
Query Service Specification

Version 1.0
New Edition: April 2000

 paid up,
ified
 copyright
ving

ire use
y be
at are
r

 an
ent does

 or c
s listed
s be the
marks or
rotected
form or
nd

 in

IDL,
, Inc.
Copyright 1999, FUJITSU LIMITED
Copyright 1999, INPRISE Corporation
Copyright 1999, IONA Technologies PLC
Copyright 1999, Objectivity Inc.
Copyright 1991, 1992, 1995, 1996, 1999 Object Management Group, Inc.
Copyright 1999, Oracle Corporation
Copyright 1999, Persistence Software Inc.
Copyright 1999, Secant Technologies Inc.
Copyright 1999, Sun Microsystems Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
in the included material of any such copyright holder by reason of having used the specification set forth herein or ha
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license ma
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible fo
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details
Object Management Group specification in accordance with the license and notices set forth on this page. This docum
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, relianceover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holder
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all time
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trade
other special designations to indicate compliance with these materials. This document contains information which is p
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage a
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group
X/Open is a trademark of X/Open Company Ltd.

ers to
ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage read
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
iii
 iii

 iii

 iv

 iv

1-1
1-1

1-2

1-2
1-3
-4
-5

1-5

1-6
-7
-7
-8

1-9

1-9
-9
10
10
11
Preface .
About the Object Management Group .

What is CORBA?.

Associated OMG Documents .

Acknowledgments .

1. Service Description .
1.1 Overview .

1.2 Design Principles .

1.3 Architecture .
1.3.1 Query Evaluators: Nesting and Federation . . .
1.3.2 Collections . 1
1.3.3 Queryable Collections for Scope and Result . . 1
1.3.4 Query Objects .

1.4 Query Languages .
1.4.1 SQL Query . 1
1.4.2 OQL . 1
1.4.3 SQL Query = OQL . 1

1.5 Key Features .

1.6 Service Structure .
1.6.1 Overview . 1
1.6.2 Collection Interface Structure 1-
1.6.3 Query Framework Interface Hierarchy/Structure 1-
1.6.4 Interface Overview . 1-
Query Service V1.0 April 2000 i

Contents

-1

2-1
-1

2-2

2-2
-4
-4
-7

2-8
2-8
-9

2-9
-10

-11
13
13
-14
-14

-1
2. Query Service Interfaces . 2

2.1 The Collection Model .
2.1.1 Common Types of Collections 2
2.1.2 Iterators .

2.2 The CosQueryCollection Module
2.2.1 The CollectionFactory Interface 2
2.2.2 The Collection Interface 2
2.2.3 The Iterator Interface . 2

2.3 The Query Framework Model .
2.3.1 Query Evaluators .
2.3.2 Queryable Collections 2
2.3.3 Query Managers .
2.3.4 Query Objects . 2

2.4 The CosQuery Module . 2
2.4.1 The QueryEvaluator Interface 2-
2.4.2 The QueryableCollection Interface 2-
2.4.3 The QueryManager Interface 2
2.4.4 The Query Interface . 2

Appendix A - References . A
ii Query Service V1.0 April 2000

Preface
rted
 and
nted

ide a
,
ous
p a

ed.

ted,
ey
bject
nd

ing
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are bas

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where th
are located or who has designed them. CORBA 1.1 was introduced in 1991 by O
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.
Query Service V1.0 April 2000 iii

ards
o

only
e

mat.
ons,

y
Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG stand
are based. It defines the umbrella architecture for the OMG standards. It als
provides information about the policies and procedures of OMG, such as how
standards are proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications
for OMG’s Object Services.

The OMG collects information for each specification by issuing Requests for
Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards
when representatives of the OMG membership accept them as such by vote. (Th
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF for
To obtain print-on-demand books in the documentation set or other OMG publicati
contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494
USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320
pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of the CORBA Services
specifications:

• AT&T/Lucent Technologies, Inc.

• AT&T/NCR

• BNR Europe Limited

• Cooperative Research Centre for Distributed Systems Technology (DSTC Pt
Ltd).

• Digital Equipment Corporation
iv Query Service V1.0 April 2000

• Gradient Technologies, Inc.

• Groupe Bull

• Hewlett-Packard Company

• HyperDesk Corporation

• ICL plc

• Ing. C. Olivetti & C.Sp

• International Business Machines Corporation

• International Computers Limited

• Iona Technologies Ltd.

• Itasca Systems, Inc.

• Nortel Limited

• Novell, Inc.

• 02 Technologies

• Object Design, Inc.

• Object Management Group, Inc.

• Objectivity, Inc.

• Ontos, Inc.

• Oracle Corporation

• Persistence Software

• Servio, Corp.

• Siemens Nixdorf Informationssysteme AG

• Sun Microsystems, Inc.

• SunSoft, Inc.

• Sybase, Inc.

• Taligent, Inc.

• Tandem Computers, Inc.

• Teknekron Software Systems, Inc.

• Tivoli Systems, Inc.

• Transarc Corporation

• Versant Object Technology Corporation
Query Service V1.0 Acknowledgments April 2000 v

vi Query Service V1.0 April 2000

Service Description 1
 are
g

fy a
Contents

This chapter contains the following topics.

1.1 Overview

The Query Service provides query operations on collections of objects. The queries
predicate-based and may return collections of objects. They can be specified usin
object derivatives of SQL and/or other styles of object query languages, including
direct manipulation query languages.

The term “query” has read-only connotations, but we use it to denote general
manipulation operations including selection, insertion, updating and deletion on
collections of objects. Throughout this chapter, the term “object” is used in the general
sense to include data.

The Query Service can be used to return collections of objects that may be:

• Selected from source collections based on whether their member objects satis
given predicate.

