
Calhoun: The NPS Institutional Archive

DSpace Repository

Faculty and Researchers Faculty and Researchers Collection

2013-07

Simulations of Multiple Spacecraft

Maneuvering with MATLAB/Simulink and

Satellite Tool Kit

McCamish, Shawn B.; Ciarcià, Marco; Romano, Marcello

McCamish, Shawn B., Marco Ciarcià, and Marcello Romano. "Simulations of Multiple

Spacecraft Maneuvering with MATLAB/Simulink and Satellite Tool Kit." Journal of

Aerospace Information Systems 10.7 (2013): 348-358.

http://hdl.handle.net/10945/50881

Downloaded from NPS Archive: Calhoun

Simulations of Multiple Spacecraft Maneuvering with
MATLAB/Simulink and Satellite Tool Kit

Shawn B. McCamish,∗ Marco Ciarcià,† and Marcello Romano‡

Naval Postgraduate School, Monterey, California 93940

DOI: 10.2514/1.35328

A software interface between the MATLAB/Simulink environment and the Satellite Tool Kit Environment is

introduced. This research is based on the need for validating model performance and visualizing simultaneous

multiple-spacecraft proximity maneuvers for emerging missions. It is common for spacecraft systems to be modeled

with MATLAB and Simulink. Furthermore, the software package Satellite Tool Kit is often used for animating and

evaluating spacecraft maneuvers. In this research, a MATLAB/Satellite Tool Kit interface was developed to

propagate six-degree-of-freedom spacecraft models, compared against Satellite-Tool-Kit-generated ephemeris, and

animated for analysis. MATLAB script with necessary formatting is used for Satellite Tool Kit initialization and

animation. TheMATLAB/Satellite Tool Kit simulation interface allows variations in number, shape, and dimensions

of spacecraft. Additionally, numerous model and simulation parameters can be selected and synchronized between

MATLAB and Satellite Tool Kit. Furthermore, either predetermined, or randomly distributed, initial spacecraft

positions and orientations are permitted by the interface. The paper gives enough details to allow the interested

readers to adapt to their needs and further develop the proposed software interface.

I. Introduction

M ODEL validation and simulation visualization are critical aspects of engineering analysis and performance evaluation for spacecraft
control algorithms [1]. An effective test scenario simulates the environment in which the control algorithm is expected to operate. For

spacecraft control systemdesign, it is common for engineers to use TheMathWorks, Inc. productsMATLABandSimulink [2,3] for dynamics and
kinematics modeling. Thesemodels are often independently developed and coded by separate researchers; therefore, modeling discrepancies can
be difficult to troubleshoot. This research suggests a method of spacecraft model validation by comparison with the Satellite Tool Kit (STK)
spacecraft analysis software [4]. STK, developed by Analytical Graphics Inc., can be used as an orbital propagator for both simulation and
emulation of the desired spacecraft models. In addition to spacecraft model validation, STK can be used for detailed animation of spacecraft
simulations.
In our research, a multiple-spacecraft six-degree-of-freedom (6-DOF) simulation was developed for the purpose of control algorithm

development during close-proximity operations. The simulator incorporates a 6-DOF MATLAB/Simulink numerical model with three-
dimensional (3-D) STK visualization. Both the model validation and 3-D visualization are intended to support engineering evaluation during
control algorithm development.
Since STK is not as commonly used in engineering fields asMATLAB, the developed simulation interface between the two software programs

is of high potential interest to many. In this research, MATLAB-developed spacecraft models were compared and validated based on the STK
standard. This paper serves an introduction to the capabilities of a MATLAB/STK simulation interface and gives enough details to allow the
readers to adapt and further develop it for their purposes [1]. As a sample case application of the developed software interface, we present the cross
validation of a multiple-spacecraft dynamic model and of a novel control algorithm. The paper is organized as follows. Section II introduces the
newly developedMATLAB/STK simulation interface, Sec. III reports the sample application of the developed interface for spacecraft modeling
verification, and Sec. IV introduces the use of the software interface for multiple-spacecraft model animation.

II. MATLAB/STK Simulation Interface

The developed MATLAB/STK interface takes advantage of STK’s standard connection protocol to initialize STK from MATLAB. STK
developers have enabled their code to be executed by MATLAB via an application program interface called AgConnect [4]. The connection
allows for properly formatted commands to be sent via a transmission control protocol/internet protocol (TCP/IP) port. By exploiting this feature,
formatted data, such as ephemeris and attitude data, can be passed between applications. For instance, the interface allows all spacecraft physical
characteristics and simulation parameters to be defined inMATLAB and related to STK. Also, STK data can be passed toMATLAB for analysis.
The general functions and information flow between MATLAB and STK are shown in Fig. 1.

