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The exposition here follows the lecture delivered at the summer school, and hence, contains neither
precision, breadth of comprehension, nor depth of insight. The goal rather is the curious one of
providing a loose introduction to the excellent introductions that already exist, together with scattered
parenthetical commentary. The inadequate nature of the exposition is certainly worst in the third
section. As a remedy, the article of Schneider [40] is recommended as a good starting point for the
complete novice, and that of Nekovar [37] might be consulted for more streamlined formalism. For
the Bloch-Kato conjectures, the paper of Fontaine and Perrin-Riou [20] contains a very systematic
treatment, while Kato [27] is certainly hard to surpass for inspiration. Kings [30], on the other hand,
gives a nice summary of results (up to 2003).

1 Motivation

Given a variety X over Q, it is hoped that a suitable analytic function

ζ(X, s),

a ζ-function of X , encodes important arithmetic invariants of X . The terminology of course stems
from the fundamental function

ζ(Q, s) =

∞
∑

n=1

n−s

named by Riemann, which is interpreted in this general context as the zeta function of Spec(Q). A
general zeta function should generalize Riemann’s function in a manner similar to Dedekind’s extension
to number fields. Recall that the latter can be defined by replacing the sum over positive integers by
a sum over ideals:

ζ(F, s) =
∑

I

N(I)−s

where I runs over the non-zero ideals of the ring of integers OF and N(I) = |OF /I|, and that ζ(F, s)
has a simple pole at s = 1 (corresponding to the trivial motive factor of Spec(F ), as it turns out) with

(s− 1)ζ(F, s)|s=1 =
2r1(2π)r2hF RF

wF

√

|DF |

By the unique factorization of ideals, ζ(F, s) can also be written as an Euler product

∏

P
(1 −N(P)−s)−1
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as P runs over the maximal ideals of OF , that is, the closed points of Spec(OF ). Now, if a scheme
Y is of finite type over Z, then for any closed point y ∈ Y, its residue field k(y) is finite. Write
N(y) := |k(y)|. We can then form an Euler product [41]

Z(Y, s) :=
∏

y∈Y0

(1 −N(y)−s)−1,

where (·)0 denotes the set of closed points for any scheme (·). In the case when the map

Y→Spec(Z)

factors through Spec(Fp), Z(Y, s) reduces to Weil’s zeta function for a variety over a finite field (with
the substitution p−s 7→ t if a formal variable has intervened as in [41], section 1.6).

When we are starting with X/Q, which we assume throughout to be proper and smooth, a straight-
forward imitation of Dedekind’s definition might involve taking an integral model X of X , which is a
proper flat scheme of finite-type over Z with X as generic fiber, and defining

ζ(X, s)“ := ”Z(X , s) =
∏

x∈X0

(1−N(x)−s)−1

The problem with this approach is that the function thus obtained will depend on the model, and
there is no general method for choosing a canonical one. However, there will be some set S of primes
such that there is a model XS over Spec(Z[1/S]) which is furthermore smooth. Even though such a
Z[1/S]-model need be no more canonical, it does turn out that the incomplete zeta function

ζS(X, s) :=
∏

x∈(XS)0

(1−N(x)−s)−1

is independent of the model. (More on this point below.) So there are good elementary generalizations
of incomplete zeta functions. We note in this connection that

Z(X , s) =
∏

p

Z(Xp, s)

where
Xp = X ⊗ Fp

is the reduction of X modulo p, so that that

ζS(X, s) =
∏

p/∈S

Z(Xp, s)

is the result of deleting a few Euler factors. Thus, the problem of defining a canonical zeta function
becomes one of inserting canonical factors for the primes of bad reduction. It is not impossible that
there is a theory of integrals models that isolates a class that is canonical enough to yield a good
definition of ζ(X, s). But the current approach proceeds instead to break up partial zeta functions
into natural factors

ζS(X, s) =
∏

LS(Mi, s)
±1,

according to the way X is decomposed into constituent motives {Mi} in a suitable category. (It is
not much of an exaggeration to say that the decomposition of zeta functions is the main empirical
phenomenon leading to the hypothesis of a category of motives.) The incomplete L-functions LS(Mi, s)
of the Mi should then encode arithmetic invariants of the Mi, which, in turn, refine the arithmetic
invariants of X . It is believed that good analytic properties must be established to access the invariants
efficiently, including functional equations. This, in turn, requires us to complete the L-functions using
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cohomological machinery in general. The completed L-functions then will lead to a completed zeta
function.

A simple illustration is provided by the elementary example of an elliptic curve E/Q with affine
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

Let ES be a smooth and proper Z[1/S] model. Then

ζS(E, s) := Z(ES, s)

It is not very hard to check that

ζS(E, s) = ζS(Q, s)ζS(Q, s− 1)/LS(H1(E), s)

([43], V.2.4) illustrating the kind of decomposition alluded to above. Here

ζS(Q, s) =
∑

{(n,p)=1,∀p∈S}
n−s =

∏

p/∈S

(1− p−s)−1

is a standard incomplete zeta function and

LS(H1(E), s) =
∏

p/∈S

Lp(H
1(E), s)

is the incomplete L-function of E with factors defined by

Lp(H
1(E), s) =

1

1− app−s + p1−2s

Here ap = p + 1−Np and Np is the number of points on E mod p. LS(H1(E), s) turns out to be the
partial L-function corresponding to the motivic factor H1(E) of E.

We can put in Euler factors for p ∈ S. It is obvious how to do it for ζS(Q, s) and ζS(Q, s − 1)
giving us the Riemann zeta function ζ(Q, s) and its shift ζ(Q, s− 1) respectively. For the incomplete
LS(H1(E), s), we put in the factors according to a recipe determined by the reduction of E at p:

Lp(H
1(E), s) =







1/(1− p−s) split multiplicative;
1/(1 + p−s) non-split multiplicative;

1 additive.

