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ABSTRACT

In many environments only a tiny subset of all states yield high reward. In these
cases, few of the interactions with the environment provide a relevant learning
signal. Hence, we may want to preferentially train on those high-reward states
and the probable trajectories leading to them. To this end, we advocate for the use
of a backtracking model that predicts the preceding states that terminate at a given
high-reward state. We can train a model which, starting from a high value state
(or one that is estimated to have high value), predicts and samples which (state,
action)-tuples may have led to that high value state. These traces of (state, action)
pairs, which we refer to as Recall Traces, sampled from this backtracking model
starting from a high value state, are informative as they terminate in good states,
and hence we can use these traces to improve a policy. We provide a variational
interpretation for this idea and a practical algorithm in which the backtracking
model samples from an approximate posterior distribution over trajectories which
lead to large rewards. Our method improves the sample efficiency of both on- and
off-policy RL algorithms across several environments and tasks.

1 INTRODUCTION

Training control algorithms efficiently from interactions with the environment is a central issue in
reinforcement learning (RL). Model-free RL methods, combined with deep neural networks, have
achieved impressive results across a wide range of domains (Lillicrap et al., 2015;Mnih et al.,2016;
Silver et al} 2016). However, existing model-free solutions lack sample efficiency, meaning that
they require extensive interaction with the environment to achieve these levels of performance.

Model-based methods in RL can mitigate this issue. These approaches learn an unsupervised model
of the underlying dynamics of the environment, which does not necessarily require rewards, as the
model observes and predicts state-to-state transitions. With a well-trained model, the algorithm can
then simulate the environment and look ahead to future events to establish better value estimates,
without requiring expensive interactions with the environment. Model-based methods can thus be
more sample efficient than their model-free counterparts, but often do not achieve the same asymp-
totic performance (Deisenroth & Rasmussen, 201 1a; Nagabandi et al., 2017).

In this work, we propose a method that takes advantage of unsupervised observations of state-to-state
transitions for increasing the sample efficiency of current model-free RL algorithms, as measured
by the number of interactions with the environment required to learn a successful policy. Our idea
stems from a simple observation: given a world model, finding a path between a starting state and
a goal state can be done either forward from the start or backward from the goal. Here, we explore
an idea for leveraging the latter approach and combining it with model-free algorithms. This idea
is particularly useful when rewards are sparse. High-value states are rare and trajectories leading to
them are particularly useful for a learner.

The availability of an exact backward dynamics model of the environment is a strong and often
unrealistic requirement for most domains. Therefore, we propose learning a backward dynamics
model, which we refer to as a backtracking model, from the experiences performed by the agent.
This backtracking model p(s;, a;|s+1), is trained to predict, given a state s;11, which state s, the
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agent visited before s, 1 and what action a; ~ 7 was performed in s; to reach s; 1. Specifically,
this is a model which, starting from a future high-value state, can be used to recall traces that have
ended at this high value state, that is sequences of (state, action)-tuples. This allows the agent to
simulate and be exposed to alternative possible paths to reach a high value state. A final state may be
a previously experienced high-value state or a goal state may be explicitly given, or even produced
by the agent using a generative model of high-value states (Held et al., 2017).

Our hypothesis is that using a backtracking
model in this way should benefit learning, es-
pecially in the context of weak or sparse re-

wards. Indeed, in environments or tasks where

the agent receives rewards infrequently, it must /
leverage this information effectively and effi- %\T‘

ciently. Exploration methods have been em- Staté

ployed successfully (Bellemare et al. 2016 T
Held et al.l 2017} |Ostrovski et al., [2017)) to in-
crease the frequency at which novel states are
discovered. Our proposal can be viewed as a
special kind of simulated exploration proceed- Figure 1: The policy explores the state space
ing backward from presumed high-value states, S from an initial state. Discovered high value
in order to discover trajectories that may lead states are then passed to the backtracking model
to high rewards. A backtracking model aims (dashed-lines) to generate new traces that may
to augment the experience of the trajectory 7~ have led to this high value state.

leading to a high-value state by generating other

possible traces 7 that could have also caused it. To summarize: the main contribution of this paper
is an RL method based on the use of a backtracking model, which can easily be integrated with
existing on- and off-policy techniques for reducing sample complexity. Empirically, we show with
experiments on eight RL environments that the proposed approach is more sample efficient.

