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Schedule

•Lecture 1: Introduction to MPC
•Lecture 2: Details of MPC Algorithm 

and Theory
•Lecture 3: Linear Model Identification



Lecture 1

Introduction to MPC

- Motivation
- History and status of industrial use of MPC
- Overview of commercial packages



Key Elements of MPC

• Formulation of the control 
problem as an 
(deterministic) 
optimization problem

• On-line optimization

• Receding horizon 
implementation (with 
feedback update)
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Popularity of  Quadratic Objective in Control

• Quadratic objective

• Fairly general
– State regulation
– Output regulation
– Setpoint tracking

• Unconstrained linear least squares problem has an analytical 
solution. (Kalman’s LQR)

• Solution is smooth with respect to the parameters
• Presence of inequality constraints → no analytical solution
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Linear State Space System Model



Classical Process Control
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PID Controllers

Lead / Lag Filters
Switches

Min, Max Selectors
If / Then Logics
Sequence Logics

Other Elements

• Regulation
• Constraint handling 
• Local optimization

Ad Hoc Strategies,
Heuristics

• Inconsistent performance
• Complex control structure
• Not robust to changes and failures
• Focus on the performance of a local unit

• Model is not explicitly used 
inside the control algorithm

• No clearly stated objective  
and constraints



Example 1: Blending System

• Control rA and rB
• Control q if possible
• Flowrates of 

additives are limited

Classical 
Solution



Model-Based Optimal Control

Set-point

r(t)
Input

u(t)
Output

y(t)

),(),,( uxgyuxfx ==&

Controller Plant

( )
⎭
⎬
⎫

⎩
⎨
⎧

+∑
−

=−

1

0,,
),(min

10

p

i
ppii

uu
xux

p

φφ
K

),(

0)(
0),(

uxfx

xg
uxg

pp

iii

=

≥
≥

&

Path constraints

Terminal constraints

Model constraints

stage-wise
cost

terminal
cost

Open-Loop Optimal Control Problem



Model-Based Optimal Control

Set-point

r(t)

Input

u(t)
Output

y(t)
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Measurements

Controller Plant
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Terminal constraints

Model constraints

stage-wise
cost

terminal
cost

Open-Loop Optimal Control Problem
• Open-loop optimal solution is not robust

• Must be coupled with on-line state / model parameter update

• Requires on-line solution for each updated problem

• Analytical solution possible only in a few cases (LQ control)

• Computational limitation for numerical solution, esp. back in   
the ’50s and ’60s



– At time k, solve the 
open-loop optimal 
control problem on-line 
with x0 = x(k)

– Apply the optimal input 
moves u(k) = u0

– Obtain new 
measurements, update 
the state and solve the 
OLOCP at time k+1 with 
x0 = x(k+1)

– Continue this at each 
sample time

Model Predictive Control (Receding Horizon Control)

Implicitly defines the feedback law u(k) = h(x(k))



Analogy to Chess Playing

My
Move

The Opponent’s
Move

New State

my 
move

his move

my move

Opponent
(The Plant)

I
(The Controller)



Operational Hierarchy Before and After MPC

Unit 1 - Conventional 
Structure

Global Steady-State
Optimization
(every day)

Local Steady-State
Optimization
(every hour)

Dynamic
Constraint
Control
(every minute)

Supervisory
Dynamic
Control
(every minute)

Basic Dynamic
Control
(every second)

Plant-Wide Optimization

Unit 1 Local Optimization Unit 2 Local Optimization

High/Low Select Logic

PID Lead/Lag PID

SUM SUM

Model
Predictive
Control
(MPC)

Unit 1 Distributed Control
System (PID)

Unit 2 Distributed Control
System (PID)

FC
PC

TC
LC

FC
PC

TC
LC

Unit 2 - MPC Structure



Example: Blending System

• Control rA and rB
• Control q if possible
• Flowrates of 

additives are limited

Classical 
Solution

MPC:
Solve at

each time k
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Optimization and Control



An Exemplary Application (1)



An Exemplary Application (2)



Industrial Use of MPC

• Initiated at Shell Oil and other refineries during late 70s.
• The most applied advanced control technique in the process 

industries.
• >4600 worldwide installations + unknown # of “in-house”

installations (Result of a survey in yr 1999).
• Majority of applications (67%) are in refining and petrochemicals. 

