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Abstract

Algorithmic methods based on the theory of fixed-parameter tractability are combined
with powerful computational platforms to launch systematic attacks on combinatorial
problems of significance. As a case study, optimal solutions to very large instances of
the NP-hard vertex cover problem are computed. To accomplish this, an efficient se-
quential algorithm and various forms of parallel algorithms are devised, implemented
and compared. The importance of maintaining a balanced decomposition of the search
space is shown to be critical to achieving scalability. Target problems need only be
amenable to reduction and decomposition. Applications in high throughput computa-
tional biology are also discussed.
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1 Preliminaries

An innovative technique for dealing with foundational NP-complete problems is based on
the theory of fixed-parameter tractability.

A problem of size n, parameterized by k, is fixed-parameter tractable if it can be
decided in O(f(k)nc) time, where f is an arbitrary function and c is a constant
independent of both n and k.
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The origins of fixed-parameter tractability (henceforth FPT) can be traced back nearly twenty
years, to the work by Fellows and Langston on applications of well-quasi order theory, the
Robertson-Seymour theorems, nonconstructivity, and in particular the minor and immersion
orders. See, for example, [17, 18, 19]. Efforts at that time were motivated by the theme that,
by fixing or bounding parameters of relevance to the problem at hand, one might be able to
exploit a non-uniform measure of algorithmic efficiency. In the intervening years, Downey
and Fellows developed the major theoretical basis of FPT [14]. More recently, something of
a cottage industry in FPT algorithm design has begun to flourish, with research groups and
workshops now held around the world. Despite all this activity, however, the main focus has
remained on theoretical issues, especially worst-case bounds, problem restrictions and the
W-hierarchy (a fixed-parameter analog of the polynomial hierarchy). Few serious attempts
have been made at large-scale practical implementations. A notable exception is the work of
Cheetham et al [8].

2 Exemplar

Perhaps the best-known example of an FPT problem, and the one we use as a case study
here, is vertex cover. In this problem, the inputs are an undirected graph G with n vertices,
and a parameter k < n. The question asked is whether G contains a set C of k or fewer
vertices that covers every edge in G, where an edge is said to be covered if either (or both)
of its endpoints is in C.

In terms of worst-case analysis, the asymptotically-fastest algorithm currently known for
vertex cover is due to the work of Chen et al [10], and runs in O(1.2852k+kn) time. Compare
this with O(nk), the time required to examine all subsets of size k by brute force. Of course
an attractive worst-case bound is no guarantee of a practical algorithm. Nevertheless, it is
remarkable that the requisite exponential growth (assuming P �= NP) has been reduced to
a mere additive term.

Algorithms designed to solve FPT problems are sometimes rather loosely termed “fixed-
parameter algorithms.” Such algorithms were originally intended to work only when the
parameter in question was truly fixed. The algorithm described in [7], for example, was
aimed solely at determining whether an input graph has a vertex cover of size at most 5.

In contrast, our interest here is on pushing the boundary of feasible computation. We seek
to construct effective methods for finding optimal vertex covers in huge graphs, irrespective
of any particular parameter value. To accomplish this, we exploit, build upon and implement
techniques gleaned in large part from recent advances in the theory of fixed-parameter algo-
rithm design. We detail the salient features of some of these techniques in the next section.
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3 Applications

The practical applications of vertex cover are many and varied. A timely topic centers on
maintaining security in a computational or communications network. For example, finding
a smallest cover may be interpreted as identifying an optimal set of vertices that can control
or monitor every transmission link in such a network. Cast in this light, vertex cover is
sometimes employed in route-based filtering, which is a popular method for attempting to
prevent IP spoofing and distributed denial of service attacks [27].

Much of our recent work, however, has been motivated by ongoing collaborations with
mammalian geneticists and neuroscientists. Therefore, with access to large classes of ge-
nomic and proteomic data, we shall concentrate here mainly on applications relevant to
computational biology. In this environment a great many combinatorial problems hinge on
clique. In the clique problem, the inputs are an undirected graph G with n vertices, and a
parameter k < n. The question asked is whether G contains a set C of k or more vertices
such that every pair of elements in C is connected by an edge in G.

