂ GS(k, n)×S T = GT (k, n). This last condition in particular
ensures that, given a projective scheme X ⊂ PnS over an arbitrary (possibly
nonaffine) base S, we can define the Fano scheme Fk(X) ⊂ GS(k, n) by
restricting to affine open subschemes of S and gluing the results. All of these
assertions can either be verified directly from the definitions; but they will
follow more readily from the intrinsic characterization of the Grassmannian
and of Fano schemes to be given in Section VI.2.2 below.

IV.3.2 Lines on Quadrics

To illustrate the definition of Fano schemes, we will consider a simple case:
the lines on the quadric surface Q = V (X2 +Y 2 +Z2+W 2) ⊂ P3

K over an
algebraically closed field K. For convenience, we assume the characteristic
ofK is not 2 (the situation is the same in characteristic 2 as long as we stick
to smooth quadrics). Even in this case, we will see some very interesting
phenomena; and we will consider some examples over non-algebraically
closed fields as well.

Lines on a Smooth Quadric over an Algebraically Closed Field.
As suggested above, we will first write down equations for F1(Q) in an
open subset WI ⊂ G = GK(1, 3); in this case, symmetry will do the rest.
For example, take WX,Y = W1,2 the subset of G corresponding to lines
skew to the line X = Y = 0; we may identify this with the affine space
A4
K = SpecK[a, b, c, d] associated to the space of matrices of the form(

1 0 a b
0 1 c d

)
.(IV.1)

We then write the restriction H of the polynomial G(X,Y, Z,W ) = (X2 +
Y 2 + Z2 +W 2) to a linear combination u0(1, 0, a, b) + u1(0, 1, c, d) of the
rows of this matrix as

HG(u0, u1) = G(u0, u1, u0a+ u1c, u0b+ u1d)

= u2
0 + u2

1 + (u0a+ u1c)2 + (u0b+ u1d)2

= (1 + a2 + b2)u2
0 + 2(ac+ bd)u0u1 + (1 + c2 + d2)u2

1.

The Fano scheme F1(Q) in WX,Y ∼= A4
K is defined to be the zero locus of

the coefficients of HG, viewed as a polynomial in u0 and u1; that is,

F1(Q) ∩WX,Y = V (1 + a2 + b2, ac+ bd, 1 + c2 + d2) ⊂ SpecK[a, b, c, d].
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It is not hard to describe the subscheme of A4
K defined by these equations.

It is reducible, with one (irreducible) component lying in the plane a =
d, b = −c and the other in the plane a = −d, b = c. Each component is
isomorphic via the projection to the plane conic SpecK[c, d]/(c2+d2+1) ⊂
A2
K = SpecK[c, d].
We can use this to write down the equations of F1(Q) in homogeneous

coordinates on G ⊂ P5
K . To do this, recall first that the homogeneous

coordinates on P5
K correspond to the 2 × 2 minors of a 2 × 4 matrix; we

will label them accordingly ΠXY , ΠXZ , ΠXW , ΠY Z , ΠYW and ΠZW . The
open subset WX,Y ⊂ G is the intersection of G with the affine open subset
ΠXY �= 0; and the coordinate functions a, b, c and d above on WX,Y ∼= A4

K

are the restrictions of the ratios

a = −ΠY Z/ΠXY ,
c = ΠXZ/ΠXY ,

b = −ΠYW /ΠXY ,
d = ΠXW /ΠXY .

Also,
ad− bc = ΠZW /ΠXY ,

from which we can deduce the defining equation of G ⊂ P5
K :

G = V (ΠZWΠXY +ΠY ZΠXW −ΠXZΠYW ).

Now, from the equations of F1(Q) ∩WX,Y above, we can see that the
Fano scheme F1(Q) is contained in

V (Π2
XY +Π2

Y Z +Π2
YW , ΠY ZΠXZ +ΠYWΠXW , Π2

XY +Π2
XZ +Π2

XW ).

Carrying out the same procedure in the other five affine open subsets of
P5 as well yields a complete set of defining equations for F1(Q) ⊂ P5. This
is easy because of the symmetry of the equations; we conclude that F1(Q)
has the expression

V
(
Π2
Y Z−Π2

XW , (ΠY Z+ΠXW )(ΠYW+ΠXZ), (ΠY Z+ΠXW )(ΠZW−ΠXY ),
Π2
YW−Π2

XZ , (ΠYW−ΠXZ)(ΠY Z−ΠXW ), (ΠYW−ΠXZ)(ΠZW−ΠXY ),
Π2
ZW−Π2

XY , (ΠZW+ΠXY )(ΠY Z−ΠXW ), (ΠZW+ΠXY )(ΠY W+ΠXZ),

Π2
XY+Π2

Y Z+Π2
YW , Π2

XY+Π2
XZ+Π2

XW

)
.

It may be easier to understand this if we organize it a little better; the
way to do this is suggested by the description above of F1(Q)∩WX,Y . Let
Λ1 and Λ2

∼= P2
K ⊂ P5

K be the disjoint 2-planes defined by the equations

Λ1 = V
(
ΠY Z +ΠXW , ΠYW −ΠXZ , ΠZW +ΠXY

)
and

Λ2 = V
(
ΠY Z −ΠXW , ΠYW +ΠXZ , ΠZW −ΠXY

)
.

Then we have, simply

F1(Q) = (Λ1 ∪ Λ2) ∩G ⊂ P5
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as schemes. Each of the planes Λi intersects G in a nonsingular plane
conic Ci; so we see that F1(Q) is simply the union of two conics lying in
complementary planes. (In particular, F1(Q) is simply the closure of the
two affine conics in F1(Q)∩WX,Y above.) This corresponds to the classical
picture of the two rulings of a quadric surface.

Λ1

C1

Λ2

C2

Lines on a Quadric Cone. Next, let us consider what happens to the
Fano scheme of lines on a quadric as it varies, and in particular as it degen-
erates to a singular quadric. Let the base of our family be B = SpecK[t] ∼=
A1
K , and consider first the family of quadrics Q ⊂ P3

B given by

Q = V (tX2 + Y 2 + Z2 +W 2) ⊂ ProjK[t][X,Y, Z,W ] = P3
B.

We will denote by Qµ ⊂ P3
K the fiber of Q over the point (t−µ) ∈ B = A1

K .
The Fano scheme F1(Q) is likewise a subscheme of GB(1, 3), whose fiber
over (t− µ) ∈ B = A1

K is the Fano scheme F1(Qµ) ⊂ GK(1, 3) of lines on
the quadric Qµ ⊂ P3

K .
As before, take WX,Y the subset of GB(1, 3) corresponding to lines skew

to the line X = Y = 0 and identify this with the affine space A4
B =

SpecK[t][a, b, c, d] associated to the space of matrices of the form IV.1.
Write the restriction H of the polynomial G(X,Y, Z,W ) = (tX2 + Y 2 +

Z2 +W 2) to a linear combination of the rows of this matrix as

HG(a, x) = G(u0, u1, u0a+ u1c, u0b+ u1d)

= tu2
0 + u2

1 + (u0a+ u1c)2 + (u0b+ u1d)2

= (t+ a2 + b2)u2
0 + 2(ac+ bd)u0u1 + (1 + c2 + d2)u2

1.

The Fano scheme F1(Q) in WX,Y ∼= A4 is the zero locus of the coefficients,
that is,

F1(Q) ∩WX,Y = V (t+ a2 + b2, ac+ bd, 1 + c2 + d2) ⊂ SpecK[t][a, b, c, d].

For any fixed nonzero scalar µ �= 0 ∈ K the fiber of F1(Q) ∩WX,Y over
(t−µ) is a subscheme of A4

K isomorphic to the scheme F1(Q)∩WX,Y ⊂ A4
K
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described above (necessarily so, since Qµ is projectively equivalent to Q
by an automorphism of P3

K whose action on GK(1, 3) fixes WX,Y ). It is
reducible, with one component lying in the plane a =

√
µd, b = −√µ c and

the other in the plane a = −√µd, b = √
µ c. Each component is isomorphic

via the projection to the plane conic SpecK[c, d]/(c2 + d2 + 1) ⊂ A2
K =

SpecK[c, d].
Now consider the fiber of F1(Q)∩WX,Y over (t), that is, the open subset

F1(Q0) ∩WX,Y of the Fano scheme F1(Q0) of the quadric cone Q0. This
has equation

F1(Q0) ∩WX,Y = V (a2 + b2, ac+ bd, 1 + c2 + d2) ⊂ A4
K .

It is not hard to see that the support of F1(Q0) ∩WX,Y is a single plane
conic, lying in the plane a = b = 0 and given there by the equation c2 +
d2 + 1 = 0. But F1(Q0) is not reduced! Rather, at each point the tangent
space is 2-dimensional, spanned by the tangent line to the reduced conic
c2 + d2 + 1 = 0 in the plane a = b = 0 and by another vector lying outside
this plane:

Λ

C

The same picture holds when we consider the entire Fano scheme F1(Q) ⊂
GB(1, 3) and its fibers F1(Qµ) ⊂ GK(1, 3) over (t−µ) ∈ B. Let Λ1(µ) and
Λ2(µ) ∼= P2

K ⊂ P5
K be the disjoint 2-planes defined by the equations

Λ1 = V
(
ΠY Z +

√
µΠXW , ΠYW −√µΠXZ , ΠZW +

√
µΠXY

)
and

Λ2 = V
(
ΠY Z −√µΠXW , ΠYW +

√
µΠXZ , ΠZW −√µΠXY

)
.

Then, for µ �= 0,

F1(Qµ) = (Λ1(µ) ∪ Λ2(µ)) ∩GK(1, 3) ⊂ P5
K
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as schemes. As before, each of the planes Λi(µ) intersects GK(1, 3) in a
nonsingular plane conic Ci(µ). But now as µ approaches 0, the two planes
Λi(µ) have the same limiting position, the plane

Λ = V (ΠY Z ,ΠYW ,ΠZW ).

As the following exercise will show, the flat limit Λ(0) of the schemes
Λ(µ) = Λ1(µ) ∪ Λ2(µ) is a scheme supported on the plane Λ, but hav-
ing multiplicity 2.

Exercise IV-65. Show that the schemes Λ(µ) = Λ1(µ) ∪ Λ2(µ) and Λ(0)
do form a flat family for µ �= 0, that is, there is a scheme

L ∗ ⊂ P5
B∗ = ProjK[t, t−1][ΠXY ,ΠXZ ,ΠXW ,ΠY Z ,ΠYW ,ΠZW ]

flat over B∗ = B \ {0} = SpecK[t, t−1], whose fiber over (t − µ) ∈ B∗ is
Λ(µ). Find the equations of L in P5

B∗ ; find the equations of the closure L
of L ∗ in PnB, and thereby of the limit Λ(0) of the schemes Λ(µ). Finally,
show that the limit of the Fano schemes F1(Qµ) is indeed the Fano scheme
F1(Q0) of Q0.

Exercise IV-66. Show that F1(Q0) ⊂ P5
K is not contained in a hyper-

plane.

Exercise IV-67. Let Q ⊂ P3
K be a cone over a nonsingular quadric,

F1(Q) ⊂ GK(1, 3) ⊂ P5
K its Fano scheme of lines. Show that F1(Q) is

isomorphic to a double line on a quadric surface, that is, the double line
X1 as described in Section III.3.4.

We’ll be able to see the fact that the Fano scheme of a quadric cone is
nonreduced more directly in terms of the characterization of F1(Q) given
in Section VI.2.3.

If we let L = K(t) be the function field of the base B of our family,
QL ⊂ P3

L the fiber of Q over the generic point SpecL ∈ B of our base and
F1(QL) ⊂ GL(1, 3) the Fano scheme of QL, F1(QL) will not be a union
of two conics. If we pull it back to the quadratic extension L′ = L(

√
µ) of

L—that is, take the fiber product F1(QL)×SpecL SpecL′ —the scheme we
obtain is a union of two conics over SpecL; but F1(QL) itself is irreducible.
This is a nice example of a scheme arising in a purely geometric context
that is reducible but not absolutely irreducible.

A Quadric Degenerating to Two Planes. Consider now a family of
quadrics Q → B whose general member is smooth, specializing to a quadric
Q0 consisting of the union of two planes. What is fascinating about this
case is not the Fano scheme F1(Q0)—after all, since Q0 is a union of two
planes, the locus of lines lying on it is pretty simple—but the geometry
of the family. In our main example the Fano scheme F1(Q) ⊂ GB(1, 3) is
not flat over B (and indeed the restriction of the family to the open subset
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B∗ = B \ {0} has no flat limit at 0); in other examples a flat limit exists
but depends on the particular family and not just on Q0.
All this is easier to do than to say. To begin with, let B = SpecK[s, t] ∼=

A2
K , and consider the family Q ⊂ P3

B → B given by

Q = V (sX2 + tY 2 + Z2 +W 2) ⊂ ProjK[s, t][X,Y, Z,W ]

and let Qµ,ν ⊂ P3
K be the fiber of Q over the point (s−µ, t−ν) ∈ B. Let

F1(Q) ⊂ GB(1, 3) be the Fano scheme of Q.
Even without writing down equations, we can see that F1(Q) is not flat

over B: the fibers F1(Qµ,ν) of F1(Q) over B are all one-dimensional, except
for the one fiber F1(Q0,0), which is visibly two-dimensional, having support
the union of two planes. To see more, we write the equations. As before,
we start with the equations of F1(Q) in the open subset WX,Y of GB(1, 3);
we have

F1(Q)∩WX,Y = V (t+a2+b2, ac+bd, s+c2+d2) ⊂ SpecK[s, t][a, b, c, d].

The fiber of F1(Q) over the origin (s, t) ∈ B is given in WX,Y by

F1(Q0,0)∩WX,Y = V (a2+b2, ac+bd, c2+d2) ⊂ A4
K .

We may also describe this as the union of the two planes Γ1 and Γ2 ⊂ A4
K

given by
Γ1 = V (a+

√−1b, c−√−1d),
Γ2 = V (a−√−1b, c+√−1d).

Exercise IV-68. Show that the Fano scheme F1(Q0,0) of a quadric of rank
2 is reduced.

Let us consider now subfamilies of this two-parameter family. To start
with, let us fix two nonzero scalars α and β ∈ K, and consider the restric-
tion of our family to the line V (βs − αt) through the origin in B = A2

K

with slope β/α; that is, the family Qα,β with base B′ = SpecK[u] given
by

Qα,β = V (αuX2 + βuY 2 + Z2 +W 2) ⊂ ProjK[u][X,Y, Z,W ]

Again, the Fano scheme F1(Qα,β) is not flat over B′, for the same reason.
What is different here is that the Fano scheme over the complement of
the origin in B′ does have a flat limit. In fact, F1(Qα,β) is reducible, with
F1(Q0,0) one component; and if we remove that component what is left is
flat. To see this, we write the equations of F1(Qα,β) in the open subset
WX,Y of GB(1, 3):

F1(Qα,β)∩WX,Y = V (αu+a2+b2, ac+bd, βu+c2+d2)
⊂ SpecK[α, β][a, b, c, d].

Let Φ(γ) ⊂ A4
K be the 2-plane given by

Φ(γ) = V (a−γd, b+γc)
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and let Ψ(γ) be the disjoint union of Φ(γ) and Φ(−γ). What we see from
these equations is that, for every µ �= 0 ∈ K, the fiber of F1(Qα,β) over
(u−µ) ∈ B′ is contained in the scheme Ψ(

√
α/β ), independently of µ, and

is cut out on Ψ(
√
α/β ) by the one further equation βu + c2 + d2 = 0. It

follows that the flat limit of the Fano schemes F1(Qαu,βu) as u approaches
0 is the intersection of Ψ(

√
α/β ) with the union V (c2 + d2) of the two

hyperplanes V (c +
√−1 d) and V (c − √−1 d). This is the union of four

lines.
To interpret this geometrically, note that the first of these lines is simply

the subscheme of the Grassmannian GK(1, 3) of lines lying in the plane
H1 = V (Z +

√−1W ) and passing through the point

P1 = [
√−1

√
β, −√α, 0, 0];

the second is the subscheme of lines lying in the plane H1 and passing
through the point P2 = [

√−1√β, √α, 0, 0]; the third the subscheme of
lines lying in the plane H2 = V (Z − √−1W ) and passing through the
point P1, and the last the subscheme of lines lying in the plane H2 and
passing through the point P2. Note that the points P1 and P2 here may
be characterized as the intersection of the double line M = H1 ∩H2 of the
quadric Q0 with the other quadrics Qαµ,βµ in the pencil.

The flat limits of the families Qα,β vary as the ratio β/α varies. In par-
ticular, their union is dense in F1(Q0,0). This shows that the Fano scheme
F1(Q) → B of the whole family is irreducible, and hence that the restric-
tion of F1(Q) to the complement of the origin (s, t) ∈ B does not have a
flat limit.

Exercise IV-69. Consider the one-parameter family of quadrics tending
to a double plane with equation

Q = V (tX2 + tY 2 + tZ2 +W 2) ⊂ P3
B.

What is the flat limit of the Fano schemes F1(Qt)?
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More Examples. To see how the Fano scheme of lines on a quadric over
a non-algebraically closed field may behave, we consider the example of
quadrics over the real numbers:

Exercise IV-70. Consider the quadrics Q1, Q2 and Q3 in P3
R given by

the equations
Q1 = V (X2 + Y 2 − Z2 −W 2),

Q2 = V (X2 + Y 2 + Z2 −W 2),

Q3 = V (X2 + Y 2 + Z2 +W 2).

Show that the Fano scheme F1(Q1) is the union of two copies of P1
R , while

the Fano scheme of lines on Q2 is irreducible but not absolutely irreducible.
Finally, show that the Fano scheme F1(Q3) is the union of two copies of a
plane conic not isomorphic to P1

R .

Here’s an example over a function field:

Exercise IV-71. Let B = P9
K be the projective space that parametrizes

quadric surfaces in P3
K , and L its function field. Let QB ⊂ P3

B be the
universal quadric surface over B. Let QL ⊂ P3

L be the fiber of Q over the
generic point SpecL of B, and FL = F1(QL) ⊂ GL(1, 3) its Fano scheme of
lines. Describe FL. In particular, show that it behaves differently from the
examples above, in that is isomorphic to two copies of P1

M over a quartic
extensionM of L, but not over any quadratic extension of L. (In fact, there
is a quadratic extension L′ of L over which FL becomes reducible, but the
components of FL×LSpecL′ are forms of P1

L′ (in the sense of Section IV.4),
but not isomorphic to P1

L′ .)

Finally, here is an arithemetic analogue:

Exercise IV-72. Consider the quadrics Q1, Q2 and Q3 ⊂ P3
Z given by

Q1 = V (7X2 + 7Y 2 + Z2 +W 2)

Q2 = V (7X2 + 14Y 2 + Z2 +W 2)

Q3 = V (7X2 + 49Y 2 + Z2 +W 2).

Describe the Fano scheme F1(Qi) ⊂ GZ(1, 3) in each case. In particular,
describe the component of F1(Qi) dominating SpecZ, and its intersection
with the fiber GZ/(7)(1, 3) of GZ(1, 3) over the point (7) ∈ SpecZ.

IV.3.3 Lines on Cubic Surfaces

In the following series of exercises, we will develop some interesting facts
about the Fano scheme F1(S) parametrizing the lines on a cubic surface S ⊂
P3
K . To begin with, the following two exercises establish that all nonsingular

cubics contain the same number of lines (without deriving the number 27).
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Exercise IV-73. Let K be a field, S ⊂ P3
K a nonsingular cubic surface,

and F = F1(S) ⊂ GK(1, 3) the Fano scheme of lines on S. Show that F is
reduced.
Hint : Take L ∈ F1(S) the line given by X = Y = 0, and write the cubic
polynomial defining S as X Q(Z,W ) + Y P (Z,W ) modulo (X,Y )2; show
that the condition that the tangent space T[L]F1(S) be positive-dimensional
is that P and Q have a common zero along L. (Compare this to the dis-
cussion in Section VI.2.3.)

Exercise IV-74. Let P19
K be the projective space parametrizing cubic sur-

faces in P3
K , and U ⊂ P19

K the open subset corresponding to cubics hav-
ing only finitely many lines (that is, other than cones and scrolls). Let
SU ⊂ P3

U be the universal cubic in projective 3-space over U, and FU =
F1(SU ) ⊂ GU (1, 3) be its Fano scheme of lines. Show that the projection
map π : FU → U is flat.
Hint: Use the fact that the Fano scheme F1(S) of lines on a cubic surface

S ⊂ P3
K is a local complete intersection, together with Proposition II-32.

In fact, neither of the statements of the two preceding exercises is com-
pletely general: that is, for some d and n the Fano variety F1(X) of lines on
a hypersurface X ⊂ PnK of degree d may be singular and even nonreduced
for X nonsingular; and the dimension dimF1(X) may jump as X varies,
so that the universal Fano scheme F need not be flat. We will be able to
exhibit examples of these behaviors once we have developed a description
of tangent spaces to Fano schemes in Chapter VI.
We now consider what happens when our cubic surface becomes singular.

There are essentially two cases to consider. In some sense the simpler case
is when S has only isolated double points: in this case (as we will see)
the Fano scheme F1(S) is still 0-dimensional of degree 27, and fits into a
flat family with the Fano schemes of nonsingular cubics (that is, in terms
of Exercise IV-74 above, if we let U ′ ⊂ P19

K be the larger open subset of
cubics having at most isolated double points as singularities, and define
SU ′ ⊂ P3

U ′ and FU ′ ⊂ GU ′(1, 3) accordingly, then FU ′ → U ′ is still flat).
On the other hand, when S is a cone or has positive-dimensional singular
locus— for example, when S is reducible—F1(S) will become positive-
dimensional; and a further question arises: what may be the flat limit of
the Fano schemes F1(Sλ) ⊂ G(1, 3) as Sλ approaches S?
We start with some examples of cubic surfaces having isolated double

points. For this it may be useful to recall the description of such surfaces
in Exercise IV-62 above, or in Griffiths and Harris [1978].

Exercise IV-75. Let K be an algebraically closed field, and S ⊂ P3
K a

cubic surface having an ordinary double point P (that is, the projectivized
tangent cone to S at P is a nonsingular conic). Show that the Fano scheme
F1(S) consists of six nonreduced points (each of multiplicity 2) correspond-
ing to lines on S through P, and 15 reduced points.
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Exercise IV-76. Now suppose that S has two ordinary double points P
and Q. Show that the scheme F1(S) consists of one point of multiplicity 4,
supported at the point [PQ] corresponding to the line PQ joining P and Q;
eight points of multiplicity 2 corresponding to lines through P or Q other
than PQ; and 7 reduced points. What is the scheme structure of the point
[PQ]?

Exercise IV-77. Now say that S has again just one double point P ;
but suppose now that P is what is called an A2 singularity: that is, the
completion of the local ring OS,P with respect to the maximal ideal is
ÔS,P ∼= K[[x, y, z]]/(xy − z3) (in particular, the tangent cone is a conic
of rank 2, as in Exercise IV-63). Show that the scheme F1(S) consists of
six points of multiplicity 3, corresponding to lines on S through P, and
9 reduced points. Again, what is the scheme structure of the points of
multiplicity 3?

In case S is reducible or a cone, the Fano scheme of lines on S is usually
pretty obvious; what is of interest is, as we said, the flat limits of the Fano
schemes of nearby nonsingular cubics. We consider, in each of the following
problems, the same set-up: we take S0 a reducible cubic or a cone, choose
S a general cubic, and let {Sλ}λ∈P1 be the pencil of cubic surfaces that
they span. In each case, we ask what will be the flat limit, as λ tends to 0,
of the Fano schemes F1(Sλ).

Exercise IV-78. Take S0 the union of a nonsingular quadric Q and a
plane H, meeting along a nonsingular conic curve C. Let {P1, . . . , P6} =
C∩S be the base points of the pencil lying on C. Show that the flat limit, as
λ tends to 0, of the Fano schemes F1(Sλ) is reduced of degree 27, consisting
of the 12 lines on Q containing one of the points Pi and the 15 lines on H
containing 2 of the points Pi.

