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Abstract (250 words) 

Clostridium is a large genus of obligate anaerobes belonging to the Firmicutes phylum of bacteria, 

most of which have a Gram-positive cell wall structure. The genus includes significant human and 

animal pathogens, causative of potentially deadly diseases such as tetanus and botulism. Despite 

their relevance and many studies suggesting that they are not a monophyletic group, the taxonomy of 

the group has largely been neglected. Currently, species belonging to the genus are placed in the 

unnatural order defined as Clostridiales, which includes the class Clostridia. Here we used genomic 

data from 779 strains to study the taxonomy and evolution of the group. This analysis allowed us to; 

(i) confirm that the group is composed of more than one genus (ii), detect major differences between 

pathogens classified as a single species within the group of authentic Clostridium spp. (sensu stricto), 

(iii) identify inconsistencies between taxonomy and toxin evolution that reflect on the pervasive 

misclassification of strains and, (iv) identify differential traits within central metabolism of members of 

what has been defined earlier and confirmed by us as cluster I. Our analysis shows that the current 

taxonomic classification of Clostridium species hinders the prediction of functions and traits, suggests 

a new classification for this fascinating class of bacteria and highlights the importance of 

phylogenomics for taxonomic studies. 
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Introduction: 

Clostridia are an important genus of Gram-positive, often anaerobic, rod shaped, spore-forming 

bacteria. The group includes important human and animal pathogens such as C. botulinum, C. tetani, 

and C. difficile as well as industrially relevant microorganisms such as C. acetobutylicum. The 

importance of the genus is reflected by the more than 42,000 entries in the Pubmed database, and 

about 1,700 genome sequences from this group deposited in the GenBank database. 

Early molecular analyses in the 1970s demonstrated considerable diversity and ambiguities among 

the genus (Johnson and Francis, 1975), In fact, this early classification of the genus Clostridium does 

not respect the identity thresholds established for 16s rRNA (Rossi-Tamisier et al, 2015), a widely 

used taxonomic marker. In consequence, this classification has been revisited several times (Collins 

et al., 1994; Yutin and Galperin, 2013; Lawson, 2016a). Currently, it is well known that there are at 

least three C. botulinum lineages and that C. difficile belongs to a distantly related genus leading to 

the recent reclassification of C. difficile as a Clostridioides difficile (Lawson et al., 2016b). However, 

the taxonomic relationships and evolutionary dynamics of the species associated with the genus 

remain largely neglected.  

The recent availability of sequenced genomes provides a new opportunity to revisit its taxonomy in 

the genomic era as opposed to taxonomic classification based on 16S rRNA sequencing. Such an 

opportunity enables a comprehensive taxonomic and evolutionary analysis to confirm that they are 

not a monophyletic group and there is a need to redefine the group taxonomically.  

In this work, we have compiled the genomes classified as “Clostridium” and “Clostridioides” in the 

GenBank database (Benson et al., 2006) to identify a set of conserved genes to be used to define 

taxonomy. Once the classification was established, we focused on what has been called “cluster I” 

species (sensu stricto) (Lawson et al., 2016a) to identify differences between the core/pan genomes 

of cluster I strains and to reveal general evolutionary trends and specific traits linked to adaptation to 

different lifestyles. 

 

Results and discussion: 

1. General Taxonomy: 

We first retrieved more than 1,700 genomes and draft genomes deposited as “Clostridium” and 

“Clostridioides” from the GenBank as of July 2017. The dataset was filtered by removing low quality 

genomes (genomes with more than 400 contigs) and by eliminating redundancy at the strain level. 

This filtering resulted in a subset of 779 genomes (Supplementary Table S1) used hereafter. We used 

the taxonomic definition of clostridial “clusters” as reference and annotated those strains with a 

species name accordingly (Rainey et al., 2006; Bowman et al., 2010; Jung et al., 2010, Liou et al., 
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2005; Sakuma et al., 2006; Shiratori et al., 2009; Slobodkina et al., 2008; Tamburini et al., 2001; 

Warren et al., 2006). 

