
44

Chapter 3: Programming in Mathematica

Programming in Mathematica

A program (code) is a sequence of instructions to solve some problem. In
Mathematica, we input each instruction and press the “return” key. After all
instructions are typed in, we press the “enter” key to execute the sequence.

Individual instructions in the code can be assignment statements, iteration
statements (loops), conditional (if), input or output statements, functions, or
other programming constructs.

Looping Constructs (Iteration)

Allows repeated evaluation of expressions.

FunctionsDo, For, andWhile are similar to looping statements in high-level
programming languages.

• Do Function
- Has general forms:

- evaluates body repeatedly withk varying fromkstart to
kstop in steps ofdk. Can omitdk, or bothkstart anddk;
default values are 1.

- body contains one or more expressions separated by
semicolons.

 -bodyis evaluated n times.

Do[body, {k, kstart, kstop, dk}]

Do[body, {n}]

45

TheDo function generates no output, it simply evaluates the expression in the
body, repeating the evaluation for the specified number of iterations.

Using thePrint function, we can output the value of an expression at each
iteration.

Example Do Statements:

1. List of factorials (using factorial operator I).

Do[Print[k!], {k,3}]

1

2

6

2. List of negative powers of 2.

Do[Print[2^k], {k,0,-2,-1}]

1

1

- {obtain results as rational numbers

2

1

-

4

3. Table of powers.

Do[Print[k,” “,k^2” “,k3], {k,3}]

1 1 1 {character strings of two blank spaces each

2 4 8 are used to separate columns

3 9 27

46

4. Another table with character strings.

Do[Print[k,” squared is “,k^2], {k,5}]

1 squared is 1
2 squared is 5
3 squared is 9
4 squared is 16
5 squared is 25

5. A table with column headings.

Print[“k k^2”]
Print[“ “]
Do[Print[k,” “,k^2],{k,5}]

(A better way to produce tables is to set up lists and use the Table function, which
aligns columns. We will discuss this method after we take a look at list structures in
general.)

k k^2

1 1

2 4

3 9

4 16

5 25

47

6. Loop variable does not have to be an integer.

• It can be a floating-point number, as in

Do[Print[k],{k,1.6, 5.7,1.2}]

1.6
2.8
4.
5.2

• It can include units, as in

Do[Print[k], {k, 2cm, 9cm, 3cm}]

2cm
5cm
8cm

• Or it can be an expression, as in

Do[Print[k], {k,3(a+b), 8(a+b), 2(a+b)}]

3 (a + b)
5 (a + b)
7 (a + b)

48

7. Nested Loops.

Do[Print[{i,j}],{i,4},{j,i-1}]

(2,1)
(3,1) (At i=1, j cannot vary from 1

(3,2) to 0 in steps of 1; i.e.,

(4.1) jstart is bigger than

(4,2) jend.)

(4.3)

8. Body ofDo Function can contain multiple expressions,separated by semicolons.

x=10.0; { semicolon here suppresses output

Do[Print[x];x=Sqrt[x], {3}]

10.
3.16228
1.77828

Output fromPrint function simply produces text on the screen (called a “side
effect”), and does not return a value that can be referenced by other functions.

Referencing aPrint function produces a “Null” result’ i.e.,

Sqrt[Print[2]]

2
Sqrt[Null]

49

Do function is useful for loops that are to be repeated a fixed number of
times. But in many cases, we do not know in advance how many times we want to
repeat a loop.

In Mathematica, have two general loop functions that allow a loop to be
ended when a particular condition is satisfied.

• For Function

Has general form:

- first, theinitial statements are processed, then the test condition is evalu-
ated; iftestis true, the body is processed, thenincr is processed. The
sequencetest-body-incr is repeatedly processed untiltest is false.

Example:

Evaluate sum = sum + 1/x, starting atx=1 and continuing as long as1/x >
0.15.

For[sum=0.0; x=1.0, (1/x) > 0.15, x=x+1,
 sum=sum+1/x;Print[sum]]

1
1.5
1.83333 (Note: semicolon used as delimiter between

2.08333 statements ininitial and inbody.)

2.28333
2.45

For[initial, test, incr, body]

50

• While Function

Has general form

-where body is a set of statements that are repeatedly processed
unit test is evaluated to be false.

