(5.4) Multiple-Angle Identities

Objective: To learn the <u>Double-Angle Identities</u>, <u>Power-Reducing</u> <u>Identities</u>, and <u>Half-Angle Identies</u>.

Why: These identities will be used in calculus.

Obj: To learn the <u>Double-Angle Identities</u>, <u>Power-Reducing</u>
<u>Identities</u>, and <u>Half-Angle Identies</u>.

Double Angle Formulas

$$\sin 2u = 2 \sin u \cos u$$

$$\begin{vmatrix} \cos 2u \\ = \\ \cos u - \sin u \\ = \\ 2\cos u - 1 \\ = \\ 1 - 2\sin u \end{vmatrix}$$

$$tan 2u = 2 tan u$$
1 - tan u

Obj: To learn the Double-Angle Identities, Power-Reducing

3. Find all solutions in the interval $[0, 2\pi)$

$$2\cos x + \sin 2x = 0$$

Obj: To learn the Double-Angle Identities, Power-Reducing addentities, and Half-Angle Identities.

4. cos 2x = sin x

Prove the identity.

$$\sin 3x = (\sin x)(3 - 4\sin^2 x)$$

Power-Reducing Formulas

Obj: To learn the <u>Double-Angle Identities</u>, <u>Power-Reducing</u>
<u>Identities</u>, and <u>Half-Angle Identies</u>.

$$\sin^2 u = \frac{1 - \cos 2u}{2}$$

$$\cos^2 u = \frac{1 + \cos 2u}{2}$$

$$tan^2u = \frac{1 - \cos 2u}{1 + \cos 2u}$$

* Proof involves taking the double angle identities and solving for sin²u or cos²u.

ex. $\cos 2u = 1 - 2\sin^2 u$

Obj: To learn the <mark>Double-Angle Identit</mark> ies, <mark>Power-Reduc</mark> <u>Identities</u> , and Half-Angle Identie s.	cing
Rewrite in terms of trigonometric functions with no power greater than 1.	
cos ⁴ x	

Obj: To learn the **Double-Angle Identities**, **Power-Reducing Ingle Identies**.

Half-Angle Identities

$$\sin\frac{u}{2} = \pm\sqrt{\frac{1-\cos u}{2}}$$

$$\cos\frac{u}{2} = \pm\sqrt{\frac{1+\cos u}{2}}$$

$$\tan\frac{u}{2} = \begin{cases} \pm\sqrt{\frac{1-\cos u}{1+\cos u}} \\ \frac{1-\cos u}{\sin u} \\ \frac{\sin u}{1+\cos u} \end{cases}$$

Obj: To learn the <mark>Double-Angle Identit</mark> ies, <u>Power-Reducing</u> <u>Identities</u> , and Half-Angle Identies .
Using the Half-Angle Identites, give the exact value of sin 105°.

Obj: To learn the Double-Angle Identities, Power-Reducing Identities, and Half-Angle Ide

Find all solutions in the interval $[0, 2\pi)$

$$\sin^2 x = \cos^2 \left(\frac{x}{2}\right)$$

$$\frac{2}{1}\left[\frac{1-\cos 2x}{2}\right] = \frac{1+\cos x}{2}$$

$$1 - (262X = 1 + 605X)$$

 $1 - (265X - 1) = 1 + 605X$

$$2-2\cos^2\chi = 1+\cos\chi$$

$$-1 - (05 \times -1 - (05$$

$$-2\cos^2x-\cos x+1=0$$

$$2\cos^2\chi + \cos\chi - 1 = 0$$

$$(2\cos x - 1)(\cos x + 1) = 0$$

$$CosX = \frac{1}{2}$$

$$CosX = -1$$

HW: (HR) (5.4) Pg.432: 5, 7, (2) 15, 19, 23, 39 dentities, and Half-An When Cosk = D Sin 2x - tanx = 0 $\cos x \left[2 \sin x \cos x - \frac{\sin x}{\cos x} \right] = 0$ 2 SINX COSX - SINX = D Sinx (2005x -1) =0 SINX = 0 Or 2603 X-1=0 √ (05 X = # (OSX = 8/2 X=O,T $Sin(S) = Sin(\frac{30}{2}) = \sqrt{\frac{1-co(0)}{2}} = \sqrt{\frac{1$ $= \sqrt{\frac{2-13}{3} \cdot \frac{1}{2}} = \sqrt{\frac{2-13}{4}} = \sqrt{\frac{2-13}{2}}$ Sin (45-30) $\sin 4x = 2\sin 2x \cos 2x$ Sin (2x+2x) = Sindx cosax + cosax sinax -25in 2x Los 2x =