Chemical and pulp and paper are the next areas.
• Many vendors specializing in the technology

– Early Players: DMCC, Setpoint, Profimatics
– Today’s Players: Aspen Technology, Honeywell, Invensys, ABB

• Models used are predominantly empirical models developed 
through plant testing.

• Technology is used not only for multivariable control but for most 
economic operation within constraint boundaries.



MPC Industry Consolidation

Honeywell 
(Profimatics)

CPC-V

(late 1995)
Update

(Late 2000)

CCI GE

DOT

Pavilion

AdersaNeuralwareSetpoint
DMCC

Aspentech
Adersa
CCI
DMCC
DOT Products
Honeywell
Litwin
Neuralware
Pavilion
Predictive Controls
Profimatics
Setpoint
Treiber Control
MDC Technology

Litwin SimSci Foxboro
Invensys

PCL

MDC
Emerson 
Elec.

FRSI

Treiber ABB



Linear MPC Vendors and Packages

• Aspentech
– DMCplus
– DMCplus-Model

• Honeywell
– Robust MPC Technology (RMPCT)

• Adersa
– Predictive Functional Control (PFC)
– Hierarchical Constraint Control (HIECON)
– GLIDE (Identification package)

• MDC Technology (Emerson)
– SMOC (licensed from Shell)
– Delta V Predict

• Predictive Control Limited (Invensys)
– Connoisseur

• ABB
– 3d MPC



Result of a Survey in 1999 (Qin and Badgwell)



Nonlinear MPC Vendors and Packages

• Adersa
– Predictive Functional Control (PFC)

• Aspen Technology
– Aspen Target

• Continental Controls
– Multivariable Control (MVC): Linear Dynamics + Static Nonlinearity

• DOT Products
– NOVA Nonlinear Controller (NLC): First Principles Model

• Pavilion Technologies
– Process Perfecter: Linear Dynamics + Static Nonlinearity
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Results of a Survey in 1999 for Nonlinear MPC



Controller Design and Tuning Procedure

1. Determine the relevant CV’s, MV’s, and DV’s
2.  Conduct plant test: Vary MV’s and DV’s & record 

the response of CV’s
3.  Derive a dynamic model from the plant test data 
4.  Configure the MPC controller and enter initial 

tuning parameters
5.  Test the controller off-line using closed loop 

simulation 
6.  Download the configured controller to the 

destination  machine and test the model 
predictions in open-loop mode

7.  Commission the controller and refine the tuning as 
needed



Role of MPC in the Operational Hierarchy

Plant-Wide Optimization

Local Optimization

Multivariable 
Control

Distributed Control
System (PID)

FC
PC

TC
LC

Determine plant-wide the 
optimal operating condition for 

the day

Make fine adjustments for 
local units

Take each local unit to the 
optimal condition fast but 

smoothly without violating 
constraints MPC



Local Optimization

• A  separate steady-state optimization to determine steady-state 
targets for the inputs and outputs; RMPCT introduced a dynamic
optimizer recently

• Linear Program (LP) for SS optimization; the LP is used to enforce 
input and output constraints and determine optimal input and 
output targets for the thin and fat plant cases

• The RMPCT and PFC controllers allow for both linear and 
quadratic terms in the SS optimization

• The DMCplus controller solves a sequence of separate QPs to 
determine optimal input and output  targets; CV’s are ranked in 
priority so that SS control  performance of a given CV will never be 
sacrificed to improve  performance of lower priority CV’s; MV’s are 
also ranked  in priority order to determine how extra degrees of
freedom is used



Dynamic Optimization
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At the dynamic optimization stage, all of the controllers can be
described (approximately) as minimizing a performance index 
with up to three terms; an output penalty, an input penalty, and an 
input rate penalty:
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Dynamic Optimization

• Most control algorithms use a single quadratic objective

• The HIECON algorithm uses a sequence of separate dynamic 
optimizations to resolve conflicting control objectives; CV errors 
are minimized first, followed by MV errors

• Connoisseur allows for a multi-model approach and an adaptive 
approach

• The RMPCT algorithm defines a funnel and finds the optimal 
trajectory yr and input uM which minimize the following objective:

subject to a funnel constraint
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Output Trajectories

• Move suppression is necessary when reference trajectory is not used

quadratic penalty

past  future

Setpoint

quadratic penalty

past  future

Zone

quadratic penalty

past  future

Reference trajectory

quadratic penalty

past  future

Funnel

Honeywell’s RMPCTSoft Constraint, “Zone Control”