Similar toFor function, except initialization must be given as separate
statements.

Example While loops:

n=25; While[(n=Floor[n/2])>0, Print[n]]

12
6
3
1

sum=0.0;
x=1.0;
While[1/x>0.15, sum=sum+1/x;
Print[sum]; x=x+1]

1
1.5
1.83333 (Note: semicolons after the initialization for sum and

2.08333 x suppress the output for these two statements.)

2.28333
2.45

While[test, body]

51

Mathematica provides abbreviated forms for incrementing variables.

For example, we can usex++ in place ofx=x+1 (as in C programming lan-
guage) in the previous example:

sum=0.0;
x=1.0;
While[1/x>0.15, sum=sum+1/x;

 Print[sum]; x++]

The following table lists abbreviated forms for incrementing and making other
assignments to the value of a variable in Mathematica.

x++ Increments in value of x by 1.

x-- Decrements the value of x by 1.

x += dx Adds dx to the value of x.

x -= dx Subtracts dx from the value of x.

x *= a Multiplies the value of x by a.

x /= a Divides the value of x by a.

52

Test conditions inFor andWhile functions areLogical Expressions -- evaluate
to TRUE or FALSE.

Form logical expressions with the following operators:

Relational
Operator

Type of Test

== equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Logical (Boolean)
Operators

Operation

! not (“flips” logic value)

&& and (True if all exprs True)

|| or (True if at least one is True)

Xor[expr1, expr2, . . . exclusive or (True if only one
 expr True)

=== equivalence (True if all exprs have
 same logic value)

=!= nonequivalence (True if exprs have
 opposite logic values)

53

Simple Logical Expressions

- formed with relational operators.

3 > 5

False

3 <= 5

True

4+2 == 5+1

True

a != b (If no values have been assigned to variables a and b,

a != b the result cannot be evaluated as True or False.)

a=5; b=5; a != b

False

Can also form sequence of logical tests as

4 < 7 <= 12

True

2 != 4 != 2

False (not all values unequal)

54

Compound Logical Expressions

- formed with Logical (Boolean) operators and combinations of
simple expressions.

(3 < 5) || (4 < 5)

True

Xor[3<5, 4<5]

False

(3 < 5) && !(4 > 5)

True

(3 < 4) === (4 < 5) === (5 < 6)

True

The following functions can be used in place of the equality and equivalence
operators.

Note: Avoid testing floating-point variables for equality. Why?

Equal[a,b] a == b

Unequal[a,b] a != b

SameQ[a,b] a === b

UnsameQ[a,b] a =!= b

55

Summation Function

- Has general forms:

Example - Previous summation problem can be accomplished
with Sum Function:

Sum[1/k, {k, 1,10}]

(exact result)

N[Sum[1/k, {k,1,10}]]

2.92897 (decimal approximation)

Product Function

General-purpose programming languages usually do not contain sum and
product functions.)

Sum[f, { k, kstart, kstop}]

Sum[f, {k, kstart, kstop, dk}] - with incr. dk

Sum[f, {kstart, kstop}, { j, jstart, jstop}] - nested sums

Product[f, {k, kstart, kstop}]

Σk kstart=
kstop

f

7381
2520

Πk kstart=
kstop

f

56

Conditionals (Decision Statements)

High-level programming languages generally make decisions as to which
processing steps should be executed next using anif structure, but some lan-
guages provide other conditionals as well.

Mathematica provides the functions If, Which, and Switch for decision mak-
ing.

• If Function

- if the test is true, thetrue-stmts are executed; if thetestis false,
thefalse-stmts are executed.

Example:

x = 4;
If[x>0, y=Sqrt[x], y=0]

2

In Mathematica it is possible that a test can be neither true nor false, since
values may not have been assigned to the variables involved in the test. To
handle this possibility, we can use the function:

- if the testis true, thetrue-stmtsare executed; if thetestis false,
thefalse-stmtsare executed; otherwise the neither statements
are executed.

If [test, true-stmts, false-stmts]

If [test, true-stmts, false-stmts, neither]

57

• Which Function

- returns the first valuek associated with the first true testk, as
tests are evaluated left to right.