A. Overview of Spacecraft Dynamic Modeling in MATLAB/Simulink

Initially, generalized spacecraft characteristics were used to model the spacecraft in MATLAB/Simulink. All multiple-spacecraft simulation
parameters are assigned in MATLAB and implemented by a single Simulink model. Spacecraft states are concatenated into vectors and passed
through the Simulink model. A high-level Simulink spacecraft model is shown in Fig. 2.

Presented as Paper 2007-6805 at the AIAAModeling and Simulation Technologies Conference and Exhibit, Hilton Head, SC, 20–23 August 2007; received 5
May 2008; revision received 10 December 2012; accepted for publication 23 January 2013; published online 26 July 2013. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States. Copies of this paper may be made for personal or internal use, on condition that the
copier pay the $10.00per-copy fee to theCopyrightClearanceCenter, Inc., 222RosewoodDrive,Danvers,MA01923; include the code 2327-3097/13 and $10.00 in
correspondence with the CCC.

*Ph.D. Candidate, ECE Department, 700 Dyer Road; Major, U.S. Air Force; sbmccami@nps.edu.
†Research Associate, Spacecraft Robotics Laboratory, Mechanical and Aerospace Engineering Department; mciarcia@nps.edu.
‡Associate Professor and Director, Spacecraft Robotics Laboratory, Mechanical and Aerospace Engineering Department and Space Systems Academic Group;

mromano@nps.edu. Associate Fellow AIAA.

348

JOURNAL OF AEROSPACE INFORMATION SYSTEMS

Vol. 10, No. 7, July 2013

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 o

n
Se

pt
em

be
r

4,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.3
53

28

http://dx.doi.org/10.2514/1.35328

Several parameters must be assigned before multiple-spacecraft simulations can be executed. These parameters can include the number of
simulations, initial time, selection of the acting perturbations, number of spacecraft and obstacles, selection of control algorithms, and duration of
simulation. For each simulation, a reference start time must be selected. In this research, the Universal Time (UT1) in the format of [year, month,
day, hour, minute, second] was used.
The inclusion of perturbations is critical to the fidelity of the 6-DOF spacecraft model. These perturbations forces and torques modify the

spacecraft’s simple two-body orbital propagation. Variations in the Earth’s shape and mass (J2–J4 coefficients), atmospheric drag on the
spacecraft, third-body (sun and moon) forces, and solar-radiation pressure result in disturbances in a spacecraft’s orbit [5] and attitude dynamics
(gravity gradient, and aero- and solar torque).
Once the number of chase spacecraft is selected, their initial positions must be assigned. These positions can be provided in classical orbital

elements, Earth-centered inertial (ECI), or target spacecraft’sRSW reference frame, as described in Fig. 3. Sample values of simulation conditions
are summarized in Table 1. Similar to chase spacecraft, stationary obstacles can also be included in the simulation. The control algorithm
development is discussed more in detail in [6,7].
For detailed 3-D simulations, each spacecraft’s physical characteristics must be further defined. The spacecraft size, shape, and mass are

variable for each simulation. The center of mass of the spacecraft is assumed to be located at the geometric center, and the moments of inertia are
calculated based on the spacecraft’s shape [8]. Each spacecraft is assumed to have six thrusters (for translational control) aligned along the positive
and negative primary body axes of the spacecraft. For the attitude control system, we consider three orthogonal reaction wheels aligned along the
primary spacecraft body axis. Selected spacecraft model characteristics for a sample spacecraft are listed in Table 2.

MATLAB & SIMULINK

Version 7.3.0267 (R2006b)

Spacecraft orbital dynamics

Spacecraft attitude and kinematics

Satellite Tool Kit (STK)

STK 7.0.1

Spacecraft Modeling

Spacecraft orbital dynamics

Visualization of Multiple Spacecraft
Close proximity Operation

Spacecraft State Data

MATLAB & SIMULINK

Version 7.3.0267 (R2006b)

Spacecraft orbital dynamics

Spacecraft attitude and kinematics

MATLAB & Simulink

The MathWorks Inc

Spacecraft Orbital Dynamics

Spacecraft Control & Actuation

Satellite Tool Kit (STK)

STK 7.0.1

Spacecraft Modeling

Spacecraft orbital dynamics

Satellite Tool Kit (STK)
Version 7.0.1

Analytical Graphics, Inc

Spacecraft State Data

Spacecraft Graphical Modeling

Spacecraft Orbital Dynamic

Spacecraft Visualization

Visualization of Spacecraft (Modeler)

Spacecraft Attitude & Kinematics

Spacecraft Model Validation

Spacecraft Characteristics

Version 7.3.0267 (R2006b)

Fig. 1 MATLAB/STK simulation interface overview.