Clique is not FPT unless the W hierarchy collapses [14]. Fortunately, vertex cover is a
complementary dual to clique. To see this, suppose we wish to determine whether G contains
a large clique, where large means of size at least n − k for some suitable choice of k. Let G
denote the complement of G. Then G has a clique of size at least n − k if and only if G has
a vertex cover of size at most k. This duality is depicted in Figure 1. Figure 1(a) shows a
clique in a sample graph, G1. Figure 1(b) shows the corresponding vertex cover in G2 = G1.
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Figure 1: The duality between clique and vertex cover.
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One application lies in phylogeny. Here we use protein sequence data, which is now
widely available from NCBI, Swiss-Prot and a variety of other sources. Each pair of se-
quences is assigned a correlation score using codes such as those available in the well-known
ClustalW package. A complete edge-weighted graph is then constructed, with vertices rep-
resenting sequences, and edge weights denoting the corresponding correlation scores. Be-
cause source data often contains errors, outliers, duplicates and so forth, we seek to obtain
the largest possible set of closely-related sequences before proceeding with the phylogenetic
analysis. To accomplish this, edges whose weights fall below some preset threshold are
removed; weights on edges that remain are henceforth ignored. It remains to find in the re-
duced, unweighted graph a largest set of vertices with all possible edges between them. Of
course this is just a restatement of the maximization version of the clique problem.

Clique has also proven useful in the analysis of microarray data. With standard statistical
tools, raw data is transformed into a correlation matrix, from which we extract a complete,
edge-weighted graph. In this graph, vertices represent genes, and edge weights denote es-
timated correlation values. As in the phylogeny application, edges are eliminated based on
some preset threshold. Now solving clique on the reduced, unweighted graph yields a largest
set of putatively co-regulated genes. This set can be useful in a variety of projects, a prime
example being the quest to understand mechanisms of gene regulatory networks.

Yet another application centers on gene motif discovery. Here the goal is to characterize
and annotate collections of genes by finding and matching cis-regulatory elements, which
are upstream DNA subsequences usually thought to contain on the order of 8-16 base pairs.
See [5]. These are just a few examples. There are many others. One needs only to search the
literature, via pubmed [24] for instance, to find hordes of clique applications in the biological
realm alone.

4 Problem Reduction

The goal of problem reduction is to condense an arbitrary input instance down to a relatively
small computational core. The idea is to find such a core whose size depends only on k, and
to find it in time polynomial in n. In the context of FPT, this operation is termed “kerneliza-
tion,” with the compute core called the “kernel.” Kernelization is most often accomplished
with a variety of preprocessing rules. Many of these rules are folklore. Others have been
formalized in the literature [6, 10].

For example, for vertex cover it is possible with preprocessing to eliminate vertices of
very low or high degree. It is trivial to eliminate vertices of degree one, because there is no
gain in using a leaf to cover its only incident edge. It is easy to eliminate vertices of degree
two [10]. There is also a rule for handling some but not all vertices of degree three, but it
is complicated and not necessarily worth the extra effort in practice. If a vertex has degree
k + 1 or more, then it must be in any satisfying cover. Otherwise, all its neighbors would
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be required to be in the cover, and there are simply too many of them. Therefore we can
eliminate it and reduce k by one. There is also a rule for handling vertices of degree exactly
k. When no more vertices can be eliminated in this fashion, the reduced graph (kernel) has
size at most k2/3 + k [3]. We have implemented these and several other preprocessing rules.
The order in which they are performed can sometimes have an impact on the size of the
kernel produced. Their most important attributes are probably their speed and simplicity.