Exercise IV-79. Now take S0 the union of three planes H1, H2, H3 in
general position. Again, what is the flat limit, as λ tends to 0, of the Fano
schemes F1(Sλ)?

Exercise IV-80. The same problem, but now take S0 the cone over a
nonsingular plane cubic curve.

Finally, an amusing one on the line(s) on the universal cubic:

Exercise IV-81. Let B = P19
K be the projective space parametrizing cubic

surfaces in P3
K , L the function field of B, SB ⊂ P3

B the universal cubic in
projective 3-space over K, and SL the fiber of S over the generic point
SpecL of B. Let FL = F1(SL) ⊂ GL(1, 3) be its Fano scheme of lines.
Show that FL consists of one reduced point, whose residue field is a degree
27 extension of L.
Hint: this follows from the fact that the universal Fano variety F =

F1(S ) ⊂ GB(1, 3) = P19
K ×K GK(1, 3) is irreducible, which in turn follows
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from the fact that projection on the second factor expresses F as a P15
K -

bundle over GK(1, 3).

Exercise IV-82. Consider now nonsingular cubic surfaces S ⊂ P3
R over

the real numbers. As we have seen, the Fano scheme F1(SC) ⊂ GC(1, 3)
of SC = S ×Spec R SpecC consists of 27 reduced points. It follows that,
for some pair of integers a and b with a + 2b = 27, F1(S) ⊂ GR(1, 3) will
consist of a reduced points with residue field R and b reduced points with
residue field C. Show that a can be 3, 7, 15 or 27, and that no other values
are possible. (See Segre [1942].)

IV.4 Forms

Let S be any scheme andX any scheme over S. We say that a scheme Y over
S is a form of X if for every point p ∈ S there exists an open neighborhood
U of p in S and a flat surjective morphism T → U of schemes such that
Y ×S T ∼= X ×S T as T -schemes.
To begin with a classic example, consider the conic in the real projective

plane P2
R given by the equation X2 + Y 2 + Z2 = 0, that is, the curve

C = ProjR[X,Y, Z]/(X2+Y 2+Z2). The curve C has no points defined over
R—that is, no points with residue field R—and so cannot be isomorphic to
the projective line P1

R . However, the result of extending the ground field to
the algebraic closure C of R is C ×Spec R SpecC ∼= ProjC[X,Y, Z]/(X2 +
Y 2 + Z2) ∼= P1

C . Thus C is a form of P1
R over SpecR, or, more succinctly,

an R-form of the projective line.
As a second example, the reader might check that the field extension

SpecQ[x]/(x2 + 1) over SpecQ is a form of the scheme consisting of two
distinct points, while SpecZ/(2)[x]/(x2 +1) over SpecZ/(2) is a form of a
double point.
In number theory it is of interest to see how the set of rational points

may vary in a family of forms of a given curve. To give a particular case,
for any t ∈ Q the set of rational solutions (x, y) of what is called Pell’s
equation,

ty2 = x2 − 1,

is the set of Q-rational points on the curve Ct = SpecQ[x, y]/(ty2−x2+1).
These curves Ct are forms of P1 over SpecQ. Likewise, the curves Et =
SpecQ[x, y]/(ty2 − x3 + 1) all have j-invariant 0, and thus are all forms
of the curve E1 ⊂ P2

Q given by y2 = x3 − 1 (see Section IV.2.3 above and
Section VI.2.4 below), but have varying arithmetic properties.
In each of these cases, it is easy to see that the curves given are forms of

each other—the curves Et ×Spec Q SpecQ[
√
t] and E1 ×Spec Q SpecQ[

√
t]

are visibly isomorphic—and less obvious but not hard to see that they are
not all isomorphic. (In fact the naive guess—that Et ∼= E1 if and only if
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t ∈ (Q∗)2, that is, t is the square of a nonzero rational number—is correct,
but it is a nontrivial exercise to prove this.)

The set of isomorphism classes of S-forms of projective space Pn, for all
n, is in a natural way a group, called the Brauer group of S (or, in case
S = SpecK is the spectrum of a field, the Brauer group ofK), with the true
projective space PnS the identity element. This group may be computed with
Galois cohomology; see Serre [1975]. Here is a construction of the Brauer
group related to number theory:
Let K be a field, and let A be an n-dimensional Azumaya algebra over

K—that is, A is an algebra which has dimension n as a vector space, has
no nontrivial 2-sided ideals, and has center exactly K. For example, the
algebra Md(K) consisting of all d× d matrices over K is a d2-dimensional
Azumaya algebra. It follows from the Wedderburn structure theorems that
if A is an n-dimensional Azumaya algebra over K then n is a square, say
n = d2, and K ⊗ A ∼= Md(K) ∼= K ⊗Md(K) (in this sense A is a form of
Md(K).)
Identifying Md(K) with the endomorphism algebra of a d-dimensional

vector space V over K, it is easy to see that the left ideals of Md(K) each
have the form

{a ∈Md(K) | Im(a) ⊂W}

for some subspace W ⊂ V. The vector space dimension of the left ideal is
then dim(V ) dim(W ). In particular, the left ideals of dimension equal to
d(d − 1) correspond to the hyperplanes in V, that is, the points of P(V ).
The subscheme of the Grassmannian of d(d− 1)-planes in Md(K) that are
closed under multiplication by Md(K)— that is, are ideals— is isomorphic
to Pd(K) in this way.
At the other extreme, there are (in general) Azumaya algebras A that are

division algebras over K—that is, algebras with no left ideals at all. But
we can still form the scheme of left ideals of A. Of course we must specify
it by equations, not as a point set! Let G be the Grassmannian of d(d− 1)-
dimensional subspaces of the vector space A. If S ⊂ AG is the universal
bundle then the subscheme of G that we want is the largest subscheme X
such that the restriction to X of the composite map of vector bundles

S ⊗AG ⊂ AG ⊗AG
multiplication� A � A/S

on G is zero (this is locally a subscheme defined by the d(d−1)d2×d entries
in a matrix representing the composite map.) Extending the ground field,
we find thatXK is the Grassmannian of d(d−1) dimensional ideals ofK⊗A,
that is, projective space! Conversely, it can be shown that every form of
projective space over K occurs in this way and that the correspondence
between isomorphism classes of forms and Azumaya algebras is one-to-one.
For all this see Serre [1975] and Cassels and Fröhlich [1967].
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Exercise IV-83. Let A be the quaternion algebra over R; that is, the
algebra with basis 1, i, j, k and multiplication i2 = j2 = k2 = −1, ij =
−ji = k. Check that its center is R, and that it is a division algebra (and
thus an Azumaya algebra over R). Compute the equations of the scheme
of 2-dimensional left ideals of A in terms of Plücker coordinates on the
Grassmannian of lines in P(A) ∼= P3

R . Show directly that this is a form of
P1.

Here is still another way in which a form of P1 arises, on which the
reader can try his hand: Let K be an algebraically closed field, and let
B = P5

K be the projective space parametrizing conic curves in P2
K . Let

U ⊂ B be the open subset corresponding to nonsingular plane conics, and
let CU ⊂ P2

U = U ×SpecK P2
K be restriction to U of the universal conic

curve C ⊂ P2
B over B as described in Section III.2.8. Similarly, let L be

the function field of B (or equivalently of U), SpecL the generic point of
B, and CL ⊂ P2

L the fiber of the universal conic C over SpecL. We have:

Proposition IV-84. CU is a nontrivial form of P1
U over U and CL a

nontrivial form of P1
L over L.

The point is that, although every smooth conic plane curve in P2
K is

rational, there is no way of choosing a rational parametrization of each
smooth conic consistently over a Zariski open subset of U.

Proof. To establish our claims, it will be enough to show two things: that
CU is a form of P1 over U, and that CL �∼= P1

L. To see the first, fix a line
M ⊂ P2

K and let

V = CU \ (CU ∩ (U ×M)) ⊂ U × P2
K .

We claim that the pullback

CV = V ×U CU ⊂ U × P2
K × P2

K

is isomorphic to the product V ×M ∼= P1
V as V -schemes. The point is, the

family CV → V has naturally a section—the diagonal—and the presence
of a distinguished point on each fiber of CV → V allows us parametrize
that fiber by projecting from that point onto M. Explicitly, away from the
diagonal in CV we can define a map ϕ : CV → V ×M by

ϕ : (C, p ; q) 
−→ (C, p ; p, q ∩M .

Exercise IV-85. Show that

(a) ϕ is a morphism of schemes;

(b) ϕ extends to a morphism on all of CV (sending a point (C, p, p) on the
diagonal in CV to the point of intersection with M of the tangent line
at p to the fiber of CV over (C, p) ∈ V );

(c) ϕ : CV → V ×M is an isomorphism.
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For the second part, observe that if CL were isomorphic to P1
L, it would

have an L-rational point—that is, a pair of rational functions F (a, b, c, d, e)
and G(a, b, c, d, e) ∈ K(a, b, c, d, e) such that

1 + aF 2 + bG2 + cF + dG+ eFG = 0.

We can assume (after possibly a change of variables on our original P2
K)

that the denominators of F and G are not in the ideal (c, d, e); so that
restricting to the locus c = d = e = 0 we get four polynomials f(a, b),
g(a, b), h(a, b) and j(a, b) such that

1 + a ·
(
f(a, b)
h(a, b)

)2

+ b ·
(
g(a, b)
j(a, b)

)2

= 0;

or, in other words,

h(a, b)2j(a, b)2 + a · f(a, b)2j(a, b)2 + b · g(a, b)2h(a, b)2 = 0.

Now we simply ask what the degree of each term in this equation is, first
as a polynomial in a and then in b, and thus derive a contradiction.

Exercise IV-86. Let K be any field. Show that any form X of P1
K over

SpecK is isomorphic to a plane conic C ⊂ P2
K . Conclude in particular that

a form X of P1
K over SpecK is isomorphic to P1

K if any only if it has a
point with residue field K.

Exercise IV-87. Using the preceding exercise, show that a form X of P1
K

over a field K is isomorphic to P1
K if any only if it has a zero-dimensional

subscheme Γ ⊂ X of odd degree, that is, such that the coordinate ring of
Γ has odd dimension as a vector space over K.

Exercise IV-88. Show that there are no nontrivial forms of A1
K over

SpecK, that is, any form of A1
K over SpecK is isomorphic to A1

K .

Exercise IV-89. Show by example that the conclusions of the three pre-
ceding exercises are all false if we do not specify S = SpecK, that is, if we
consider forms X of P1

S and A1
S over a general scheme S. (To find coun-

terexamples, it is enough to take S = P1
K a projective line over a field and

consider the blow-up of the affine plane A2
K at the origin.)

Another generalization of the irrationality of the universal conic—this
time asserting that the universal rational normal curve of degree d is ratio-
nal if and only if d is odd—will be discussed in Exercise VI-38.
For another example of a form of projective space arising in a geometric

context, see Exercise IV-71 above.
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Local Constructions

V.1 Images

In this section we will be concerned with a basic notion: the image of a
morphism in the category of schemes. As we will see, there are two fun-
damental properties that we would like the notion of image to have, the
push-pull property and invariance under base change; but the two are in-
compatible. We will give accordingly two definitions, one straightforward
and one less so, each of which is useful in certain situations.

V.1.1 The Image of a Morphism of Schemes

Suppose ϕ : X → Y is a morphism of schemes. The set-theoretic image of
ϕ is defined in the obvious way: it is the subset of Y consisting of those
points y ∈ Y such that there is a point x ∈ X with ϕ(x) = y. The image
may or may not be a closed subset: for example, if X is the scheme defined
by the ideal (xy − 1) ⊂ K[x, y] in A2

K = SpecK[x, y], then the image of
the projection of X to the affine line A1

K = SpecK[x] is the complement
of the origin, an open set. In a certain sense this is because we “forgot”
some of the points of the source scheme: if we extend this morphism to
a morphism from the closure of X in A1

K ×K P1
K , the image becomes the

whole projective line.
These two examples turn out to be typical. The situation is summed up

in the following theorem. To state it, recall that a subset V of a topological
space is constructible if it is a finite union of locally closed subsets Vi.
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Theorem V-1. If the morphism of Noetherian schemes ϕ : X → Y is
of finite type, the set-theoretic image of ϕ is constructible in Y. If the
morphism ϕ is projective, the set-theoretic image of ϕ is closed.

The first of these statements is due to Chevalley. Note the necessity of
the hypothesis that ϕ is of finite type: the morphism

SpecK[x1, . . . , xn](x1,...,xn) −→ SpecK[x1, . . . , xn],

coming from the inclusion of the polynomial ring in its localization, does
not have constructible image for any n. The second statement, which is
quite old, is generally called the Main Theorem of Elimination Theory. The
definition of properness, which is a strengthening of the conclusion of the
theorem, was essentially made to express this property (see Section III.1).
The proof of Theorem V-1 is exactly the same as in the classical case of
varieties; see for example Harris [1995] or Hartshorne [1977]. We will not
repeat it here.
More novel is the fact that the closure of the image has a natural scheme

structure, and this is the fact that we shall explore in this section.
Suppose now we wish to define the image of a morphism ϕ : X → Y

as a scheme. What we would like ideally— though, as we shall see, this
is impossible— is to take ϕ(X) to be the smallest subscheme of Y whose
inverse image is all of X. In other words, we would characterize ϕ(X) by
the push-pull property: for every subscheme Z ⊂ Y,

Z ⊃ ϕ(X) ⇐⇒ ϕ−1(Z) = X.

As it happens, though, no such subscheme of Y need exist, as shown by
the example of the morphism

ϕ : X = A2
K −→ Y = A2

K

defined by the ring homomorphism ϕ# : K[x, y] → K[s, t] taking x to s
and y to st.
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For any λ ∈ K, let Yλ be the complement in Y of the point (0, λ). For
λ �= 0, the inverse image of Yλ is all of X . Thus, if there were a subscheme
ϕ(X) ⊂ Y satisfying the push-pull property above with Z = Y , the support
of ϕ(X) would be contained in the set I =

⋂
λ�=0 Yλ, which is the union of

the point (0, 0) and the complement of the x-axis. On the other hand, from
ϕ−1ϕ(X) = X it would follow that the support of ϕ(X) contained I, and
hence that suppϕ(X) = I. But I is not a locally closed subset of Y , and
so is not the support of any subscheme of Y .
We are, however, close to what we want: there does exist a smallest closed

subscheme of Y whose inverse image is all of X, and this subscheme does
satisfy the push-pull property with respect to closed subschemes Z ⊂ Y.

Definition V-2. If ϕ : X → Y is a morphism of finite type, then the
scheme-theoretic image, written ϕ̄(X), is the closed subscheme of Y whose
sheaf of ideals is the sheaf of regular functions on open subsets of Y that
pull back to 0 under ϕ#, that is,

ϕ̄(X) = V
(
Ker(ϕ# : OY → ϕ∗OX)

) ⊂ Y.

We say that ϕ is dominant if ϕ̄(X) = Y, or equivalently if the pullback
map ϕ# is a monomorphism.

This condition that a morphism be dominant is not just a condition
on the underlying map of topological spaces: for example, the inclusion
ϕ : SpecK ↪→ SpecK[ε]/(ε2) is a surjection on underlying sets, but the
image is a proper closed subscheme, the pullback map ϕ# is not injective,
and the map is not dominant.

Proposition V-3. If ϕ : X → Y is a morphism of schemes, the closure
of the set-theoretic image is ϕ̄(x)red.

Proof. We may reduce at once to the affine case, and prove that if ϕ# :
B → A is a ring homomorphism then the intersection J of all the primes Q
of B that may be written in the form Q = (ϕ#)−1(P ) for some prime P of
A is the radical of Ker(ϕ#) (see Section I.2.1). Let I ⊂ A be the nilradical
of A. We have

J =
⋂

P⊂A prime

(ϕ#)−1(P ) = (ϕ#)−1(I).

Thus if f ∈ J then ϕ#(f) ∈ I is nilpotent, and f ∈ rad(Kerϕ#). The
opposite inequality is immediate.

It is sometimes convenient to work in an apparently more general case:
If ϕ : X → Y is any morphism and X ′ ⊂ X a closed subscheme, then we
define the scheme-theoretic image ϕ̄(X ′) of X ′ to be the subscheme defined
by the sheaf of ideals I with

I(U) = {f ∈ OY (U) | ϕ#(f) ∈ IX′(ϕ−1(U)}.
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This “generalization” actually describes a special case, since ϕ̄(X ′) is the
scheme-theoretic image of the composite morphism X ′ → X → Y.

If the two schemes X and Y are affine and the map ϕ is dominant, then
the ideal describing the image of a subscheme X ′ ⊂ X is obtained in a
particularly simple way: we may think of A(Y ) as a subring of A(X), and
ϕ̄(X ′) is the subscheme of Y defined by IX′ ∩ A(Y ). We shall be mostly
concerned with this case, since it already contains all the new phenomena.
As an example consider the linear projection on the first coordinate

ϕ : X = A2
K = SpecK[x, y] −→ Y = A1

K = SpecK[x]

LetX ′ andX ′′ be the (abstractly isomorphic) zero-dimensional subschemes
given by the ideals I ′ = (x, y2) and I ′′ = (x2, y). The image of X ′ is the
reduced scheme defined by (x, y2) ∩K[x] = (x), while the image of X ′′ is
given by (x2, y)∩K[x] = (x2). More generally, the image of the “fat point”
V (x2, xy, y2) ⊂ A2

K is the double point V (x2) ⊂ A1
K ; and the image of the

double point V (x2, xy, y2, αx+βy) ⊂ A2
K is the double point V (x2) ⊂ A1

K

for β �= 0, but the reduced point V (x) for [α, β] = [1, 0].We see from this
example that the scheme structure of the image depends on the relation of
the subscheme to the fibers of the morphism ϕ.

Exercise V-4. Consider now a “family” of such projections of double
points: take B = SpecK[t] = A1

K and consider the morphism

ϕ : X = A2
B = SpecK[x, y, t] −→ Y = A1

B = SpecK[x, t].

Let X ′ ⊂ X be the double line

X ′ = V (x2, xy, y2, x+ty) ⊂ A2
B

as described in Section II.3.5. Show that the scheme-theoretic image ϕ̄(X)
of X ′ is the double line V (x2) ⊂ Y, even though the fiber of X ′ over the
origin (t) ∈ B has image the reduced point V (x) in the fiber of Y over
(t). This is in fact the source of some interesting complications, as we will
explain in the following section.
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Exercise V-5. Show that if ϕ : X → Y is a morphism and X ′ ⊂ X is a
reduced subscheme, then ϕ̄(X ′) is reduced. (Hint: Reduce to the statement
that the preimage of a radical ideal under a ring homomomorphism is again
radical.)

V.1.2 Universal Formulas

Is there a “formula” for the closure of the image of a map, and if so, what
is it? This question, in a somewhat different language, occupied a large
number of mathematicians in the past, and the theory is correspondingly
rich. In many special cases beautiful and useful formulas were found for
the set-theoretic image; the equations they give are usually referred to as
resultants, a notion we will discuss below. The scheme-theoretic image is
significantly more complicated: with a reasonable interpretation of the basic
question there can be no formula for the scheme theoretic image! We shall
next explain this fact and the opportunities to which it gives rise. We shall
keep the discussion informal, but it can be formalized using the notion of
family of schemes given in Section II.3.4.
Consider a consequence that a universal formula would have: it would

be preserved by base change, or, put more informally, it would specialize
on substitution of variables. Some examples will make this clear.

Example V-6. (See figure on the next page.) To begin with, let K be
an algebraically closed field, set B = SpecK[t] = A1

K , and consider the
projection map

ϕ : A2
B = SpecK[t, x, y]→ A1

B = SpecK[t, x]

defined by the inclusion K[t, x] ⊂ K[t, x, y]. We regard this map infor-
mally as a (trivial) family of projection maps A2

K = SpecK[x, y]→ A1
K =

SpecK[x] parametrized by t ∈ K. Consider first the closed subscheme
X ⊂ A2

B = A3
K given as the union of the two disjoint lines V (y, x) and

V (y−1, x+ t); that is,

X = V (y2−y, yx+yt, yx−x, x2+ tx).

We will think of X as a family of pairs of points in the (x, y)-plane, param-
etrized by t, and each with its projection onto the x-axis: for each scalar
a ∈ K we let Xa ⊂ A2

K be the fiber of X over the point (t − a) ∈ B,
Ya ∼= A1

K the fiber of A1
B over (t − a) and ϕa : Xa → Ya the restriction of

ϕ to Xa.
For each scalar value a �= 0 ∈ K the set-theoretic image ϕ(Xa) is the

union of the two points x = 0 and x = −a; for a = 0 it is simply the origin
x = 0. The scheme-theoretic image ϕ̄(Xa) is the subscheme of SpecK[x]
defined by the ideal Ia := K[x]∩(y2−y, yx+ay, yx−x, x2+ax). Since

K[x, y]/(y2−y, yx+ay, yx−x, x2+ax) = K[x, y]/(y2−y, x+ay),
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Xa
X0

ϕ̄(Xa) = ϕ̄(X)a
ϕ̄(X0) �= ϕ̄(X)0

we see that

Ia = Ker
(
K[x]→ K[x, y]/(y2 − y, x+ ay)

)
=

{
(x2 + ax) if a �= 0,
(x) if a = 0.

Thus the scheme-theoretic image ϕ̄(Xa) is the union of two reduced points
for a �= 0 and a single reduced point for a = 0.
The important thing about this example is that the scheme-theoretic

images ϕ̄(Xa) do not fit into any family of schemes! That is, there is no
polynomial f(t, x) “giving a formula for the scheme-theoretic image” in the
sense that for each a ∈ K the scheme-theoretic image ϕ̄(Xa) is defined by
the ideal f(a, x) = 0. Indeed, for a �= 0 the scheme ϕ̄(Xa) is defined by
the ideal (x2 + ax), so we would have to have f(t, x) = g(t, x)(x2 + tx) for
some polynomial g(t, x). Since g(a, x) �= 0 for all x when a �= 0, we must
have g(t, x) = g(t), a polynomial of one variable vanishing at most when
t = 0. If now g(0) = 0 then f(0, a) would describe the whole line, while if
g(0) �= 0 then f(0, a) would describe a double point, and neither of these
options is the scheme-theoretic image ϕ̄(Xa).

Perhaps the best we can do in this example is to take the scheme-theoretic
image of the whole family, ϕ̄(X) ⊂ SpecK[x, t]. This image is defined by
the ideal K[t, x]∩(y2−y, yx+yt, yx−x, x2+ tx). To compute this inter-
section, one shows that the localization map

K[t, x, y]/(y2 − y, yx+ yt, yx− x, x2 + tx)
→ K[t, t−1, x, y]/(y2 − y, yx+ yt, yx− x, x2 + tx)

= K[t, t−1, x]/(x2 + tx)

is a monomorphism, and it follows at once that the intersection is (x2+tx).
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We thus see that the scheme-theoretic image ϕ̄(X0) of the fiber of X
over the origin (t) ∈ B is properly contained in the fiber ϕ̄(X)0 of the
scheme-theoretic image ϕ̄(X) over the origin. In particular, the fiber of any
closed subscheme of A1

B containing ϕ̄(Xa) for a �= 0 will properly contain
ϕ̄(X0), so that the scheme-theoretic images ϕ̄(Xa) cannot form a family in
any sense. The equation x2 + tx of the scheme-theoretic image ϕ̄(X) gives
the “correct” defining ideal for ϕ̄(Xa) when we specialize t to any a �= 0,
while for a = 0 it gives an ideal defining a scheme a little larger than ϕ̄(X0).
This choice of “approximation” for a defining equation of scheme-theoretic
images is a resultant, in a sense that we shall describe.

Example V-7. (See figure below.) To see an example of the same phe-
nomenon involving nonreduced schemes, let K, B = SpecK[t] = A1

K , and

ϕ : A2
B = SpecK[t, x, y]→ A1

B = SpecK[t, x]

be as before, and consider the closed subscheme X ⊂ A2
B = A3

K given by

X = V (x2, xy, y2)∩V (ty+x) = V (ty+x, y2).