Fig. 2 High-level Simulink model for multiple-spacecraft simulation.

MCCAMISH, CIARCIÀ, AND ROMANO 349

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 o

n
Se

pt
em

be
r

4,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.3
53

28

B. Overview of Satellite Tool Kit

The STK coremodules allow for analytical and numerical orbital propagation ofmultiple spacecraft. An additionalmodule, calledAgConnect,
allows STK to be used in conjunction with MATLAB [4]. By transferring information between MATLAB and STK, MATLAB-constructed
simulation dynamics and kinematics can be verified and visualized. The STK/Connect module provides the means for STK to communicatewith
applications, such as MATLAB, through the use of a TCP/IP socket. Additionally, the MATLAB/STK interface may use the STK/
Communications module to emulate signal propagation delays, frequency and bandwidth limitations, and bit error rates for each sensor and
spacecraft [9]. Typical STK users select scenario parameters via the STK graphical user interface (GUI) interface. This allows primary objects,

Fig. 3 Relative reference frame.

Table 2 Sample spacecraft characteristics

Parameter Value

Physical properties Length/width 1.0 m
Height 1.0 m
Mass 100 kg

Moment of inertia X 16.67–50 kg · m2

Moment of inertia Y 16.67–50 kg · m2

Moment of inertia Z 16.67–50 kg · m2

Thrusters Number of thrusters 1–6
Propellant type Hydrazine

Max thrust per axis 1.0 N
Specific impulse 100–200 s

Steady-state impulse 200 s
Min pulse duration 0.05 s

Min Δv 0.0005 m∕s
Max total Δv 30–120 m∕s

Propellant mass 3% of total
Attitude actuators Reaction wheels (RWs) 3

RW max torque 0.055 N · m
RW max angular momentum 4–12 N · m · s

Initial RWangular rate 0 RPMa

RW spin axis inertia 0.1426 kg · m2

Magnetotorquers 3
Max dipole moment 100 A · m2

Docking tolerances Max axial �2.0 mm
Max lateral �2.0 mm
Max angular �0.1 deg

aRPM denotes revolutions per minute.

Table 1 Spacecraft maneuver parameters

Parameter Value

Target spacecraft Min altitude 300 km
Max altitude 2000 km

Chase spacecraft Number 1–12
Chase spacecraft R axis 1.0–1000 m
Initial position S axis 1.0–1000 m

W axis 1.0–1000 m
Chase spacecraft R axis 0 m∕s
Initial velocity S axis 0 m∕s

W axis 0 m∕s

350 MCCAMISH, CIARCIÀ, AND ROMANO

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 o

n
Se

pt
em

be
r

4,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.3
53

28

such as spacecraft, to be loadedwith desired constraints. Additionally, sensors can be defined and attached to the satellites. TheGUI has dropdown
menus with layers to define basic characteristic: two-dimensional (2-D) graphic animation, 3-D graphic animation, and related constraints.
Several additional STK-supportedmodules may be useful for spacecraft proximity maneuver simulations. Thesemodules supplement the core

STK visualization environment and assist in the evaluation of mission sequences. In particular, the Astrogator module can be used to support
detailed maneuver analysis and operations [10]. Similarly, the Advanced Close Approach Tool (ACAT) module may be useful in collision-
avoidance maneuver planning. This STK module allows for the additional situational awareness of any spacecraft or object in the referenced
database. The ACAT module enables proximity indications and visual cues for variable close-approach calculations.

C. MATLAB/STK Interface

The MATLAB/STK interface allows overall simulation parameters and spacecraft physical characteristics to be defined in MATLAB and
related to STKvia themexConnectMATLABcommands or formatted native STK commands. This interface technique takes advantage of STK’s
standard connection protocol for initializing STK fromMATLAB. Once it is initialized, native STK commands can be called fromMATLAB. In
addition, formatted ephemeris and attitude files can be passed from MATLAB to STK. Similarly, data can be retrieved from STK by using the
stkReport command. Getting ephemeris from STK and passing it to the MATLAB engine allows for comparison of independently generated
STK andMATLAB spacecraft propagation. Evaluating the results of this comparison allows for validation of a developedMATLABmodel based
on the STK’s High-Precision Orbital Propagator (HPOP). The satellite of interest must be initialized and assigned with HPOP before the
propagation parameters and perturbations can be tailored via HPOP commands.
The MATLAB/STK simulation interface code was written in MATLAB (.m file format) with some MATLAB/Simulink files nested within it.

