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Abstract 

 

In this paper we propose a scheduling model for electrical appliances in a dynamic pricing 

environment. Initially we have given a vector of price points for the next twenty four hours. 

We have developed an optimization model that minimizes cost to customer subject to 

operating time spans provided by the customer as per their requirements. The model is further 

modified to derive prices based on the consumption of electricity at the concerned time slot. 

We have also studied the effects of including energy storage and renewable energy 

generation at the consumer level. In this case we propose a linear price function that helps in 

automatically generating a price value for a time slot. 
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Introduction 

The electricity industry is facing an increase in demand as well as a remarkable technological 

development. However the supply of electricity is not increasing at the same pace as that of 

the demand. Demand management has thus become the need of the day. Dynamic pricing can 

be a good tool for demand management but due to regulated nature of the electricity market 

in most places, consumers face flat tariffs. This pricy policy leads to consumption of 

electricity by users in a way that leads to high aggregate demand at peak periods straining the 

capacities and low aggregate demand at off-peak periods leading to inefficiencies of 

generation. The problem of this demand supply mismatch can be handled by dynamic pricing 

and the use of automation in the scheduling of operation of the household appliances. 

Dynamic pricing in the form of different prices in different times of the day can influence 

customer behavior to consume more at low prices and less at higher prices. The time span of 

a day (24 hours) can be considered as a cycle for the load curve. The rescheduling of the use 

of electrical appliances from peak to off-peak hours eventually flattens the load profile.  

The scheduling of the appliances needs a proper logic so as to operate the appliances in a way 

such that the expenses for electricity consumption get minimized. This scheduling process is 

however difficult to be done manually, especially when there are many appliances in the list 

and the price changes are frequent. In this context, it can be noted that the demand response 

can be done better with more number of price points in a day, i.e. having 48 numbers of time 

slots or price points, each of 0.5 hours duration, provides better demand control opportunity 

than 24 numbers of time slots or price points, each of 1 hour duration. When the number of 

price points increase further, it will be practically impossible for manually scheduling the 

jobs in the optimized way. Supporting technology in the form of smart meters and automatic 

schedulers will need to be included in the system to incorporate superior computing power 

that the model demands. 

The use of dynamic pricing in electricity has been done in many places; however, the large 

scale utilization of the concept is still to be done. The use of dynamic pricing is generally 

done in the form of bulk pricing or time of the day pricing. In these cases the prices vary 

based on bulk consumption or prices at the various time slots are anticipated beforehand by 

the supplier by relying on consumption trends and related statistics. Thus these price points 

are known beforehand and allow the customer to schedule their jobs with price information 

available sufficiently ahead of time. The demand response can be further fine-tuned by 
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incorporating real time pricing (RTP) in the system. The use of RTP will require faster 

computing and data transmitting technologies to operate the automated scheduler. In such a 

case the price provided at any time slot can be calculated as a predefined function of the 

demand at that time slot.  

The provision of similar price variations to all consumers at the same time may however lead 

to a peaked load profile instead of a flat one. This can be due to the automated scheduling of 

maximum consumption in each household during the low priced time slots. In such a case, 

the efficiency of a scheduling model for a single home can help in minimized costs for the 

household but will lead to another demand supply mismatch problem. This problem can be 

solved by including each and every consumer or household in the scheduling model. Such a 

model can take care of the limiting conditions for the supplier. This problem can also be 

addressed by offering different prices to different customers at the same time so that their 

optimization goals become different. Customized pricing can be useful in this case. 

This paper consists of a short literature review on scheduling of household electrical 

appliances and related issues like battery charging and discharging to enhance comfort level 

in the scheduling process. The research gap is identified and the importance of the problem is 

explained. The following section describes the model and expresses its formulation in 

mathematical notations. This model is tried and tested with the help of AMPL modeling 

language and the statistics of the model are provided. The scope of further work is mentioned 

at the end of the paper. 