Example:

x=-4;
y=Which[x>0,1/x,x<-3,x^2, True, 0]

16 (The third test, “True”, is the default in this
example.)

• Switch Function

- evaluatesexpr and compares it to eachformk in left-to-right order,
and returns correspondingvaluek when a match is found. The
underscore(_) above is an optional default form (matches any-
thing).

Example:

a=-4; b=4;
y=Switch[a^2, ab, 1.0/a, b^2, 1.0/b, _, 01]

0.25 (For this example, the evaluation of a^2 matches
 the evaluation b^2, so the floating-point value of
 1/b is returned.)

Which[test1, value1, test2, value2, . . .]

Switch[expr, form1, value1, form2, value2, . . . __, defval]

58

User-Defined Functions

In addition to the built-in functions provided in the function library, program-
ming languages generally allow users to define other functions useful in par-
ticular applications.

We define functions in Mathematica with statements of the form:

- where body specifies the computations that must be performed to
evaluate the function. This can be a single expression or a
series of expressions, separated by commas and enclosed
in parentheses, involving arithmetic operations, loops, if
statements, etc.

The underscore (_) after each argument name allows that argument
to be replaced with any other name or expression.

Without the underscore (called “blank”), an argument cannot be
replaced with any other name or expression.

Example: binPower[x_] := (1+x)^2 { single expression

y4 = binPower[4]
25

y4yab = y4 binPower[a+b]

25 (1 + a + b) 2

fcnName[arg1_, arg2_, . . .] :=body

59

It is good practice to clear a variable name before defining it as a function to
be sure all previous values and definitions are removed.

For example, functions can be defined with multiple rules as in

invSquare[0] = 0; (immediate assignment)

invSquare[x_] := (1/x)^2 (delayed assignment)

With the Clear function, we erase all values (immediate assignments) and
definitions (delayed assignments) given to a name. (The operation “=.” only
removes individual value assignments.)

Example: Redefining binPower as a function of two variables.

Clear[binPower]; {could also clear other variables

binPower[x_, n_] := (1+x)^n

y23 = binPower[2,3]
27

ya2Exp = Expand[binPower[a, 2]]

1 + 2 a + a 2

Just as with built-in functions, we can get info on user-defined functions by
typing ?fcnName. E.g.,

?binPower

Global‘binPower

binPower[x_, n_] ;= (1 + x)^n

60

Recursive Functions

- are defined in terms of themselves.

Example: Fibonacci Numbers

(occur in many natural objects; for example, ratio of
successive radii of spirals in seashells and flowers)

Clear[fib];
fib[0] = fib[1] = 1;
fib[n_] := fib[n-1] + fib[n-2]

(assuming n is nonnegative integer)

fourthFib = fib[4]
4

The functionfib is an example of repeated procedure calls. When we
invoke the function with the value 4, it must call itself to compute values for
fib[3] andfib[2] , and so on.

Another common example of a recursive function is factorial (of course, in
Mathematica, we can simply writen! or use Gamma function which is an exten-
sion of factorial to real numbers):

Clear[factorial];
factorial[0] = 1;
factorial[n_1] := n factorial[n-1]

(assuming n is nonnegative integer)

fact5 = factorial[5]
120

Recursion is often a natural way to program a problem. Some languages, par-
ticularly older languages, such as FORTRAN 1 through FORTRAN 77, do not
allow recursion.

61

If a function is to be called repeatedly, we can reduce calculation time by sav-
ing all previously computed values. This is done in Mathematica by repeating the
function name after the SetDelayed Symbol (:=).

Example: Fibonacci Series

Clear[fib];
fib[0] = fib[1] = 1;
fib[n_] := fib[n] = fib[n-1] + fib[n-2]

(i.e., function fib now defined as an assignment
 statement.)

Now, any time we call this function, it saves all values it calculates. Then if it
is called again with a value it has already computed, it simply does a table lookup.

Tradeoff: Uses more memory.

fib4 = fib[4]
5

?fib
Global‘fib
fib[0] = 1
fib[1] = 1 (stored values for fib [n])

fib[2] = 2
fib[3] = 3
fib[4] = 5
fib[n_] := fib[n] = fib[n = 1]

 + fib[n - 2]

62

To ensure correct input to functions, it is always a good idea to do data check-
ing to be sure that input values are in the proper range (program is “robust”).

