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Introduction to optimization

The plan

1. The basic concepts

2. Some useful tools

3. LP (linear programming = linear optimization)

Literature:

Vanderbei: Linear programming, 2001 (2008).

Bertsekas: Nonlinear programming, 1995.

Boyd and Vandenberghe: Convex optimization, 2004.
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Introduction to optimization

1. The basic concepts

What we do in optimization!

we study and solve optimization problems!

The typical problem:

given a function f : IRn → IR
and a subset S ⊆ IRn

find a point (vector) x∗ ∈ S which minimizes (or maximizes)
f over this set S .

S is often the solution set of a system of linear, or nonlinear,
equations and inequalities: this complicates things!

The work:

find such x∗

construct a suitable algorithm

analyze algorithm

analyze problem: prove theorems on properties
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Introduction to optimization

1. The basic concepts

Areas – depending on properties of f and S :

linear optimization (LP=linear programming)

nonlinear optimization

discrete optimization (combinatorial opt.)

stochastic optimization

optimal control

multicriteria optimization

Optimization: branch of applied mathematics, so

theory – algorithms – applications
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Introduction to optimization

1. The basic concepts

The basic concepts

feasible point: a point x ∈ S , and S is called the feasible set

global minimum (point): a point x∗ ∈ S , satisfying

f (x∗) = min{f (x) : x ∈ S}

local minimum (point): a point x∗ ∈ S , satisfying

f (x∗) = min{f (x) : x ∈ N ∩ S}

for some (suitable small) neighborhood N of x∗.

local/global maximum (point): similar.

f : objective function, cost function

Optimal: minimum or maximum
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Introduction to optimization

2. Some useful tools

Some useful tools

Tool 1: Existence:

a minimum (or maximum) may not exist.

how can we prove the existence?

Theorem

( Extreme value theorem) A continuous function on a compact
(closed and bounded) subset of IRn attains its (global) maximum
and minimum.

very important result, but it does not tell us how to find an
optimal solution.
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Introduction to optimization

2. Some useful tools

Tool 2: local approximation – optimality criteria

• First order Taylor approximation:

f (x + h) = f (x) +∇f (x)T h + ‖h‖O(h)

where O(h)→ 0 as h→ 0.

• Second order Taylor approximation:

f (x + h) = f (x) +∇f (x)T h + (1/2)hTHf (x)h + ‖h‖2O(h)

where O(h)→ 0 as h→ 0.
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Introduction to optimization

3. LP

Linear optimization (LP)

linear optimization is to maximize (or minimize) a linear
function in several variables subject to constraints that are
linear equations and linear inequalities.

many applications

Example: production planning

maximize 3x1+ 5x2

subject to
x1 ≤ 4

2x2 ≤ 12

3x1+ 2x2 ≤ 18

x1 ≥ 0, x2 ≥ 0.
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Introduction to optimization

3. LP

Application: linear approximation

Let A ∈ IRm×n, b ∈ IRm. Recall: `1-norm; ‖y‖1 =
∑n

i=1 |yi |.
The linear approximation problem

min{‖Ax − b‖1 : x ∈ IRn}

may be solved as the following LP problem

min
∑m

i=1 zi

subject to
aT
i x − bi ≤ zi (i ≤ m)

−(aT
i x − bi ) ≤ zi (i ≤ m)
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Introduction to optimization

3. LP

LP problems in matrix form:

max cT x
subject to

Ax ≤ b
x ≥ O

The inequality Ax ≤ b is a vector inequality and means that ≤
holds componentwise (for every component).

Analysis/algorithm: based on linear algebra.

LP is closely tied to theory/methods for solving systems of linear
inequalities. Such systems have the form

Ax ≤ b.
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Introduction to optimization

3. LP

Simplex algorithm

The simplex algorithm

the simplex method is a general method for solving LP
problems.

developed by George B. Dantzig around 1947 in connection
with the investigation of transportation problems for the U.S.
Air Force.

discussions on duality with John von Neumann

the work was published in 1951.
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Introduction to optimization

3. LP

Simplex algorithm

Example

max 5x1 + 4x2 + 3x3

subject to
2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

x1, x2, x3 ≥ 0.

First, we convert to equations by introducing slack variables for
every ≤-inequality, so e.g. the first ineq. is replaced by

w1 = 5− 2x1 − 3x2 − x3 , w1 ≥ 0.
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Introduction to optimization

3. LP

Simplex algorithm

Problem rewritten as a ”dictionary”:

max η = 5x1 + 4x2 + 3x3

subj. to
w1 = 5 − 2x1 − 3x2 − x3

w2 = 11 − 4x1 − x2 − 2x3

w3 = 8 − 3x1 − 4x2 − 2x3

x1, x2, x3,w1,w2,w3 ≥ 0.

left-hand side: dependent variables = basic variables.

right-hand side: independent variables = nonbasic variables.

Initial solution: Let x1 = x2 = x3 = 0, so w1 = 5,w2 = 11,w3 = 8.

We always let the nonbasic variables be equal to zero. The basic
variables are then uniquely determined. (”Basis property” in matrix
version).
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Introduction to optimization

3. LP

Simplex algorithm

Not optimal! For instance, we can increase x1 while keeping
x2 = x3 = 0. Then

η (the value of the objective function) will increase

new values for the basic variables, determined by x1

the more we increase x1, the more η increases!

but, careful! The wj ’s approach 0!

