

Praise for this book

“Software Requirements, Third Edition, is the most valuable requirements guidance you will find.
Wiegers and Beatty cover the entire landscape of practices that today’s business analyst is expected
to know. Whether you are a veteran of requirements specification or a novice on your first project,
this is the book that needs to be on your desk or in your hands.”

—Gary K. Evans, Agile Coach and Use Case Expert, Evanetics, Inc.

“It’s a three-peat: Karl Wiegers and Joy Beatty score again with this third edition. From the first
 edition in 1999 through each successive edition, the guidance that Software Requirements provides
has been the foundation of my requirements consulting practice. To beginning and experienced
 practitioners alike, I cannot recommend this book highly enough.”

—Roxanne Miller, President, Requirements Quest

“The best book on requirements just got better! The third edition’s range of new topics expands
the project circumstances it covers. Using requirements in agile environments is perhaps the most
 significant, because everyone involved still needs to understand what a new system must do—and
agile developers are now an audience who ought to have a good grasp of what’s in this book.”

—Stephen Withall, author of Software Requirement Patterns

“The third edition of Software Requirements is finally available—and it was worth waiting so long. Full
of practical guidance, it helps readers identify many useful practices for their work. I particularly enjoy
the examples and many hands-on solutions that can be easily implemented in real-life scenarios.
A must-read, not only for requirements engineers and analysts but also for project managers.”

—Dr. Christof Ebert, Managing Director, Vector Consulting Services

“Karl and Joy have updated one of the seminal works on software requirements, taking what
was good and improving on it. This edition retains what made the previous versions must-have
 references for anyone working in this space and extends it to tackle the challenges faced in today’s
complex business and technology environment. Irrespective of the technology, business domain,
 methodology, or project type you are working in, this book will help you deliver better outcomes for
your customers.”

—Shane Hastie, Chief Knowledge Engineer, Software Education

“Karl Wiegers’s and Joy Beatty’s new book on requirements is an excellent addition to the literature.
Requirements for large software applications are one of the most difficult business topics of the century.
This new book will help to smooth out a very rough topic.”

—T. Capers Jones, VP and CTO, Namcook Analytics LLC

“Simply put, this book is both a must-read and a great reference for anyone working to define and
manage software development projects. In today’s modern software development world, too often
sound requirements practices are set aside for the lure of “unencumbered” agile. Karl and Joy have
detailed a progressive approach to managing requirements, and detailed how to accommodate the
ever-changing approaches to delivering software.”

—Mark Kulak, Software Development Director, Borland, a Micro Focus company

“I am so pleased to see the updated book on software requirements from Karl Wiegers and Joy
 Beatty. I especially like the latest topic on how to apply effective requirements practices to agile
projects, because it is a service that our consultants are engaged in more and more these days. The
practical guide and real examples of the many different requirement practices are invaluable.”

—Doreen Evans, Managing Director of the Requirements and Business Analysis Practice for Robbins Gioia Inc.

“As an early adopter of Karl’s classic book, Software Requirements, I have been eagerly awaiting his
new edition—and it doesn’t disappoint. Over the years, IT development has undergone a change of
focus from large, new, ‘green-field’ projects towards adoption of ready-made off-the-shelf solutions
and quick-release agile practices. In this latest edition, Karl and Joy explore the implications of these
new developments on the requirements process, with invaluable recommendations based not on
dogma but on what works, honed from their broad and deep experience in the field.”

—Howard Podeswa, CEO, Noble Inc., and author of The Business Analyst’s Handbook

“If you are looking for a practical guide into what software requirements are, how to craft them, and
what to do with them, then look no further than Software Requirements, Third Edition. This usable and
readable text walks you through exactly how to approach common requirements-related scenarios.
The incorporation of multiple stories, case studies, anecdotes, and examples keeps it engaging to
read.”

—Laura Brandenburg, CBAP, Host at Bridging the Gap

“How do you make a good requirements read better? You add content like Karl and Joy did to
 address incorporating product vision, tackling agility issues, covering requirements reuse, tackling
packaged and outsourced software, and addressing specific user classes. You could take an outside
look inside of requirements to address process and risk issues and go beyond just capturing
 functionality.”

—Donald J. Reifer, President, Reifer Consultants LLC

“This new edition keeps pace with the speed of business, both in deepening the foundation of the
second edition and in bringing analysts down-to-earth how-to’s for addressing the surge in agile
 development, using features to control scope, improving elicitation techniques, and expanding
 modeling. Wiegers and Beatty have put together a must-read for anyone in the profession.”

—Keith Ellis, President and CEO, Enfocus Solutions Inc., and author of Business Analysis Benchmark

Software Requirements,
Third Edition

Karl Wiegers and Joy Beatty

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2013 Karl Wiegers and Seilevel

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2013942928
ISBN: 978-0-7356-7966-5

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related to this
book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of this book at
http://www.microsoft.com/learning/booksurvey.

“Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.”

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editors: Devon Musgrave and Carol Dillingham
Project Editor: Carol Dillingham
Editorial Production: Christian Holdener, S4Carlisle Publishing Services
Copyeditor: Kathy Krause
Indexer: Maureen Johnson
Cover: Twist Creative • Seattle

[LSI]
[2013-09-06]

http://www.microsoft.com/learning/booksurvey
mailto:mspinput@microsoft.com
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

For Chris, yet again. Eighth time’s the charm.

—K.W.

For my parents, Bob and Joanne, for a lifetime of encouragement.

—J.B.

Contents at a glance

Introduction xxv
Acknowledgments xxxi

PART I SOFTWARE REQUIREMENTS: WHAT, WHY, AND WHO

CHAPTER 1 The essential software requirement 3

CHAPTER 2 Requirements from the customer’s perspective 25

CHAPTER 3 Good practices for requirements engineering 43

CHAPTER 4 The business analyst 61

PART II REQUIREMENTS DEVELOPMENT

CHAPTER 5 Establishing the business requirements 77

CHAPTER 6 Finding the voice of the user 101

CHAPTER 7 Requirements elicitation 119

CHAPTER 8 Understanding user requirements 143

CHAPTER 9 Playing by the rules 167

CHAPTER 10 Documenting the requirements 181

CHAPTER 11 Writing excellent requirements 203

CHAPTER 12 A picture is worth 1024 words 221

CHAPTER 13 Specifying data requirements 245

CHAPTER 14 Beyond functionality 261

CHAPTER 15 Risk reduction through prototyping 295

CHAPTER 16 First things first: Setting requirement priorities 313

CHAPTER 17 Validating the requirements 329

CHAPTER 18 Requirements reuse 351

CHAPTER 19 Beyond requirements development 365

PART III REQUIREMENTS FOR SPECIFIC PROJECT CLASSES

CHAPTER 20 Agile projects 383

CHAPTER 21 Enhancement and replacement projects 393

CHAPTER 22 Packaged solution projects 405

CHAPTER 23 Outsourced projects 415

viii Contents at a glance

CHAPTER 24 Business process automation projects 421

CHAPTER 25 Business analytics projects 427

CHAPTER 26 Embedded and other real-time systems projects 439

PART IV REQUIREMENTS MANAGEMENT

CHAPTER 27 Requirements management practices 457

CHAPTER 28 Change happens 471

CHAPTER 29 Links in the requirements chain 491

CHAPTER 30 Tools for requirements engineering 503

PART V IMPLEMENTING REQUIREMENTS ENGINEERING

CHAPTER 31 Improving your requirements processes 517

CHAPTER 32 Software requirements and risk management 537

Epilogue 549
Appendix A 551
Appendix B 559
Appendix C 575
Glossary 597
References 605

Index 619

 ix

Contents

Introduction .xxv

Acknowledgments . xxxi

PART I SOFTWARE REQUIREMENTS: WHAT, WHY, AND WHO

Chapter 1 The essential software requirement 3
Software requirements defined .5

Some interpretations of ”requirement” .6

Levels and types of requirements . 7

Working with the three levels .12

Product vs. project requirements .14

Requirements development and management .15

Requirements development .15

Requirements management . 17

Every project has requirements .18

When bad requirements happen to good people .19

Insufficient user involvement .20

Inaccurate planning .20

Creeping user requirements .20

Ambiguous requirements .21

Gold plating .21

Overlooked stakeholders .22

Benefits from a high-quality requirements process22

Chapter 2 Requirements from the customer’s perspective 25
The expectation gap .26

Who is the customer? .27

The customer-development partnership .29

Requirements Bill of Rights for Software Customers31

Requirements Bill of Responsibilities for Software Customers33

x Contents

Creating a culture that respects requirements .36

Identifying decision makers .38

Reaching agreement on requirements .38

The requirements baseline .39

What if you don’t reach agreement? .40

Agreeing on requirements on agile projects 41

Chapter 3 Good practices for requirements engineering 43
A requirements development process framework .45

Good practices: Requirements elicitation .48

Good practices: Requirements analysis .50

Good practices: Requirements specification .51

Good practices: Requirements validation .52

Good practices: Requirements management .53

Good practices: Knowledge .54

Good practices: Project management .56

Getting started with new practices .57

Chapter 4 The business analyst 61
The business analyst role .62

The business analyst’s tasks .63

Essential analyst skills .65

Essential analyst knowledge .68

The making of a business analyst .68

The former user .68

The former developer or tester .69

The former (or concurrent) project manager70

The subject matter expert .70

The rookie .71

The analyst role on agile projects .71

Creating a collaborative team .72

 Contents xi

PART II REQUIREMENTS DEVELOPMENT

Chapter 5 Establishing the business requirements 77
Defining business requirements .78

Identifying desired business benefits .78

Product vision and project scope .78

Conflicting business requirements .80

Vision and scope document .81

1. Business requirements .83

2. Scope and limitations .88

3. Business context .90

Scope representation techniques .92

Context diagram .92

Ecosystem map .94

Feature tree .95

Event list .96

Keeping the scope in focus .97

Using business objectives to make scoping decisions97

Assessing the impact of scope changes .98

Vision and scope on agile projects .98

Using business objectives to determine completion99

Chapter 6 Finding the voice of the user 101
User classes .102

Classifying users .102

Identifying your user classes .105

User personas .107

Connecting with user representatives .108

The product champion .109

External product champions .110

Product champion expectations .111

Multiple product champions .112

xii Contents

Selling the product champion idea .113

Product champion traps to avoid .114

User representation on agile projects .115

Resolving conflicting requirements .116

Chapter 7 Requirements elicitation 119
Requirements elicitation techniques .121

Interviews .121

Workshops .122

Focus groups .124

Observations .125

Questionnaires .127

System interface analysis .127

User interface analysis .128

Document analysis .128

Planning elicitation on your project .129

Preparing for elicitation .130

Performing elicitation activities .132

Following up after elicitation .134

Organizing and sharing the notes .134

Documenting open issues .135

Classifying customer input .135

How do you know when you’re done? .138

Some cautions about elicitation .139

Assumed and implied requirements .140

Finding missing requirements .141

Chapter 8 Understanding user requirements 143
Use cases and user stories .144

The use case approach .147

Use cases and usage scenarios .149

Identifying use cases .157

 Contents xiii

Exploring use cases .158

Validating use cases .160

Use cases and functional requirements .161

Use case traps to avoid .163

Benefits of usage-centric requirements .164

Chapter 9 Playing by the rules 167
A business rules taxonomy .169

Facts .170

Constraints. .170

Action enablers .171

Inferences .173

Computations .173

Atomic business rules . 174

Documenting business rules .175

Discovering business rules .177

Business rules and requirements .178

Tying everything together .180

Chapter 10 Documenting the requirements 181
The software requirements specification .183

Labeling requirements .186

Dealing with incompleteness .188

User interfaces and the SRS .189

A software requirements specification template .190

1. Introduction .192

2. Overall description .193

3. System features .194

4. Data requirements .195

5. External interface requirements .196

6. Quality attributes .197

7. Internationalization and localization requirements198

8. [Other requirements] .199

xiv Contents

Appendix A: Glossary .199

Appendix B: Analysis models .199

Requirements specification on agile projects .199

Chapter 11 Writing excellent requirements 203
Characteristics of excellent requirements .203

Characteristics of requirement statements .204

Characteristics of requirements collections .205

Guidelines for writing requirements .207

System or user perspective .207

Writing style .208

Level of detail .211

Representation techniques .212

Avoiding ambiguity .213

Avoiding incompleteness .216

Sample requirements, before and after .217

Chapter 12 A picture is worth 1024 words 221
Modeling the requirements .222

From voice of the customer to analysis models .223

Selecting the right representations .225

Data flow diagram .226

Swimlane diagram .230

State-transition diagram and state table .232

Dialog map .235

Decision tables and decision trees .239

Event-response tables .240

A few words about UML diagrams .243

Modeling on agile projects .243

A final reminder .244

 Contents xv

Chapter 13 Specifying data requirements 245
Modeling data relationships .245

The data dictionary .248

Data analysis .251

Specifying reports .252

Eliciting reporting requirements .253

Report specification considerations .254

A report specification template .255

Dashboard reporting .257

Chapter 14 Beyond functionality 261
Software quality attributes .262

Exploring quality attributes .263

Defining quality requirements .267

External quality attributes .267

Internal quality attributes .281

Specifying quality requirements with Planguage .287

Quality attribute trade-offs .288

Implementing quality attribute requirements .290

Constraints .291

Handling quality attributes on agile projects .293

Chapter 15 Risk reduction through prototyping 295
Prototyping: What and why .296

Mock-ups and proofs of concept .297

Throwaway and evolutionary prototypes .298

Paper and electronic prototypes .301

Working with prototypes. .303

Prototype evaluation .306

xvi Contents

Risks of prototyping .307

Pressure to release the prototype .308

Distraction by details .308

Unrealistic performance expectations .309

Investing excessive effort in prototypes .309

Prototyping success factors .310

Chapter 16 First things first: Setting requirement priorities 313
Why prioritize requirements? .314