Viewed as a subscheme of A2
B = A3

K , it is the intersection of the first
order infinitesimal neighborhood of the t-axis with a helical surface winding
around the axis; it is a double line supported on the t-axis. As before, we
will think of X as a family of double points in the plane, each with its
projection onto the y-axis: for each scalar a ∈ K we let Xa ⊂ A2

K be the
fiber of X over the point (t− a) ∈ B, Ya ∼= A1

K the fiber of A1
B over (t− a)

and ϕa : Xa → Ya the restriction of ϕ to Xa.

ϕ̄(Xa) = ϕ̄(X)a
ϕ̄(X0) �= ϕ̄(X)0

X0

Xa
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For each scalar value t = a ∈ K the set-theoretic image ϕ(Xa) is the
point x = 0. The scheme-theoretic image ϕ̄(Xa) is defined by Ia := K[x]∩
(ay + x, y2). Since

K[x, y]/(ay + x, y2) =
{
K[x]/(x2) if a �= 0,
K[x, y]/(x, y2) if a = 0,

we see that

Ia = Ker
(
K[x]→ K[x, y]/(ay+x, y2)

)
=

{
(x2) if a �= 0,
(x) if a = 0.

Thus the scheme-theoretic image ϕ̄(Xa) is a double point for a �= 0 and a
simple point for a = 0.

Just as in the previous example, we see that the scheme-theoretic images
ϕ̄(Xa) cannot be the fibers of any closed subscheme of A1

B overB. In partic-
ular, the scheme-theoretic image of the whole family, ϕ̄(X) ⊂ SpecK[x, t]
is defined by the idealK[t, x]∩(ty+x, y2), which is readily seen to be simply
(x2) (as before, this follows from the fact that the localization map

K[t, x, y]/(ty+x, y2)→ K[t, t−1, x, y]/(ty+x, y2) = K[t, t−1, x]/(x2)

is a monomorphism). We thus see that the scheme-theoretic image ϕ̄(X0)
of the fiber of X over the origin (t) ∈ B is properly contained in the
fiber ϕ̄(X)0 of the scheme-theoretic image ϕ̄(X) over the origin, so that
the fiber of any closed subscheme of A1

B containing ϕ̄(Xa) for a �= 0 will
properly contain ϕ̄(X0). Once again it follows that the scheme-theoretic
images ϕ̄(Xa) cannot form a family of schemes.
Note also that as before the equation x2 of the scheme-theoretic image

ϕ̄(X) gives the “correct” defining ideal for ϕ̄(Xa) for every a �= 0, while for
a = 0 it gives an ideal defining a scheme a little larger than ϕ̄(X0); again,
the equation x2 of the fiber ϕ̄(X)a is an example of a resultant.
We may generalize the phenomena that we have just seen by saying that

for any family of morphisms

X
ϕ � Y

B
�

�

with parameter space B and closed point b ∈ B, we have an inclusion

ϕ̄(Xb) ⊂ ϕ̄(X)b,

but this inclusion need not be an equality: in other words, the fiber of
the image may properly contain the image of the fiber. This is sometimes
expressed by saying that the scheme-theoretic image does not necessarily
commute with base change. (The base change in question is pullback via
the inclusion {b} ↪→ B, though the same issues arise for any morphism
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B′ → B.) Note by contrast that the set-theoretic image does commute
with base change; this is just set-theory. A still more general form of this
statement is expressed by the following result:

Proposition V-8. If

X ′ = X×Y Y ′ ψ′
� X

Y ′

ϕ′
�

ψ
� Y

ϕ
�

is a pull-back diagram of morphisms of schemes, then ϕ̄′(X ′) ⊂ ψ−1ϕ̄(X).
If the morphism ϕ is finite, these two schemes have the same underlying
set, the closure ϕ′(X ′) of the set theoretic image. In particular, when ϕ is
finite the set-theoretic image is closed. If ψ is flat, then ϕ̄′(X ′) = ψ−1ϕ̄(X).

Note that, in the previous case, Y ′ = Yb was the fiber of a morphism
Y → B, but we need not assume that in general.

Proof. We reduce at once to the affine case, and consider this diagram of
coordinate rings:

A′ = A⊗BB′ �ψ′#
A

B′

ϕ′# �

�
ψ#

B

ϕ#
�

In this setting the first assertion becomes the inequality

Ker(ϕ′#) ⊃ ψ#(Ker(ϕ#))B′,

which is immediate from the commutativity of the diagram.
The second statement of the proposition becomes in this affine case the

assertion that, if A is a finite B-module, then the radicals of the ide-
als Ker(ϕ′#) and ψ#(Ker(ϕ#))B′ are equal. Given the inequality above,
and the fact that the radical of an ideal is the intersection of the primes
containing it, we must show that if P ′ is a prime ideal of B′ containing
ψ#(Ker(ϕ#))B′ then P ′ ⊃ Ker(ϕ′#).
The preimage P = (ψ#)−1P ′ of P ′ in B contains Ker(ϕ#), so we have

A⊗BBP �= 0. Since A is a finitely generatedB-module, Nakayama’s Lemma
Eisenbud [1995, Section 4.1] shows that A ⊗B BP /PP �= 0. Since the unit
element of B maps to the unit element of A and BP /PP is a field, we see
that the induced map BP /PP → A ⊗B BP /PP is a monomorphism. Now
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consider the diagram

(A⊗B B′)⊗B′
P ′/P ′

P ′ = A⊗B BP /PP ⊗BP /PP
B′
P ′/P ′

P ′ � A⊗B BP /PP

B′
P ′/P ′

P ′

�

� BP /PP

�

obtained by localizing and factoring out P ′ and P. Since BP /PP is a field
and the right-hand vertical arrow is a monomorphism, the left-hand vertical
arrow is also a monomorphism (every module is flat over a field!). It follows
that the kernel of ϕ′# is contained in P ′ as required.
The closedness of the set-theoretic image of ϕ when ϕ is finite follows

if we take Y ′ to be a point of Y in the closure of the set-theoretic image
(and thus in the scheme- theoretic image) and pull back via the inclusion
morphism of this point.
For the last statement, suppose that ψ is flat, that is, B′ is a flat B-

module. Tensoring B′ with the exact sequence

0 −→ Ker(ϕ#) −→ B −→ Im(ϕ#) −→ 0

and the inclusion Im(ϕ#) ↪→ A gives back an exact sequence and an inclu-
sion; and we see in particular that (Ker(ϕ#))B′, which is the image of

B′ ⊗B Ker(ϕ)→ B′ ⊗B B = B′

is the kernel of ϕ′, as required.

The second (“equality”) statement of the proposition fails in general, for
example in the fiber product diagram of affine schemes corresponding to
the diagram of rings

0 � K(t)

K

�

�0← t
K[t]

�

However, the equality statement does hold whenever the map ϕ is projec-
tive— the proof, which would take us too far afield, may be reduced again
to Nakayama’s Lemma using the deep fact that, when ϕ is projective,
ϕ∗(OX) is a finite OY -module; see Hartshorne [1977], Corollary II.5.20.
Despite the nonexistence of a universal formula for the scheme-theoretic

image, there are, as we have mentioned, many formulas giving equations
that define it set-theoretically, and each of them gives a scheme containing
the scheme-theoretic image, as one sees from the previous proposition. One
way to produce such a formula is to choose a universal model, a family of
morphisms parametrized by a scheme B, say

X0
ϕ0−→ Y0

π−→ B
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such that the morphisms we are interested in occur as pullbacks, say

X = (πϕ0)−1(b)
ϕ−→ Y = π−1(b),

with morphism ϕ the restriction of ϕ0. We then take the actual scheme-
theoretic image of ϕ0 and restrict it to Y. We call the defining equations
of the scheme-theoretic image of ϕ0 resultants. By Proposition V-8, these
equations define a scheme in Y containing the scheme-theoretic image, and
in some cases, such as when ϕ0 is finite, they define a scheme that has the
closure of the set-theoretic image as underlying set.
It turns out that resultants are often conveniently described as determi-

nants. Before coming to this, we explain a general context in which these
determinants arise.

V.1.3 Fitting Ideals and Fitting Images

There is, at least in a restricted context, an alternative notion of the image
of a morphism ϕ : X → Y of schemes, which we will call the Fitting image
and denote by ϕFitt(X). This has the virtue that it does commute with
base change, but the defect that (since, as we will see below, the Fitting
image ϕFitt(X) may properly contain the scheme-theoretic image ϕ̄(X)) it
does not have the push-pull property.

Fitting Ideals. To set this up, we need the sheaf-theoretic version of
Fitting’s lemma. Let X be a scheme, let F be a coherent sheaf on X, and
let

E1
Ψ−→ E0 −→ F −→ 0

be an exact sequence with E0
∼= OnX and E1

∼= OmX free sheaves. (Here
we allow m to be infinite.) For any integer l, we define the ideal of l × l
minors of Ψ to be the sheaf Il(Ψ) ⊂ OX of ideals generated by the l × l
minors of a matrix representative of Ψ. This is independent of the choice
of isomorphisms E0

∼= OnX and E1
∼= OmX , and can also be defined when

E1 and E0 are merely quasicoherent, since it can also be described as the
image of the natural map

l∧
E1 ⊗

l∧
E ∗

0 −→ OX

induced by Ψ. The key fact about the ideals Il(Ψ) is Fitting’s Lemma. See
Eisenbud [1995, page 497] for a proof.

Lemma V-9 (Fitting’s Lemma). If

E
Ψ−→ OnX −→ F −→ 0

and

E ′ Ψ′−→ On
′
X −→ F −→ 0
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are exact sequences, then for each k ∈ Z

In−k(ψ) = In′−k(ψ′).

In view of the lemma, we may make the following definition:

Definition V-10. The k-th Fitting ideal FittkF of the sheaf F is the
ideal given locally as In−k(Ψ) for any presentation of F as above. The
zero locus V (FittkF ) ⊂ X will be called the k-th Fitting scheme of F.

It is instructive to compare the geometry of the zeroth Fitting ideal with
the more naive notion of the support of a sheaf F. Briefly, for any coherent
sheaf F on a scheme X we define the annihilator annF ⊂ OX by taking
(annF )(U) ⊂ OX(U) to be the annihilator of F (U) as an OX(U)-module
for each open set U ⊂ X. We define the support of F, denoted supp(F ),
to be the zero locus V (annF ) ⊂ X of the annihilator as a subscheme of X.
(Note that “support” is used in two different senses: the support of a

scheme is its underlying set or topological space, while the support of a
sheaf is a scheme. In those cases where we wish to refer to the underlying
set of the support of a sheaf F —that is, supp(suppF )—we will call it
simply the “set-theoretic support”.)
For any coherent sheaf F on a scheme X we have

(Fitt0 F ) ·F = 0,

so that Fitt0 F ⊂ annF . In the other direction, if F admits a presentation

OnX −→ F −→ 0

then Fitt0 F ⊃ (annF )n. See for example Eisenbud [1995, Proposition
20.7] for both these inequalities. It follows from the first of these properties
that

V (Fitt0 F ) ⊃ suppF ,

that is, the zeroth Fitting scheme contains the support of F ; and from the
second that the underlying sets of the subschemes V (Fitt0 F ) and suppF
are equal, that is, ∣∣V (Fitt0 F )

∣∣ = |suppF | .
The difference lies in the scheme structure: the zeroth Fitting ideal may

be properly contained in the annihilator of F, and the zeroth Fitting
scheme correspondingly may properly contain the support of F.

For example, consider the scheme X = A1
K = SpecK[x], with sub-

schemes Y = V (x) and Z = V (x2). The sheaves

F = OZ and G = OY ⊕OY

each have length 2; but the support of F is Z, while the support of G is
the smaller scheme Y. By contrast, we see that the zeroth Fitting schemes
are equal:

V (Fitt0 F ) = V (Fitt0 G ) = Z.
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Exercise V-11. (a) If X is any scheme, Y ⊂ X a subscheme, the zeroth
Fitting ideal Fitt0 OY of the structure sheaf of Y is simply the ideal
sheaf IY of Y, and the 0th Fitting scheme correspondingly is Y itself.

(b) Show that the zeroth Fitting ideal of a direct sum is the product of the
zeroth Fitting ideals of the summands, that is, for any pair of coherent
sheaves F and G on X,

Fitt0(F ⊕ G ) = Fitt0 F · Fitt0 G .

Show by example that this is not true if F ⊕ G is replaced by an
arbitrary extension of F by G, that is, a sheaf H such that there
exists an exact sequence

0 −→ F −→ H −→ G −→ 0.

(c) Deduce from the first two parts of this exercise that if X is a regular
one-dimensional scheme (for example, X = A1

K or X = SpecZ) and
F is any sheaf whose set-theoretic support is a closed point p ∈ X,
then

Fitt0 F = mlp,

where l is the length of F.

Fitting Images. Suppose now that ϕ : X → Y is a finite morphism of
schemes. The direct image ϕ∗OX is then a coherent sheaf on Y, and by our
definition the scheme-theoretic image ϕ̄(X) is the support supp(ϕ∗(OX))
of this sheaf. Taking the zeroth Fitting scheme instead of the support gives
us the promised alternative definition of image that commutes with base
change:

Definition V-12. For any finite morphism ϕ : X → Y of schemes, the
Fitting image of ϕ is the zeroth Fitting scheme of the direct image ϕ∗(OX),
that is,

ϕFitt(X) = V (Fitt0 ϕ∗(OX)).

For any closed subscheme Z ⊂ X, we will likewise define the Fitting image
ϕFitt(Z) to be the Fitting image of ϕ restricted to Z, that is, the zeroth
Fitting scheme of the direct image ϕ∗(OZ)

Exercise V-13. Consider Examples V-6 and V-7. In each case, show that
the Fitting image of the fiber X0 of X over the origin is a double point,
not a reduced point, so that we have

ϕFitt(X0) = ϕFitt(X)0.

Exercise V-14. Consider the projection and inclusion morphisms

X = SpecK[ε]/ε2
ϕ−→ SpecK ι−→ SpecK[t].

Show that
ιFitt(ϕFitt(X)) � (ι ◦ ϕ)Fitt(X).
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V.2 Resultants

V.2.1 Definition of the Resultant

The oldest—and still one of the most important—applications of the ideas
we have introduced in the last two subsections is the resultant of two poly-
nomials in one variable. To define this, say we are given two polynomials

f(x) = a0x
m + · · ·+ am,

g(x) = b0x
n + · · ·+ bn,

with coefficients ai, bi in a field K. The goal was to describe the condition
on the coefficients ai, bi for the two polynomials to have a common factor;
that is, a common root in the algebraic closure of K. In applications it is
also natural to look at families of polynomials. That is, we may take the
coefficients ai, bi to be regular functions on a base scheme B, so that we
think of f and g as “families of polynomials in one variable parametrized
by B”, and we wish to describe the locus in B over which f and g have a
common factor. More precisely, we want to describe the image in B—in
whichever sense!—of the scheme V (f, g) ⊂ A1

B.

There are, roughly speaking, four ways to interpret this problem: we
could ask formulas, in terms of the ai’s and bi’s, for functions generating
the ideal of

(1) the reduced image of V (f, g)— that is, the reduced scheme associated
to the scheme-theoretic image;

(2) the scheme-theoretic image of V (f, g);

(3) the Fitting image of V (f, g); or

(4) the pullback of the image from a suitable universal family.

As shown by examples such as V-6 and V-7 above, no such formula can
exist for the images in the first two senses. We shall begin by describing
the classical approach, and ultimately show that (for the correct choice
of “universal family”) it coincides with the third and fourth options, and
commutes with base change.

To carry out the classical approach, we begin by choosing a universal
family. We will work not over a field but over an arbitrary ring S. Let A
be the polynomial ring

A = S[a0, . . . , am, b0 . . . , bn].

With f and g defined as above, we set

X := V (f, g) ⊂ A1
A

and let
ϕ : X ⊂ A1

A = SpecA×S A1
S −→ SpecA =: Y.
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Since X is defined by two polynomials, we might expect it to have codi-
mension 2 in A1

A. In this case, assuming that the map is “generically finite”
(that is, finite over some open set) its image would have codimension 1 in
SpecA. In the classical situation, where S is field, A has unique factoriza-
tion, so the closure of the image would be described by one equation, called
the resultant of f and g.
It turns out that the conclusion of this suggestive argument is correct.

We will see in due course that the scheme-theoretic image ϕ̄(X) of ϕ is
reduced, and coincides with the Fitting image; so that in the case of this
universal family there is no ambiguity about what is meant by the image
of X.
Perhaps the most direct way to write down this equation is the following.

Consider the ring Ã ⊂ A[a−1
0 , b−1

0 ] defined as

Ã = A
[a1

a0
, . . . ,

am
a0

,
b1

b0
, . . . ,

bn
b0

]
.

Let
B = Ã[α1, . . . , αm, β1, . . . , βn]/I,

where I is the ideal generated by the m+ n elements

(−1)iσi(α)− ai
a0

and (−1)iσi(β)− bi
b0
,

σi being the i-th elementary symmetric function. We may describe B intu-
itively as the ring obtained from A by adjoining the roots of the polynomials
f and g. Note that Ã ⊂ B because the elementary symmetric functions are
algebraically independent.
The expression

R =
∏
i,j

(αi − βj)

is a symmetric function in the αi and separately in the βj . Since (−1)iai/a0

is the i-th elementary symmetric function in the αi, and similarly for
(−1)jbj/b0 and the βj , the function R can be written as a polynomial
in the ratios ai/a0 and bj/b0, and thus R is an element of Ã. Each αi
occurs n times in R and once in an elementary symmetric function, and
similarly for the β’s, so R will be bihomogeneous of degrees n,m in the
ai/a0 and bj/b0 respectively. Thus

Rm,n(f, g) := an0 b
m
0 R = an0 b

m
0

∏
i,j

(αi − βj),

is in A; it is a bihomogeneous polynomial, of degree n in the ai and of
degree m in the bj, called the resultant of f and g.
In general, if f0 and g0 are polynomial of degrees m and n over an S-

algebra S0, we write Rm,n(f0, g0) ∈ S0 for the result of substituting the
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coefficients of f0 and g0 into Rm,n(f, g)— that is, the image of Rm,n(f, g)
under the homomomorphism

A = S[a0, . . . , am, b0, . . . , bn]→ S0

sending the ai and bj to the coefficients of f and g. We call Rm,n(f0, g0)
the resultant of f0 and g0. When we view S0 as an algebra over different
rings S, the resultant does not depend on S; in particular, we would have
obtained the same result for any S0 by taking S = Z. Thus, for each
m and n, we can speak of “the resultant” as an element Rm,n of the ring
Z[a0, . . . , am, b0, . . . , bn], and “the resultant of two polynomials” f, g ∈ S[x]
as the image of Rm,n under the corresponding homomomorphism

Z[a0, . . . , am, b0, . . . , bn]→ S.

If the leading coefficients of f0 and g0 do not vanish—that is, if these
polynomials really have the stated degrees— then Rm,n(f0, g0) = 0 if and
only if f0 and g0 have a common factor, and the classical goal is fulfilled.
We shall see that this even works if at most one of the leading coefficients
vanish; but it turns out that Rm,n(f, g) is contained in the ideal (a0, b0),
and thus vanishes identically on pairs of polynomials where both these
coefficients are 0. In fact, the map ϕ is not finite in this case, since over the
origin in Am+n+2

S the fiber is the affine line, and the set-theoretic image of
X is not closed.

V.2.2 Sylvester’s Determinant

We will next relate the zero locus of the resultant of two polynomials to
the Fitting image of their common zero locus. We start by computing the
equation of the Fitting image ϕFitt(X) where defined. To do this, let S be
any ring and f, g ∈ S[x] two polynomials, of degrees m and n respectively.
In order to define the Fitting image of X = V (f, g) ⊂ A1

S under the
projection map π : A1

S → SpecS, we must assume that this map is finite,
or equivalently that the ideal (f, g) ⊂ S[x] contains a monic polynomial;
see Eisenbud [1995, Proposition 4.1]. For simplicity, we assume that f itself
is monic.
To compute the ideal Fitt0 π∗(OX) defining the Fitting image of X, we

first realize π∗(OX) as the S-module S[x]/(f, g). This module is the cokernel
of the map

S[x]⊕ S[x]
(f,g)−→ S[x]

and the source and target may both be regarded as (infinitely generated)
free S-modules. But in order to compute the Fitting ideal we need a finite
presentation. Since we have assumed that f is monic of degree m, the S-
submodule

S[x]<m = S ⊕ Sx⊕ Sx2 ⊕ · · · ⊕ Sxm−1 ⊂ S[x]
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maps onto S[x]/(f, g); and since S[x]<m is isomorphic as S-module to the
S-algebra S[x]/(f), we can also realize the module S[x]/(f, g) as the cok-
ernel of the map induced by multiplication by g:

G : Sm ∼= S[x]<m ∼= S[x]/(f)
×g−→ S[x]/(f) ∼= S[x]<m ∼= Sm.

Thus the Fitting ideal Fitt0 π∗(OX) is generated by the determinant of an
m×m matrix representative of the map G : Sm → Sm.
Now, it is not hard to write down such a matrix representative of G

explicitly, and thus to give an explicit formula for the Fitting image. But
if we use the freedom we have to compute the Fitting ideal from any free
presentation, we can get a picture that preserves more of the symmetry
between f and g.
To carry this out, consider the free module

S[x]<m+n = S ⊕ Sx⊕ · · · ⊕ Sxm+n−1 ∼= Sm+n.

It clearly maps onto S[x]/(f, g), and the kernel of this map is the set of
polynomials h ∈ S[x] of degree at mostm+n−1 that lie in the ideal (f, g) ⊂
S[x]. We claim that any such h ∈ S[x]<m+n ∩ (f, g) can be expressed as a
linear combination

h = a · f + b · g
for some polynomials a of degree at most n − 1 and b of degree at most
m− 1. To see this, note to start with that we must have

h = a′ · f + b′ · g
for some a′, b′ ∈ S[x]. Now, since f is monic of degree m, we can divide b′

by f and write

b′ = qf + b

where b is a polynomial of degree at most m− 1. Adding the expression

0 = (qg) · f − (qf) · g
to the expression above, we get another expression for h:

h = (a′ + qg) · f + b · g.
Set a = a′ + qg. Since the degrees of h and bg are both at most m+ n− 1,
the degree of af must be at most m+n−1 as well; and since f is monic of
degree m it follows that a must have degree at most n− 1, as we claimed.
It follows that the module S[x]/(f, g) is the cokernel of the map

S[x]<n ⊕ S[x]<m −→ S[x]<m+n

(a, b) 
−→ af + bg.
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It is easy to write down a matrix representative of this map. With respect
to the obvious bases for source and target it is the Sylvester matrix

Syl(m,n)(f, g) =




a0 a1 . . . . . . am−1 am 0 . . . 0
0 a0 a1 . . . . . . am−1 am . . . 0
...

. . .
. . .

. . .
. . .

. . .
0 . . . 0 a0 a1 . . . . . . am−1 am
b0 b1 . . . bn−1 bn 0 . . . . . . 0
0 b0 b1 . . . bn−1 bn . . . . . . 0
...

. . . . . . . . . . . . . . .
...

. . . . . . . . . . . . . . .
0 . . . 0 b0 b1 . . . bn−1 bn




,

where there are n rows of a’s and m rows of b’s.
The next result shows that the zero locus of the resultant does in fact

coincide with the Fitting image for the universal family of pairs of polyno-
mials above.

Theorem V-15. Let

A = Z[a0, . . . , am, b0, . . . , bn],

and let
f = a0x

m + · · ·+ am

and
g = b0x

n + · · ·+ bn ∈ A[x]

be the generic polynomials in one variable of degrees m and n. Let ϕ :
A1
A → SpecA be the projection map. The scheme-theoretic image of X =

V (f, g) ⊂ A1
A under ϕ has defining ideal generated by Rm,n(f, g), which is

equal to the Sylvester determinant det(Sylm,n(f, g)).