Example: Input to Fibonacci Function must be positive.

Clear[fib];
fib[n_] :=

If[n < 0,
Print[“Input to fib must be

nonnegative integer.”],
If[(n==0)||(n==1),

fib[n] = 1,
fib[n] = fib[n-1] + fib[n-2]

] (assignment stmts cause values to be saved,

] otherwise just list what is to right of =)

This example also illustrates an indentation scheme that can be used to facili-
tate reading of the code. This is a major feature of good programming practice, and
it is especially important as blocks of code get longer.

In this scheme, the expression is on the next line after the function definition
line. To identify components of the if blocks, we have the test, true-stmts, and false-
stmtseach on separate lines. We easily identify the beginning and end of each if
block by the alignment of brackets.

For all programming assignments, you must use a consistent indentation scheme.
You can use the examples in the lecture notes as a guide, but your scheme does not
have to be exactly the same.

We can also modify thefib function to check for integer input using the Round
function (how?).

63

High-level programming languages provide type declaration statements for
variable names. Mathematica specifies type declarations (Integer, Real, Complex,
String, List, etc.) by appending the required type to the variable name.

For example, we can restrictfib to integer values with the definition:

Clear[fib];
fib[n_Integer] :=

If[n < 0,
Print[“Input to fib must be

nonnegative integer.”],
If[(n==0)||(n==1)

fib[n] = 1,
fib[n]=fib[n-1]+fib[n-2]

]
]

This function would now produce the following output:

fiveFib = fib[5]
8

minus3Fib = fib[-3]
Input to fib must be nonnegative integer

realNumFib = fib[2.5]
fib[2.5]

(Indicates that 2.5 cannot be evaluated by this function,
but give no instructions to user.)

64

Another method for restricting data range in a function definition is to specify
the allowable range using the Condition operator(/;).

We can include the condition for the data range following the type
declaration:

Clear[fib];
fib[n_Integer /; n >= 0] :=

 If[(n==0)||(n==1),
fib[n] = 1,
fib[n]=fib[n-1]+fib[n-2]

]

Or, we can place the restriction on the data range after the function
definition:

Clear[fib];
fib[n_Integer :=

 If[(n==0)||(n==1),
fib[n] = 1,
fib[n]=fib[n-1]+fib[n-2]

] /; n >= 0

If we would like to return a message when an incorrect data type or data
value is passed to a function, we can useIf functions to make the necessary
checks and return an appropriate message.

65

When we set up a function definition using a series of expressions, the gen-
eral form is:

- where statements are separated by semicolons.

Examples:

Clear[fcn1]
fcn1[a_,b_] := (c=a^2; b^3+c)

y = fcn1[2,2] (variable y is assigned last value calculated

12 in the body of fcn1, unless the last expression
 is terminated with a semicolon)

Clear[arithFcn]
arithFcn[a_Real,b_Real] :=

(sumab = a + b; diffba = b - a;
 prodab = a * b
)

arithFcn[5.2,-3.1]
-16.12 {result from last expression: a*b

sumab
2.1

diffba
-8.3

fcnName[arg1_type1, arg2_type2,. . .]

:= (expr1; expr2,. . .)

66

Procedural Programming

- involves writing blocks of code sequences that contain operations
such as assignment statements, loops, conditionals, etc.

Block-Structured Languages allow programs to be “modularized” into a set of inde-
pendent program units:

Global Variables:
- are those variables declared in outer blocks that can be used by

inner subblocks. E.g., variables in Main Prog can be used by
Subprograms A, B.

Local Variables:
- are those variables declared in subblocks. They are only known

locally; i.e., to the declaring block and its subblocks. For example,
variables declared in B are known to B, C, and D, but not to Main
or Subprogram A. Local variables override any global variables
of the same name.

Main Program
(global variables)

Subprogram A
(local variables)

Subprogram B

Subsubprogram C

Subsubprogram D

67

Subprograms are called “subroutines”, or “functions”, or “procedures”, etc.,
depending on the particular language and the nature of the subprogram.