([44], II.10) and define

L(H1(E), s) :=
∏

p

Lp(H
1(E), s)

Here we have used the breakdown of the incomplete zeta function into three factors as an aid in
defining the full zeta function of E. However, this case is somewhat misleading in that there is a
canonical model that could have been used instead, namely, the Weierstrass minimal model

E

that appears in basic textbooks. In fact, one can check that

ζ(E, s) = ζ(Q, s)ζ(Q, s− 1)/L(H1(E), s) = Z(E , s)

as follows from the trace formula ([43], V.2) for the Frobenius map on elliptic curves for p /∈ S,
and a much easier counting argument for p ∈ S. So this would seem to be an instance where the
naive extension of Dedekind’s method works out. Nevertheless, we explain how the bad factors can be
obtained without reference to the model, starting at this point to use the language of étale cohomology

3



[35]. In the sequel, we fix an algebraic closure Q̄ of Q, closures Q̄p of Qp, and embeddings Q̄→֒Q̄p.
Therefore, we have embeddings of Galois groups

Gp := Gal(Q̄p/Qp)→֒G := Gal(Q̄/Q)

The residue field of Q̄p is an algebraic closure F̄p of Fp, and we have an exact sequence

0→Ip→Gp→Gal(F̄p/Fp)→0

defining the inertia subgroup Ip. Denote by Frp the generator of Gal(F̄p/Fp) that takes x to x1/p.
Finally, Ēp denotes the base-change of Ep to F̄p and Ē the base-change of E to Q̄. We need the étale
cohomology

H1(Ē, Ql)

for primes l, and
H1(Ēp, Ql)

for l 6= p. By the Lefschetz trace formula ([35], VI.12.3),

Z(Ep, s) =
det([I − p−sFrp]|H1(Ēp, Ql))

det([I − p−sFrp]|H0(Ēp, Ql)) det([I − p−sFrp]|H2(Ēp, Ql))

But for each i = 0, 1, 2,
Hi(Ēp, Ql) ≃ Hi(Ē, Ql)

Ip

the superscript referring to the subspace of elements fixed by the inertia action. (For H0 and H2, this
is an easy exercise. The H1 case is slightly harder. See [35], proof of theorem V.3.5. Although the
discussion there is given for smooth surfaces fibered over ‘geometric’ curves, it is rather straightforward
to adapt it to the present situation.) For p /∈ S, any pair X →֒X as above satisfies

Hi(X̄p, Ql) ≃ Hi(X̄, Ql)

where the Ip-action must be trivial, and provides the reason that the incomplete zeta function is
independent of the model ([35], VI.4.1). In any case, it ends up that the bad factor could have been
written

Z(Ep, s) =
det([I − p−sFrp]|H1(Ē, Ql)

Ip)

det([I − p−sFrp]|H0(Ē, Ql)Ip) det([I − p−sFrp]|H2(Ē, Ql)Ip)

in a way that refers only to E. It is this formula that generalizes to arbitrary motives.
Since we have thus far been entirely cavalier about convergence, we note in passing that Hasse’s

bound |ap| ≤ 2
√

p ([43], V.II) implies that the Euler product converges for Re(s) > 3/2.
To control fine analytic properties, one establishes a relation to automorphic L-functions. For

elliptic curves such a relation can be made explicit by computing the conductor

NE :=
∏

p∈S

pfp

Here
fp = ordp(∆E) + 1−mE

where ∆E is the discriminant of E and mE is the number of geometric components (that is, components
over F̄p) of the special fiber of the Neron model of E. Even though this formula for fp again refers to
the model, it can be defined purely in terms of the Galois action on H1(Ē, Ql) ([44], IV.10).

The well-known and deep fact, established through the work of Wiles, Taylor-Wiles, and Breuil-
Conrad-Diamond-Taylor ([50], [49], [10]), is that L has an analytic continuation to the complex plane.
More precisely,

L(E, s) = L(fE , s) =
1

(2π)sΓ(s)

∫ ∞

0

fE(iy)ys−1dy
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=
1

(2π)sΓ(s)
[

∫ ∞

1/
√

NE

fE(iy)ys−1dy + wE

∫ ∞

1/
√

NE

fE(iy)y1−sdy]

for a normalized weight 2 new cusp form fE of level NE which is an eigenvector for the Hecke operators,
determined by a q-expansion

fE = q + a2q
2 + · · ·

where the ap have to be the same as those for E and the general coefficient is determined by those
with prime index. The number wE = ±1 in this formula is an intrinsic invariant of the elliptic curve,
the so-called sign of the functional equation, discussed further below. Because the weight 2 cusp forms
of level NE form a finite dimensional space, it is easy to see that fE is completely determined by a
finite computation of the ap’s, and that this integral formula can then be used to compute L-values.

The celebrated conjecture of Birch and Swinnerton-dyer (BSD) [5] says

ords=1L(E, s) = rankE(Q)

The equality is known if ords=1L(E, s) ≤ 1 by the work of Gross-Zagier and Kolyvagin ([22], [31]).
Recall that, according to Mordell’s theorem,

E(Q) = Zr × E(Q)tor

where the finite abelian group E(Q)tor is easily computed using the Nagell-Lutz theorem ([43], VIII.7).
This conjecture promises to give an analytic approach to understanding the elusive rank r. However,
it must be admitted that even though the L-function is computable, the utility of this equality for
actually computing the rank of an elliptic curve is somewhat ambiguous. This is because the order
of zero of an analytic function might not be possible to determine using a finite computation. We
will discuss below how the vanishing itself can be computably determined using the refined version
of this conjecture. On the other hand, an extremely useful viewpoint on the order of vanishing arises
from the functional equation. That is to say, one inserts a gamma factor, determined by the Hodge
theory of E and viewed as the contribution of the prime at infinity. With another correction factor
contributed by the conductor, we arrive at a further completion:

Λ(E, s) := (2π)sΓ(s)N
s/2
E L(E, s)

which then satisfies a functional equation

Λ(E, 2− s) = wEΛ(E, s).