Proof. To simplify notation, set R′ = det(Sylm,n(f, g)) ∈ A, and set R =
Rm,n(f, g). In algebraic language, we must show that R is equal to R′ and
generates the ideal A ∩ (f, g)A[x].
First, we show that R′ ∈ (f, g)A[x]. If we do column operations on

Sylm,n(f, g), adding xm+n−t times the t-th column to the last for t =
1, . . . ,m + n − 1 then since the number of columns is m + n, we get a
new matrix with the same determinant R′. But the last column of the new
matrix is 



xn−1f
...
f

xm−1g
...
g



,
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so the determinant is in (f, g)A[x] as required.
Next suppose that P ∈ A lies in (f, g)A[x]; we shall show that P is

divisible by R in A. Note that f and g are bihomogeneous: they are homo-
geneous separately in the ai and the bj . It follows that the bihomogeneous
components of any polynomial in (f, g) are again in (f, g), so we may as-
sume that P is bihomogeneous, say of bidegree (d, e). (Note that R′ is itself
bihomogeneous of bidegree (n,m).)
To analyze the situation we embed A in a larger polynomial ring. Let

B0 = Z[α1, . . . , αm, β1, . . . , βn] and let B = B0[a0, b0]. We map A to B by
sending the ai to the coefficients of the polynomial

f ′ = a0

∏m
j=1(x − αj),

and sending the bi to the coefficients of g′ = b0

∏n
j=1(x − βj). The co-

efficients of f ′ are ±a0σi(α), where σi is the i-th elementary symmetric
function, and similarly for g′. Since a0, b0 and the elementary symmetric
functions of the αi and βj are algebraically independent, the same is true
for

a0, a0σ1(α), . . . , a0σm(α), b0, b0σ1(β), . . . , b0σm(β),

so the map A → B is indeed an embedding. Recall that R was defined as
the element an0 b

m
0

∏
i,j(αi−βj) ∈ B, which happens to lie in the subring A.

We now return to the polynomial P ∈ A ∩ (f, g)A[x]. Since P is biho-
mogeneous in the ai = ±a0σi(α) and the bj = ±a0σj(β) of bidegree (d, e)
we may write P = ad0b

e
0h for some h ∈ B0. Since the elementary symmetric

function σi(α) is a linear polynomial in each αi, and similarly for the βj ,
we see that h has degree ≤ d in each αi and ≤ e in each βj .
For given indices i, j, let L be the quotient field of the domain B/(αi−βj).

Let P̄ be the image of P in L. Since f and g have a common root in L, the
constant polynomial P̄ ∈ (f, g)L[x] has this root too, so P̄ = 0; thus P is
divisible by αi−βj in B, and it follows that h is divisible by αi−βj in B0.
Thus h is divisible by

∏
i,j(αi − βj). In particular, we see that d ≥ m and

e ≥ n, and thus P = ad0b
e
0h is divisible by R in B; we write P = RQ in B.

If h is any polynomial function of the α’s and β’s that is separately
symmetric in the α’s and in the β’s, of degree ≤ u in each αi and degree
≤ v in each βj , then because the elementary symmetric functions generate
the ring of all symmetric functions, h is actually a polynomial function in
the coefficients ai/a0 and bj/b0, of degree ≤ u in the first variables and
degree ≤ v in the second. The polynomial ad0b

e
0h is thus in A for any d, e

larger than the degree of h in α and the degree of h in β, respectively.
Because of the form of P and R, we may write Q = ad−m0 be−n0 q for some

polynomial q ∈ B0 of degree ≤ d −m in each αi and ≤ e− n in each βj .
Further, q is symmetric in the αi and in the βj separately, so Q may be
written as a polynomial in the σi(α) and σj(β) of degree ≤ d − m and
≤ e − n in the two sets of variables. By the remark above, Q ∈ A, as
required.
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If we take P = R′, then we see that R divides R′ in A; but since both
have the same degree, they are equal up to a sign. (Evaluating both sides
at the pair of polynomials f(x) = xm and g(x) = xn shows that they are in
fact equal.) In particular, R is in A∩ (f, g)A[x], so by what we have shown
R generates this ideal, and we are done.

We cannot apply Proposition V-8 directly to the situation of Theo-
rem V-15 because, as we have already noted, the map V (f, g)→ SpecA is
not finite. However, if we first restrict to an open subset of A over which it
is finite, then all is well:

Corollary V-16. Let B = Z[a0, . . . , am, b0, . . . , bn][a−1
0 ], and let

f = a0x
m + · · ·+ am and g = b0x

n + · · ·+ bn ∈ B[x]

be the generic polynomials in one variable of degrees m and n such that f
has a unit leading coefficient. The projection map ϕ : V (f, g) → SpecB is
finite. The scheme-theoretic image of V (f, g) ⊂ A1

B under ϕ has defining
ideal generated by Rm,n(f, g). Thus if f0, g0 are any two polynomials of
degrees m,n over an algebraically closed field L, one of which has unit
leading coefficient, then f0 and g0 have a common root in L if and only if
Rm,n(f0, g0) = 0.

Proof. With A as in Theorem V-15, the ring B is a flat A-algebra, so
by Proposition V-8 the first statement of the corollary follows from the
corresponding statement in Theorem V-15. To see the finiteness, note that
B[x]/(f) is already finite over B, since it is generated as a module by 1,
x, . . . , xm−1. Thus finiteness holds for the factor ring B[x]/(f, g) whose
spectrum is V (f, g).
Because V (f, g) is finite over SpecB we may apply the set-theoretic part

of Proposition V-8, and the last statement of the corollary follows in the
situation where f has unit leading coefficient; the case where g has unit
leading coefficient would follow by a similar argument.

Corollary V-17. Let S be a ring and suppose that f, g ∈ S[x] are polyno-
mials in one variable over S. If f(x) = a0

∏m
i=1(x− αi) factors completely

over S, then

Rm,n(f, g) = an0

m∏
i=1

g(αi).

Proof. The resultant is the specialization (from the ring over which the
generic polynomials f, g are defined and factor) of the expression

an0 b
m
0

∏
i,j

(αi − βj) = an0
∏
i

g(αi).
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Exercise V-18. The fact that the resultant is 0 if both f and g have van-
ishing leading coefficient may seem at first an unfortunate anomaly, but this
aspect disappears if we “compactify” the affine line as the projective line
over A (strictly speaking this is the relative compactification over SpecA).
If we watch what happens to the roots of the polynomial f as the leading
coefficient of f goes to 0, we see that at least one of them moves to ∞;
that is, if we homogenize and regard f as defining a subset of m points
the projective line, then the limiting position of this zero set contains the
point ∞. Thus it is reasonable that if the leading coefficients of both f
and g are 0, then (as polynomials of degree m and n) they share ∞ as
a common root. Prove that if F = a0x

m + a1x
m−1y + · · · + amy

m and
G = b0x

n + · · ·+ bny
n are the generic homogeneous forms of degrees m,n

over A = Z[a0, . . . , am, b0, . . . , bn], then the image scheme of V (F,G) ⊂ P1
A

under the natural projection to SpecA has defining ideal generated by the
resultant Rm,n(F,G) := Rm,n(F (x, 1), G(x, 1)). Show that if F0, G0 are
nonzero homogeneous forms of degrees m,n over any field L, then F0 and
G0 have a common zero in P1

L if and only if Rm,n(F0, G0) = 0.

Exercise V-19. Show that in Theorem V-15 the ring of integers can be
replaced by any commutative ring K as follows: let A be the polynomial
ring over the integers as in the theorem, and let B = A⊗Z K.

(a) Show that it is enough to prove that the sequence

0→ (Rm,n(f, g))→ A→ A/(Rm,n(f, g))→ 0

remains exact when we tensor over Z with K.

(b) Show that for each prime p the abelian group A/(Rm,n(f, g)) has no
p-torsion. (You might use the fact that Rm,n(f, g), regarded as a poly-
nomial in am, bn over a smaller polynomial ring, has “leading term”
anmb

m
n in a suitable sense.) Use the result of (b) to prove (a).

Exercise V-20. The resultant computation above seems quite special, but
it can be used to compute the (set-theoretic) image of an arbitrary finite
map ϕ : X → Y. Pass to an affine cover and suppose that Y = SpecA′

for some ring A′, while X = SpecA′[x1, . . . , xd]/I. Reduce by induction to
the case d = 1. Let f1, . . . , fe be generators of I; suppose the maximum
of their degrees in x1 is n. Show that I contains a monic polynomial f of
degree m, say. Let t1, . . . , te be new indeterminates, and let g =

∑
i tifi ∈

A′[t1, . . . , te]. Let R = Rm,n(f, g) be the resultant, and let J be the ideal
generated by the coefficients in A′ of the monomials in t occurring in R.
Show that J defines the image of ϕ set-theoretically, and is contained in
the ideal defining the scheme-theoretic image. (In practice people do not
usually compute the image this way, but rather using the technique of
Gröbner bases, which, unlike resultants, actually computes the whole ideal
of the scheme-theoretic image; see Cox et al. [1997, Section 2.8] or Eisenbud
[1995, Chapter 15] for this method.)
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V.3 Singular Schemes and Discriminants

V.3.1 Definitions

In this section we will take up the smooth and singluar points of a morphism
of schemes. To motivate our definition, consider a map f : M → N of
differentiable manifolds, and assume that dimM ≥ dimN . The simplest
behavior of such a map occurs at points x ∈M where the differential Dfx
is surjective: restricted to a suitable neighborhood U of such a point x, the
map f looks like the projection onto one factor of a product, and we say
that x is a smooth point of f .
In the category of schemes, the Zariski open sets are too large to per-

mit product structures, and (as we shall see) there are also complications
arising from the fact that points may have different residue fileds. It is still
possible to define smoothness of a morphism of schemes in terms of local
product structure— see for example Altman and Kleiman [1970]—but in
the present context it will make more sense to adopt a characterization of
smooth and singular points that generalizes the differential characterization
for manifolds.
To carry this out we introduce the module of Kähler differentials of a

homomomorphism of rings, and its global version, the relative cotangent
sheaf of a morphism of schemes. If ψ : A→ B is a map of rings, we define
ΩB/A, the module of A-linear Kähler differentials, to be the free B-module
generated by symbols db for all b ∈ B, modulo the relations

d(b1b2) = b1 db2 + b2 db1 for all b1, b2 ∈ B

and
dψa = 0 for all a ∈ A.

These relations ensure that the map

B −→ ΩB/A,
b 
−→ db,

is an A-linear derivation; in fact, it is the universal A-linear derivation in a
suitable sense. (See Eisenbud [1995] for details.) It is easy to deduce from
this, for example, that if B = A[x1, . . . , xn]/(f1, . . . , fn) then ΩB/A in the
cokernel of the Jacobian matrix (

∂fi
∂xj

)
.

To globalize, let ϕ : X → Y be a morphism of schemes. We define the
relative cotangent sheaf of ϕ : X → Y, written ΩX/Y , to be the sheaf whose
value on an open affine subset U of X mapping to an open affine subset
V of Y is the module of OY (V )-linear Kähler differentials of OX(U). The
collection of open sets in X just specified forms a base B for the open sets
ofX. The axioms for a B-sheaf (see Section I.1.3) are easily checked—they
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amount to the statment that the construction of modules of differentials is
compatible with localization—so the data just given really does define a
sheaf.
The relative dimension of a morphism ϕ : X → Y of schemes at a point

x ∈ X is defined to be the difference dim(X,x)− dim(Y, ϕ(x)).

Definition V-21. Let ϕ : X → Y be a morphism of Noetherian schemes,
and suppose that ϕ is flat, of finite type, and has constant relative codimen-
sion d. We define the singular scheme singϕ ⊂ X of ϕ to be the subscheme
of X defined by the d-th Fitting ideal of the relative cotangent sheaf of ϕ;
that is,

singϕ = V (Fittd ΩX/Y ) ⊂ X.

In case the morphism ϕ|singϕ : singϕ → Y is finite, we define the dis-
criminant scheme ∆(ϕ) ⊂ Y to be the Fitting image of singϕ in Y, that
is,

∆(ϕ) = V (Fitt0(ϕ∗Osingϕ)) ⊂ Y.

To understand this definition, we first return to the most classical case,
that of a map ϕ : X → Y of irreducible, nonsingular varieties over an
algebraically closed field. In this case the condition of constant relative
dimension is automatic, while flatness translates into the condition that
the dimension of the fibers ϕ−1(y) is constant, and equal to the relative
dimension.
The notion of a singular scheme being a local one, we may pass to the

affine case and assume that Y = SpecA and write

X = SpecA[x1, . . . , xn]/(f1, . . . , fm).

As we noted, in this case the module of A-linear Kähler differentials ΩX/Y
is the cokernel of the n×m Jacobian matrix


∂f1/∂x1 . . . ∂fm/∂x1

...
...

∂f1/∂xn . . . ∂fm/∂xn


 .

Thus the support of the scheme singϕ consists exactly of those points
x ∈ X where the rank of the Jacobian matrix is less than n− d—in other
words, the locus where the differential Dϕ of the map fails to be surjective,
just as in the classical definition.
However, the scheme-theoretic setting presents many new phenomena.

For example, consider a finite extension of fields K ↪→ K ′, and let

ϕ : X = SpecK ′ 
−→ Y = SpecK

be the corresponding morphism of one-point schemes. Here the relative
dimension is zero, so the map ϕ is singular if and only if ΩX/Y �= 0; by a
classical result in field theory, this is the case if and only if the extension
K ↪→ K ′ is not separable.
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V.3.2 Discriminants

We now want to consider in more detail the case of a morphism ϕ : X →
Y where the singular scheme singϕ is finite over Y , and to describe the
discriminant scheme ∆(ϕ) ⊂ Y associated to such a map. We will focus
primarily (but not exclusively) on the case whereX is a closed subscheme of
A1
Y , given as the zero locus of a single polynomial f(x) whose coefficients are

regular functions on Y ; this will lead us to the definition of the discriminant
of a polynomial in one discriminant!of a polynomialvariable. In this setting,
by analogy with the discussion of resultants in the preceding section, we
may view the problem of defining the discriminant scheme as that of giving
formulas for the equations defining the set of points y = [p] ∈ Y = SpecA
over which the polynomial f has repeated factors, that is, such that the
reduction f̄ ∈ A/p[x] of f ∈ A[x] mod p has multiple roots in the algebraic
closure of κ(y). As in the discussion of resultants, we will have both the
general definition above using Fitting ideals, and (in the restricted case
X = SpecA[x]/(f)) a more classical notion of discriminant defined in effect
as the pullback of the (reduced) branch scheme of a suitable “universal
family” of polynomials; and we will ultimately show that they coincide
where the latter is defined.
To set up the classical construction, we need first of all to define our

universal branched cover. Let

A = Z[a0, . . . , am],

and let
f = a0x

m + · · ·+ am ∈ A[x]

be the generic polynomial in one variable of degree m. Extending our poly-
nomial ring, we define

B0 = Z[α1, . . . , αm] and B = B0[a0]

and map A to B by sending ai to the i-th coefficient of the polynomial f =
a0

∏
i(x− αi), which is ±a0σi(α). As in the proof of Theorem V-15, these

coefficients are algebraically independent, and we regard A as a subring
of B.
In B we may form the polynomial

D1 =
∏
i<j

(αi − αj).

This polynomial vanishes when two of the roots of f are equal, but it is not
a solution of our problem because it is not a polynomial in A. For one thing,
it is not invariant under permutations of the roots. But it is easy to see
that if π is a permutation of the roots, D1 applied to the permuted roots is
equal to sgn(π)D1, where sgn(π) = ±1 is the sign of the permutation. Thus
D2

1 is invariant under under permutations of the roots, and is expressible
as a polynomial in the symmetric functions σi(α) = ai/a0. Each αi occurs
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to degree ≤ m− 1 in D1, and thus to degree ≤ 2m− 2 in D2
1, from which

we see that
Dm(f) = a2m−2

0 D2
1 = a2m−2

0

∏
i<j

(αi − αj)2

defines an element of A. The polynomial Dm(f) is called the discriminant
of f .

Proposition V-22. With notation as above, we have

Dm(f) =
(−1)m(m−1)/2

a0
Rm,m−1(f, f ′).

If f0 ∈ L[x] is a monic polnomial of degree m in one variable over a field
L, then Dm(f0) = 0 if and only if f0 has a multiple root in the algebraic
closure of L.

Proof. Applying Corollary V-17 to the ring B defined above we see that

Rm,m−1(f, f ′) = am−1
0

m∏
i=1

f ′(αi).

But

f ′(x) =
m∑
j=1

f(x)/(x − αj),

so
f ′(αi) = a0

∏
j �=i

(αi − αj)

and

Rm,m−1(f, f ′) = am−1
0

m∏
i=1

f ′(αi) = a2m−1
0

∏
j �=i

(αi − αj)

= (−1)m(m−1)/2a2m−1
0

∏
i<j

(αi − αj)2

= (−1)m(m−1)/2a0Dm(f),

whence the formula for Dm(f). The second statement of the corollary fol-
lows from the fact that the resultant of a monic polynomial and another
polynomial over a field vanishes if and only if the two have a common root,
and the usual computation that shows, over a field, that a polynomial f(x)
and its derivative have a common root if and only if f has a multiple
root.

As a corollary of this proposition, we have the promised identity be-
tween the classical and modern definitions, in the restricted case X =
SpecA[x]/(f).
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Corollary V-23. Let A be any ring, f ∈ A[x] a monic polynomial of
degree m with coefficients in A, and ϕ : X = SpecA[x]/(f)→ Y = SpecA
the corresponding morphism. The discriminant scheme of ϕ is the zero
locus of the discriminant of f , that is,

∆(ϕ) = V (Dm(f)) ⊂ Y.

For example, if B = Z[α] is an order in a number field, and

f(x) = xn + an−1x
n−1 + · · ·+ a0 ∈ Z[x]

is the irreducible monic polynomial satisfied by α, the discriminant of f is
the defining equation of the discriminant scheme of the morphism

SpecB → SpecZ.

Exercise V-24. Show that the singular scheme of this morphism is the
different of f , as defined for example in Lang [1994].

Exercise V-25. Consider the orders A = Z[
√
3 ], B = Z[11

√
3 ], C =

Z[2
√
3 ], and D = Z[121

√
3 ], discussed in Section II.4.2 and Exercise IV-51.

What are the discriminant schemes of the morphisms SpecA→Z, SpecB→
Z, SpecC → Z, and SpecD → Z? How does this relate to the pictures of
these schemes drawn previously?

V.3.3 Examples

To illustrate our definition of the discriminant scheme of a morphism, we
will calculate it in a number of specific examples. For all of the following
morphisms ϕ : X → Y, the target space will be the affine line Y = SpecK[t]
over a field K of characteristic zero. For all but the last example, the
morphism ϕ will be finite; and for all but the last two,X will be a subscheme
of the affine line A1

Y = SpecK[t][x], finite and flat over Y. Specifically, we
take

ϕ : X = SpecK[t, x]/(f)→ Y = SpecK[t],

where
f(x) = xk + ak−1(t)xk−1 + . . .+ a1(t)x + a0(t)

is a monic polynomial in x with coefficients in K[t]. In all the cases we
consider the discriminant scheme, being a subscheme of A1

K supported at
the origin, is determined by its degree.

Example V-26. We start with the example f(x) = xk − tm, that is, the
map

ϕk,m : X = Xk,m = SpecK[t, x]/(xk − tm)→ Y = SpecK[t].

We will denote the degree of the discriminant scheme of this map by δk,m
and calculate it in three ways.
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Note before we start that if

µα : Y = SpecK[t] −→ Y = SpecK[t]

is the map given by t 
→ tα, we have a fiber product diagram

Xk,αm � Xk,m

Y

ϕk,αm
�

µα
� Y

ϕk,m
�

so that, by the invariance of the discriminant scheme under pullback,

δk,αm = α · δk,m
for any α and m.

For our first calculation of δk,m, we use the definition of the discriminant
of the polynomial f(x) as the resultant of f and f ′ and apply Sylvester’s
determinant. Thus, for example, in case k = 2 the discriminant is

δ2,m =

∣∣∣∣∣∣
1 0 tm

2 0 0
0 2 0

∣∣∣∣∣∣ = 4tm,

so that (the characteristic of K being 0) δ2,m = m. More generally, for
arbitrary k we have ak−1 = · · · = a1 = 0 and a0 = −tm. Therefore

δk,m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 0 0 −tm 0 . . . 0 0
0 1 . . . 0 0 0 0 −tm . . . 0 0
...

...
. . .

...
...

...
...

...
. . .

...
...

0 0 . . . 1 0 0 0 0 . . . −tm 0
0 0 . . . 0 1 0 0 0 . . . 0 −tm
k 0 . . . 0 0 0 0 0 . . . 0 0
0 k . . . 0 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

...
. . .

...
...

0 0 . . . k 0 0 0 0 . . . 0 0
0 0 . . . 0 k 0 0 0 . . . 0 0
0 0 . . . 0 0 k 0 0 . . . 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)k−1kk · tm(k−1),

and hence

δk,m = m(k − 1).

A second way to calculate δk,m is to use the expression of the discriminant
as the product of the pairwise differences of the roots of a polynomial. To
start, suppose that k divides m; say m = kl, and suppose also that K
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contains a primitive l-th root of unity ζ. Then we can factor

f(x) = xk − tkl =
k−1∏
i=0

(x− ζitl).

The discriminant of f is then the product

∆(f) =
∏

0≤i<j≤k−1

(ζjtl − ζitl)2 =
∏

0≤i<j≤k−1

(ζj − ζi)t2l,

which vanishes to order δk,m = k(k − 1)l = m(k − 1) at the origin. Thus
δk,m = m(k − 1) whenever k|m; and by the formula δk,αm = α · δk,m
established above it follows that δk,m = m(k − 1) for all k and m.

Exercise V-27. The last argument uses the presence in our field K of all
the l-th roots of unity. Use a base change argument (bearing in mind the
definition of degree!) to extend the result to any field K of characteristic
not dividing l.

Finally, we can describe the discriminant scheme of ϕ = ϕk,m directly
from the definition. To begin with, the sheaf of relative differentials of the
map ϕ is

ΩX/Y = OX{dx}/(kxk−1dx),

where OX{dx} denotes the free OX -module with generator dx. The reso-
lution of ΩX/Y is thus

0 −→ OX
ν−→ OX −→ ΩX/Y −→ 0

where the map ν is multiplication by xk−1. The zeroth Fitting ideal of
ΩX/Y is accordingly generated by the 1× 1 minor of the matrix (xk−1), so
that the singular locus of the map ϕk,m is

singϕ = V (Fitt0 ΩX/Y ) = V (xk−1) ⊂ X

and Osingϕ
∼= ΩX/Y as sheaves of OX -modules.

To resolve the pushforward of the structure sheaf of singϕ, we can thus
push forward the exact sequence above. The pushforward ϕ∗OX is the
locally free OY -module generated by the elements α0 = 1, α1 = x, . . . ,
αk−1 = xk−1. Multiplication by xk−1 takes the first generator α0 = 1 to
the last one αk−1 = xk−1, the second generator α1 = x to xk = tmα0, the
third generator α2 = x2 to xk+1 = tmα1, and so on. The resolution of the
pushforward ϕ∗Osingϕ is thus

0 −→ O⊕k
Y

ϕ∗ν−→ O⊕k
Y −→ ϕ∗Osingϕ −→ 0
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where the map ϕ∗ν is given by the matrix

ϕ∗ν =




0 tm 0 . . . 0 0
0 0 tm . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 tm

1 0 0 . . . 0 0



.

The discriminant scheme of ϕ = ϕk,m is the zero locus of the determinant
(−1)k−1tm(k−1) of this matrix, and so we see once again that δk,m = m×
(k − 1).

Note that in this setting the discriminant scheme measures not only the
number of sheets in a branched cover that come together (that is, the
nonreducedness of the special fiber, as measured by the “k − 1” factor
in the expression δk,m = m(k − 1)), but also how fast they are coming
together (the “m” factor). Thus, while in all the examples of the form
X = SpecK[t, x]/(x2− tm)→ Y = SpecK[t] the fiber over the origin in Y
is the same double point, the discriminant has different degrees depending
on the speed with which the two points x = ±√tm approach each other as
t approaches 0.
Here is an arithmetic analogue of this:

Exercise V-28. Reinterpret the results of Exercise V-25 in light of the
calculation in Example V-26 of the discriminant of a general projection of
a node, cusp and tacnode.