2 PRELIMINARIES

We consider a Markov decision process (MDP) defined by the tuple (S, A, P, r,~y), where the state
space S and the action space .4 may be discrete or continuous. The learner is not explicitly given the
environment transition probability p(s;11]|s¢, a;) for going from s, € S to 5,41 € S given a; € A,
but samples from this distribution are observed. The environment emits a bounded reward r : S x
A = [Prmin, Tmaz) ON each transition and v € (0, 1) is the discount factor. Let 7 denote a stochastic

policy over actions given states, and let R(w) = E, Z?:o vir(s;)| denote the expected total

return when policy 7 is followed.The standard objective in reinforcement learning is to maximize
the discounted total return R(7). Throughout the text we will refer to experienced trajectories as
T =(s1,a1, -, 8T, ar) and we will refer to simulated experiences as traces 7.

2.1 BACKTRACKING MODEL

We introduce the backtracking model By, = ¢4 (s¢, at|si+1), which is a density estimator of the joint
probability distribution over the previous (s, a;)-tuple parameterized by ¢. This distribution is pro-
duced by both a learned backward policy 7, = g(a¢|s¢+1) and a state generator q(s¢|at, S¢+1). The
backward policy predicts the previous action a; given the resulting state s;1. The state generator
estimates the probability of a previous state s; given the tuple (a¢, s¢41). With these models, we
may decompose ¢y (¢, ar|si+1) as q(s|ar, Se+1)q(ae]se+1).

However, for training stability with continuous-valued states, we model the density of state variation
Asy = sy — Syy1 rather than the raw s;. Therefore, our density models are given by

qp(At, atlsir1) = q(Asilag, sir1)q(a|sey1)- (1)
Note that for readability, we will drop the ¢-subscript unless it is necessary for clarity.

Generating Recall Traces. Analogous to the use of forward models in (Oh et al.| [2015} |Chiappa
et al.,2017;Weber et al.,2017)), we may generate a recall trace auto-regressively. To do so, we begin
with a state s;1 and sample a; ~ ¢(a¢|s¢+1). The state generator can then be sampled to produce
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the change in state As; ~ g(Ast|ag, s¢11). We can continue to unroll this process, repeating with
state s; = As; + s¢4+1 for a desired number of steps. These generated transitions are then stored as
a potential trace 7 which terminates at some final state. The backtracking model By is learned by
maximum likelihood, using the policy’s trajectories as observations, as described in Section [3.1]

Producing Intended High Value States. Before recursively sampling from the backtracking
model, we need to obtain presumed high-value states. Generally, such states will not be known
in advance. However, as the agent learns, it will visit states s; with increasingly high value
V™(sy = s) = Ex [>_,7'7(s¢)| s = s]. The agent’s full experience is maintained in a replay buffer
B, in the form of tuples of (s¢, at, S¢+1, r+). Filtering of trajectories based on the returns is done, so
that only top k;,,; are added to the buffer. In this work, we will investigate our approach with two
methods for generating the initial high-value states.

The first method relies on picking the most valuable states stored in the replay buffer 5. As before,
a valuable state may be defined by its estimated expected return V7 (s) as computed by a critic (our
off-policy method) or state that received a high reward (our on-policy method).

The second method is based on Goal GAN, recently introduced by (Held et al.,|2017) where goal
states g are produced via a Generative Adversarial Network (Goodfellow et al.,[2014)). In our variant,
we map the goal state g to a valid point in state space s using a ’decoder’ D. For the point-mass,
the goal and state are identical; for Ant, we use a valid random joint-angle configuration at that goal
position. The backtracking model is then used to find plausible trajectories that terminate at that
state. For both methods, as the learner improves, one would expect that on average, higher value
states are used to seed the recall traces.

3 IMPROVING POLICIES WITH BACKTRACKING MODEL

In this section, we describe how to train the backtracking model and how it can be used to improve
the efficiency of the agent’s policy and aid with exploration.

3.1 TRAINING THE BACKTRACKING MODEL

We use a maximum likelihood training loss for training of the backtracking model B, on the top
k% of the agent’s trajectories stored in the state buffer 3. At each iteration, we perform stochastic
gradient updates based on agent trajectories 7, with respect to the following objective:

T T
Ls =logay(r) =log [ [ a(Ase, arlsiyr) = logg(arlsisr) +logg(Asilar, si41),  (2)
t=0 t=0

where s; = As;+ 5441 and T is the episode length. For our chosen backtracking model, this implies
a mean-squared error loss (i.e. corresponding to a conditional Gaussian for As;) for continuous
action tasks and a cross-entropy loss (i.e. corresponding to a conditional Multinoulli for s; given
as and sy 1) for discrete action tasks. The buffer is constantly updated with recent experiences and
the backtracking model is trained online in order to encourage generalization as the distribution of
trajectories in the buffer evolves.