Newer and more powerful (but also slower and more complicated) kernelization methods
rely on linear programming relaxation and related techniques [22, 23, 25]. We have imple-
mented and fine-tuned these and alternate methods of our own design. We have incorporated
where possible highly-efficient LP dual codes graciously provided to us by Bill Cook at
Georgia Tech [11]. The culmination of all this is a suite of routines that are capable of pro-
ducing a kernel of size at most 2k [1]. Unfortunately, ensuring such a linear-sized kernel has
until very recently been a fairly slow and cumbersome affair, mainly due to the requirements
imposed when solving the LP bottleneck. This situation is now changed. In [3] we con-
ducted large-scale empirical studies of these algorithms and, along with Mike Fellows and
others, introduced and analyzed a novel approach dubbed “crown decomposition.” With this
new technique, we can produce a kernel of size at most 3k in O(n2.5) time. Extensive test-
ing has shown that crown decomposition works extremely well in practice, especially when
used in conjunction with degree-based rules. It generally runs much faster and produces even
smaller kernels than the worst-case bounds would suggest.

5 Decomposition and Search

As soon as reduction is complete, the core (kernel) is ready to be passed to the decomposition
stage. The problem now becomes one of exploring the kernel’s search space efficiently.
In the parlance of FPT, this is known as “branching.” This is an extremely challenging
task. Even though the kernel is now of bounded size, its search space typically contains an
exponential number of candidate solutions.

We use an implicit tree structure to organize the search for a satisfying cover. Each
internal node of the tree represents a choice. For example, one might make the choice at the
root by selecting an arbitrary vertex, v. Then the left subtree denotes the set of all solutions
in which v is to be in the cover. The right subtree denotes the set of all solutions in which v
is not in the cover. Moving on down the tree, each leaf is a set of k or fewer vertices that may
or may not form a valid cover, corresponding to a potential solution. Although effective, this
form of decomposition is an exhaustive process to be sure. (This should come as no surprise.
After all, the underlying problem is NP-complete.)

Decomposition clearly requires the lion’s share of computational resources. Thus, it is
important to note that subtrees at each level can in principle be explored in parallel. The
depth of the tree can be at most k. All that needs to be done at a leaf is to check whether the
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removal of the leaf’s candidate solution leaves an edgeless graph (all edges are covered). We
shall have much more to say about this in subsequent sections.

Decomposition via the branching process is explicated with the following two figures.
Figure 2 depicts a sample graph, G, for which we want to find a vertex cover of size five or
less. Figure 3 illustrates the actions taken in a resultant tree search, which is rooted at the
vertex labeled 0. At each node of the tree, C denotes the candidate cover and k denotes the
maximum number of vertices that may still be added to C. (Therefore |C| + k = 5.) In
this example, we have favored branching at a node of highest current degree and employed
a depth-first search. When no satisfying solution exists, the entire tree must of course be
searched. Even when solution(s) do exist, they may not be found until much, or perhaps all,
of the tree has been examined. In this particular example, however, a solution is eventually
found in the root’s leftmost subtree, so that the dotted edges leading to the other subtrees need
not be traversed by a sequential algorithm. This is not a property easily exploited by parallel
algorithms. As we shall see, parallel algorithms may be very lucky, or very unlucky, as the
solution space is decomposed. Furthermore, other portions of the tree created by this simple
example reveal a rather counter-intuitive feature of the search process. When branching on
some vertex, v, solutions may sometimes be found faster if one favors for exploration the
subtree in which v is not in the cover. When v is left unused, all its neighbors must be in the
cover and, if the degree of v is high, we may converge much more rapidly toward a solution.

1 4

0 2

3 6

7
5

Figure 2: A sample graph, G.

6 Algorithm Synthesis

Reduction and decomposition need not be stand-alone tasks. As decomposition proceeds and
new instances are generated, additional reductions in problem size can often be realized by a
re-application of preprocessing rules. In the context of FPT, this technique of re-kernelization
is often termed “interleaving.” See [26] for detailed information and analysis.
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C={}C={}
k=5k=5