Some prioritization pragmatics .315

Games people play with priorities .316

Some prioritization techniques .317

In or out .318

Pairwise comparison and rank ordering .318

Three-level scale .319

MoSCoW .320

$100 .321

Prioritization based on value, cost, and risk .322

Chapter 17 Validating the requirements 329
Validation and verification .331

Reviewing requirements .332

The inspection process .333

Defect checklist .338

Requirements review tips .339

Requirements review challenges .340

Prototyping requirements .342

Testing the requirements .342

Validating requirements with acceptance criteria .347

Acceptance criteria .347

Acceptance tests .348

 Contents xvii

Chapter 18 Requirements reuse 351
Why reuse requirements? .352

Dimensions of requirements reuse .352

Extent of reuse .353

Extent of modification .354

Reuse mechanism .354

Types of requirements information to reuse .355

Common reuse scenarios .356

Software product lines .356

Reengineered and replacement systems .357

Other likely reuse opportunities .357

Requirement patterns .358

Tools to facilitate reuse .359

Making requirements reusable .360

Requirements reuse barriers and success factors .362

Reuse barriers .362

Reuse success factors .363

Chapter 19 Beyond requirements development 365
Estimating requirements effort .366

From requirements to project plans .369

Estimating project size and effort from requirements 370

Requirements and scheduling .372

From requirements to designs and code .373

Architecture and allocation .373

Software design .374

User interface design .375

From requirements to tests .377

From requirements to success .379

xviii Contents

PART III REQUIREMENTS FOR SPECIFIC PROJECT CLASSES

Chapter 20 Agile projects 383
Limitations of the waterfall .384

The agile development approach .385

Essential aspects of an agile approach to requirements385

Customer involvement .386

Documentation detail .386

The backlog and prioritization .387

Timing .387

Epics, user stories, and features, oh my! .388

Expect change .389

Adapting requirements practices to agile projects390

Transitioning to agile: Now what? .390

Chapter 21 Enhancement and replacement projects 393
Expected challenges .394

Requirements techniques when there is an existing system394

Prioritizing by using business objectives .396

Mind the gap .396

Maintaining performance levels .397

When old requirements don’t exist .398

Which requirements should you specify? .398

How to discover the requirements of an existing system400

Encouraging new system adoption .401

Can we iterate? .402

Chapter 22 Packaged solution projects 405
Requirements for selecting packaged solutions .406

Developing user requirements .406

Considering business rules .407

Identifying data needs .407

 Contents xix

Defining quality requirements .408

Evaluating solutions .408

Requirements for implementing packaged solutions 411

Configuration requirements .411

Integration requirements .412

Extension requirements .412

Data requirements .412

Business process changes .413

Common challenges with packaged solutions .413

Chapter 23 Outsourced projects 415
Appropriate levels of requirements detail .416

Acquirer-supplier interactions .418

Change management .419

Acceptance criteria .420

Chapter 24 Business process automation projects 421
Modeling business processes .422

Using current processes to derive requirements423

Designing future processes first .424

Modeling business performance metrics .424

Good practices for business process automation projects426

Chapter 25 Business analytics projects 427
Overview of business analytics projects .427

Requirements development for business analytics projects429

Prioritizing work by using decisions .430

Defining how information will be used .431

Specifying data needs .432

Defining analyses that transform the data .435

The evolutionary nature of analytics .436

xx Contents

Chapter 26 Embedded and other real-time systems projects 439
System requirements, architecture, and allocation440

Modeling real-time systems .441

Context diagram .442

State-transition diagram .442

Event-response table .443

Architecture diagram .445

Prototyping .446

Interfaces .446

Timing requirements .447

Quality attributes for embedded systems .449

The challenges of embedded systems .453

PART IV REQUIREMENTS MANAGEMENT

Chapter 27 Requirements management practices 457
Requirements management process .458

The requirements baseline .459

Requirements version control .460

Requirement attributes .462

Tracking requirements status .464

Resolving requirements issues .466

Measuring requirements effort .467

Managing requirements on agile projects .468

Why manage requirements? .470

Chapter 28 Change happens 471
Why manage changes? .471

Managing scope creep .472

Change control policy .474

Basic concepts of the change control process . 474

 Contents xxi

A change control process description .475

1. Purpose and scope .476

2. Roles and responsibilities .476

3. Change request status .477

4. Entry criteria .478

5. Tasks .478

6. Exit criteria .479

7. Change control status reporting .479

Appendix: Attributes stored for each request479

The change control board .480

CCB composition .480

CCB charter .481

Renegotiating commitments .482

Change control tools .482

Measuring change activity .483

Change impact analysis .484

Impact analysis procedure .484

Impact analysis template .488

Change management on agile projects .488

Chapter 29 Links in the requirements chain 491
Tracing requirements .491

Motivations for tracing requirements .494

The requirements traceability matrix .495

Tools for requirements tracing .498

A requirements tracing procedure. .499

Is requirements tracing feasible? Is it necessary? .501

Chapter 30 Tools for requirements engineering 503
Requirements development tools .505

Elicitation tools .505

Prototyping tools .505

Modeling tools .506

xxii Contents

Requirements management tools .506

Benefits of using an RM tool .506

RM tool capabilities .508

Selecting and implementing a requirements tool 510

Selecting a tool .511

Setting up the tool and processes .511

Facilitating user adoption .513

PART V IMPLEMENTING REQUIREMENTS ENGINEERING

Chapter 31 Improving your requirements processes 517
How requirements relate to other project processes518

Requirements and various stakeholder groups .520

Gaining commitment to change .521

Fundamentals of software process improvement .522

Root cause analysis .524

The process improvement cycle .526

Assess current practices .526

Plan improvement actions .527

Create, pilot, and roll out processes .528

Evaluate results .529

Requirements engineering process assets .530

Requirements development process assets .531

Requirements management process assets 532

Are we there yet? .533

Creating a requirements process improvement road map535

Chapter 32 Software requirements and risk management 537
Fundamentals of software risk management .538

Elements of risk management .538

Documenting project risks .539

Planning for risk management .542

 Contents xxiii

Requirements-related risks .542

Requirements elicitation .543

Requirements analysis . 544

Requirements specification .545

Requirements validation .545

Requirements management .546

Risk management is your friend .546

Epilogue 549

Appendix A 551

Appendix B 559

Appendix C 575

Glossary 597

References 605

Index 619

 xxv

Introduction

Despite decades of industry experience, many software organizations struggle to
 understand, document, and manage their product requirements. Inadequate user
input, incomplete requirements, changing requirements, and misunderstood business
 objectives are major reasons why so many information technology projects are less
than fully successful. Some software teams aren’t proficient at eliciting requirements
from customers and other sources. Customers often don’t have the time or patience
to participate in requirements activities. In many cases, project participants don’t
even agree on what a “requirement” is. As one writer observed, “Engineers would
rather decipher the words to the Kingsmen’s 1963 classic party song ‘Louie Louie’ than
 decipher customer requirements” (Peterson 2002).

The second edition of Software Requirements was published 10 years prior to this
one. Ten years is a long time in the technology world. Many things have changed in
that time, but others have not. Major requirements trends in the past decade include:

■■ The recognition of business analysis as a professional discipline and the rise of
professional certifications and organizations, such as the International Institute
of Business Analysis and the International Requirements Engineering Board.

■■ The maturing of tools both for managing requirements in a database and
for assisting with requirements development activities such as prototyping,
 modeling, and simulation.

■■ The increased use of agile development methods and the evolution of
 techniques for handling requirements on agile projects.

■■ The increased use of visual models to represent requirements knowledge.

So, what hasn’t changed? Two factors contribute to keeping this topic important and
relevant. First, many undergraduate curricula in software engineering and computer
 science continue to underemphasize the importance of requirements engineering
(which encompasses both requirements development and requirements management).
And second, those of us in the software domain tend to be enamored with technical
and process solutions to our challenges. We sometimes fail to appreciate that
 requirements elicitation—and much of software and systems project work in general—
is primarily a human interaction challenge. No magical new techniques have come
along to automate that, although various tools are available to help geographically
separated people collaborate effectively.

xxvi Introduction

We believe that the practices presented in the second edition for developing and
managing requirements are still valid and applicable to a wide range of software
 projects. The creative business analyst, product manager, or product owner will
thoughtfully adapt and scale the practices to best meet the needs of a particular
 situation. Newly added to this third edition are a chapter on handling requirements for
agile projects and sections in numerous other chapters that describe how to apply and
adapt the practices in those chapters to the agile development environment.

Software development involves at least as much communication as it does
 computing, yet both educational curricula and project activities often emphasize
the computing over the communication aspect. This book offers dozens of tools to
 facilitate that communication and to help software practitioners, managers, marketers,
and customers apply effective requirements engineering methods. The techniques
 presented here constitute a tool kit of mainstream “good practices,” not exotic new
techniques or an elaborate methodology that purports to solve all of your requirements
problems. Numerous anecdotes and sidebars present stories—all true—that illustrate
typical requirements-related experiences; you have likely had similar experiences. Look
for the “true stories” icon, like the one to the left, next to real examples drawn from
many project experiences.

Since the first edition of this book appeared in 1999, we have each worked on
 numerous projects and taught hundreds of classes on software requirements to
people from companies and government agencies of all sizes and types. We’ve
learned that these practices are useful on virtually any project: small projects and
large, new development and enhancements, with local and distributed teams, and
using traditional and agile development methods. The techniques apply to hardware
and systems engineering projects, too, not just software projects. As with any other
 technical practice, you’ll need to use good judgment and experience to learn how to
make the methods work best for you. Think of these practices as tools to help ensure
that you have effective conversations with the right people on your projects.

Benefits this book provides

Of all the software process improvements you could undertake, improved requirements
practices are among the most beneficial. We describe practical, proven techniques that
can help you to:

■■ Write high-quality requirements from the outset of a project, thereby
 minimizing rework and maximizing productivity.

 Introduction xxvii

■■ Deliver high-quality information systems and commercial products that achieve
their business objectives.

■■ Manage scope creep and requirements changes to stay both on target and
under control.

■■ Achieve higher customer satisfaction.

■■ Reduce maintenance, enhancement, and support costs.

Our objective is to help you improve the processes you use for eliciting and
 analyzing requirements, writing and validating requirements specifications, and
managing the requirements throughout the software product development cycle. The
techniques we describe are pragmatic and realistic. Both of us have used these very
 techniques many times, and we always get good results when we do.

Who should read this book

Anyone involved with defining or understanding the requirements for any system that
contains software will find useful information here. The primary audience consists of
individuals who serve as business analysts or requirements engineers on a development
project, be they full-time specialists or other team members who sometimes fill the
 analyst role. A second audience includes the architects, designers, developers, testers,
and other technical team members who must understand and satisfy user expectations
and participate in the creation and review of effective requirements. Marketers and
product managers who are charged with specifying the features and attributes that
will make a product a commercial success will find these practices valuable. Project
 managers will learn how to plan and track the project’s requirements activities and
deal with requirements changes. Yet another audience is made up of stakeholders
who participate in defining a product that meets their business, functional, and quality
needs. This book will help end users, customers who procure or contract for software
products, and numerous other stakeholders understand the importance of the
 requirements process and their roles in it.

Looking ahead

This book is organized into five parts. Part I, “Software requirements: What, why, and
who,” begins with some definitions. If you’re on the technical side of the house, please
share Chapter 2, on the customer-development partnership, with your key customers.
Chapter 3 summarizes several dozen “good practices” for requirements development

xxviii Introduction

and management, as well as an overall process framework for requirements
 development. The role of the business analyst (a role that also goes by many other
names) is the subject of Chapter 4.

Part II, “Requirements development,” begins with techniques for defining the
 project’s business requirements. Other chapters in Part II address how to find
 appropriate customer representatives, elicit requirements from them, and document
user requirements, business rules, functional requirements, data requirements, and
nonfunctional requirements. Chapter 12 describes numerous visual models that
 represent the requirements from various perspectives to supplement natural-language
text, and Chapter 15 addresses the use of prototypes to reduce risk. Other chapters in
Part II present ways to prioritize, validate, and reuse requirements. Part II concludes by
describing how requirements affect other aspects of project work.

New to this edition, Part III contains chapters that recommend the most effective
 requirements approaches for various specific classes of projects: agile projects
 developing products of any type, enhancement and replacement projects, projects
that incorporate packaged solutions, outsourced projects, business process automation
projects, business analytics projects, and embedded and other real-time systems.