Aspen Tech’s DMC ID-COM, Adersa’s



Output Horizon

past  future

Finite horizon

prediction horizon P

Coincidence points



Input Parameterization

Multiple moves (with blocking)u

control horizon

Single move (extreme blocking)u

Basis function (parametrized)

u



Process Model Types

Model Type Origin Linear/Nonlinear Stable/Unstable

Differential physics L,NL S,U
Equations

State-Space physics L,NL S,U
data

Laplace Transfer physics L S,U
Function data

ARMAX/NARMAX data L,NL S,U

Convolution data L S
(Finite Impulse
or Step Response)

Other data L,NL S,U
(Polynomial,
Neural Net)



Identification Technology
• Most products use PRBS-like or multiple steps test signals.     Glide us

es non-PRBS signals
• Most products use FIR, ARX or step response models 

– Glide uses transfer function G(s)
– RMPCT uses Box-Jenkins
– SMOC uses state space models

• Most products use least squares type parameter estimation: 
– prediction error or output error methods
– RMPCT uses prediction error method
– Glide uses a global method to estimate uncertainty

• Connoisseur has adaptive capability using RLS
• A few products (DMCplus, SMOC) have subspace identification metho

ds available for MIMO identification
• Most products have uncertainty estimate, but most products do not m

ake use of the uncertainty bound in control design



Summary
• MPC is a mature technology!

– Many commercial vendors with packages differing in model form, objective 
function form, etc.

– Sound theory and experience
• Challenges are

– Simplifying the model development process
• plant testing & system identification
• nonlinear model development

– State Estimation
• Lack of sensors for key variables

– Reducing computational complexity
• approximate solutions, preferably with some guaranteed properties

– Better management of “uncertainty”
• creating models with uncertainty information (e.g., stochastic model)
• on-line estimation of parameters / states
• “robust” solution of optimization



FCCU Debutanizer

~20% under 
capacity



Debutanizer Diagram

Reflux

Fan

Slurry Pump Around

PCT

RVP

Pressure

Flooding Tray 20 Temp.

Feed

Pre-Heater

160 F

400 F

190 lb

From Stripper

To Deethanizer

Gasoline to blending

TC

TC

PC

TC



Process Limitation

Operation Problems:
• Overloading 

-- over design capacity.

• Flooding 
-- usually jet flooding, causing very poor separation.

• Lack of Overhead Fan Cooling
-- especially in summer.

Consequences:

• High RVP, giving away Octane Number
• High OVHD C5, causing problems at Alky.



Control Objectives

Constrained Control:

• Preventing safety valve from relieving
• Keep the tower from flooding
• Keep RVP lower than its target.

• Regulate OVHD PCT or C5 at spec.
• Rejecting disturbance not through slurry, if possible.

Regulatory Control:



Real-Time Optimization

Optimization Objectives:

• Minimizing energy consumed

• Minimizing overhead reflux
• Minimizing overhead cooling required

• Minimizing overhead pressure
• Maximizing separation efficiency.

While maintaining PCT, RVP on their specifications



MPC Configuration

Fan Output

Reflux

Pre-heater By-Pass

Reboiler By-Pass

OVHD Pressure

Internal Reflux

Pre-heater By-Pass

Reboiler By-Pass

MPC

PCT
Fan
RVP

Diff. Pressure
Feed Temp.

Tray 20 Temp.
OVHD C5 %

Feed
Stripper Bottom Temp.

Controlled

Disturbances

Manipulated

R-PID

R-PID



MPC’s MV Moves

Pressure (lb)

Feed-heater by-pass 

Reboiler by-pass

Reflux

minute

Optimal Point Reached

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000



Reflux vs. Feed

12

14

16

18

20

22

24

26

28

30

32

0 500 1000 1500 2000 2500 3000

Reflux

Feed

minute

An indication 
that separation 

efficiency 
increased.