Literature Review  

(Chen et al., 2013) use linear programming to obtain a deterministic scheduling solution and 

use an energy consumption adaptation variable to account for uncertainties. They used the 

day-ahead pricing data of Ameren Illinois Power Corporation as the input to their model and 

two sets of solar photovoltaic module of Kyocera Solar Incorporation as the solar energy 

source for the model. Their model achieves between 41% and 24% reduction of expenditure 

over traditional deterministic schemes and provides a schedule within 10 seconds.  (Agnetis 

et al., 2013) identify various types of appliances with varying load types like shiftable, 

thermal, interruptible, and non-manageable and then schedule their operations.  The authors 

use a Mixed Integer Linear Programming (MILP) model and a heuristic algorithm to solve 



 
 
 

  

 

 

 Research and Publications 

W. P.  No.  2016-11-01 Page No. 5 

the NP-hard problem. The objective functions are cost minimization and comfort 

maximization through scheduling preferences and climatic control. (Wang et al., 2013) 

present a novel Traversal and Pruning algorithm to schedule thermostatically controlled 

household loads to optimize an objective considering both expenditure and comfort. This 

algorithm has optimality, robustness, flexibility and speed. The authors propose that this 

algorithm can be useful in designing any automated energy management system. 

(Hubert & Grijalva, 2012) incorporate electricity storage provisions in the scheduling 

problem by classifying loads as energy storage system, non-interruptible loads, and 

thermodynamic loads. They use MILP for robust optimized consumption scheduling to 

minimize the impact of stochastic inputs on the objective function. The objective function 

integrates electric, thermodynamic, economic, comfort, and environmental parameters. 

(Mishra et al., 2013) observe that greedy charging algorithms when used at large scales shifts 

the peaks causing grid instability. They present a storage adoption cycle incentivizing the use 

of energy storage at large scales with variable rates and peak demand surcharge. They show 

that consumers can flatten their demand by 18% of the minimum optimal capacity to flatten 

grid demand of a centralized system. 

(Liu et al., 2012) emphasize the maximum use of renewable resources in a load scheduling 

problem. Their model depends on weather forecasts. They classify appliances based on type 

of energy consumption and assign dynamic priority in the scheduling process. (Dupont et al., 

2012) state that the renewable energy tariff scheme can be used to increase renewable energy 

consumption during periods of high renewable energy generation. They use integer linear 

programming to optimize this scheduling problem taking into account customer preferences. 

This paper also emphasizes the use of automation in households for consumption scheduling 

over the year. (Hu et al., 2010) incorporate both active and reactive power demand and 

generation in the scheduling problem. The authors use a non-linear load optimization method 

in a real-time pricing environment. The scheduling of consumption is studied for three 

customer groups – industrial, commercial, and residential, and for three load periods – peak 

load, flat load, and off-peak load periods. 

Scheduling in individual homes must be linked to the aggregate demand situation. Thus it is 

necessary to model the individual household scheduling incorporating the aggregate demand. 

(Kishore & Snyder, 2010) point out that shifting the load from peak hours to off-peak hours 
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in each household by means of a same price signal can shift the aggregate peak to the 

previously off-peak zone. Thus the authors optimize electricity consumption within a home 

and across multiple homes. The in-home scheduling model attaches the probabilities of start 

and stop of operation of any appliance in the next time period. It also considers a cost for 

delay of start of operation. The model minimizes the total cost of electricity in a deterministic 

dynamic pricing environment. In the neighborhood-level scheduling model, the authors 

assume a well communicated neighborhood where each household has a minimum 

guaranteed load at each time slot. The neighborhood however has a maximum limit of energy 

at each time slot. The idea is to distribute this available power to all households thereby 

minimizing total costs. A second delay cost is associated in the model to address the delay of 

starting an appliance after the specified maximum delay time. (Luh et al., 1982) present a 

‘load adaptive pricing’ philosophy formulated as a closed-loop Stackelberg game. The 

authors demonstrate that a team optimum can be achieved by the proposed approach since the 

utility company can induce a cooperative behaviour from the customer.  