3.2 IMPROVING THE POLICY FROM THE RECALL TRACES

‘We now describe how we use the recall traces 7 to improve the agent’s policy my. In brief, the traces
7 generated by the backtracking model are used as observations for imitation learning (Pomerleau,
1989; [ros, 2011} [Bojarski et al.l [2016) by the agent. The backtracking model will be continuously
updated as new actual experiences are generated, as described in Section [3.1] Imitation learning of
the policy is performed simply by maximizing the log-probability of the agent’s action a; given s
given by
T T
Lz =) logp(as|s;) = log mg(arst), 3)
t=0 t=0

where (s¢, a;)-tuples come from a generated trace 7.

Our motivation for having the agent imitate trajectories from the backtracking model is two-fold:
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Algorithm 1 Improve Policy via Recall Traces and Backtracking Model

Require: RL algorithm with parameterized policy (i.e. TRPO, Actor-Ceritic)
Require: Agent policy 7y (als)
Require: Backtracking model By = q4(Ast, a|si41)
Require: Critic V (s)
Require: £ quantile of best state values used to train backtracking model, k:,.,; number of trajecto-
ries filtered by returns.
Require: N; number of backward trajectories per target state
Require: «, §; forward, backward learning rates
1: Randomly initialize agent policy parameters 6
2: Randomly initialize backtracking model parameters ¢
3: fort— 1to K do
Execute policy to produce trajectory
Add trajectory 7 = (s1,a1,71, -+ ,ST,ar,r7)in B
Estimate Vg R(my) from RL algorithm
0« 6+ OZVHR(’/TG)
Compute Lz via Equation using top k% valuable states from top k;,.; trajectories in B
9: P — o+ BVyLp
10:  Obtain target high value state s (see Algorithm [2]for details)
11:  Generate N recall traces 7 for s using By (s)
12: Compute imitation loss £z via Equation
13: 0« 0+aVylr
14: end for

A

Dealing with sparse rewards States with significant return are emphasized by the backtracking
model, since the traces it generates are initialized at high value states. We expect this behaviour to
help in the context of sparse or weak rewards.

Aiding in exploration The backtracking model can also generate new ways to reach high-value
states. So even if it cannot directly discover new high-value states, it can at least point to new ways
to reach known high value states, thus aiding with exploration.

4  VARIATIONAL INTERPRETATION

Thus far, we have motivated the use of a backtracking model intuitively. In this section, we provide
a motivation relying on a variational perspective of RL and ideas from the wake-sleep algorithm
Hinton et al.|(1995).

Let R be the return of a policy trajectory 7, i.e. the sum of discounted rewards under this trajectory.
Consider the event of the return R being larger than some threshold L. The probability of that
event under the agent’s policy is p(R > L) = >~ _p(R > L|7)p(), where p(7) is distribution of
trajectories under policy 7, p(R > L|7) = 1r~y, and 14 is the indicator function that is equal to 1
if A is true and is otherwise 0.

Let ¢(7) be any other distribution over trajectories, then we have the following classic relationship
between the marginal log-probability of an observation (R > L) and the KL-divergence between ¢
and the posterior over a latent variable (7):

logp(R > L) = L+ KL(g(7)||[p(T|R > L)) > L (4)
where £= Y a(r)log (o > Lir)p(r)/a(r). 5)

This suggests an EM-style training procedure, that alternates between training the variational dis-
tribution ¢(7) towards the posterior p(7|R > L) and training the policy to maximize £. In this
context, we view the backtracking model and the high-value states sampler as providing ¢(7) im-
plicitly. Specifically, we assume that ¢ factorizes temporally as in Equation 2] with the backtracking
model providing g(a¢|s:+1) and g(As¢|at, $s+1). We parameterize the approximate posterior in this
way so that we can take advantage of a model of the backwards transitions to conveniently sample
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from ¢ starting from a high-value final state sp. This makes sense in the context of sparse rewards,
where few states have significant reward. If we have a way to identify these high-reward states, then
it is much easier to obtain these posterior trajectories by starting from them.

Training ¢(7) by minimizing the KL(¢(7)||p(7|R > L)) term is hard due to the direction of the
KL-divergence. Taking inspiration from the wake-sleep algorithm (Hinton et al., |1995), we instead
minimize the KL in the opposite direction, KL(p(7|R > L)||g(7)). This can be done by sampling
trajectories from p(7|R > L) (e.g. by rejection sampling, keeping only the forward-generated tra-
jectories which lead to R > L) and maximizing their log-probability under ¢(7). This recovers our
algorithm, which trains the backtracking model on high-return trajectories generated by the agent.