C={1,2,3}C={1,2,3}
k=2k=2

C={1,2,3,5}C={1,2,3,5}
k=1k=1

C={1,2,3,4,6,7}C={1,2,3,4,6,7}
k=k= --11

C={1,2,3,4,5,6}C={1,2,3,4,5,6}
k=k= --11

C={1,2,3,5,7}C={1,2,3,5,7}
k=0k=0

C={0,1,2,5,6,7}C={0,1,2,5,6,7}
k=k= --11

C={0,1,3,5,7}C={0,1,3,5,7}
k=0k=0

CC={0,3,4,5,7={0,3,4,5,7}}
k=0k=0

C={0,4,6}C={0,4,6}
k=2k=2

C={0,1,5,7}C={0,1,5,7}
k=1k=1

C={0,4}C={0,4}
k=3k=3

C={0}C={0}
k=4k=4

C={0,1,3,4,6}C={0,1,3,4,6}
k=0k=0

C={0,2,4,6}C={0,2,4,6}
k=1k=1

C={0,2,4,6,7}C={0,2,4,6,7}
k=0k=0

C={0,2,4,5,6}C={0,2,4,5,6}
k=0k=0

NONO

NONOYESYESNONOYESYESNONO

NONO

YESYES YESYES

Figure 3: Branching finds a vertex cover for G.

Interleaving’s effects can vary greatly, depending on the input. Its impact can sometimes
be dramatic, especially on small or sparse instances. On the other hand, we have frequently
seen only negligible improvement on large, dense or highly regular graphs. Moreover, the
overhead of interleaving can be prohibitive. One must not only re-examine the graph and
make changes to it, but also keep track of these changes at each level of the search tree. Thus
we use interleaving sparingly.

7 The Case for Parallel Methods

Reduction greatly helps to reduce overall runtimes. In fact it’s been established kernelization
alone is what makes membership in FPT possible [9, 16]. Nevertheless, decomposition and
search remain exhaustive procedures, often incurring enormous computational demands even
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for problem instances of only modest size. Thus we naturally turn to the use of parallelism.
Parallelization works hand-in-hand with the results of decomposition. The task of spawning
processes is structured by the same tree that is used to explore the kernel’s search space.
To explicate, suppose both n and k are large, and 32 processors are available. Because the
search tree has a branching factor of two, decomposition will have used the first 5 << k
levels of its tree to split the input into 32 subgraphs, one for each processor. In turn, each
processor will, in parallel, examine its subgraph using the search tree technique.

Once spawned, these tasks are left to run in a virtually unstructured manner. They can be
farmed out as the need arises, and serviced in anything from a tightly-coupled to a widely-
distributed fashion. No barrier synchronization is needed. No MPI-like tools are required.
A process need not even know its siblings exist. Each is free to run to completion, at its own
pace, returning its result whenever it is finished. We have run our codes on several different
platform/gridware combinations. Our best results have generally been obtained with minimal
intervention, however, in the extreme case by directly launching secure shells (SSHs).

This is of course a completely static form of parallel decomposition and load balancing.
For all but the smallest values of k, it produces an extremely coarse-grained implementation.
If p processors are available, each processor will operate on a distinct subgraph using some
parameter value k′ ≤ k − �log2 p�. Load balancing in this fashion is often good enough
but, as we shall see, it is sometimes amazingly ineffective. With no dynamic form of task
re-distribution, simple static load balancing can, in this FPT environment, lead to egregious
runtimes and dramatic parallel resource under-utilization.

At this time we also perform interleaving in a coarse-grained manner, only when subtasks
are spawned, using rules for degrees one, two and k+1 or more. Of course interleaving could
be applied much more often, in the extreme case at every node in the search tree. After all,
the potential utility of re-kernelizing would seem to increase as subgraphs are reduced to
manageable sizes during branching. Thus far, however, we have not found the overhead
of such a fine-grained form of interleaving to be worth the effort. It is unclear whether
some intermediate level of granularity is better suited to problems of interest. We intend to
continue studying the effect of varying this and other implementation options.

One additional implementation detail is worth noting. The recursive nature of our al-
gorithms naturally but unfortunately leads to a variety of stack overflow problems. This is
particularly true when dealing with very large inputs. To ameliorate this condition, we main-
tain whenever possible a single global structure for the input graph. Modifications made
through branching and interleaving are recorded in a a ternary status vector of length n. A
zero indicates that the status of a vertex is still in question; a one indicates that a vertex is in
the cover found thus far; a two indicates that a vertex has been deleted. This simple scheme
turns out to save a tremendous amount of memory that would otherwise be wasted in copy-
ing adjacency matrices from one recursive call to another, and allows us to scale up to much
larger problems than would have been possible had we not managed memory more carefully.
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8 Initial Results on Synthetic Data

We first tested our algorithms on synthetic data sets. These were mostly pseudo-random
graphs generated in a variety of ways. The results were always impressive. In fact some
of our best results were obtained on synthetic data sets kindly provided by Frank Dehne at
Carleton University [12]. See Table 1. Numbers listed there reflect wall clock times.

