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Data Mining with R

R is a language and environment for statistical computing and
graphics, and is available as free software. The system runs on
Windows, Linux, and Mac, and can be downloaded from

http://cran.r-project.org

Each “command” is executed in an interactive manner, known as
“interpretor,” and is requested in a form of “function,” for
example, it is a function demo(graphics) to show a
demonstration of R graphics.

> demo("graphics")

R has a very strong data visualization capability along with flexible
database interfaces, critical for data mining.
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Code Execution in R

The function “dgamma(x)” returns the gamma density at the
value x , and the graph of the density is obtained by

> x = seq(0, 5, by=0.001)
> density = dgamma(x, shape=2, rate=2)
> plot(x, density, type="l", main="Gamma Density")

We can create a new function gmixture() which returns the
density value of the mixture of two gamma density.

> gmixture = function(x,alpha1,beta1,alpha2,beta2,p){
+ p*dgamma(x,alpha1,beta1) + (1-p)*dgamma(x,alpha2,beta2)
+ }
> plot(x, gmixture(x, 0.2, 0.1, 2, 4, 1/3), type="l")

α and β correspond respectively to the shape and the rate
parameter of gamma density.
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Scripts and Working Directory in R

A script file (usually with extension ”.r” or ”.R”) can be prepared
as an external file, and executed in R with the command

> source("[script filename]")

Your external file must be found in the working directory to be
recognized from R. You can always change the working directory
from R via [File]→[Change dir...]. Alternatively you can set the
working directory by

> setwd("[pathname]")
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Adverse Event Reporting System (AERS)

To improve drug safety it is important to develop methodologies
detecting adverse drug events using postmarketing drug
surveillance data. A strong association of drug and adverse
reaction forms the basis for further epidemiological study and
consequently for regulatory actions.

Adverse event reporting system (AERS) is created to monitor a
possible causal relationship between drug and event. The database
contains the information about the entire list D of medical
products and R of medical terms of adverse reaction. Each event
is reported exactly once alone with the list of medical products
prescribed to a patient at the point of event, say “Rosinex &
Ganclex,” and the list of medical terms describing adverse events,
say “Nausea.”
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AERS Data Set

Each event is reported with the list A of drug names and B of
adverse reactions, and the entire data are summarized in terms of
the frequency of such events, denoted by NA,B . Note that a pair
(A,B) is not necessarily labeled as a valid association of model.
For example, an adverse event of “Rosinex & Ganclex” and
“Nausea” is reported, but the drug combination of Rosinex and
Ganclex may not be necessarily the cause of nausea.

http://math.tntech.edu/machida/AERS.zip

A data set contains a total of 1, 090 drugs and 1, 072 medical
terms which were reported at least 50 individual incidents from
January 2004 to March 2005.
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Event Frequencies and Report Counts

Let D be the collection of drug names, and R be the collection of
medical terms for adverse reaction. A drug-adverse reaction
relationship is formed as an edge of a bipartite graph G between D
and R. Report counts can be obtained from the frequency NA,B of
event. Here for a pair (i , j) of individual drug and AE we can
define the cell count

Cij =
∑
{NA,B : i ∈ A, j ∈ B}

Note that the total number of reporting events is substantially
smaller than the sum of all the cell counts of the contingency table.

> load("AERS.save")
> AERS[1:10,1:10]
> summary(as.numeric(AERS))
> hist(AERS[AERS < 50], breaks=seq(0,50,by=1), col="blue")
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Marginal Count and Baseline

I Ci · =
∑

j Cij (marginal count for the i-th drug)

I C·j =
∑

i Cij (marginal count for the j-th AE)

I C·· =
∑

i Ci · =
∑

j C·j =
∑

(i ,j) Cij

where the summation
∑

i indicates the sum over the index i . Then
we can define the baseline by

Eij = Ci ·C·j/C··

> load("DRUG.save")
> DRUG[1:10,]
> load("REAC.save")
> REAC[1:10,]
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Hierarchical Multinomial Model

By L(X |Y = y) we denote the law of probability of a random
variable X conditionally given Y = y for another random variable
Y , and by B(n, p) the binomial distribution with parameter (n, p).
Then the hierarchical binomial model of report count is formed by
a series of binomial distributions.

1. L(C·j |C·· = n) ∼ B(n, p·j) for the list B of adverse reactions.

2. L(Cij |Ci · = ni ) ∼ B(ni , pij) for the pair (i , j) of valid
association

Then we can define the relative report rate by

λij = pij/p·j
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Poisson Distribution Model

The hierarchical model of binomial distribution is conditioned upon
C·· = n and Ci · = ni ·, and related to the unconditional model
Cij ∼ Poisson(µij) via pij = µij/µi · and p·j = µ·j/µ·· where

µi · =
∑

j

µij ; µ·j =
∑

i

µij ; µ·· =
∑
(i ,j)

µij

It is also used to derive the model L(Ci ·|C·· = n) ∼ B(n, pi ·) of
conditional distribution with pi · = µi ·/µ··
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Parameters of Interest

Hierarchical multinomial or Poisson distribution model can achieve
the interpretability of relative report rates (RRR’s). Assume that
each report count C is a draw from a Poisson distribution with
unknown mean µ. Here the values

λ = µ/E

is treated as parameters, drawn from a common prior distribution.