So far we have assumed a known threshold L. However, in practice the choice of L is important.
While ultimately we would want L to be close to the highest possible return, at the early stages of
training it cannot be, as trajectories from the agent are unlikely to reach that threshold. A better
strategy is to gradually increase L. One natural way of doing this is to use the fop few percentile
trajectories sampled by the agent for training ¢(7), instead of explicitly setting L. This approach
can be thought of as providing a curriculum for training the agent that is adapted to its performance.
This is also related to evolutionary methods (Hansen, |2016; Baluja, |1994), which keep the “fittest”
samples from a population in order to re-estimate a model, from which new samples are generated.

This variational point of view also tells us how the prior over the last state should be constructed.
The ideal prior ¢(sr) is simply a generative model of the final states leading to R > L. Both
methods proposed to estimate ¢(s7) with this purpose, either non-parametrically (with the forward
samples for which R > L) or parametrically (with generative model trained from those samples).
Also, if goal states are known ahead of time, then we can set L as the reward of those states (minus
a small quantity) and we can seed the backwards trajectories from these goal states. In that case the
variational objective used to train the policy is a proxy for log-likelihood of reaching a goal state.

5 RELATED WORK

Control as inference The idea of treating control problems as inference has been around for many
years (Stengell |1986; [Kappen et al., 2012} Todorov, 2007 [Toussaint, [2009; Rawlik et al.| 2012)). A
good example of this idea is to use Expectation Maximization (EM) for RL (Dayan & Hinton,|1997),
of which the POWER algorithm (Kober et al., |2013) is one well-known practical implementation.
In EM algorithms for RL, learning is divided between the estimation of the expectation over the
trajectories conditioned on the reward observations and estimation of a new policy based on these
expectation estimates. While we don’t explicitly try to estimate these expectations, one could argue
that the samples from the backtracking model serve a similar purpose. Variational inference has also
been proposed for policy search (Neumann et al.,|2011;|Levine & Koltun,[2013)). Probabilistic views
of the RL problem have also been used to construct maximum entropy methods for both regular and
inverse RL (Haarnoja et al.| 2017} Ziebart et al.| [2008).

Using off-policy trajectories By incorporating the trajectories of a separate backtracking model,
our method is similar in spirit to approaches which combine on-policy learning algorithms with
off-policy samples. Recent examples of this, like the interpolated policy gradient (Gu et al.,|2017),
PGQ (O’Donoghue et al.,|2016) and ACER (Wang et al., [2016), combine policy gradient learning
with ideas for off-policy learning and methodology inspired by Q-learning. Our method differs by
using the backtracking model to obtain off-policy trajectories and is, as an idea, independent of the
specific model-free RL method it is combined with. Our work to effectively propagate value updates
backwards is also related to the seminal work of prioritized sweeping (Moore & Atkeson, |1993)).

Model-based methods A wide range of model-based RL and control methods have been proposed in
the literature (Deisenroth et al.| 2013)). PILCO (Deisenroth & Rasmussen, |[2011b)), is a model-based
policy search method to learn a probabilistic model of dynamics and incorporate model uncertainty
into long-term planning. The classic Dyna (Sutton) algorithm was proposed to take advantage of a
model to generate simulated experiences, which could be included in the training data for a model-
free algorithm. This method was extended to work with deep neural network policies, but performed
best with models that were not neural networks (Gu et al.| 2016b). Other extensions to Dyna have
also been proposed (Silver et al., 2008} [Kalweit & Boedecker} |[Heess et al.,|[2015))
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Figure 2: Training curves from the Four Room Environment for the Actor-Critic baseline (blue) and
the backtracking model augmented Actor-Critic (orange). For the size-19 environment, several of
the Actor-Critic baselines failed to converge, whereas the augmented recall trace model always suc-
ceeded in the number of training steps considered. For additional results see FigureE]in Appendix.

Other approaches have also been proposed to combine advantages of both value and policy-based
approaches (Nachum et al., 2017; |[Sukhbaatar et al., 2017). Finally, (Edwards et al.| [2018]) is con-
current work to this and also proposes training on imagined reversal steps from known goal states.

6 EXPERIMENTAL RESULTS

Our experimental evaluation aims to understand whether our method can improve the sample com-
plexity of off-policy as well as on-policy RL algorithms. Practically, we must choose the length of
generated backward traces. Longer traces become increasingly likely to deviate significantly from
the traces that the agent can generate from its initial state. Therefore, in our experiments, we sample
fairly short traces 7 from the backtracking model, where the length is adjusted manually based on
the time-scale of each task.

We empirically show the following results across different experimental settings:

e Samples from the true backtracking model can be used to improve sample efficiency.

e Using a learned backtracking model starting from high value states accelerates learning for
off-policy as well as on-policy experiments.

e Modeling parametrically and generating high value states (using Goal GAN) also helps.

