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Schedule

oL ecture 1: Introduction to MPC

eLecture 2: Details of MPC Algorithm
and Theory

oL ecture 3: Linear Model Identification
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Lecture 1

Introduction to MPC

- Motivation
- History and status of industrial use of MPC

- Overview of commercial packages

“““““
ot *,

EEEEEEEEEEEEEEEEEEEEEEE



“““““
ot *,

Key Elements of MPC

Formulation of the control
problem as an
(deterministic)
optimization problem

On-line optimization

Receding horizon
Implementation (with
feedback update)

min> i (x,,)

1 l: ’)

gi(xi’ui)zo —

xi+1 — F('xi ! ui)

uy = 4(x,)
HJB Eqn.

Att =k, Set x, = x, (Estimated Current State)
Solve the optimization problem numerically
Implementsolution u, as the current move.
Repeat!
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Popularity of Quadratic Objective in Control

Quadratic objective Linear State Space System Model
in Ox; +Zui Ry, ’

Fairly general
State regulation
Output regulation
Setpoint tracking

Unconstrained linear least squares problem has an analytical
solution. (Kalman’s LQR)

Solution is smooth with respect to the parameters
Presence of inequality constraints — no analytical solution
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Classical Process Control

p=k|1 iJ‘e(t )dt'+7, — de _
71 % dt Ad Hoc Strategies,

Lead / Lag Filters
Switches
Min, Max Selectors
If/ Then Logics
Sequence Logics

4
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Heuristics * Regulation

e Constraint handling

- e Local optimization
Model is not explicitly used
inside the control algorithm

No clearly stated objective
and constraints

* Inconsistent performance

e Complex control structure

* Not robust to changes and failures
 Focus on the performance of a i!g%%l,unjt
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Example 1. Blending System

e Control », and r,

Valve
Positions — Additive A
Uy Stock TA= . ;
Bk - S Addwee e Control g if possible
u iti . B —
A2 g, Addtvell  Blending System stock e Flowrates of
U3 Additive B Model d  total blend flow Sy S
cl—— - additives are limited
Classical
" G Solution
Selector -
Valve- R :
position {-.C“(}“i
controller H : : -
LT S < Setpoir
-Setpoint N 7 '
: 3 Feedback {
i
Total
- B } blended
Stock 4 & . At | — ﬂowv_
R —-i :
Ratio }Setpoint _. Blend of
setDOIlﬂE A WCI ey ~" Aand B
_ i ¥ High
Additive A @ i selector
e B poucente 1
} Setpnint
Ratio
setpoint i |
. - !
» Additive B T i o | aeorotaimatis
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Model-Based Optimal Control

n

.x = f(x,u), Yy = g(x,u)

Controller
Set-point

r(z)

Open-Loop Optimal Control Problem

4 min {leﬂxwui) + ¢p(xp)} A

i=0
stage-wise terminal
cost cost

Ugyeeey up71

&; (xi’ui) >0 Path constraints

Ep (Xp) >0 Terminal constraints

e e, K x= f(x,u) Model constraints /
S ma q
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Model-Based Optimal Control

E"‘x = f(x’u)’ Yy = g(x’u) ‘"E

______

Controller
_ Input
Set-point
> u(?)
r(z) 1
T Measurements ‘

Open-loop optimal solution is not robust

Must be coupled with on-line state / model parameter update
Requires on-line solution for each updated problem
Analytical solution possible only in a few cases (LQ control)

Computational limitation for numerical solution, esp. back in
the '50s and '60s

\ x = f(x,u) Model constraints JGeorgla
I-_-‘ .SCHODL OF CHEMICAL &
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Model Predictive Control (Receding Horizon Control)

At time k, solve the
open-loop optimal
control problem on-line

e e with x, = x(k)
ST B eere Apply the optimal input
y. o ! Pr;jecred:’.)utputs MOVES U(k) = uO
. ey MR Obtain new
_ q__,— measurements, update
CF k2 B W the state and solve the
| horzon ] OLOCP at time k+1 with
X, = X(k+1)

Continue this at each
sample time
Implicitly defines the feedback law u(k) = h(x(k))
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Analogy to Chess Playing

Opponent

(The Plant) The Opponent’s
\ / Move

|
(The Controller) New State

7 |
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Operational Hierarchy Before and After MPC

Unit 1 - Conventional

Structure

Unit 2 - MPC Structure

Plant-Wide Optimization

\

Unit 2 Local Optimization

A

High/Low Select Logic

A

Lead/Lag

- A1

Model
Predictive
Control
(MPC)

A

\

Unit 1 Distributed Control

System (PID)

Unit 2 Distributed Control
System (PID)

B
sas 55

Global Steady-State
Optimization
(every day)

Local Steady-State
Optimization
(every hour)

Dynamic
Constraint
Control

(every minute)

Supervisory
Dynamic
Control

(every minute)

Basic Dynamic
Control
(every second)

= SCcHooOL OF CHEMICAL &
BIOMOLECULAR ENGINEERING

1&('a?.et:u'gia' 3



Example: Blending System

Valve
Positions sl Additive A e Control ry and I'p
oc k . .
Vi oo - s « Control ¢ if possible
Y2 g Adver]  Blending System o, 94 e Flowrates of
P i Moge! Aottty additives are limited
Classical
e seeaor - SONUTION olve at
posiion {*1 F‘ each time &
controller |
b A p = Size of predlctlon window
= : % Feedback
l Total - p
. 5 €D biendea min r(k+ilk)—r
e ? == : ""’E_:"D'n = u(F)uz (), ”3(J) i=1 A( | ) A
g = =k, k+p-1
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¥ Setpnint i . .
55;"‘;(’,?“, ,-—é_f}»i (ui)min < U; (]) < (ui)max b = 1’ o ’3’
y <<1
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Optimization and Control

Limit
Safety
Margin
Target
No APC APC Reduced Variation
Reduces Allows Operation
Variation Closer to Limit B

DMCplus Controller's Preferred Operating Region

Compressor . |
N, mr o
Constrained

Operation

Pressure
Column

Typical

Operating

Temperature

==

P d L
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An Exemplary Application (1)

lﬂ@@[}@ Diagram @ﬁ Olefins Pﬂ@m

Demethanizer Deethanizer Ethylene Fract+ iy

Primary Quench
Fractionator Column

Chilling

Compressor

Depropanizer

Propylene Fract.

e, | X [DMO J& “[D\M'_E'] N [DMO]

: WA © _ADCHEM'94 in Kyoto : M. Ogawa -3




An Exemplary Application (2)
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Industrial Use of MPC

» |nitiated at Shell Oil and other refineries during late 70s.

 The most applied advanced control technique in the process
industries.

 >4600 worldwide installations + unknown # of “in-house”
installations (Result of a survey in yr 1999).

« Majority of applications (67%) are in refining and petrochemicals.
Chemical and pulp and paper are the next areas.
 Many vendors specializing in the technology
— Early Players: DMCC, Setpoint, Profimatics
— Today’s Players: Aspen Technology, Honeywell, Invensys, ABB

 Models used are predominantly empirical models developed
through plant testing.