The principles and practices of requirements management are the subject of
Part IV, with emphasis on techniques for dealing with changing requirements.
Chapter 29 describes how requirements tracing connects individual requirements
both to their origins and to downstream development deliverables. Part IV concludes
with a description of commercial tools that can enhance the way your teams conduct
both requirements development and requirements management.

The final section of this book, Part V, “Implementing requirements engineering,”
helps you move from concepts to practice. Chapter 31 will help you incorporate
new requirements techniques into your group’s development process. Common
 requirements-related project risks are described in Chapter 32. The self-assessment
in Appendix A can help you select areas that are ripe for improvement. Two other
 appendices present a requirements troubleshooting guide and several sample
 requirements documents so you can see how the pieces all fit together.

Case studies

To illustrate the methods described in this book, we have provided examples from
several case studies based on actual projects, particularly a medium-sized information
system called the Chemical Tracking System. Don’t worry—you don’t need to know
anything about chemistry to understand this project. Sample discussions among

 Introduction xxix

 participants from the case studies are sprinkled throughout the book. No matter what
kind of software your organization builds, you’ll be able to relate to these dialogs.

From principles to practice

It’s difficult to muster the energy needed for overcoming obstacles to change
and putting new knowledge into action. As an aid for your journey to improved
 requirements, most chapters end with several “next steps,” actions you can take to
 begin applying the contents of that chapter immediately. Various chapters offer
 suggested templates for requirements documents, a review checklist, a requirements
prioritization spreadsheet, a change control process, and many other process assets.
These items are available for downloading at the companion content website for this
book:

http://aka.ms/SoftwareReq3E/files

Use them to jump-start your application of these techniques. Start with small
 improvements, but start today.

Some people will be reluctant to try new requirements techniques. Use this
book to educate your peers, your customers, and your managers. Remind them of
 requirements-related problems encountered on previous projects, and discuss the
potential benefits of trying some new approaches.

You don’t need to launch a new development project to begin applying better
requirements practices. Chapter 21 discusses ways to apply many of the techniques
to enhancement and replacement projects. Implementing requirements practices
 incrementally is a low-risk process improvement approach that will prepare you for the
next major project.

The goal of requirements development is to accumulate a set of requirements that
are good enough to allow your team to proceed with design and construction of the
next portion of the product at an acceptable level of risk. You need to devote enough
attention to requirements to minimize the risks of rework, unacceptable products, and
blown schedules. This book gives you the tools to get the right people to collaborate
on developing the right requirements for the right product.

http://aka.ms/SoftwareReq3E/files

xxx Introduction

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion
 content. Any errors that have been reported since this book was published are listed on
our Microsoft Press site at:

http://aka.ms/SoftwareReq3E/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://aka.ms/SoftwareReq3E/errata
mailto:mspinput@microsoft.com
http://twitter.com/MicrosoftPress
http://aka.ms/tellpress

 xxxi

Acknowledgments

Writing a book like this is a team effort that goes far beyond the contributions from the
two authors. A number of people took the time to review the full manuscript and offer
countless suggestions for improvement; they have our deep gratitude. We especially
appreciate the invaluable comments from Jim Brosseau, Joan Davis, Gary K. Evans,
Joyce Grapes, Tina Heidenreich, Kelly Morrison Smith, and Dr. Joyce Statz. Additional
review input was received from Kevin Brennan, Steven Davis, Anne Hartley,
Emily Iem, Matt Leach, Jeannine McConnell, Yaaqub Mohamed, and John Parker.
 Certain individuals reviewed specific chapters or sections in their areas of expertise,
 often providing highly detailed comments. We thank Tanya Charbury, Mike Cohn,
Dr. Alex Dean, Ellen Gottesdiener, Shane Hastie, James Hulgan, Dr. Phil Koopman,
Mark Kulak, Shirley Sartin, Rob Siciliano, and Betsy Stockdale. We especially thank
 Roxanne Miller and Stephen Withall for their deep insights and generous participation.

We discussed aspects of the book’s topics with many people, learning from their
personal experiences and from resource materials they passed along to us. We
 appreciate such contributions from Jim Brosseau, Nanette Brown, Nigel Budd,
Katherine Busey, Tanya Charbury, Jennifer Doyle, Gary Evans, Scott Francis, Sarah Gates,
Dr. David Gelperin, Mark Kerin, Norm Kerth, Dr. Scott Meyers, John Parker,
Kathy Reynolds, Bill Trosky, Dr. Ricardo Valerdi, and Dr. Ian Watson. We also thank the
many people who let us share their anecdotes in our “true stories.”

Numerous staff members at Seilevel contributed to the book. They reviewed specific
sections, participated in quick opinion and experience surveys, shared blog material
they had written, edited final chapters, drew figures, and helped us with operational
issues of various sorts. We thank Ajay Badri, Jason Benfield, Anthony Chen,
Kell Condon, Amber Davis, Jeremy Gorr, Joyce Grapes, John Jertson, Melanie Norrell,
David Reinhardt, Betsy Stockdale, and Christine Wollmuth. Their work made ours easier.
The editorial input from Candase Hokanson is greatly appreciated.

Thanks go to many people at Microsoft Press, including acquisitions editor Devon
Musgrave, project editor Carol Dillingham, project editor Christian Holdener of
 S4Carlisle Publishing Services, copy editor Kathy Krause, proofreader Nicole Schlutt,
indexer Maureen Johnson, compositor Sambasivam Sangaran, and production artists
Balaganesan M., Srinivasan R., and Ganeshbabu G. Karl especially values his long-term
relationship, and friendship, with Devon Musgrave and Ben Ryan.

The comments and questions from thousands of students in our requirements
 training classes over the years have been most helpful in stimulating our thinking about

xxxii Acknowledgments

requirements issues. Our consulting experiences and the thought-provoking questions
we receive from readers have kept us in touch with what practitioners struggle with on
a daily basis and helped us think through some of these difficult topics. Please share
your own experiences with us at karl@processimpact.com or joy.beatty@seilevel.com.

As always, Karl would like to thank his wife, Chris Zambito. And as always, she was
patient and good-humored throughout the process. Karl also thanks Joy for prompting
him into working on this project and for her terrific contributions. Working with her
was a lot of fun, and she added a great deal of value to the book. It was great to have
someone to bounce ideas off, to help make difficult decisions, and to chew hard on
draft chapters before we inflicted them on the reviewers.

Joy is particularly grateful to her husband, Tony Hamilton, for supporting her writing
dreams so soon again; to her daughter, Skye, for making it easy to keep her daily
 priorities balanced; and to Sean and Estelle for being the center of her family fun times.
Joy wants to extend a special thanks to all of the Seilevel employees who collaborate
to push the software requirements field forward. She particularly wants to thank two
 colleagues and friends: Anthony Chen, whose support for her writing this book was
paramount; and Rob Sparks, for his continued encouragement in such endeavors.
Finally, Joy owes a great deal of gratitude to Karl for allowing her to join him in this
 co-authorship, teaching her something new every day, and being an absolute joy to
work with!

mailto:karl@processimpact.com
mailto:joy.beatty@seilevel.com

 101

C H A P T E R 6

Finding the voice of the user

Jeremy walked into the office of Ruth Gilbert, the director of the Drug Discovery Division at Contoso
Pharmaceuticals. Ruth had asked the information technology team that supported Contoso’s research
organization to build a new application to help the research chemists accelerate their exploration for
new drugs. Jeremy was assigned as the business analyst for the project. After introducing himself and
discussing the project in broad terms, Jeremy said to Ruth, “I’d like to talk with some of your chemists to
understand their requirements for the system. Who might be some good people to start with?”

Ruth replied, “I did that same job for five years before I became the division director three years ago.
You don’t really need to talk to any of my people; I can tell you everything you need to know about this
project.”

Jeremy was concerned. Scientific knowledge and technologies change quickly, so he wasn’t sure if
Ruth could adequately represent the current and future needs for users of this complex application.
 Perhaps there were some internal politics going on that weren’t apparent and there was a good reason
for Ruth to create a buffer between Jeremy and the actual users. After some discussion, though, it
 became clear that Ruth didn’t want any of her people involved directly with the project.

“Okay,” Jeremy agreed reluctantly. “Maybe I can start by doing some document analysis and bring
questions I have to you. Can we set up a series of interviews for the next couple of weeks so I can
 understand the kinds of things you expect your scientists to be able to do with this new system?”

“Sorry, I’m swamped right now,” Ruth told him. “I can give you a couple of hours in about three
weeks to clarify things you’re unsure about. Just go ahead and start writing the requirements. When we
meet, then you can ask me any questions you still have. I hope that will let you get the ball rolling on
this project.”

If you share our conviction that customer involvement is a critical factor in delivering excellent
 software, you will ensure that the business analyst (BA) and project manager for your project will
work hard to engage appropriate customer representatives from the outset. Success in software
 requirements, and hence in software development, depends on getting the voice of the user close to
the ear of the developer. To find the voice of the user, take the following steps:

■■ Identify the different classes of users for your product.

■■ Select and work with individuals who represent each user class and other stakeholder groups.

■■ Agree on who the requirements decision makers are for your project.

102 PART II Requirements development

Customer involvement is the best way to avoid the expectation gap described in Chapter 2,
 “Requirements from the customer’s perspective,” a mismatch between the product that customers
expect to receive and what developers build. It’s not enough simply to ask a few customers or their
manager what they want once or twice and then start coding. If developers build exactly what
 customers initially request, they’ll probably have to build it again because customers often don’t
know what they really need. In addition, the BAs might not be talking to the right people or asking
the right questions.

The features that users present as their “wants” don’t necessarily equate to the functionality they
need to perform their tasks with the new product. To gain a more accurate view of user needs, the
business analyst must collect a wide range of user input, analyze and clarify it, and specify just what
needs to be built to let users do their jobs. The BA has the lead responsibility for recording the new
system’s necessary capabilities and properties and for communicating that information to other
stakeholders. This is an iterative process that takes time. If you don’t invest the time to achieve this
shared understanding—this common vision of the intended product—the certain outcomes are
rework, missed deadlines, cost overruns, and customer dissatisfaction.

User classes

People often talk about “the user” for a software system as though all users belong to a monolithic
group with similar characteristics and needs. In reality, most products of any size appeal to a diversity
of users with different expectations and goals. Rather than thinking of “the user” in singular, spend
some time identifying the multiple user classes and their roles and privileges for your product.

Classifying users
Chapter 2 described many of the types of stakeholders that a project might have. As shown in
Figure 6-1, a user class is a subset of the product’s users, which is a subset of the product’s customers,
which is a subset of its stakeholders. An individual can belong to multiple user classes. For example,
an application’s administrator might also interact with it as an ordinary user at times. A product’s
users might differ—among other ways—in the following respects, and you can group users into a
number of distinct user classes based on these sorts of differences:

■■ Their access privilege or security levels (such as ordinary user, guest user, administrator)

■■ The tasks they perform during their business operations

■■ The features they use

■■ The frequency with which they use the product

■■ Their application domain experience and computer systems expertise

■■ The platforms they will be using (desktop PCs, laptop PCs, tablets, smartphones, specialized
devices)

 CHAPTER 6 Finding the voice of the user 103

■■ Their native language

■■ Whether they will interact with the system directly or indirectly

FIGURE 6-1 A hierarchy of stakeholders, customers, users, and user classes.

It’s tempting to group users into classes based on their geographical location or the kind of
 company they work in. One company that creates software used in the banking industry initially
considered distinguishing users based on whether they worked in a large commercial bank, a small
commercial bank, a savings and loan institution, or a credit union. These distinctions really represent
different market segments, though, not different user classes.

A better way to identify user classes is to think about the tasks that various users will perform with
the system. All of those types of financial institutions will have tellers, employees who process loan
applications, business bankers, and so forth. The individuals who perform such activities—whether
they are job titles or simply roles—will have similar functional needs for the system across all of the
financial institutions. Tellers all have to do more or less the same things, business bankers do more or
less the same things, and so on. More logical user class names for a banking system therefore might
include teller, loan officer, business banker, and branch manager. You might discover additional user
classes by thinking of possible use cases, user stories, and process flows and who might perform them.

Certain user classes could be more important than others for a specific project. Favored user
classes are those whose satisfaction is most closely aligned with achieving the project’s business
 objectives. When resolving conflicts between requirements from different user classes or making
priority decisions, favored user classes receive preferential treatment. This doesn’t mean that the
customers who are paying for the system (who might not be users at all) or those who have the most
political clout should necessarily be favored. It’s a matter of alignment with the business objectives.

Disfavored user classes are groups who aren’t supposed to use the product for legal, security,
or safety reasons (Gause and Lawrence 1999). You might build in features to deliberately make it
hard for disfavored users to do things they aren’t supposed to do. Examples include access security

104 PART II Requirements development

 mechanisms, user privilege levels, antimalware features (for non-human users), and usage logging.
Locking a user’s account after four unsuccessful login attempts protects against access by the
 disfavored user class of “user impersonators,” albeit at the risk of inconveniencing forgetful legitimate
users. If my bank doesn’t recognize the computer I’m using, it sends me an email message with a
 one-time access code I have to enter before I can log on. This feature was implemented because of
the disfavored user class of “people who might have stolen my banking information.”

You might elect to ignore still other user classes. Yes, they will use the product, but you don’t
specifically build it to suit them. If there are any other groups of users that are neither favored,
 disfavored, nor ignored, they are of equal importance in defining the product’s requirements.