6.1 ACCESS TO TRUE BACKTRACKING MODEL

Here, we aim to check if in the ideal case when the true backtracking model is known, the proposed
approach works. To investigate this, we use the four-room environment from [Schaul et al.|(2015) of
various dimensions. The 4-room grid world is a simple environment where the agent must navigate
to a goal position to receive a positive reward through bottleneck states (doorways). We compare the
proposed method to the scenario where the policy is trained through the actor-critic method |Konda
(2002) with generalized advantage estimation (GAE)|Schulman et al.| (2015b)

Finding the goal state becomes more challenging as the dimension increases due to sparsity of
rewards. Therefore, we expect that the backtracking model would be a more effective tool in larger
environments. Confirming this hypothesis, we see in Figure2]that, as we increase the dimensionality
of the maze, sample efficiency increases thanks to recall traces, compared to our baseline.

6.2 COMPARISON WITH PRIORITIZED EXPERIENCE REPLAY

Here we aim to compare the performance of recall traces with Prioritized Experience Replay (PER).
PER stores the past experiences in a buffer and then selectively trains on high value experiences. We
again use the Four-room Environment. PER gives an optimistic bias to the critic, and while it allows
the reinforcement of sparse rewards, it also converges too quickly to an exploitation mode, which
can be difficult to get out of. In order to show this, we plot the state visitation counts of a policies
trained with PER and recall traces and see that the latter visit more states.
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(a) 11x11 environment (b) 15x15 environment

Figure 3: Visitation count visualization of trained policies for PER (left) and Recall Traces (right)
for two 4-room grid sizes.
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Figure 4: Plots for reward vs. time steps, comparing the performance of recall traces (labeled Back-
trackingModel), PER and baseline Actor Critic (AC).

We show in Figure [ that while PER is competitive in the smaller 11x11 environment, recall traces
outperform it in the larger 15x15 environment. Figure [3|also shows how the use of a backtracking
model and recall traces pushes the policy to visit a wider variety of grid positions than PER.

6.3 LEARNED BACKTRACKING MODEL FROM GENERATED STATES

One situation in which states to start the backtracking model at are naturally available, is when the
method is combined with an algorithm for sub-goal selection. We chose to investigate how well the
backtracking model can be used in conjunction with the automatic goal generation algorithm from
Held et al.| (2017), Goal GAN. It uses a Generative Adversarial Network to produce sub-goals at the
appropriate level of difficulty for the agent to reach. As the agent learns, new sub-goals of increasing
difficulty are generated. This way, the agent is pressured to explore and learn to be able to reach
any location in the state space. We hypothesize that the backtracking model should help the agent
to reach the sub-goals faster and explore more efficiently.

Hence, in this learning scenario, what changes is that high value states are now generated by Goal
GAN instead of being selected by a critic from a replay buffer.

We performed experiments on the U-Maze Ant task described in[Held et al.| (2017). It is a challeng-
ing robotic locomotion task where a quadruped robot has to navigate its center of mass within some
particular distance of a target goal. The objective is to cover as much of the space of the U-shaped
maze as possible. We find that using the backtracking model improves data efficiency, by reaching a
coverage of more than 63% in 155 steps, instead of 275 steps without it (Fig[3). More visualizations
and learning curves for U-Maze Ant task as well as the N-Dimensional Point Mass task can be found

in Appendix (Figs. [LT} [I2]and[T3).
6.4 LEARNED BACKTRACKING MODEL - ON-POLICY CASE

We conducted robotic locomotion experiments using the MuJoCo simulator (Todorov et al.| 2012]).
We use the same setup as (Nagabandi et al.,2017). We compare our approach with a pure model-free
method on standard benchmark locomotion tasks, to learn the fastest forward-moving gait possible.
The model-free approach we consider is the r11ab implementation of trust region policy optimiza-
tion (TRPO) Schulman et al.| (2015a). For the TRPO baseline we use the same setup as |[Nagabandi
et al.[(2017). See the appendix for the model implementation details.

Performance across tasks: The results in Figure [6] show that our method consistently outperforms
TRPO on all of the benchmark tasks in terms of final performance, and learns substantially faster.
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(a) U-Maze Ant Environment (b) 275 steps: 63% coverage (c) 155 steps: 64% coverage
Figure 5: Visualization of GoalGAN baseline (b) vs backtracking model (c) policy performance for
different parts of the state space for Ant Maze task. Red indicates complete success; blue indicates
failure. Backtracking model achieves equal coverage rates in fewer steps of training.
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Figure 6: Our model as compared to TRPO. For TRPO baselines, except walker, we ran with 5
different random seeds. For our model, we ran with 5 different random seeds.

