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Data Mining with R

R is a language and environment for statistical computing and
graphics, and is available as free software. The system runs on
Windows, Linux, and Mac, and can be downloaded from

http://cran.r-project.org

Each “command” is executed in an interactive manner, known as
“interpretor,” and is requested in a form of “function,” for
example, it is a function demo (graphics) to show a
demonstration of R graphics.

> demo("graphics") J

R has a very strong data visualization capability along with flexible
database interfaces, critical for data mining.
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Code Execution in R

The function “dgamma(x)" returns the gamma density at the
value x, and the graph of the density is obtained by

> x = seq(0, 5, by=0.001)
> density = dgamma(x, shape=2, rate=2)
> plot(x, density, type="1", main="Gamma Density")

We can create a new function gmixture() which returns the
density value of the mixture of two gamma density.

> gmixture = function(x,alphal,betal,alpha2,beta2,p){
+ p*dgamma(x,alphal,betal) + (1-p)*dgamma(x,alpha2,beta2)
+}

> plot(x, gmixture(x, 0.2, 0.1, 2, 4, 1/3), type="1")

« and [ correspond respectively to the shape and the rate
parameter of gamma density.
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Scripts and Working Directory in R

A script file (usually with extension ".r" or ".R") can be prepared
as an external file, and executed in R with the command

> source(" [script filename]") |

Your external file must be found in the working directory to be
recognized from R. You can always change the working directory
from R via [File]—[Change dir...]. Alternatively you can set the
working directory by

> setwd(" [pathname] ") |
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Adverse Event Reporting System (AERS)

To improve drug safety it is important to develop methodologies
detecting adverse drug events using postmarketing drug
surveillance data. A strong association of drug and adverse
reaction forms the basis for further epidemiological study and
consequently for regulatory actions.

Adverse event reporting system (AERS) is created to monitor a
possible causal relationship between drug and event. The database
contains the information about the entire list D of medical
products and R of medical terms of adverse reaction. Each event
is reported exactly once alone with the list of medical products
prescribed to a patient at the point of event, say “Rosinex &
Ganclex,” and the list of medical terms describing adverse events,
say “Nausea.”
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AERS Data Set

Each event is reported with the list A of drug names and B of
adverse reactions, and the entire data are summarized in terms of
the frequency of such events, denoted by N g. Note that a pair
(A, B) is not necessarily labeled as a valid association of model.
For example, an adverse event of “Rosinex & Ganclex” and
“Nausea” is reported, but the drug combination of Rosinex and
Ganclex may not be necessarily the cause of nausea.

http://math.tntech.edu/machida/AERS.zip

A data set contains a total of 1,090 drugs and 1,072 medical
terms which were reported at least 50 individual incidents from
January 2004 to March 2005.
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Event Frequencies and Report Counts

Let D be the collection of drug names, and R be the collection of
medical terms for adverse reaction. A drug-adverse reaction
relationship is formed as an edge of a bipartite graph G between D
and R. Report counts can be obtained from the frequency Ny g of
event. Here for a pair (/,/) of individual drug and AE we can
define the cell count

CU:Z{NA,BZIIGAJEB}

Note that the total number of reporting events is substantially
smaller than the sum of all the cell counts of the contingency table.

> load("AERS.save")

> AERS[1:10,1:10]

> summary(as.numeric(AERS))

> hist(AERS[AERS < 50], breaks=seq(0,50,by=1), col="blue")
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Marginal Count and Baseline

» Ci. =>_; Cj (marginal count for the i-th drug)
» C; =, Cj (marginal count for the j-th AE)
» C.=>,G = Zj Cj= Z(u) Cjj

where the summation ), indicates the sum over the index i. Then
we can define the baseline by

Ej = G.Cj/C.

> load("DRUG. save")
> DRUG[L:10,]
> load("REAC. save")
> REAC[1:10,]
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Hierarchical Multinomial Model

By £(X]Y = y) we denote the law of probability of a random
variable X conditionally given Y = y for another random variable
Y, and by B(n, p) the binomial distribution with parameter (n, p).
Then the hierarchical binomial model of report count is formed by
a series of binomial distributions.
1. L(C;|C. = n) ~ B(n, p,j) for the list B of adverse reactions.
2. L(Cj|Ci. = n;j) ~ B(n;, pjj) for the pair (i, ) of valid
association

Then we can define the relative report rate by

Aij = Pij/Pj
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Poisson Distribution Model

The hierarchical model of binomial distribution is conditioned upon
C.=nand C. = n;., and related to the unconditional model

Cjj ~ Poisson(ujj) via pj = pjj/pi. and p.j = p.j/p.. where
B = pi f = M e =Y i
J i (i-4)

It is also used to derive the model £(C;.|C. = n) ~ B(n, p;.) of
conditional distribution with p;. = p;./p..
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Parameters of Interest

Hierarchical multinomial or Poisson distribution model can achieve
the interpretability of relative report rates (RRR’s). Assume that
each report count C is a draw from a Poisson distribution with
unknown mean p. Here the values

A=u/E
is treated as parameters, drawn from a common prior distribution.