Reflux-to-Feed Ratio

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0 500 1000 1500 2000 2500 3000
minute

Handling Flood



Handling Flood

Potential Flooding

minute

1.2

1.4

1.6

1.8

2

2.2
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3
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0 500 1000 1500 2000 2500 3000

Differential
Pressure

Across Tower



Product Spec's
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MPC Operation Overview

Reflux

Fan
PCT

RVP

Pressure

Flooding Tray 20 Temp.
Feed

Pre-Heater

160 F

400 F

190 lb

Gasoline to blending

Feed Tray

Tray 20

Temperature
Tray #

After MPC is on

Top Tray



MPC Control Results (1)

When RMPCT was turned on

Debutanizer Bottom C4- Total (I-C4, N-C4 & C4=-)

Date

C4- Total

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

%

April, 1991

MPC



MPC Control Results (2)

RVP

Date

Debutanizer Bottom RVP Daily Average

When RMPCT was turned on

April, 1991
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MPC Control Results (3)

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

When RMPCT was turned on

Debutanizer Top C5+ Total (I-C5, N-C5 & C5=+)

C5+ Total
%

DateApril, 1991

MPC



Other Benefits

• Reflux is 15% lower than before

• Separation efficiency is increased

• Now have room for lower RVP or PCT, if needed

• Variance on PCT and RVP is reduced; 
Note: Variance on the tray-20 temperature is
increased, and it should be!!

• Energy saving (~10%)

• OVHD fan maximum bound may be avoided

• Flooding is eliminated.
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Lecture 2

Details of MPC Algorithms and Theory

- Impulse and step response models and 
the prediction equation

- Use of state estimation

- Optimization

- Infinite-horizon MPC and stability

- Use of nonlinear models



Important Ingredients of an MPC Algorithm

• Dynamic Model → Prediction Model
– Predicted future outputs = Function of current “state”

(stored in memory) + feedforward measurement + 
feedback measurement correction + future input 
adjustments

• Objective and Constraints
• Optimization Algorithm
• Receding Horizon Implementation



General Setup

Previous State
(in Memory)

Current StateNew Input Move
(Just Implemented)

To Optimization

State Update

Prediction Model
for Future Outputs 

Future Input Moves
(To Be Determined)

Feedback / Feedforward
Measurements

Prediction 
Measurement 

Correction 

Dynamic Model State:
Compact representation
Of the past input record

?



Options

• Model Types
– Finite Impulse Response Model or Step Response Model
– State-Space Model
– Linear or Nonlinear

• Measurement Correction
– To the prediction (based on open-loop state calculation)
– To the state (through state estimation)

• Objective Function
– Linear or Quadratic
– Constrained or Unconstrained



Prediction Model for Different 
Model Types

• Finite Impulse Response Model
• Step Response Model
• State-Space Model



Sample-Data (Computer) Control

Model relates 
input samples to 
output samples
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vvv
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v can be a MV 
(u) or a 

Measured DV 
(d)



Finite Impulse Response Model (1)

Assumptions:
• H0 = 0: no immediate effect 
• The response settles back in n steps s.t. Hn+1 = Hn+2

= … = 0: “Finite Impulse Response” (reasonable for 
stable processes)



Finite Impulse Response Model (2)

Linear Model→ “Superposition Principle”
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Finite Impulse Response Model (3)

• State

• State Update: Easy!
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Finite Impulse Response Model (4)
• Prediction
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Step Response Model (1)

Assumptions:
• S0 = 0: no immediate effect 
• The response settles in n steps s.t. Sn= Sn+1 = …= S∞: the same 

as the finite impulse response assumption
• Relationship with the impulse response coefficients:



Step Response Model (2)
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Step Response Model (3)

• State Update
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Step Response Model (4)

Effect of future input moves 
(to be determined)

x(k)

•Prediction
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State-Space Model (1)
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State-Space Model (2)
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State-Space Model (3)

• Prediction
)()( kxky Ξ=

)()()( kykyke m −=
Future input 

moves
(to be decided)

Feedforward term: new measurement
(Assume ∆d(k+1)=…= ∆ d(k+p-1)=0)

Feedback Error
Correction

The “state” stored in 
“memory”

Predicted future 
output samples

Model prediction of y(k)
Model prediction error

Dynamic Matrix
(made of step 

response coefficients)



Summary

• Regardless of model form, one gets the prediction 
equation in the form of

• Assumptions
– Measured DV (d) remains constant at the current value of d(k)
– Model prediction error (e) remains constant at the current value

of e(k)
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Ramp Type Extrapolation
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• For Integrating Processes, Slow Dynamics



Use of State Estimation



Measurement Correction of State

Previous State Estimate
(in “Memory”)

Current State Estimate

Prediction Model
for Future Outputs 

New Input Move
(Just Implemented)

Future Input Moves
(To Be Determined)

To Optimization

Feedback / Feedforward
Measurements

State Update

Prediction 
Measurement 

Correction 

State Estimate:
Compact representation

Of the past input and 
measurement record



State Update Equation
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• K is the update gain matrix that can be found in 
various ways
– Pole placement: Not so effective with systems with 

many states (most chemical processes)
– Kalman filtering: Requires a stochastic model of form

White noises of known covariances
Effect of unmeasured disturbances and noise

Can be obtained using, e.g., 
subspace ID
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Prediction Equation
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Additional measurement correction NOT needed here!