Each user class will have its own set of requirements for the tasks that members of the class must
perform. There could be some overlap between the needs of different user classes. Tellers, business
bankers, and loan officers all might have to check a bank customer’s account balance, for instance.
Different user classes also could have different quality expectations, such as usability, that will drive
user interface design choices. New or occasional users are concerned with how easy the system is to
learn. Such users like menus, graphical user interfaces, uncluttered screen displays, wizards, and help
screens. As users gain experience with the system, they become more interested in efficiency. They
now value keyboard shortcuts, customization options, toolbars, and scripting facilities.

Trap Don’t overlook indirect user classes. They won’t use your application themselves,
instead accessing its data or services through other applications or through reports. Your
customer once removed is still your customer.

User classes need not be human beings. They could be software agents performing a service on
behalf of a human user, such as bots. Software agents can scan networks for information about goods
and services, assemble custom news feeds, process your incoming email, monitor physical systems
and networks for problems or intrusions, or perform data mining. Internet agents that probe websites
for vulnerabilities or to generate spam are a type of disfavored non-human user class. If you identify
these sorts of disfavored user classes, you might specify certain requirements not to meet their needs
but rather to thwart them. For instance, website tools such as CAPTCHA that validate whether a user is
a human being attempt to block such disruptive access by “users” you want to keep out.

Remember, users are a subset of customers, which are a subset of stakeholders. You’ll need to
consider a much broader range of potential sources of requirements than just direct and indirect user
classes. For instance, even though the development team members aren’t end users of the system
they’re building, you need their input on internal quality attributes such as efficiency, modifiability,
portability, and reusability, as described in Chapter 14, “Beyond functionality.” One company
found that every installation of their product was an expensive nightmare until they introduced an
 “installer” user class so they could focus on requirements such as the development of a customization
 architecture for their product. Look well beyond the obvious end users when you’re trying to identify
stakeholders whose requirements input is necessary.

 CHAPTER 6 Finding the voice of the user 105

Identifying your user classes
Identify and characterize the different user classes for your product early in the project so you can
elicit requirements from representatives of each important class. A useful technique for this is a
collaboration pattern developed by Ellen Gottesdiener called “expand then contract” (Gottesdiener
2002). Start by asking the project sponsor who he expects to use the system. Then brainstorm as
many user classes as you can think of. Don’t get nervous if there are dozens at this stage; you’ll
 condense and categorize them later. It’s important not to overlook a user class, which can lead to
problems later when someone complains that the delivered solution doesn’t meet her needs. Next,
look for groups with similar needs that you can either combine or treat as a major user class with
several subclasses. Try to pare the list down to about 15 or fewer distinct user classes.

One company that developed a specialized product for about 65 corporate customers initially
 regarded each company as a distinct user with unique needs. Grouping their customers into just six
user classes greatly simplified their requirements challenges. Donald Gause and Gerald Weinberg
(1989) offer much advice about casting a wide net to identify potential users, pruning the user list,
and seeking specific users to participate in the project.

Various analysis models can help you identify user classes. The external entities shown outside your
system on a context diagram (see Chapter 5, “Establishing the business requirements”) are candidates
for user classes. A corporate organization chart can also help you discover potential users and other
stakeholders (Beatty and Chen 2012). Figure 6-2 illustrates a portion of the organization chart for
Contoso Pharmaceuticals. Nearly all of the potential users for the system are likely to be found
 somewhere in this chart. While performing stakeholder and user analysis, study the organization
chart to look for:

■■ Departments that participate in the business process.

■■ Departments that are affected by the business process.

■■ Departments or role names in which either direct or indirect users might be found.

■■ User classes that span multiple departments.

■■ Departments that might have an interface to external stakeholders outside the company.

Organization chart analysis reduces the likelihood that you will overlook an important class of
users within that organization. It shows you where to seek potential representatives for specific user
classes, as well as helping determine who the key requirements decision makers might be. You might
find multiple user classes with diverse needs within a single department. Conversely, recognizing
the same user class in multiple departments can simplify requirements elicitation. Studying the
 organization chart helps you judge how many user representatives you’ll need to work with to feel
confident that you thoroughly understand the broad user community’s needs. Also try to understand
what type of information the users from each department might supply based on their role in the
organization and their department’s perspective on the project.

106 PART II Requirements development

FIGURE 6-2 A portion of the organization chart for Contoso Pharmaceuticals.

Document the user classes and their characteristics, responsibilities, and physical locations in
the software requirements specification (SRS) or in a requirements plan for your project. Check that
 information against any information you might already have about stakeholder profiles in the vision
and scope document to avoid conflicts and duplication. Include all pertinent information you have
about each user class, such as its relative or absolute size and which classes are favored. This will
help the team prioritize change requests and conduct impact assessments later on. Estimates of
the volume and type of system transactions help the testers develop a usage profile for the system
so that they can plan their verification activities. The project manager and business analyst of the
 Chemical Tracking System discussed in earlier chapters identified the user classes and characteristics
shown in Table 6-1.

TABLE 6-1 User classes for the Chemical Tracking System

Name Number Description

Chemists
 (favored)

Approximately
1,000 located in
6 buildings

Chemists will request chemicals from vendors and from the chemical
 stockroom. Each chemist will use the system several times per day, mainly for
requesting chemicals and tracking chemical containers into and out of the
laboratory. The chemists need to search vendor catalogs for specific chemical
structures imported from the tools they use for drawing structures.

Buyers 5 Buyers in the purchasing department process chemical requests. They place
and track orders with external vendors. They know little about chemistry and
need simple query facilities to search vendor catalogs. Buyers will not use
the system’s container-tracking features. Each buyer will use the system an
 average of 25 times per day.

Chemical
 stockroom staff

6 technicians,
1 supervisor

The chemical stockroom staff manages an inventory of more than 500,000
chemical containers. They will supply containers from three stockrooms,
 request new chemicals from vendors, and track the movement of all
 containers into and out of the stockrooms. They are the only users of the
 inventory-reporting feature. Because of their high transaction volume,
 features that are used only by the chemical stockroom staff must be
 automated and efficient.

Health
and Safety
Department staff
(favored)

1 manager The Health and Safety Department staff will use the system only to generate
predefined quarterly reports that comply with federal and state chemical
usage and disposal reporting regulations. The Health and Safety Department
manager will request changes in the reports periodically as government
 regulations change. These report changes are of the highest priority, and
implementation will be time critical.

 CHAPTER 6 Finding the voice of the user 107

Consider building a catalog of user classes that recur across multiple applications. Defining user
classes at the enterprise level lets you reuse those user class descriptions in future projects. The next
system you build might serve the needs of some new user classes, but it probably will also be used
by user classes from your earlier systems. If you do include the user-class descriptions in the project’s
SRS, you can incorporate entries from the reusable user-class catalog by reference and just write
descriptions of any new groups that are specific to that application.

User personas

To help bring your user classes to life, consider creating a persona for each one, a description of a
representative member of the user class (Cooper 2004; Leffingwell 2011). A persona is a description
of a hypothetical, generic person who serves as a stand-in for a group of users having similar
 characteristics and needs. You can use personas to help you understand the requirements and to
design the user experience to best meet the needs of specific user communities.

A persona can serve as a placeholder when the BA doesn’t have an actual user representative
at hand. Rather than having progress come to a halt, the BA can envision a persona performing
a particular task or try to assess what the persona’s preferences would be, thereby drafting a
 requirements starting point to be confirmed when an actual user is available. Persona details for a
commercial customer include social and demographic characteristics and behaviors, preferences,
 annoyances, and similar information. Make sure the personas you create truly are representative of
their user class, based on market, demographic, and ethnographic research.

Here’s an example of a persona for one user class on the Chemical Tracking System:

Fred, 41, has been a chemist at Contoso Pharmaceuticals since he received his Ph.D.
14 years ago. He doesn’t have much patience with computers. Fred usually works
on two projects at a time in related chemical areas. His lab contains approximately
300 bottles of chemicals and gas cylinders. On an average day, he’ll need four new
chemicals from the stockroom. Two of these will be commercial chemicals in stock,
one will need to be ordered, and one will come from the supply of proprietary Contoso
chemical samples. On occasion, Fred will need a hazardous chemical that requires
special training for safe handling. When he buys a chemical for the first time, Fred
wants the material safety data sheet emailed to him automatically. Each year, Fred will
synthesize about 20 new proprietary chemicals to go into the stockroom. Fred wants
a report of his chemical usage for the previous month to be generated automatically
and sent to him by email so that he can monitor his chemical exposure.

As the business analyst explores the chemists’ requirements, he can think about Fred as the archetype
of this user class and ask himself, “What would Fred need to do?” Working with a persona makes the
requirements thought process more tangible than if you simply contemplate what a whole faceless
group of people might want. Some people choose a random human face of the appropriate gender
to make a persona seem even more real.

108 PART II Requirements development

Dean Leffingwell (2011) suggests that you design the system to make it easy for the individual
described in your persona to use the application. That is, you focus on meeting that one (imaginary)
person’s needs. Provided you’ve created a persona that accurately represents the user class, this
should help you do a good job of satisfying the needs and expectations of the whole class. As one
colleague related, “On a project for servicing coin-operated vending machines, I introduced Dolly the
Serviceperson and Ralph the Warehouse Supervisor. We wrote scenarios for them and they became
part of the project team—virtually.”

Connecting with user representatives

Every kind of project—corporate information systems, commercial applications, embedded systems,
websites, contracted software—needs suitable representatives to provide the voice of the user. These
users should be involved throughout the development life cycle, not just in an isolated requirements
phase at the beginning of the project. Each user class needs someone to speak for it.

It’s easiest to gain access to actual users when you’re developing applications for deployment
 within your own company. If you’re developing commercial software, you might engage people
from your beta-testing or early-release sites to provide requirements input much earlier in the
 development process. (See the “External product champions” section later in this chapter). Consider
setting up focus groups of current users of your products or your competitors’ products. Instead of
just guessing at what your users might want, ask some of them.

One company asked a focus group to perform certain tasks with various digital cameras and
 computers. The results indicated that the company’s camera software took too long to perform the
most common operation because of a design decision that was made to accommodate less likely
 scenarios as well. The company changed their next camera to reduce customer complaints about speed.

Be sure that the focus group represents the kinds of users whose needs should drive your product
development. Include both expert and less experienced customers. If your focus group represents
only early adopters or blue-sky thinkers, you might end up with many sophisticated and technically
difficult requirements that few customers find useful.

Figure 6-3 illustrates some typical communication pathways that connect the voice of the user
to the ear of the developer. One study indicated that employing more kinds of communication
links and more direct links between developers and users led to more successful projects (Keil and
Carmel 1995). The most direct communication occurs when developers can talk to appropriate users
 themselves, which means that the developer is also performing the business analyst role. This can
work on very small projects, provided the developer involved has the appropriate BA skills, but it
doesn’t scale up to large projects with thousands of potential users and dozens of developers.

 CHAPTER 6 Finding the voice of the user 109

FIGURE 6-3 Some possible communication pathways between the user and the developer.

As in the children’s game “Telephone,” intervening layers between the user and the developer
 increase the chance of miscommunication and delay transmission. Some of these intervening layers
add value, though, as when a skilled BA works with users or other participants to collect, evaluate,
 refine, and organize their input. Recognize the risks that you assume by using marketing staff,
 product managers, subject matter experts, or others as surrogates for the actual voice of the user.
Despite the obstacles to—and the cost of—optimizing user representation, your product and your
customers will suffer if you don’t talk to the people who can provide the best information.

The product champion

Many years ago I worked in a small software development group that supported the scientific
 research activities at a major corporation. Each of our projects included a few key members of
our user community to provide the requirements. We called these people product champions
(Wiegers 1996). The product champion approach provides an effective way to structure that
all-important customer-development collaborative partnership discussed in Chapter 2.

110 PART II Requirements development

Each product champion serves as the primary interface between members of a single user class
and the project’s business analyst. Ideally, the champions will be actual users, not surrogates such as
funding sponsors, marketing staff, user managers, or software developers imagining themselves to be
users. Product champions gather requirements from other members of the user classes they represent
and reconcile inconsistencies. Requirements development is thus a shared responsibility of the BA and
selected users, although the BA should actually write the requirements documents. It’s hard enough
to write good requirements if you do it for a living; it is not realistic to expect users who have never
written requirements before to do a good job.

The best product champions have a clear vision of the new system. They’re enthusiastic because
they see how it will benefit them and their peers. Champions should be effective communicators
who are respected by their colleagues. They need a thorough understanding of the application
domain and the solution’s operating environment. Great product champions are in demand for other
 assignments, so you’ll have to build a persuasive case for why particular individuals are critical to
project success. For example, product champions can lead adoption of the application by the user
community, which might be a success metric that managers will appreciate. We have found that good
product champions made a huge difference in our projects, so we offer them public reward and
 recognition for their contributions.

Our software development teams enjoyed an additional benefit from the product champion
approach. On several projects, we had excellent champions who spoke out on our behalf with their
colleagues when the customers wondered why the software wasn’t done yet. “Don’t worry about it,”
the champions told their peers and their managers. “I understand and agree with the software team’s
approach to software engineering. The time we’re spending on requirements will help us get the
system we really need and will save time in the long run.” Such collaboration helps break down the
tension that can arise between customers and development teams.