Topic Page

“Overview” 1-1

“Design Principles” 1-2

“Architecture” 1-2

“Query Languages” 1-6

“Key Features” 1-9

“Service Structure” 1-9
Query Service V1.0 April 2000 1-1

1

ese

cified

n
h

 the

 any

nce

and
 the

n
r

rvice
ervice
ultiple
• Produced by query evaluators based on the evaluation of a given predicate. Th
query evaluators may manage implicit collections of objects.

The source and result collections may be typed. The source collection may be spe
by the client or may be the result of previous queries.

1.2 Design Principles

The Query Service exists to allow arbitrary users and objects to invoke queries o
arbitrary collections of other objects. Such queries are declarative statements wit
predicates, including the ability to specify values of attributes; to invoke arbitrary
operations; and to invoke arbitrary services within the OMG environment, such as
Life Cycle, Persistent Object, and Relationship Services.

To support the OMG architecture, the Query Service must allow querying against
objects, with arbitrary attributes and operations.

To be useful in practical situations, the Query Service must allow use of performa
enhancing mechanisms, such as indexing.

To be useful in environments with database systems—object-oriented, relational,
other—and with other systems that store and access large collections of objects,
Query Service must map well to these native systems’ internal mechanisms for
specifying collections and using indexing. The Query Service must also allow the
native systems to contribute to specifying collections and indexing.

To maximize usefulness to the community at large, the Query Service is based o
existing standards for query and extended when necessary to accommodate othe
design principles.

The Query Service also supports flexibility in implementation and extensions.

1.3 Architecture

The Query Service design provides an architecture for a nested and federated se
that can coordinate multiple nested query evaluators, much as the Transaction S
provides an architecture for a nested and federated service that can coordinate m
nested resources managers.
1-2 Query Service V1.0 April 2000

1

any
uery
ct

r all

e
s
 such

s
ch
1.3.1 Query Evaluators: Nesting and Federation

Figure 1-1 Query Evaluators: Nesting and Federation

Objects may participate in the Query Service in two ways. The simplest involves
CORBA object as is. The Query Evaluator is then responsible for evaluating the q
predicate and performing all query operations by invoking operations on that obje
through its published OMG IDL interfaces. Any non-supported operations trigger
exceptions. This mechanism provides the greatest generality, including support fo
CORBA objects, but with the least optimization.

In a more involved manner, objects participate as members of a collection, either
explicit or implicit. The collection supports a specific query interface (that is, the
collection is itself a Query Evaluator). In this case, the Query Evaluator passes th
query predicate to the collection, which then evaluates the predicate and perform
query operations on an appropriate member object, receives any result, combines
results with all other participating object results, and returns this to the caller. Thi
accomplishes the nesting, by passing the query evaluation on to a lower level. Su
nesting may continue to an arbitrary number of levels, without limit.

Client

Query Evaluator

Query Evaluator

Native Query
System

Query Evaluator

Object

Object
Query V1.0 Architecture April 2000 1-3

1

s to
d to

in
ery

ion
ntly
sing

ng
h a

pe

s,

w a

hly
ss
rge
This second way allows Query Evaluators or any associated native query system
evaluate the query using the internal optimization at their disposal. This is expecte
include faster access, caching, and indexing. Interpretation of names embedded
query predicates is determined by the Query Evaluator or its associated native qu
systems.

The Query Service specification does not define evaluation, indexing or optimizat
mechanisms. These are in the province of the implementor and may vary significa
in different environments. The Query Service simply provides a mechanism for pas
the query to such systems and allowing their optimizations to take effect.

1.3.2 Collections

The Query Service provides definitions and interfaces for creating and manipulati
collections of objects. These (explicit) collections may form both the scope to whic
query may be applied and the result of the query, when the result is one or more
objects.

The collections are defined as objects, with methods for adding and removing
members. They may be arbitrary in nature. In particular, they are not limited to ty
extents, as in some object systems, though type extents are examples of such
collections. They may map directly to collections managed by native query system
for optimization, and may also include arbitrary CORBA objects.

Associated iterators are defined to allow manipulation of collections, including
traversal over and retrieval of the objects within the collections. Such iterators allo
constant interface that can be invoked and implemented for arbitrary situations,
including mixtures of general CORBA objects; native query system collections; hig
distributed collections that could not be simultaneously accessed; collections acro
multiple heterogeneous products and systems; very small collections; and very la
collections that could not be materialized physically.
1-4 Query Service V1.0 April 2000

1

query,

d

 of the
ll
BA

e to
dd or
llows

 their
ry
h as
1.3.3 Queryable Collections for Scope and Result

For collections to serve as both the result of a query and as a scope for another
these collections must themselves be Query Evaluators. Such collections are called
Queryable Collections. They support both the Query Evaluator and collection
interfaces, as illustrated in Figure 1-2.

Figure 1-2 Queryable Collections

One of the issues that arises in using Queryable Collections is scoping in a neste
environment. If the collection being queried allows adding arbitrary objects, and if
objects are then added which are outside the scope of the evaluation mechanism
Queryable Collection, then the Queryable Collection would have to provide the fu
functionality of a top-level Query Evaluator, evaluating predicates on arbitrary COR
objects. This would defeat the purpose of nesting.

To solve this problem, we allow Queryable Collection implementations, in respons
the invocation of the add and replace operations, to internally decide whether to a
replace the specified object, and to raise an exception if they decide not to. This a
arbitrary Queryable Collections—which are always supported at the top Query
Evaluator level, and sublevel implementations that scope Queryable Collections to
own domain—to use whatever local mechanisms their (possibly pre-existing) que
engines use. Examples of local mechanisms include optimization capabilities suc
physical and logical indices; clustering; caching, and so forth.

1.3.4 Query Objects

Since queries can be complex and resource-demanding, there are numerous
circumstances under which one would like to:

• Use graphical means to construct a query.