These subfiles serve as modular components of the MATLAB/STK interface, allowing easier simulation variation and modification
between users.
For the standardMATLAB/STKconnection, bothMATLABandSTKapplications should be loaded and launched.Once launched, STKcan be

initialized from MATLAB by using the commands stkInit or agiInit. Information on the path setting established can be found by using
agiGetConfig. The next step in the connection processes is to open a socket by usingstkOpen. This configures the path and assigns a socket
variable and aMATLAB variable, called STKError, for reference. Via the establishedMATLAB/STK connection, STK can be commanded by
using either a select number of mexConnect commands or native STK commands. The command paths for these two methods are slightly
different. The mexConnect commands are a limited subset of core MATLAB/STK interface commands that can be found by exploring the
MATLAB help menu. These mexConnect commands are all prefixed with stk, such as the stkInit commands mentioned previously. Since
the mexConnect commands are limited, there is a general command that allows native STK commands to be executed from MATLAB. The
general execution of STK commands via MATLAB can be conducted by using stkExec(ConID, ‘Command Path Parameter’). A full
listing of native STK commands that can be implemented in this fashion are listed in the STK help menu under the path <Automate/Extend/
Integrate>, <Command Listings>, <Alphabetical Listing>. The first step is usually to open a new STK scenario and ensure that any previous
scenarios are closed. The initial MATLAB/STK interface code is listed in MATLAB code excerpt 1 (Fig. 4). The conID variable serves as a
numeric representation of the established connection, and it will be used often in stkExec commands. The STK scenario namewas determined
by aMATLAB variable, such asCONST.simnum, which can be selected by the user to represent the number of simulations or scenarios desired.
The same namewas then used to establish the newSTK scenario. ThestkNewObj command path is establishing the new scenario at the highest-
level path level. All subsequent STK objects, such as spacecraft, will be assigned under this current scenario.
The selected simulation initial date and time must be properly formatted and passed to STK. For STK applications, the date and time must be

rearranged and passed in the format of [21 Jul 2007 12:30:00.0]. If theMATLABdatestr command is used to determine the date and time, then
a method of reformatting and passing the date and time to STK is listed in MATLAB code excerpt 2 (Fig. 5).
In the newpara variable, the second-to-last number is the animation time step in seconds, and the last number is the highest speed or refresh

rate in seconds. The scale of these rates will influence the simulation by changing the animation of the scenario. These values can also be assigned
as variables in the stkConnect command, where the variable scen_nam is used.
Multiple-spacecraft simulations require several spacecraft to be created. The sample code in MATLAB code excerpt 3 (Fig. 6) shows a

spacecraft, called target, being created. The visualization option (VO) command is used to call a general spacecraft graphical model that is
available to STK. The spacecraft graphical model can be selected from a default list, usually located at C:\Program Files\AGI\STK 7
\STKData\VO\Models\Space, or a custom user-generated spacecraft graphical model. The development of simple spacecraft graphical
models will be discussed in more detail in Sec. IV.

III. Spacecraft Model Verification

High fidelity 6-DOF spacecraft model dynamics can be verified by comparison of MATLAB and Simulink propagation with a custom STK
propagator. The STKHPOPwas used to ensure spacecraft propagation conditions matched all model variations. Details on numerical integration
applied to orbital propagation are provided in [7]. The modeled space environment perturbations, including variations in the Earth’s shape and

Fig. 4 MATLAB code excerpt 1: initializing STK scenario via MATLAB.

MCCAMISH, CIARCIÀ, AND ROMANO 351

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 o

n
Se

pt
em

be
r

4,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.3
53

28

mass (J2–J4 coefficients), atmospheric drag on the spacecraft, third-body (sun and moon) forces, and solar-radiation pressure, were sequentially
evaluated. Table 3 reports the average differences, in terms of position and velocity, of several low-Earth-orbit orbital propagations of 10
spacecraft at various initial conditions. Each orbit was propagated for 30 min and 1 min durations with fixed 1 s step sizes [11].
The HPOP command allows for assignment of both a numerical integration method, such as the fourth-order Runge–Kutta, and an Earth

gravitational model (EGM), such as EGM96 [2,3,5]. The HPOP command is of the general form stkExec(ConID, ‘HPOP Path
Parameter’). Once the HPOP is assigned to a spacecraft, the perturbation forces can be further defined. The desired perturbations can be
related to the enabling condition on the Simulink model so that the various perturbations can be independently evaluated.
Selection of the perturbation parameter, CONST.PERT.choice, activates the desired perturbation code. The coefficients can be