* Technology is used not only for multivariable control but for most
economic operation within constraint boundaries.
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MPC Industry Consolidation

CPC-V Update
(late 1995) (Late 2000)
' Aspentech
Adersa Setpoint Neuralware Adersa
CCI DMCC
DMCC , ABB
DOT Products DOT
Honeywell " Honeywell L
Litwin (Profimatics) /" TT77" \@
Neuralware
Pavilion

Predictive Controls

Profimatics Foxboro
Setpoint @D Simsci
Treiber Control Invens

MDC Technology
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Linear MPC Vendors and Packages

Aspentech
DMCplus
DMCplus-Model
Honeywell
Robust MPC Technology (RMPCT)
Adersa
Predictive Functional Control (PFC)
Hierarchical Constraint Control (HIECON)
GLIDE (ldentification package)
MDC Technology  (Emerson)
SMOC (licensed from Shell)
Delta V Predict
Predictive Control Limited (Invensys)
Connoisseur
ABB
3d MPC
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Result of a Survey in 1999 (Qin and Badgwell)

Area Aspen Honeywell Adersa’ Invensys | SGS? | Total
Technology Hi-Spec
Refining 1200 480 280 25 1985
Petrochemicals 450 80 - 20 550
Chemicals 100 20 21 144
Pulp and Paper 18 50 - - 68
Air & Gas - 10 - - 10
Utility - 10 - 4 14
Mining/Metallurgy 8 6 7 16 37
Food Processing - - 41 10 51
Polymer 17 - - - 17
Furnaces - - 42 3 45
Aerospace/Defense - - 13 - 13
Automotive - - 7 - 7
Unclassified 40 40 1045 26 450 | 1601
Total 1833 696 1438 125 450 | 4542
First App. DMC:1985 PCT:1984 IDCOM:1973
IDCOM-M:1987 | RMPCT:1991 | HIECON:1986 1984 1985
OPC:1987
Largest App 603x283 225x85 - 31x12 -
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Nonlinear MPC Vendors and Packages

Adersa

Predictive Functional Control (PFC)
Aspen Technology

Aspen Target
Continental Controls

Multivariable Control (MVC): Linear Dynamics + Static Nonlinearity
DOT Products

NOVA Nonlinear Controller (NLC): First Principles Model
Pavilion Technologies

Process Perfecter: Linear Dynamics + Static Nonlinearity

Yi = 09X ) = Cx, + NN(x, )
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Results of a Survey in 1999 for Nonlinear MPC

Area, Adersa Aspen Continental DOT Pavilion Total
Technology Controls | Products | Technologies
Air and Gas 18 18
Chemicals 2 15 5 22
" Food Processing 9 9
Polymers 1 5 15 21
Pulp & Paper 1 1
Refining 13 13
Utilities 5 2 7
Unclassified 1 1 2
Total 3 6 36 5 43 93
i MPC applied i M PC not yet applied
_§ ‘ Refinery ! |
% ‘ FPetrochemical i ‘
s I
E | : Chemicals ‘
B !
g ‘ : Polymers |
a !
‘ : G as plants ‘
«f’%\“ﬁ ' Hh’p | i Pulp & paper ‘

z -

] ° Lo
2 =

w » . .

N o Process nonlinearity
o
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a5 s%?



Controller Design and Tuning Procedure

1. Determine the relevant CV’'s, MV’s, and DV’s

2. Conduct plant test: Vary MV’'s and DV’s & record
the response of CV’s

3. Derive a dynamic model from the plant test data

4. Configure the MPC controller and enter initial
tuning parameters

5. Test the controller off-line using closed loop
simulation

6. Download the configured controller to the
destination machine and test the model
predictions in open-loop mode

7. Commission the controller and refine the tuning as
needed
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Role of MPC In the Operational Hierarchy

Plant-Wide Optimization

——

Local Optimization

V1

Multivariable
Control

Determine plant-wide the
optimal operating condition for
the day

Make fine adjustments for
local units

Take each local unit to the
optimal condition fast but
smoothly without violating
constraints

Distributed Control
System (PID)
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Local Optimization

A separate steady-state optimization to determine steady-state
targets for the inputs and outputs; RMPCT introduced a dynamic
optimizer recently

Linear Program (LP) for SS optimization; the LP is used to enforce
Input and output constraints and determine optimal input and
output targets for the thin and fat plant cases

The RMPCT and PFC controllers allow for both linear and
guadratic terms in the SS optimization

The DMCplus controller solves a sequence of separate QPs to
determine optimal input and output targets; CV’s are ranked in
priority so that SS control performance of a given CV will never be
sacrificed to improve performance of lower priority CV's; MV’s are
also ranked in priority order to determine how extra degrees of
freedom is used

BIOMOLECULAR ENGINEERING
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Dynamic Optimization

At the dynamic optimization stage, all of the controllers can be
described (approximately) as minimizing a performance index

with up to three terms; an output penalty, an input penalty, and an
Input rate penalty:

J= Z —1Hek+J

A vector of inputs uMis found which minimizes J subject to
constraints on the inputs and outputs:

M- 2

+ HAU

M-
j=0

_I_

u
ek+ j

k+] R.
J

M

u :(ug,uf,...uf\;_l)T u<u, <u
Xea = f(X,,U,) Au<Au, <Au
Yia = ( k+1)+ b, ysy,s y

BIOMOLECULAR ENGINEERING



Dynamic Optimization

 Most control algorithms use a single quadratic objective

« The HIECON algorithm uses a sequence of separate dynamic
optimizations to resolve conflicting control objectives; CV errors
are minimized first, followed by MV errors

 Connoisseur allows for a multi-model approach and an adaptive
approach

« The RMPCT algorithm defines a funnel and finds the optimal
trajectory y" and input uM which minimize the following objective:

min J =3 Vi =Y,

YIrc+j’U Jj=1

2
S

SS

2
‘Q +|uy, —u

subject to a funnel constraint

a * C
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Output Trajectories

Aspen Tech’s DMC ID-COM, Adersa’s

7 N\ N\

~——— quadratic penalty

~——— quadratic penalty

Setpoint A Reference trajectory

I
past future

past future

Soft Constraint, “Zone Control” Honeywell's RMPCT

guadratic penalty

-—

P Zone yd Funnel quadratic penalty
past future past’ future
'”"*l,\/love suppression is necessary when reference trajectory is not used

3 y r/ Georgia
w | A
FR
* =3 b‘ SCHOOL OF CHEMICAL &
‘ﬁ@ _,U BIOMOLECULAR ENGINEERING
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Output Horizon

Finite horizon

past| future prediction horizon P

Coincidence points
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Input Parameterization

u Multiple moves (with blocking)
control horizon |

u Single move (extreme blocking)

u

Basis function (parametrized)
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Process Model Types

Model Type Origin  Linear/Nonlinear Stable/Unstable
Differential physics L,NL S,U
Equations
State-Space physics L,NL S,U
data
Laplace Transfer physics L S,U
Function data
ARMAX/NARMAX data L,NL S,U
Convolution data L S

(Finite Impulse
or Step Response)

Other data L,NL S,U
(Polynomial,
Neural Net)

NNNNNNNNNN



ldentification Technology

Most products use PRBS-like or multiple steps test signals. Glide us
es non-PRBS signals

Most products use FIR, ARX or step response models
Glide uses transfer function G(s)
RMPCT uses Box-Jenkins
SMOC uses state space models
Most products use least squares type parameter estimation:
prediction error or output error methods
RMPCT uses prediction error method
Glide uses a global method to estimate uncertainty

Connoisseur has adaptive capability using RLS

A few products (DMCplus, SMOC) have subspace identification metho
ds available for MIMO identification

Most products have uncertainty estimate, but most products do not m
ake use of the uncertainty bound in control design
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Summary

« MPC is a mature technology!