Contains past feedback measurement corrections



What Are the Potential Advantages?

• Can handle unstable processes
– Integrating processes, run-away processes

• Cross-channel measurement update
– More effective update of output channels with delays or 

measurement problems based on other channels.

• Systematic handling of multi-rate measurements
• Optimal extrapolation of output error and filtering of noise

(based on the given stochastic system model)

Process Delays,
Measurement Difficulties,

Slow Sampling

y1

y2

Unmeasured 
inputs

Measured inputs

Early, robust
update through

modeled correlation



Optimization



Objective Function

• Minimization Function: Quadratic cost (as in DMC)

– Consider only m input moves by assuming ∆u(k+j)=0 for j≥m
– Penalize the tracking error as well as the magnitudes of adjustments

• Use the prediction equation.
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Constraints

Substitute the prediction 
equation and rearrange to 

)()( khkUC m ≥∆



Optimization Problem

• Quadratic Program

• Unconstrained Solution

• Constrained Solution
– Must be solved numerically
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Quadratic Program

• Minimization of a quadratic function subject to linear 
constraints

• Convex and therefore fundamentally tractable
• Solution methods

– Active set method: Determination of the active set of constraints 
on the basis of the KKT condition

– Interior point method: Use of barrier function to “trap” the solution 
inside the feasible region, Newton iteration

• Solvers
– Off-the-shelf software, e.g., QPSOL
– Customization is desirable for large-scale problems



Two-Level Optimization

Steady-State Optimization (Linear Program)
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(sometimes input deviations are included 
in the quadratic objective function)



Use of Infinite Prediction Horizon
and Stability



Use of ∞ Prediction Horizon – Why?

• Stability guarantee
– The optimal cost function can be shown to be the 

control Lyapunov function
• Less parameters to tune
• More consistent, intuitive effect of weight 

parameters
• Close connection with the classical 

optimal control methods, e.g., LQG control



Step Response Model Case
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Additional Comments

• Previously, we assumed finite settling time.
• Can be generalized to state-space models

– More complicated procedure to turn the ∞-horizon problem into a 
finite horizon problem

– Requires solving Lyapunov equation to get the terminal cost matrix
– Also, must make sure that output constraints will be satisfied 

beyond the finite horizon → construction of output admissible set

• Use of a sufficiently large horizon (p≈ m+ the settling 
time) should have a similar effect

• Can we always satisfy the settling constraint?
– y=y* may not be feasible due to input constraints or insufficient m

→ use two-level approach



Two-Level Optimization

Steady-State Optimization 
(Linear Program or Quadratic Program)

Optimal Setting Values (setpoints) 
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Dynamic Optimization (∞-horizon MPC)



Use of Nonlinear Model



Difficulty (1)
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Difficulty (2)
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State Estimation
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Extended Kalman Filtering

• Computationally more demanding  steps, e.g., calculation of K at each time step
• Based on linearization at each time step – not optimal, may not be stable
• Best practical solution at the current time
• Promising alternative: Moving Horizon Estimation (requires solving NLP)
• Difficult to come up with an appropriate stochastic system model (no ID technique)



Practical Algorithm
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Additional Comments / Summary

• Some refinements to the “Practical Algorithm” are   
possible
– Use the previously calculated input trajectory (instead of the  

constant input) in the integration and linearization step

– Iterate between integration/linearization and control input 
calculation

• Full-blown nonlinear MPC is still computationally 
prohibitive in most applications



Lecture 3

Linear Model Identification
- Model structure
- Parameter/model estimation
- Error analysis
- Plant testing
- Data pretreatment
- Model validation



System Identification

Building a dynamic system model using data obtained from the plant



Why Important?