(Li et al., 2011) align individual optimality with social optimality by means of a distributed 

algorithm. Each customer has a utility function and provisions for energy storage. This allows 

them to forecast their total individual demand for a future time after maximizing their 

individual benefit. The utility company collects these forecasts from all households and 

generates a price based on its cost function. This price is then published and the individual 

households reschedule their consumption. After several iterations, the consumption schedule 

of each household and the price offered by the utility gets fixed. (Cui et al., 2012) describe 

how scheduling of household loads helps electricity suppliers to maximize their profits and 

the global controller to maximize social welfare. The authors use greedy algorithm for the 

first model with pre-announced dynamic tariffs. They also devise a model for the utilities 

based on consumers’ schedules. Table 6 shows the different scheduling methods used in the 

referenced literature. 

The scheduling of operation of each appliance can be done by defining various states of the 

operation for the appliance, like appliance not operating (either not started operation or ended 

operation), appliance ready to operate and appliance operating (Chapman et.al., 2013). The 

concept of joint state action, where one appliance operates before another appliance, is 

explained in the residential demand response approach following realistic assumptions in the 

paper. (Goudarzi et. al., 2011) propose pricing policies in two different scenarios to help 
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facilities schedule their electricity consumption. They work with a TOU-dependent energy 

pricing function and a TOU and total power consumption dependent energy pricing function. 

They use heuristics to efficiently minimize the consumer’s electricity expenditure and 

demonstrate demand shaping ability of the methods. (Zhou et al., 2014) develops an 

appliance scheduling model to use the uncertain photovoltaic energy generated in-house in a 

time varying dynamic pricing environment. (Dlamini and Cromieres, 2012) provide load 

shifting algorithms for flattening the load profile of households. They describe the flattening 

in terms of load-leveling effect and peak-load ratio.  

Research Gap  

Models for electrical appliance scheduling in a household with real time pricing options can 

be developed. It is possible to use different types of pricing schemes or demand management 

approaches in such optimization models. These demand management aspects may contain 

variable prices, rebates and consumption limit controls. Some research have been done in 

shifting the electrical load of individual household from high priced time to low priced time. 

But this merely shifts the peak load on the aggregate basis to the low priced periods. Thus 

each customer must be charged in a way so that their individual load curve flattens. This will 

lead to flattening of the aggregate load curve. Such aspects of household electricity appliance 

scheduling have not been studied extensively. Different price functions leading to customized 

prices in the retail electricity sector can be studied to check their applicability as effective 

revenue management options. Opportunities lie in the practical application of such models in 

the Indian context or in other developing nations. 

Importance of the present Problem 

The load profile of electricity needs to be flattened so as to avoid black outs and brown outs 

at some areas during peak hours and underutilization of generating facilities leading to lower 

efficiency levels during off-peak hours. Implementation of dynamic pricing in retail 

electricity for the residential sector can prove to be an important demand side management 

tool. The varying nature of pricing can induce a variance in the consumption pattern 

according to economic laws, i.e. to reduce demand during peak hours, price needs to be 

increased and to increase demand during off-peak hours, price needs to be reduced. 

Consumers can be stimulated to shift their electricity consumption from higher tariff periods 
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to lower tariff periods. This shift will help to maintain or even reduce their individual 

electricity expenditure and in turn, on an aggregate level, will help the market experience a 

flatter demand profile. The consumers will normally not have the incentive to reduce their 

electricity consumption unless there is marked cost differences associated with the shifting of 

their electricity consumption to periods other than their primary preferences. Manually 

scheduling the operation of appliances is a tedious job and will be almost impossible for any 

consumer. So a scheduling algorithm is required supported by suitable supporting technology 

to execute the scheduling job every day. Therefore, the successful implementation of demand 

side management in electricity will require such scheduling algorithms to automate the 

optimization of expenses by scheduling of appliances. At the same time such algorithm must 

address the comfort needs of the individual households as far as possible. The flattening of 

the load profile is specifically important in developing and underdeveloped countries to slow 

down the requirement of capacity addition in power sector. 

Assumptions of the Model 

The following are the assumptions in the models: 

1. There are ninety-six time slots each of fifteen minutes duration. All operations are at 

least one time slot long. Thus any appliance/battery must start operation at the 

beginning of a time slot and stop at the end of a time slot. 