Query
Evaluator Collection

Queryable
Collection

Queryable
Collection

...

query

query

query query
Query V1.0 Architecture April 2000 1-5

1

 and

 back

bort.

e use
 a
t

rch

t and

uery
e, a
ages

ery
er

e
tions.

QL.)

dix
ery.

 so
t

93.

• Save a query and re-execute it later on, maybe with a different set of search
parameters.

• Precompile a query for later execution; this may be for the purpose of syntax
semantics checking and/or query optimization.

• Execute a query in an asynchronous manner; go do something else and come
for the result.

• Check the status of a long-running query and decide whether to continue or a

The Query Service provides the preceding capabilities and extensions through th
of Query objects. A Query object is created by calling a Query Manager, which is
more powerful form of Query Evaluator. Once created, a client of the Query objec
can:

• Use whatever means appropriate to construct the query specification.

• Prepare the query for later execution.

• Execute the query any number of times, with the same or different set of sea
parameters.

• Check the status of the query.

• Obtain the result of the query.

How the Query object does the preceding tasks is determined by the Query objec
its associated Query Manager.

1.4 Query Languages

By using a very general model and by using predicates to deal with queries, the Q
Service is designed to be independent of any specific query languages. Therefor
particular Query Service implementation can be based on a variety of query langu
and their associated query processors.

However, in order to provide query interoperability among the widest variety of qu
systems and to provide object-level query interoperability, a Query Service provid
must support one of the following two query languages: SQL Query or OQL.

(Query capability is commonly implemented in database systems, hence there ar
many products, tools, trained users, and experiences based on these implementa
To leverage this, we base the query language specification on SQL Query and O

• SQL Query. Specifically, SQL-92 Query, which is defined in Chapter 7 (Entry
SQL), and Sections 13.7, 13.8 and 13.10 (Entry SQL) of Reference 1 in Appen
A. SQL Query is used as the generic term to denote the evolution of SQL-92 Qu
That is, it is envisioned that SQL-92 Query will evolve into SQL-9x Query, and
forth. These will be future versions of SQL Query. SQL-92 Query is the curren
version.

• OQL. Specifically, OQL-93, which is defined in Chapter 4 of Reference 4 in
Appendix A. OQL is used as the generic term to denote the evolution of OQL-
That is, it is envisioned that OQL-93 will evolve into OQL-9x, and so on. These
will be future versions of OQL. OQL-93 is the current version.
1-6 Query Service V1.0 April 2000

1

l
ice

QL-
ubset
th
l

QL
QL

QL-92

ct

th
s the

s of

f data
QL-
s

 of

G’s
Also
,

hence
For those Query Service providers who intend to provide only basic object-leve
query interoperability (for example, to support the needs of the Life Cycle Serv
or Property Service), the following must also be supported:

• OQL Basic. Specifically, OQL-93 Basic, which is defined in Sections 4.11.1.2,
4.11.1.3, 4.11.1.4, 4.11.1.5, 4.11.1.6 (set only), 4.11.1.7 (except first and last) and
4.11.1.10 in Reference 4 in Appendix A.

Ideally we would like to specify a single query language, for complete query
interoperability. The most widely used query language in currently available query
systems is SQL-92 Query, which does not support full object query capabilities. O
93 does support full object query capabilities and contains a near (but not exact) s
of SQL-92 Query. Including SQL-92 Query provides the widest interoperability wi
the most query systems, while including OQL-93 provides full OMG Object Mode
support and full object query capabilities.

X3H2 and ODMG have started working together toward merging SQL Query and O
with the goal of specifying a single standard query language. As SQL Query and O
evolve, the OMG will revise the Query Service to conform to future changes.

1.4.1 SQL Query

In the relational database world the accepted standard for database language is S
(Reference 1 in Appendix A). The ANSI X3H2 committee is working on a new
version, SQL3 (Reference 5 in Appendix A), which will include object extensions,
among other things. The committee is still working on the details of the modeling
constructs; the object model under consideration is different from the OMG’s Obje
Model. It is important for the eventual SQL object model to be fully compatible wi
the OMG Object Model so that SQL Query, the query subset of SQL, can serve a
query lingua franca in the OMG environment.

SQL-92 is a full database language. Functionally, it consists of the following type
language statements: schema; data; transaction; connection; session; dynamic;
diagnostics; and embedded exception declaration. Among these, only a subset o
statements deal directly with query. This subset is defined to be SQL-92 Query. S
92 Query basically deals with query over tables (special kind of collections) of row
(special kind of dynamic data structures). As such, it concerns with a sub-domain
object query.

1.4.2 OQL

In the object database world the leading standard is ODMG-93 (Reference 4 in
Appendix A). The ODMG-93 standard includes an object model, based on the OM
Core Object Model, with extensions, to form the proposed object database profile.
included is the Object Definition Language, ODL, which is a strict superset of IDL
providing a means to define objects in this profile model. All extensions, including
attributes and relationships, are visible in the object interfaces as operations, and
remain compatible with OMG IDL and the OMG architecture.
Query V1.0 Query Languages April 2000 1-7

1

QL-
 the

ons.
a
ility
ility

y.
e

and

s
 of
ps
ODMG-93 also includes OQL (that is, OQL-93). OQL-93 is an adaptation of the S
92 Query capability to extend to all objects in the ODMG object model. It includes
ability to include operation invocation in queries, to query over object inheritance
hierarchies, to invoke inter-object relationships, and to query over arbitrary collecti
OQL-93 is a query-only language; that is, it allows evaluation of a predicate and
returned result, but includes no specific constructs for object modification. The ab
within OQL-93 to invoke operations provides the insert, update and delete capab
without violating encapsulation.

The OQL-93 syntax and semantics are not exactly compatible with SQL-92 Quer
However, ODMG is working with X2H2 to address this issue. It is important for th
eventual OQL to be fully compatible with SQL Query so that there is only one
standard query language. .