synchronized with any particular user-definedmodel by modifying the .grv file selected. As previously discussed, the variable can be passed into
the STK command. For instance, the coefficient of drag, represented by Cd, was incorporated into the Drag and SolarRad command settings.
Once theHPOP settings are completed, the actual propagation can be computed. The initial stop time, tstopdummy, is replacedwith the final

desired propagation time, tstop. The spacecraft propagation command is listed in MATLAB code excerpt 5 (Fig. 7), where the propagation
parameters of stepsize, orbitepoch, STATE.ri, and STATE.vi are the same as in the initial propagation command.
The data from STK propagation can be passed to the MATLAB workspace. This will allow any desired postprocessing and evaluation of the

data. STK spacecraft state data can be passed in several formats. For this research, the ECI position and velocitywere desired. The sample code for
passing spacecraft ephemeris is listed inMATLABcode excerpt 5 (Fig. 8), with thevariables, prefixedwith STATE.STK, arbitrarily assigned. The
STK ephemeris data are in column format, with each row representing a numerical integration step. Although not the focus of this research, the
user can also pass spacecraft attitude data back to the MATLAB workspace as shown in MATLAB code excerpt box 6 (Fig. 9).

IV. Spacecraft Model Animation

Multiple spacecraft maneuvers can be simulated via MATLAB and animated via STK. The MATLAB initiates an STK TCP/IP connection to
send commands over a specified port. The STK scenario is developed by executing STK commands. Spacecraft dimensional models for STK

Fig. 5 MATLAB code excerpt 2: date and time formatting.

Fig. 6 MATLAB code excerpt 3: spacecraft object creation.

Fig. 7 MATLAB code excerpt 4: spacecraft propagation.

Table 3 Average differences of MATLAB and STK propagation (1 s fixed
step size integration)

Perturbation model Average difference 30 min 1 min

Simple two body Position 8.237 × 10−10 m 3.391 × 10−10 m
Velocity 6.890 × 10−13 m∕s 6.082 × 10−13 m∕s

J2 perturbation Position 4.650 × 10−1 m 1.102 × 10−3 m
Velocity 6.908 × 10−4 m∕s 5.346 × 10−5 m∕s

J4 perturbation Position 8.286 × 10−1 m 1.452 × 10−3 m
Velocity 1.256 × 10−3 m∕s 7.183 × 10−5 m∕s

Aerodynamic drag Position 2.904 × 10−9 m∕s 6.291 × 10−10 m∕s
Velocity 2.904 × 10−9 m∕s 6.291 × 10−10 m∕s

Solar drag Position 2.075 × 10−3 m 6.656 × 10−8 m
Velocity 4.267 × 10−6 m∕s 3.277 × 10−9 m∕s

Third-body effects Position 5.271 × 10−2 m 6.330 × 10−5 m
Velocity 1.065 × 10−4 m∕s 3.777 × 10−6 m∕s

Total perturbation Position 1.360 m 3.739 × 10−3 m
Velocity 2.047 × 10−3 m∕s 3.357 × 10−4 m∕s

352 MCCAMISH, CIARCIÀ, AND ROMANO

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 o

n
Se

pt
em

be
r

4,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.3
53

28

visualization are prewritten in STK Modeler. Once the model is loaded and the scenario is established, data can be passed between STK and
MATLAB. For this research, visualization included basic cubic, spherical, and cylindrical spacecraft graphical models. A snapshot of a sample
3-D animation of multiple spacecraft is shown in Fig. 10. Three cubic chase spacecraft are shown converging toward a common target spacecraft,
with a spherical obstacle in the background on the right.

A. STK Spacecraft Model

For standard STK model assignment, a STK .mdl file must be available. This file is assigned to the desired STK satellite object using the
command listed in MATLAB code excerpt 7 (Fig. 11), where isi is a numerical variable that was used to distinguish multiple uses of the same
basic model file. This is useful to model multiple spacecraft with the same basic properties. A sample spacecraft model filename may be
mdl_cube1.mdl. This would assign the STK satellite object named targe, with the model spacecraft model described by mdl_cube1.mdl.
The VO command can be used to call a general spacecraft model, which is available in STK. The spacecraft model can be selected from a default
list, located at C:\Program Files\AGI\STK 7\STKData\VO\Models\Space, or a custom user-generated spacecraft graphical model.

1. STK Graphical Model Development

Three simple and distinctive spacecraft models were developed in this research. They are based on simple spherical, cylindrical, or cubic
spacecraft designs. Once again, the fprintf command serves as our primary formatting tool. In this example, the cubic shape serves as the
primary body component with supplemental docking ports and thrusters components. The sample cubic spacecraft model code is presented in

Fig. 8 MATLAB code excerpt 5: STK spacecraft ephemeris data.