From this subset of genomes, we identified 27 conserved protein sequences (Supplementary Table 

S2). These proteins do not represent the complete core genome of clostridia, instead, these proteins 

are a set of taxonomic markers that can confidently be used for the construction of a clostridial 

species tree (Figure 1). This tree defined 7 major clades that were consistent with the previous 

established clostridial “clusters” classification (Rainey et al., 2006). Accordingly, clusters III, IV, Xia, 

XIVa, XIVb, and XVI were distantly related to Cluster I (sensu stricto), which contains 370 strains 

including most toxin-producer pathogens and industrially relevant strains, but clearly excludes difficile 

species. Based on this analysis we defined the members of cluster I as the authentic members of the 

Clostridium genus. Furthermore, since cluster Xia has already been reclassified as Clostridioides sp. 

we propose that the remaining 5 groups represent distinct new genera.  

 

Cluster I was further divided into 17 subgroups (Table 1) using the species tree presented in Figure 1 

Our analysis also showed that strains named C. botulinum are found in subgroups 1, 5 and 8 (Table 

1). These clades include C. botulinum strains defined by their toxin types as A / B / F (subgroup 1), C 

/ D / CD (Subgroup 5) and E (subgroup 8). Clades 1 and 5 also include other species namely: C. 

sporogenes in Clade 1 and C. haemolyticum, and C. novyi in Clade 5.  

 

Comparison of the overall synteny between C. botulinum strains from Clades 1, 5 and 8 showed 

divergence among them. High synteny could be observed between C. botulinum strains from Clade 1 

and C. sporogenes as well as C. botulinum strains from Clade 5 and C. novyi, respectively 

(Supplementary Figure S15). The fact that C. sporogenes, C. novyi and C. haemolyticum species 

show little divergence with their respective C. botulinum relatives suggest that these strains are either 

artificially defined as distinct species or have just recently diverged. Together, these observations 

indicate that the strains defined as Clostridium botulinum should be split into three species found 

within groups 1, 5 and 8. C. botulinum strains in subgroups 1 and 5 may be called, C. sporogenes and 

C. haemolyticum, respectively, since these species have been previously defined, while strains within 

subgroup 8 may remain as members of the authentic C. botulinum species. However, as highlighted 

by Lawson (2016b), changing names of medically relevant organisms can cause great confusion in 

the healthcare community. As these three species produce botulinum neurotoxins, the change of 

name might be rejected under Rule 56a (5) of the International Code of Nomenclature of Prokaryotes 

(Parker, Tindall, & Garrity, 2015), which states that “names whose application is likely to lead to 

accidents endangering health or life or both” can be rejected. 
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As this analysis uses draft genomes to include as many genomes as possible, and only 27 proteins 

were conserved among these genomes, the analysis was repeated using a smaller subset of high 

quality genomes (179, N50>600 kbp) to validate our results. As such, a higher number of conserved 

proteins (79) were obtained and used (Supplementary Table S3). This new analysis (Supplementary 

Figure S16) showed that the taxonomic groups maintained the same distribution (tree topology) when 

using a dataset of 179 or 779 genomes and a matrix containing 79 or 27 protein sequences 

respectively. The same Clusters and Cluster I subgroups were observed (Supplementary Figure S16-

S29), with the exception of clades that disappeared as they did not pass the stringent genome quality 

cut off (Cluster IV and XVI, and Subgroups 9, 13, 14 and 15 in Cluster I).  