These results are intriguing. Three different graphs are listed, each with 600 vertices, and
each containing a vertex cover of size 400. On them we used 32 processors, each running
at 500 MHz. Note the stunning differences between sequential and parallel decomposition
times. At first we thought the sequential routine must be hung in an infinite loop. Traces
revealed, however, that it was humming along nicely. It is just that these graphs have a lot of
edges and their search spaces are immense. The average speedup we observe is something
north of 30,000. Because we are only employing 32 processors, this would surely have to be
characterized as super-super-linear!

Graph Sequential Sequential Parallel
Name Reduction Decomposition Decomposition

rg30 1 second halted after two days 5 seconds
rg31 1 second halted after two days 4 seconds
rg32 1 second halted after two days 4 seconds

Table 1: Intriguing decomposition times on synthetic graphs.

So should we abandon our streamlined but straightforward sequential code, re-writing
it so that it uses multiple threads or otherwise emulates the actions of the parallel version?
In order to try to answer this question, we have sought to determine what factor(s) could
have caused the unusually fortuitous sort of parallel behavior exemplified by the run times
in Table 1.

One such factor is the way in which solutions are scattered about the search space. It
has been observed before [8] that solutions tend to be highly non-uniformly distributed. In
this setting, therefore, decomposition can do much more for us than merely help guide the
search and parallelize the process. One or more processors may find a solution relatively
close to the root of its respective subtree. The searches occurring at other processors may
be fruitless; it matters not. Our parallel run time is based solely on the time required for the
earliest-finishing processor to deliver to us a solution, at which point the other processors are
halted. Yet the sequential algorithm is doomed to plod along, exhaustively examining each
and every subtree until it stumbles across a solution-laden region of the search space.
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Although the scenario just described is plausible enough, surely there is more to the
story if we are to understand astonishing speedups such as these. After more digging and
tracing, we now believe we have a good handle on the primary factor at play here, namely,
the makeup of the data itself. These synthetic graphs turn out to be highly non-random. In
fact they are somewhat grid-like which, because of the way we implement branching, places
our parallel algorithm at a great advantage. In short, our parallel algorithm was lucky. Thus,
the super-super-linear speedups we observe are mainly artifacts of the data. Nevertheless,
these results do serve an important purpose. They caution us against trying to read too much
into contrived examples, and echo an all-too-familiar story: rely only on real data.

9 Dynamic Parallel Decomposition

As we move toward the use of non-synthetic data, the static parallel decomposition technique
just outlined has proved useful in many of our experiments. The result has generally been
much smaller runtimes than those for corresponding sequential codes. In some nagging
cases, however, we would observe only very small, sometimes even negligible, speedups.
In an occasional extreme case, all but one of the processors would finish quickly, leaving
the lone remaining processor to do the bulk of the computation. In short, we were unlucky.
Observe that we can get lucky, achieving excellent speedup, only on “yes” instances. But
we can get unlucky, achieving little or no speedup at all, on both “yes” and “no” instances.
Interestingly, we have found that as we iterate the decision algorithm to attain optimality, the
closer we get to converging the parameter to its optimal value, the more likely we are to get
unlucky.

Thus, to maintain scalability as more and more machines come on line, it has been im-
perative that we incorporate at least some primitive form of dynamic load balancing into our
methods. We have studied a number of strategies, but even a simple scheme seems to have
a tremendous impact. We hesitate to interrupt active processes, and therefore refrain from
redistributing processor loads until all processors but one are idle.