— Many commercial vendors with packages differing in model form, objective
function form, etc.

— Sound theory and experience

 Challenges are
— Simplifying the model development process
e plant testing & system identification
* nonlinear model development
— State Estimation
» Lack of sensors for key variables
— Reducing computational complexity
e approximate solutions, preferably with some guaranteed properties
— Better management of “uncertainty”
» creating models with uncertainty information (e.g., stochastic model)

* on-line estimation of parameters / states
» “robust” solution of optimization

T
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REGENERATOR

N

REACTOR

o

FEED

FCCU Debutanizer

MAIN PRIMARY
COLUMN ABSORBER
ﬁ PLO

DEBUTANIZER

M

GASQOLINE

DEETHANIZER

~20% under
capacity
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From Stripper

555555

Debutanizer Diagram

190 Ib
Pressure _160F Fan
PCT~ 1 v R |
1 Reflux To Deethanizer
Pre-Heater —
—N\/\/\r |
Feed ) //_
Flooding— Tray 20 Temp.
R
400 R
P .
v RVP |—> Slurry Pump Around

Gasoline to blending




Process Limitation

Operation Problems:

 Overloading
-- over design capacity.

 Flooding
-- usually jet flooding, causing very poor separation.

e Lack of Overhead Fan Cooling
-- especially in summer.

Consequences:

* High RVP, giving away Octane Number
* High OVHD C5, causing problems at Alky.
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Control Objectives

Constrained Control:

* Preventing safety valve from relieving
 Keep the tower from flooding
« Keep RVP lower than its target.

Regulatory Control:
e Regulate OVHD PCT or C5 at spec.

 Rejecting disturbance not through slurry, if possible.
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Real-Time Optimization

Optimization Objectives:
While maintaining PCT, RVP on their specifications
« Minimizing energy consumed

e Minimizing overhead reflux
e Minimizing overhead cooling required

e Minimizing overhead pressure
e Maximizing separation efficiency.
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MPC Configuration

ContrO”ed Manipu'ated

. PCT OVHD Pressure

 Fan <—<— Fan Output

. _RVP Internal Reflux

Diff. Pressure MPC Reflux

Feed Temp. Pre-heatgr By-Pass Pre-heater By-Pass
Tray 20 Temp. _

QVHD C5 % Reboileg By-Pass Reboiler By-Pass
Disturbances t t

Feed

Stripper Bottom Temp
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MPC’s MV Moves

7 Optimal Point Reached

200
/
ot TN
180 T l
160 Pressure|(lb)
140
120
N Feed-heater by-pass
100 |-/ -
L/ L‘lr\_’_’_H_’_'_’_r,_h‘v\_‘ -/_'_‘_,.r‘"’
80— —4
60 B ——
Reboiler by-pass
40
20 lux
0O 500 1000 1500 2000 2500 3000

minute

& >
- - =
@ -] pker:
3 LS 2]
> SCHOOL OF CHEMICAL &
o
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Reflux vs. Feed

32
30 T iy e T
i e T PRI L
28
26
24 AN indication
22 nat separation
2 efficiency
increased.
18 //
N W
120 500 1000 1500 2000 2500 3000 ]
minute
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Reflux-to-Feed Ratio

0.54

0 500 1000 1500 2000 2500 3000 .
minute
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Handling Flood

3.2
3 - -
Rotential Flooding
2.8 ‘ £
/)
26L | //
) ) 2.4
Differential |
Pressure 22 Tt
Across Tower i (] | 881 i | | | N || | |
1.6 |
14 : e | : L
1.2 ;
0 500 1000 1500 2000 2500 3000
minute
K S CBIEER
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Product Spec's

180

160 Y e et

.

i

R et

1sated tem

140 Top press

120

re compet

perature (
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100

80

60

40

I Pressure

20 Bottom

Reid Vapc
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0 500

1000 15

00 2000

2500

minute
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MPC Operation Overview

190 Ib
Pressure\| 160 F .« Fan
il SenEEL T N
— | Reflux
Pre-Heater T
“\\/ T
Feed T
.|~ | Tray 20 Temp.
Flooding — |
|
400 H
I )
RVP |
—_—
l —
Gasoline to blending

555555

Top Tray

Feed Tray

Tray 20
After MPC is on

»
»

v Temperature
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MPC Control Results (1)

C4- Total 5
% 45 A
4 ]

3.5 -

3 4

2.5 -

2 A

1.5 -

1 A

0.5 -

0

1 é ;3 éll é (IS ; EIB é 1I0 1I1 1I2 1I3 1I4 1I5 1I6 1I7
April, 1991 Date
Debutanizer Bottom C4- Total (1-c4, N-C4 & C4=-)
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MPC Control Results (2

RVP 75
= When MPC was turned on
,

6 T\
VN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
April, 1991 Date

Debutanizer Bottom RVP Daily Average

5.5

5
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MPC Control Results (3)

Ch+ Totaloo - oo
% 1

16 4--mm e

L
12 e N
10 oo B\

1 é II3 Lll é (IS ; é SI) 1IO 1I1 1I2 1I3 1I4 1I5 1I6 1I7
April, 1991 Date
Debutanizer Top C5+ Total (-5, N-C5 & C5=+)
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Other Benefits

 Reflux is 15% lower than before
e Separation efficiency is increased
* Now have room for lower RVP or PCT, if needed
 Variance on PCT and RVP Is reduced,;
Note: Variance on the tray-20 temperature is
Increased, and it should be!!
 Energy saving (~10%)

e OVHD fan maximum bound may be avoided

 Flooding is eliminated.
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Lecture 2

Details of MPC Algorithms and Theory

- Impulse and step response models and
the prediction equation

- Use of state estimation
- Optimization
- Infinite-horizon MPC and stability

- Use of nonlinear models
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Important Ingredients of an MPC Algorithm

Dynamic Model — Prediction Model

Predicted future outputs = Function of current “state”
(stored in memory) + feedforward measurement +
feedback measurement correction + future input
adjustments

Objective and Constraints
Optimization Algorithm
Receding Horizon Implementation
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General Setup

Dynamic Model State:
Compact representation
Of the past input record

_ S

Previous State

(in Memory)
State Update

New Input Move 3
(Just Implemented)
Y., 9 Measurement
Prediction l ~~~~~~~ Correction
™ Feedback / Feedforward

Future Input Moves

: ——  Prediction Model |<+——
(To Be Determined) Measurements

for Future Outputs

!