In fact, the sign wE can be expressed as a product of local terms

wE =
∏

p

wE,p

each of which can be computed in a straightforward fashion ([6], section 6).
A significant corollary is that the parity of the order is determined by the sign of wE , usually

referred to as the sign of the functional equation. For example, if wE = −1, then clearly

L(E, 1) = 0.

Suppose you can check L′(E, 1) 6= 0 using the equality with L′(f, 1) (non-vanishing can be verified!).
Then we conclude that E(Q) has rank one. Thus, one can produce many examples where the refined
analysis of the L-function, including the functional equation and computation, gives us the complete
structure of E(Q). (For deeper developments in this direction, see [34].)

The BSD conjecture continues as follows. If r is the order of vanishing, then

(s− 1)−rL(E, s)|s=1 = |X(E)|REΩ
∏

p

cp/|E(Q)tor|2.
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That is to say, the L-function purportedly encodes refined Diophantine invariants of E, which we
proceed to describe briefly ([43], C.16).

The set E(Q)tor, which occurred already above, is the (finite) torsion subgroup of E(Q). The cp

refer to the Tamagawa numbers at primes p, consisting of the index

cp = (E(Qp) : E0(Qp))

where E0(Qp) ⊂ E(Qp) is the subset of points that reduce to the connected component of the identity
in the Neron model of E ([43], VII.2). In particular, cp = 1 for primes of good reduction. The difficult
rational term is the order of X(E), the Tate-Shafarevich group of E, conjectured to be finite. It is
defined as the kernel

0→X(E)→H1(G, E(Q̄))→
∏

p

H1(Gp, E(Q̄p))

of the localization map on classifying spaces of torsors for E in the étale topology of Spec(Q) as p
runs over all primes of Q.

Then there are the transcendental terms: Ω, the real period (or twice that), defined as an integral

Ω =

∫

E(R)

|ω|

where ω = dx/(2y+a1x+a3) is an invariant differential obtained from a minimal Weierstrass equation.
The period can be easily computed, but the inaccessible part is the regulator RE . This is the co-volume
of the lattice E(Q)/E(Q)tor inside the inner product space

([E(Q)/E(Q)tor]⊗ R, < ·, · >)

where < ·, · > is defined by the Neron-Tate canonical height. Thus, if {P1, P2, . . . , Pr} is a basis for
for E(Q)/E(Q)(tor), then

RE := | det(< Pi, Pj >)|
Obviously, computation of RE would require knowledge of the Mordell-Weil group. On the other hand,
since the formula gives a computable bound for the denominator of L(E, 1)/Ω when RE = 1, assuming
its validity allows us to verify the vanishing of L(H1(E), 1) after a finite computation. Furthermore, it
is important to note that there is a rather efficient algorithm for obtaining the full Mordell-Weil group,
once one is equipped with the conjecture in full, as described in [33]. Meanwhile, in relation to this
general circle of conjectures, it still may be worth occasionally recalling that the classical method of
descent, as described for example in [43], provides an algorithm for computing the Mordell-Weil group,
which is guaranteed to terminate only assuming the finiteness of X, even with no prior knowledge at
all of L-functions.

We refer the reader to [39] for an accessible report on the BSD conjecture, covering work up to
2002.

The known relations between L-functions and arithmetic are expected to generalize vastly. As
indicated above, L-functions are defined using Galois actions on étale cohomology and completed
using Hodge theory.

Before we summarize the relevant definitions, we recall the big picture represented by the following
conjectures:

(1) Hasse-Weil: the completed L-function L(M, s)of a pure motive M has a meromorphic con-
tinuation to the complex plane and satifies a functional equation. This conjecture is supposed to
be addressed by Langlands’ program, which says ‘Motivic L-functions are automorphic L-functions’
([32]).

(2) Conjectures about values:
(a) Deligne’s conjecture gives the value, up to a rational number, of L(M, m) whenever m belongs

to the so-called ‘critical strip,’ using a general definition of periods coming from a comparison between
rational De Rham and topological cohomologies ([13]);
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(b) The Beilinson conjectures continues the discussion about L(M, m) when m is an arbitrary
integer. It relates orders of vanishing and principal values (up to a rational number) to the rank and
co-volume of motivic cohomology using a generalized regulator map ([1], [2], [3], [4]).

(c) The Bloch-Kato conjectures determine these rational values in a precise way using Tamagawa
numbers (or determinants) for Galois representations via p-adic Hodge theory ([9], [27], [20]).

2 Definitions

Let X/Q be a smooth projective variety as before. Associated to X is a well-known collection of
cohomology groups, the realizations of the motive(s) of X [47].

Hn
l (X) = Hn

et(X̄, Ql) for each prime l, the Ql-coefficient étale cohomology of degree n.
This carries a natural action of G = Gal(Q̄/Q).

Hn
DR(X) := Hn(X, Ω.

X), the algebraic De Rham cohomology equipped with a Hodge
filtration given by

F iHn
DR(X) = Hn(X, Ω≥i)→֒Hn

DR(X)

for each i.

Hn
B(X) := Hn(X(C), Q), the Q-coefficient singular cohomology of the complex manifold

X(C) equipped with an involution F∞ induced by the anti-holomorphic complex conjuga-
tion acting on the complex points.

The completed L-function of the motive Hn(X) requires us to use all these structures, but the defi-
nition of the motive itself is not needed.