6.5 LEARNED BACKTRACKING MODEL - OFF PoLICY CASE

Here, we evaluate on the same range of challenging continuous control tasks from the OpenAl
gym benchmark suite. We compare to Soft Actor Critic (SAC) (Haarnoja et al, [2018)), shown to
be more sample efficient compared to other off-policy algorithms such as DDPG
2015) and which consistently outperforms DDPG. Part of the reason for choosing SAC instead of
DDPG was that the latter is also known to be more sensitive to hyper-parameter settings, limiting its
effectiveness on complex tasks[Henderson et al|(2017). For SAC, we use the same hyper-parameters
reported in|Haarnoja et al.| (2018)). Implementation details for our model are listed in the Appendix.

Performance across tasks - The results in Figure[7]show that our method consistently improves the
performance of SAC on all of the benchmark tasks, leading to faster learning. In fact, the largest
improvement is observed on the hardest task, Ant.
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Figure 7: Our model as compared to SAC. We ran SAC baselines with 2 different random seeds.
For our model, we ran with 5 different random seeds.

7 DISCUSSION

We advocate for the use of a backtracking model for improving sample efficiency and exploration
in RL. The method can easily be combined with popular RL algorithms like TRPO and soft actor-
critic. Our results indicate that the recall traces generated by such models are able to accelerate
learning on a variety of tasks. We also show that the method can be combined with automatic goal
generation. The Appendix provides more analysis on the sensitivity of our method to various factors
and ablations. We show that a random model is outperformed by a trained backtracking model,
confirming its usefulness and present plots showing the effect of varying the length of recall traces.



Published as a conference paper at ICLR 2019

For future work, while we observed empirically that the method has practical value and could re-
late its workings from a variational perspective, but more could be done to improve our theoretical
understanding of its convergence behavior and what kind of assumptions need to hold about the en-
vironment. It would also be interesting to investigate how the backtracking model can be combined
with forward models from a more conventional model-based system.
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A PSEUDO CODE FOR GAN BASED MODEL

Algorithm 2 Produce High Value States

Require: Critic V' (s)

Require: D; transformation ’decoder’ from g to s

Require: Experience buffer B with tuples (s¢, at, ¢, St41)

Require: gen_state; boolean whether to generate states

Require: GAN, some generative model trained to model high-value goal states
1: if gen_state then

2. g~ GAN

3: D:gr—s

4 Return s

5: else

6:  Return argmaz(V(s)) Vs € B
7: end if

B PERFORMANCE BY VARYING LENGTH

In Figure 8| we show the performance in learning efficiency when the length of the backward traces
is varied.
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Figure 8: Performance of our model (with TRPO) by varying the length of traces from backtracking
model. All the time-steps are in thousands i.e (x1000)

C ARCHITECTURE AND IMPLEMENTATION DETAILS

The backtracking model we used for all the experiments consisted of two multi-layer perceptrons:
one for the backward action predictor Q(a;|s;+1) and one for the backward state predictor
Q(st|at, s¢+1). Both MLPs had two hidden layers of 128 units. The action predictor used
hyperbolic tangent units while the inverse state predictor used ReLU units. Each network produced
as output the mean and variance parameters of a Gaussian distribution. For the action predictor the
output variance was fixed to 1. For the state predictor this value was learned for each dimension.

We do about a hundred training-steps of the backtracking model for every 5 training-steps of
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the RL algorithm. For training the backtracking model we maintain a buffer which stores states
(state, action, nextstate, reward) yielding high rewards. We sample a batch from the buffer and then
normalize the states, actions before training the backtracking model on them.

During the sampling phase we feed in the normalized nextstate in the backward action predictor
Q(at|s¢4+1) to get normalized action. Then we input this normalized action in the backward state
predictor Q(s¢|at, s¢+1) to get normalized previous state. We then un-normalize the obtained
previous states and action using the corresponding mean and variance to compute the Imitation loss.
This is required for stability during sampling.

D ADDITIONAL RESULTS

FOUR ROOM ENVIRONMENT
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Figure 9: Training curves from the Four Room Environment for the Actor-Critic baseline (blue) and
the backtracking model augmented Actor-Critic (orange). As the size of the environment increases,
the benefit of the backtracking model increases for the policy. For the size-19 environment, several
of the Actor-Critic baselines failed to converge, whereas the augmented recall trace model always
succeeded in the number of training steps considered.

COMPARISON WITH PER

‘We show additional results for 13 Dimensional Environment.