We will also see applications of Example V-26 in the discussion of dual
curves (Section V.4.2).
Although the examples we have seen so far may seem special, we can use

any of the three approaches to describe the discriminant of any finite flat
morphism ϕ : X → Y where Y is nonsingular and one-dimensional and X
is locally embeddable in A1

Y , that is, for any point p ∈ X the local ring OX,p
is of the form OY,ϕ(p)[x]/(f). For example, following the second approach
we may make a base change Y ′ → Y so that the polynomial f factors
completely into linear factors over OY (that is, the pullback X ′ = X×Y Y ′

is a union of k irreducible components Xi, each mapping isomorphically
to Y ). The discriminant of the pullback morphism ϕ′ : X ′ → Y ′ will then
be given by the product of the pairwise differences of the factors of f , so
that its degree will be the sum of the degrees of the pairwise intersections
Xi ∩Xj ; and the degree of the discriminant of ϕ at each point y ∈ Y will
be simply the sum of the degrees of the discriminant scheme of ϕ′ at the
points y′ of Y ′ lying over y, each divided by the order of ramification of
Y ′ → Y at that point.
Our next example, accordingly, will be the simplest example of a mor-

phism X → Y such that X is not locally embeddable in A1
Y .
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Example V-29. Take Y = A1
K = SpecK[t] as before, and take X the

union of three copies of A1
K meeting at one point with three-dimensional

Zariski tangent space; the map ϕ will map each component of X isomor-
phically to Y. We may realize X as the union of the three coordinate axes
in A3

K = SpecK[x, y, z], and take ϕ : X → Y the restriction to X of the
projection map A3

K → A1
K given by t 
→ x+ y + z: that is, we set

X = SpecK[t][x, y, z]/(xy, xz, yz, t−x−y−z) −→ Y = SpecK[t].

We can simplify the expression for X at the expense of some symmetry,
writing

X = SpecK[t][x, y]/(xy, x(t−x−y), y(t−x−y)).

The sheaf ΩX/Y is then given as

ΩX/Y = OX{dx, dy}/(ydx+xdy, (t−2x)dx−xdy, −ydx+(t−2y)dy)

Since there are two generators and three relations, the resolution of ΩX/Y
takes the form

O⊕3
X

ν−→ O⊕2
X −→ ΩX/Y −→ 0,

where the map ν is given by the matrix

ν =
(
y t− 2x −y
x −x t− 2y

)
.

In terms of the original description X = SpecK[x, y, z]/(xy, xz, yz) of X,
the 2× 2 minors of this matrix are

−xy − x(t − 2x) = x2,

y(t− 2y) + xy = −y2, and

(t− 2x)(t− 2y)− xy = −x2 − y2 + z2,

so that the zeroth Fitting ideal Fitt0 ΩX/Y is simply the square (x2, y2, z2)
of the maximal ideal of the origin inX. The singular locus singϕ of the map
ϕ is thus the first-order neighborhood of the origin in A3

K ; in particular,
it has degree 4. For any sheaf F on Y supported at the origin in A1

K ,
the zeroth Fitting ideal will be simply tm, where m is the vector space
dimension of Γ(F ). The degree of the discriminant is thus equal to the
degree 4 of the singular locus.
It is also easy to describe the direct image ϕ∗Osing(ϕ) directly: since the

fiber of the projection singϕ → Y over the origin has degree 3, we must
have

ϕ∗(Osingϕ) = OY /(t2)⊕ (OY /(t))⊕2,

and we can calculate the zeroth Fitting ideal Fitt0(ϕ∗Osingϕ) accordingly.

If X had consisted of three coplanar lines meeting at a point— say, if
we took ϕ : X = SpecK[t, x]/(x3 − t3) → Y = SpecK[t]— then by the
calculation made previously we would have deg(∆(ϕ)) = 6, while in the



V.3 Singular Schemes and Discriminants 239

spatial case we have deg(∆(ϕ)) = 4. This difference is what underlies the
example in Section II.3.4 whose general fiber is isomorphic to the three co-
ordinate lines in A3

K and whose special fiber is supported on three coplanar
lines: the jump in the discriminant, in a sense, forces the appearance of the
embedded point in the flat limit. We saw the same phenomenon emerge
when we considered Hilbert polynomials in Sections III.3.1 and III.3.2.
Our last examples will be in the form of exercises. In them we consider

the simplest cases of a morphism ϕ : X → Y of relative dimension one,
such that the singular locus singϕ is finite over Y.

Exercise V-30. Let K be a field of characteristic 0, let Y = SpecK[t] =
A1
K , and let ϕ : X → Y be the family of curves

ϕ : X = SpecK[t][x, y]/(xy − tm) ⊂ A2
Y −→ Y.

Show that the discriminant scheme ∆(ϕ) = V (tm) ⊂ Y.

In the preceding exercise, the singular curves of the families considered
have the simplest possible curve singularity, called a node. To generalize it,
we need first of all to make a definition:

Definition V-31. Let C → SpecK be a curve over an algebraically closed
field K and p ∈ C a closed point of C. We will say that p is a node, cusp or
tacnode of C if the formal completion Ô of the local ring OC,p with respect
to its maximal ideal is isomorphic to K[[x, y]]/(y2 − x2), K[[x, y]]/(y2 − x3)
or K[[x, y]]/(y2 − x4) respectively.

These singularities may also be characterized geometrically: a node, for
example, is a point of C at which two smooth branches cross transversely;
a tacnode is one where two smooth branches are simply tangent, that is,
intersecting in a scheme of degree 2. In the case of a plane curve C ⊂ P2

K ,
we will say that a node or tacnode p of C is ordinary if neither branch indi-
vidually has intersection multiplicity 3 or more with its projective tangent
line. (The reader may verify that if p ∈ C is a cusp, this will always be the
case.)

Exercise V-32. Let K and Y be as in Exercise V-30, and find the dis-
criminant scheme ∆(ϕ) ⊂ Y for the following families ϕ : X → Y of curves:

(a) (a family acquiring a cusp)

ϕ : X = SpecK[t][x, y]/(y2 − x3 − tm) ⊂ A2
Y −→ Y.

(b) (a family acquiring a tacnode)

ϕ : X = SpecK[t][x, y]/(y2 − x4 − tm) ⊂ A2
Y −→ Y.

(c) (a family acquiring an ordinary k-fold point)

ϕ : X = SpecK[t][x, y]/(xk + yk − tm) ⊂ A2
Y −→ Y.
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V.4 Dual Curves

V.4.1 Definitions

We consider now another object associated to a plane curve C ⊂ P2
S : its

dual curve C∗, a subscheme of the dual projective plane (P2
S)

∗ as defined
in Section III.2.3. In classical algebraic geometry, the definition is simple
enough: for K an algebraically closed field and C ⊂ P2

K nonsingular of
degree d ≥ 2, the dual curve is defined to be the set of projective tangent
lines TpC to C, regarded as points of the dual projective plane (P2

K)
∗. More

generally, for a curve C without multiple components and containing no
lines the dual curve is defined to be the closure of the locus of tangent lines
TpC to C at nonsingular points p of C. (In the following, we will refer to
this locus as the “classical dual”.)
As in the case of flexes (Section IV.1), what we will do here is to propose

a natural set of defining equations for C∗, which will yield a definition of
the dual C∗ ⊂ (P2

S)∗ of a plane curve C ⊂ P2
S over an arbitrary scheme

S. Also as in the case of flexes, C∗ will be a closed subscheme of (P2
S)

∗,
flat over S over the open subset of S where it does not contain the fiber of
(P2
S)∗, and invariant under base change. Our definition will agree with the

classical definition for nonsingular plane curves over fields of characteristic
zero, but not for singular ones: if p is an isolated singular point of a plane
curve C ⊂ P2

K , the line in (P2
K)∗ dual to p will be a component of C∗ in our

definition, though it is not part of the classical dual. Again, this is necessary
if we want the duals of a family of plane curves to form a closed family; if
we want to recover information about the classical dual, we simply discard
the extra components. (The need for characteristic zero will be explained
below.)
To make our definition, we have first to introduce one auxiliary object.

Recall from Section III.2.8 that in the product P2
S ×S (P2

S)∗ we have the
universal line Σ, whose fiber over each point l ∈ (P2

S)
∗ is the corresponding

line l ⊂ P2
S : in terms of homogeneous coordinatesX,Y, Z on P2

S and A,B,C
on (P2

S)∗,
Σ = V (AX +BY + CZ) ⊂ P2

S ×S (P2
S)

∗.

Now let C ⊂ P2
S be any plane curve, and assume for the moment that C

contains no lines (that is, there is no point s ∈ S and line l ⊂ P2
κ(s) in the

fiber of P2
S over s contained in C; this is stronger than supposing that the

equation of C does not have a linear factor). We define the universal line
section ΓC of C to be the intersection

ΓC = π−1
1 (C) ∩ Σ ⊂ P2

S ×S′ (P2
S)

∗.

By our hypothesis that C contains no lines, the map π2 : ΓC → (P2
S)

∗ will
be finite (and hence flat) of degree d; and we define the dual curve C∗ ⊂
(P2
S)∗ of C to be the discriminant scheme of this map, as in Definition V-21.
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Finally, if C does contain lines, we simply define C∗ to be the closure in
(P2
S)∗ of the discriminant scheme of the restriction of π2 to the open subset

of (P2
S)

∗ where it is finite.

A few introductory remarks are in order. To begin with, C∗ is by defi-
nition a closed subscheme of (P2

S)
∗, and its formation commutes with base

change: if S′ → S is any morphism and C ′ = S′ ×S C ⊂ P2
S′ , then we will

have also
ΓC′ = S′ ×S ΓC ⊂ P2

S′ ×S (P2
S′)∗,

and hence C ′∗ = S′ ×S C∗. In particular, for any point s ∈ S, the fiber C∗
s

of C∗ over s will be the dual of the fiber Cs ⊂ P2
κ(s) of C over s.

The support of C∗ is easy to describe: by the definition of the discrimi-
nant scheme of a finite morphism, it is the set of lines l ∈ (P2

S)
∗ such that

the intersection of the corresponding line l ⊂ P2
S with C is singular over

κ(l). (This means either l ∩C is nonreduced, or— in case κ(l) has charac-
teristic p > 0 and is not algebraically closed—has a point whose residue
field in an inseparable extension of κ(l).) In particular, as we indicated, if
p ∈ C ⊂ P2

K is any singular point, the line in (P2
K)

∗ dual to p—that is,
the locus of lines in P2

K passing through p—will be contained in C∗.

Finally, we remark that the “dual curve” need not be a curve! If C ⊂ P2
S

is nonreduced—that is, it has a multiple component— then the dual C∗

will be all of (P2
S)

∗. Even if C ⊂ P2
S is nonsingular and reduced it may have

nonreduced fibers Cs over some points of S. For example, the fiber of the
curve C = V (X2 + Y 2 + Z2) ⊂ P2

Z over (2) ∈ SpecZ is a double line. In
such cases the dual C∗ will contain the corresponding fibers of (P2

S)
∗, and

so will not be a “plane curve” as we have defined it.

Exercise V-33. Verify that the dual C∗ of the plane curve

C = V (X2 + Y 2 + Z2) ⊂ P2
Z

mentioned above is, by our definition, the subscheme

C∗ = V (4A2 + 4B2 + 4C2) ⊂ (P2
Z)

∗,

so is not a plane curve in (P2
Z)

∗.

In the example of Exercise V-33, our definition seems at first willfully
perverse: why shouldn’t we take the dual to be the zero locus of A2+B2+C2

instead? Indeed, as long as the base S is nonsingular of dimension one (as in
the exercise) any fibers of (P2

S)∗ → S contained in C∗ will be components of
C∗; we can discard them to arrive at a scheme C̃∗ flat over S. But we will see
below how to construct examples of curves C ⊂ P2

S with nonreduced fibers
Cs over isolated points s ∈ S where this simply cannot be avoided: the fiber
(P2
κ(s))

∗ of (P2
S)

∗ over s will be contained in the closure of C∗ ∩ (P2
S\{s})

∗.
If we want the definition to behave well with respect to base change, this
means the dual of Cs has to be all of (P2

κ(s))∗.



242 V. Local Constructions

Exercise V-34. Let K be a field, and C ⊂ P2
K a curve, smooth over

K. Show that the dual C∗ is reduced, unless every tangent line to C is
multiply tangent— that is, has intersection multiplicity 3 or more with C,
or is tangent to C at more than one point.

In fact, if the characteristic of K is zero it cannot happen that every
tangent line is multiply tangent (see for example Harris [1995, Proposition
15.3]), so the dual of any nonsingular plane curve will be reduced. But
there are examples of plane curves over fields of finite characteristic such
that every point is a flex, and other examples where every tangent line is
tangent at several points. In such a case, our definition yields a nonreduced
dual curve C∗.

Exercise V-35. Let K be any field of characteristic zero, and C ⊂ P2
K a

curve of degree d having no multiple components. Show that the dual curve
C∗ ⊂ (P2

K)∗ is a plane curve of degree exactly d(d − 1).
(Hint: Use the formula given in Proposition V-22 for the discriminant to

describe the intersection of C∗ with a general line in (P2
K)

∗.)

V.4.2 Duals of Singular Curves

In case C ⊂ P2
K has isolated singular points, as we said, our definition

diverges from the classical: any line l = p∗ ⊂ P2
K passing through a singular

point of C will correspond to a point in the support of the dual curve C∗.
What is the multiplicity of this component? The following exercise gives
the answer in some cases, and derives as a consequence one of the classical
Plücker formulas (see Coolidge [1931]).

Exercise V-36. Using Example V-26 on discriminants, show that if p ∈ C
is a node, cusp, tacnode or ordinary triple point, then the line in p∗ ⊂ (P2

K)∗

dual to p appears with multiplicity 2, 3, 4 or 6 respectively in C∗. Deduce
the Plücker formula for the degree d′ of the classical dual of an irreducible
plane curve C ⊂ P2

K over a field of characteristic zero of degree d, having
as singularities δ nodes, κ cusps, λ tacnodes and τ ordinary triple points:

d′ = d(d− 1)− 2δ − 3κ− 4λ− 6τ.

(Note that the same count is valid if C is reducible, as long as no component
of C is a line.) Find a curve singularity p ∈ C for which p∗ appears with
multiplicity 5 in the dual curve C∗.

V.4.3 Curves with Multiple Components

As in the case of flexes (Section IV.1), a very different sort of question
emerges when we consider curves with multiple components. Here, as we
have said, the definition of the dual curve C∗ yields not a curve in (P2

K)
∗,

but rather the whole dual plane (P2
K)∗. But we can consider a family of
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generically nonsingular curves specializing to a multiple curve and ask: in
such a family, where do the tangent lines go?
We will illustrate this problem with the same sort of curve as we used

in Section IV.1; but we will start with a simpler example: instead of a
family of quartics specializing to a double conic we will consider a family of
conics degenerating to a double line. To set it up, let K be an algebraically
closed field of characteristic zero, and set S = SpecK[t]. Let L(X,Y, Z) and
Q(X,Y, Z) ∈ K[X,Y, Z] be homogeneous polynomials of degrees 1 and 2
respectively, and assume that their zero loci in P2

K intersect transversely,
that is, that V (Q,L) ⊂ P2

K is reduced. Consider the curve C ⊂ P2
S given

by

π : C = Proj(K[t])[X,Y, Z]/(L(X,Y, Z)2 + tQ(X,Y, Z))

⊂ Proj(K[t])[X,Y, Z] = P2
S → S.

Let C ∗ ⊂ (P2
S)

∗ be the dual of the curve C ⊂ P2
S . As with the scheme of

flexes of the curve C, the scheme C ∗ will have two components: one, the
fiber of (P2

S)
∗ over the origin (t) ∈ S; and the other the closure C ′ of the

inverse image in C ∗ of the punctured line T = SpecK[t, t−1] = S\{(t)} ⊂ S
(equivalently, the closure of the dual of the curve C∩P2

T ⊂ P2
T ). The scheme

C ′ will be flat over all of S, with fiber over a point (t− µ) ∈ S other than
the origin the dual (Cµ)∗ of the curve Cµ = V (F + µG) ⊂ P2

K ; it will
therefore have as fiber over the origin a scheme C ′

0 ⊂ P2
K of dimension

1 and degree 2, which we will call the “limiting position” of the duals of
the nearby nonsingular curves Cµ as µ approaches zero. Once more, we
can translate the naive question, “where do the tangent lines to a conic go
when the conic degenerates into a double line?” into the precise problem:
determine the support of the flat limit C ′

0. The answer is expressed in the
following

Proposition V-37. The fiber C ′
0 of C ′ over the origin (t) ∈ S consists

of the union of the two lines dual to the two points t = L = Q = 0 of
intersection of the line L = 0 and the conic Q = 0 in the plane t = 0.

Proof. We will do this by explicit calculation. To begin with, since the
characteristic of K is not 2, we can choose affine coordinates (x, y) on the
plane so that the line V (L) is the x-axis y = 0, and the conic V (Q) (if it
is nonsingular) the zero locus of y2 − x2 + 1. The equation of the curve
C ⊂ P2

S is then

C = V (y2 + t(y2 − x2 + 1))

and after replacing the coordinate t on S = A1
K with the coordinate u =

t/(1− t) in a neighborhood of the origin and multiplying through by 1− t,
we may rewrite this as

C = V (y2 − t(x2 − 1))
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(note that if V (Q) were singular, we could have taken this as the equation
of C originally). Now, we can express any line in P2

K not passing through
the point [0, 1, 0] (that is, the point at infinity on the y-axis) as the zero
locus of an equation

y − ax− b;

a and b are then affine coordinates on the corresponding subset A2
K ⊂

(P2
K)

∗. The equations of the universal line section ΓC of C in the open
subset A2

K × A2
K ⊂ P2

K × (P2
K)

∗ are then

ΓC = V (y − ax− b, y2 − t(x2 − 1)) ⊂ SpecK[a, b, x, y]

= V ((ax+ b)2 − t(x2 − 1)) ⊂ SpecK[a, b, x].

Now, we may expand out the equation of ΓC as

(ax+ b)2 − t(x2 − 1) = (a2 − t)x2 + 2abx+ (b2 + t),

from which we see that the equation of the dual curve C ∗ is

(2ab)2 − 4(a2 − t)(b2 + t) = −4ta2 + 4tb2 + 4t2 = −4t(a2 − b2 − t).

This has, as expected, two components: the entire fiber of P2
S over the

origin, and the curve C ′ given as the zero locus

C ′ = V (a2 − b2 − t) ⊂ P2
S .

The intersection of this second component with the fiber of P2
S over the

origin is then

C′
0 = V (a2 − b2) = V (a+ b) ∪ V (a− b) ⊂ P2

K .

In other words, it is the union of the two lines in (P2
K)

∗ dual to the points
(1, 0) and (−1, 0) of intersection of the line (y) and the conic x2 − 1 in the
plane.

In fact, we can see this result from the real picture: if we draw the family
of conics y2 = t(x2−1) specializing to the double line y = 0, we see readily
that every line through either of the points (±1, 0) is a limit of tangent
lines to the curves y2 = t(x2 − 1) for small values of t; we may also write
this family of tangent lines directly. For example, the line y + x + 1 = 0
through the point (−1, 0) is the limit of the line

y + x+
√
1− t = 0,

which is tangent to the curve y2 = t(x2−1). It is also clear from the picture
that any line meeting the x-axis in a point other than (±1, 0) (other than
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the x-axis itself) will be transverse to the curve y2 = t(x2 − 1) for small t.

The same sort of phenomena occur with arithmetic schemes. In fact, we
have already seen an example: the conic C = V (X2 + Y 2 + Z2) ⊂ P2

Z,
which we may view as a family of conics over S = SpecZ, specializing from
a nonsingular conic over the generic point of SpecZ to a double line over
the point (2) ∈ SpecZ. Here the function 2 on SpecZ plays the role of
the variable t; we can take L(X,Y, Z) = X + Y + Z and Q(X,Y, Z) =
−XY − Y Z − XZ to arrive at the curve C = V (L2 + 2Q). The only
difference here is that fibers L(2) and Q(2) over (2) in the conic Q and the
line L do not intersect in two points, but rather meet in a single point with
residue field F4. The result is expressed in the

Exercise V-38. Show that the limit of the duals of the fibers of C over
SpecZ \ {(2)} is the line in (P2

F4
)∗ corresponding to the one point of inter-

section of L(2) and Q(2) in P2
F4
.

If you are curious about the duals of the quartic curves in the family
specializing to a double conic, here is the situation:

Exercise V-39. Let K be an algebraically closed field of characteristic
zero, and set S = SpecK[t]. Let Q(X,Y, Z) andG(X,Y, Z) ∈ K[X,Y, Z] be
a homogeneous quadric polynomial and a homogeneous quartic polynomial
respectively such that the curves V (Q) and V (G) intersect transversely, and
C ⊂ P2

S the curve given by

π : C = ProjK[t][X,Y, Z]/(Q(X,Y, Z)2 + tG(X,Y, Z))

⊂ ProjK[t][X,Y, Z] = P2
S → S.
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Let C ∗ ⊂ (P2
S)

∗ be the dual of the curve C ⊂ P2
S , and C ′ the closure

of the inverse image in C ∗ of the punctured line T = SpecK[t, t−1] = S \
{(t)} ⊂ S (equivalently, the closure of the dual of the curve C ∩P2

T ⊂ P2
T ).

Show that the fiber C ′
0 of C ′ over the origin (t) ∈ S consists of the union

of the dual of the plane conic t = Q = 0 with multiplicity 2 with the union
of the eight lines dual to the eight points t = Q = G = 0 of intersection of
the conic Q = 0 and the quartic G = 0 in the plane t = 0.

The general situation is this:

Exercise V-40. Let m, e and d = me be positive integers. Let F =
F (X,Y, Z) and G = G(X,Y, Z) ∈ K[X,Y, Z] be respectively the equa-
tions of nonsingular plane curves of degrees e and d meeting transversely,
let B = SpecK[t] and consider the family of curves C = V (Fm+tG) ⊂ P2

B .
Show that the flat limit of the duals of the curves Ct as t approaches 0 is
the union of the dual of the curve V (F ), taken with multiplicity m, and
the duals of the points F = G = 0 of the plane curves, each taken with
multiplicity m− 1.

There is no ambiguity in specifying a plane curve Γ as its support “with
multiplicity m”: this can only mean the scheme V (Fm), where Γred =
V (F ).

V.5 Double Point Loci

Let ϕ : X → Y be a morphism of varieties. The double point locus of ϕ was
classically defined to be the closure in X×X of the locus of pairs of distinct
points p, q ∈ X with common image ϕ(p) = ϕ(q) ∈ Y. In this section we
will give a scheme-theoretic definition that, as we will see, captures more
of the geometry of the map.
For the following, we will let ϕ : X → Y be a separated morphism of

schemes. As we saw in Chapter III, the separated hypothesis means that
the diagonal ∆X is a closed subscheme of the fiber product X ×Y X, and
is satisfied for all affine and projective schemes.

Definition V-41. The double point scheme Dϕ of a separated morphism
ϕ : X → Y is the scheme

Dϕ = V (annI∆X ) ⊂ X ×Y X

associated to the ideal annI∆X ⊂ OX×YX of functions f with fI∆X = 0.

To understand this definition, recall that if ϕ : X → Y is a morphism
of S-schemes (in the examples below S will be SpecK or SpecZ) and
Y → S is separated, then the fiber product X ×Y X is a closed subscheme
of X ×S X : it is the (scheme-theoretic) inverse image

X ×Y X = (ϕ× ϕ)−1(∆Y )
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where ∆Y ⊂ Y ×S Y is the diagonal. (Note that we have a fiber square

X ×Y X � Y

X ×S X
�

� Y ×S Y ;

∆
�

that is, X ×Y X is the fibered product of X ×S X and Y over Y ×S Y .)
Now, away from the diagonal, the double point scheme Dϕ is simply the
fiber product X ×Y X ; in particular, the closed points of its support away
from the diagonal are simply the pairs of distinct points p, q ∈ X such
that ϕ(p) = ϕ(q). In this sense it generalizes the classical double point
locus, though it may have nontrivial scheme structure even in case ϕ is
a morphism of varieties. In addition, as our examples will show, it may
have components supported on the diagonal ∆X ⊂ X ×S X—that is, its
support may properly contain the double point locus—and may even be
nonempty in cases where the classical double point locus is empty.