• Almost all industrial MPC applications use an empirical mo
del obtained through system identification

• Poor model → Poor Prediction → Poor Performance
• Up to 80% of time is spent on this step
• Direct interaction with the plant

– Cost factor, safety issues, credibility issue

• Issues and decisions are sufficiently complicated that syst
ematic procedures must be used



Steps and Decisions Involved

Plant Test

Pretreatment

ID Algorithm

Validation
No

Yes

Raw Data

Conditioned 
Data

Model

• Test signal (shape, size of perturbation)
• Closed-loop or open-loop?
• One-input-at-a-time or simultaneous?
• How long?
• Etc.

• Outlier removal
• Pre-filtering

• Model structure
• (Parameter) estimation algorithm

• Source of validation data
• Criterion

End Objective: Control



Model Structure



Model Structure (1)

• I/O Model

effect of inputs effect of disturbances, noise

( ) ( ) ( ) ( ) ( )y k G q u k H q e k= +
14243 14243

Plant
Dynamics

Disturbance
Model

Model

Σ Σ

Process Noise
Output 
Noise

Inputs

Measured
Outputs

White noise sequence

Models auto- and cross-correlations of the residual (not physical cause-effect)

Assume wolog that H(0)=1



SISO I/O Model Structure (1)
• FIR (Past inputs only)

• ARX (Past inputs and outputs: “Equation Error”)

• ARMAX (Moving average of the noise term)
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SISO I/O Model Structure (2)

• Output Error (No noise model or white noise error)

• Box Jenkins (More general than ARMAX)
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MIMO I/O Model Structure
• Inputs and outputs are vectors.  Coefficients are matrices.
• For example, ARX model becomes

• Identifiability becomes an issue
– Different sets of coefficient matrices giving exactly same G(q) and H(

q) through pole/zero cancellations → Problems in parameter estimati
on → Requires special parameterization to avoid problem
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State Space Model
• Deterministic

• Combined Deterministic / Stochastic

• Identifiability can be an issue here too
– State coordinate transformation does not change the I/O relationship

)()()(
)()()1(

kekCxky
kBukAxkx

+=
+=+

)()()(
)()()()1(

kekCxky
kKekBukAxkx

+=
++=+

)()(
)()()1(

kCxky
kBukAxkx

d

dd

=
+=+

)()()(
)()()1(

kekCxky
kKekAxkx

ss

ss

+=
+=+

+
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Output Error 
Structure

ARMAX
Structure



Parameter (Model)
Estimation



Overview

Parameter
(Model)

EstimationData

Model 
Structure

Model 
Structure
Selection

Model
For

Validation

Prediction Error 
Method

IV
Method

Statistical
Method

• MLE
• Bayesian

Subspace ID
Method

ETFE
• Frequency Domain



Prediction Error Method

• Predominant method at current time
• Developed by Ljung and coworkers
• Flexible

– Can be applied to any model structure
– Can be used in recursive form

• Well developed theories and software tools
– Book by Ljung, System ID Toolbox for MATLAB

• Computational complexity depends on the model st
ructure
– ARX, FIR → Linear least squares
– ARMAX, OE, BJ → Nonlinear optimization

• Not easy to use for identifying multivariable models



Prediction Error Method

• Put the model in the predictor form

• Choose the parameter values to minimize the sum of the pr
ediction error for the given data

– ARX, FIR → Linear least squares,
– ARMAX, OE, BJ → Nonlinear least squares

( )( )

( ))(),()(),()()(

)(),()(),()(),(
)(),()(),()(

1
1|

delay 1least at  Contains

1
1|

kuqGkyqHykyke

kuqGkyqHIkuqGy
keqHkuqGky

kk

kk

θθ

θθθ

θθ

−=−=

−−+=

→+=

−
−

−
− 4434421

⎭
⎬
⎫

⎩
⎨
⎧ ∑

=

N

k

ke
N 1

2

2
)(1min

θ ( ))(),()(),()( 1 kuqGkyqHke θθ −= −



Subspace Method

• More recent development
• Dates back to the classical realization theories but rediscov

ered and extended by several people
• Identifies a state-space model
• Some theories and software tools
• Computationally simple

– Non-iterative, linear algebra
• Good for identifying multivariable models

– No special parameterization is needed
• Not optimal in any sense
• May need a lot of data for good results
• May be combined with PEM

– Use SS method to obtain an initial guess for PEM



Main Idea of the SS-ID Method (1)