Working with colleagues in proteomics, we have downloaded vast assortments of se-
quence data against which to test our codes. These have been obtained mainly from the
National Center for Biotechnology Information (NCBI). Each data set corresponds to a fam-
ily of protein sequences that share a common domain. A representative set of results using
data from the sh2 and sh3 domains is reported in Table 2. As before, we used 32 proces-
sors, each running at 500 MHz. Wall clock times are listed. We have chosen to highlight
these results because they are particularly telling. In them the relevant parameter is just con-
verging on the optimal value. Note the success in load balancing achieved with dynamic
decomposition.
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Graph Cover Instance Sequential Parallel Decomposition
Name Size Size Type Decomposition Static Dynamic

sh2-5 839 399 yes 7 sec not needed not needed
sh2-5 839 398 no 141 min 82 min 20 min

sh3-10 2,466 2,044 yes just under 5 days just under 5 days 140 min
sh3-10 2,466 2,043 no halted after 6 days halted after 6 days 620 min

Table 2: A comparison of static versus dynamic parallel decomposition times.

10 A Middleware Approach

We have also implemented our codes using NetSolve, a grid middleware system based upon
the agent-server-client model [4] and an integral part of the SInRG project pioneered here at
the University of Tennessee [13]. See Figure 4.

Middleware
(NetSolve)

Foundational Fabric
(Switches and Depots)

Compute Resources
(Grid Service Clusters)

NetSolve
Client

NetSolve
Agent Distributed

Storage

NetSolve
Servers

Figure 4: An overview of NetSolve and its role in the SInRG project.
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NetSolve implements remote computing, in which the program to be executed is stored
on the server, on both isolated systems and grid clusters located around the world. Client-
server communication is carried out through standard TCP/IP sockets. The client polls the
NetSolve agent in order to locate the server most appropriate for a given job. We utilize Net-
Solve 2.0, which offers many advantages for our application. For example, when NetSolve
assigns jobs to remote processors, its agent takes into account network latencies, compu-
tational speeds, and current workloads in order to make an informed choice. Furthermore,
NetSolve offers ease of access to computational resources, allowing a wide range of users
to run our codes on multiple processors (in contrast, our SSH-based approach requires that
users have accounts on each machine utilized). Moreover, NetSolve allows us to operate
seamlessly in a heterogeneous computing environment, while offering some level of built-in
fault tolerance.

Of course there is a price to be paid for such convenience. With any type of middleware,
we much be cognizant of potential overhead issues, many of which can substantially slow
down our implementations. Our computational experience suggests that the middleware
premium is only moderate. Sample results are displayed in Table 3. Graphs in the “ys” family
are relatively sparse, and are produced from yeast-stress microarray data. The remaining
graphs are denser, and are derived from the globin and sh2 protein domains, respectively.
These experiments were conducted using 32 processors, each running at 500 MHz.

Graph Cover Instance Parallel Decomposition
Name Size Size Type Static Netsolve

ys-7 2,561 2,342 yes 14 sec 16 sec
ys-7 2,561 2,341 no 15 sec 19 sec

globin-15 972 427 yes 14 sec 16 sec
globin-15 972 426 no 18 sec 19 sec

sh2-4 839 337 yes 43 min 13 sec 51 min 11 sec
sh2-4 839 336 no 56 min 49 sec 59 min 27 sec

sh2-10 839 547 yes 5 min 32 sec 6 min 59 sec
sh2-10 839 546 no 6 min 3 sec 8 min 51 sec

Table 3: A comparison of SSH versus NetSolve implementations.

NetSolve uses a “problem description file” to control access to code stored on its servers.
Participants must compose and debug these files when implementing routines other than
NetSolve’s built-in functions. Problem description files are not well-known and sometimes
rather tricky to get just right. Therefore, as an aid to readers and potential users, we list in an
appendix the problem description file for our parallel decomposition method.
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11 Proactive Parallel Decomposition

Dynamic decomposition is based on an attempt to minimize processor interruption. It can,
however, in the worst case postpone re-balancing the workload among processors until a
parallel computation is reduced to a sequential process. Let us now consider the effect of
looking ahead, being as proactive as is reasonably possible. To accomplish this, we maintain
a job queue and so that unexplored subtrees can be factored out, stored temporarily, and fed
to processors when they are needed to keep every machine continuously busy. At the same
time, we seek to eliminate the use of the NFS file server and file I/O by utilizing sockets for
inter-processor communication. This approach opens socket connections between a driver
and multiple clients, as illustrated in Figure 5.