Example V-42. Consider the maps from X = A1
K = SpecK[t] to Y =

A2
K = SpecK[x, y] given by polynomials of degree 3, mappingX onto plane

cubic curves with a node or a cusp. Specifically, consider for each value of
the parameter λ the map ϕλ : X → Y given by the ring homomorphism

ϕ#
λ : K[x, y] −→ K[t]

x 
−→ t2 − λ

y 
−→ t3 − λt.

The image of ϕλ is the plane curve Cλ with equation y2 = x2(x+ λ).

λ = 1 λ = 1
2

λ = 0
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The fiber product X ×Y X is the spectrum SpecR of the algebra

R = K[t1]⊗K[x,y] K[t2]

= K[t1, t2]/
(
(t21 − λ)− (t22 − λ), (t31 − λt1)− (t32 − λt2)

)
= K[t1, t2]/

(
(t1 − t2)(t1 + t2, t

2
1 − λ)

)
.

By our definition, then, the double point scheme Dϕ of ϕ = ϕλ is given by

Dϕ = V
(
ann((t1 − t2)/((t1 − t2)(t1 + t2, t

2
1 − λ)))

)
= V ((t1 + t2, t

2
1 − λ)) ⊂ SpecK[t1, t2] = X ×K X.

Assuming that the characteristic of K is not 2, for λ �= 0, Dϕ consists of
the two reduced points (

√
λ,−√λ) and (−√λ,√λ). For λ = 0, on the other

hand, Dϕ is a double point supported at the origin. (Note that Dϕ0 is the
flat limit of the schemes Dϕλ

for λ �= 0 as λ approaches 0.)
To see the difference between the classical and modern approaches, ob-

serve that for λ �= 0 the scheme X ×Y X , as pictured in the figure below,
is reduced; hence the double point scheme is reduced as well and coincides
with the classical double point locus. For λ = 0, however, they differ: the
scheme X ×Y X consists of the diagonal in X ×K X, plus an embedded
point supported at the origin. In the classical language, we see only the
reduced scheme associated to X ×Y X, and so miss the embedded point;
thus the double point locus of ϕ0 is empty. Scheme theory, by contrast,
does see the nonreduced structure of X ×Y X and as a result the double
point scheme of ϕ0 is nonempty, reflecting the fact that ϕ0 fails to be an
immersion at t = 0.

λ �= 0 λ = 0

t1 t1

t2 t2

To make somewhat more precise the remark above that the nonempti-
ness of the double point scheme of ϕ0 reflects the fact that ϕ0 is not an
immersion, we have the following two exercises.

Exercise V-43. Let ϕ : X → Y be a finite map of nonsingular varieties
over an algebraically closed fieldK of characteristic zero, and Dϕ its double
point scheme. Show that

supp (Dϕ ∩∆X) = {(p, p) : Ker(dϕp) �= 0} ⊂ X ×K X.
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Exercise V-44. Let ϕ : X → Y again be a finite map of irreducible vari-
eties and Dϕ its double point scheme. Using Harris [1995, Theorem 14.9],
we see that in fact ϕ is an embedding if and only if Dϕ = ∅, that is, if and
only if

(ϕ× ϕ)−1(∆Y ) = ∆X

as schemes (which is to say, X → X ×Y X is an isomorphism).

Here is an exercise showing that the same geometric ideas apply as well
in the context of arithmetic schemes: the schemes in question are spectra
of rings of integers in number fields (they were first introduced in Sec-
tion II.4.2), but as we will see they behave very much like the curves de-
scribed in the example above.

Exercise V-45. Consider the maps

ϕ : SpecZ[11
√
3] −→ A1

Z

and
µ : SpecZ[2

√
3] −→ A1

Z

associated to the maps Z[t] → Z[11
√
3] and Z[t] → Z[2

√
3]. Describe the

double point scheme of each map, and in particular reconfirm the assertion
of Exercise II-36 that the singularity of the former is a node, while that of
the latter is a cusp.

Finally, we point out also that nonreduced structures on the double point
locus arise naturally even away from the diagonal in X×X, for example for
maps ϕ that are immersions. For example, consider the case where Y is a
curve and ϕ : X → Y its normalization. Suppose that two points P,Q ∈ X
map to the same point R of the image curve Y = ϕ(X).

Exercise V-46. Show that if R is a node, the double point scheme will
be reduced at the point (P,Q) ∈ X ×X. By contrast, show that if R is a
tacnode (that is, Y has two smooth branches at R, simply tangent to one
another) Dϕ will be nonreduced at the point (P,Q) ∈ X × X. Can you
describe the scheme structure?



VI
Schemes and Functors

At the end of the first chapter of this book we discussed a way of embedding
the category of schemes into the larger category of contravariant functors
F from the category of schemes to the category of sets.
This embedding is useful in at least three ways:

(1) The effect of some basic constructions, such as products, is much easier
to describe on functors of points than on schemes.

(2) In trying to construct a certain scheme, it is often easy to construct
the functor that would be the functor of points of that scheme, if
the scheme existed; the construction problem is then reduced to the
problem of proving that the functor is representable and the use of
Yoneda’s Lemma (VI-1). The process is exactly analogous to the use
of distributions in analysis: there, when trying to prove the existence
of a nice function solving a given differential equation, one first proves
the existence of a solution that is a distribution, and then is left with
the (possibly more tractable) regularity problem of proving that the
distribution is represented by integration against a function.

(3) Many aspects of the geometry of schemes can be extended to the cat-
egory of functors, so that it is sometimes useful to forget about repre-
senting a functor and work in that category (or some suitable subcat-
egory) directly.

In this chapter we illustrate these points, first with some basic construc-
tions, and then with some examples coming from the desire to parametrize
families of schemes. We shall see in Section VI.2.4 that some of these lead
to functors that are not actually schemes, though they are rather close.



252 VI. Schemes and Functors

VI.1 The Functor of Points

We start where we left off at the end of Chapter I. Recall that the functor
of points of a scheme X is the functor

hX : (schemes)◦ → (sets)

where (schemes)◦ and (sets) represent the category of schemes with the
arrows reversed and the category of sets; hX takes each scheme Y to the
set

hX(Y ) = Mor(Y,X)

and each morphism f : Y → Z to the map of sets

hX(Z)→ hX(Y )

defined by sending an element g ∈ hX(Z) = Mor(Z,X) to the composition
g ◦ f ∈ Mor(Y,X). We say that a functor F : (schemes)◦ → (sets) is
representable if it is of the form hX for some schemeX. By Yoneda’s Lemma
below, X is unique if it exists; in this case we say that X represents F.
The set hX(Y ) is called the set of Y -valued points of X (if Y = SpecT is
affine, we will often write hX(T ) instead of hX(SpecT ) and call it the set
of T -valued points of X).
Recall also that this construction defines a functor

h : (schemes)→ Fun((schemes)◦, (sets))

(where morphisms in the category of functors are natural transformations),
sending

X 
→ hX

and associating to a morphism f : X → X ′ the natural transformation
hX → hX′ that for any scheme Y sends g ∈ hX(Y ) = Mor(Y,X) to the
composition f ◦ g ∈ hX′(Y ) = Mor(Y,X ′).
In order for this notion to be of any use at all, a crucial first fact is that

the functor of points hX really does determine the scheme X. This follows
from a basic categorical fact.

Lemma VI-1 (Yoneda’s Lemma). Let C be a category and let X,X ′ be
objects of C.

(a) If F is any contravariant functor from C to the category of sets, the
natural transformations fromMor(−, X) to F are in natural correspon-
dence with the elements of F (X).

(b) If the functors Mor(−, X) and Mor(−, X ′) from C to the category of
sets are isomorphic, then X � X ′. More generally, the maps of functors
from Mor(−, X) to Mor(−, X ′) are the same as maps from X to X ′;
that is, the functor

h : C → Fun(C ◦, (sets))
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sending X to hX is an equivalence of C with a full subcategory of the
category of functors.

Proof. For part (a), the correspondence sends α : Mor(−, X) → F to the
element α(1X), where 1X : X → X is the identity map. The inverse takes
p ∈ F (X) to the map α sending an element f ∈ Mor(Y,X) to F (f)(p) ∈
F (Y ). As for part (b), we can apply the statement of part (a) to the functor
F = Mor(−, Y ).

The following improvement of Lemma VI-1 shows that it is enough to
look at the functor of points restricted to the category of affine schemes, or,
equivalently, to the category (rings)◦, the category of commutative rings
with the arrows reversed; and the same thing works in the relative setting.

Proposition VI-2. If R is a commutative ring, a scheme over R is de-
termined by the restriction of its functor of points to affine schemes over
R; in fact

h : (R-schemes)→ Fun((R-algebras), (sets))

is an equivalence of the category of R-schemes with a full subcategory of
the category of functors.

Of course, a contravariant functor on the category of affine schemes is
the same as a covariant functor on the category of rings; so given this
result, we will generally think of our contravariant representable functors
hX : (schemes)◦ → (sets) as covariant functors on R-algebras. (If we need
to make a distinction, we will denote by h∗

X : (rings) → (sets) the functor
defined by h∗X(A) = hX(SpecA) for any R-algebra A.)

Proof. This is really just the statement that schemes are built up out of
affine schemes. Let S = SpecR. Write hX for the functor MorS(−, X) re-
stricted to the category of affine schemes over S. It is enough to show that
any natural transformation ϕ : hX → hX′ comes from a unique morphism
f over S from X to X ′. To construct f from ϕ, let {Ua} be an affine
cover of X, and apply ϕ to the inclusion maps Ua ⊂ X to get morphisms
Ua → X ′. These morphisms satisfy the compatibility conditions necessary
to define the desired morphism f . Uniqueness comes down to the obser-
vation that two morphisms from X to X ′ that differ are already different
when restricted to one of the Ua.

Exercise VI-3. Suppose that X is (like virtually all schemes of interest
to us) locally Noetherian—that is, covered by spectra of Noetherian rings.
Prove that X is determined by the restriction of hX to the category of
Noetherian rings.
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VI.1.1 Open and Closed Subfunctors

One reason that thinking of schemes as functors is useful is that it is pos-
sible to extend some of the basic notions from the geometry of schemes to
functors. We will consider some examples.
We first show how to define an open subfunctor of a functor

F ∈ Fun((rings), (sets)).

We say that a map α : G→ F of functors from a category C to the category
of sets is injective if for every object X the induced map of sets G(X) →
F (X) is injective (this corresponds to the standard categorical notion, but
we will not need this fact). In this case we will say that α : G → F is a
subfunctor of F. For example, if U ⊂ X is a subscheme, the functor hU
will be a subfunctor of hX .
We want to define an open subfunctor of a functor F to be a subfunctor

that, when restricted to a representable subfunctor hX ⊂ F , is of the form
hU ⊂ hX for an open subscheme U ⊂ X . To carry this out, we need to
introduce the notion of a fibered product of functors.

Definition VI-4. If A, B, and C are functors from some category C to
the category of sets and if f : A → C and g : B → C are morphisms of
functors, the fibered product A×CB is the functor from C to (sets) defined
by setting, for any object Z of C,

(A×C B)(Z) = {(a, b) ∈ A(Z)×B(Z) | f(a) = f(b) in C(Z)},
and defined on morphisms of C in the obvious way.

Definition VI-5. A subfunctor α : G → F in Fun((rings), (sets)) is an
open subfunctor if, for each map ψ : hSpecR → F from the functor repre-
sented by an affine scheme SpecR (that is, each ψ ∈ F (R)), the fibered
product

Gψ � hSpecR

G
� α � F

ψ
�

of functors yields a map Gψ → hSpecR isomorphic to the injection from the
functor represented by some open subcheme of SpecR.

Exercise VI-6. Let X = SpecR be an affine scheme. Show that the open
subfunctors of hX are exactly the functors of the form

F (T ) = {ϕ ∈ hX(T ) | ϕ∗(I)T = T },
for some ideal I ⊂ R.

Exercise VI-7. Let X be a scheme over the field K. Define a functor
F : (schemes/K)◦ → (sets) as follows: for each K-scheme Y, let F (Y ) be
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the set of closed subschemes Z ⊂ X×K Y flat over Y and such that all the
fibers of Z over closed points of Y are subschemes of degree 2 of X. Let G
be the subfunctor of F obtained by adding the requirement that the fibers
of Z over closed points of Y are reduced. Show that G ⊂ F is open.

To define closed functors, we proceed similarly. A subfunctor α : G→ F
in Fun((rings), (sets)) is closed if for each map ψ : hSpecR → F the fibered
product of ψ and α is a subfunctor of hSpecR isomorphic to the functor
represented by a closed subcheme of SpecR.

Exercise VI-8. Let X = SpecR be an affine scheme. Show that the open
and closed subfunctors of hSpecR are precisely those represented by open
and closed subschemes of SpecR. (The same is true, and only a little harder,
for arbitrary schemes.)

As usual, a little caution is necessary when using these notions. For
example:

Exercise VI-9. Suppose that F is a functor from a category C to the
category of sets, and let G be a subfunctor of F . Show by example that the
association C 
→ F (C) \G(C) may not define a functor. Suppose now that
C is the category of rings and F is represented by a scheme X while G is
represented by a closed subscheme Y of X , and H is the functor reprsented
by the open subscheme X \ Y . Can you describe H in terms of G and F?

Exercise VI-10. Let X be a scheme over the field K. Define the functor
F : (scheme/K)◦ → (sets) as in Exercise VI-7, and define a subfunctor H
of F by letting H(Y ), for eachK-scheme Y, be the set of closed subschemes
Z ⊂ X × Y flat over Y and such that all the fibers of Z over closed points
of Y are subschemes of degree 2 of X supported at a single point of X.
Show that H is not in general a closed subfunctor of F.

We will also use the notion of an open covering of a functor. This is a
collection of open subfunctors that yields an open covering of a scheme
whenever we pull back to a representable functor. More precisely: let F :
(schemes) → (sets) be a functor. Consider a collection {Gi → F} of open
subfunctors of F . For each map hx → F from a representable functor
hX to F , there are open subschemes Ui ⊂ X such that the fiber product
hX ×F Gi of hX and Gi is hUi . We say that the collection {Gi → F} is
an open covering if, for any such map hX → F , the corresponding open
subschemes Ui ⊂ X cover X.
One warning: if {Gi → F} is an open covering of F , it is not necessarily

the case that F (T ) =
⋃
Gi(T ) for all schemes T . (For example, consider

F = hSpec Z , G1 = hSpec Z[1/p], G2 = hSpec Z[1/q],

where p and q are distinct primes. Then {Gi → F} is an open covering, but
F (SpecZ) consists of one point (the identity map), whereas Gi(SpecZ) =
∅ for i = 1, 2.) However, it is the case that an open covering {Gi → F}
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yields a covering F (T ) =
⋃
Gi(T ) for sufficiently local flat schemes T . For

example:

Exercise VI-11. Let {Gi → F} be a collection of open subfunctors of a
functor F : (schemes) → (sets). Show that this is an open covering if and
only if F (SpecK) =

⋃
Gi(SpecK) for all fields K.

VI.1.2 K-Rational Points

If X is a scheme over a field K, the K-valued points of X over K are maps
SpecK → X whose composition with the natural map X → SpecK is the
identity. We claim that such maps correspond exactly to closed points p of
X that are rational over K (or K-rational) in the sense that the residue
class field κ(p) is K (via the inclusion map of K into the local ring of X
at p). Indeed, since SpecK has no nontrivial open coverings, a map from
SpecK into X is a map into some affine open subscheme SpecT of X, and
such a morphism is determined by a K-algebra map T → K—that is, by a
maximal ideal of T with residue class field K. Conversely, we may reverse
the construction and see that any K-rational closed point p gives rise to a
unique morphism SpecK → X of K-schemes.
We reiterate the warning about working in the category of S-schemes

rather than the category of all schemes, where applicable. For example,
when working with complex varieties, one would expect hSpec C(SpecC) to
be a single point (the identity map)—and this is true in the category of
C-schemes. But in the category of schemes, this set is very large!

Exercise VI-12. Let X = SpecC, considered as an abstract scheme, that
is, a scheme over Z. Describe the set hX(SpecC) of all C-valued points of
SpecC.

VI.1.3 Tangent Spaces to a Functor

Sometimes it is much easier to compute geometric information about a
scheme if one knows its functor of points than if one knows its equations!
A typical example occurs with the Zariski tangent space. (We will see this
applied in Section VI.2.3).
We will work with schemes over a fixed field K, and all morphisms will

be morphisms over K.
Recall that if X is a scheme, then for any K-rational point p ∈ X the

Zariski tangent space to X at p is HomK(m/m2, K), where m = mX,p is
the maximal ideal in the local ring of X at p and K = κ(p) = OX,p/mX,p
is the residue field of X at p. Now let X be a scheme over K. Let X be the
affine scheme SpecK[ε]/(ε)2. We claim that a K[ε]/(ε)2-valued point of X
is the same as a K-rational closed point p of X together with an element
of the Zariski tangent space to X at p.
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To check this assertion, note first that because of the inclusion map
ι : SpecK → SpecK[ε]/(ε2) induced by the algebra map K[ε]/(ε2) → K,
a morphism SpecK[ε]/(ε2) → X determines a morphism SpecK → X
and thus a closed, K-rational point p of X. An extension of such a mor-
phism SpecK → X consists of a lifting of the K-algebra homomorphism
OX,p → κ(p) = K to a (local) homomorphism OX,p → K[ε]/(ε2). Such a
homomorphism induces a map from the maximal ideal mX,p to the maxi-
mal ideal (ε) of K[ε]/(ε2), and since (ε2) = 0, this map factors through a
map t : mX,p/m

2
X,p → (ε) ∼= K. The map t is an element of (mX,p/m2

X,p)
∗,

the Zariski tangent space to X at p.
Conversely, given a K-rational point p ∈ X and t : mX,p/m

2
X,p → (ε) ∼=

K we may construct a map OX,p → K[ε]/(ε2) from the map π : OX,p →
κ(p) = K corresponding to p, as follows: π and the K-algebra structure
map K → OX,p define a K-vector space splitting of OX,p/m2

X,p into K ⊕
mX,p/m

2
X,p; and we use the identity map on K and the map t on mX,p/m

2
X,p

to define a map

OX,p/m
2
X,p → K[ε]/(ε2),

which by composition with the projection gives a map OX,p → K[ε]/(ε2).
This map determines the desired morphism of schemes SpecK[ε]/(ε2)→X.
In Section VI.2.1 we will see how this characterization of tangent vectors

to a scheme may be used to give an intrinsic description of tangent vectors
to projective space, completing the discussion in Section III.2.4.
If now F is a functor from the category of K-algebras to (sets) and

p ∈ F (K), we may define the tangent space TpF to F at p to be the fiber
over p in F (K[ε]/(ε2))→ F (K). One objection that may be raised to this
definition is that it gives us the tangent space as a set, rather than as a
vector space over K. One can at least define multiplication by elements of
K: if a ∈ K, then the map ε 
→ aε induces an endomorphism of the algebra
K[ε]/ε2, making the diagram

ε � aε

K[ε]/(ε2) � K[ε]/(ε2)

K
�

�

commute; and this induces a map TpF → TpF, which is the desired mul-
tiplication by a. To make TpF a vector space, we now need to define an
addition map TpF × TpF → TpF. In general, there seems to be no way to
do this; but for those functors F that, like representable functors, preserve
fibered products, we can.
To do this, consider the scheme SpecK[ε′, ε′′]/(ε′, ε′′)2 —that is, the

closed subscheme of the plane given by the square of the maximal ideal



258 VI. Schemes and Functors

of a point. The commutative diagram

K[ε′]/(ε′)2

K[ε′, ε′′]/(ε′, ε′′)2

�

K

�

K[ε′′]/(ε′′)2

�
�

given by the projections expresses K[ε′, ε′′]/(ε′, ε′′)2 as the fibered product
over K of K[ε′]/(ε′)2 and K[ε′′]/(ε′′)2. On the other hand, there is a third
map, σ : K[ε′, ε′′]/(ε′, ε′′)2 → K[ε]/(ε2), that takes both ε′ and ε′′ to ε.
Thus if the functor F preserves fibered products in the category of algebras,
or even just the fibered product given above, we can form the diagram

F (K[ε′]/(ε′)2)×F (K)F (K[ε′′]/(ε′′)2) == F (K[ε′, ε′′]/(ε′, ε′′)2)
F (σ)� F (K[ε]/(ε)2)

F (K)
� ��

and taking fibers over p ∈ F (K), we get the desired addition map.

Exercise VI-13. Verify that these maps make TpF into a K-vector space,
and that this is the old vector space structure in the case where F is a
representable functor.

VI.1.4 Group Schemes

It is extremely easy to specify extra structure on a scheme by specifying it
on the functor. For example, we may define a group scheme as a scheme G
and a factorization of the functor hG(rings) → (sets) through the forget-
ful functor (groups)→ (sets)— that is, a group scheme is a scheme and a
natural way of regarding Mor(X,G) as a group for each X.
By Yoneda’s Lemma (VI-1), this is the same thing as giving maps

G×G→ G, G→ G and SpecK → G

representing the multiplication, inverse, and identity element, respectively,
and satisfying the usual laws (associativity and so on), but is often much
simpler. For example, GLn can be defined as the affine scheme of invertible
integral n× n matrices,

SpecZ[xij ][det(xij)−1],

but one usually thinks of it as a functor that associates to every ring T the
group GLn(T ). The interesting point here is just that this family of groups
already specifies the structure of a scheme and the additional structure
maps!
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VI.2 Characterization of a Space by its Functor of
Points

It is often much easier, and sometimes more illuminating, to describe the
functor of points of an interesting scheme than to give a direct construction
of it, whether by gluing or by explicit equations in affine or projective
space. Typical examples come from the Hilbert scheme and other moduli
problems, where one wants a natural space whose points represent some
geometric objects. However, the point of view is also useful in discussing
much simpler objects, such as fibered products, or projective space itself.
The basic idea in any case is to first define a functor from the category

of schemes to the category of sets, and then to prove an existence theorem
asserting that there is a scheme of which it is the functor of points. Of
course, to carry this procedure out an essential ingredient is a local (and
readily verifiable) criterion for a functor to be representable, and we start
by giving such a criterion.

VI.2.1 Characterization of Schemes among Functors

To the extent that we want to define and/or construct schemes first as
functors, we run into a fundamental problem, that of determining when a
functor comes from a scheme. Here is one characterization.
We say that F : (rings) → (sets) is a sheaf in the Zariski topology if for

each ring R and each open covering of X = SpecR by distinguished open
affines Ui = SpecRfi the functor F satisfies the sheaf axiom for the open
covering

⋃
Ui = X. That is, for every collection of elements αi ∈ F (Rfi)

such that αi and αj map to the same element in F (Rfifj ), there is a unique
element α ∈ F (R) mapping to each of the αi.
This is a reasonably easy property to check in practice. It is in fact

enough to guarantee that F comes from a scheme if we know already that
F is covered by affine schemes in the following sense. The reader may prove
the following theorem.

Theorem VI-14. A functor F : (rings) → (sets) is of the form hY for
some scheme Y if and only if

(1) F is a sheaf in the Zariski topology, and

(2) there exist rings Ri and open subfunctors

αi : hRi → F

such that, for every field K, F (K) is the union of the images of hRi(K)
under the maps αi.

As an easy application, one can use the theorem to show the existence of
fibered products. The construction of fibered products in the category of
schemes, which was explained in Chapter I, is of fundamental importance,
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but it is surprisingly clumsy. Using the functorial point of view, we can
at least describe the fibered product of two schemes by giving its functor
of points directly. If X → S and Y → S are morphisms of schemes, the
fibered productX×SY is determined by saying that it is the scheme whose
functor of points is the fibered product of functors hX×hS hY . Its existence
is established in the following exercise.

Exercise VI-15. (a) Show that if f : A → C and g : B → C are mor-
phisms of functors all of which are sheaves in the Zariski topology, the
fibered product A×C B is a sheaf in the Zariski topology.

(b) Use the open covering of the fibered product suggested in Chapter I
and the above theorem to prove the existence of fibered products in
the category of schemes.