For example, a FORTRAN subprogram is either a “subroutine” or a “func-
tion”; Pascal uses “procedures” and “functions”; the C language uses only “func-
tions”.

Modules and Local Variables in Mathematica

- creates a block of code with local variablesvar1, var2, etc.,
which exist only during execution of the module.

Example:

k=25 (global assignment statement)

25

Module[{k},Do[Print[k,” “,2^k], {k,3}]]
1 2
2 4 (here k is local variable with final value 3)

3 8

k (but the global value of k is still 25)

25

Thus, we can create programs as series of modules, each performing a spe-
cific task. For subtasks, we can imbed modules within other modules to form a hier-
archy of operations.

Module[{var1,var2, . . .}, body]

68

The most common method for setting up modules is through function defini-
tions, E.g.,

Clear[integerPowers];
integerPowers[x_Integer] :=

Module[{k}, Do[Print[k,” “,x^k],{k,3}]]
integerPowers[k]
1 2 {where global variable k still has value 25

2 625
3 15625

And local variables can be assigned initial values.

Clear[invSum];
invSum[x0_Real /;x0>0, xEnd_Real] :=

Module[{sum=0.0,x=x0},
While[(1/x)>xEnd,

sum=sum+1/x; x++
];

sum
]

y=invum[1.0, 0.15]
2.45

y=invSum[1.0, 0.10]
2.82897

y=invSum[1, 0.1] {cannot evaluate: x0 is assigned an

invSum[, 0.1] integer value, instead of Real

y=invSum[1.0, 3] {cannot evaluate: xEnd is assigned

invSum[1., 3] an integer value, instead of Real

y=invSum[-1.0, 0.1] {cannot evaluate: x0 is assigned

invSum[-1., 0.1] a negative value

69

Programs are also easier to understand when they contain documentation, as
well as modularization.

Example:

Clear[invSum];
(* fcn to calculate sum of 1/x for specified
 initial x and final 1/x values *)
invSum[x0_Real /;x0>0, xEnd_Real’ :=
 Module[{sum=0.0,x=x0}, (* initialization *)

 While[(1/x)>xEnd,
 sum=sum+1/x; x++

];
 sum

]

Note: comments specified as:

(* comment *)

Good Programming Practice:

 Modularize programs.
 Avoid use of global variables.
 Avoid use of goto and similar constructs
 (spaghetti code).
 Include Documentation (Comments)

Advantages- Programs are then:

 Easier to Understand
 Easier to Modify

70

Input-Output in Pr ogramming Languages

Input commands typically available for

• Interactive Input
• File Input

using names such as “Read”, “Input”, “Get”,
etc.,

Output commands direct output data to specific devices and files
(screen display, printer or plotter output, disk file output, etc.).

Typical names for output commands in high-level languages are “Write”, “Print”,
“Put”, etc.

Associated with input-output commands are “format” specifications, such as

• Total number of digits or characters.

• Representation for decimal numbers (e.g., scientific notation)

• Number of decimal places.

• Spacing between data values.

• Line spacing.

• New page - for output.

• Headings - for output.

etc.

71

Interactive Input in Mathematica

Input can be requested at any point in a program with either of the functions:

- where the prompt is optional, but should be included
to explain to the user what type of input is needed.

With a notebook interface, an input function usually generates a dialog box,
showing the prompt and a blinking cursor.

The following example shows a typical dialog box displayed by an input
function.

intList=Input[“Input a lislt of integers.”]

Input[“prompt”]

InputString[“prompt”]

{for any expression or data type

{string input only

Input a list of integers OK

Help

Local Kernel InputLocal Kernel Input

72

We then type in the required input at the position of the cursor (remembering
that a list must be enclosed in brackets {}):

After typing the input, we click on the OK button (or press “return” or
“enter”) to close the dialog box. The output line is then generated following the
input stmt:

intList=Input[“Input a list of Integers”]
(1, 2, 3, 4, 5)

The InputString function is similar; e.g.,

str=InputString[“Type in any 5 characters.”]
abcde

(If the input is typed as “abcde”, then the output line will include the quotes --
which is a 7-character string.)