1.4.3 SQL Query = OQL

Both X3H2 and ODMG have agreed upon a vision of the evolution of SQL Query
OQL, as illustrated in Figure 1-3.

Figure 1-3 SQL Query = OQL

In Figure 1-3, solid lines indicate existing, defined specifications, while dotted line
indicate future specifications. As can be seen, SQL-92 Query is the query portion
SQL-92. OQL-93, being a query only language and having object features, overla
with SQL-92 and is almost exactly compatible with it.

SQL-92

SQL Query
= OQL

SQL-92
Query

OQL-93

SQL
1-8 Query Service V1.0 April 2000

1

93
e

,

ons
jects

 the

s in

s.

ce

ects.

sed.
r any
ty
ility,
ic

ound
SQL-92 will evolve toward a future SQL, which is a full database language. OQL-
will evolve toward a future OQL. The agreement from X3H2 and ODMG is to mak
the query subset of SQL, SQL Query, and OQL identical so that there is a single
common query language specification.

1.5 Key Features

The following are key features of the Query Service:

• Provides operations of selection, insertion, updating, and deletion on collecti
of objects. The objects may be transient or persistent, local or remote; the ob
may have arbitrary attributes and operations.

• Accommodates different granularity of objects accessed by queries, including
good support for high performance access to fine-grained objects.

• Allows the scope of the objects accessible in and via the collections that are
immediate operands of the query operations.

• Supports querying and/or returning complex data structures.

• Supports operating on user defined collections of objects.

• Supports operating on other kinds of collections and sets.

• Allows the use of attributes, inheritance, and procedurally-specified operation
the query predicate and in the computation of results.

• Allows the use of available interfaces defined by OMG-adopted specification

• Allows the use of relationships for navigation, including testing for the existen
of a relationship between objects.

• Does not require breaking the encapsulation provided by the interfaces to obj

In addition, the Query Service:

• Provides an extensible framework for dealing with object query.

• Is independent of the specific syntax and semantics of the query language u
The query language can be SQL Query, OQL, a graphical query language, o
other suitable object query language. In order to provide query interoperabili
among the widest variety of query systems and object-level query interoperab
a Query Service provider must support either SQL Query or OQL (OQL Bas
with basic object-level interoperability) as specified in Section 1.4.

• Allows for associative query and navigational query.

1.6 Service Structure

1.6.1 Overview

The Query Service defines two types of service. The specification is organized ar
these types.
Query V1.0 Key Features April 2000 1-9

1

ate
,
ents

sult
the

n

ure

e
esent
1.6.1.1 Type One: Collections

The Collection and Iterator interfaces define the interfaces to create and manipul
collections of objects. The Collection interface is defined with operations for adding
retrieving, replacing, and removing member objects. The collections that it repres
may be arbitrary in nature. The Iterator interface is defined with operations for
traversing over and retrieving objects within a collection.

1.6.1.2 Type Two: Query Framework

The Query Framework interfaces define a flexible and extensible framework for
dealing with object query. The QueryLanguageType interface provides the scheme
to use the OMG IDL type system to classify query language types. The
QueryEvaluator interface defines the basic operation to evaluate a query. The re
of the query, which can serve as the scope for further queries, is represented by
QueryableCollection . The QueryManager interface defines a more powerful
QueryEvaluator which can be called upon to create arbitrary Query objects. Such
objects can provide the capability for graphical query construction, pre-compilatio
and optimization, asynchronous query execution, and so forth.

1.6.2 Collection Interface Structure

The collection interfaces are arranged into the interface structure illustrated in Fig
1-4. Dotted arrows represent association.

Figure 1-4 Collection interface structure

1.6.3 Query Framework Interface Hierarchy/Structure

The query framework interfaces are arranged into the interface hierarchy/structur
illustrated in Figure 1-5. Solid arrows represent inheritance and dotted arrows repr
association.

Collection IteratorCollectionFactory
1-10 Query Service V1.0 April 2000

1

s.
n
Figure 1-5 Query Framework interface hierarchy/structure

1.6.4 Interface Overview

The Query Service defines the interfaces to support the functionality described in
Section 1.1, “Overview,” on page 1-1.

Table 1-1 and Table 1-2 give high level summaries of the Query Service interface
Collection interfaces are described in detail starting in Section 2.1, “The Collectio
Model,” on page 2-1. Query interfaces are described in Section 2.3, “The Query
Framework Model,” on page 2-8.

Table 1-1 Interfaces defined in the CosQueryCollection module

Interface Purpose

CollectionFactory To create collections

Collection To aggregate objects

Iterator To iterate over collections

 QueryEvaluator

QueryableCollection

QueryQueryManager

Collection CosQuery-
Collection
module

QueryLanguageType

.
Query V1.0 Service Structure April 2000 1-11

1

g

Table 1-2 Interfaces defined in the CosQuery module

Interface Purpose

QueryLanguageType and
its subtypes

To represent query language types

QueryEvaluator To evaluate query predicates and execute query
operations

QueryableCollection To represent the scope and result of queries

QueryManager To create query objects and perform query processin

Query To represent queries
1-12 Query Service V1.0 April 2000

Query Service Interfaces 2
 that

ch

n

s can
Contents

This chapter contains the following topics.

2.1 The Collection Model

2.1.1 Common Types of Collections

The Collection interface allows you to manipulate objects in a group. The objects
are part of a Collection are called its elements. Examples of common types of
Collections are as follows:

• An Equality Collection has elements that can be checked for equality among ea
other. An example is a set.

• A Key Collection uses keys to identify elements (a key is part of an element). A
example is a key bag.

• An Ordered Collection has its elements arranged so that there is always a first
element, last element, next element, and previous element. Ordered Collection
be further classified as one of the following types:

• A Sequential Collection has sequentially ordered elements. An example is a
sequence.