Driver

Processes

Branching Initializer

Job Scheduler

Graph Splitter

Job Queue

Socket

Socket

Socket

Branching

Branching

Branching

Processor 1

Processor 2

Processor N

.

.

.
.
.
.

SSH

Figure 5: A proactive parallel decomposition strategy.

The central program (driver) maintains a job queue, initially containing the subtasks
(subgraphs) resulting from the decomposition of the original problem instance after kernel-
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ization. Once initialization is complete, workload splitting and re-balancing is performed
in a distributed fashion. The processors themselves, not some central controller, seize new
subtasks and fork off others. It is easy to decide what to do whenever a processor becomes
free. Said processor simply seizes the next job, if there are any, from the queue. The difficult
question is in deciding when a job should be halted and its work divided up to ensure that
the queue is not starved. The overhead required to split a processor’s subgraph should not
outweigh the computation time that can be saved across all machines. To try to ensure this,
we split only “large subgraphs,” that is, those that appear to require a considerable amount
of computation. We also seek to avoid re-traversing any part of the search space. This is
addressed by splitting a subtree at its current computational location. See Figure 6.

The original kernel is split into p subgraphs.

Each processor receives a subgraph.

.

.

.

During branching,
a processor elects

to split its workload.

Send subgraph to
the job queue.

Continue searching.

Pp

……

P2

……

Pp-1…

Prune.

P1

Figure 6: Distributed subtree splitting.

We first proposed this general sort of approach in [5]. We have worked on it since that
time, and now have a complete design, a working implementation, and extensive empirical
results. Representative comparisons of dynamic versus proactive decompositions are listed
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in Table 4. These experiments were run on protein domain data using eight 500MHz pro-
cessors. As is evident from these numbers, proactive decomposition, despite its additional
overhead, can perform significantly better than merely waiting to redistribute the workload
until only one processor is active.

Graph Cover Instance Parallel Decomposition
Name Size Size Type Dynamic Proactive

globin-3 972 165 yes 41 sec 23 sec
globin-3 972 164 no 43 sec 29 sec

globin-7 972 350 yes 1 min 30 sec 47 sec
globin-7 972 349 no 24 min 34 sec 17 min 49 sec

globin-9 972 378 yes 4 min 5 sec 3 min 47 sec
globin-9 972 377 no 20 min 41 sec 11 min 49 sec

sh2-3 839 246 yes 43 sec 22 sec
sh2-3 839 245 no 43 sec 27 sec

Table 4: A comparison of dynamic versus proactive parallel decomposition times.

In collaboration with our colleagues in neuroscience, we also ran comparisons using
enormous sets of Mus musculus microarray data. Each set represented 12,422 genes (ver-
tices) and millions of interactions (edges). Depending to some extent on the particular value
of k employed, kernelization generally cut the size of the graph by about half or so. On the
reduced graph we used 32 processors, each running at 500 MHz. See Table 5.

Graph Cover Instance Parallel Decomposition
Name Size Size Type Static Dynamic Proactive

mus74-50 12,422 12,053 yes 6 days+ 2 hr 51 min 2 hr 8 min
mus74-50 12,422 12,052 no 6 days+ 5 hr 16 min 3 hr 57 min

Table 5: Additional comparisons of static, dynamic and proactive decomposition times.

It’s probably safe to say that problems as large as those listed in Table 5 were until re-
cently considered by most researchers to be hopelessly out of reach. Even when you consider
that a binary search was performed to find the maximum size clique, and that therefore our
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routines were called multiple times, this entire operation took us just slightly more than a
day to solve with current methods. Yet solving it at all was probably unthinkable just a short
time ago. With the number of genes (vertices) set at n=12,422 and the optimal clique size
turning out to be k=(12,422-12,053)=369, just imagine a straightforward O(nk) clique-find
algorithm on a problem of that size!