Input a list of integers OK

Help

Local Kernel InputLocal Kernel Input

(1,2,3,4,5)

73

Any expression can be entered with the Input function. For
example:

expr = Input[“Input any expression.”]

which produces the Mathematica
output line:

Similarly for other data types: e.g.,

realNo=Input[“Input a floating-pt number.”]
28.957

Input a list of integers OK

Help

Local Kernel InputLocal Kernel Input

a^2/b+c/d

a
2

b

c
d
--+

74

The function InputForm converts an expression into a form suitable for input,

editing, or text manipulations. E.g.,

InputForm[%] (Similarly, OutputForm would return expr to
a^2/b + c/d standard 2D math form above.)

str=InputString[“Input a 5 char string.”]
abcde

InputForm[%]
“abcde” (If input string is typed as “abcde”, then InputForm

 produces “\”abcde\”” - where \” represents the
 character “In the string.)

Conversion functions are also available for changing an expression to a valid
form for FORTRAN, C, and TEX:

y = x^2/(a c)

FortranForm[y]
x**2/(a*c)

CForm[y]
Power(x,2)/(a*c)

TeXForm[y]
(({x^2})\over {a\,c})

a
2

b
----- c

d
---+

a
2

ac

75

File I-O in Mathematica
Files are used to store various types of information, such as a program file, data file,
or graphics image file.

 expr >> filename - writeexpr to file as plain text.

expr >>> filename - appendexpr to file.

 << filename - read in a file, evaluate each expr,
display list item in output form.

 !!filename - display contents of a file in
Mathematical input form.

 (Operators >>, >>>, and << are analogous to Unix
 shell operators >, >>, and <.)

Examples: Storing expressions, definitions, results, etc.

Expand[(a+b)^2] >>exprFile {operator >> erases file if it

expr1 = <<exprFile already existed

a2 + 2 a b + b 2

!!exprFile
a^2 + 2*a*b + b^2

expr2=Factor[<<exprFile] >>>exprFile
!!exprFile
a^2 + 2*a*b + b^2

<<exprFile {can suppress output by setting last file item

(a + b) 2 to Null

• Operator << can be used with a program file to read in and evaluate the state-
ments in the program.

• Operators >> and << can also be written as
Put[“filename”] andGet[“filename”]

76

We can display file items in various formats using the following
function:

- displays a list of the file items in the specified type (if appropriate):

Examples:

ReadList[“exprFile”, Expression]

{a 2 + 2 a b + b , (a + b) 2}

ReadList[“exprFile”, String]
{a^2 + 2*a*b + b^2, (a + b)^2} (same as Record,

 for this file)

ReadList[“exprFile”, Word]
{a^2, +, 2*a*b, +, b^2, (a, +, b)^2}

Type Description

Byte integer codes for each character in file.

Character lists the characters in file.

Number lists numbers in file (exact or approx).

Real lists the floating-point values of numbers.

Word lists “words”, separated by spaces, etc.

Record lists “records”, separated by lines, etc.

String lists strings in file.

Expression lists expressions in file.

ReadList[“filename”, type]

77

ReadList[“exprFile”, Character]
(a, ^, 2, , +, , 2, *, a, *, b,
 +, , b, ^, 2, , (, a, , +, , b, ‘),

 ^, 2,)

ReadList[“exprFile”, Byte]
(97, 94, 50, 32, 43, 32, 50, 42, 97,
 42, 98, 32, 43, 32, 98, 94, 50, 13,
 40, 97, 32, 43, 32, 98, 41, 94, 50,
 13)

“A three-word sentence.” >>charFile
ReadList[“charFile”,Word]
{“A, three-word, sentence.”}

Do[k^2 >>>sqsFile, {k,5}
!!sqsFile (Note: To produce a numeric data file, the file must

1 be created with Table or other functions that

4 generate a list

9
16 (The file could be created with another

25 program; i.e., word processor)

<<sqsFile
25

ReadList[“sqsFile”, Number]
{1, 4, 9, 16, 25}

ReadList[“sqsFile”, Real]
{1., 4., 9., 16., 25.}

78

We can also save function definitions and variable assignments
with

Examples:

f[x] := (a+x)^3

a = 8
8

Save[“defsFile”, f]

!!defsFile (Both the function and the value 8 for

f[x_] := (a + x)^3 parameter a are saved -- provided

a = 8 we make the assignment before

 saving f.)

y = m x + b

Save[“defsFile”, y]

!!defsFile
f[x_] := (a + x)^3
a = 8
y = b + m*x

Save[“filename”, fcn1, fcn2, . . . var1, var2, . . .]