Topic Page

“The Collection Model” 2-1

“The CosQueryCollection Module” 2-2

“The Query Framework Model” 2-8

“The CosQuery Module” 2-11
Query Service V1.0 April 2000 2-1

2

ts
can

he

tion
ts of
he
it
to the

tly
d to
n.
e or

leted
e and
a
t can
• A Sorted Collection has sorted elements. An example is a sorted set (which is
also an equality Collection).

The Query Service defines only a top-level, basic Collection interface that suppor
query on arbitrary collections without restriction to any particular type. Subtyping
be used to map this basic Collection interface into a variety of collection classes,
including the ANSI C++ Standard Template Library (STL), ODMGs, and others. T
OMG Collection Service, available in the future, is expected to fit in similarly well.

2.1.2 Iterators

An Iterator is a movable pointer into a Collection. An Iterator is created in associa
with a Collection and can be used by a client to move through the member elemen
the Collection. When an Iterator is created for an ordered Collection, it points to t
beginning or the first element of the Collection. A series of next operations move
through subsequent elements until it passes through the last element and points
end of the Collection. For unordered Collections, the elements are visited in an
arbitrary order. Each element is visited exactly once.

The Iterator interface allows traversing a Collection in a way that works consisten
for arbitrarily large Collections. In addition to the next operation, which can be use
move through the next element, it provides a reset operation to restart the iteratio
Multiple Iterators can be created to maintain state concerning traversal of the sam
different Collections.

The behavior of an Iterator can become undefined if elements are added to or de
from its associated Collection. This means that its behavior depends upon the typ
implementation of the Collection. In particular, an Iterator may become invalid as
result of such actions. Once an Iterator becomes invalid, it must be reset before i
be used for traversal again.

2.2 The CosQueryCollection Module

The CosQueryCollection module defines the Collection interfaces of the Query
Service. In particular, it defines the

• CollectionFactory interfaces, to create Collections.

• Collection interface, to represent generic collections.

• Iterator interface, to enumerate the Collections.

The CosQueryCollection module is shown below.

module CosQueryCollection {

exception ElementInvalid {};
exception IteratorInvalid {};
exception PositionInvalid {};
2-2 Query Service V1.0 April 2000

2

enum ValueType {TypeBoolean, TypeChar, TypeOctet, TypeShort,
TypeUShort, TypeLong, TypeULong, TypeFloat, TypeDouble, TypeString,
TypeObject, TypeAny, TypeSmallInt, TypeInteger, TypeReal,
TypeDoublePrecision, TypeCharacter, TypeDecimal, TypeNumeric};
struct Decimal {long precision; long scale; sequence<octet> value;}
union Value switch(ValueType) {

case TypeBoolean: boolean b;
case TypeChar: char c;
case TypeOctet: octet o;
case TypeShort : short s;
case TypeUShort : unsigned short us;
case TypeLong : long l;
case TypeULong : unsigned long ul;
case TypeFloat : float f;
case TypeDouble : double d;
case TypeString : string str;
case TypeObject : Object obj;
case TypeAny : any a;
case TypeSmallInt : short si;
case TypeInteger : long i;
case TypeReal : float r;
case TypeDoublePrecision : double dp;
case TypeCharacter : string ch;
case TypeDecimal : Decimal dec;
case TypeNumeric : Decimal n;

};
typedef boolean Null;
union FieldValue switch(Null) {

case false : Value v;
};
typedef sequence<FieldValue> Record;

typedef string Istring;
struct NVPair {Istring name; any value;};
typedef sequence<NVPair> ParameterList;

interface Collection;
interface Iterator;

interface CollectionFactory {
Collection create (in ParameterList params);

};

interface Collection {
readonly attribute long cardinality;

void add_element (in any element) raises(ElementInvalid);
void add_all_elements (in Collection elements)

raises(ElementInvalid);

void insert_element_at (in any element, in Iterator where)
Query V1.0 The CosQueryCollection Module April 2000 2-3

2

a

t of

lly
hat

e
raises(IteratorInvalid, ElementInvalid);

void replace_element_at (in any element, in Iterator where)
raises(IteratorInvalid, PositionInvalid, ElementInvalid);

void remove_element_at (in Iterator where)
raises(IteratorInvalid, PositionInvalid);

void remove_all_elements ();

any retrieve_element_at (in Iterator where)
raises(IteratorInvalid, PositionInvalid);

Iterator create_iterator ();
};

interface Iterator {
any next () raises(IteratorInvalid, PositionInvalid);

void reset ();
boolean more ();

};
};

2.2.1 The CollectionFactory Interface

The CollectionFactory interface defines an operation for creating an instance of
Collection.

2.2.1.1 Creating a Collection

Collection create (in ParameterList params);

This operation creates a new instance of a Collection. The factory is passed a lis
parameters, one of which must be:

“ initial_size ”, type long

which represents an initial, estimated number of elements. The Collection is initia
empty and may grow dynamically, both in elements and size. Other parameters t
may be passed include, for example, “hints” relating to indexing, and so forth.

The ParameterList is defined to be a sequence of name-value pairs, of which th
name is defined to be of type Istring . As is the case in the Naming Service, Istring is
a placeholder for a future OMG IDL internationalized string data type.

2.2.2 The Collection Interface

The Collection interface defines operations to:

• Add elements
2-4 Query Service V1.0 April 2000

2

ents
ions

s to

uery
.

ents

• Replace elements

• Remove elements

• Retrieve elements

to and from a collection and an operation to create iterators for traversing the
collection.

The element type of a collection can be any. This is designed to accommodate
generality. For most common queries, the result collections tend to consist of elem
that are records or objects. For some specific queries, however, the result collect
may consist of elements of any data type.