Fig. 9 MATLAB code excerpt 6: STK spacecraft attitude data.

Fig. 11 MATLAB code excerpt 7: spacecraft model assignment.

Fig. 10 Sample 3-D STK view animation frame.

MCCAMISH, CIARCIÀ, AND ROMANO 353

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 o

n
Se

pt
em

be
r

4,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.3
53

28

MATLAB code excerpt 8 (Fig. 12). The variable L represents user-defined dimensional parameters that can be implemented in the model. In this
code, the face component was defined first. Next, this component was translated and rotated as necessary to determine all sides of the cubic
spacecraft. Additional components (cone, cylinder, etc.) can also be defined.More detailed components can be generated by combining additional
subcomponents.
Once the primary spacecraft components, including the cubic faces, docking ports, and thrusters, are defined, they can be assembled. Each of

the six cubic components will make the basic spacecraft shape. Next, a thruster with flame articulation will be centered on each face of the cubic
spacecraft. Finally, the desired number of docking ports will be added based on the total number of spacecraft.

2. STK Three-Dimensional Visualization Options

Several graphics andVO parameters can be tailored for clear visualization of multiple-spacecraft maneuvers. The primary scaling of themodel
view is accomplished by selecting the followingVO command inMATLAB code excerpt 9 (Fig. 13).Ratio is a scaling factor which determines
the spacecraft dimensional appearance during the animation, which is chosen to be equal to one in our case. The label and graphic features of the
spacecraft can be modified, as in MATLAB code excerpt 10 (Fig. 14).
The orbital path is typically shown for spacecraft propagation. However, for multiple spacecraft, these projections can result in visual

confusion. These orbital pass projections can be modified as in MATLAB code excerpt 11 (Fig. 15). In addition to labeling the spacecraft,
inclusion of a body axismay be useful for attitude reference. A 3-D spacecraft body reference frame can be added to amodel, as inMATLABcode
excerpt 12 (Fig. 16). Besides straightforward labeling and graphicsmodifications, additional sensorsmay be desired. These sensorsmay represent
actual ranging and communication devices, or useful visual projections for engineering analysis. Each sensor must be uniquely named. In this
research, a conical ranging and docking sensor was added to each chase spacecraft. The ranging sensor represents the local sensor view from the
chase spacecraft to the target spacecraft, or position. The simple conic range sensor is assigned in MATLAB code excerpt 13 (Fig. 17). First, the
sensor is positioned and defined on a spacecraft with an exclusive name. In this example, Chase is an alphanumeric label unique to each chase

Fig. 12 MATLAB code excerpt 8: sample cubic spacecraft model.

Fig. 13 MATLAB code excerpt 9: spacecraft model size scaling.

Fig. 14 MATLAB code excerpt 10: spacecraft model graphic features.

Fig. 15 MATLAB code excerpt 11: spacecraft orbital path projections.

354 MCCAMISH, CIARCIÀ, AND ROMANO

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 o

n
Se

pt
em

be
r

4,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.3
53

28

spacecraft. Next, the pointing direction of the sensor is determined. The range sensor continually points toward the target spacecraft and adjusts its
projection based on the relative distance from the target, represented byrsw_norm. This modification of the projectionmay not be necessary for
most sensor applications. Finally, the color of the sensor projection can be modified as desired. Similarly, a docking sensor may be added to the
spacecraft graphical model, as listed in MATLAB code excerpt 14 (Fig. 18).
The docking sensor is located at the same position, but it has a much wider cone of 45 deg. The docking sensor points in a fixed direction from

the spacecraft body axis, with a limited projection of half of the spacecraft’s length. Next, the sensor projection color is selected from a matrix,
called dockc. These simple sensors are useful in visually representing ranges and fields of view (FOVs) as spacecraft are animated through their
dynamics and kinematics. A sample cubic spacecraft with labels and sensor projections is shown in Fig. 19. The three-body axes are labeled
“Body X”, “Body Y”, and “Body Z”. The projection on the right side of the spacecraft is the docking sensor projection, and the small line
extending to the bottom left is the range sensor. The white protrusions on the top and right are thruster firings.
One additional sensor projection was useful in visualizing spacecraft exclusion regions during close-proximity operations. A boundary sensor

projection was placed around regions that spacecraft were intended to avoid. These areas were referred to as obstacles and labeled with Obstcl.
Spherical projections encompassing these regions can be generated using a conical sensor definedwith a 360 deg FOV, such as listed inMATLAB
code excerpt 15 (Fig. 20). The spherical sensor projections were made translucent in order to not obscure the view of maneuvering spacecraft. A
sample spherical boundary sensor projection about a spherical object is shown in Fig. 21. The sensor projection is the globular grid with the chase

Fig. 16 MATLAB code excerpt 12: spacecraft model 3-D body reference frame.