These cohomology groups are bound together by an intricate system of canonical comparison
isomorphisms. For example,

Hn
B(X)⊗Q Ql ≃ Hn

l (X)

preserving the action of F∞, the complex conjugation. And then,

Hn
B(X)⊗Q C ≃ Hn

DR(X)⊗Q C.

This isomorphism endows the pair (Hn
B(X), Hn

DR(X)⊗ R) with a rational Hodge structure of weight
n ‘defined over R.’ That is, we have a direct sum decomposition

Hn
B(X)⊗Q C ≃ ⊕Hp,q(X)

where
Hp,q := F p ∩ F̄ q

and
F∞(Hp,q) = Hq,p.

Here, F̄ q refers to the image of F q under the action of complex conjugation c acting on the coefficients
of Hn

B(X)⊗Q C (that ends up giving the same image as F∞). In fact,

(Hn
B(X)⊗Q C)F∞⊗c = Hn

DR ⊗ R.

At non-archimedean places, there is an important analogue. For any prime p, we have

DDR(Hn
p (X)) := (Hn

p (X)⊗Qp BDR)Gp ≃ Hn
DR(X)⊗Q Qp

where BDR is Fontaine’s ring of p-adic periods [19].
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These structures taken together motivate the following observation. Regardless of its precise
definition, a motive M should have associated to it a collection of objects as above that we call a pure

system of realizations that make up a category R. This is a collection

R(M) = {{Ml}, MDR, MB}

where each Ml is a continuous linear representation of G on a (finite-dimensional) Ql-vector space,
MDR is a filtered Q-vector space, and MB is a Q-vector space with an involution F∞. These vector
spaces should all have the same dimension and be equipped with a system of comparison isomorphisms
as above. The data must be subject to further subtle constraints having to do with local Galois
representations.

That is to say recall the exact sequence:

0→Ip→Gp
v→ Gal(F̄p/Fp)→0

where Gal(F̄p/Fp) ≃ Ẑ is topologically generated by the inverse Frp of the p-power map. For l 6= p,
Ip has a tame l-quotient

tl : Ip→Ip,l

with the structure
Ip,l ≃ Ẑl(1) ≃ lim←−µln

as a module for Gal(F̄p/Fp). Define

Wp := v−1(FrZ
p ) ⊂ Gp,

the Weil group at p. It is convenient to analyze the data of Ml using an associated Weil-Deligne

(W-D) representation [46]
WDp(Ml)

for each p, consisting of a representation r of Wp such that r|Ip has finite image and a nilpotent
operator Np acting on the representation.

These satisfy a compatibility condition

r(φp)Npr(φ
−1
p ) = p−1Np

for any lift φp ∈ Wp of Frp.
The construction of WDp(Ml) for p 6= l uses the fact that the action of Gp when restricted to

some finite index subgroup G′
p is semi-stable, i.e., its inertia subgroup I ′p acts unipotently. Hence, the

action of I ′p can be expressed as
σ 7→ exp(tl(σ)Np)

for a nilpotent Np. Then the representation r on Wp is given by

r(φn
p σ) = φn

pσ exp(−tl(σ)Np)

for some choice of φp. In fact, since the data (φp, Np) determine the Weil-Deligne representation, it is
usual to identify the representation with such a pair.

For p = l, we use the fact that any De Rham representation is potentially semistable [11], and
hence, gives us a filtered (φp, Np) module via

Mp 7→ (Mp ⊗Qp Bst)
G′

p

If G′
p = Gp (that is, if the representation itself is semi-stable), then this gives us a Weil-Deligne

representation in an obvious way by defining

r(g) = φn
p
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if g maps to Frn
p ∈ Gal(F̄p/Fp). In [20], I.1, it is explained in detail how one extracts a Weil-Deligne

representation from the data in the general case.
The viewpoint of the Weil-Deligne representation allows us to parametrize the information of the

Galois representations in a form that does not use the topology of Ql. It provides, thereby, a suitable
framework for comparing the representations as l varies, and makes natural the connection to complex
automorphic forms [48]. Furthermore, one creates thereby a rather precise analogy with the theory of
limit mixed Hodge structures [24].

Now define the Frobenius semi-simplification WDp(Ml)
ss of WDp(Ml) by replacing φp with its

semi-simple part. With the terminology thus introduced, here are the constraints we impose on our
pure system of realizations:

‘Good reduction almost everywhere’: We assume that there exists a finite set S of primes such
that WDp(Ml) is unramified for all p /∈ S, i.e., Np = 0 and Ip acts trivially.

‘Algebraicity and independence of l’: There exists a Frobenius semi-simple W-D representation
WDp(M) over Q̄ such that

WDp(M)⊗Q̄ Q̄l ≃WDss
p (Ml)⊗Q̄ Q̄l

Subject to these conditions, the collection {Ml} is then referred to as a strongly compatible system
of l-adic representations.

‘Weil conjecture’: There should exist an integer n, called the weight of M , such that the eigen-
vavlues of Frp acting on WDp(M) for p /∈ S have all Archimedean absolute values equal to pn/2.
Furthermore, the Hodge structure MB should be pure of weight n.

‘Purity of the monodromy filtration’: If we denote by Mn. the unique increasing filtration on
WDp(M) such that [12]

-Mn−k = 0, Mnk = WDp(M) for sufficiently large k;
-N(Mnk) ⊂Mnk−2;
-and N induces isomorphisms

Nk : GrMn
k (WDp(M)) ≃ GrMn

−k (WDp(M));

then, for each k, the associated graded piece

GrMn
k (WDp(M))

has all Frobenius eigenvalues of archimedean absolute value p(n+k)/2.