2. Power consumed by each appliance and battery and power discharged by battery is at 

a constant rate. If any appliance has different consumption rates within its operation, 

we will denote those different phases of operation as different appliances. 

3. A battery can either charge or discharge or loose a leakage power at any time slot at 

constant rates and have constant efficiencies irrespective of the power stored in the 

battery at that time.  

4. The whole amount of renewable energy generated at a time slot can either be 

consumed in-house or sold to the grid. There is no part use and part sell. 
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Mathematical Representation of the Model 

The mathematical representation for the optimization model for scheduling of in-house 

electric appliances in a dynamic pricing environment is as follows: 

Indices: 

t= Index for time slots 

a= Index for appliances 

b= Index for battery banks 

 

Sets: 

T= Set of time slots indexed by t=1, 2, …, 96.   

A= Set of appliances indexed by a=1, 2,…,Amax ; Amax is the maximum number of appliances 

that the user sets for scheduling in the said time horizon. 

B= Set of battery banks indexed by b=1,2,…,Bmax   

 

Variables: 

Ita =Binary scheduling variable denoting which appliance, ‘a’, works in which time slot, ‘t’.  

Ita = 1, if appliance ‘a’ operates at time slot ‘t’. 

     = 0, if appliance ‘a’ does not operate at time slot ‘t’. 

The nature of values of Ita are tabulated below.  

State of operation of appliance ‘a’ at time slot ‘t’ Ita 

Appliance ‘a’ not yet started at time slot ‘t’ 0 

Appliance ‘a’ in operation at time slot ‘t’ 1 

Appliance ‘a’ stopped at time slot ‘t’ after completion of operation 0 

 

J1tb = Binary variable that indicates the time slots for the charging of the battery bank ‘b’. 

  J1tb = 1, if battery bank ‘b’ is getting charged at time ‘t’ 

         = 0, if battery bank ‘b’ is not getting charged at time ‘t’ 

J2tb = Binary variable that indicates the time slots for the discharging of the battery bank ‘b’. 

J2tb = 1, if battery bank ‘b’ is discharging to supply to the in-house power 

demand at time ‘t’ and thus substituting grid power consumption 

       = 0, if battery bank ‘b’ is not discharging to the in-house power demand at 

time ‘t’ 
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The nature of values of J1tb and J2tb are tabulated below.  

State of operation of battery ‘b’ at time slot ‘t’ J1tb J2tb 

Battery ‘b’ is charging from the grid at time slot ‘t’ 1 0 

Energy is consumed from battery ‘b’ by appliances at time slot ‘t’ 0 1 

Battery ‘b’ is idle at time slot ‘t’ (energy leakage) 0 0 

 

Kt = Binary variable that indicates the time slots for using renewable energy from in-house 

renewable energy generator for satisfying part of home energy demand. 

Kt = 1, if renewable energy generated is used for the home power requirement 

at time ‘t’ 

= 0, if renewable energy generated is sold to the energy market at time ‘t’ 

The nature of values of Kt is tabulated below.  

Action on the renewable energy generated (rgt) at time slot ‘t’ Kt 

The whole energy generated (rgt) at time slot ‘t’ is used in the home 1 

The whole energy generated (rgt) at time slot ‘t’ is sold to the grid 0 

 

sa = The time slot at which appliance ‘a’ actually starts operation  

pt  = Price/unit of electrical energy at time t (>=0) 

p1t = Component of price of electrical energy at time ‘t’ related to consumption of the 

individual household concerned (>=0) 

p2t = Component of price of electrical energy at time ‘t’ related to overall consumption level 

in the electricity grid (>=0) 

Et = Net electrical power consumed from the grid at time ‘t’  

E1t = The electrical power consumed by only the appliances of the home at time ‘t’ 

E2t = The net electrical power consumed by appliances and including charging or discharging 

of battery at time ‘t’  

wtb = The energy stored in a battery bank ‘b’ at time ‘t’ 

ap = The average value of prices over all time slots 

  

 

 

 

 



 
 
 

  

 

 

 Research and Publications 

W. P.  No.  2016-11-01 Page No. 11 

Parameters: 

Ct = Limit on consumption from grid at time ‘t’ (>=0)  

Ta = Number of time slots needed to operate appliance ‘a’ (>=0, <=96)  

ea = Earliest time slot at which appliance ‘a’ can start (>=0, <=96)  

la = Latest time slot by which appliance ‘a’ can stop (>=1, <=96)  

rpa = Rated power consumption of appliance ‘a’ (>=0)  

Dt = Forecasted aggregate demand in the grid at time slot ‘t’ 

Mi = Rate of change of price component p1t with respect to in-house consumption Et. Here ‘i’ 

represent the i th consumption slab. 