Fig. 17 MATLAB code excerpt 13: simple conic range sensor for spacecraft model.

Fig. 18 MATLAB code excerpt 14: simple conic docking sensor for spacecraft model.

Fig. 19 Sample cubic spacecraft graphical model.

MCCAMISH, CIARCIÀ, AND ROMANO 355

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 o

n
Se

pt
em

be
r

4,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.3
53

28

spacecraft in the upper right. These sensors allowed for robust engineering evaluation of the collision-avoidance function of spacecraft control
algorithms [6,7,12,13]. From these basic examples, the user can develop a vast array of representative sensors. Sensor projection ranges and colors
can be varied based on logical condition. For instance, ranging sensors may be programmed tomodify their color as the distance to a target varies.
This may allow for quick visual analysis of multiple-spacecraft maneuver performance.

B. Formatting MATLAB Data for STK Files

The visualization and animation of theMATLAB/Simulink data with the desired spacecraft model is a useful tool for engineering analysis and
evaluation. In particular, it was vital in the development of a multiple-spacecraft control algorithm during simultaneous close-proximity
operations [6,7]. The3-D representation for spacecraft during collision-avoidancemaneuvers enabled effective troubleshooting. For instance, the
undesired clipping of the corners of chase spacecraft while converging to the target spacecraft during dockingmaneuverswas easily shown in STK
animation. Due to this evaluation, the control algorithm collision-avoidance logic was modified and its performance robustness was improved.
Additionally, visualization of the simultaneous multiple-spacecraft maneuvers in STK allows for logical point-of-view changes and animation
rate changes.
The animation of the spacecraft can be based on the data generated by STKor theMATLAB/Simulink model. STK-generated data are already

in the proper format. However, MATLAB/Simulink data must be properly formatted in order to be used by STK. STK allows for several specific
data file formats, such as STK ephemeris and attitude files. These files can be properly written by executing short MATLAB scripts using
fprintf commands. A sample STKephemeris file can be created, such as inMATLABcode excerpt 16 (Fig. 22). The STKephemeris file name
and path, in the first line, are arbitrary, as long as it has the proper.e suffix. Although, it is useful to save all related STK scenario files in the same
folder. The first few fprintf lines are used to establish the desired reference frame and interpolation for the data. The variables STATE.time and
para_now are used to synchronize the data points with the time constraints, as discussed in Sec. I.C.2. The data are formatted into seven
columns, represented by time, position vector, and velocity vector. Each row represents an iteration, or step size, of the data. Similarly, a STK
quaternion attitude file can be created, such as inMATLAB code excerpt 17 (Fig. 23). The STK attitude file name and path are arbitrary, as long as
it has the proper .a suffix. This sample STK attitude file is formatted into five columns with time, the three-element quaternion vector, and the
quaternion scalar (rotational) term.

C. Sample Visualization

STK scenarios can be made into video files that can offer useful representation of complex situations and maneuvers. For instance, a sample
visualization of a docking maneuver between seven cubic spacecraft is shown in Fig. 24. The docking maneuver consists of a target spacecraft at
the center of the screen with six chase spacecraft converging from different initial positions. The six chase spacecraft are labeled Chase1–Chase6,

Fig. 20 MATLAB code excerpt 15: obstacle region of influence projection.

Fig. 21 Sample spherical boundary sensor.

356 MCCAMISH, CIARCIÀ, AND ROMANO

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 o

n
Se

pt
em

be
r

4,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.3
53

28

respectively. Chase spacecraft 1 through 3 have obstacles placed along their primary maneuver paths. The three obstacles are labeled Object1–
Object3, respectively. The obstacles are 2.0 m spheres with globular mesh region of influence projections.
The solid line through the center of the screen is the targets spacecraft’s orbital path. The lighter lines are range sensors from each chase

spacecraft toward the target spacecraft. The Earth’s horizon can be seen at the bottom of the figure.
This sample animation was developed to the collision-avoidance and close-proximity maneuver capabilities of a novel new control algorithm

described in detail in [6,7]. This sample animation has been made available online.

Fig. 22 MATLAB code excerpt 16: formating MATLAB/Simulink ephemeris data for STK.

Fig. 23 MATLAB code excerpt 17: formating MATLAB/Simulink attitude data for STK.

Fig. 24 Sample visualization of multiple-spacecraft maneuver.