13x13 Environment

Rewards
N

0 —— Backtracking Model

—— Baseline AC
1 o0 0.2 0.4 0.6 0.8 1.0 (b) PER (c) Backtracking model
Timesteps le4

(a) 13 Dim Environment

Figure 10: Plot(a) for Reward(y) vs Timesteps(x) comparing the performance of backtracking
model, PER and baseline Actor Critic. We can see that backtracking model consistently beats PER
and the gap increases for increasing dimension. Heatmaps(b,c) indicating the visitation count on
various positions of the grid on trained policies for the 13-Dimensional environment. We can see
that the Backtracking visits a lot more states that PER does.
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U-MAZE NAVIGATION

An agent has to navigate within e— distance of the goal position at the end of a U-shaped maze.

For the Point Mass U-Maze navigation, we use high return trajectories for training the parameters of
backtracking model (i.e those trajectories which reach sub-goals defined by Goal GAN). We sample
a trajectory of length 20 from our backtracking model and the recall traces are used to improve the
policy via imitation learning.

For the Ant U-Maze navigation, we train identically, only with length-50 traces.
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Figure 11: Visualization of Goal GAN baseline (top row) versus backtracking model (bottom row)
for different parts of the state space for the N-Dimensional Point Mass task. Red indicates complete
success; blue indicates failure. Using the backtracking model achieves greater coverage rates for the
same or fewer steps of training.
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Figure 12: Visualization of Goal GAN baseline (top row) versus backtracking model (bottom row)
policy performance for different parts of the state space for Ant Maze task. Red indicates complete
success; blue indicates failure. Using the backtracking model achieves equal coverage rates in fewer
steps of training.
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Figure 13: Learning curves comparing the training efficiency of our method and the baseline for
both the point mass as well as ant maze task. The y-axis indicates the average return over all goal
positions in the maze, and the x-axis corresponds to the number of iterations which are used for
sampling goals.

E HYPERPARAMETERS

E.1 ON-PoLicy. TRPO

For training the backtracking model, we used an explicit buffer to store states(state, action, next-
state, reward) which yields high rewards. Since, we don’t have an explicit value function, we use
high reward states as a proxy for high value states. We tried training the backtracking model directly
from the trajectories, but it was unstable, due to changing distributions of trajectories.

Agent Length of trajectory Sampled from Backtracking model
Half-Cheetah 20
Walker 20
Hopper 10
Ant 50

Table 1: On-Policy TRPO Hyper-params:- Length of the trajectory sampled from our backtracking
model

E.2 OFffr-PoLIcy. SAC

For training the backtracking model, we used the high value states (under the current value function)
from the buffer 5. We sample a batch of 20K high value tuples from the experience replay buffer.
The length of trajectory sampled from backtracking model for each agent is shown in Table 1.

The rest of the model hyperparameters are identical to those used in Soft Actor Critic Held et al.
(2017).

Agent Length of trajectory Sampled from Backtracking model
Half-Cheetah 20
Walker 20
Hopper 20
Ant 50
Humanoid 50

Table 2: Off Policy SAC Hyperparams:- Length of the trajectory sampled from our backtracking
model

E.3 PRIORITIZED EXPERIENCE REPLAY

The Experience Replay Buffer capacity was fixed at 100k. No entropy regularization was used.
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Environment Size | Batch-size | Num. of Actor Ceritic steps per PER step | PER - a | PER 3
11x11 200 3 0.8 0.1
13x13 2000 3 0.8 0.1
15x15 1000 3 0.95 0.1

Table 3: Hyperparameters for the PER Implementation.

F RANDOM SEARCH WITH BACKWARD MODEL

We test the performance of backtracking model when it is not learned i.e the backtracking model is
a random model, in the Four Room Environment. In this experiment, we compare the scenario when
the backward action predictor QQ(a|s¢1) is learned and when it is random. Since in the Four Room
Environment, we have access to the true backward state predictor Q(s¢|a¢, s¢+1) we use that for this

experiment. The comparison is shown in the figure[I4] It is clear from the figure that it is helpful to
learn the backward action predictor Q(a|st41)-

5 [[RandomSearch’]

—— Baseline

Average Reward

Random Backwards
—— True Backwards

Timesteps x10°

(a) 15-Dimension Environment

Figure 14: Training curves from the Four Room Environment for the Actor-Critic baseline (blue),
the backtracking model augmented Actor-Critic (red), and the random search (blue).