It should be remarked that in general, we need to allow coefficients in Eλ for the representations
where E is a number field and Eλ are completions. Such coefficient systems arise naturally when
considering direct summands of Ql-representations or motives with extra endomorphisms, e.g., abelian
varieties with CM. We will omit this generality in this summary. Another interesting view is that the
bi-grading

MB ⊗ C ≃ ⊕Mp,q,

which is compatible with the complex conjugation of coefficients, corresponds to a representation of
the group

ResC
R(Gm).

Together with the action of
F∞ ◦ C

it can be viewed as a representation of the real Weil group WR ([46]) with points given by

WR(R) = C∗ ∪C∗j
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where j2 = −1 and jzj−1 = z̄. Here, C is the Weil operator defined by

C|Mpq = iq−p

It is conjectured that the realizations

Hn(X) = ({Hn
l (X)}, Hn

B(X), Hn
DR(X))

coming from a smooth projective variety X satisfy the algebraicity, independence of l, and purity
conditions even for p ∈ S.

The category of pure motives should be comprised of objects in R of geometric origin, a notion
without an entirely precise interpretation [14]. For example, we need to admit at every stage duals
(homology) and tensor products of all objects considered. Objects that are not generated in an obvious
way from those of the form

Hn(X)

arise via images (or kernels) under pull-backs and push-forwards in cohomology induced by maps of
varieties, as well as Q-linear combinations of geometric maps. We should also be able to compose pull-
backs with push-forwards. Such compositions give rise to the idea of using correspondences modulo
homological equivalence as morphisms [13]. Once morphisms are constructed in this manner, we
naturally obtain new objects using the decomposition of

End(Hn(X)),

which is a semi-simple Q-algebra subject to one of the standard conjectures saying that numerical
equivalence and homological equivalence coincide [26].

One can consider also a category of mixed systems of realizations by requiring a weight filtration

· · · ⊂Wn−1M ⊂WnM ⊂Wn+1M ⊂

compatible with all the comparisons and such that each graded quotient

Grn
W (M)

is a pure system of realizations of weight n. Mixed motives should be those of geometric origin such as
the cohomology of varieties that are not necessarily smooth or proper. But then, we need to include
objects like (finite-dimensional quotients of)

Q[[π1]] = lim←−Q[π1]/In,

i.e., group algebras of fundamental groups completed with respect to the augmentation ideal, or the
(co)-homology of (co-)simplicial varieties [25].

Given a pure system M of realizations we can define its L-function L(M, s) as an Euler product

L(M, s) =
∏

p

Lp(M, s)

with

Lp(M, s) =
1

det[(1 − p−sFrp)|(WDp(M))Ip=1,Np=0]
.

If M is of weight n, then the product converges (and hence is non-zero) for Re(s) > n/2 + 1. For
some conceptual motivation for this definition based on duality in the function field case, see [17].
(The point is that the inertia fixed part is the stalk of the intermediate extension of the étale sheaf
corresponding to Ml.)

There is also a factor at ∞ depending upon the representation MB ⊗ C of WR. Define

ΓR := π−s/2Γ(s/2)
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ΓC := 2(2π)−sΓ(s)

hpq := dimMpq

hp,± := dimMpp,±(−1)p

where the signs in the superscript refer to the ±1 eigenspaces of the F∞-action. Then

L∞(M, s)

is defined as
∏

p<q

ΓC(s− p)hpq

for odd n, and
∏

p<q

ΓC(s− p)hpq

ΓR(s− n/2)hn/2+

ΓR(s− n/2 + 1)hn/2−

for n even ([42]).
It is conjectured that

Λ(M, s) = L∞(M, s)L(M, s)

has a meromorphic continuation to C and satisfies a functional equation

Λ(M, s) = ǫ(M, s)Λ(M∗, 1− s)

where the epsilon factor has the form ǫ(M, s) = cfs, c ∈ C∗ and f a positive integer. Note that the
contribution of the conductor has also been incorporated into this factor. (For a precise discussion of
the factor in the case M = Hn(X), see [42].) As alluded to above, the general expectation is that this
conjecture will be dealt with by the Langlands’ program.

3 Conjectures on zeros, poles, and values

A list of overall references to this section should include the papers mentioned in the introduction as
well as the original articles [7], [13], [1], [2], [3], [4], and [9]. Having mentioned thus the sources, we
will then proceed to be somewhat sloppy with specific citation.

Here is some convenient notation:

Q: trivial system of realizations.

Q(1) := H2(P1)∗

Q(i) = Q(1)⊗i for i ≥ 0

Q(i) = Hom(Q(−i), Q) for i < 0.

For a system M of realizations we define its Tate twists by tensor products with Q(i):

M(i) := M ⊗Q(i)

Then for any smooth projective variety of dim d, we have ([35], VI.6)

H2d(X) ≃ Q(−d)

and a perfect pairing
Hi(X)×H2d−i(X)→H2d(X)

Repeated cup product with the cohomology class of a hyperplane gives us the hard Lefschetz theorem
[15]

Hi(X) ≃ H2d−i(X)(d− i).

11



The effect of the twisting on realizations is such that M(n)l is the tensor product of Ml with the n-th
power of the Ql cyclotomic character giving the action of G on the l-power roots of unity, and

F i(M(n)DR) = Fn+iMDR

with a corresponding shift in Hodge numbers hpq. Furthermore,

F∞|M(n)B = (F∞|MB)⊗ (−1)n

and for the L-functions,
L(M(n), s) = L(M, s + n).