: ‘/ijﬁ : To Optimization ﬂ““ﬁ%ﬁ
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Options

Model Types
Finite Impulse Response Model or Step Response Model
State-Space Model
Linear or Nonlinear
Measurement Correction
To the prediction (based on open-loop state calculation)
To the state (through state estimation)
Objective Function
Linear or Quadratic
Constrained or Unconstrained

a * C
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Prediction Model for Different
Model Types

* Finite Impulse Response Model
- Step Response Model
- State-Space Model




Sample-Data (Computer) Control

1

t

1 Input Sequence

ALGORITHM

CONTROL |4

a
{vu'ﬂ vl, vz, " n .} =

{v(0), v(t,),v(2t,),...}

SAMPLER

Output Sequence

Yor Y1 Y2re -} =
{y(0), y(ts), y(2t,),.. .}

Model relates
Input samples to
output samples

{Vo,vl,vz,...}

J
{yo’yliyz’“'}

v can be a MV
(u) or a
Measured DV
(d)



Finite Impulse Response Model (1)

v(t)1 —‘ y(E)
7 S
{:*t‘#} ’.I'I-'I-l l: t#}
4" PLANT {——p

t"' — {1Fﬂ-, UIF = m -} y — {I:I'IIIJ_'III::I II., lllll IITI."IITI."'J."'}

Assumptions:
H, = 0: no immediate effect

The response settles back in n steps s.t. H_ ., =H,_ .
= ... =0: “Finite Impulse Response” (reasonable for
stable processes)
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Finite Impulse Response Model (2)

Linear Model— “Superposition Principle”

k
vik-1) 8(k-1)

— H,v(k-1)

— H, V(K-N)

wik-n) &(k-n}
k-n k

y(k)=Hyv(k-1)+---+H v(k—n)

EEEEEEEEEEEEEEEEEEEEEEE



Finite Impulse Response Model (3)

T
State x(k) = [VT (k-1),---, v (k— n)} n past input samples
(includes both MVs and
measured DVs)

State Update: Easy!
x(k+1) = %x(k) + T v(k)
shift insertion
- V(kL ] insert - V(k—l)
v(k—1) —

v(k—n+2)
e, | V(K=n+1)<

EEEEEEEEEEEEEEEEEEEEEEE



Finite Impulse Response Model (4)

Prediction
Model prediction ofy y(k)=Hyv(k-1)+---+ H,v(k—n)=Cx(k)
Model prediction error __, _ _
Model error+Unmeasured disturbance e(k) = Vm (k) Y (k) Fut _ )
: uture inpu
Predicted future Past input samples sampleg
output samples stoIed In memory (to be decided)
Yie+ilk u(k—1) u(k)
| S ‘ +\) :
Dynamic P ' |2 '
Matrices : ulk=n) ulk+p-1
(made of ~ = T _ - - -~ T _ Feedback
impulse d(k-1) d (k) e(k) Error
response Lpld ; T\fpzd : +| * A Correction

coefficients)

_a’(k.— n) | d(k +.p -1) _e(.k)_

Feedforward term: Past disturbance  Foodforward term: new measurement
samples stored in memory (Assume d(k)=d(k=1)=....=d(k+p-1))



Step Response Model (1)

y(t)

e PLANT -

{1‘.' 1? 1‘.'" '} {DFSJ.'.I 821-83?"'}

Assumptions:
S, = 0: no immediate effect

The response settles in n steps s.t. S,=S,,; = ...= S_: the same
as the finite impulse response assumption

Relationship with the impulse response coefficients:

Zéﬁ:l Hi
Sk_ Sk—l &Geo,m

Sk
H,
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Step Response Model (2)

oState
T n future outputs assuming
x(k) — [yoT (k), e yn_lT (k):| the input remains constant at

the most recent value

y.(k)=y(k+i) W/ Au(k)=Au(k+1)=---=0

past input trajectory

past future past future
x(k)
_______ S
| é
kK+n-1

| Note y,,(k)=y,(k)=-=y,(k)

EEEEEEEEEEEEEEEEEEEEEEE
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Pictorial Representation of the State Update

1%

ol

| av(k)

—

ksl k k+l k+2

V
| ||
Il
I
Col o
I Il
I L1
kel k kel k2
_|_
V e
Av(k)

kel k k+l k+2

M, x(k) o e

y MY (k)
» e
M
[ |
1 1 1 ]

1
k k+l k42 k+3 kn=l k+n

_|_

S Av(k)
|
' ﬂ
+l k+2 k4 el kn Georgia 7=
k okdl kil keR kinel k iﬁ_.nl._.
CHooOL oF CH

EEEEEEEEEEEEEEEEEEEEEEE



Step Response Model (3)

State Update
x(k+) =M x(k)+ S Av(k)

S
shifi Step response

drop
k). EIGE
yi(k+1)= - (k)
yn—Z (k T 1)i yn—Z (k)
_.yn—l(k_l_l)ﬂI _yn—l(k)_
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ot *,

BIOMOLECULAR ENGINEERING



Step Response Model (4)

*Prediction _
past input trajectory
-4 > o —_—
past future past future
x(k) .
[ S— — M
1 = e
+ +

Effect of future input moves

hypothesized future input trajectory (tO be determined)

s ‘f\i
S

| I
i [
- .I
| L.
L .|
I i
o — 74 S
‘‘‘‘‘‘‘‘‘
/r/ | Georgia
@ \| = Tech:
. | = ScHooL oF
& L0 BIOMOLECULAR ENGINEERING
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Step Response Model (4)

Prediction

Model prediction of y(k) — y(k) = y,(k) = [1’0’ T ,O]x(k)

Model prediction error — e(k) =V, (k) — y(k)

Future input

Predicted future The “state” stored in Moves
output samples ) Jmemory (to be decided)
Vi || (k) Au (k)
; — ; ;gv)u .
Ve | 1,8 | | Aulk+p-1).
Dynamic Matrices / o _
(made of step e(k)
response coefficients) — O ; :
: + :
1™ Feedback Error
Ak +p-1)| |e(k) Correction

Feedforward term: new measurement
(Assume Ad(k+1)=...= A d(k+p-1)=0)



State-Space Model (1)

z(k+1) = Az(k) + B"u(k) + B*d (k)
y(k) = Cz(k)

Discretization State-Space ‘
Realization

-~ o~ - e L+ GU2\d State-Space
5= Az+ B"u+ B%d y(z) (Z)u(z) (Z) (Z) Identification
~ or
=Cz
R ¥(5) = G(s)u(s) + G (s)d(s)
TLlnearlzatlon
) /0 model
Z = f(Z’”’ d) Identification‘ /
y=g(z) @), u@),i=1,---N}
£ " Fundamental Model Test Data



State-Space Model (2)

z(k +1) = Az(k) + B"u(k) +de(k)]
yv(k+1) =Cz(k+1)

(z(k) = Az(k -1) + B'u(k -1) + B d (k —1)]

(k) =Cz(k)

Az(k +1) = AAz(k) + B" Au(k) + B Ad (k)
Ay(k+1) =CAz(k+1) —
y(k+1) = y(k) + C(4Az(k) + B* Au(k) + B¢ Ad (k))

'Az(k+1)':'A o"Az(k)'+ B" Au(l) + B?