Assumed Form of the Underlying Plant
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Innovation Form 
(Steady-State Kalman Filter)

Equivalent  to the above in I/O sense

Identify {A, B, C, K, Cov(e)} 
within some similarity transformation
We are free to choose the state coordinates



Main Idea of the SS-ID Method (2)
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Main Idea of the SS-ID Method (3)

[ ] ++
−

−
+ ++⎥

⎦

⎤
⎢
⎣

⎡
Γ= 00

321
0 EUL

U
Y

LLY
M

o 43421

• Find M through linear least squares
– Consistent estimation since E0+ is independent of the regres

sors
– Oblique projection of data matrices

• Perform SVD on M and find n as well as Γo
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Main Idea of the SS-ID Method(4)

• Obtain the data for x(k)

• Obtain the data for x(k+1) in a similar manner
• Obtain A,B and C through linear regression

– Consistent estimation since the residual is independent of the regre
ssor

• Obtain K and Cov(e) by using the residual data
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Properties

• N4SID (Van Overschee and DeMoor)
– Kalman filter interpretation
– Proof of asymptotically unbiasedness of A, B, and C
– Efficient algorithm using QR factorization
– -

• CVD (Larimore)
– Founded on statistical argument
– Same idea but the criterion for choosing the state basis (Q1) diff

ers a bit from N4SID – based on “correlation” between past I/O 
data and future output data, rather than minimization of the pre
diction error for the given data



Alternative

• MOESP (Verhaegen)

BACo →→Γ ,



Error Analysis



Error Types

• Bias: Error due to structural mismatch
– Bias = the error as # of data points → ∞
– Independent of # of data points collected
– Bias distribution (e.g., in the frequency domain) depends on the

input spectrum, pre-filtering of the data, etc.
– Frequency-domain bias distribution under PEM - by Ljung

• Variance: Error due to limited availability of data
– Vanishes as # of data points → ∞
– Depends on the number of parameters, the number of data poin

ts, S/N ratio, etc. but not on pre-filtering
– Asymptotic distribution (as n, N → ∞):

• Main tradeoff
– Richer structure (more parameters) → Bias↓, Variance↑
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Plant Test for 
Data Generation



Test Signals

• Very Important
– Signal-to-noise ratio → Distribution and size of the variance
– Bias distribution

• Popular Types
– Multiple steps: Power mostly in the low-frequency region→ Good e

stimation of steady-state gains (even with step disturbances) but g
enerally poor estimation of high frequency dynamics

– PRBS: Flat spectrum → Good estimation of the entire frequency re
sponse, given the error also has a flat spectrum (often not true)

– Combine steps w/ PRBS?



Multi-Input Testing (MIT) vs. 
Single Input Testing (SIT)

• MIT gives better signal-to-noise ratio for a given t
esting time

• Control-relevant data generation requires MIT
• MIT can be necessary for identification of highly i

nteractive systems (e.g., systems with large RGA)
• SIT is often preferred in practice because of the m

ore predictable effect on the on-going operation



Open-Loop vs. Closed-Loop
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Pros and Cons of Closed-Loop Testing

• Pros
– Safer, less damaging effect on the on-going operation
– Generates data that are more relevant to closed-loop c

ontrol
• Cons

– Correlation between input perturbations and disturbanc
es / noise through the feedback.

– Many algorithms can fail or give problems – They give “
bias” unless the assumed noise structure is perfect



Important Points from Analysis

• External perturbations (“dither”) are necessary.
– Perturbations due to error feedback hardly contributes to variance 

reduction (since they are correlated to the errors)

– The level of external perturbation signals also contribute to the siz
e of bias due to the feedback-induced correlation

• Specialized algorithm may be necessary to avoid bias
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Different Approaches to Model Identification 
with Closed-Loop Data
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Data Pretreatment



Main Issues (1)

• Time-consuming but very important
• Remove outliers
• Remove portions of data corresponding to u

nusual disturbances or operating conditions
• Filter the data

– Affects bias distribution (emphasize or de-emphasize 
different frequency regions)

– Does NOT improve the S/N ratio – often a misconcept
ion



Main Issues (2)

• Difference the data? 
(∆y = y(k) − y(k-1), ∆u(k) = u(k) − u(k-1))
– Removes trends (e.g., effect of step disturbances, set

point changes) that can destroy the effectiveness of m
any ID methods (e.g., subspace ID)