> load("RRrank.save")
> RR.rank[1:10,]
> summary(RR.rank$LAMBDA)
> hist(RR.rank$LAMBDA[RR.rank$LAMBDA < 500], col=1)
> source("lambda.r")
> load("RR.save")
> plot.lambda(RR,grid.size=100,hue.size=64,hue.low=0.18)
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What is Bayes?

Data
X1, . . . ,Xn

are regarded as independent and identically distributed (iid)
random variables governed by an underlying probability density
function f (x ; θ). A value θ represents the characteristics of this
underlying distribution, and is called a parameter. A point estimate
is a “best guess” for the true value θ. Bayesian uses the concept of
prior belief about the parameter θ of interest. Then the
uncertainty of θ changes according to the data

x = (x1, . . . , xn).

Here Bayesian interprets θ as a random variable, and the prior
belief is given in the form of probability density π(θ) of θ. The
objective of Bayesian model is to investigate the posterior density
π(θ | x) of θ.
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Bayesian Model

Let f (x; θ) be a density function with parameter θ ∈ Ω. In a
Bayesian model the parameter space Ω has a distribution π(θ),
called a prior distribution. Furthermore, f (x; θ) is viewed as the
conditional distribution of X given θ. By the Bayes’ rule the
conditional density π(θ | x) can be derived from

π(θ | x) =


π(θ)f (x; θ)

/∑
θ∈Ω

π(θ)f (x; θ) if Ω is discrete;

π(θ)f (x; θ)

/∫
Ω

π(θ)f (x; θ) dθ if Ω is continuous.
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Conjugate Family of Distributions

The distribution π(θ | x) is called the posterior distribution.
Whether Ω is discrete or continuous, the posterior
distribution π(θ | x) is “proportional” to π(θ)f (x; θ) up to the
constant. Thus, we write

π(θ | x) ∝ π(θ)f (x; θ).

It is often the case that both the prior density function π(θ) and
the posterior density function π(θ | x) belong to the same family of
density function π(θ; η) with parameter η. Then π(θ; η) is called
conjugate to f (x; θ).
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Exponential Conjugate Family

Suppose that the pdf has the form

f (x; θ) = exp

nc0(θ) +
m∑

j=1

cj(θ)kj(x) + h(x)

 ,

and that a prior distribution is given by

π(θ; η0, η1, . . . , ηm) ∝ exp

c0(θ)η0 +
m∑

j=1

cj(θ)ηj

 .

Then we obtain the posterior density

π(θ | x) = π(θ; η0 + n, η1 + k1(x), . . . , ηm + km(x)).

Thus, the family of π(θ; η0, η1, . . . , ηm) is conjugate to f (x; θ), and
the parameter (η0, η1, . . . , ηm) of prior distribution is called the
hyperparameter.
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Prior Density for RRR’s

The prior distribution of relative report rate (RRR) is assumed to
be the mixture of two gamma distributions

π(λ) = pg(λ;α1, β1) + (1− p)g(λ;α2, β2)

where α1, β1, α2, β2, p are hyperparameters, and
g(λ;α, β) = βαλα−1e−βλ/Γ(α) is a gamma density function. The
determination of hyperparameters may not be so important;
α1 = 0.2, β1 = 0.1, α2 = 2, β2 = 4, p = 1/3 can be a good choice,
suggested by the fact that the majority of RRR’s are well below
one.

Statistical Data Mining 16/18



Posterior Density

If the prior density π(λ) and the baseline E are known then the
posterior density π(λ | n) given the report count C = n is
proportional to φ(λ; n,E ) = e−Eλ+Eλnπ(λ). Here we can observe
that

Φ(n,E ) =

∫ ∞

0
ρ(λ; n) dλ = π(n)

/(
e−E En

n!

)
where π(n) = p f (n;α1, β1,E ) + (1− p) f (n;α2, β2,E ) with

f (n;α, β, E ) = (1 + β/E )−n(1 + E/β)−αΓ(α + n)/Γ(α)n!

Here π(n) represents the marginal probability distribution of the
report count C = n.
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Gamma-Poisson Shrinker

The posterior probability q of the first component can be derived as

q =
p f (n;α1, β1,E )

π(n)

Then the posterior distribution of λ given C = n is expressed as
the mixture

f (λ|n,E ) = π(λ;α1 + n, β1 + E , α2 + n, β2 + E , q)

> load("EBGMrank.save")
> EBGM.rank[1:10,]
> source("lambda.r")
> load("EBGM.save")
> plot.lambda(EBGM,grid.size=100,hue.size=64,hue.low=0.18)
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