N = Rate of change of price component p2t with respect to change in aggregate demand Dt. 

Wb = Energy storage capacity of the battery bank ‘b’  

wob = Energy stored in the battery bank ‘b’ at the beginning of the time horizon 

chb = Amount of power charged in battery ‘b’ in one time slot. 

dchb = Amount of power discharged from battery ‘b’ in one time slot for in-house 

consumption 

dchmb = Amount of power discharged from battery ‘b’ as a leakage if it is not used in a time 

slot. 

prt = The price/unit of renewable energy in the electricity market at time slot’t’ 

rgt = The forecasted power generated by in-house renewable energy source at time slot ‘t’ 

d = The duration of one time slot in hours 

f1b = A fraction of the battery storage capacity used to represent triggering of battery 

charging  

f2b = A fraction of the battery storage capacity used to represent triggering of battery 

discharging  

efb = Overall efficiency of the battery ‘b’ 
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Objective Function: 

The objective of the problem is to minimize the total expenditure on electricity over a period 

of twenty-four hours by scheduling the operation of the in-house electrical appliances, the 

charging and discharging of batteries and the consumption or sell of renewable energy 

generated in-house within a dynamic pricing setup. This in turn flattens the in-house load 

curve as far as possible. The objective is given as follows: 

Minimize  

))1((

)21(









t

ttttt

b

tbb

b

tbb

a

taa

t

t

prKpKdrg

JdchJchIrpdpz

 

………………………………………..…….. (1) 

The power consumption by all the appliances in a time slot ‘t’ is given by 


a

taat IrpE1

  …………………….………….. (2) 

Power consumption E2t at time slot ‘t’ gives the net power consumed including appliances 

and the battery charging or discharging. This is given by  

 
b

tbb

b

tbbtt JdchJchEE 2112

…….…….. (3) 

Net power consumption Et at time slot ‘t’ includes the appliance, battery charging or 

discharging and renewable energy consumption. The is given by  

 tttt rgKEE  2
……………………………... (4) 

Constraints: 

The following constraints can be applied while optimizing the objective function. 

1) Earliest start constraint: An appliance should not start before its user-selected earliest start 

time and hence the actual start time should be equal or greater than the earliest start time. 

sa ≥ ea                               ;  aϵA        ……………….. (5) 

2) Latest end constraint: An appliance should not operate after its user-selected latest end 

time and hence the sum of actual start time and the time of operation of the appliance 
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should not be more than one plus the latest end time. The one is to eliminate the second 

time counting of the time slot denoted by sa which can be included in Ta . 

sa + Ta -1≤ la                  ;  aϵA      ……………..… (6) 

3) Maximum power limit constraint: The net electrical power consumed in any time slot tϵT 

must be equal or less than the in-house consumption limit at that time slot tϵT. 

                                  ;  tϵT         ………..……… (7) 

4) Total operating time constraint: The sum of all Ita for any appliance aϵA over all the time 

slots of T will be equal to the total operation time for that appliance. 

 
t

ata TI         ;   aϵA       ………………. (8) 

5) Constraints on binary appliance scheduling variables: The binary variable I must have a 

value of 1 only during those time slots when the appliance is running, i.e. from (sa) to 

(sa+Ta-1). 

If  sa ≤ t ≤ sa+Ta - 1,  

then  I[t,a] = 1,    else  I[t,a] = 0    ;  aϵA, tϵT   ………………  (9) 

6) Appliance sequencing constraint: The sequencing of any two appliances can be done. For 

example, an appliance a1 has to be started only when another appliance a2 has completed 

its operation. Then we can mathematically express it as follows. 