Record is defined to be a sequence of FieldValues . A FieldValue may be Null or
may have a value. This is designed to provide direct mapping to similar features
available in a wide variety of existing query systems. The type of a FieldValue can be
one of the OMG IDL base types, string, Object or one of the suggested mapping
SQL data types: TypeSmallInt; TypeInteger; TypeReal; TypeDoublePrecision;
TypeCharacter; TypeDecimal; and TypeNumeric. (TypeFloat is the same as that defined
for the OMG IDL base type.)

2.2.2.1 Determining the Cardinality

readonly attribute long cardinality;

This attribute identifies the number of elements that a Collection contains.

2.2.2.2 Adding an Element

void add_element (in any element) raises(ElementInvalid);

This operation adds an element to a Collection. Behaviors of all Iterators of the
Collection become undefined when the element is added.

A Collection implementation, in response to the invocation of the add_element()
operation, may internally decide whether to add the specified element, raising the
ElementInvalid exception if it decides not to add it. As discussed in Section 1.3.3,
“Queryable Collections for Scope and Result,” on page 1-5, this allows sublevel Q
Evaluator implementations that scope Queryable Collections to their own domain

2.2.2.3 Adding Elements from a Collection

void add_all_elements (in Collection elements) raises(ElementInvalid);

This operation adds all elements of the input Collection to a Collection. The elem
are added in the Iterator order of the input Collection and are consistent with the
semantics of add_element() . This operation is really a sequence of add_element() .
If any elements are added, behaviors of all Iterators of the Collection become
undefined.
Query V1.0 The CosQueryCollection Module April 2000 2-5

2

input
me

or,
ty as
ing

or.

f all
2.2.2.4 Inserting an Element

void insert_element_at (in any element, in Iterator where)
raises(IteratorInvalid, ElementInvalid);

This operation inserts an element to a Collection at the position pointed to by the
Iterator. Behaviors of all Iterators of the Collection, except the input Iterator, beco
undefined when the element is inserted.

If the input Iterator is invalid, the IteratorInvalid exception will be raised. The
ElementInvalid exception will be raised as it is for the add_element() operation.

2.2.2.5 Replacing an Element

void replace_element_at (in any element, in Iterator where)
raises(IteratorInvalid, PositionInvalid, ElementInvalid);

This operation replaces the element of a Collection, pointed to by the input Iterat
with the input element. The input element must have the same positioning proper
the replaced element. (Only equality Collections and key Collections have position
property.)

If the input Iterator is invalid, the IteratorInvalid exception will be raised. If the
Iterator does not point at an element, the PositionInvalid exception will be raised.
The ElementInvalid exception will be raised in the same manner as it is for the
add_element() operation.

2.2.2.6 Removing an Element

void remove_element_at (in Iterator where)
raises(IteratorInvalid, PositionInvalid);

This operation removes the element of a Collection, pointed to by the input Iterat
After removal, behaviors of all Iterators of the Collection become undefined.

If the input Iterator is invalid, the IteratorInvalid exception will be raised. If the
Iterator does not point at an element, the PositionInvalid exception will be raised.

2.2.2.7 Removing all Elements

void remove_all_elements ();

This operation removes all elements from a Collection. After removal, behaviors o
Iterators of the Collection become undefined.
2-6 Query Service V1.0 April 2000

2

or.

e

d
n if

et to

SE if
2.2.2.8 Retrieving an Element

any retrieve_element_at (in Iterator where)
raises(IteratorInvalid, PositionInvalid);

This operation retrieves the element of a Collection, pointed to by the input Iterat

If the input Iterator is invalid, the IteratorInvalid exception will be raised. If the
Iterator does not point at an element, the PositionInvalid exception will be raised.

2.2.2.9 Creating an Iterator

Iterator create_iterator ();

This operation creates an Iterator for a Collection. The Iterator is initially set at th
beginning of the Collection.

2.2.3 The Iterator Interface

The Iterator interface defines operations to:

• Access and navigate through elements of a collection

• Reset the iteration

• Test for completion of an iteration

2.2.3.1 Accessing the Current Element

any next () raises(IteratorInvalid, PositionInvalid);

This operation retrieves the element of a Collection, pointed to by the Iterator, an
advances the Iterator position. The operation will raise the IteratorInvalid exceptio
the Iterator is invalid, and the PositionInvalid exception if the Iterator does not point
at an element.

2.2.3.2 Resetting the Iteration

void reset ();

This operation resets the iteration to begin anew. The position of the Iterator is res
the beginning of a Collection.

2.2.3.3 Testing for Completion of an Iteration

boolean more ();

This operation returns TRUE if there are more elements to be accessed and FAL
there are not.
Query V1.0 The CosQueryCollection Module April 2000 2-7

2

h
et of
se

cts

t can
cts

it

2.3 The Query Framework Model

The Query Framework interfaces provide an extensible framework for dealing wit
query. This is accomplished in two ways. First, by providing a standard, generic s
object interfaces for handling query. Second, by providing extensibility so that the
object interfaces can be subtyped for further functionality.

The Query Framework interfaces define two levels of interfaces. The base level
consists of QueryEvaluator and QueryableCollection interfaces and provides the
minimal functionality for query. The advanced level consists of QueryManager and
Query interfaces and provides an extensible functionality for dealing with all aspe
of query.

2.3.1 Query Evaluators

A Query Evaluator is any object that supports the operation to evaluate a query. I
be a single object, an implicit collection of objects, or an explicit collection of obje
(particularly a Queryable Collection, as discussed in Section 2.3.2, “Queryable
Collections,” on page 2-9). An example of a Query Evaluator that manages implic
collections of persistent objects is a database system.

The result of a query evaluation can be anything. In most cases, it is a Queryable
Collection, as illustrated in Figure 2-1. (The solid arrow represents operation
invocation and the dotted arrows represent association.)