 

2. Toxin evolution: 

Pathogenic clostridia produce the highest number of life-threatening toxins of any genus. This 

includes enterotoxins that affect the gut, such as C. difficile toxins A and B, histotoxins that affect soft 

tissue such as C. perfringens and C. septicum alpha-toxins, and neurotoxins affecting nervous tissue 

such as tetanus (C. tetani) and botulinum (C. botulinum) toxins. Diseases range from gastroenteritis 

to abdominal disorders, colitis, muscle necrosis, soft tissue infections, tetanus and botulism amongst 

others (Hatheway, 1990). These toxin-encoding genes are often located on mobile genetic elements 

or in variable regions of the chromosome (Hatheway, 1990; Petit, Gibert, & Popoff, 1999; Skarin & 

Segerman, 2011), resulting in gene transfer between species. Here we analyzed different toxins 

evolution to compare taxonomy with phylogeny.  

 

The botulinum neurotoxin (BotA) for example, represents the most poisonous biological protein known 

and has been used as a phenotypic and genotypic marker for taxonomic classification. In fact, C. 

botulinum strains are often classified as members of groups A, B, C, D, E and F, in direct relationship 

with the production of antigenically distinguishable variants of the neurotoxin. In this work, homologs 

of BotA were found exclusively amongst members of Cluster I, and were distributed amongst C. 

botulinum, C. tetani, C. argentinense, C. baratii and C. butyricum species. A phylogenetic 

reconstruction of these homologs (Figure 2A) showed little divergence except for three homologs; two 

on botulinum species, and one on C. argentinense that seem to be more divergent.  

 

The topology of the BotA phylogeny agrees with previous definitions of the C. botulinum subgroups A, 

B, C, D, E, and F, with clades populated by strains with similar toxin types (i. e. Clade A has only C. 

botulinum A strains, etc.). However, toxin markers were not consistent with the species tree, for which 

C. botulinum toxins types A, B and F were in Clade I while grouping independently in the toxin tree.  
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A gene context analysis (Figure 2B) showed two major synteny groups {A, B, C, D} and {E, F}. The 

presence of toxin accessory proteins (Lam et al., 2017) was found to be the main difference between 

them, namely haemagglutinin coding genes in groups A, B, C, and D, and protein p47 in groups E 

and F. These observations are consistent with C. botulinum strains located in subgroups 1, 5 and 8 

being distinct species that acquired the toxin genes by horizontal gene transfer hindering taxonomic 

classification. 

 

The analysis of other important toxins also shows many horizontal gene transfer events of toxin genes 

between subgroups. C. difficile toxins A and B homologs were distributed amongst C. difficile, C 

sordellii, C. acetobutylicum and C novyi species (supplementary Figure S30). Homologs of C. 

perfringens alpha toxin were observed in C. perfringens, C. novyi, C. botulinum C and D, C. baratii, C. 

hemolyticum, C. cavendishii, C. argentinense, C. sordellii and C. dakarense species (supplementary 

Figure S31). Finally, C. septicum toxin alpha homologs were distributed amongst C. septicum, C. 

novyi, C. haemolyticum and C. botulinum C and D species (supplementary Figure S32). A summary 

of these findings can be found on Supplementary Table S4. Interestingly, C. botulinum C and D 

(subgroup 5) also have C. perfringens and C. septicum alpha toxins orthologs, while C. botulinum A, 

B, E and F do not. According with these observations, we suggest that toxin production should not be 

used to define taxonomic groups, as it uncouples taxonomy from phylogeny.  

 

3. Core Genome analysis  

Once the taxonomic framework was established, we used it to study the evolutionary dynamics and to 

identify general differences among the subgroups within Cluster I. For this purpose, we calculated 

core/pangenomes for each subgroup having more than 10 genomes (Table 1). This analysis (Figure 

3) showed that subgroups 3 (C. tetani), 5 (C. botulinum toxin group C and D, C. haemolyticum, and C. 

novyi), 8 (C. botulinum toxin group E) and 12 (C. perfringens) have almost closed pangenomes, 

implying loss of genetic diversity. This observation is consistent with the evolutionary dynamic 

observed in pathogenic species by other authors attributed to “Specialist” species (Georgiades and 

Raoult, 2011).  