Maximum increase of x1: avoid the basic variables to become
negative. From w1 = 5− 2x1, w2 = 11− 4x1 and w3 = 8− 3x1 we
get x1 ≤ 5/2, x1 ≤ 11/4, x1 ≤ 8/3 so we can increase x1 to the
smallest value, namely 5/2.

This gives the new solution x1 = 5/2, x2 = x3 = 0 and therefore
w1 = 0,w2 = 1,w3 = 1/2. And now η = 25/2. Thus: an
improved solution!!
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Introduction to optimization

3. LP

Simplex algorithm

How to proceed? The dictonary is well suited for testing
optimality, so we must transform to a new dictionary.

We want x1 and w1 to “switch sides”. So: x1 should go into
the basis, while w1 goes out of the basis.This can be done by
using the w1-equation in order to eliminate x1 from all other
equations.

Equivalent: we may use elementary row operations on the
system in order to eliminate x1: (i) solve for x1:
x1 = 5/2− (1/2)w1 − (3/2)x2 − (1/2)x3, and (ii) add a
suitable multiple of this equation to the other equations so
that x1 disappears and is replaced by twerms with w1.

Remember: elementary row operations do not change the solution
set of the linear system of equations.
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Introduction to optimization

3. LP

Simplex algorithm

Result:

η = 12.5 − 2.5w1 − 3.5x2 + 0.5x3

x1 = 2.5 − 0.5w1 − 1.5x2 − 0.5x3

w2 = 1 + 2w1 + 5x2

w3 = 0.5 + 1.5w1 + 0.5x2 − 0.5x3

We have performed a pivot: the use of elementary row operations
(or elimination) to switch two variables (one into and one out of
the basis).

Repeat the process: not optimal solution as we can increase η by
increasing x3 from zero! May increase to x3 = 1 and then w3 = 0
(while the other basic variables are nonnegative). So, pivot: x3

goes into the basis, and w3 leaves the basis.
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Introduction to optimization

3. LP

Simplex algorithm

This gives the new dictionary:

η = 13 − w1 − 3x2 − w3

x1 = 2 − 2w1 − 2x2 + w3

w2 = 1 + 2w1 + 5x2

x3 = 1 + 3w1 + x2 − 2w3

Here we see that all coefficients of the nonbasic variables are
nonpositive in the η-equation. Then every increase of one or more
nonbasic variables will result in a solution where η ≤ 13.

Conclusion: we have found an optimal solution! It is
w1 = x2 = w3 = 0 and x1 = 2,w2 = 1, x3 = 1. The corresponding
value of η is 13, and this is called the optimal value.
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Introduction to optimization

3. LP

Simplex algorithm

The simplex method – comments

geometry: from vertex to adjacent vertex

phase 1 problem: first feasible solution

the dictionary approach good for understanding

in practice: the revised simplex method used

relies on numerical linear algebra techniques

main challenges: (degeneracy), pivot rule, update basis
efficiently

commercial systems like CPLEX routinely solves large-scale
problems in a few seconds

Matrix version: basis B: A = [ B N ], Ax = b becomes
BxB + NxN = b so xB = B−1b − B−1NxN .
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Introduction to optimization

3. LP

The fundamental theorem

The fundamental theorem of LP

Theorem

For every LP problem the following is true:

If there is no optimal solution, then the problem is either
nonfeasible or unbounded.

If the problem is feasible, there exist a basic feasible solution.

If the problem has an optimal solution, then there exist an
optimal basic solution.
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Introduction to optimization

3. LP

Duality theory

Duality theory

associated to every LP problem there is another, related, LP
problem called the the dual problem

so primal (P) and dual problem (D).

the dual may be used to, easily, find bounds on the optimal
value in (P)

may find optimal solution of (P) by solving (D)!
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Introduction to optimization

3. LP

Duality theory

The dual problem

Consider the LP problem (P), the primal problem, given by

max{cT x : Ax ≤ b, x ≥ O}.

We define the dual problem (D) like this:

min{bT y : AT y ≥ c , y ≥ O}.

max and min

y associated with the constraints in (P)

constraint ineq. reversed

c and b switch roles
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Introduction to optimization

3. LP

Duality theory

Lemma

( Weak duality) If x = (x1, . . . , xn) is feasible in (P) and
y = (y1, . . . , ym) is feasible in (D) we have

cT x ≤ bT y .

Proof: From the constraints in (P) and (D) we have

cT x ≤ (AT y)T x = yTAx ≤ yTb = bT y .
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Introduction to optimization

3. LP

Duality theory

The duality theorem

Theorem

If (P) has an optimal solution x∗, then (D) has an optimal solution
and

max{cT x : Ax ≤ b, x ≥ O} = min{bT y : AT y ≥ c , y ≥ O}

Comments:

(P) and (D) have the same optimal value when (P) has an
optimal solution.

If (P) (resp. (D)) is unbounded, then (D) (resp. (P)) has no
feasible solution.
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Introduction to optimization

3. LP

Interior point methods

Interior point methods

these are alternatives to simplex methods

may be faster for certain problem instances

roots in nonlinear optimization

Main idea (in primal-dual int. methods):

based on duality: solve both (P) and (D) at once

a special treatment of the optimality property called
complementary slack: xjzj = 0 etc., relaxed compl. slack:
xjzj = µ etc.

solution parameterized by µ > 0, e.g. x(µ)

convergence: x(µ)→ x∗ as µ→ 0.

Newton’s method etc. , efficient, polynomial method

more on this in Nonlinear optimization lectures
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