The next example gives a different way of looking at maps to projec-
tive spaces. Theorem III-37 may be translated immediately into our new
language:

Theorem VI-16. If Y = PnZ, then

hY (X) =
{
locally free subsheaves F ⊂ On+1

X

that locally are summands of rank n

}

=
{invertible sheaves P on X with an epimorphism On+1

X → P}
{isomorphisms} ,

where isomorphism is defined as in Corollary III-42.

By way of an application, we will combine this description of maps to
projective space with the characterization in Section VI.1.3 of tangent vec-
tors to a scheme X as maps of SpecK[ε]/(ε2) to X to compute the Zariski
tangent spaces to PnK at K-valued points. By what we have just said, a
K-valued point of PnK is a rank n summand F ⊂ Kn+1; let L be the quo-
tient L = Kn+1/F. The Zariski tangent space T at this point is the set of
all summands F ′ ⊂ (K[ε]/(ε)2)n+1 that restrict to F modulo ε. We claim
that there is a natural isomorphism

T ∼= HomK(F,L).

To produce it, choose a splitting Kn+1 = F ⊕ L and a basis ei of F. Any
summand F ′ of (K[ε]/(ε)2)n+1 that reduces mod ε to F has a basis of the
form {ei + εsi + εti} with si in F and ti in L, say. We associate to K ′ the
map α : F → L sending ei to ti. Conversely, given any map α, we may
define F ′ to be the module spanned by the elements ei + εα(ei).

Exercise VI-17. Check that these definitions are independent of all the
choices made.

Finally, Theorem VI-14 can also be used to prove the existence of the
Grassmannian scheme from its functorial description.
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Exercise VI-18. For 0 < k < n, let

g = g(k, n) : (rings)→ (sets)

be the Grassmannian functor, that is, the functor given by

g(T ) = {rank k direct summands of T n}.
Prove that this is the functor of points of a closed subscheme GZ(k, n) of
projective space PrZ, called the Grassmannian of k-planes in n-space, as
follows.
First, let r =

(
n
k

) − 1, and let PrZ = ProjZ[. . . XI . . .] be the projective
space with homogeneous coordinates XI corresponding to the subsets of
cardinality n− k in {1, 2, . . . , n}. Define a natural transformation g → hPr

Z

of functors by sending a summand M ⊂ T n to
∧kM ⊂ ∧k T n. Cover PrZ

by the usual open affine subschemes UI ∼= ArZ ; show that these subschemes
are represented by the subfunctors

UI(T ) =
{
rank r summands of T r+1 such that the I-th
basis vector of T r+1 generates the cokernel

}
and that the intersection (fiber product) of UI and g is the functor

(UI ∩ g)(T ) =
{
rank k summands M of T n such that the basis
vectors ei1 , . . . , ein−k

∈T n generate the cokernel
}
.

Check that the intersection UI ∩g is represented by an affine scheme. Show
that g is a sheaf in the Zariski topology, and conclude that g is represented
by a scheme.

Note once more that we do not have g(T ) =
⋃
(UI ∩ g)(T ), except on

local rings.

Exercise VI-19. Show that this definition of the Grassmannian coincides
with the one given in Section III.2.7.

Exercise VI-20. For a field K, give an analogous definition of the Grass-
mannian GK(k, n), and show that it coincides with the product GZ(k, n)×
SpecK.

We will see other examples of the use of this theorem in the next section.
The functorial point of view is developed in far greater depth and detail in
Demazure and Gabriel [1970], to which the interested reader is referred for
more information.
One of the principal goals in Grothendieck’s work on schemes was to

find a characterization of scheme-functors by weak general properties that
could often be checked in practice and so lead to many existence theorems
in algebraic geometry (like Brown’s theorem in the homotopy category; see
Spanier [1966, Chapter 7.7]). It seemed at first that this program would
fail completely and that scheme-functors were really quite special; see Hi-
ronaka [1962], for instance. Artin, however, discovered an extraordinary
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approximation theorem exhibiting a category of functors F only “a little”
larger than the scheme-functors that can indeed be characterized by weak
general properties. Geometrically speaking, the functors F are like spaces
obtained by dividing affines by “étale equivalence relations” and then glu-
ing. He calls them algebraic spaces (for a typical occasion where they arise,
see Section VI.2.4). For details, see Artin [1971] and Knutson [1971].

VI.2.2 Parameter Spaces

The Hilbert Scheme. Probably the one area where the notion of the
functor of points has had the most impact is in the construction and de-
scription of parameter spaces. We have already mentioned in Section III.3.3,
for example, that the subschemes of a projective space PnK over a field K
having a given Hilbert polynomial P form a scheme, which we will call HP .
It seems surprising that such a statement has an unambiguous meaning.
While it is intuitively plausible that the set of such objects might form the
points of a variety, couldn’t they form a variety in several different ways?
And in what sense do they form a scheme?
The answers are obtained by making precise what properties we want

the correspondence between the set of subschemes and the set of points of
HP to have. Specifically, note that if X ⊂ PnK ×B → B is any flat family
of subschemes of PnK with Hilbert polynomial P, we get a map from the
points of B with residue field K to the points of HP with residue field K,
sending a point b ∈ B to the point of HP corresponding to the fiber Xb
of HP over b. It is natural to ask that this map come from a regular map
B → HP . Carrying this a little further, we want HP to have the property
that for any scheme B over K, the set of flat families of subscheme of PnK
with Hilbert polynomial P parametrized by B is naturally identified with
the set of maps from B to HP . Finally, since the problem of parametrizing
subschemes of PnK with a given Hilbert polynomial should be in some sense
the same for all K, we would like to do this over SpecZ —that is (as in
the case of the Grassmannian, which is indeed a special case of a Hilbert
scheme) define for each P a single object HP over SpecZ such that for any
K the product HP × SpecK parametrizes subschemes of PnK with Hilbert
polynomial P.
To say this a little differently, we make the following definition:

Definition VI-21. The Hilbert functor hP —called the “functor of flat
families of schemes in PnZ with Hilbert polynomial P”— is the functor

hP : (schemes)◦ → (sets)

that associates to any B the set of subschemes X ⊂ PnB flat over B whose
fibers over points of B have Hilbert polynomial P.

We then want to take the Hilbert scheme HP to be the scheme that
represents hP : in other words, the scheme whose functor of points is hP .
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By Yoneda’s Lemma (VI-1), this determines the scheme HP , if one such
exists; the key theorem is thus the following.

Theorem VI-22. There exists a scheme HP whose functor of points is
the functor hP .

Note that for any scheme S we can make an analogous definition of a
functor hP,S : (S−schemes)◦ → (sets) on the category of S-schemes, and
that if HP is the scheme representing the functor hP as above, then hP,S
is represented by the S-scheme HP × S.
In fact, it turns out that HP ×SpecK is often a scheme that is genuinely

not a variety. We will describe, in Exercises VI-35 through VI-37, a famous
example of Mumford [1962] of a Hilbert scheme that is nonreduced even at
points corresponding to nonsingular, irreducible projective varieties.
The statement of Theorem VI-22 has another interpretation that is often

useful: saying that the functor hP is representable is the same thing as
saying that there exists a universal family—that is, a scheme H and a
subscheme X ⊂ PnZ ×H flat over H with Hilbert polynomial P —such
that any subscheme Y ⊂ PnZ ×B flat over B with Hilbert polynomial P is
equal to the fiber product Y = X ×H B ⊂ PnZ ×B for a unique morphism
B → H . Clearly, if a universal family X ⊂ PnZ × H exists, then H
represents the functor hP . Conversely, if a scheme H represents hP , then
the subscheme X ⊂ PnZ × H associated to the identity map is universal
in the above sense.

We will not give a proof of Theorem VI-22 but will indicate how it may
be approached; for more details we refer the reader to Mumford [1966] or
Kollár [1996].
The idea is easy to summarize: reducing to the case of a subscheme

X of projective space PnB over a base of the form B = SpecR with R
a local ring, such a scheme X is determined by its ideal I(X) ⊂ S =
R[X0, . . . , Xn], which in turn is determined for m sufficiently large (in a
sense depending only on P ) by its degree m piece I(X)m ⊂ Sm. Setting
M =

(
m+n
n

)
and q = P (m), this in turn corresponds to a point in the

Grassmannian GB(q,M) parametrizing summands of codimension P (m)
in the free R-module Sm ∼= RM. In this way HP,B becomes a subscheme
of the Grassmannian GB(q,M) of such planes.
The key point is that we can choose a single m that has this property

uniformly for every subscheme X with Hilbert polynomial P ; that is, that
for every P, there is an m0 such that if m ≥ m0 and X is a subscheme of
PnK with Hilbert polynomial P, then I(X)l≥m is generated by I(X)m, and
the codimension of I(X)m in Sm is PX(m). Examining our proof that the
Hilbert polynomial is a polynomial, we see that to prove this it is enough to
show that the degrees of the generators of the free modules in the minimal
free resolution of I(X) can be bounded in terms of the Hilbert polynomial
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of X. This is done by using the idea of Castelnuovo regularity of X ; a more
complete description would take us too far afield.
We thus have, for every flat family X ⊂ PnB over a base B = SpecR—

that is, an element of hP (SpecR)—a summand of corank q in RM—that
is, an element of the set g(q,M)(R), where g = g(q,M) is the Grassmannian
functor as defined in Exercise VI-18. This association extends to a natural
transformation of functors from h∗

P to g(q,M), where h∗
P : (rings)→ (sets)

is the functor h∗
P (R) = hP (SpecR), and hence to a natural transformation

from the Hilbert functor hP to the functor respresented by the Grassman-
nian G = GZ(q,M).
To finish the argument, one must show that there exists a subscheme

HP ⊂ G such that a morphism ϕ : B → G comes in this way from a flat
family X ⊂ PnB with Hilbert polynomial P if and only if ϕ factors through
HP . We will content ourselves here with describing the equations of HP

as a closed subscheme of G. Let Y be the universal subbundle on G. We
have multiplication maps

multk : Y ⊗ Sk → Sk+m,

where S = Z[X0, . . . , Xn], and we can take HP to be the “determinantal”
subscheme of GZ(q,M) defined by the conditions that

rank(multk) ≤ dimSk+m − P (m+ k)

for all k ≥ 0. It is immediate that the desired maps ϕ all factor through this
subscheme. Given any point p in this subscheme, one shows that (because
m has been chosen so large) the ideal generated by the corresponding linear
subspace of Sm defines a scheme with Hilbert polynomial P. This gives us a
“tautological family” on HP of schemes with Hilbert polynomial P. Given
any map ϕ from a scheme B into HP , one can “pull back” this family by
using the fibered product to get a family over B, and the map ϕ will be
associated to this family. Once all this is verified, the description of HP by
its functor of points ensures that HP does not depend on the choice of m.

Examples of Hilbert Schemes. We will mention, largely in the form of
exercises, some examples of Hilbert schemes. To begin with, the Grassman-
nian GS(k, n) is a Hilbert scheme: it parametrizes subschemes X of degree
1 and dimension k (specifically, with Hilbert polynomial P (m) =

(
m+k
k

))
in the projective space PnS . The following exercise deals with the simplest
special case of this, but the general statement (and proof) differs only nu-
merically.

Exercise VI-23. Let P (m) = m+ 1 be the Hilbert polynomial of a line.
Show that the Hilbert scheme of subschemes of P3

Z with Hilbert polynomial
P is the Grassmannian introduced in Exercise VI-20.

Another very straightforward example is hypersurfaces. It is a standard
observation that the set of hypersurfaces of degree d in projective space
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PnK over a field K may be identified with the points of the projective space
of homogeneous polynomials of degree d in n + 1 variables. In fact, this
projective space turns out to be the Hilbert scheme of such hypersurfaces.
As in the preceding example, the following exercise deals with one typical
example.

Exercise VI-24. Let P (m) = 2m+1 be the Hilbert polynomial of a conic
curve. Show that the Hilbert scheme HP of subschemes of P2

Z with Hilbert
polynomial P is P5

Z .

Beyond these examples, the geometry of Hilbert schemes is much less
well known. Even the Hilbert schemes parametrizing zero-dimensional sub-
schemes of projective space PnK over a field remain mysterious: Iarrobino
[1985], for example, has shown (contrary to naive expectations) that such
Hilbert schemes are not in general irreducible. In the case of P2

K , they are in
fact irreducible and nonsingular, but their global geometry presents many
problems: see, for example, Collino [1988]. One case where we can actually
give a description is the following exercise.

Exercise VI-25. Let P be the constant polynomial 2. Show that the
Hilbert scheme HP parametrizing subschemes of P2

Z with Hilbert poly-
nomial P may be obtained by blowing up the product P2

Z × P2
Z along the

diagonal and then taking the quotient by the involution exchanging factors.

In the general setting our knowledge of Hilbert schemes is minimal. For
example, in the case of curves in projective 3-space P3

K over a field K—
the simplest example of a Hilbert scheme parametrizing schemes that are
pure positive-dimensional but not hypersurfaces—we do not have even a
guess as to the number of components of HP , their dimension, or their
smoothness or singularity. For a discussion of this case, see Harris and
Eisenbud [1982].

Variations on the Hilbert Scheme Construction. We have defined
the Hilbert scheme parametrizing subschemes of projective space with given
Hilbert polynomial P. In fact, with very little additional effort we can
generalize this substantially.
The first thing to notice is that if X ⊂ PnS is any closed subscheme, we

can define a functor

hP,X : (S − schemes)◦ −→ (sets)

by associating to any S-scheme B the set of flat families of subschemes of
X with Hilbert polynomial P over B, that is,

hP,X(B) =
{

X ⊂B×SX ⊂B×S PnS = PnB, flat
over B, with Hilbert polynomial P

}
.

The key fact, which is not hard to establish, is the following.

Exercise VI-26. Show that hP,X is a closed subfunctor of hP .
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It follows that there exists a closed subscheme HP,X ⊂ HP whose func-
tor of points is hP,X ; this scheme is what we call the Hilbert scheme of
subschemes of X with Hilbert polynomial P.
As an important example, if we take P (m) =

(
k+m
k

)
to be the Hilbert

polynomial of a k-plane, we will see in Section VI.2.3 below that the scheme
HP,X we arrive at is the Fano scheme Fk(X) of k-planes on X, as defined in
Section IV.3. Nor is this just an idle observation: apart from giving a more
natural definition, this characterization of the Fano schemes will allow us
to determine their tangent spaces.

Now suppose we are given two projective S-schemes X ⊂ PmS and Y ⊂
PnS . We may embed the product X ×S Y in projective space via the Segre
map

X ×S Y ↪→ PmS ×S PnS ↪→ PNS ,

where N = (m+1)(n+1)−1. We thus have Hilbert schemes parametrizing
subschemes of a product X ×S Y.
This in turn allows us to parametrize morphisms from X to Y, by con-

sidering their graphs as subschemes of the product. The two things we need
to check are that

(1) the condition on a subscheme Z ⊂ X ×S Y that the projection map
πX : Z → X be an isomorphism is an open condition on the Hilbert
scheme of subschemes of X ×S Y ; and

(2) the Hilbert polynomials of the graphs Γϕ of morphisms ϕ : X → Y
of bounded projective degree are bounded. (See Harris [1995] for a
definition of “projective degree”.)

Given this, we see that there are quasiprojective schemes parametrizing
the morphisms of given degree from X to Y, and similarly a quasiprojective
scheme Isom(X,Y ) parametrizing isomorphisms from X to Y. Again, by
“parametrize” we mean represent the functor

isomX,Y : (S − schemes)◦ −→ (sets)

given by

isomX,Y (B) = {isomorphisms ϕ : B ×S X → B ×S Y as B-schemes} .
We should mention one further generalization of the construction of the

Hilbert scheme that is very useful in practice. This is the relative Hilbert
scheme, which parametrizes subschemes of members of a flat family of
schemes.
To set this up, let S be a scheme over a fieldK, and suppose thatX ⊂ PnS

is any scheme flat over S. We can then consider the functor

hP,X/S : (K − schemes)◦ −→ (sets)
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that associates to any K-scheme B the set of flat families over B of sub-
schemes of fibers of X over S—that is,

hP,X/S(B) =
{
pairs (ν,Σ) such that ν : B → S and Σ ⊂ B ×S X ⊂ PnB

is flat over B with Hilbert polynomial P

}
.

Once more, we can adapt our basic construction to show that hP,X/S(B)
is represented by a K-scheme HP,X/S .

Finally, we can apply the relative Hilbert scheme construction to a pair
of flat families to parametrize morphisms between members of two families!
Thus, if X → S and Y → S are any flat families, we have a quasiprojective
scheme Mord,X/S,Y/S parametrizing morphisms of given degree from fibers
of X over S to corresponding fibers of Y → S, and similarly a scheme
parametrizing isomorphisms.
Note that if X → S and Y → T are families with possibly different

bases, we can parametrize morphisms from fibers of X/S to fibers of Y/T
by pulling both back to families over the product S × T and performing
this construction there.
As an application of this construction, we have:

Exercise VI-27. Fix two integers g, h ≥ 2. Show that there is a number
N(g, h) such that for any nonsingular curves C and C ′ of genera g and h
respectively, the number of maps from C to C ′ is less than N(g, h).

More generally:

Exercise VI-28. Let X ⊂ PmS and Y ⊂ PnT be schemes flat over the
K-schemes S and T , and suppose that for any pair of closed points s ∈
S and t ∈ T the number nd(s, t) of morphisms of degree d between the
corresponding fibers Xs and Yt is finite. Show that, for fixed d, nd(s, t) is
bounded as s and t vary.

VI.2.3 Tangent Spaces to Schemes in Terms of Their
Functors of Points

Tangent Spaces to Hilbert Schemes. One facet of the Hilbert scheme
that is best described in terms of its functor of points is its tangent space
at a point. We first introduce the notion of a first-order deformation: if Y
is any scheme and X ⊂ Y a closed subscheme, a first-order deformation of
X in Y is defined to be a flat family X ⊂ Y × SpecK[ε]/(ε2) such that
the fiber of X over the reduced point SpecK ⊂ SpecK[ε]/(ε2) is X. It
then follows, via the characterization of tangent vectors to schemes given in
Section VI.1.3, that the tangent space to the Hilbert scheme HP at a point
[X ] is the space of first-order deformations in PnK of X ; and more generally,
if Y ⊂ PnK is a projective scheme, the tangent space to the Hilbert scheme
H Y
P at a point [X ] is the space of first-order deformations of X in Y.
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This is especially useful since the space of first-order deformations may
often be calculated, even in circumstances where we have no hope of writing
down the equations of HP . To do this, we introduce the normal sheaf NX/Y
to a closed subscheme X of a scheme Y : this is defined to be the sheaf

NX/Y = HomOX (J/J 2,OX) = HomOY (J,OX)

where J = JX/Y is the ideal sheaf of X in Y. We then have the following
basic theorem.

Theorem VI-29. Given a closed subscheme X of a scheme Y, the space
of first-order deformations of X in Y is the space of global sections of its
normal sheaf NX/Y .

Proof. To begin with, let X ⊂ Y ×SpecK[ε]/(ε2) be any subscheme whose
intersection with the fiber Y ∼= Y × SpecK ⊂ Y × SpecK[ε]/(ε2) is X (do
not assume X is flat). Let U ⊂ Y be any affine open subset, V = X∩U the
corresponding affine open subset of X, and V = X ∩(U ×SpecK[ε]/(ε2)).
Let A = OY (U) be the coordinate ring of U and I = I(V ) the ideal of V
in A, so that the restriction to V of the sheaf NX/Y is the sheaf associated
to the A-module Hom(I, A/I).
The coordinate ring of U × SpecK[ε]/(ε2) is A⊗K[ε]/(ε2); we write an

element of this ring as f + εg, with f and g ∈ A(U). In particular, we may
write the ideal I(V ) of V as

I(V ) = (f1+εg1, f2+εg2, . . . , fk+εgk)

where by hypothesis the elements fi ∈ A generate the ideal I. We claim
now that there exists an A-module homomorphism ϕ : I → A/I carrying
fi to gi if and only if V → SpecK[ε]/(ε2) is flat (note that if ϕ exists,
it is unique). The theorem follows immediately from this claim: in one
direction, if the family X → SpecK[ε]/(ε2) is flat, then by uniqueness
the homomorphisms ϕ patch together to give a section of the sheaf NX/Y ;
while given a global section of NX/Y we can simply take X to be given
locally by the ideal

{f + ε · ϕ(f) : f ∈ I(V )}
To prove the claim, note first that a K[ε]/(ε2)-module M is flat if and

only if when we tensor the exact sequence of K[ε]/(ε2)-modules

0→ (ε)→ K[ε]/(ε2)→ K → 0

by M, it remains exact. Applying this to the coordinate ring B = OX (V )
of V , we see that V will be flat over SpecK[ε]/(ε2) if and only if the map

(ε)⊗B → B

is injective— that is, if and only if, for any f ∈ A,

ε · f ∈ I(V )⇒ f ∈ I(V )
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Suppose now that f ∈ A and ε · f ∈ I(V ). We can then write

ε · f =
∑

(ai + εbi) · (fi + εgi) =
∑

aifi + ε ·
∑

(aigi + bifi)

We know that the first term on the right is zero, since the other two terms
in the equality are divisible by ε. Now, if there exists a homomorphism
ϕ : I → A/I of A-modules such that ϕ(fi) = gi, then we can write∑

ai · gi =
∑

ai · ϕ(fi) = ϕ
(∑

aifi

)
= 0

so the existence of a module map ϕ carrying fi to gi implies that the family
V is flat.
Conversely, suppose that V → SpecK[ε]/(ε2) is flat. Then for any col-

lection of ai ∈ A such that
∑

aifi = 0, we have

ε ·
∑

ai · gi =
∑

ai · (fi + εgi) ∈ I(V ) =⇒
∑

ai · gi ∈ I(V ).

We can thus define an A-module map ϕ : I → A/I by sending, for any
a1, . . . , ak ∈ A, the element

∑
aifi ∈ I to the element

∑
aigi ∈ A/I; by

the last calculation this will be well defined.

One trivial but useful consequence of this theorem is the following.

Corollary VI-30. The dimension of any irreducible component Σ of the
Hilbert scheme is at most the dimension of the space of sections of the
normal sheaf of any scheme X with [X ] ∈ Σ.

In fact, this a priori estimate for the dimension of a component of the
Hilbert scheme gives the right answer more often than not, especially when
applied to a general point [X ] of a component of HP . The following exer-
cises give examples of this.

Exercise VI-31. Let Σ be the component of the Hilbert scheme whose
general member is a complete intersection X ⊂ PnK of k hypersurfaces of
degree d. Calculate the dimension of the space of global sections of NX
and show that this is equal to the dimension of Σ.

Exercise VI-32. Generalize the preceding exercise to the case of the com-
ponent of the Hilbert scheme whose general member is a complete inter-
section X ⊂ PnK of hypersurfaces of degrees d1, . . . , dk. (This can get com-
plicated; you may want to stick to the case k = 2, which is enough to see
how it goes.)

Exercise VI-33. Let P (m) be the polynomial 3m + 1 and let Σ be the
component of the Hilbert scheme HP of subschemes of P3

K whose general
member is a twisted cubic curve C. Show that the dimension of Σ is 12,
and that this is equal to the dimension of the space of sections of NC .
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Exercise VI-34. By way of warning, the component Σ of the preceding
exercise is not the only component of the Hilbert scheme: there is another
component Σ′ whose general member is the (disjoint) union of a plane cubic
curve and a point. These two intersect in the locus of schemes C ⊂ P3

K such
that C is the union of a plane curve C0 and the double point (that is, the
scheme given by the square of the maximal ideal of a point) supported at
a singular point of C0. At a point of their intersection HP is singular, and
its tangent space will be strictly larger than the dimension of either Σ or
Σ′. Verify this.