 

In contrast, the remaining lineages showed open pangenomes. Subgroup 1, which includes important 

pathogens such as C. botulinum toxin groups A, B and F, and the closely related C. sporogenes 

strains, have open pangenomes, implying larger genetic diversity and probably more recent 

adaptation to a pathogenic life-style. These observations further emphasize the presence of three 

distinct lineages among C. botulinum strains that may be re-classified as distinct species. 
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After establishing general differences between the evolutionary dynamics of the subgroups, we took a 

closer look at differences at the functional level. For this purpose, we extracted amino acid sequences 

of the core genes of each subgroup and identified conserved functions among them (i. e. a core of 

cores) and functions that are distinctive of each subgroup (Table 1). This analysis revealed that 

Cluster I has a core of 212 genes. As expected, many of these conserved genes are associated with 

housekeeping functions such as nucleotide biosynthesis, replication and repair (Supplementary 

Figure S33). Unique genes were abundantly classified as members of carbohydrate metabolism and 

for membrane transport. Interestingly, the largest number of accessory functions were related to 

amino acid metabolism, implying that multiple genes for this category are conserved at the subgroup 

level only. This observation is illustrated by the example described in the following section. 

 

4.  Divergence of the shikimate pathway in pathogenic clostridia 

To investigate adaptive traits that could define differences within each sub group, we mined the 

pangenomes for functions that were uniquely found in each group. From a taxonomic point of view, 

unique genomic traits are important as they can be used for the development of genetic markers and 

to identify distinctive phenotypes that can be used for classification. The rationale for searching 

unique traits within subgroups was that the use of such a large genomic database would enable, for 

the first time, to find unique functions conserved in all members of a subgroup but absent in other 

subgroups, thereby enabling to dissect for subgroup specific adaptations. This was the case for the 

essential enzyme 3-phosphoshikimate 1-carboxyvinyltransferase (AroA), which was found in the 

pangenome of Cluster I. AroA is part of the shikimate pathway and is essential for the biosynthesis of 

aromatic amino acids phenylalanine, tyrosine and tryptophan. This seemed unusual given that all 

subgroup cores include AroA.  

We reasoned that the presence of AroA among the pangenome may be due to; (i) divergence among 

AroA orthologs beyond the cutoff for orthology defined in our pangenome strategy leading to 

fragmentation of the gene family, or (ii) duplication events in certain subgroups and divergence, which 

have been previously linked to adaptive evolution in bacteria (Schniete et al., 2018). To explore this 

idea, we searched for homologs of the AroA enzyme in all the strains from Cluster I and found a 

single ortholog conserved in most strains. Thus, we assumed that AroA has divergently evolved within 

the Cluster I species.  

Phylogenetic reconstruction of AroA (Figure 4A) confirmed the presence of two largely divergent AroA 

clades, one including homologs from strains in most subgroups and the other including subgroups 1, 
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3 and 11. Interestingly, most strains in this clade can colonise human hosts and are toxin producing 

pathogens, except for C. sporogenes. Inspection of the genome context of representative AroA 

homologs from different subgroups (Figure 4B) revealed that despite sequence divergence, AroA 

homologs from C. tetani, C. botulinum toxin groups A, B and F, and C. sporogenes are located within 

a gene neighborhood that includes enzymes from the shikimate pathway. Thus, the gene context 

topology indicates that the function of these enzymes is linked to the production of aromatic amino 

acids. However, the divergent AroA homologs were found associated with the pyrimidine-associated 

regulator pyrR and a uracil permease. Such genomic organisation, suggests a link between aromatic 

amino acid biosynthesis and pyrimidine utilisation. A recent in-depth molecular characterisation of the 

C. tetani toxin production fermentation showed a potential link between extracellular uracil 

concentration and toxin production (Licona-Cassani et al., 2016). However, this link is yet to be fully 

understood. 