                        ;   a1, a2ϵA ……….. (10) 

Different appliances or different phases of the same appliance can be sequenced in an 

order by this constraint. 

7) The values of parameters used for deciding the value of J1tb and J2tb can vary according 

to the requirements of the user. These are as follows: 

a) J1tb is one when the battery bank ‘b’ is charging at time t. The charging can occur 

only if the battery power at that time is less than a certain fraction (f1b) of battery 

storage capacity and either the energy price is less than the average price over all time 

slots or the renewable energy generated is more than the power required to charge the 

battery. 

If (         )  AND   (     )      (       )  
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then  J1tb=1,             else J1tb=0          ;   bϵB, tϵT        …..…. (11) 

When t=1, wtb = wob. 

b) J2tb is one when the battery bank ‘b’ is discharging to the in-house consumption at 

time t. The discharging occurs only if the battery power at that time is more than a 

certain fraction (f2b) of battery storage capacity and the energy price is more than the 

average price over all time slots. 

If  (         )        (     ) 

then  J2tb=1,               else J2tb=0          ;   bϵB, tϵT     ……… (12) 

8) Price constraint: In this model, the unit price of electricity at time ‘t’ is generated based 

on the in-house consumption as well as the aggregate demand in the grid at time ‘t’. As 

the consumption of electricity in a time slot increases, the price per unit of electricity also 

increases and vice versa. This acts as a control measure on the amount of consumption.  

a) The price component p1t is represented as a piecewise linear function of in-house 

electricity consumption.  

                              ;   tϵT  ……..………. (13) 

Each linear piece in the function is represented by ‘i’ and the values of Mi and consi 

depend on the consumption slab ‘i’ within which the value of the associated Et falls.  

b) The price component p2t is represented as a linear function of aggregate demand. 

                 ;  tϵT        ....................... (14) 

c) The net price of electricity per unit is given by the sum of these two components. 

                   ;  tϵT         ....................... (15) 

9) Battery capacity constraint: The power content of the battery at any point of time must be 

less than its total power storage capacity. 

                ;  tϵT, bϵB    ..…………. (16) 

10) Battery energy level constraint: The power content of the battery at any time slot is given 

by the sum of power content at the beginning of the time horizon and charged power 

minus the discharged power for all previous time slots. 
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        ∑   

 

   

         ∑     

 

   

    

 ∑     

 

   

 (           ) 

;  tϵT, bϵB      ………… (17) 

Here we consider battery efficiency efb that is constant irrespective of the charge stored in 

the battery. 

11) Constraints on binary variable renewable energy use: The renewable energy at time ‘t’ is 

to be used for consumption at home only when the amount of renewable power generated 

is less than the power consumption by the appliance and battery at time ‘t’ and the price 

at that time is more than the market price of renewable energy at time ‘t’. 

If (      ) AND (       )  

then       ,           else             ;   tϵT        …………..(18) 

Implementation of the model 

The models were implemented in AMPL (A Mathematical Programing Language) with 

CPLEX solver. We used feasibility pump heuristic approach in CPLEX to solve this model. 

The system was run in Windows 8 operating system and has taken around a couple of 

seconds to provide an optimal solution.  
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Experiments  

The model is developed in five versions and each version is tested to compare their 

effectiveness. The differences in the versions are listed below. 

 

The results of the experiments are shown below.  

Model Speciality Assumed Values

Version 1 Flat prices are offered to the consumers. Thus price 

per unit of electrical energy remains fixed 

irrespective of the grid demand and the 

consumption by the concerned consumer.

We have assumed Rs 4 per unit (Kwh) 

of electrical energy as flat rate. 

Version 2 A fixed component of per unit price is offered and a 

dynamic component of price is administered based 

on grid demand. The more the grid demand, the 

more is the value of the dynamic component. This 

dynamic component adds over and above the fixed 

component to give the total price per unit of 

electricity.  

We have assumed the fixed 

component as Rs 3.5/Kwh and the 

dynamic price can vary from 0 to Rs 

1/Kwh.