The product champion approach works best if each champion is fully empowered to make binding
decisions on behalf of the user class he represents. If a champion’s decisions are routinely overruled
by others, his time and goodwill are being wasted. However, the champions must remember that they
are not the sole customers. Problems arise when the individual filling this critical liaison role doesn’t
adequately communicate with his peers and presents only his own wishes and ideas.

External product champions
When developing commercial software, it can be difficult to find product champions from outside
your company. Companies that develop commercial products sometimes rely on internal subject
matter experts or outside consultants to serve as surrogates for actual users, who might be unknown
or difficult to engage. If you have a close working relationship with some major corporate customers,
they might welcome the opportunity to participate in requirements elicitation. You might give
 external product champions economic incentives for their participation. Consider offering them
discounts on the product or paying for the time they spend working with you on requirements. You
still face the challenge of how to avoid hearing only the champions’ requirements and overlooking
the needs of other stakeholders. If you have a diverse customer base, first identify core requirements
that are common to all customers. Then define additional requirements that are specific to individual
corporate customers, market segments, or user classes.

 CHAPTER 6 Finding the voice of the user 111

Another alternative is to hire a suitable product champion who has the right background. One
company that developed a retail point-of-sale and back-office system for a particular industry hired
three store managers to serve as full-time product champions. As another example, my longtime
 family doctor, Art, left his medical practice to become the voice-of-the-physician at a medical
 software company. Art’s new employer believed that it was worth the expense to hire a doctor to help
the company build software that other doctors would accept. A third company hired several former
employees from one of their major customers. These people provided valuable domain expertise as
well as insight into the politics of the customer organization. To illustrate an alternative engagement
model, one company had several corporate customers that used their invoicing systems extensively.
Rather than bringing in product champions from the customers, the developing company sent BAs to
the customer sites. Customers willingly dedicated some of their staff time to helping the BAs get the
right requirements for the new invoicing system.

Anytime the product champion is a former or simulated user, watch out for disconnects between
the champion’s perceptions and the current needs of real users. Some domains change rapidly,
whereas others are more stable. Regardless, if people aren’t operating in the role anymore, they
 simply might have forgotten the intricacies of the daily job. The essential question is whether the
product champion, no matter what her background or current job, can accurately represent the
needs of today’s real users.

Product champion expectations
To help the product champions succeed, document what you expect your champions to do. These
written expectations can help you build a case for specific individuals to fill this critical role. Table 6-2
identifies some activities that product champions might perform (Wiegers 1996). Not every champion
will do all of these; use this table as a starting point to negotiate each champion’s responsibilities.

TABLE 6-2 Possible product champion activities

Category Activities

Planning ■■ Refine the scope and limitations of the product.
■■ Identify other systems with which to interact.
■■ Evaluate the impact of the new system on business operations.
■■ Define a transition path from current applications or manual operations.
■■ Identify relevant standards and certification requirements.

Requirements ■■ Collect input on requirements from other users.
■■ Develop usage scenarios, use cases, and user stories.
■■ Resolve conflicts between proposed requirements within the user class.
■■ Define implementation priorities.
■■ Provide input regarding performance and other quality requirements.
■■ Evaluate prototypes.
■■ Work with other decision makers to resolve conflicts among requirements from different

stakeholders.
■■ Provide specialized algorithms.

112 PART II Requirements development

Category Activities

Validation and
 verification

■■ Review requirements specifications.
■■ Define acceptance criteria.
■■ Develop user acceptance tests from usage scenarios.
■■ Provide test data sets from the business.
■■ Perform beta testing or user acceptance testing.

User aids ■■ Write portions of user documentation and help text.
■■ Contribute to training materials or tutorials.
■■ Demonstrate the system to peers.

Change management ■■ Evaluate and prioritize defect corrections and enhancement requests.
■■ Dynamically adjust the scope of future releases or iterations.
■■ Evaluate the impact of proposed changes on users and business processes.
■■ Participate in making change decisions.

Multiple product champions
One person can rarely describe the needs for all users of an application. The Chemical Tracking
System had four major user classes, so it needed four product champions selected from the internal
user community at Contoso Pharmaceuticals. Figure 6-4 illustrates how the project manager set up
a team of BAs and product champions to elicit the right requirements from the right sources. These
champions were not assigned full time, but each one spent several hours per week working on the
project. Three BAs worked with the four product champions to elicit, analyze, and document their
requirements. (One BA worked with two product champions because the Buyer and the Health and
Safety Department user classes were small and had few requirements.) One of the BAs assembled all
the input into a unified SRS.

FIGURE 6-4 Product champion model for the Chemical Tracking System.

We didn’t expect a single person to provide all the diverse requirements for the hundreds of
 chemists at Contoso. Don, the product champion for the Chemist user class, assembled a backup

 CHAPTER 6 Finding the voice of the user 113

team of five chemists from other parts of the company. They represented subclasses within the broad
Chemist user class. This hierarchical approach engaged additional users in requirements development
while avoiding the expense of massive workshops or dozens of individual interviews. Don always
strove for consensus. However, he willingly made the necessary decisions when agreement wasn’t
achieved so the project could move ahead. No backup team was necessary when the user class was
small enough or cohesive enough that one individual truly could represent the group’s needs.1

The voiceless user class
A business analyst at Humongous Insurance was delighted that an influential user, Rebecca,
agreed to serve as product champion for the new claims processing system. Rebecca had many
ideas about the system features and user interface design. Thrilled to have the guidance of an
expert, the development team happily complied with her requests. After delivery, though, they
were shocked to receive many complaints about how hard the system was to use.

Rebecca was a power user. She specified usability requirements that were great for experts,
but the 90 percent of users who weren’t experts found the system unintuitive and difficult to
learn. The BA didn’t recognize that the claims processing system had at least two user classes.
The large group of non–power users was disenfranchised in the requirements and user interface
design processes. Humongous paid the price in an expensive redesign. The BA should have
engaged at least one more product champion to represent the large class of nonexpert users.

Selling the product champion idea
Expect to encounter resistance when you propose the idea of having product champions on your
projects. “The users are too busy.” “Management wants to make the decisions.” “They’ll slow us down.”
“We can’t afford it.” “They’ll run amok and scope will explode.” “I don’t know what I’m supposed to
do as a product champion.” Some users won’t want to cooperate on a project that will make them
change how they work or might even threaten their jobs. Managers are sometimes reluctant to
 delegate authority for requirements to ordinary users.

Separating business requirements from user requirements alleviates some of these discomforts. As
an actual user, the product champion makes decisions at the user requirements level within the scope
boundaries imposed by the business requirements. The management sponsor retains the authority
to make decisions that affect the product vision, project scope, business-related priorities, schedule,
or budget. Documenting and negotiating each product champion’s role and responsibilities give
 candidate champions a comfort level about what they’re being asked to do. Remind management
that a product champion is a key contributor who can help the project achieve its business objectives.

1 There’s an interesting coda to this story. Years after I worked on this project, a man in a class I was teaching said he
had worked at the company that Contoso Pharmaceuticals had contracted to build the Chemical Tracking System. The
developers found that the requirements specification we created using this product champion model provided a solid
foundation for the development work. The system was delivered successfully and was used at Contoso for many years.

114 PART II Requirements development

If you encounter resistance, point out that insufficient user involvement is a leading cause of
 software project failure. Remind the protesters of problems they’ve experienced on previous projects
that trace back to inadequate user input. Every organization has horror stories of new systems that
didn’t satisfy user needs or failed to meet unstated usability or performance expectations. You
can’t afford to rebuild or discard systems that don’t measure up because no one understood the
 requirements. Product champions provide one way to get that all-important customer input in a
timely way, not at the end of the project when customers are disappointed and developers are tired.

Product champion traps to avoid
The product champion model has succeeded in many environments. It works only when the product
champions understand and sign up for their responsibilities, have the authority to make decisions
at the user requirements level, and have time available to do the job. Watch out for the following
 potential problems:

■■ Managers override the decisions that a qualified and duly authorized product champion
makes. Perhaps a manager has a wild new idea at the last minute, or thinks he knows what the
users need. This behavior often results in dissatisfied users and frustrated product champions
who feel that management doesn’t trust them.

■■ A product champion who forgets that he is representing other customers and presents only
his own requirements won’t do a good job. He might be happy with the outcome, but others
likely won’t be.

■■ A product champion who lacks a clear vision of the new system might defer decisions to the
BA. If all of the BA’s ideas are fine with the champion, the champion isn’t providing much help.

■■ A senior user might nominate a less experienced user as champion because she doesn’t have
time to do the job herself. This can lead to backseat driving from the senior user who still
wishes to strongly influence the project’s direction.

Beware of users who purport to speak for a user class to which they do not belong. Rarely, an
individual might actively try to block the BA from working with the ideal contacts for some reason.
On the Chemical Tracking System, the product champion for the chemical stockroom staff—herself
a former chemist—initially insisted on providing what she thought were the needs of the chemist
user class. Unfortunately, her input about current chemist needs wasn’t accurate. It was difficult to
 convince her that this wasn’t her job, but the BA didn’t let her intimidate him. The project manager
lined up a separate product champion for the chemists, who did a great job of collecting, evaluating,
and relaying that community’s requirements.

 CHAPTER 6 Finding the voice of the user 115

User representation on agile projects

Frequent conversations between project team members and appropriate customers are the most
effective way to resolve many requirements issues and to flesh out requirements specifics when they
are needed. Written documentation, however detailed, is an incomplete substitute for these ongoing
communications. A fundamental tenet of Extreme Programming, one of the early agile development
methods, is the presence of a full-time, on-site customer for these discussions (Jeffries, Anderson, and
Hendrickson, 2001).

Some agile development methods include a single representative of stakeholders called a
product owner in the team to serve as the voice of the customer (Schwaber 2004; Cohn 2010;
Leffingwell 2011). The product owner defines the product’s vision and is responsible for developing
and prioritizing the contents of the product backlog. (The backlog is the prioritized list of user
 stories—requirements—for the product and their allocation to upcoming iterations, called sprints
in the agile development method called Scrum.) The product owner therefore spans all three levels
of requirements: business, user, and functional. He essentially straddles the product champion and
 business analyst functions, representing the customer, defining product features, prioritizing them,
and so forth. Ultimately, someone does have to make decisions about exactly what capabilities to
deliver in the product and when. In Scrum, that’s the product owner’s responsibility.

The ideal state of having a single product owner isn’t always practical. We know of one company
that was implementing a package solution to run their insurance business. The organization was
too big and complex to have one person who understood everything in enough detail to make all
 decisions about the implementation. Instead, the customers selected a product owner from each
department to own the priorities for the functionality used by that department. The company’s CIO
served as the lead product owner. The CIO understood the entire product vision, so he could ensure
that the departments were on track to deliver that vision. He had responsibility for decision making
when there were conflicts between department-level product owners.

The premises of the on-site customer and close customer collaboration with developers that
agile methods espouse certainly are sound. In fact, we feel strongly that all development projects
 warrant this emphasis on user involvement. As you have seen, though, all but the smallest projects
have multiple user classes, as well as numerous additional stakeholders whose interests must be
 represented. In many cases it’s not realistic to expect a single individual to be able to adequately
 understand and describe the needs of all relevant user classes, nor to make all the decisions
 associated with product definition. Particularly with internal corporate projects, it will generally work
better to use a representative structure like the product champion model to ensure adequate user
engagement.

116 PART II Requirements development

The product owner and product champion schemes are not mutually exclusive. If the product
owner is functioning in the role of a business analyst, rather than as a stakeholder representative
himself, he could set up a structure with one or more product champions to see that the most
 appropriate sources provide input. Alternatively, the product owner could collaborate with one or
more business analysts, who then work with stakeholders to understand their requirements. The
product owner would then serve as the ultimate decision maker.

“On-sight” customer
I once wrote programs for a research scientist who sat about 10 feet from my desk. John
could provide instantaneous answers to my questions, provide feedback on user interface
designs, and clarify our informally written requirements. One day John moved to a new office,
around the corner on the same floor of the same building, about 100 feet away. I perceived an
 immediate drop in my programming productivity because of the cycle time delay in getting
John’s input. I spent more time fixing problems because sometimes I went down the wrong
path before I could get a course correction. There’s no substitute for having the right customers
continuously available to the developers both on-site and “on-sight.” Beware, though, of
 too-frequent interruptions that make it hard for people to refocus their attention on their work.
It can take up to 15 minutes to reimmerse yourself into the highly productive, focused state of
mind called flow (DeMarco and Lister 1999).

An on-site customer doesn’t guarantee the desired outcome. My colleague Chris, a project
manager, established a development team environment with minimal physical barriers and engaged
two product champions. Chris offered this report: “While the close proximity seems to work for the
development team, the results with product champions have been mixed. One sat in our midst and
still managed to avoid us all. The new champion does a fine job of interacting with the developers
and has truly enabled the rapid development of software.” There is no substitute for having the right
people, in the right role, in the right place, with the right attitude.