These facts all follow in an elementary way from the structure of H2(P1).
The conjectures deal with the behavior of L(M, s) at an integral value m of s. To state them

without spending time on categorical preliminaries, we will focus on the case where M is

Hn(X) = ({Hn
l (X)}, Hn

DR(X), Hn
B(X))

for a smooth projective variety X of dimension d. Assume that Hn(X) is a pure system of realizations
so that the analytic continuation and functional equation hold true. Since we have

Hn(X)∗ ≃ H2d−n(X)(d) ≃ Hn(X)(n)

the conjectured functional equation relates

L(Hn(X), s)

and
L(Hn(X)(n), 1− s) = L(Hn(X), n + 1− s),

while the center of reflection is
(n + 1)/2.

We will therefore confine interest mostly to

m ≥ (n + 1)/2

or, equivalently,
n + 1−m ≤ (n + 1)/2,

and refer to Re(s) = (n + 1)/2 as the critical line. (The reader should consult Nekovar’s elegant
article [37] for a careful discussion of how to relate the points addressed here to those on the right
of the critical line.) In fact, it is conceptually convenient to parametrize by the letter m the integers
≥ (n+1)/2, but to focus then on the values at the points n+1−m. In the discussion of orders, however,
we will make explicit the case of m = n/2, and hence, the possible pole at n + 1−m = n/2 + 1 (just
to the right of the critical line), whose importance is evident from the classical example of Dedekind’s
zeta functions. As we will explain below, the general geometric importance of this pole is related to
Tate’s conjecture on the cohomology classes of algebraic cycles [47]. We remark also that the study
of L(Hn(X), s) near m corresponds to the study of L(Hn(X)(m), s) near s = 0. Thus, when the
conjectures are formulated in terms of values at zero in the literature, one encounters the assumption
that the weight n− 2m is negative.

We start then with the conjecture on orders. The simple case arising from an elliptic curve was
reviewed already where n = 1 and m = n+1−m is the reflection point (n+1)/2 = 1. The conjecture
of Birch and Swinnerton-Dyer says

ords=1L(H1(E), s) = rankE(Q)

12



Now, an element
x ∈ E(Q)

gives rise to an extension in the category R of realizations

δ(x) ∈ Ext1R(Q, H1(E)(1))

via Kummer theory. In the p-adic realization, for example, this is obtained in the inverse limit from
the exact sequences

0→E[pn]→E(Q̄)
n→ E(Q̄)→0

of Galois modules as the image of x ∈ H0(Gal(Q̄/Q), E(Q̄)) under the connecting homomorphisms.
It is conjectured that when R is replaced by a suitable category of motives, this is the only way to
construct such extensions. This notion conveys the basic flavor of conjectures on orders in the case of
odd weight.

For an example in the even weight case, let X = Spec(F ) for a number field F , assumed for
simplicity to be Galois over Q. Then

ζ(F, s) = L(H0(Spec(F )), s)

which breaks up as into a product of Artin L-functions

ζ(F, s) =
∏

ρ

L(ρ, s)

as ρ : Gal(F/Q)→Aut(V ) runs over finite-dimensional representations on Q-vector spaces. This is the
most basic example of a motivic decomposition. In fact, any finite-dimensional Q-representation of
Gal(Q̄/Q) defines an Artin motive Mρ and it is a theorem that

ords=1L(ρ, s) = −dimHomAM (Q, Mρ),

where the Hom occurs inside the category of Artin motives [13]. Note that s = 1 in this case is the
integer point n/2 + 1 just to the right of the critical line mentioned above.

The general conjecture about orders says

ords=n+1−mL(Hn(X), s)

= dimExt1MotZ
(Q, Hn(X)(m))− dimHomMotZ

(Q, Hn(X)(m)).

The Hom and Ext should occur inside a conjectural category of mixed motives over Z with Q-
coefficients. For weight reasons, the Hom term should vanishes unless n = 2m, in which case the
Ext term should vanish. (As would follow from the K-theoretic interpretation of the Ext group. See
below.) That is, in the pure situation we are considering, only one term or the other is supposed to
occur.

The point just to the right of the critical line is of interest in the even weight situation when
n = 2m, where the formula predicts

ords=m+1L(H2m(X), s) = −dimHomMotZ
(Q, H2m(X)(m))

generalizing the pole of the Artin L-function (m = 0). As for an explicit connection to arithmetic
geometry, it is expected that

HomMotZ
(Q, H2m(X)(m)) ≃ [CHm(X)/CHm(X)0]⊗Q.

Of course the isomorphism should arise via a cycle map

CHm(X)→H2m(X)(m)

13



killing the cycles CHm(X)0 homologically equivalent to zero.
As we move to the left, we encounter the point m = (n + 1)/2 for n odd (n = 2m − 1), and the

conjecture predicts the order of vanishing at the central critical point:

ords=mL(H2m−1(X), s) = dimExt1MotZ
(Q, H2m−1(X)(m)).

It is then expected that

Ext1MotZ
(Q, H2m−1(X)(m)) ≃ CHm(X)0 ⊗Q

The map from cycles to extensions generalizes Kummer theory: given a representative Z for a class
in CHm(X)0, we get an exact sequence

0→H2m−1(X)(m)→H2m−1(X \ Z)(m)

δ→ H2m
Z (X)(m)→H2m(X)(m).

There is a local cycle class
cl(Z) ∈ H2m

Z (X)(m)

that maps to zero in H2m(X)(m), giving rise to the desired extension:

0→H2m−1(X)(m)→δ−1(cl(Z))→Q→0

These two classical points, central critical, n + 1 −m = m = (n + 1)/2 for n odd, and just right of
it, n + 1 − m = n/2 + 1, for n even, are somewhat exceptional. As n + 1 − m moves further left
(m > n/2 + 1), one expects

Ext1MotZ
(Q, Hn(X)(m)) = Hn+1

M,Z (X, Q(m))

with the last group, often referred to as motivic cohomology, defined using K-theory :

Im[(K2m−n−1(X ))(m)→(K2m−n−1(X))(m)],

where X is a proper flat regular Z-model for X (whose existence needs to be assumed) and the
superscript for K-theory refers to the subspaces cut out by the Adams operators [21]. An alternative
is to use Bloch’s higher Chow groups [8]:

Im[CHn+1(X , 2m− n− 1)⊗ Q→CHn+1(X, 2m− n− 1)⊗Q].