Figure 2-1 Query Evaluator and Queryable Collection

Queryable
Collection

Query
Evaluator

Source
Collection

evaluate

Iterator
Result
Collection

CosQuery-
Collection
module
2-8 Query Service V1.0 April 2000

2

ts, but

s are

ions

nd by

mber
 (the
d so

g

ages

d. A
iverse
2.3.2 Queryable Collections

A Queryable Collection supports the QueryEvaluator interface and, therefore, can be
used not only to represent the result of a query that consists of one or more objec
also to define the scope to which further queries may be applied. An especially
interesting kind of Queryable Collection is the type extent, whose member object
instances of a certain object type.

A Queryable Collection evaluates a query by either invoking the evaluation operat
on its member objects if they are Query Evaluators—or by evaluating the query
predicate on the attributes and operations of its member objects if they are not—a
combining the results from such invocations and evaluations. As such, the query
predicate must be a valid predicate for the Queryable Collection object and its me
objects. If any one of its member objects is a Queryable Collection, the predicate
applicable part, that is) must further be a valid predicate for its member objects, an
on. Therefore, the QueryableCollection interface provides a mechanism for nestin
queries to an arbitrary number of levels.

2.3.3 Query Managers

A Query Manager is a more powerful form of Query Evaluator. It provides the
operation to create Query objects. Working in tandem with a Query object, it man
the overall query processing and monitors the query execution. The QueryManager
contains the universe of collections of objects over which queries can be specifie
specific query, as represented by a Query object, operates on a subset of this un
of collections.
Query V1.0 The Query Framework Model April 2000 2-9

2

al

n,
ly or

on,
 the
 be

l
The relationship between a Query object and its Query Manager is shown in
Figure 2-2. (Dotted boxes represent logical entities; dotted arrows represent logic
associations.)

Figure 2-2 Query Manager and Query Object

2.3.4 Query Objects

A Query object represents a query and logically consists of the query specificatio
query status and query results. In addition, it contains the reference, either explicit
implicitly through the Query Manager, to the queryable collection that defines its
scope.

The Query object is responsible for composing and containing a query specificati
including parameters. The query specification may be represented for example, in
form of text or a graphic. A user may select a subset of the query specification to
executed in a query. This is particularly useful for query debugging. The Query
interface is expected to be extended by vendors or users to provide the additiona
functionality for composing and selecting the query specification.

The Query object is responsible for maintaining the status information and log
information regarding a query. The Query interface is expected to be extended by
vendors or users to provide the additional functionality for displaying the status
information.

Query
Specification

Queryable

Query
Result

Query
Status

Query
Manager

Source
Collection

Result
Collection

Collection

Query
2-10 Query Service V1.0 April 2000

2

sing
lts or
, and

ice.

ult
The Query object also contains the results of a query. The Query interface is expected
to be extended by vendors or users to provide the additional functionality for brow
query results. For example, successive results may be appended to previous resu
replace them. A user may browse query results by specifying the version numbers
so forth.

2.4 The CosQuery Module

The CosQuery module defines the query framework interfaces of the Query Serv
In particular, it defines the following interfaces:

• QueryLanguageType interfaces to denote query language types.
• QueryEvaluator interface to represent query evaluators.
• QueryableCollection interface to denote collections which can serve as the res

as well as the source of a query.
• QueryManager interface to create queries and perform query processing.
• Query interface to represent queries.

The CosQuery module is shown below.

module CosQuery {

exception QueryInvalid {string why};
exception QueryProcessingError {string why};
exception QueryTypeInvalid {};

enum QueryStatus {complete, incomplete};

typedef CosQueryCollection::ParameterList ParameterList;
typedef CORBA::InterfaceDef QLType;

interface QueryLanguageType {};
interface SQLQuery : QueryLanguageType {};
interface SQL_92Query : SQLQuery {};
interface OQL : QueryLanguageType {};
interface OQLBasic : OQL {};
interface OQL_93 : OQL {};
interface OQL_93Basic : OQL_93, OQLBasic {};

interface QueryEvaluator {
readonly attribute sequence<QLType> ql_types;
readonly attribute QLType default_ql_type;

any evaluate (in string query, in QLType ql_type, in ParameterList
params) raises(QueryTypeInvalid, QueryInvalid, QueryProcessingError);

};

interface QueryableCollection : QueryEvaluator, CosQueryCollec-
tion::Collection {};
Query V1.0 The CosQuery Module April 2000 2-11

2

with
be
interface QueryManager : QueryEvaluator {
Query create (in string query, in QLType ql_type, in ParameterList

params) raises(QueryTypeInvalid, QueryInvalid);
};

interface Query {
readonly attribute QueryManager query_mgr;

void prepare (in ParameterList params) raises(QueryProcessingEr-
ror);

void execute (in ParameterList params) raises(QueryProcessingEr-
ror);

QueryStatus get_status ();
any get_result ();

};

};

The QueryLanguageType Interfaces

The QueryLanguageType interfaces consist of seven interfaces that form the
interface hierarchy illustrated in Figure 2-3.

Figure 2-3 QueryLanguageType Interface Hierarchy

A Query Service provider is expected to use subtyping from SQL_92Query , OQL_93
or OQL_93Basic to denote the query language that it supports. For example, if a
Query Service provider supports a query language, Object SQL, which complies
both SQL-92Query and OQL-93Basic, then its interface type, ObjectSQL, should
defined to be a subtype of SQL_92Query and OQL_93Basic :

QueryLanguageType

SQLQuery

OQL_93

OQL_93Basic

OQL

OQLBasic

SQL_92Query
2-12 Query Service V1.0 April 2000

2

a

y. For
cts).

uery

e
plied.
interface ObjectSQL : SQL_92Query, OQL_93Basic {};

2.4.1 The QueryEvaluator Interface

The QueryEvaluator interface defines an operation for evaluating queries. It lets
client determine the query language types, and the default one, that it supports.