Figure [T5] shows the same comparison for Ant-vl, and Walker2d-vl where the baseline is Soft
Actor Critic (SAC). For our baseline i.e the scenario when backtracking model is not learned, we
experimented with all the lengths 1,2,3,4,5, 10 and we choose the best one as our baseline. As you
can see in the Figure[T3] backtracking model performs best as compared to SAC baseline as well as

to the scenario when backtracking model is not trained. Hence proving that backtracking model is
not just doing random search.
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Figure 15: Training curves for the Walker2d and Ant agent. Comparing when the backtracking
model is learned v/s when it’s not learned.
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G COMPARISON TO MODEL BASED RL

Dyna algorithm uses a forward model to generate simulated experience that could be included in
a model-free algorithm. This method can be used to work with deep neural network policies, but
performed best with models which are not neural networks (Gu et al., 2016a). Our intuition says that
it might be better to generate simulated experience from backtracking model (starting from a high
value state) as compared to forward model, just because we know that traces from backtracking
model are good, as they lead to high value state, which is not really the case for the simulated
experience from a forward model. In Fig[T6] we evaluate the Forward model with On-Policy TRPO
on Ant and Humanoid Mujoco tasks. We were not able to get any better results on with forward
model as compared to the Baseline TRPO, which is consistent with the findings from (Gu et al.,
2016a).

Ant Humanoid
£ 4000
E 3500 —— Model Based —— Model Based
Q —— Model Free 8001 —— Model Free
& 3000
=
g 2500 600
2 2000
I 1500 400
QJ
© 1000
o 200
g 500
I o
0 500 1000 1500 2000 0 500 1000 1500 2000 2500 3000 3500 4000
Number of Batches Number of Batches

Figure 16: Forward Model compared with Baseline TRPO. We can clearly see that on Ant and
Humanoid Mujoco tasks using a forward Model-based approach doesn’t help.

Building the backward model is necessarily neither harder nor easier. Realistically, building any
kind of model and having it be accurate for more than, say, 10 time steps is pretty hard. But if we
only have 10 time steps of accurate transitions, it is probably better to take them backward model
from different states as compared to from forward model from the same initial state. (as corroborated
by our experiments).

Something which remains as a part of future investigation is to train the forward model and back-
tracking model jointly. As backtracking model is tied to high value state, the forward model could
extract the goal value from the high value state. When trained jointly, this should help the forward
model learn some reduced representation of the state that is necessary to evaluate the reward. Ulti-
mately, when planning, we want the model to predict the goal accurately, which helps to optimize
for this “goal-oriented” behaviour directly. This also avoids the need to model irrelevant aspects of
the environment.

H LEARNING THE TRUE ENVIRONMENT VS LEARNING FROM RECALL
TRACES

Here, we show the results of various ablations in the four-room environment which highlight the
effect various hyperparameters have on performance.

In Fig we train on the recall traces after a fixed number of iterations of learning in the true
environment. For all of the environments, as we increase the ratio of updates in the true environment
to updates using recall traces from backward model, the performance decreases significantly. This
again highlights the advantages of learning from recall traces.

In Fig. [T8] we see the effects of training from the recall traces multiple times for every iteration of
training in the true environment. We can see that as we increase the number of iteration of learning
from recall traces, we correspondingly need to choose smaller trace length. For each update in the
real environment, making more number of updates helps if the trace length is smaller, and if the
trace length is larger, it has a detrimental effect on the learning process as is seen in Also as
observed in the cases of 12x12 and 14x14 environment, it may happen that for an increased ratio of
learning from recall traces and high trace length, the model achieves the maximum reward initially
but after sometime the average reward plummets.
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Figure 17: Legend indicates the ratio of updates in the true environment to updates using recall
traces. Here we learn more in the true environment than using traces. We can see that not learning
regularly from recall traces gives decreased performance.
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Figure 18: Legend indicates the ratio of updates in the true environment to updates using recall traces
with the trajectory length of traces in parenthesis. Here we learn more using recall traces than actual
environment. This tells that more updates using recall traces helps if we have a correspondingly
lower trajectory length

OFF PoLicy CASE FOR MUJOCO

We investigate the effect of doing more updates from the generated recall traces on some Mujoco
tasks using Off-Policy SAC. As can be seen from [I9] we find that using more traces helps and that
for an increased number of updates we need to correspondingly shorten the trajectory length of the
sampled traces.
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Figure 19: Legend indicates the number of updates from recall traces(per 5 updates of SAC) with
the trajectory length in parentheses. In both the environments doing 10 or 20 updates is better than
5 updates. Also for 20 updates we need to choose a smaller trajectory of length 10 as compared to
length 20 for 10(and 5) updates.

These experiments show that there is a balance between how much we should train in the actual
environment and how much we should learn from the traces generated from the backward model.
In the smaller four room-environment, 1:1 balance performed the best. In Mujoco tasks and larger
four room environments, doing more updates from the backward model helps, but in the smaller
four room maze, doing more updates is detrimental. So depending upon the complexity of the task,
we need to decide this ratio.
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