The latter interpretation, carrying with it the hope of representing motivic cohomology classes quite
explicitly, is more popular lately [18]. In fact, when m > n/2+1, the conjectured functional equation
implies

ords=n+1−mL(Hn(X), s) = dimExt1MHSR

R

(R, Hn
B(X)(m)⊗ R)

where the extension occurs inside the category of real mixed Hodge structures defined over R. So the
statement on the order of vanishing follows from the conjecture that the Hodge realization functor
induces an isomorphism

Ext1MotZ
(Q, Hn(X)(m))⊗ R ≃ Ext1MHSR

R

(R, Hn
B(X)(m)⊗ R).

It has been emphasized by Deligne that the regulator map (discussed below) is this realization functor.
Our outline thus far should already make clear that the conceptual structure of the conjectures

falls into two parts:

(1) Relation between L functions and Ext and Hom groups in category of motives;

(2) geometric interpretation of Ext and Hom groups.

14



That is to say, in addition to the difficult problem of drawing the lower edge of the following triangle

Interpretation in the category of motives

Order of L-function � -

�

-

Arithmetic-geometric rank

�

-

the further problem has been created of constructing a category that realizes the upper vertex.
There is a computation, convenient in practice, of the real Ext group via Deligne cohomology:

Ext1MHSR

R

(R, Hn
B(X)(m)⊗ R) ≃ Hn+1

D (XR, R(m)).

Using the explicit nature of Deligne cohomology, one can construct regulator maps

Hn+1
M,Z (X, Q(m))→Ext1MHSR

R

(R, Hn
B(X)(m)⊗ R)

that can be studied independently of a category of motives. For example, in essentially all known
cases of the Beilinson conjectures (e.g. [2],[16]), one constructs subgroups

L ⊂ Hn+1
M,Z (X, Q(m)),

conjecturally of full rank, and studies their images in Deligne cohomology.
As we move on to the conjectures on values, we start with the central critical ones due to Bloch

and Beilinson. Thus, m = n + 1−m = (n + 1)/2 (and n = 2m− 1). We then have an isomorphism

FmH2m−1
DR (X)⊗ R ≃ [H2m−1

B (X)(m− 1)](−1)m−1 ⊗ R

which gives rise to the period isomorphism

p = p(H2m−1(X, m)) : det(FmH2m−1
DR (X))⊗ R ≃ det[[H2m−1

B (X)(m− 1)](−1)m−1

]⊗ R

of real vector spaces of dimension one, where the det refers to top exterior powers. That is to say,

det(FmH2m−1
DR (X))

and
det[[H2m−1

B (X)(m− 1)](−1)m−1

]

are viewed as two Q-lines sitting inside the same real line. An additional transcendental contribution
comes from the height pairing, conjectured to be non-degenerate:

CHm(X)0 × CHdim(X)+1−m(X)0→R

whose determinant gives us a regulator

r = r(H2m−1(X)(m)) ∈ R∗/Q∗.

Recall that conjecturally

dm := ords=mL(H2m−1(X), s) = dimCHm(X)0 ⊗Q

For any motive M , denote by
L∗(M, m)
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the leading coefficient of L(M, s) at s = m. So

L∗(H2m−1(X), m) = lim
s→m

(s−m)−dmL(H2m−1(X), s).

The general conjecture on central critical values then says

r · p[det(FmH2m−1
DR (X))] = L∗(H2m−1(X), m) det[[H2m−1

B (X)(m− 1)](−1)m−1

]

inside det[[H2m−1
B (X)(m− 1)](−1)m−1

]⊗ R.
Moving left to the values at n + 1 −m ≤ n/2 (m ≥ n/2 + 1) we point out first that the period

isomorphism is replaced by an exact sequence:

0→FmHn
DR(X)⊗ R→[Hn

B(X)(m− 1)](−1)m−1 ⊗ R

→Ext1MHSR

R

(R, Hn
B(X)(m)⊗ R)→0

Thus, the transcendental part should incorporate a Q-structure on

Ext1MHSR

R

(R, Hn
B(X)(m)⊗ R).

We will skip for a moment the classically interesting point n + 1 −m = n/2 for n even and assume
n + 1 −m < n/2. Therefore, m > n/2 + 1 lies in the region of convergence of the L-function. Then
the Q structure is expected to come from the conjectured regulator isomorphism:

Hn+1
M,Z (X, Q(m)))⊗ R ≃ Ext1MHSR

R

(R, Hn
B(X)(m)⊗ R)

We are led thus to an isomorphism

c = c(Hn(X)(m)) : [det(Hn+1
M,Z (X, Q(m)))]⊗R ≃ [detFmHn

DR(X)]−1⊗det([Hn
B(X)(m−1)](−1)m−1

)⊗R

and Beilinson’s conjecture says

c[det(Hn+1
M,Z (X, Q(m)))] = L∗(Hn(X), n + 1−m)[detFmHn

DR(X)]−1 ⊗ det([Hn
B(X)(m− 1)](−1)m−1

).

The cases where
Ext1MHSR

R

(R, Hn
B(X)(m)⊗ R) = 0

are the critical values considered by Deligne [13], and Beilinson’s conjecture in that case reduces to
Deligne’s conjecture, relating L-values to the discrepancy between Q-structures coming from Betti
and De Rham cohomology.