Studies have also shown that C. sporogenes, a soil bacterium rarely pathogenic for humans (Inkster 

et al, 2011) although it may be found in the gut, and C. botulinum (Cluster I), a toxin producing 

pathogen, copiously produce tryptophan, phenylalanine and tyrosine. It has been suggested that 

secretion of these amino acids and intermediates of its degradation may influence intestinal 

permeability and systemic immunity of the host (Dodd et al., 2018). We speculate that the divergence 

in AroA may be related to the evolution of new metabolic interactions that do not affect the enzymatic 

activity of AroA, but rather its regulation in clostridial species that are able to colonise hosts. Given the 

presence of this trait in pathogen and commensal strains, we reasoned that this trait likely evolved 

prior to the acquisition of toxin genes. Following the same thought process, we suggest that C. 

botulinum subgroup 1 toxin groups A, B and F, have only recently evolved into pathogenic organisms.  

By selecting amino acid biosynthesis to illustrate the use of the new classification, we show here that 

a correlation between traits, function gain and loss cannot be extracted from the current taxonomic 

classification of Clostridium species, and they remain unchanged. Through this effort, we hope that 

our work serves to inspire the research community to study the evolution of clostridia at the genome-

scale level and suggest a new classification for this fascinating class of bacteria.  

 

Conclusions: 

Here we present an inclusive framework for phylogenomic analysis aimed at providing an updated 

view of the Clostridium genus. Our work shows that the current definition of clostridia encompasses a 

large and diverse group of species that is inconsistent with its definition as a genus. Instead, the 

group includes multiple genera. Furthermore, within group I, arguably the authentic Clostridium 
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genus, further taxonomic inconsistencies exist due to the use of BotA for taxonomic classification as a 

taxonomic marker. This has previously been observed by others (Yutin and Galperin, 2013; Lawson 

2016a; Lawson, 2016b; Weigand et al., 2015; Udaondo et al., 2017) but to the best of our knowledge, 

clostridial taxonomy and evolution has not been revisited using the opportunity offered by next 

generation sequencing for phylogenomic reclassification until now. Given the pervasiveness of the 

misclassification in clostridial species, we wonder whether the current system of classification should 

be kept, or if it should be revisited and simplified using genomic data. The recent explosion of 

available annotated genomes offers an unprecedented opportunity to answer intriguing questions 

surrounding pathogenic clostridial evolution. For example, the incredible diversity and the number of 

toxins produced by some strains is yet to be fully understood. So is the astonishing potency of some 

of the toxins produced by these pathogens, which must confer an evolutionary advantage that 

remains to be elucidated. 

  

Materials and methods: 

All genomes were downloaded from the NCBI FTP site, filtered by the number of contigs, (cutoff <= 

400) resulting in 779 genomes which were annotated in RAST (Aziz et al., 2008). The conserved 

proteins present in the selected genomes were identified using BPGA v1.3 (Chaudhari et al., 2016) 

with an identity cutoff of 0.4 for clustering of groups of orthologs using Usearch (Edgar, 2010).  

The resulting 27 groups of orthologs were aligned using Muscle v3.8 (Edgar et al., 2004) and the 

alignments were manually curated and concatenated using SeaView v4 (Gouy et al., 2010). The final 

amino acid matrix included 12,836 amino acids. The best amino acid substitution model for each of 

the 27 partitions (Supplementary Table S1) was selected using the ModelFinder tool implemented in 

IQ-tree (Kalyaanamoorthy et al., 2017) and the phylogeny was constructed using IQ-tree (Nguyen et 

al., 2015), using the partitioned models with 10,000 bootstrap replicates.  

Pangenome analysis of Cluster I subgroups was performed using BPGA following the same approach 

described above. Homologs of BotA and AroA were mined and retrieved from the database using 

BlastP (Altschul et al., 1990) with an e-value cutoff of 1E-9 and bit score of 200. Phylogenetic trees for 

clostridial toxins and AroA were obtained using the same approach. Synteny analysis was performed 

using CORASON-BGC (Cruz-Morales et al., 2017) with an e-value cutoff of 1E-9 and a bit score of 

200. 