The result type of a query can be any. This is designed to accommodate generalit
most common queries, the results tend to be Collections (mostly of records or obje
For some specific queries, however, the result may be of any data type.

2.4.1.1 Determining the Supported Query Language Types

readonly attribute sequence<QLType> ql_types;

This attribute identifies the query language types supported by the QueryEvaluator .

2.4.1.2 Determining the Default Query Language Type

readonly attribute QLType default_ql_type;

This attribute identifies the default query language type supported by the
QueryEvaluator .

2.4.1.3 Evaluating a Query

any evaluate (in string query, in QlType ql_type, in
ParameterList params) raises(QueryTypeInvalid,
QueryInvalid, QueryProcessingError);

This operation evaluates a query and performs required query processing. If the q
language type is not specified, the default query language type is assumed.

The query language type specified must be supported by the QueryEvaluator ;
otherwise, the QueryTypeInvalid exception is raised. If the query syntax or
semantics is incorrect or if the input parameter list is incorrect, the QueryInvalid
exception is raised. If any error is encountered during query processing, the
QueryProcessingError exception is raised.

2.4.2 The QueryableCollection Interface

The QueryableCollection interface is a subtype of both the QueryEvaluator and
CosQueryCollection::Collection interfaces. Any collection that supports this
interface can be used to represent the result of a query that consists of one or mor
objects. It can also be used to define the scope to which further queries may be ap
Query V1.0 The CosQuery Module April 2000 2-13

2

sing

uery
tion
2.4.3 The QueryManager Interface

The QueryManager interface is a subtype of the QueryEvaluator interface. It
defines an additional operation for creating Query objects. The QueryManager
interface works in tandem with a Query object in managing the overall query proces
and monitoring the query execution.

2.4.3.1 Creating a Query Object

Query create (in string query, in QlType ql_type, in
ParameterList params) raises(QueryTypeInvalid,
QueryInvalid);

This operation creates a Query object representing the input query. If the query
language type is not specified, the default query language type is assumed.

The query language type specified must be supported by the QueryManager .
Otherwise, the QueryTypeInvalid exception is raised. If the query syntax or
semantics is incorrect or if the input parameter list is incorrect, the QueryInvalid
exception is raised.

2.4.4 The Query Interface

The Query interface defines operations to:

• Prepare the query for execution
• Execute the query
• Determine the preparation and execution status of the query
• Obtain the result of the query

2.4.4.1 Determining the Associated Query Manager

readonly attribute QueryManager query_mgr;

This attribute identifies the QueryManager associated with the Query object.

2.4.4.2 Preparing the Query for Execution

void prepare (in ParameterList params) raises
(QueryProcessingError);

This operation performs the necessary processing, including optimization, on the q
so that it is ready for execution. Query preparation may be carried out in coopera
with the associated QueryManager .

If the input parameter list is incorrect or if any error is encountered during query
preparation, the QueryProcessingError exception is raised.
2-14 Query Service V1.0 April 2000

2

ill
e

may
2.4.4.3 Executing the Query

void execute (in ParameterList params) raises(QueryProcessingError);

This operation executes the query. If the query has not been prepared before, it w
prepare the query first. Query execution may be carried out in cooperation with th
associated QueryManager .

If the input parameter list is incorrect or if any error is encountered during query
execution, the QueryProcessingError exception is raised.

2.4.4.4 Determining the Query Status

QueryStatus get_status ();

This operation returns the preparation and/or execution status of the query. This
be carried out in cooperation with the associated QueryManager .

2.4.4.5 Obtaining the Query Result

any get_result ();

This operation returns the result of the query.
Query V1.0 The CosQuery Module April 2000 2-15

2

2-16 Query Service V1.0 April 2000

References A
e
1. American National Standard X3.135-1992, Database Language - SQL, January,
1993.

2. Object Management Group. CORBA: Common Object Request Broker Architectur
and Specification. Published by the OMG, Framingham, MA. 1995.

3. Object Management Group. Object Services RFP 4, OMG Document Number
94.4.18, May, 1994.

4. Cattell, R.G.G. (ed), The Object Database Standard: ODMG-93, v1.2, Morgan
Kaufmann Publishers, San Mateo, California. 1994.

5. Melton, Jim (ed), SQL3 Part 2: Foundation, ANSI X3H2-94-329, August, 1994.
Query Service V1.0 April 2000 A-1

A

A-2 Query Service V1.0 April 2000

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Service Description
	1.1 Overview
	1.2 Design Principles
	1.3 Architecture
	1.3.1 Query Evaluators: Nesting and Federation
	1.3.2 Collections
	1.3.3 Queryable Collections for Scope and Result
	1.3.4 Query Objects

	1.4 Query Languages
	1.4.1 SQL Query
	1.4.2 OQL
	1.4.3 SQL Query = OQL

	1.5 Key Features
	1.6 Service Structure
	1.6.1 Overview
	1.6.2 Collection Interface Structure
	1.6.3 Query Framework Interface Hierarchy/Structure
	1.6.4 Interface Overview

	2. Query Service Interfaces
	2.1 The Collection Model
	2.1.1 Common Types of Collections
	2.1.2 Iterators

	2.2 The CosQueryCollection Module
	2.2.1 The CollectionFactory Interface
	2.2.2 The Collection Interface
	2.2.3 The Iterator Interface

	2.3 The Query Framework Model
	2.3.1 Query Evaluators
	2.3.2 Queryable Collections
	2.3.3 Query Managers
	2.3.4 Query Objects

	2.4 The CosQuery Module
	2.4.1 The QueryEvaluator Interface
	2.4.2 The QueryableCollection Interface
	2.4.3 The QueryManager Interface
	2.4.4 The Query Interface

	Appendix A - References