79

Single items can be read from a file with the following sequence of
operations:

When file is opened, a file pointer is set to beginning of file. As each item of
file is read or skipped, pointer advances to next file item. After last item is read,
Read function returns “EndOfFile”.

Example: Reading file items into a list.

Consider the file of squares:

ReadList[“sqsFile”, Number]

{1, 4, 9, 16, 25}

The following code segment transfers the file items one-by-one to sqsList, using the
Append function:

OpenRead[“sqsFile”];
num=Read[“sqsFile”, Number];
sqsList={}; (* initialize to empty list *)
While[num != EndOfFile”,

 sqsList=Append[sqsList, num];
 num=Read[“sqsFile”, Number]
];

Close[“sqsFile”];
sqsList

{1, 4, 9, 16, 25}

 OpenRead[“filename”] - opens a file in “read” mode.

 Read[“filename”, type] - read an item from file.

 Skip[“filename”, type, n] - skip n items of specified type.

 Close[“filename”] - close file.

80

The following code section transfers every other item of the sqsFile to the list
sqsList:

OpenRead[“sqsFile”];
num=Read[“sqsFile”, Number];
sqsList={}; (* initialize to empty list *)
While[num != “EndOfFile”,

 sqsList=Append[sqsList, num];
 Skip[“sqsFile”, Number];
 num=Read[“sqsFile”, Number]
];

Close[“sqsFile”];
sqsList

{1, 9, 25}

Similar functions are available for writing to files. They are low-level opera-
tions corresponding to >> and >>>.

 OpenWrite[“filename”] - opens (and erases) a file
 in “write” mode.

OpenAppend[“filename”] - opens a file for appending.

 Write[“filename”, expr] - write an expr to a file.

 Close[“filename”] - close file.

81

Additional file functions:

File Names

Within the current working directory, we can reference a file directly with its
filename.

When the file is in a directory below the current working directory, we can
reference the file through the hierarchy of file names:

wheredirname2 is a directory (folder)
 withindirname1, etc.

Thus, to reference a file that is not in the current working directory, we can
either change the current directory or use the hierarchical filename above.

 DeleteFile[“filename”] - delete the file.

 Copy[“file 1”, “file 2”] - copyes items in file 1 to file 2.

 Directory[] - gives current working directory.

 SetDiretory[“dirname”] - set current working dir.

 FileNames[] - lists files in current working dir.

dirname1 ‘dirname2 ‘ . . . ‘filename

82

Number Representations

• Decimal Number System(Base 10)
Digits: 0, 1, 2, . . . , 9

e.g.,

• Binary Number system(Base 2)

Digits: 0, 1

• Octal Number System(Base 8)
Digits: 0, 1, 2, . . . 7

Useful for representing binary information. Starting from right, replace
each group of three binary digits with equivalent octal representation.
E.g.,

• Hexadecimal Number System(Base 16)
Digits: 0, 1, 2, . . . , 9, A, B, C, D, E, F

Can use upper or lower case letters. Useful for representing groups of
four binary digits. Eg.,

352.7 3 10
2

5 10
1

2 10
0

7 10
1–×+×+×+×=

101.11 1 2
2

0 2
1

1 2
0

1 2
1–

1 2
2–×+×+×+×+ +=

4= 0 1 1
2
--- 1

4
---+ + + + 5.7510=

1011100101112 56278= 296710=()

1011100101112 B9716=

83

Number Representations in Mathematics

Using the appropriate digits, n, we can represent a number in any base b as

Examples:
2^^101 (= 5 in base 10)
8^^101 (= 65 in base 10)
16^^101 (= 257 in base 10)

16^^1F(= 31 in base 10)

Mathematica provides the following function for converting a given number to its
equivalent in base b:

Examples:

BaseForm[400, 2] {when no base is specified, the number is assumed

110010000 2 to be a base 10 representation

BaseForm[65, 8]
101 8

BaseForm[16^^101, 10]
257

b^^nnnnnn

BaseForm[number, b]