It is not always the case, however, that the dimension of a component of
the Hilbert scheme is equal to the dimension of the space of sections of the
normal sheaf of a general member; there are examples of Hilbert schemes
that are nonreduced along whole components, even when the general points
of those components correspond to nonsingular, irreducible varieties. The
first example of this is due to Mumford [1962]; the following series of exer-
cises describes it.
Mumford’s example deals with curves of degree 14 and genus 24 in pro-

jective 3-space P3
K over a fieldK. There are (as we shall see) several compo-

nents of the Hilbert scheme parametrizing such curves; we will be concerned
with the component whose general member lies on a nonsingular cubic sur-
face. By way of notation, let P (m) = 14m− 23 be the Hilbert polynomial
of a curve of degree 14 and genus 24, and let H be the Hilbert scheme
parametrizing subschemes of P3

K with this Hilbert polynomial. We will de-
note by Σ the subset of H corresponding to nonsingular curves C ⊂ P3

K of
degree 14 and genus 24 that are contained in a nonsingular cubic surface S
and linearly equivalent on S to 4H+2L, where H is the hyperplane divisor
and L a line on S.

Exercise VI-35. Show that Σ is a constructible subset of H and that its
closure Σ̄ in H has dimension 56.

Not all curves of degree 14 and genus 24 in P3
K have to lie on cubic

surfaces. Thus, it is not a priori clear that the subvariety Σ̄ ⊂ H is an
irreducible component of H : the curves C parametrized by Σ̄ could be
specializations of other curves not lying on cubics. To see that this is not
in fact the case, we make another dimension count.

Exercise VI-36. Let C be a nonsingular, irreducible curve of degree 14
and genus 24 in P3

K , and assume that C does not lie on a cubic surface.
Show that it must lie on two quartic surfaces T, T ′ not having a common
component, and that the residual intersection of T and T ′ (that is, the
union of the irreducible components of T ∩ T ′ other than C) is a curve of
degree 2. By analyzing what this residual intersection may look like, show
that the set of such curves C is a constructible subset of H whose closure
has dimension at most 56. Deduce that the subvariety Σ̄ of Exercise VI-35
is indeed an irreducible component of H .
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Exercise VI-37. Now let C be a nonsingular curve of degree 14 and genus
24 lying on a nonsingular cubic surface S ⊂ P3

K . Using the exact sequence

0→ NC/S → NC/P3
K
→ NS/P3

K
⊗OC → 0

(where for any pair of schemes X ⊂ Y we write NX/Y for the normal
sheaf Hom(JX/Y ,OX) of X in Y ), show that the dimension of the space
of sections of the normal sheaf NC/P3

K
is 57. Deduce that H is nowhere

reduced along Σ̄.

Finally, here is an amusing fact about the Hilbert scheme of rational
normal curves, generalizing a calculation we made in Section IV.4.

Exercise VI-38. Let K be a field. For any r, let P (m) be the polyno-
mial rm + 1, and let Σ be the open subset of the Hilbert scheme HP of
subschemes of PrK parametrizing rational normal curves of degree r; check
that Σ is irreducible of dimenion r2 +2r− 3. Let C ⊂ Σ× PrK → Σ be the
universal curve over Σ. Let L be the function field of Σ, and CL the fiber
of C over the generic point SpecL of Σ. Show that CL ∼= P1

L if and only if
r is odd.

Tangent Spaces to Fano Schemes. One particularly nice example of
schemes that are in many ways best characterized by their functor of points
are the Fano schemes Fk(X) ⊂ GS(k, n) of a scheme X ⊂ PnS described
in Section IV.3. We will see, for example, how the description given in
Section VI.1.3 of the tangent spaces to a functor allows us to compute the
Zariski tangent spaces to a Fano scheme much more readily that we could
from the explicit equations introduced in Section IV.3; this will in turn
allow us to say in many cases whether a linear space Λ ⊂ X corresponds to
a nonsingular or a singular point of Fk(X). (For the following discussion, we
will introduce some notation: for a planeW ⊂ Kn+1 and the corresponding
linear subspace Γ ⊂ PnK , we’ll write Γ = [W ] and W = Γ̃.)
The characterization of Fano schemes is straightforward: we may de-

fine the Fano scheme Fk(X) of a subscheme X ⊂ PnS to be simply the
Hilbert scheme HP,X of subschemes of X with Hilbert polynomial P (m) =(
k+m
k

)
—that is, the functor

fk(X) : (S − schemes)◦ −→ (sets)

that associates to any S-scheme B the set of families of k-planes contained
in X ×S B, that is,

fk(X)(B) =
{
Σ ⊂ B ×S X ⊂ B × PnS = PnB, flat over B,
such that Σb⊂Pnκ(b) is a k-plane for all b∈B

}
.

We then have:

Proposition VI-39. The functor fk(X) is represented by the Fano scheme
Fk(X) introduced in Section IV.3.
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Proof. To establish this, we have to exhibit an isomorphism of functors

fk(X)(B) −→ MorS(B,Fk(X)),

that is, for any S-scheme B a natural bijection between two sets, the set
of families Σ ⊂ B ×S X ⊂ B × PnS = PnB of k-planes contained in X
and morphisms from B to Fk(X) as S-schemes. In fact, the serious work
has already been done: the definition of the map and the proof that it
is a bijection are not hard, given that we have already characterized the
Grassmannian GS(k, n) as the scheme representing the functor of families
of k-planes in PnS .
The point is, we already have an isomorphism of functors

gS(n+1, k+1) −→ MorS(B,GS(k+1, n+1))

where gS(n+1, k+1) is the Grassmannian functor introduced in Section
VI.2.1, here in the category of S-schemes. That is, we associate to any
family Σ ⊂ B × PnS = PnB , flat over B with k-plane fibers, a morphism
ϕΣ : B → GS(k, n) over S. Now all we need to check is that the subset
fk(X)(B) ⊂ g(n+1, k+1)(B) is carried into the subset MorS(B,Fk(X)) ⊂
MorS(B, GS(k+1, n+1)), that is, that

Σ ⊂ B ×S X ⊂ B × PnS ⇐⇒ ϕΣ(B) ⊂ Fk(X) ⊂ GS(k+1, n+1).

This is immediate, given the description in Section IV.3 of the defining
equations of Fk(X).

As promised, the characterization of the Fano scheme by its functor of
points allows us to determine its tangent spaces readily, and in particular
to give us criteria for the smoothness and/or singularity of Fano schemes.
For the following, then, K will be an algebraically closed field, X ⊂ PnK

will be an arbitrary projective scheme over K, Fk(X) ⊂ GK(k+1, n+1)
the Fano scheme of k-planes contained in X and Λ ∈ Fk(X) a K-valued
point of Fk(X). Write ∆ for the scheme SpecK[ε]/(ε2) and 0 ∈ ∆ for the
reduced point ∆red

∼= SpecK ⊂ ∆. According to our characterization of
Fk(X) as the scheme representing the functor of families of k-planes on X,
the tangent space to Fk(X) at the point Λ will be

TΛ(Fk(X)) =
{

subschemes Σ ⊂ ∆×K X flat over ∆
such that Σ ∩ (0×K X) = Λ

}
.

We will now see how to describe this as a subspace of

TΛ(GK(k + 1, n+ 1)) = Hom(Λ̃,Kn+1/Λ̃).

Probably the fastest way to do this is simply to observe that a first-order
deformation of a plane Λ ⊂ PnK—that is, a subscheme Σ ⊂ ∆ ×K PnK
flat over ∆ and such that Σ ∩ (0×K X) = Λ— is the union of its tangent
vectors, viewed as subschemes of Σ isomorphic to ∆. In other words, Σ
will be contained in a subscheme ∆×K X ⊂ ∆×K PnK if and only if every
tangent vector to Σ is a tangent vector to ∆×K X.
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Now, suppose that the first-order deformation Σ of a plane Λ corresponds
to a homomorphism ϕ : Λ̃→ Kn+1/Λ̃. The tangent vectors to Σ at a point
p (more properly, 0×K {p}) will then be the tangent vectors to ∆×K PnK
corresponding to homomorphisms ν : p̃→ Kn+1/p̃ such that

ν(p̃) ⊂ ϕ(Λ̃).

Similary, to say that the tangent vector corresponding to such a homomor-
phism ν is tangent to ∆×K X is to say that

ν(p̃) ⊂ T̃pX + Λ̃.

Thus, to say that the tangent vector to the Grassmannian associated to
the homomorphism ϕ lies in the tangent space to the Fano scheme Fk(X)
at Λ is to say that the image of ϕ is contained in the tangent space to X
at each point, i.e.,

TΛ(Fk(X)) =
{
ϕ ∈ Hom(p̃, Kn+1/Λ̃) such that
ϕ(v) ∈ T̃pX + Λ̃ for all v ∈ Λ̃

}
.

As an application, consider the simplest possible case, the Fano scheme
F1(S) ⊂ GK(1, 3) = GK(2, 4) of lines on a surface S ⊂ P3

K . Let L ⊂ S
be a line, which we will assume is not contained in the singular locus of S
(if it is, the Fano scheme F1(S) will have four-dimensional tangent space
at L—in other words, it will be very singular!). To a general point p ∈ L,
then, we may associate the projective tangent space T̃pS, which will be a
plane in P3

K containing L; thus we get a (rational) map

γ : L −→ P(K4/L̃) ∼= P1
K .

This map is given by the partial derivatives of the defining polynomial of S,
so that if S is nonsingular along L—in other words, if these partials have
no common zeroes— the degree of γ will be d − 1. If S has any singular
points on L, conversely, it will be less.
In fact, the degree of the map γ is precisely what determines the di-

mension of the tangent space to F1(S) at L. This is simple to see: if
ϕ : L̃→ K4/L̃ is any homomorphism, the induced map

ϕ̄ : L −→ P(K4/L̃) ∼= P1
K

p 
−→ [ϕ(p̃) + L̃]

will have degree 1 if ϕ has rank 2 and degree 0 if ϕ has rank 1. Thus,
if γ has degree deg(γ) ≥ 2, the tangent space to F1(S) at L will be zero-
dimensional; if γ has degree 1 it will be one-dimensional; and if γ is constant
it will be two-dimensional. We get the following corollaries:

• The Fano scheme of lines on a nonsingular quadric surface in P3
K is

nonsingular, while the Fano scheme of lines on a quadric cone is every-
where nonreduced.
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• More generally, the Fano scheme of the cone in P3
K over any plane

curve is nonreduced.

• The Fano scheme of lines on a nonsingular surface of degree d ≥ 3 in
P3
K consists of isolated reduced points.

There is a further corollary dependent on a further fact about Fano
schemes of hypersurfaces: if X ⊂ PnB is any hypersurface of degree d—that
is, a closed subscheme of PnB, flat over S, whose fiber over each point b ∈ B
is a hypersurface of degree d in Pnκ(b) —then the Fano scheme Fk(X) ⊂
GB(k + 1, n+ 1) of k-planes on X is flat over the open subset of B where
it has the expected fiber dimension (k + 1)(n − k) − (

k+d
k

)
. Since Fk(X)

may be described as the zero locus of a section of a locally free sheaf on
GB(k n), this is a generalization of the fact that complete intersections are
flat, but it is beyond the scope of this book. Given it, however, we have the
following consequence:

• All cubic surfaces that contain only finitely many lines contain the
same number of lines, properly counted; that is, their Fano schemes all
have degree 27.

In general, our description of the tangent spaces to the Fano scheme
Fk(X) allows us to determine the dimension of Fk(X) at a point Λ in
terms of the normal bundle to the plane Λ ⊂ X, but it is rare that this will
be determined by the singularities of X along Λ. In fact, as soon as we get
to hypersurfaces X ⊂ PnK with n ≥ 4, we see examples to the contrary.

Exercise VI-40. Use this characterization of the tangent spaces to Fano
schemes to give an example of a nonsingular hypersurface X ⊂ PnK such
that the Fano scheme F1(X) of lines on X is singular.

VI.2.4 Moduli Spaces

A similar situation arises when we want to construct a moduli space of
geometric objects. For example, we would like to identify the set of non-
singular, projective curves of genus g over a field K with the set of closed
points of a “moduli scheme” Mg. To avoid unnecessary complication, we
restrict to the case char(K) = 0. Again, the way to express what we want
is to introduce the functor of nonsingular curves of genus g: this is the
functor

M fun
g : (K − schemes)◦ → (sets)

that assigns to any scheme B over K the set of flat morphisms π : X → B
whose fibers are nonsingular curves of genus g, up to isomorphism X ∼= X ′

as B-schemes. We define Mg to be the scheme (if any) that represents the
functor M fun

g .
Since schemes are uniquely determined by their functors of points, the

only difficulty with the “definitions” above is whether such schemes exist—
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that is, whether the given functors are representable. The answer in the case
of HP is yes; and indeed, as we have pointed out, the characterization of
HP as the scheme that represents the functor hP is crucial to the proof of
existence.
However, in the case of Mg, the answer is no! For example, even in the

case of nonsingular curves of genus 1 over C there does not exist a moduli
space M1 in this sense. To see this, it suffices to show that there does not
exist a universal family— in other words, a flat morphism π : C → M of
schemes with fiber nonsingular curves of genus 1 such that for every family
Y → B of nonsingular curves of genus 1 there are unique maps ϕ : B → M
and Φ : Y → C forming a fiber product diagram:

Y
Φ � C

B

η
� ϕ � M

π
�

In fact, there does not even exist a tautological family—that is, a morphism
C → M and a bijection between the closed points of M and the set of
isomorphism classes of nonsingular curves of genus 1 such that the fiber
over each point p ∈ M is in the isomorphism class corresponding to the
point p. We will exhibit two kinds of obstructions to the existence of a
universal family, one local and one global.
For the local obstruction, recall that curves of genus 1 over C are classified

by their j-invariant: we can write any such curve as the plane cubic

y2 = x(x − 1)(x− λ)

for some complex λ �= 0, 1; and two such curves Cλ and Cλ′ will be iso-
morphic if and only if their j-invariants j(λ) and j(λ′) are equal, where

j(λ) = 256 · (λ
2 − λ+ 1)3

λ2 (λ− 1)2
;

see Silverman [1986, Chapter III, Proposition 1.7], for example. It can be
shown that given a family X → B of nonsingular curves of genus 1 with
nonsingular base B, the function j is a regular function on B; and locally
around any point b ∈ B, λ can be defined as a regular function, too (though
it is not unique). It follows that if there did exist a tautological family, there
would have to exist one with base the affine line A1

C with coordinate j. But
no such family can exist, because at the point j = 0 the function λ2 −
λ+1 would vanish, and thus j would vanish triply. Less obviously, because
j′(−1) = 0, it also follows that j can only assume the value 1728 with even
multiplicity. (Note that the values j = 0 and 1728 correspond to the elliptic
curves with “extra automorphisms”—that is, whose automorphism groups
contain the automorphism group of a general elliptic curve as subgroups of
index 3 and 2, respectively.)
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Turning to the global obstruction, even if a tautological family exists over
a variety M whose points correspond to isomorphism classes of curves, such
a family may not be universal; that is, it may not induce a bijection between
families over a base B and maps of B to M. For example, if we simply
exclude the curves of j-invariant 0 and 1728—that is, consider the functor
of families of nonsingular curves of genus 1 not isomorphic to C0 or C1728 —
we might hope that the punctured j-line M = A1

C − {0, 1728} would be a
moduli space; and indeed, a tautological family does exist over this open
subset of A1. It is not universal, however: for example, for any fixed λ, let
B′ be any variety with fixed-point-free involution τ , and consider the family
over B = B′/〈τ〉 formed by taking the quotient of the product E × B by
the involution

ι : ((x, y), p) 
→ ((x,−y), τ(p))
This is a family all of whose fibers are isomorphic to Cλ, and so it can only
come from the constant map B → M ; but it can be shown that the family
itself is not trivial.
It is the presence of automorphisms of Cλ that is responsible for this phe-

nomenon. Indeed, an analogous argument shows that we can never have a
moduli space for schemes modulo isomorphism when some of the objects
to be parametrized admit automorphisms. This explains also the discrep-
ancy between the notions of tautological and universal family: in the case
of the Hilbert scheme H parametrizing subschemes of PnK if two families
X , X ′ ⊂ PnK ×K B over a variety B correspond to the same map B → H
it follows that they are equal fiber by fiber and hence equal. By contrast,
in the case of a moduli space, it would follow only that they are isomorphic
fiber by fiber; if the fibers admitted automorphisms, those isomorphisms
would not be unique and so might not fit together to give an isomorphism
X ∼= X ′.
How do we deal with these difficulties? The most naive (and least sat-

isfactory) way is simply to exclude all schemes with automorphisms from
consideration when trying to construct a moduli space. This works in some
contexts: for example, since the family of curves of genus g with automor-
phisms has in a suitable sense codimension g − 2 among all curves, if we
are concerned in particular with the divisor theory of the moduli space of
curves of genus g ≥ 4, we can afford to look just at the moduli space M 0

g

of automorphism-free nonsingular curves of genus g, which does exist.
There are two more serious approaches, both of which are in active use.

The first is to take Mg to be the scheme whose functor of points “most
closely approximates” M fun

g . It turns out that there is such a thing, called
a coarse moduli space, and that it has nice properties; for example, the
value of its functor of points at an algebraically closed field K is really the
set of isomorphism classes of nonsingular curves over it. The second way
out is to enlarge the category of schemes in a different way, to the category
of algebraic stacks. A discussion of this would take us too far, so we’ll just
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refer the reader to Vistoli [1989, Appendix] for a short treatment and to
Behrend et al. [≥ 2001] for a full treatment; see also Mumford [1965] for
an introduction to the functorial point of view on moduli spaces.
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élémentaire de quelques classes de morphismes”, Inst. Hautes Études Sci.
Publ. Math. 8 (1961), 1–222.
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tangent space, 104, 105
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graded, 91, 95, 100, 101, 170
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geometry, see classical
spaces, 262
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scheme, 65
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Dieudonné, Jean, 5
different of a polynomial, 234
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of scheme, 27
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scheme, 231
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of schemes, 70
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Fano
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fibered
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product, 35, 36, 254, 260
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type, 76, 210, 231
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Fitting
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sheaf, 24
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of morphism, 209
reduced, 222
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set-theoretic, 209, 222
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intersection
multiplicity, 141, 148, 151
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invariance under base change, 209
j-invariant, 185, 205, 275, 276
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of module, 68
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Levy, Silvio, 5
Lie group, 161
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direct, 14
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subschemes, 146

free module, 112
induced, 16
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manifold, 8
map, see morphism
Matsumura, Hideyuki, 75–77, 79,
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maximal
ideal, 9–11, 27, 30, 31

Mederer, Kurt, 5
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minors, ideal of, 219
module

flat, 75
length of, 68
presheaf of –s, 12

moduli space, 274, 276
monodromy group, 143
Mordell, conjecture, 1
Mori, Shigefumi, 1, 179
morphism
dominant, 211
image of, 209
of schemes, 28, 29
of schemes over S, 40
of sheaves, 15
projective, 97, 101
proper, 95
to projective space, 110

S-morphism, 40
Morrison, David, 1
multiple
component, 242
components, 156
line, 80
point, 62, 182

multiplicity, 107
intersection, 151
of a flex, 154
of associated scheme, 68
of intersection, 141
of point, 60
of ring, 66
of scheme, 65, 66

Mumford, David, 1, 5, 78, 192,
263, 270, 277

Mustata, Mircea, 5

Nagata, Masayoshi, 56
Nakayama’s Lemma, 62, 126, 128,
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Nash manifold, 8
nilpotent-free, see also reduced, 8
nilradical
of a ring, 25
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node, 57, 156, 239
Noetherian
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algebra, 81
ring, 19, 26, 28, 67, 130, 172, 253
scheme, 26–28, 183, 210, 231

nonaffine scheme, 22, 33
nonalgebraically closed, 53, 57, 65,
84, 142, 152, 191, 193, 195, 201,
241

nonclosed point, 42, 48, 51, 56, 85,
87, 114

nonreduced scheme, 57, 180
nonsingular
curves, functor of, 274
scheme, 28

normal sheaf, 268
Northcott, D. G., 67
Nullstellensatz, 48, 54
number field, 82

O’Shea, Donal, 229
Ogus, Arthur, 5
open
covering, of a functor, 255
subfunctor, 254
subscheme, 23

opposite category, 30
order (in a number field), 84, 188
ordinary
double point, 178
node or tacnode, 239

over K, scheme, 39
over something
scheme, 40

parameter spaces, 262
parameters, equations with, 70
Pardue, Keith, 5
partition of unity, 20
Peeva, Irena, 5
Pell’s equation, 205
pencil
of cubics, 184, 204
of plane curves, 185
of quadrics, 201

Plücker
coordinates, 207

equations, 120, 121
formulas, 156, 242
ideal, 122
relations, 121

plane curve, 123, 152
power series, 14, 52, 53, 71
preimage, 31, 38, 49, 52
presheaf, 11
primary
affine scheme, 68
component, 67, 68
decomposition, 67, 68
ideal, 67

prime, 9
associated, 67
ideal sheaf, 41
minimal, 25

product, fibered, 35, 254
Proj, 170
global, 102
of graded ring, 95

projective
bundle, 103
module, 113
morphism, 97, 101
scheme, 91, 95
invariants of, 124

space, 34, 35, 96
dual, 103

space, morphisms to, 110
tangent, 152
tangent space, 104, 105

projectivization, 103
of coherent sheaf, 103

proper
map of Hausdorff spaces, 95
morphism, 95
transform, 168

properness, 19
pullback, 35
push-pull property, 209, 210
pushforward, 18

quadratic form, 53
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surface, 191
universal, 202

quasicoherent sheaf, 24, 25
of OS-algebras, 40
of graded algebras, 101
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function, 20, 52
over K, 45, 256

Raynaud, Michel, 77
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algebra, 47, 50, 53
image, 222
ring, 26
scheme, 25, 47, 53, 68

Rees algebra, 172, 173
regular
function, 10, 22
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scheme, 28
section, 117
subscheme, 165, 172

regularity, 251
Reid, Miles, 5
relative
cotangent sheaf, 230, 231
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Hilbert scheme, 266
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relevant ideal, 96
representable
functor, 44
scheme, 252

residue field, 9
resolution
free, 127, 128, 133, 134
small, 179
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resultant, 213, 219, 222–224
Riemann
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ring, 8
–s and affine schemes, 36
Artinian, 65, 78
category of –s, 30
homomorphism and morphism
of affine schemes, 30

length of, 66
local, 51, 65
map of, 30
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Noetherian, 26, 67, 172
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ring (i.e., commutative ring with
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ringed space, 21, 22

Samuel, Pierre, 125
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as a set, 9
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associated, 68
associated to vector space, 105
containment of –s, 23
curvilinear, 65
degree of, 62, 65
dimension of –s, 27
discriminant, 231
family of –s, 70
Fano, 120, 193–205, 266, 273
finite, 62
Fitting, 220
general definition of, 21
group, 258
Hilbert, 120, 129, 266
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nonaffine, 22, 33
nonreduced, 57, 180
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of left ideals, 206
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reduced, 25, 47, 53, 68
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relative, 35
representable, 252
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singular, 28, 230, 231
supported at a point, 58, 62–65,
77, 88

theoretic image, 211, 222, 223
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Modern Algebraic Geometry, 4

section
global, 12
of a continuous map, 13
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Shafarevich, Igor R., 5, 162
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axiom, 12, 16
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definition of, 12
graded, 118
ideal, 24
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invertible, 112, 116, 117
normal, 268
of continuous functions, 13
of regular functions, 9, 11, 19
projectivization of, 103
quasicoherent, 24, 25, 40
of graded algebras, 101

section of, 13
structure, 9, 11, 19
tautological, 119
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Silverman, Joseph H., 275
singular
curve, 155, 242
point, 230
scheme, 28, 230, 231

singularity, 110, 156, 162, 179, 190,
203, 239, 242, 249, 265, 272, 274
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Smith, Gregory, 5
smooth point, 230
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Spanier, Edwin H., 261
spectrum, 9
of R-algebra, 40
of Noetherian ring, 26
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Starr, Jason, 5
strict transform, 168
structure sheaf, 9, 11, 19
subfunctor, 254
closed, 255
open, 254
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Cartier, 165, 167, 168, 175, 176,
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to Fano schemes, 271
to Hilbert schemes, 267
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107, 108, 256, 260, 271
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tautological
family, 276
sheaf, 119
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total transform, 168
transform, 168
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union of schemes, 24
universal
bundle, 206
conic, 207, 208
cubic, 203, 204
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family, 123, 222, 263, 276
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