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Figure 16. Case 3, 9.0Hz and 10.5Hz

Studying the signals from the laser measurements in figure 17, the beam
centre’s motion is seen to differ from the excitation’s. The oscillation at 6Hz is
recognised from other measurements as well, and is possibly caused by excitation
of a natural frequency in the contact strip or the experimental rig. To be able
to conclude the actual reason for this behaviour, an additional measurement of
the excitation beam’s ends would need to be performed.
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Figure 17. Case 3, 6.0Hz and 10.5Hz

The jumps in the velocity field, at 10.5Hz, has its origin in the impacts with
the excitation, and since it is uncertain whether the excitation signal corresponds
to the actual movement at the excitation point of the beam, no adjustment of
the laser displacement’s zero level has been performed. The Poincaré section
reveals the fractal structure of the attractor and argues for a chaotic motion of
the strip.
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6 Modelling and Simulation

6.1 Mathematical Model

The mathematical model represents the head assembly, when fixed to ground,
without considering the importance of the frame assembly, and corresponds to
the experimental Case 3. The reason to restrict the model to the head assembly,
with only one contact strip, is that it is desirable to find out whether a simple
model could be used to get a better understanding for the underlying reasons
of the pantographs complex behaviour.
The model is built up by a rigid beam, with vertical and rotational freedom

around its centre of mass, suspended at its ends in suspension elements, as seen
in figure 18. The suspensions are built up by piecewise linear springs, friction
and viscous damping elements.
The piecewise linearity of the springs is introduced into the model by the

additional springs placed at each side of the beam’s ends. The upper limit
is reached when the beam is displaced by xu in upward direction about its
equilibrium position, with the corresponding stiffness ku, and the lower limit at
xl in downward displacement, with stiffness kl.
The friction force is modelled by a tangents hyperbolic function, to soften

up the step change in friction force, so that the numerics run more efficient and
the viscous damping with a cosine hyperbolic function in the denominator. The
cosine hyperbolic function causes a decrease in damping force with increased
velocity, and is a result of fitting the numerical results to the experimental.
The beams angular displacement is assumed to be small, whereby lineariza-

tion of the equations has been performed, and the forces acting in the horizontal
direction are neglected.
To include the beam centre’s oscillation, present in the phase plane orbits

from the experimental measurements as seen in figure 17, an additional mass,
m2 , with vertical freedom, is added at the beam centre. Its mass and spring
stiffness is matched with a natural frequency in the beam, found at 50Hz.
The excitation of the model is sinusoidal and applied at the beam centre

through a stiff mass-less spring and damper element, which applies a force to
the mass, m2, when in contact with the excitation, and allows loss of contact
and impact.
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Figure 18. Schematic drawing of the mathematical model, with significant
parameters

The mathematical model can be derived using four ordinary differential equa-
tions and switching conditions, when loss or impact occurs at the excitation as
well as at the upper- and lower limits:

..

θ = L(FL − FR)/I (1)
..
x = (Fm − FL − FR)/m1 (2)
..
y = (−Fm − Fimpact)/m2 (3)

z = A sin(wt) + z0 (4)

where

FL = xL · kL +
.
xL · cL/ cosh(

.
xL · α) + FfL · tanh(

.
xL · β) + FkLl + FkLu (5)

FR = xR · kR +
.
xR · cR/ cosh(

.
xR · α) + FfR · tanh(

.
xR · β) + FkRl + FkRu (6)

Fm = km · xyx + cm ·
.
xyx (7)

Fimpact =

⎧⎨⎩ −ke · xzy − ce ·
.
xzy when xzy,

.
xzy<0,

−ke · xzy when xzy < 0 and
.
xzy>0,

0 when xzy>0
(8)

and

FkLl = (xL + xl)kl when xL < xl otherwise FkLl = 0 (9)

FkRl = (xR + xl)kl when xR < xl otherwise FkRl = 0 (10)

FkLu = (xL − xu)ku when xL > xu otherwise FkLu = 0 (11)

FkRu = (xR − xu)ku when xR > xu otherwise Fku = 0 (12)

xL = x− θ · L (13)

xR = x+ θ · L (14)

xyx = y − x (15)

xzy = z − y (16)
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6.2 Nomenclature

m1 Beam mass (kg)
I Beam mass moment of inertia (kgm2)
L Distance between beam centre and suspension
kL/kR Spring stiffness coefficient left/right suspension (N/m)
cL/cR Viscous damping coefficient left/right suspension (Ns/m)
FfL/F fR

Friction force coefficient left/right suspension (N)
ku/kl Spring stiffness coefficient upper/lower limit (N/m)
xu/xl Distance between upper/lower limit and the beam’s equilibrium position (m)
m2 Beam mass2 (kg)
km Spring stiffness coefficient mass2 suspension (N/m)
cm Viscous damping coefficient mass2 suspension (Ns/m)
ke Spring stiffness coefficient excitation suspension (N/m)
ce Viscous damping coefficient excitation suspension (Ns/m)
z0 Displacement of the excitation’s zero level about the strips equilibrium (m)

6.3 System Specification

The parameters used in the numerical simulations comes from section 3 and
the excitation suspension an approximation to yield a stiff impact, with values
presented in table 2.

Parameter Value Parameter Value

m1 3kg FfR 1.6N

I 0.78kgm2 ku 47500N/m
L 0.58m kl 7550N/m
kL 1150N/m xu 0.002m
kR 1150N/m xl 0.029m
cL 10Ns/m m2 0.5kg
cR 16Ns/m km 50000N/m
α 40 cm 50Ns/m
β 10000 ke 150000N/m
FfL 1N ce 150Ns/m
A 0.005m

Table 2. The Parameters for the numerical model

6.4 Numerical Results

Two different cases, comparable with the experimental, are considered in the
numerical analyses of the model built. The first Case A is to be compared
with the experimental results from Case 1 and 3, where impact with the lower
limit could occur, with a z0=0.022m causing a pre-load in each suspensions of
Fp=25.3N. In the second Case B, one side of the beam is allowed to impact at
the upper limit, as in the experimental Case 2, and a z0=0.005m used, resulting
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in a preload of Fp=5.75N. The initial conditions for the two cases are seen in
table 3, and the equations solved using the Matlab software package’s ode45
solver with a relative and absolute tolerance of 1 · 10−9.

Case x(0)
.
x(0) θ(0)

.

θ(0) y(0)
.
y(0)

A −0.022 A · w 0 0 −0.022 A · w
B −0.005 A · w 0 0 −0.005 A · w

Table 3. The initial conditions for the numerical model

6.4.1 Case A

The first results, presented in figure 19, clearly visualize the frictional effects
in the suspensions and the up- and downward symmetry previously seen in the
measurements. The contact at the excitation remains and no impact at the
lower limits occur. If compared with the results in figure 13 they show very
much the same behaviour.
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Figure 19. Case A, 0.2Hz and 0.8Hz

The same yields the results in figure 20, to be compared with the experi-
mental results found in figure 14 where the behaviour occurs at a slightly higher
frequency.
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