The full non-collapsed aroA and species trees are available as Supplementary Tree 1 deposited at 

TreeBASE (Vos et al, 2012): http://purl.org/phylo/treebase/phylows/study/TB2:S23279  
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Figure legends: 

Figure 1. Phylogenetic reconstruction of Clostridium species. This phylogeny was constructed 
using 27 markers conserved across 779 genomes (Supplementary Table S1) deposited in the 
GenBank database and taxonomically defined as Clostridium. The main clades outside and within 
(370 taxa) the sensu stricto group (real clostridia) have been collapsed and defined as 17 taxonomic 
subgroups (Table 1). Branch support is shown at each node. Uncollapsed clades for subgroups 1-17 
are shown in Supplementary Figures S1-S14. 

Figure 2. A. Phylogenetic reconstruction of BotA toxin proteins. Six A-F clades are consistent 
with previous reports. Including non-botulinum strains, argentinense, tetani, butyricum and baratti 
(marked with a dot). Three new sequences (in black) account for new unclassified toxin diversity. B. 
Genome context of BotA homologs found in Cluster I strains.  

Figure 3. Pangenome analysis of selected subgroups. The Y axis shows the number of gene 
families and the X axis shows the number of genomes analysed. The number of conserved genes 
was calculated by randomly adding genomes, with 20 replicates (if n>20) or the same numbers as 
genomes (if n<20). This analysis shows large differences in the genetic diversity of the subgroups, 
with less diversity and almost closed pangenomes in pathogenic sub groups.  

Figure 4. Phylogenomic analysis of AroA in Clostridium Group I. A The phylogeny shows that 
AroA, has significantly diverged in all members of the subgroup 3 (C. tetani; clear blue), subgroup 6 
(C. argentinense; yellow) and subgroup 1 (C. sporogenes - C. botulinum B; red) from the rest of the 
subgroups in Cluster I (black). The full tree is provided as Supplementary Tree 2. B. Genome 
context of AroA homologs. C. autoethanogenum is shown as a typical Group I AroA genome 
context while divergent homologs show a genome context that includes enzymes from pyrimidine 
metabolism. 
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Table 1. Subgroup Core genome analysis   

    Core of cores 

Subgroup 

Number 
of 

strains 

Species 

Proteins in 
Subgrocore 

Proteins 
in core 

Accessory 
proteins 

Unique 
proteins 

1 106 botulinum A, B, F, sporogenes 890 212 673 2 

2 21 

autoethanogenum, 
carboxidivorans, coskatii, 

drakei, kluyveri, 
ljungdahlii,magnum, ragsdalei, 
scatologenes, tyrobutyricum 

1071 212 755 99 

3 10 tetani 2214 212 1115 877 

4 16 
acetobutylicum, akagii, arbusti, 

aurantibutyricum, felsineum, 
pasteurianum, roseum 

1063 212 752 96 

5 42 
botulinum C & D, haemolyticum, 

novyi 1367 212 824 324 

6 11 

argentinense, collagenovorans, 
estertheticum, proteolyticum, 
senegalense, sulfidigenes, 
tepidiprofundi, tunisiense 

462 212 245 4 

7 48 
beijerinckii, butyricum, 

puniceum, saccharobutylicum, 
saccharoperbutylacetonicum 

1319 212 925 178 

8 20 botulinum E 994 212 769 10 
9 4 paraputrificum 2704 212 1452 1021 

10 8 baratii, colicanis 1350 212 1037 94 

11 15 
chauvoei, disporicum, 

sartagoforme, saudiense, 
septicum 

1028 212 779 32 

12 55 perfringens 2044 212 1276 547 
13 3 ventriculi 2040 212 1091 732 
14 2 Spp. 1505 212 1043 242 
15 1 fallax 2415 212 1336 854 
16 3 cavendishii, intestinale 1500 212 1104 178 

17 5 
algidicarnis, cadaveris, 

hydrogeniformans 992 212 719 58 
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Clostridium tetani A

3-dehydroquinate synthase
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