Ad (k
y(k+1) | |[CA ]| y(k) | |CB" CB* (k)

B Az (k) | ~_ State Update
y(k)=[0 1 ]L( ) x(k +1) = Ox(k) + T Au(k) + T4 Ad (k)
] y(k) = Ex(k)




State-Space Model (3)

Prediction _
Model prediction of y(k) — Y (k) = Ex(k)
Model prediction error — e(k) =V, (k) — y(k)

Future input

Predicted future The “state” stored in moves

output sarr_1p|es o “rpemory” i /(to be decided)
}QJ(HV( =D l Au (k)
: —|: &)-l: Q" :
Viwpie | | ED? Au(k+p-1).
Dynamic Matrix — ~ - _
(made of step T Ad (k) e(k)
response coefficients)\Qd . I
"_Feedback Error
L (kf|‘ P _1)_ _e(k)_ Correction

r, " Feedforward term: new measurement ﬂGeorgia

A 3 (Assume Ad(k+1)=...= A d(k+p-1)=0) it )



Summary

Regardless of model form, one gets the prediction
equation in the form of

yk+1|k | Al/l (k)
| =Lx(k)+ L'Ad (k) + Le(k) + L' :
_yk+p|k | i = b(k) CAM (k +p— 1)_J
Yﬁ) Al}r(k)

Assumptions
Measured DV (d) remains constant at the current value of d(k)

Model prediction error (e) remains constant at the current value
of e(k)

a * C
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Ramp Type Extrapolation

 For Integrating Processes, Slow Dynamics
e(k+i)=e(k)+i(e(k)—e(k-1))
Ad(k)=Ad(k+1)=---=Ad(k+ p-1)

_——"__ | Ad(k+2)
§ Ad(k+1)

|
|
|
|
i
k-1 k k+1 k+2 |

“““““
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Use of State Estimation

Georgia = =
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Measurement Correction of State

State Estimate: )
Compact representation

Of the past input and
measurement record

Previous State Estimate
(in “Memory™)

State Update

New Input Move ___( Current State Estimate
(Just Implemented)

Measurement

Correction

Feedback / Feedforward
Prediction Model e Measurements

for Future Outputs

!

ccccccccc To Optimization

Prediction l

Future Input Moves
(To Be Determined)

EEEEEEEEEEEEEEEEEEEEEE



State Update Equation

x(k+1) = Ox(k) +T“Au(k) + T Ad (k)
+ K (y,, (k) —Ex(k))

o K is the update gain matrix that can be found in
various ways

— Pole placement. Not so effective with systems with
many states (most chemical processes)

— Kalman filtering: Requires a stochastic model of form

x(k +1) = Dx(k) + T Au(k) + T4 Ad (k) + w(k)

L (k) =Ex(k) Ev(k)

Can be obtained using, e.g., White noises of known covariances
subspace ID Effect of unmeasured disturbances and noise



Prediction Equation

Contains past feedback measurement corrections

_yk+1|k_ 20 /_ Au(k) ]

=: x(k) +Q"

_yk+p|k_ _E(Dp_ _Al/l(k T+ p _1)_
i Ad (k) i _e(k)_
Q° : L

“““““
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What Are the Potential Advantages?

Can handle unstable processes
Integrating Processes, run-away processes

Cross-channel measurement update

More effective update of output channels with delays or
measurement problems based on other channels.
Early, robust

Unmeasured yl update through
inputs modeled correlation

Process

Delays,
Measurement Difficulties, y2
Slow Sampling

Measured inputs

= »

Systematic handling of multi-rate measurements

Optimal extrapolation of output error and filtering of noise
(based on the given stochastic system model)

“““““
Pl *,



Optimization
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Objective Function

Minimization Function: Quadratic cost (as in DMC)
p m-1
V) =D Wi = V)N G =)+ D Au” (k+i) A Au(k +i)
i=1 i=0

Consider only m input moves by assuming Au(k+j)=0 for j>m
Penalize the tracking error as well as the magnitudes of adjustments

Use the prediction equation.

First m columns of LY
V(k)=(Y(k)-Y*) diag(A)(Y (k) -Y*)+ AU’ (k)/éiag(A”)AUm (k)
l susstitute (k) = (k) + L AU, (k)
V (k) = AU" (K)HAU. (k) + g" (k)AU (k) 7(() constant
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Constraints

past - future y
target ~ Max
projected output |
- —— — - - — — = max
e inputs
I I I
k k+1 k+m-1 k+p
I
horizon |

Umin = ’u,(k + EIk) < Umax
|Aulk + £|k)| < Aumax,

£=0,---,m-—1

Ymin < y(k+ k) <ymax, j=1,---,p
Substitute the prediction
equation and rearrange to

CAU (k) > h(k)

BIOMOLECULAR ENGINEERING



Optimization Problem

Quadratic Program

min AU (k)HAU (k)+g" (k)AU (k)

AU, (k)
such that CAU (k) > h(k)

Unconstrained Solution

AU, ()=~ H g0

Constrained Solution
Must be solved numerically

“““““
Pl *,
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Quadratic Program

Minimization of a quadratic function subject to linear
constraints

Convex and therefore fundamentally tractable

Solution methods

Active set method: Determination of the active set of constraints
on the basis of the KKT condition

Interior point method: Use of barrier function to “trap” the solution
Inside the feasible region, Newton iteration

Solvers
Off-the-shelf software, e.g., QPSOL
Customization is desirable for large-scale problems

a * C
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Two-Level Optimization

Steady-State Optimization (Linear Program)
min L(y..;,u, (k))

ug (k)

C{ & }ZCS(k)
u, (k)
u (k) =ulk-1)+Au(k)+:--+Au(k+m-1)

Vo = b, (k) + L Au (k)

Steady-State
Optimal Settlng Values (setpoints) Prediction Egn.
u (k
ol ( ) State
(sometimes input deviations are included Feedforward Measurement
in the quadratic objective function) | Feedback Error

Dynamic
Prediction Eqn.

To Dynamic Optimization (Quadratic Program) <



Use of Infinite Prediction Horizon

and Stability

ad
«,J\ 'Le’
: Gr : l&c.eorgla [netfiute
z = o Techmalogy
wr > SCHOOL OF CHEMICAL &
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sas 55
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Use of o« Prediction Horizon — Why?

Stability guarantee

The optimal cost function can be shown to be the
control Lyapunov function

Less parameters to tune

More consistent, intuitive effect of weight
parameters

Close connection with the classical
optimal control methods, e.g., LQG control

“““““
Pl *,
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Step Response Model Case

o0 m—1
V) =D Wi = V)N e — )+ D Au” (k+i) A Au(k +i)
i=1 i=0

m+n-1

m—1
V)= D Draie = V)N G =)+ D Au’ (k + i) A Au(k +i)
=1

i= i=0
with extra constrain
Must be at y* for the
/\/wl\ — cost to be bounded

k+m-1 k+m+n-1
N time steps

3@ ,/" =g -r‘ * —_—
€.k krm-1 i ke
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Additional Comments

Previously, we assumed finite settling time.

