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Introduction.
Carmichaél’s conjecture is the following: “the equation ¢(x)=n cannot have a unique

solution, (V)n eN, where ¢ is the Euler’s function”. R. K. Guy presented in [1] some
results on this conjecture; Carmichaél himself proved that, if »n, does not verify his
conjecture, then n, >10"; V. L. Klee [2] improved to n, >10*", and P. Masai & A.
Valette increased to n, >10'"". C. Pomerance [4] wrote on this subject too.

In this article we prove that the equation ¢(x)=n admits a finite number of
solutions, we find the general form of these solutions, also we prove that, if x, is the
unique solution of this equation (for a ne N), then x, is a multiple of 2°.3*.7%.43
(and x, >10"" from [3]).

In the last paragraph we extend the result to: x,is a multiple of a product of a
very large number of primes.

81. Let x, be a solution of the equation ¢(x)=n. We consider n fixed. We’ll try
to construct another solution y, # x, .

The first method.:
We decompose x, =a-b with a, b integers such that (a, b) = 1.

we look for an a'#a such that ¢(a')=@(a) and (a’, b) = 1; it results that
yo=a"b.

The second method.:

Let’s consider x, = ¢/ ..q" , where all g eN’, and g¢,,...,q,are distinct primes
two by two; we look for an integer ¢ such that (g, xy) = 1 and ¢@(g) divides
Xy /(qy5--,q,); then y, = xq/ 9(q).

We immediately see that we can consider g as prime.

The author conjectures that for any integer x, > 2 it is possible to find, by means
of one of these methods, a y, # x, such that ¢(y,) = @(x,) .

Lemma 1. The equation ¢(x)=n admits a finite number of solutions, (V)n eN .
Proof. The cases n=0,1 are trivial.



Let’s consider n to be fixed, n>2. Let p, < p, <..<p, <n+1 be the sequence
of prime numbers. If x, is a solution of our equation (1) then x, has the form

x,=p..pl,withall o, eN. Each ¢, is limited, because:

(V)ie{l,Z,...,S}, (Ja, eN: p'=n.
Whence 0< ¢, <a,+1, for all i. Thus, we find a wide limitation for the number of
solutions: [ [ (a, +2)

i=1

Lemma 2. Any solution of this equation has the form (1) and (2):

& &y
xozn-(L] (LJ e?Z ,
pl_l ps _l

where, for 1<i<s,wehave ¢, =0 if o, =0, 0r ¢, =1if o, #0.
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whence it results the second form of x, .

From (2) we find another limitation for the number of the solutions: 2*—1
because each ¢, has only two values, and at least one is not equal to zero.

§2. We suppose that x, is the unique solution of this equation.

Lemma 3. x, is a multiple of 2°-3%.7%.43%.

Proof. We apply our second method.

Because ¢(0)=¢@(3) and ¢(1) = ¢(2) we take x, >4 .

If 21x, then there isy,=2x, # x, such that ¢(y,)=@(x,), hence 2lx,; if
4 I'x,, then we can take y, =x,/2.

If 31x, then y, =3x,/2, hence 31x,;if 9/lx, then y,=2x,/3, hence 9 |x,;
whence 4.9 | x,.

If 71x, then y,=7x,/6, hence 7|x,; if 49} x, then y,=6x,/7hence 49 |x,;
whence 4-9-49 | x, .

If 43)x, then y,=43x,/42, hence 43|x,; if 43> Ix, then y,=42x,/43,
hence 43° | x,; whence 2°-3*-7°.43"|x,.

Thus x,=2"-32.7".43".¢, with all y,>2 and (#, 237+43) = 1 and
x, > 10" because n, >10'".

§3. Let’s consider ¥ > 3. If 5/x, then 5x,/4=y,, hence 5 |x,; if 25/x, then
Yo =4x,/5, whence 25 | x,.

We construct the recurrent set M of prime numbers:
a) the elements 2,3,5 eM ;

b) if the distinct odd elements e,,....e, eM and b, =1+2"-¢,,...,e, IS prime,
with m=1or m=2,then b, eM ;



c) any element belonging to M is obtained by the utilization (a finite number of
times) of the rules a) or b) only.
The author conjectures that M is infinite, which solves this case, because it results
that there is an infinite number of primes which divide x, . This is absurd.

For example 2, 3, 5, 7, 11, 13, 23, 29, 31, 43, 47,53, 61, ... belongto M .

*

The method from §3 could be continued as a tree (for y, >3 afterwards y, >3,
etc.) but its ramifications are very complicated...

84. A Property for a Counter-Example to Carmichael Conjecture.
Carmichaél has conjectured that:
(V)neN, (3 meN, with m = n, for which ¢(n) = @(m), where ¢ is Euler’s totient
function.

There are many papers on this subject, but the author cites the papers which have
influenced him, especially Klee’s papers.

Let n be a counterexample to Carmichaél’s conjecture.

Grosswald has proved that n,is a multiple of 32, Donnelly has pushed the result

to a multiple of 2'*, and Klee to a multiple of 2** -3*, Smarandache has shown that n is

a multiple of 2% -3*-7.43%. Masai & Valette have bounded
n> 1010000.

In this paragraph we will extend these results to: » is a multiple of a product of a
very large number of primes.

We construct a recurrent set M such that:

a) theelements 2,3 eM ;

b) if the distinct elements 2,3,g,,....q, €M and p=1+2*-3"-q,---q, isaprime,
where ¢ €{0,1,2,..,41} and b€{0,1,2,...,46} , then p eM; r>0;

c) any element belonging to M is obtained only by the utilization (a finite
number of times) of the rules a) or b).

Of course, all elements from M are primes.

Let » be a multiple of 2% -3*;

if 51n then there exists m = 5n/4 #n such that ¢(n) = ¢(m); hence

S5In;whence 5 eM ;

if 5% I'n then there exists m = 4n/5 = n with our property; hence 5° | n;

analogously, if 7 /n we cantake m=7n/6#n,hence 7In;if 7 In we can

take m=6n/7#n;whence 7eM and 7’ In; etc.

The method continues until it isn’t possible to add any other prime to M , by its
construction.

For example, from the 168 primes smaller than 1000, only 17 of them do not
belong to M (namely: 101, 151, 197, 251, 401, 491, 503, 601, 607, 677, 701, 727, 751,
809, 883, 907, 983); all other 151 primes belong to M .



Note M ={2,3,p,, p,..... p,,...}, then n is a multiple of 2*.3*.p}.p> ... p? ...
From our example, it results that M contains at least 151 elements, hence s>149.

If

M is infinite then there is no counterexample n, whence Carmichaél’s

conjecture is solved.

(The author conjectures M is infinite.)

Using a computer it is possible to find a very large number of primes, which
divide n, using the construction method of M , and trying to find a new prime p if

p —1 isaproduct of primes only from M .
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