– Often used in practice
– Also removes the input power in the low-frequency re

gion. (PRBS → zero input power at ω = 0)

– Amplifies high-frequency parts of the data (e.g., noise
), so low-pass filtering may be necessary



Model Validation



Overview

• Use fresh data different from the data used for m
odel building

• Various methods
– Size of the prediction error
– “Whiteness” of the prediction error
– Cross correlation test (e.g., prediction error and inputs)

• Good prediction with test data but poor predictio
n with validation data
– Sign of “overfit”
– Reduce the order or use more compact structures like ARM

AX (instead of ARX)



Concluding Remarks on Linear ID

• System ID is often the most expensive and difficult par
t of model-based controller design

• Involves many decisions that affect
– Plant operation during testing
– Eventual performance of the controller

• Good theories and systematic tools are available
• System ID can also be used for constructing monitorin

g models
– Subspace identification
– Trend model, not a causal model 

→ Active testing is not needed



Deterministic Multi-Stage Optimization
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Path constraints

Terminal constraints

Model constraints

stage-wise
cost

terminal
cost

• General formulation for deterministic control and 
scheduling problems.

• Continuous and integer state / decision variables 
possible

• In control, p=∞ case is solved typically.
• Uncertainty is not explicitly addressed.



Solution Approaches

• Analytical approach: 50s-70s
– Derivation of closed form optimal policy (                      ) 

requires solution to HJB equation (hard!)
• Numerical approach: 80s-now

– Math programming (LP, QP, NLP, MILP, etc.):
• Fixed parameter case solution
• Computational limitation for large-size problem (e.g., when p= ∞).

– Parametric programming: 
• General parameter dependent solution (e.g., a lookup table)
• Significantly higher computational burden

– Practical solution:
• Resolve the problem on-line whenever parameters are updated or  

constraints are violated  (e.g., in Model Predictive Control or 
Reactive Scheduling).
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Stochastic Multi-Stage Decision Problem 
with Recourse 
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Markov sys. model

Chance constraint

• Next “holy-grail” of control: A general form for 
control, scheduling, and other real-time decision 
problems in an uncertain dynamic environment.

• No satisfactory solution approach currently available.



Limitation of Stochastic  Programming 
Approach

Simple case of  2 scenarios (↑ or↓) per stage
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• Total number of decision variables 
= (1 + S + S2 +…+ Sp-1) nu

• Number of branches to evaluate for each 
decision candidate = Sp

• Not feasible for large S (large number of 
scenarios) and/or large p (large number of 
stages)
– practically limited to two stage problems with a 

small number of scenarios.
• Current practical approach:  Evaluate 

most likely branch(es) only. BUT highly 
limited!

Stochastic Programming Approach
General case (S number of scenarios per stage)



J*(x) is a solution to Bellman Equation

Dynamic Programming (DP)

• The concept of cost-to-
go

– Represents future costs 
under (optimal) control

– Parameterizes the solution 
as a function of state x

( )∑
∞

+=

−−⇒
1

*1* )(,)(
kj

jj
kj

k xxxJ µφα

( ) ( ){ }),(),(min ** uxfJuxExJ hUu
αφ +=

∈

( ) ( ) ( ){ }*argmin , ( , )h
u

x x u J f x uµ φ= +



Value Iteration Approach to Solving DP
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Value iterationDiscretization of entire state space

Curse of D
imensionality

(State & Action Spaces)
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Approximate Dynamic Programming (ADP)

• Bellman equation needs to be solved
– Curse of dimensionality! Not suitable for high dimens. sys.

• Key idea of ADP
– To find approximate cost-to-go function

– Use simulations under known suboptimal policy to sample a very 
small “relevant” fraction of the states and initialize cost-to-go 
value table.

– Iteratively improve the policy and cost-to-go function
• Iterate over only the  sampled points in the state space
• Use interpolation to evaluate the cost-to-go values for non-

sampled points.

x∀ ∈X
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Approximation of Cost-to-Go

converged

solution

Approximate Dynamic Programming (ADP)
Approximate Value Iteration

Monte-Carlo Simulations
• Closed-loop w/ suboptimal policies 
• MPC, PI, etc.

• State and input trajectories: 
• Initial cost-to-go: 
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Iteration on the Bellman Equation

Sample Avg.

( )[ ])(~)(minarg)( x,ufJx,uExu
u

∗+== αφµ

On-line Decision

*~J1+← ii