Can be generalized to state-space models

More complicated procedure to turn the «-horizon problem into a
finite horizon problem

Requires solving Lyapunov equation to get the terminal cost matrix

Also, must make sure that output constraints will be satisfied

beyond the finite horizon — construction of output admissible set
Use of a sufficiently large horizon (p= m+ the settling
time) should have a similar effect

Can we always satisfy the settling constraint?

y=y* may not be feasible due to input constraints or insufficient m
— use two-level approach

a * C
. &
ot * 5



Two-Level Optimization

Steady-State Optimization
(Linear Program or Quadratic Program)

Optimal Setting Values (setpoints)
yoo|k ! us (k)

Dynamic Optimization (co-horizon MPC)

Constraint ...,y = V. 1S guaranteed to be feasible.
Constraint Au(k) +---+ Au(k +m-1) = Au; =y, 0inii = Vo

“““““
Pl *,
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Use of Nonlinear Model

Georgia = =
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Difficulty (1)

x=f(x,u,d) piscretization? x(k +1) = F(x(k),u(k),d (k)
y=glx) | e > (k) = g(x(k))
) < (C)?gfro?:%(’zir]o?: /
Vise = & © F(x(k),u(k),d(k))+e(k)
Ve = & o F(F (x(k),u(k),d (k)),u(k +1),d (k))+ e(k)

Ve = &0 F7(x(k),u(k), - ulk + p=1),d (k))+e(k)
The prediction equation is nonlinear w.r.t. u(k), ......, u(k+p-1)

l

Nonlinear Program (Not so nice!) -

BIOMOLECULAR ENGINEERING
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Difficulty (2)
State Estimation
x=f(xu,d)+w

y=g(x)+v

\ Extended Kalman Filtering

k+1

x(k+1) = [ fxu,d)+ K (k) (v, (k) - g(x(k))

« Computationally more demanding steps, e.g., calculation of K at each time step
 Based on linearization at each time step — not optimal, may not be stable

» Best practical solution at the current time

 Promising alternative: Moving Horizon Estimation (requires solving NLP)

e Difficult to come up with an appropriate stochastic system model (no ID technique)



Model integration with
constant input u=u(k-1)
and d=d(k)

Yk+1lk

yk+2|k

_yk+p|k N

Practical Algorithm

< EKF> Dynamic Matrix based on the

j x(k)

ff(x,u,d)

jf(x,u,d)

|

jf(x,u,d)

_I_

linearized model at the
current state and input values

Au(k)

0" (1) Au (k +1)

Au(k+p-1) |

. J/

Linearized Effect of Future Input Adjustments

l Linear prediction equation

Linear or Quadratic Program



Additional Comments / Summary

Some refinements to the “Practical Algorithm” are
possible

Use the previously calculated input trajectory (instead of the
constant input) in the integration and linearization step

lterate between integration/linearization and control input
calculation

Full-blown nonlinear MPC is still computationally
prohibitive in most applications

“““““
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Lecture 3

Linear Model Identification

- Model structure

- Parameter/model estimation
- Error analysis

- Plant testing

- Data pretreatment

- Model validation

“““““
ot *,
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System Identification

—6,

Inputs Outputs

Building a dynamic system model using data obtained from the plant

“““““
ot *,
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Why Important?

Almost all industrial MPC applications use an empirical mo
del obtained through system identification

Poor model —» Poor Prediction —» Poor Performance
Up to 80% of time is spent on this step

Direct interaction with the plant

Cost factor, safety issues, credibility issue

Issues and decisions are sufficiently complicated that syst
ematic procedures must be used

“““““
ot *,
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Steps and Decisions Involved

* Test signal (shape, size of perturbation)
.  Closed-loop or open-loop?
' Plant Test « One-input-at-a-time or simultaneous?
A * How long?
Raw Data * Bte.
v

Pretreatment L

“““““
Pl *,

e Outlier removal
2 * Pre-filtering
Conditioned i
Data
. » Model structure
2 1D AIgOrlthm « (Parameter) estimation algorithm
|
Model : g
: : .=« Source of validation data
Validation 2 . Criterion
1 v.,
Yes

“*End Objective: Control

o
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Model Structure (1)

r-r-r-——=—=—=7—=7—=7=7=77=" -I
: Model l
|
Output
P Noi : Disturbance I Noize
rocess NOIS€ ——— Model :
|
: l : Measured
I Outputs
|
Inputs : » Plant I
I Dynamics :
|
L |
/O Model

White noise sequence

y(k) = Glqu(k) +  H(q)(e(k)

effect oflnputs effect ofdlsturbances noise

Models auto- and cross-correlations of the residual (not physical cause-effect)

Assume wolog that H(0)=1



SISO I/0O Model Structure (1)
FIR (Past inputs only)

y(k)=bu(k-1)+---+b u(k—m)+e(k)
(@) =byg +--+b,q", H(q)=1

”
A \\l A & III\IUI‘U Al 1 W1 VUILI\IUI\-UI I—Vlvlvtblvn Error )

y(k)=aylk-1D)+---+a y(k—n)+bu(k-1)+---+b u(k—m)+e(k)

bg'+--+b g™ 1
1q — mq —, H(q): — —
l-agq ——aq l-agq” —-—aq

y(k)=aylk-)+---+a y(k—n)+bu(k-1)+---+b u(k—m)
+e(k)+celk—1)+---+ce(k—n)

-1 -n
14+¢q  +---+c,q
1

bgt+-+b g
G(g)=—""— —, H(q)= -
: G l-agq” ——aq 1-ayq

..
T4 e

BIOMOLECULAR ENGINEERING



SISO I/O Model Structure (2)

Output Error (No noise model or white noise error)

yk)=ayk-D+--+a y(k—n)+bu(k-1)+---+b u(k—m);
y(k) = y(k)+e(k)

by ™+ +b,q "

G(q) = 1 - H(gq)=1
l-aq ——aq

BoxX Jenkiis yvivie yeriera uiail ARIVIAA)

bgt4-tb g

l-ag™ ~~aq”

“““““
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MIMO 1/O Model Structure

Inputs and outputs are vectors. Coefficients are matrices.
For example, ARX model becomes

yk)=A4ylk=1)+---+4,y(k—n)
+Bu(k-1)+---+ B u(k—m)+e(k)
G(q)=(T- g ——4,g") (Bg*+-+B,q™")
H(q) = (1 ~Ag"——4,q9" )_l

Identifiability becomes an issue

Ap\fedthitess & cI0RIR A0, J%iANHact/LaBa MXand H(

g) through pole/zero cancellations — Problems in parameter estimati
on — Requires special parameterization to avoid problem

a * C
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State Space Model
Deterministic
x(k +1) = Ax(k) + Bu(k) Output Error
y(k) = Cx(k) + e(k) > Structure
Combined Deterministic / Stochastic

x(k+1) = Ax(k) + Bu(k) + Ke(k)