Resolving conflicting requirements

Someone must resolve conflicting requirements from different user classes, reconcile inconsistencies,
and arbitrate questions of scope that arise. The product champions or product owner can handle this
in many, but likely not all, cases. Early in the project, determine who the decision makers will be for
requirements issues, as discussed in Chapter 2. If it’s not clear who is responsible for making these
decisions or if the authorized individuals abdicate their responsibilities, the decisions will fall to the
developers or analysts by default. Most of them don’t have the necessary knowledge and perspective

 CHAPTER 6 Finding the voice of the user 117

to make the best business decisions, though. Analysts sometimes defer to the loudest voice they hear
or to the person highest on the food chain. Though understandable, this is not the best strategy.
Decisions should be made as low in the organization’s hierarchy as possible by well-informed people
who are close to the issues.

Table 6-3 identifies some requirements conflicts that can arise on projects and suggests ways
to handle them. The project’s leaders need to determine who will decide what to do when such
 situations arise, who will make the call if agreement is not reached, and to whom significant issues
must be escalated when necessary.

TABLE 6-3 Suggestions for resolving requirements disputes

Disagreement between How to resolve

Individual users Product champion or product owner decides

User classes Favored user class gets preference

Market segments Segment with greatest impact on business success gets preference

Corporate customers Business objectives dictate direction

Users and user managers Product owner or product champion for the user class decides

Development and customers Customers get preference, but in alignment with business objectives

Development and marketing Marketing gets preference

Trap Don’t justify doing whatever any customer demands because “The customer is always
right.” We all know the customer is not always right (Wiegers 2011). Sometimes, a customer
is unreasonable, uninformed, or in a bad mood. The customer always has a point, though,
and the software team must understand and respect that point.

These negotiations don’t always turn out the way the analyst might hope. Certain customers
might reject all attempts to consider reasonable alternatives and other points of view. We’ve seen
cases where marketing never said no to a customer request, no matter how infeasible or expensive.
The team needs to decide who will be making decisions on the project’s requirements before they
confront these types of issues. Otherwise, indecision and the revisiting of previous decisions can stall
the project in endless wrangling. If you’re a BA caught in this dilemma, rely on your organizational
structure and processes to work through the disagreements. But, as we’ve cautioned before, there
aren’t any easy solutions if you’re working with truly unreasonable people.

118 PART II Requirements development

Next steps

■■ Relate Figure 6-3 to the way you hear the voice of the user in your own environment. Do
you encounter any problems with your current communication links? Identify the shortest
and most effective communication paths that you can use to elicit user requirements in
the future.

■■ Identify the different user classes for your project. Which ones are favored? Which, if any,
are disfavored? Who would make a good product champion for each important user class?
Even if the project is already underway, the team likely would benefit from having product
champions involved.

■■ Starting with Table 6-2, define the activities you would like your product champions to
perform. Negotiate the specific contributions with each candidate product champion and
his or her manager.

■■ Determine who the decision makers are for requirements issues on your project. How well
does your current decision-making approach work? Where does it break down? Are the
right people making decisions? If not, who should be doing it? Suggest processes that the
decision makers should use for reaching agreement on requirements issues.

 393

C H A P T E R 2 1

Enhancement and replacement
projects

Most of this book describes requirements development as though you are beginning a new software
or system development project, sometimes called a green-field project. However, many organizations
devote much of their effort to enhancing or replacing existing information systems or building
new releases of established commercial products. Most of the practices described in this book are
 appropriate for enhancement and replacement projects. This chapter provides specific suggestions as
to which practices are most relevant and how to use them.

An enhancement project is one in which new capabilities are added to an existing system.
 Enhancement projects might also involve correcting defects, adding new reports, and modifying
functionality to comply with revised business rules or needs.

A replacement (or reengineering) project replaces an existing application with a new custom-built
system, a commercial off-the-shelf (COTS) system, or a hybrid of those. Replacement projects are
most commonly implemented to improve performance, cut costs (such as maintenance costs or
 license fees), take advantage of modern technologies, or meet regulatory requirements. If your
replacement project will involve a COTS solution, the guidance presented in Chapter 22, “Packaged
solution projects,” will also be helpful.

Replacement and enhancement projects face some particular requirements issues. The original
 developers who held all the critical information in their heads might be long gone. It’s tempting to
claim that a small enhancement doesn’t warrant writing any requirements. Developers might believe
that they don’t need detailed requirements if they are replacing an existing system’s functionality.
The approaches described in this chapter can help you to deal with the challenges of enhancing or
 replacing an existing system to improve its ability to meet the organization’s current business needs.

The case of the missing spec
The requirements specification for the next release of a mature system often says, essentially,
“The new system should do everything the old system does, except add these new features
and fix those bugs.” A business analyst once received just such a specification for version 5 of
a major product. To find out exactly what the current release did, she looked at the SRS for
version 4. Unfortunately, it also said, in essence, “Version 4 should do everything that version 3
does, except add these new features and fix those bugs.” She followed the trail back, but every

394 PART III Requirements for specific project classes

SRS described just the differences that the new version should exhibit compared to the previous
version. Nowhere was there a description of the original system. Consequently, everyone had a
different understanding of the current system’s capabilities. If you’re in this situation, document
the requirements for your project more thoroughly so that all the stakeholders—both present
and future—understand what the system does.

Expected challenges

The presence of an existing system leads to common challenges that both enhancement and
 replacement projects will face, including the following:

■■ The changes made could degrade the performance to which users are accustomed.

■■ Little or no requirements documentation might be available for the existing system.

■■ Users who are familiar with how the system works today might not like the changes they are
about to encounter.

■■ You might unknowingly break or omit functionality that is vital to some stakeholder group.

■■ Stakeholders might take this opportunity to request new functionality that seems like a good
idea but isn’t really needed to meet the business objectives.

Even if there is existing documentation, it might not prove useful. For enhancement projects,
the documentation might not be up to date. If the documentation doesn’t match the existing
 application’s reality, it is of limited use. For replacement systems, you also need to be wary of carrying
forward all of the requirements, because some of the old functionality probably should not be
 migrated.

One of the major issues in replacement projects is validating that the reasons for the replacement
are sound. There need to be justifiable business objectives for the change. When existing systems
are being completely replaced, organizational processes might also have to change, which makes it
harder for people to accept a new system. The change in business processes, change in the software
system, and learning curve of a new system can disrupt current operations.

Requirements techniques when there is an existing system

Table 21-1 describes the most important requirements development techniques to consider when
working on enhancement and replacement projects.

 CHAPTER 21 Enhancement and replacement projects 395

TABLE 21-1 Valuable requirements techniques for enhancement and replacement projects

Technique Why it’s relevant

Create a feature tree to show
changes

■■ Show features being added.
■■ Identify features from the existing system that won’t be in the new system.

Identify user classes ■■ Assess who is affected by the changes.
■■ Identify new user classes whose needs must be met.

Understand business
 processes

■■ Understand how the current system is intertwined with stakeholders’ daily
jobs and the impacts of it changing.

■■ Define new business processes that might need to be created to align with
new features or a replacement system.

Document business rules ■■ Record business rules that are currently embedded in code.
■■ Look for new business rules that need to be honored.
■■ Redesign the system to better handle volatile business rules that were expen-

sive to maintain.

Create use cases or user
stories

■■ Understand what users must be able to do with the system.
■■ Understand how users expect new features to work.
■■ Prioritize functionality for the new system.

Create a context diagram ■■ Identify and document external entities.
■■ Extend existing interfaces to support new features.
■■ Identify current interfaces that might need to be changed.

Create an ecosystem map ■■ Look for other affected systems.
■■ Look for new, modified, and obsolete interfaces between systems.

Create a dialog map ■■ See how new screens fit into the existing user interface.
■■ Show how the workflow screen navigation will change.

Create data models ■■ Verify that the existing data model is sufficient or extend it for new features.
■■ Verify that all of the data entities and attributes are still needed.
■■ Consider what data has to be migrated, converted, corrected, archived, or

 discarded.

Specify quality attributes ■■ Ensure that the new system is designed to fulfill quality expectations.
■■ Improve satisfaction of quality attributes over the existing system.

Create report tables ■■ Convert existing reports that are still needed.
■■ Define new reports that aren’t in the old system.

Build prototypes ■■ Engage users in the redevelopment process.
■■ Prototype major enhancements if there are uncertainties.

Inspect requirements
 specifications

■■ Identify broken links in the traceability chain.
■■ Determine if any previous requirements are obsolete or unnecessary in the

replacement system.

Enhancement projects provide an opportunity to try new requirements methods in a small-scale
and low-risk way. The pressure to get the next release out might make you think that you don’t
have time to experiment with requirements techniques, but enhancement projects let you tackle
the learning curve in bite-sized chunks. When the next big project comes along, you’ll have some
 experience and confidence in better requirements practices.

Suppose that a customer requests that a new feature be added to a mature product. If you haven’t
worked with user stories before, explore the new feature from the user-story perspective, discussing
with the requester the tasks that users will perform with that feature. Practicing on this project
 reduces the risk compared to applying user stories for the first time on a green-field project, when
your skill might mean the difference between success and high-profile failure.

396 PART III Requirements for specific project classes

Prioritizing by using business objectives

Enhancement projects are undertaken to add new capabilities to an existing application. It’s easy
to get caught up in the excitement and start adding unnecessary capabilities. To combat this risk
of gold-plating, trace requirements back to business objectives to ensure that the new features are
needed and to select the highest-impact features to implement first. You also might need to prioritize
enhancement requests against the correction of defects that had been reported against the old
system.

Also be wary of letting unnecessary new functionality slip into replacement projects. The main
focus of replacement projects is to migrate existing functionality. However, customers might imagine
that if you are developing a new system anyway, it is easy to add lots of new capabilities right away.
Many replacement projects have collapsed because of the weight of uncontrolled scope growth.
You’re usually better off building a stable first release and adding more features through subsequent
enhancement projects, provided the first release allows users to do their jobs.

Replacement projects often originate when stakeholders want to add functionality to an existing
system that is too inflexible to support the growth or has technology limitations. However, there needs
to be a clear business objective to justify implementing an expensive new system (Devine 2008). Use
the anticipated cost savings from a new system (such as through reduced maintenance of an old,
clunky system) plus the value of the new desired functionality to justify a system replacement project.

Also look for existing functionality that doesn’t need to be retained in a replacement system. Don’t
replicate the existing system’s shortcomings or miss an opportunity to update a system to suit new
business needs and processes. For example, the BA might ask users, “Do you use <a particular menu
option>?” If you consistently hear “I never do that,” then maybe it isn’t needed in the replacement
system. Look for usage data that shows what screens, functions, or data entities are rarely accessed
in the current system. Even the existing functionality has to map to current and anticipated business
objectives to warrant re-implementing it in the new system.

Trap Don’t let stakeholders get away with saying “I have it today, so I need it in the new
system” as a default method of justifying requirements.

Mind the gap
A gap analysis is a comparison of functionality between an existing system and a desired new system.
A gap analysis can be expressed in different ways, including use cases, user stories, or features. When
enhancing an existing system, perform a gap analysis to make sure you understand why it isn’t
 currently meeting your business objectives.

Gap analysis for a replacement project entails understanding existing functionality and discovering
the desired new functionality (see Figure 21-1). Identify user requirements for the existing system that
stakeholders want to have re-implemented in the new system. Also, elicit new user requirements that
the existing system does not address. Consider any change requests that were never implemented

 CHAPTER 21 Enhancement and replacement projects 397

in the existing system. Prioritize the existing user requirements and the new ones together. Prioritize
closing the gaps using business objectives as described in the previous section or the other
 prioritization techniques presented in Chapter 16, “First things first: Setting requirement priorities.”

FIGURE 21-1 When you are replacing an existing system, some requirements will be implemented unchanged,
some will be modified, some will be discarded, and some new requirements might be added.

Maintaining performance levels
Existing systems set user expectations for performance and throughput. Stakeholders almost
 always have key performance indicators (KPIs) for existing processes that they will want to maintain
in the new system. A key performance indicator model (KPIM) can help you identify and specify
these metrics for their corresponding business processes (Beatty and Chen 2012). The KPIM helps
 stakeholders see that even if the new system will be different, their business outcomes will be at least
as good as before.

Unless you explicitly plan to maintain them, performance levels can be compromised as systems
are enhanced. Stuffing new functionality into an existing system might slow it down. One data
 synchronization tool had a requirement to update a master data set from the day’s transactions.
It needed to run every 24 hours. In the initial release of the tool, the synchronization started at
 midnight and took about one hour to execute. After some enhancements to include additional
 attributes, merging, and synchronicity checks, the synchronization took 20 hours to execute. This was
a problem, because users expected to have fully synchronized data from the night before available
when they started their workday at 8:00 A.M. The maximum time to complete the synchronization
was never explicitly specified, but the stakeholders assumed it could be done overnight in less than
eight hours.

For replacement systems, prioritize the KPIs that are most important to maintain. Look for the
business processes that trace to the most important KPIs and the requirements that enable those
business processes; these are the requirements to implement first. For instance, if you’re replacing a
loan application system in which loan processors can enter 10 loans per day, it might be important
to maintain at least that same throughput in the new system. The functionality that allows loan
 processers to enter loans should be some of the earliest implemented in the new system, so the loan
processors can maintain their productivity.