MCCAMISH, CIARCIÀ, AND ROMANO 357

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 o

n
Se

pt
em

be
r

4,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.3
53

28

http://arc.aiaa.org/doi/suppl/10.2514/1.35328

V. Conclusions

A MATLAB/ Satellite Tool Kit (STK) simulation interface was developed for spacecraft model validation and visualization. By using the
proposed interface, the spacecraft characteristics and parameters, together with simulation results, can be interchanged between MATLAB/
Simulink and STK. In particular, using STK via MATLAB is a versatile and effective method of animating six-degree-of-freedom spacecraft
models. The resulting STK animation of spacecraft propagations is useful for engineering evaluation and result presentations.
The proposed interface was used during the development of a multiple-spacecraft control algorithm for close-proximity operations. Model

validation gave confidence in the performance results, and visualization allowed for straightforward evaluation. The animation allowed for
immediate identification of undesirable performance, such that modifications and improvements could be made to the control algorithm.

Acknowledgments

This research has been supported in part by the U.S. Department of Defense. S. B. McCamish gratefully acknowledges the support from both
faculty and students at the Naval Postgraduate School.

References

[1] McCamish, S. B., and Romano, M., “Simulations of Relative Multiple-Spacecraft Dynamics and Control by MATLAB–Simulink and Satellite Tool Kit,”
AIAA Modeling and Simulation Technologies Conference, AIAA Paper 2007-6805, Aug. 2007.

[2] MATLAB version 7.3, THE MATHWORKS INC., Natick, Massachusetts, 2006.
[3] Simulink version 6.5, THE MATHWORKS INC., Natick, Massachusetts, 2006.
[4] Satellite Tool Kit, Software Package, ANALYTICAL GRAPHICS INC., Exton, PA, 2006.
[5] Vallado, D. A., Fundamentals of Astrodynamics and Applications, 2nd ed., Microcosm Press, El Segundo, CA, 2001.
[6] McCamish, S. B., Romano, M., and Yun, X., “Autonomous Distributed Control Algorithm for Multiple Spacecraft in Close Proximity Operations,” AIAA

Guidance, Navigation and Control Conference, AIAA Paper 2007-6857, Aug. 2007.
[7] McCamish, S. B., Romano, M., and Yun, X., “Autonomous Distributed LQR/APF Control Algorithm for Multiple Small Spacecraft during Simultaneous

Close Proximity Operations,” 21st Annual AIAA/USU Conference on Small Satellites, SSC07-XIII-3, Logan, UT, Aug. 2007.
[8] Larson, W.J., and Wertz, J.R., Space Mission Analysis and Design, 3rd ed., Microcosm Press, El Segundo, CA, 2004.
[9] Endres, S. M., “Simulation and Emulation of the Space Networking Environment,”M.S. Thesis, Dept. of Electrical Engineering and Computer Science, Case

Western Reserve Univ., Cleveland, OH, Jan. 2005.
[10] Carrico, T., Langster, T., Carrico, J.,Vallado,D., Loucks,M., andAlfano, S., “ProximityOperations for SpaceSituationalAwareness,”AdvancedMauiOptical

and Space Surveillance Technologies Conference, Wailea Maui, HI, Sept. 2006, pp. 1–11.
[11] McCamish, S. B., “Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations,” Ph.D. Dissertation, Naval Postgraduate

School, Monterey, CA, Dec. 2007.
[12] McCamish, S. B., Romano, M., and Yun, X., “Autonomous Distributed Control of Simultaneous Multiple Spacecraft Proximity Maneuvers,” IEEE

Transaction on Automation Science and Engineering, Vol. 7, No. 3, 2010, pp. 630–643.
doi:10.1109/TASE.2009.2039010

[13] McCamish, S. B., Romano, M., Nolet, S., Edwards, C. M., and Miller, D. W., “Flight Testing of Multiple Spacecraft Control on SPHERES During Close
Proximity Operations,” Journal of Spacecraft and Rockets, Vol. 46, No. 6, 2009, pp. 1202–1213.
doi:10.2514/1.43563

G. Brat
Associate Editor

358 MCCAMISH, CIARCIÀ, AND ROMANO

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

A
L

IF
O

R
N

IA
 o

n
Se

pt
em

be
r

4,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.3
53

28

http://dx.doi.org/10.1109/TASE.2009.2039010
http://dx.doi.org/10.1109/TASE.2009.2039010
http://dx.doi.org/10.1109/TASE.2009.2039010
http://dx.doi.org/10.1109/TASE.2009.2039010
http://dx.doi.org/10.2514/1.43563
http://dx.doi.org/10.2514/1.43563
http://dx.doi.org/10.2514/1.43563