12 Conclusions and Directions for Future Research

Coupling FPT-inspired algorithms with advanced computing platforms appears to be a fruit-
ful approach to the development of scalable parallel algorithms for difficult optimization
problems. Certain features, load balancing for instance, are critical. Some of our methods
have already been incorporated into ClustalXP [2], the parallel, high-performance release of
Clustal. ClustalXP currently runs on a 96-processor Beowulf cluster.

The payoff in collaboratory efforts can be huge. For example, based on the cliques we
derived from microarray data, neurobiologists have identified what appear to be both net-
work structures and gene roles in intra-cellular transport that were previously unrecognized.
Because biological datasets and their computational demands can be so enormous, we are
currently porting our codes to supercomputers at Oak Ridge National Laboratory. Especially
attractive are a 512-processor SGI Altix and a 256-processor Cray X1. The former is particu-
larly well-suite for our purposes because, in addition to raw speed and massive parallelism, it
has a whopping two terabytes of shared memory available. The latter is also very appealing
due to its superior speed and special built-in features for vector operations, which our codes
use for graph manipulation and accounting.

We are also currently incorporating hardware acceleration into our on-campus implemen-
tations, in an effort to handle particularly recalcitrant subproblems. Through an infrastructure
grant from NSF [13], we have brought on line a research cluster containing a dozen high-
performance Unix boxes and eight PCs augmented with FPGA boards. We are prototyping
and testing VHDL versions of our codes now. Reconfigurable technology is particularly
well-suited to applications in which computation is in great demand while I/O requirements
are light. Thus branching, but probably not kernelization, is an ideal candidate for this op-
portunity. Thus far our hardware accelerated branching cores are able to handle subgraphs
with up to 256 vertices, and appear to show speedups in the 100-150 range.

Thus far, we have not employed a standard message-passing library, such as MPI [15, 21]
or PVM [20]. This is because active processes have no need to communicate with one an-
other. Moreover, our intent is to focus on scalability, so that we can employ truly heteroge-
neous computational resources with an arbitrary number of processors. Nevertheless we are
open to this approach in future work. It might be useful in load-balancing, for example, if
one wishes to look at the number and types of processors available before deciding when to
split off a subtask and send it to the job queue.
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Appendix: The NetSolve Problem Description File

The following problem description file is used to describe pbranch, a parallel branching
program, to the NetSolve middleware system. With this information, pbranch is made visible
and available to all users within the NetSolve community. This data is also used to establish
the appropriate programming interface for remote procedure calls.

@PROBLEM pbranch /* Problem name visible to NetSolve clients */
@FUNCTION pbranch /* Function name that will be invoked to solve the problem */
@LIB -L$(LIBLANGSTONDIR) -llangston /* Library link */
@LANGUAGE C /* Language of the underlying library */
@MAJOR ROW /* Specifies row major order, since the library language is C */
@PATH langston /* Path-like naming convention */
@NON_MOVEABLE 1 /* Problem is not to be moved to another server */
@DESCRIPTION /* Begin text description */
Remotely executes pbranch code.

@INPUT 3 /* Number of input objects for the problem */
@OBJECT FILE infile /* Object type and name, to be followed by description */
Parameters file
@OBJECT FILE matfile /* Object type and name, to be followed by description */
Matrix file
@OBJECT SCALAR I id /* Object type and name, to be followed by description */
Processor id

@OUTPUT 2 /* Number of output objects for the problem */
@OBJECT FILE outfile /* Object type and name, to be followed by description */
Informational file
@OBJECT FILE coverfile /* Object type and name, to be followed by description */
Cover file

@CALLINGSEQUENCE /* Argument order for the programming interface */
@ARG I0
@ARG I1
@ARG I2
@ARG O0
@ARG O1

@CODE /* Begin psuedo-code section */
extern void pbranchexec(char* infile, char* matfile, int id,

char* outfile, char* coverfile);
pbranchexec(@I0@,@I1@,*@I2@,@O0@,@O1@); /* Initiate pbranch on remote machine */
@END_CODE /* End psuedo-code section */
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