398 PART III Requirements for specific project classes

When old requirements don’t exist

Most older systems do not have documented—let alone accurate—requirements. In the absence of
reliable documentation, teams might reverse-engineer an understanding of what the system does
from the user interfaces, code, and database. We think of this as “software archaeology.” To maximize
the benefit from reverse engineering, the archaeology expedition should record what it learns in
the form of requirements and design descriptions. Accumulating accurate information about certain
 portions of the current system positions the team to enhance a system with low risk, to replace a
 system without missing critical functionality, and to perform future enhancements efficiently. It halts
the knowledge drain, so future maintainers better understand the changes that were just made.

If updating the requirements is overly burdensome, it will fall by the wayside as busy people rush
on to the next change request. Obsolete requirements aren’t helpful for future enhancements. There’s
a widespread fear in the software industry that writing documentation will consume too much time;
the knee-jerk reaction is to neglect all opportunities to update requirements documentation. But
what’s the cost if you don’t update the requirements and a future maintainer (perhaps you!) has to
regenerate that information? The answer to this question will let you make a thoughtful business
 decision concerning whether to revise the requirements documentation when you change or
 re-create the software.

When the team performs additional enhancements and maintenance over time, it can extend
these fractional knowledge representations, steadily improving the system documentation. The
 incremental cost of recording this newly found knowledge is small compared with the cost of
 someone having to rediscover it later on. Implementing enhancements almost always necessitates
further requirements development, so add those new requirements to an existing requirements
repository, if there is one. If you’re replacing an old system, you have an opportunity to document
the requirements for the new one and to keep the requirements up to date with what you learn
 throughout the project. Try to leave the requirements in better shape than you found them.

Which requirements should you specify?
It’s not always worth taking the time to generate a complete set of requirements for an entire
 production system. Many options lie between the two extremes of continuing forever with no
 requirements documentation and reconstructing a perfect requirements set. Knowing why you’d like
to have written requirements available lets you judge whether the cost of rebuilding all—or even
part—of the specification is a sound investment.

Perhaps your current system is a shapeless mass of history and mystery like the one in Figure 21-2.
Imagine that you’ve been asked to implement some new functionality in region A in this figure.
Begin by recording the new requirements in a structured SRS or in a requirements management tool.
When you add the new functionality, you’ll have to figure out how it interfaces to or fits in with the
 existing system. The bridges in Figure 21-2 between region A and your current system represent these
 interfaces. This analysis provides insight into the white portion of the current system, region B. In
 addition to the requirements for region A, this insight is the new knowledge you need to capture.

 CHAPTER 21 Enhancement and replacement projects 399

FIGURE 21-2 Adding enhancement A to an ill-documented existing system provides some visibility into the
B area.

Rarely do you need to document the entire existing system. Focus detailed requirements efforts
on the changes needed to meet the business objectives. If you’re replacing a system, start by
 documenting the areas prioritized as most important to achieve the business objectives or those that
pose the highest implementation risk. Any new requirements identified during the gap analysis will
need to be specified at the same level of precision and using the same techniques as you would for a
new system.

Level of detail
One of the biggest challenges is determining the appropriate level of detail at which to document
requirements gleaned from the existing system. For enhancements, defining requirements for the
new functionality alone might be sufficient. However, you will usually benefit from documenting all of
the functionality that closely relates to the enhancement, to ensure that the change fits in seamlessly
(region B in Figure 21-2). You might want to create business processes, user requirements, and/or
functional requirements for those related areas. For example, let’s say you are adding a discount code
feature to an existing shopping cart function, but you don’t have any documented requirements for
the shopping cart. You might be tempted to write just a single user story: “As a customer, I need to be
able to enter a discount code so I can get the cheapest price for the product.” However, this user story
alone lacks context, so consider capturing other user stories about shopping cart operations. That
information could be valuable the next time you need to modify the shopping cart function.

I worked with one team that was just beginning to develop the requirements for version 2 of
a major product with embedded software. They hadn’t done a good job on the requirements for
 version 1, which was currently being implemented. The lead BA wondered, “Is it worth going back
to improve the SRS for version 1?” The company anticipated that this product line would be a major
revenue generator for at least 10 years. They also planned to reuse some of the core requirements
in several spin-off products. In this case, it made sense to improve the requirements documentation
for version 1 because it was the foundation for all subsequent development work in this product line.
Had they been working on version 5.3 of a well-worn system that they expected to retire within a
year, reconstructing a comprehensive set of requirements wouldn’t have been a wise investment.

400 PART III Requirements for specific project classes

Trace Data
Requirements trace data for existing systems will help the enhancement developer determine
which components she might have to modify because of a change in a specific requirement. In an
ideal world, when you’re replacing a system, the existing system would have a full set of functional
 requirements such that you could establish traceability between the old and new systems to
avoid overlooking any requirements. However, a poorly documented old system won’t have trace
 information available, and establishing rigorous traceability for both existing and new systems is time
consuming.

As with any new development, it’s a good practice to create a traceability matrix to link the new
or changed requirements to the corresponding design elements, code, and test cases. Accumulating
trace links as you perform the development work takes little effort, whereas it’s a great deal of work
to regenerate the links from a completed system. For replacement systems, perform requirements
tracing at a high level: make a list of features and user stories for the existing system and prioritize
to determine which of those will be implemented in the new system. See Chapter 29, “Links in the
 requirements chain,” for more information on tracing requirements.

How to discover the requirements of an existing system
In enhancement and replacement projects, even if you don’t have existing documentation, you do
have a system to work from to discover the relevant requirements. During enhancement projects,
consider drawing a dialog map for the new screens you have to add, showing the navigation
 connections to and from existing display elements. You might write use cases or user stories that span
the new and existing functionality.

In replacement system projects, you need to understand all of the desired functionality, just as
you do on any new development project. Study the user interface of the existing system to identify
 candidate functionality for the new system. Examine existing system interfaces to determine what
data is exchanged between systems today. Understand how users use the current system. If no one
understands the functionality and business rules behind the user interface, someone will need to look
at the code or database to understand what’s going on. Analyze any documentation that does
exist—design documents, help screens, user manuals, training materials—to identify requirements.

You might not need to specify functional requirements for the existing system at all, instead
 creating models to fill the information void. Swimlane diagrams can describe how users do their jobs
with the system today. Context diagrams, data flow diagrams, and entity-relationship diagrams are
also useful. You might create user requirements, specifying them only at a high level without filling
in all of the details. Another way to begin closing the information gap is to create data dictionary
entries when you add new data elements to the system and modify existing definitions. The test suite
might be useful as an initial source of information to recover the software requirements, because tests
 represent an alternative view of requirements.

 CHAPTER 21 Enhancement and replacement projects 401

Sometimes “good enough” is enough
A third-party assessment of current business analysis practices in one organization revealed
that their teams did a fairly good job of writing requirements for new projects, but they failed
to update the requirements as the products evolved through a series of enhancement releases.
The BAs did create requirements for each enhancement project. However, they did not merge
all of those revisions back into the requirements baseline. The organization’s manager couldn’t
think of a measurable benefit from keeping the existing documentation 100 percent updated
to reflect the implemented systems. He assumed that his requirements always reflected only
80 to 90 percent of the working software anyway, so there was little value in trying to perfect
the requirements for an enhancement. This meant that future enhancement project teams
would have to work with some uncertainty and close the gaps when needed, but that price was
deemed acceptable.

Encouraging new system adoption

You’re bound to run into resistance when changing or replacing an existing system. People are
 naturally reluctant to change. Introducing a new feature that will make users’ jobs easier is a good
thing. But users are accustomed to how the system works today, and you plan to modify that, which
is not so good from the user’s point of view. The issue is even bigger when you’re replacing a system,
because now you’re changing more than just a bit of functionality. You’re potentially changing the
entire application’s look and feel, its menus, the operating environment, and possibly the user’s
whole job. If you're a business analyst, project manager, or project sponsor, you have to anticipate the
 resistance and plan how you will overcome it, so the users will accept the new features or system.

An existing, established system is probably stable, fully integrated with surrounding systems, and
well understood by users. A new system with all the same functionality might be none of these upon
its initial release. Users might fear that the new system will disrupt their normal operations while
they learn how to use it. Even worse, it might not support their current operations. Users might even
be afraid of losing their jobs if the system automates tasks they perform manually today. It’s not
 uncommon to hear users say that they will accept the new system only if it does everything the old
system does—even if they don’t personally use all of that functionality at present.

To mitigate the risk of user resistance, you first need to understand the business objectives and
the user requirements. If either of these misses the mark, you will lose the users’ trust quickly. During
 elicitation, focus on the benefits the new system or each feature will provide to the users. Help them
 understand the value of the proposed change to the organization as a whole. Keep in mind—even
with enhancements—that just because something is new doesn’t mean it will make the user’s job
easier. A poorly designed user interface can even make the system harder to use because the old
features are harder to find, lost amidst a clutter of new options, or more cumbersome to access.

402 PART III Requirements for specific project classes

Our organization recently upgraded our document-repository tool to a new version to give
us access to additional features and a more stable operating environment. During beta testing, I
 discovered that simple, common tasks such as checking out and downloading a file are now harder. In
the previous version, you could check out a file in two clicks, but now it takes three or four, depending
on the navigation path you choose. If our executive stakeholders thought these user interface
changes were a big risk to user acceptance, they could invest in developing custom functionality to
mimic the old system. Showing prototypes to users can help them get used to the new system or new
features and reveal likely adoption issues early in the project.

One caveat with system replacements is that the key performance indicators for certain groups
might be negatively affected, even if the system replacement provides a benefit for the organization
as a whole. Let users know as soon as possible about features they might be losing or quality
 attributes that might degrade, so they can start to prepare for it. System adoption can involve as
much emotion as logic, so expectation management is critical to lay the foundation for a successful
rollout.

When you are migrating from an existing system, transition requirements are also important.
Transition requirements describe the capabilities that the whole solution—not just the software
 application—must have to enable moving from the existing system to the new system (IIBA 2009).
They can encompass data conversions, user training, organizational and business process changes,
and the need to run both old and new systems in parallel for a period of time. Think about everything
that will be required for stakeholders to comfortably and efficiently transition to the new way
of working. Understanding transition requirements is part of assessing readiness and managing
 organizational change (IIBA 2009).

Can we iterate?

Enhancement projects are incremental by definition. Project teams can often adopt agile methods
readily, by prioritizing enhancements using a product backlog as described in Chapter 20, “Agile
 projects.” However, replacement projects do not always lend themselves to incremental delivery
because you need a critical mass of functionality in the new application before users can begin
 using it to do their jobs. It’s not practical for them to use the new system to do a small portion of
their job and then have to go back to the old system to perform other functions. However, big-bang
 migrations are also challenging and unrealistic. It’s difficult to replace in a single step an established
system that has matured over many years and numerous releases.

One approach to implementing a replacement system incrementally is to identify functionality
that can be isolated and begin by building just those pieces. We once helped a customer team to
replace their current fulfillment system with a new custom-developed system. Inventory manage-
ment represented about 10 percent of the total functionality of the entire fulfillment system. For the
most part, the people who managed inventory were separate from the people who managed other
parts of the fulfillment process. The initial strategy was to move just the inventory management

 CHAPTER 21 Enhancement and replacement projects 403

 functionality to a new system of its own. This was ideal functionality to isolate for the first release
because it affected just a subset of users, who then would primarily work only in the new system. The
one downside side to the approach is that a new software interface had to be developed so that the
new inventory system could pass data to and from the existing fulfillment system.

We had no requirements documentation for the existing system. But retaining the original system
and turning off its inventory management piece provided a clear boundary for the requirements
 effort. We primarily wrote use cases and functional requirements for the new inventory system,
based on the most important functions of the existing system. We created an entity-relationship
diagram and a data dictionary. We drew a context diagram for the entire existing fulfillment system
to understand integration points that might be relevant when we split inventory out of it. Then we
 created a new context diagram to show how inventory management would exist as an external
 system that interacts with the truncated fulfillment system.

Not all enhancement or replacement projects will be this clean. Most of them will struggle
to overcome the two biggest challenges: a lack of documentation for the existing system, and a
 potential battle to get users to adopt the new system or features. However, using the techniques
described in this chapter can help you actively mitigate these risks.