Version 3 There are two components of per unit price. One 

component is based on the grid demand and the 

other is based on the consumption of the 

concerned consumer. Both the components are 

dynamic in nature and price increases with increase 

in demand or consumption. The two components 

are added to get the net price per unit.

We have assumed the first price 

component to vary from 0 to Rs 

8.5/Kwh in a piecewise linear 

function based on consumption of 

the concerned consumer (4 KWh 

maximum line capacity). The price 

component for grid demand can vary 

from 0 to Rs 1/Kwh.

Version 4 Maintaining the pricing scheme in version 3, we 

assume the use of an energy storage like battery. 

The battery charges from the grid when the net 

price is low and discharges when the net price is 

high. Hence it is expected to reduce consumer's 

electricity expenditure.

We have assumed the same pricing 

scheme as in version 3. We have also 

assumed a battery of capacity 4 Kw 

connected to the consumer's electric 

line such that in every time slot it 

either charges at 0.25 Kw/15 mins, or 

discharges at 0.5 Kw/15 mins or 

discharges a leakage power of 0.001 

Kw/15 mins if not in use.

Version 5 Maintaining the situation in version 4 we introduce 

a renewable energy generator like solar panel or 

rooftop wind generator. The system is suppose to 

either utilize renewable energy generated at any 

time slot for in-house consumption or sell the same 

at Rs 2/Kwh. The ultimate objective is the minimize 

expenditure.

We have assumed a renewable 

energy generator that can generate 

at the most 2 Kw of power at any 

time slot of 15 minutes.
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The total power consumed from the grid and the total expenditure incurred by the customer 

over twenty-four hours in the different versions is listed below. 

 

  

Version 5 Version 4 Version 3 Version 2 Version 1

Expenditure of customers (Rs) 48.53234085 81.62359996 87.87945622 103.8407035 109.24

Total power consumed by
customer (kw)

103.04 110.49 109.24 109.24 109.24
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The Versions of the Model 

Fig 1: The power consumed in 24 hours and the 
expenditure incured by the customer 
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The approximate computational time (varies due to the use of heuristics) by the different 

models is plotted in the figure below. 
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Fig. 2: Time taken for execution of the versions of 
the model (sec) 

Version 5 Version 4 Version 3 Version 2 Version 1

price/time 1.9632 2.11283 2.12288 3.81715 4

price/unit 1.884019443 2.954967869 3.217849001 3.80229599 4
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Fig. 3: The per unit price in the versions 
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Results and Interpretations/Managerial Insights 

The experiments highlight a number of inferences. The model is a Mixed Integer Linear 

Programming problem with high level of computational complexity. We have used the 

feasibility pump heuristics option of cplex to speed up the execution time. With the increase 

of the number of schedulable appliances or the increase of the time window of operation of 

the appliances, the model will become harder to solve. 

The complexity of the model versions increase from version 1 to version 5. The addition of 

battery and renewable energy in the system increases the operation time significantly as can 

be seen in the plot of time of execution. 

The expenditure incurred by the customer decreases with the advancement of the versions. 

The flat rate scheme offers a much higher expenditure than the dynamic versions. The 

consumption from grid slightly increases with the use of battery and decreases with the use of 

renewable energy. The price per unit of electricity also decreases with the inclusion of 
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dynamic components in price and the addition of battery and renewable in the system. The 

results show that from the consumer’s point of view, dynamic pricing which is dependent on 

grid demand and individual consumption is better than dynamic pricing that is dependent on 

grid demand alone which is in turn is better than flat pricing. The use of battery and 

renewable energy generation at home helps the consumer to further lower his/her electricity 

bill and flatten the individual load curve. 

Conclusion and Extension 

The model can be used for a broader range of situations including different price functions. 

This can help in developing the model for real time pricing and make it more realistic. 

Several consumer comfort issues and welfare issues can also be incorporated in the model to 

improve its applicability and realistic nature. The price function can be considered to be 

exponential or of any other form that matches most with reality. Different houses can be 

connected in the model to integrate the individual home appliance scheduler with other 

homes connected to a grid or microgrid. 
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