> load("RRrank.save")

> RR.rank[1:10,]

> summary(RR.rank$LAMBDA)

> hist(RR.. rank$LAMBDA [RR. rank$LAMBDA < 500], col=1)
> source("lambda.r")

> load("RR.save")

> plot.lambda(RR,grid.size=100, hue.size=64,hue.low=0.18)

v
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What is Bayes?

Data
Xi,..., X,

are regarded as independent and identically distributed (iid)
random variables governed by an underlying probability density
function f(x;#). A value 6 represents the characteristics of this
underlying distribution, and is called a parameter. A point estimate
is a “best guess” for the true value 6. Bayesian uses the concept of
prior belief about the parameter 6 of interest. Then the
uncertainty of 6 changes according to the data

X = (X1,...,Xn)

Here Bayesian interprets 6 as a random variable, and the prior
belief is given in the form of probability density 7(6) of 6. The

objective of Bayesian model is to investigate the posterior density
7(0 | x) of 6.
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Bayesian Model

Let f(x; 0) be a density function with parameter § € Q. In a
Bayesian model the parameter space Q2 has a distribution 7(6),
called a prior distribution. Furthermore, f(x; ) is viewed as the
conditional distribution of X given 6. By the Bayes' rule the
conditional density 7(€ | x) can be derived from

m(0)f(x ZW(G if Q is discrete;
(0| x) = 0eQ

0) // m(0)f(x;6)dd if Q is continuous.
Q
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Conjugate Family of Distributions

The distribution 7(6 | x) is called the posterior distribution.
Whether Q is discrete or continuous, the posterior
distribution 7(6 | x) is “proportional” to mw(0)f(x; €) up to the
constant. Thus, we write

(0| x) o< w(0)F(x; 6).

It is often the case that both the prior density function 7(6) and
the posterior density function (6 | x) belong to the same family of
density function 7(6;n) with parameter 1. Then 7(60;7) is called
conjugate to f(x;0).
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Exponential Conjugate Family
Suppose that the pdf has the form

F(x:0) = exp | nco(0) + 3 ¢i(0)ks(x) + h(x) |,
j=1

and that a prior distribution is given by

7[-(9; Mo, M1y - - - anm) X exp CO(H)T/O =+ Z ‘—}(9)771
j=1

Then we obtain the posterior density
7T(9 | X) = 7T(0; No+n,m+ kl(X), cosm + km(X))

Thus, the family of 7(6;n0,m1,...,7m) is conjugate to f(x; 8), and
the parameter (19,71, ..,7m) of prior distribution is called the
hyperparameter.
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Prior Density for RRR's

The prior distribution of relative report rate (RRR) is assumed to
be the mixture of two gamma distributions

m(A) = pg(A; a1, 81) + (1 — p)g(X; az, f2)

where aq, 01, an, B2, p are hyperparameters, and

g\, B) = B2A*"te P T (a) is a gamma density function. The
determination of hyperparameters may not be so important;

a1 =02,61=01,ap =2,0, =4,p=1/3 can be a good choice,
suggested by the fact that the majority of RRR's are well below
one.
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Posterior Density

If the prior density (\) and the baseline E are known then the
posterior density (A | n) given the report count C = n is
proportional to ¢(\; n, E) = e EATEX"71()). Here we can observe

that . )
®(n, E) = / p(A;n)d\ = 7r(n)/<e_EE|>
0 n!
where 7(n) = pf(n; a1, 81, E) + (1 — p) f(n; az, Ba, E) with

f(na,B,E) = (1+ B/E)""(1+ E/B)°T(a + n)/T(a)n!

Here 7(n) represents the marginal probability distribution of the
report count C = n.
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Gamma-Poisson Shrinker

The posterior probability g of the first component can be derived as

_ pf(na1,B1,E)
q =
m(n)

Then the posterior distribution of A\ given C = n is expressed as
the mixture

f(ANm E)=n(ANar+n, P14+ E, a0 +n,B+ E,q)

> load("EBGMrank . save")

> EBGM.rank[1:10,]

> source("lambda.r")

> load("EBGM. save")

> plot.lambda(EBGM ,grid.size=100,hue.size=64,hue.low=0.18)
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