=) ARMAX
y(k) =Cx(k)+e(k) Structure
4/\>
x,(k+1) = Ax, (k) + Bu(k) x,(k+1) = Ax_ (k) + Ke(k)
+
yq (k) = Cx(k) ¥, (k) = Cx, (k) + e(k)
Effect of deterministic input Auto- and cross-correlation of the residual

Identifiability can be an issue here too
State coordinate transformation does not change the 1/O relationship

“““““
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Data

“““““
Pl *,

Overview

A 4

v

Model
Structure
Selection

Model
Model Parameter For
Structure (Model) Validation
- Estimation 'Y
/ l Statistical
Prediction Error AV Method
Method Method .77 £
* Bayesian

Subspace ID
Method

ETFE

 Frequency Domain



Prediction Error Method

Predominant method at current time
Developed by Ljung and coworkers

Flexible
Can be applied to any model structure
Can be used in recursive form

Well developed theories and software tools
Book by Ljung, System ID Toolbox for MATLAB

Computational complexity depends on the model st
ructure

ARX, FIR — Linear least squares

ARMAX, OE, BJ — Nonlinear optimization

Not easy to use for identifying multivariable models

“““““
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Prediction Error Method

Put the model in the predictor form
y(k) =G(q,0)ulk) + H(q,0)e(k) —
Vier = Glg, Ouk) + (I~ H(,0))v(k) - G(g.O)u(k))

Contains at least 1 delay

e(k) = y(k) = vy = H *(q,0)(y(k) - G(gq,0)u(k))

Choose the parameter values to minimize the sum of the pr
ediction error for the given data

1Y 2
mgln{ﬁ;He(k)Hz} e(k) = H*(q,0)(y(k)— G(q,0)u(k))

ARX, FIR — Linear least squares,
ARMAX, OE, BJ — Nonlinear least squares

BIOMOLECULAR ENGINEERING



Subspace Method

More recent development

Dates back to the classical realization theories but rediscov
ered and extended by several people

ldentifies a state-space model
Some theories and software tools

Computationally simple
Non-iterative, linear algebra

Good for identifying multivariable models
No special parameterization is needed

Not optimal in any sense
May need a lot of data for good results

May be combined with PEM
Use SS method to obtain an initial guess for PEM

“““““
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Main Idea of the SS-ID Method (1)

Assumed Form of the Underlying Plant

x(k+1) = Ax(k) + Bu(k) + w(k)
y(k) =Cx(k)+v(k)

Innovation Form
(Steady-State Kalman Filter)
Equivalent to the above in I/0 sense
x(k+1) = Ax(k) + Bu(k) + Ke(k)
y(k) = Cx(k) + e(k)

t
Identify {A, B, C, K, Cov(e)}

within some similarity transformation

“““““
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Main Idea of the SS-ID Method (2)

~ _ An upper bound - -
y( Jo — ]_) of the state dimension n C
. - _ Extended CA
L \ x, (k) Obsez:;biliy .
Matri )
EGOIE A R
Past outputs 0
 x, (k) | ) o )
| l/l(k —1) ) L State yklk—l ek|k—1
. 2 (Minimum Storage) : + :
u(k—n) | Viwa-te-1 || G-t |
Past inputs u(k) Future Prediction
: Output Error
Prediction
u(k+n—-2)

“““““
Pl *,

(= Future inputs e



Main ldea of the SS-ID Method (3)

re-rl 1]

+ LU +E™
S— g
M —

Find M through linear least squares

Consistent estimation since E®* is independent of the regres
Sors

Oblique projection of data matrices
Perform SVD on M and find n as well as T',

=, o]p" [ =03
" —
M = [Ql QZ] 1T / 0 Ql n
0 =0~ . .
— & Some variations exist among
_ _ different algorithms in terms
~"" " The column space of Q1 is the state space

R of picking the state basis,
G PICKING o3
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Main ldea of the SS-ID Method(4)

Obtain the data for x(k)

_Y_ . _
- [r®
el U (K)_

pseudo inverse

x(k) =

Obtain the data for x(k+1) in a similar manner

Obtain A,B and C through linear regression

Consistent estimation since the residual is independent of the regre
ssor

x(k+1)] [4 B x(k) X Ke(k)]
k) | LC 0 y(k)] | e(k)

Residual

J

Obtain K and Cov(e) by using the residual data

BIOMOLECULAR ENGINEERING



Properties

N4SID (Van Overschee and DeMoor)
Kalman filter interpretation
Proof of asymptotically unbiasedness of A, B, and C
Efficient algorithm using QR factorization

CVD (Larimore)

Founded on statistical argument

Same idea but the criterion for choosing the state basis (Q,) diff
ers a bit from N4SID — based on “correlation” between past I/O
data and future output data, rather than minimization of the pre
diction error for the given data
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Alternative

I -C,A—> B

MOESP (Verhaegen)
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Error Types

Bias: Error due to structural mismatch
Bias = the error as # of data points — «
Independent of # of data points collected

Bias distribution (e.g., in the frequency domain) depends on the
Input spectrum, pre-filtering of the data, etc.

Frequency-domain bias distribution under PEM - by Ljung

Variance: Error due to limited availability of data

Vanishes as # of data points — «©

Depends on the number of parameters, the number of data poin
ts, S/N ratio, etc. but not on pre-filtering

Asymptotic distribution (as n, N — ):
Main tradeoff
Richer structure (more parameters) — BiasY, VarianceT

cov(vec(G,)) ~ % @) D,
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Test Signals

Very Important
Signal-to-noise ratio — Distribution and size of the variance
Bias distribution

Popular Types

Multiple steps: Power mostly in the low-frequency region— Good e
stimation of steady-state gains (even with step disturbances) but g
enerally poor estimation of high frequency dynamics

PRBS: Flat spectrum — Good estimation of the entire frequency re
sponse, given the error also has a flat spectrum (often not true)

Combine steps w/ PRBS?
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Multi-Input Testing (MIT) vs.
Single Input Testing (SIT)

MIT gives better signal-to-noise ratio for a given t
esting time
Control-relevant data generation requires MIT

MIT can be necessary for identification of highly |
nteractive systems (e.g., systems with large RGA)

SIT is often preferred in practice because of them
ore predictable effect on the on-going operation

“““““
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Open-Loop vs. Closed-Loop

Open-Loop Testing

Perturbation Signal r d y
é- Go “é) —

u
Closed-Loop Testing
Dither Signal d
Location 1 Location 2

— C —QT G, _.Q_y_>
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Pros and Cons of Closed-Loop Testing

Pros
Safer, less damaging effect on the on-going operation

Generates data that are more relevant to closed-loop ¢
ontrol

cons

Correlation between input perturbations and disturbanc
es / noise through the feedback.

Many algorithms can fail or give problems — They give “
bias” unless the assumed noise structure is perfect

a * C
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Important Points from Analysis

External perturbations (“dither”) are necessary.