Finally, we return to the value at n + 1 −m = n/2 (m = n/2 + 1) for n = 2m − 2 even. Here,
the conjecture is identical to the situation further left except the regulator involves maps from both
motivic cohomology

Hn+1
M,Z (X, Q(m))

and
CHm−1(X)

in a manner similar to how the central critical value incorporates periods and a height pairing. That
is, we have a map

[CHm−1(X)/CHm−1(X)0]→[H2m−2
B (X)(m− 1)](−1)m−1

coming from the cycle map that induces an injection

[CHm−1(X)/CHm−1(X)0]→֒Ext1MHSR

R

(R, Hn
B(X)(m)⊗ R)
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via the quotient map

[Hn
B(X)(m− 1)](−1)m−1 ⊗ R→Ext1MHSR

R

(R, Hn
B(X)(m)⊗ R).

We remark then only that the conjectured isomorphism is

Hn+1
M,Z (X, m)⊗ R⊕ [CHm−1(X)/CHm−1(X)0]⊗ R

≃ Ext1MHSR

R

(R, Hn
B(X)(m)⊗ R).

The point is that in order to give the correct order of zero (dimension of motivic cohomology) to the
left of the critical strip, the poles to the right of the critical strip must be canceled out.

In the Bloch-Kato conjectures, isomorphisms are normalized more carefully, comparing certain
integral structures one prime at a time. More precisely, the conjecture concerns the p-adic valuation
of the ‘rational part’ of the L-function for each prime p. We give here just a flavor of the conjecture by
discussing a range of cases that doesn’t involve too many definitions. There is a theory of determinants
of perfect complexes over a principal ring R that goes with the conjectures [20], where the useful facts
are:

(1) If M is a finitely generated free module, then det(M) is the top exterior power.

(2) If K is the field of fractions of R, then for any finitely generated module M , the map
M→M ⊗K induces

det(M)⊗R K ≃ det(M ⊗R K)

canonically.

(3) If M is finitely generated and M ′ is its torsion-free quotient, then the natural isomor-
phism

det(M)⊗K ≃ det(M ′)⊗K

takes a generator of det(M) to 1/r times a generator of det(M ′), where r is a characteristic
element for the torsion submodule of M .

We note in regard to these facts that the determinant module is always free of rank one, so it is only the
morphisms that are the relevant data. Now assume that m > min{n, dim(X)} so that FmHn

DR = 0
and

[Hn
B(X)(m− 1)(−1)m−1 ⊗ R] ≃ Ext1MHSR

R

(R, Hn
B(X)(m)⊗ R).

Therefore, we should have

Hn+1
M,Z (X, Q(m))⊗ R ≃ Ext1MHSR

R

(R, Hn
B(X)(m)⊗ R)

≃ [Hn(X(C), Z(m− 1))(−1)m−1 ⊗ R].

Let γ be a generator of
det(Hn(X(C), Z(m− 1))(−1)m−1

)

and let
ωγ ∈ det(Hn+1

M,Z (X, Q(m)))

be an element mapping to
L∗(Hn(X)(m), n + 1−m)γ.

As before, let S be a set of primes including those of bad reduction for X , the Archimedean prime,
and a fixed prime p. We denote by GS the Galois group of the maximal extension of Q unramified
outside the primes in S. There is a Chern-class map

Hn+1
M,Z (X, Q(m))→H1(GS , Hn

p (X)(m))
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that conjecturally induces an isomorphism

Hn+1
M,Z (X, Q(m))⊗Qp ≃ H1(GS , Hn

p (X)(m))

That is to say, there are two maps

Hn+1
M,Z (X, Q(m)) - Ext1MHSR

R

(R, Hn
B(X)(m)⊗ R)

H1(GS , Hn
p (X)(m))

?

that are both supposed to induce isomorphisms upon changing coefficients, and with which the rational
part will be controlled. Let

zγ ∈ det(H1(GS , Hn
p (X)(m)))

be the image of ωγ so that we have the diagram

ωγ
- L∗(Hn(X)(m), n + 1−m)γ

zg

?

Then the conjecture is that

[det(H1(GS , H1(G, Hn
p (X)(m))) : Zpzγ ] = |H0(GS , H1

f (G, Hn
p (X)(m)))||H2(GS , H1

f (G, Hn
p (X)(m)))|

It is easy to see that the H0 term is finite, but the finiteness of the H2, like that of Sha in the case of
elliptic curves, must also be conjectured. In the uniform formalism, the desired equality is interpreted
as the assertion that zγ is a Zp-basis of the determinant of the perfect Zp-complex RΓ(GS , Hn

p (X)(m)).
Extraction of the rational part is supposed to lead eventually to a p-adic L-function

L(p)(Hn(X))

that exercises control over Galois cohomology (i.e., Selmer groups) and Diophantine invariants. This
p-adic theory appears so far to be the best strategy for applying the theory of L-functions to the
elucidation of Diophantine structures ([38], [28], [45]).

4 Remark

We conclude with the warning that there is a conspicuous deficiency in theory of motives: This is that
even in the best of possible worlds (ours), only abelian invariants are accessible, such as

CHm(X).

These abelian invariants do not yield in general information about

X(Q)

and leave thereby untouched the most basic questions of Diophantine geometry. This is an artifact
of the fact that the theory of motives as presently developed is implicitly modeled on the theory of
abelian varieties and H1. Attempts to redress this deficiency for certain varieties are contained in

Grothendieck’s anabelian program
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([23], [36]) that concerns itself with the theory of pro-finite π1’s. The technology of motives ends up
contributing here as well because the Diophantine aspect of this theory [29] assigns an interesting role
to motivic fundamental groups [14], where Ext groups are replaced by

classifying spaces for non-abelian torsors

However, what is entirely missing as yet is an analogue of the L-function.
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