Perturbations due to error feedback hardly contributes to variance
reduction (since they are correlated to the errors)

.—— Portion of the input spectrum
COV(VeC(GN ) — (cp )—T XD, due to the dithering

Output error spectrum

The level of external perturbation signals also contribute to the siz
e of bias due to the feedback-induced correlation

O DO'= (PD') x (DDY)

- -1 — —
EF{G,. -G =(H,—H YD O Noise—to—signal  Relative contribution
{ ! N} ( 0 H ) ew u ratio of noise feedback

to input spectrum

Specialized algorithm may be necessary to avoid bias
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Different Approaches to Model Identification
with-Closed-Loop Data

Direct Approach
DY ={y(i),u(i),i=1..,N} > G,(and H,)
* Indirect Approach
DY ={y()),r@i),i=1..,N} > Ty —GRCwo' , 5
e Joint I/O Approach
DY =), u(@),r(),i=1,...,. N} — (T¥ T¥) —SuWa@* . G

e Two-Stage or Projection Approach
D ={u()),r(@,i=1...N} - D" ={u(i} - G,
By —gay
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Data Pretreatment

Georgia fatn b
e Technalogyy

SCHOOL OF CHEMICAL &
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Main Issues (1)

Time-consuming but very important
Remove outliers

Remove portions of data corresponding to u
nusual disturbances or operating conditions
Filter the data

Affects bias distribution (emphasize or de-emphasize
different frequency regions)

Does NOT improve the S/N ratio — often a misconcept
lon
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Main Issues (2)

Difference the data?
(4y = y(k) —y(k-1), Au(k) = u(k) —u(k-1))

Removes trends (e.g., effect of step disturbances, set
point changes) that can destroy the effectiveness of m
any ID methods (e.g., subspace ID)

Often used in practice

Also removes the input power in the low-frequency re
gion. (PRBS — zero input power at » = 0)

Amplifies high-frequency parts of the data (e.g., noise
), so low-pass filtering may be necessary
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Overview

Use fresh data different from the data used for m
odel building

Various methods
Size of the prediction error
“Whiteness” of the prediction error
Cross correlation test (e.g., prediction error and inputs)

Good prediction with test data but poor predictio

n with validation data

Sign of “overfit”

Reduce the order or use more compact structures like ARM
AX (instead of ARX)
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Concluding Remarks on Linear ID

System ID is often the most expensive and difficult par
t of model-based controller design

Involves many decisions that affect
Plant operation during testing
Eventual performance of the controller

Good theories and systematic tools are available

System ID can also be used for constructing monitorin
g models
Subspace identification

Trend model, not a causal model
— Active testing is not needed
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Deterministic Multi-Stage Optimization

4 min{pzfﬂxﬂuj)wp(xp)} A

Z/lo,...,up_l ]:O

stage-wise terminal

cost cost
g, (x;u;)=0 Path constraints
g,(x,)=0 Terminal constraints

x,,=f(x,,u;)  Model constraints /

General formulation for deterministic control and
scheduling problems.

Continuous and integer state / decision variables
possible

-« = Incontrol, p=cocase is solved typically.
3': P - . . . . * das
: L= = Uncertainty is not explicitly addressed. | R



Solution Approaches

Analytical approach: 50s-70s u. —,u*(x )

Derivation of closed form optimal policy ( * J
requires solution to HJB equation (hard!)

Numerical approach: 80s-now
Math programming (LP, QP, NLP, MILP, etc.):
Fixed parameter case solution
Computational limitation for large-size problem (e.g., when p= ).
Parametric programming:
General parameter dependent solution (e.g., a lookup table)
Significantly higher computational burden
Practical solution:

Resolve the problem on-line whenever parameters are updated or
constraints are violated (e.g., in Model Predictive Control or
Reactive Scheduling).

)
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Stochastic Multi-Stage Decision Problem
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with Recourse

g minE<Zaf¢(x,,u) h

u;=p(x;) /=0

Vo

O<a<l _
Discount factor

X th(xj,uj,a)j) Markov sys. model

Gr[g(xj’uj) > O]Z é/ Chance constraint/

Next ““holy-grail”” of control: A general form for
control, scheduling, and other real-time decision
problems in an uncertain dynamic environment.

No satisfactory solution approach currently available.
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Limitation of Stochastic Programming
Approach

Simple case of 2 scenarios (/ or /) per stage

x¢¢<v
k+2

0

X

k+1

™
x k k+2

1

k+2

Number of branches

AAA

k+1
to evaluate for each
x“ candidate decisions =
k+2 219
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Stochastic Programming Approach

General case (S number of scenarios per stage)

Total number of decision variables
=(1+S+S?+...+SP1)n,

Number of branches to evaluate for each
decision candidate = SP

Not feasible for large S (large number of
scenarios) and/or large p (large number of
stages)
practically limited to two stage problems with a
small number of scenarios.
Current practical approach: Evaluate
most likely branch(es) only. BUT highly
s limited!

BIOMOLECULAR ENGINEERING



Dynamic Programming (DP)

716 MATHEMATICS: RICIIARD BELLMAN Proc. N A 5.

ON TIIE THEORY OF DVYNAMIC PROGRAMMING

By RiCHARD BELLMAN '

TeHE RAND CorPoORATION, SanTa MoNica, CALIFORNIA
Communicated by J. von Neuwimann, June 5, 1952

1. Introduction.-—We are interested 101 a class of mathematical problems
which arise in connection with situations which require that a bounded or
unbounded sequence ol operations be performed for the purpose of achicv-
ing a desired result.  Particularly important are the cases where each oper-
ation gives risc to a stochastic event, the result of which 1s apphed to the
determination of subsequent operations.

Two fundamenial problems eticountered in situations of this type, in
sonc sensc duals of cach other, are those of maximizing the yield obtained

. CHOOL OF CHEMICAL &
4R BIOMOLECULAR ENGINEERING
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Value lteration Approach to Solving DP

J'(x,) = min E|p(x,,u,) + " (f, (x,1,)]

u (k)

Discretization of entire state space I \/p'\.,d ‘tion
T /,/"/— \\{\é\o(\ 0@5\
s 5T ) =minElpiu)+ a3 (D)
) (,\\071
S >
\)\6 1
Y o !@;\G sampling &
@ discretization

= 1+1
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Approximate Dynamic Programming (ADP)

Bellman equation needs to be solvedx € X
Curse of dimensionality! Not suitable for high dimens. sys.

Key idea of ADP
To find approximate cost-to-go function

Use simulations under known suboptimal policy to sample a very
small “relevant™ fraction of the states and initialize cost-to-go
value table.

Iteratively improve the policy and cost-to-go function
Iterate over only the sampled points in the state space

Use interpolation to evaluate the cost-to-go values for non-
sampled points.
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Approximate Dynamic Programming (ADP)
Approximate Value Iteration

u=u(x)=arg muin E[¢(x,u) + 0&7*(f(x,u))]

* Closed-loop w/ suboptimal policies
* MPC, PI, etc.

- State and input trajectories:  x,, u,
e Initial cost-to-go: J(x) = Zai¢i

77 = min £l + T (/o)
'———- Sample Avg.

sampled state points

7 1+ converged

il —i+1 [ F
L solution