Index

 619

A
acceptance criteria, defined, 597
acceptance criteria, defining, 53, 347–349, 420
acceptance tests, 330, 347, 348–349

agile projects, 146–147, 153, 161
defined, 597
project planning and, 377–379
quality attributes, 293–294
requirements and, 519

action enablers, 171–172
action plan, process improvement, 527–528
active voice, 210
activity diagrams, 153, 225, 243, 423, 597
actor, 144, 145, 147–148, 597
agile development

acceptance criteria, 348
acceptance tests, 377, 386
adapting requirements practices for, 390–391
backlog, 387, 489
business analyst role, 71–72
change management, 389, 488–490
customer involvement, 386
defined, 597
documentation, 386
epics, user stories, and features, 388–389
estimating effort, project planning, 370–371
evolutionary prototypes, 299–300, 309
modeling on, 243–244
overview of, 381–383, 385, 387–388
priorities, setting of, 314, 387
product backlog, 387, 489
product owner, 63, 71–72, 115–116, 386, 391, 601
quality attributes, 293–294
reaching agreement on requirements, 41
requirements management, 468–470
requirements specification, 199–201, 386

use cases, 152–153
user representation, 115–116
user stories, 145–147
vision and scope in, 98–99

agreement, reaching on requirements, 38–41
allocation, requirements, 51, 373, 440–441, 532
alternative flows, use case, 152–153, 155–156, 597
ambiguity, avoiding, 205, 213–216
analysis models, 199. See also models
analysis, requirements. See also models; also priorities,

setting of
defined, 597
good practices, 50–51
overview of, 15–16
risk factors, 544
troubleshooting problems, 567–569

analyst. See business analyst (BA)
application, 4
application analyst. See business analyst (BA)
architecture, 373–374

architecture diagram, real-time projects, 445–446
defined, 597
embedded and real-time systems projects, 440–441
requirements and, 373–374

assessment, current requirements practice, 551–557
assets, requirements engineering process, 530–533
assumption, defined, 597
assumptions, business requirements, 88, 577
assumed requirements, 140–141
assumptions, SRS document, 194, 586
atomic business rules, 174–175
attributes, requirement, 462–463. See also quality attributes

defined, 601
requirements management tools and, 507

augmentability requirements. See modifiability requirements
author, inspection team role, 334, 336–338
availability requirements, 267–269, 274–275, 594

620

BA

B
BA. See business analyst (BA)
backlog, 387, 460, 468–470, 489, 597
baseline, requirements, 39–41, 53, 185, 458, 459–460,

461–462, 463, 465, 597. See also change
management

Beatty, Joy, 225, 322, 495
Beizer, Boris, 379
best practices. See good practices
big data, 433, 597
Bill of Responsibilities for Software Customers,

Requirements, 30, 33–36
Bill of Rights for Software Customers, Requirements,

30–33
boundary values, ambiguity around, 215
Box, George E. P., 7
BPMN, 422
Brooks, Frederick, 18
Brosseau, Jim, 264
Brown, Nanette, 41
Burgess, Rebecca, 338
burndown chart, 466, 469–470
business analyst (BA). See also elicitation, requirements

development; also good practices; also
project planning

agile projects, 71–72
background of, 68–71
collaborative teams, creating, 72–73
decision makers, identifying, 38
defined, 598
knowledge and training, 54–55, 68–71
overview, 61
professional organizations for, xxv
reaching agreement on requirements, 38–41
roles and responsibilities, 12–13, 62–64, 459
skills required, 65–67
software requirements specification (SRS), 9
stakeholder analysis, 26–29
transitioning to agile projects, 390–391

business analytics projects
data needs, specifying, 432–435
data transformation analyses, 435–436
data, management of, 434–435
evolving nature of, 436–437
information use requirements, 431–432
overview, 427–429
prioritizing work, 430–431
requirement elicitation, overview, 429–430

business analytics system, defined, 598
business case document, 81. See also vision and

scope document
business context, 90–92
business events

as scoping tool, 96
defined, 240
event-response tables, 240–242
identifying, 48–49

business intelligence. See business analytics projects
business interests, 80
business objectives, 77–79

defined, 84–85, 598
business objectives model, defined, 598

example, 86
business opportunity, 83
business process automation projects, 421–426
business process, defined, 168

business process analysis (BPA), 422
business process improvement (BPI), 422
business process management (BPM), 422
business process model and notation (BPMN), 422
business process reengineering (BPR), 422
good requirements practices, 426
modeling, 422–424
overview, 421
performance metrics, modeling, 424–426

business process flows, 225, 423, 425
business reporting. See business analytics projects
business requirements. See also vision and scope

document
agile projects, scope and vision, 98–99
assumptions, and dependencies, 88
business context, 90–92
business objectives, 84–85
business opportunity, 83
business requirements section, vision and scope

document, 83–88
business risks, 88
conflicting, 80–81
defined, 7–8, 78, 598
identifying and defining requirements, 78–81
judging completion with, 99
overview, 77
scope and limitations, 88–90
scope management, 97–98
scope representation techniques, 92–96
success metrics, 85–86
vision and scope document, overview, 81–88

 621

 communication

vision and scope document, sample, 576–580
vision statement, 87–88
vs. business rules, 168

business requirements document (BRD). See software
requirements specification (SRS)

business risks, 88, 577
business rules

action enablers, 171–172
atomic business rules, 174–175
computations, 173–174
constraints, 170–173
customer input, 136
defined, 7, 10, 169, 598
discovering, 177–178
documenting, 175–177
enhancement and replacement projects, 395
facts, 170
good practices, 52
importance of, 167–169
inferences, 173
packaged solution projects, 407
requirements and, 178–180
safety requirements and, 276–277
sample, 595
taxonomy of, 169
use cases and, 156–157

business systems analyst. See business analyst (BA)

C
cardinality, 247, 598
cause-and-effect diagram, 525–526
change control. See change management
change control board (CCB)

charter for, 481
defined, 598
good practices, 53
overview of, 480–482, 533

change management
agile projects, 389, 488–490
change control board, overview of, 480–482
change control policies, 474
change control process, 474–479, 533
change impact analysis, 484–488, 494, 533
customer rights and responsibilities, 32, 36
frequency of changes, 483
good practices, 53–54
impact analysis, 53, 484–488, 494, 533
measuring change activity, 483–484
origin of changes, 483–484

outsourced projects, 419
overview, 471–472
requirements and, 519
scope management, 97–98, 472–473
tools for, 482, 506–510
troubleshooting problems, 572–574

change request, 474, 476–484
characteristics of excellent requirements, 203–207
charter, project, 81. See also vision and scope document
checklists

change impact analysis, 485–486
defects, for requirements reviews, 338–339
defined, 530

Chen, Anthony, 225, 322, 495
Chen, Peter, 246
class diagrams, 225, 243, 248, 598
class, defined, 598
classifying business rules, 169–174
classifying customer input, 135–138
cloud solutions. See packaged solution projects
coding, project planning for, 373–377
Cohn, Mike, 388
collaborative teams. See also communication; also

elicitation, requirements development
agile projects, 386
business analyst role, 72–73
customers and development, 29–30, 31, 35, 36–37
outsourced projects, 415–416, 418–419
workshops, 122–125

commercial off-the-shelf (COTS) products, defined,
598. See also packaged solution projects

commitment, to process change, 521–522
communication. See also customers; also

documenting requirements
adoption of new systems, promoting, 401–402
assumed and implied requirements, 140–141
business analyst role, 62–66
business analytics projects, 436–437
business process automation projects, 423–424
change control policies, 474
collaborative culture, creating, 36–37
conflicting requirements, resolution of, 116–117
elicitation activities, follow-up, 134–135
outsourced projects, 415–419
pathways for requirements, 108–109
product champions, 109–114
project planning estimates, 366–369
reaching agreement on requirements, 38–41
requirements development tools, 505–506
requirements management tools, 506–510

622

communications interfaces

requirements tools, 504–505, 511
tracking effort, 467–468

COTS (commercial off-the-shelf) products.
See packaged solution projects

defined, 598
cross-functional diagrams. See swimlane diagrams
CRUD matrix, 251–252, 598
cultural differences, outsourced projects, 418–419
culture, organizational

creating respect for requirements, 36–37
process improvement fundamentals, 522–524
requirements tools and, 513
resistance to change, 521–522

current practices, assessing, 526–527, 551–557
customer input, classifying, 135–138
customers. See also communication; also

stakeholders; also users
agile projects, 386
collaborative culture, creating, 36–37
customer input, classifying, 135–138
decision makers, identifying, 38
defining, 27–29, 598
expectation gap, 26–27
reaching agreement on requirements, 38–41
relationships with, overview, 25–26
Requirements Bill of Responsibilities for, 30, 33–36
Requirements Bill of Rights for, 30–33
stakeholders and, 27–29

cyclomatic complexity, 286

D
DAR (display-action-response) models, 375–377
dashboard reporting, 257–258, 431–432, 598
data analysis, requirements, 251–252. See also data

requirements
business analytics projects, 432–435
defining, business analytic projects, 435–436
enhancement and replacement projects, 400
packaged solution projects, 407

data definitions, models for, 225
data dictionaries, 248–251

business analytics projects, 433
defined, 598
good practices, 50
sample, 589
SRS document, 195
use cases and, 164

communication. See also customers; also documenting
requirements, continued

software requirement specification (SRS), good
practices, 185–186

tracking requirements status, 464–466
troubleshooting problems, 564
user representatives, 108–109
writing style, requirement documentation, 208–211

communications interfaces, 197
communication protocols, requirements for, 271–272
completeness

of requirement sets, 206
of requirement statements, 204

composition, data element, 249–250
computations, business rules, 173–174
configuration requirements, COTS, 411
conflict management, 125
conflicts

resolving between stakeholder groups, 116–117
resolving between user classes, 103, 117

consistent requirements, 206
Constantine, Larry, 235
constraints

business rules, 170–173
customer input, 137
defined, 7, 10, 91, 598
design and implementation, 193, 586
quality attributes and, 291–292
real-time and embedded projects, 453

construction, requirements and, 519
context diagrams

data flow diagrams and, 227–230
defined, 598
enhancement and replacement projects, 395,

400–401
real-time projects, 442
scope representation techniques, 92–93
system external interfaces, 225

correct requirements, 204
cost. See also priorities, setting of

change impact analysis, 484–488
feasibility analysis, 50
of correcting defects, 19–20
outsourced projects, 416, 418–419
prioritizing requirements and, 315, 317, 322–326
quality attribute requirements, 268, 288–290
requirement reuse, benefits of, 351–352
requirements management, 463

 623

 documenting requirements

dialog maps
defined, 599
enhancement and replacement projects, 395,

400–401
good practices, 51
overview of, 235–238
testing and, 344–346
wireframes, 299

disfavored user classes, 103–104
display-action-response (DAR) model, 375–377
document analysis, 128–129, 177
document, use of term, 8
documentation. See also data dictionary; also vision

and scope document
agile projects, 386
business analyst task, 64
business rules, documenting, 175–177
document analysis, good practices, 49
elicitation activities, follow-up, 134–135
elicitation activities, notes from, 133
enhancement and replacement projects,

395, 398–401
interface specifications, 446–447
outsourced projects, requirements details, 416–417
project risks, 539–541
requirement patterns, 358–359
requirements engineering process assets,

530–533
requirements process and, 518–520
requirements repositories, 359–360, 362–364
requirements reuse, 354–355
requirements, good practices, 51–52
templates, requirements documents, 51
user documentation, 519–520

documenting requirements. See also models
agile projects, 199–201
ambiguity, avoiding, 213–216
before and after examples, 217–220
characteristics of excellent requirements, 204–207
labeling requirements, 186–188
level of detail, 211–212
overview, 181–183
representation techniques, 212–213
software requirements specification (SRS),

183–190
SRS template, 190–199
system or user perspective, 207–208
use case template, 150

data field definitions, 226
data flow diagrams (DFD), 226–230

defined, 598
enhancement and replacement projects, 400–401
uses for, 225

data modeling, 245–248
enhancement and replacement projects, 395

data object relationships, models for, 225
data requirements. See also business analytics

projects
COTS implementation, 412
customer input, 137
dashboard reporting, 257–258
data analysis, overview, 251–252
data dictionary, overview of, 248–251
data integrity requirements, 270–271
management and use requirements, 434–435
modeling data relationships, 245–248
overview, 245
packaged solution projects, 412
sample, 589–592
security requirements, 277–279
specifying reports, 252–256
SRS document, 195

Davis, Alan, 315
decision makers, identifying, 38
decision rule, 38, 598
decision tables, 226, 239–240, 598
decision trees, 51, 226, 239–240, 599
defect checklist for requirements reviews, 338–339
defects, cost of correcting, 19–20
degree of freedom, defined, 91
delivery dates, 372
dependencies, business requirements, 88, 577
dependencies, SRS document, 194, 586
dependency, defined, 599
deployment considerations, vision and scope

document, 92, 580
deriving requirements

from business rules, 178–180
from models, 223
from nonfunctional requirements, 290
from system requirements, 440–441
from use cases, 160, 162

design, requirements and, 373–377
detail, level of requirements, 211–212, 386
development life cycle, good practices, 56
DFD. See data flow diagrams

624

documents, limitations of

risk factors, 543–544
robustness requirements, 275
safety requirements, 277
scalability requirements, 285
scope creep, managing, 473
security requirements, 277–279
system interface analysis, 127–128
tips for performing, 132–134
tools for, 505
troubleshooting problems, 565–566
usability requirements, 280
user interface analysis, 128
verifiability requirements, 287
workshops, 122–125

embedded systems projects
defined, 599
interfaces, 446–447
modeling, 441–446
overview, 439, 453–454
quality attributes, 449–453
system requirements, architecture, and

allocation, 440–441
timing requirements, 447–449

end users. See users
enhancement projects

adoption of new system, 401–402
iteration and, 402–403
lack of existing documentation, 398–401
overview of, 393–394
prioritizing using business objectives, 396–397
requirements techniques, 394–395

entity, 246–247, 251–252, 599
entity-relationship diagrams

business analytics projects, 433
defined, 599
enhancement and replacement projects, 400–401
good practices, 51
modeling data relationships, 225, 245–248

entry criteria
for change control, 475, 478
for inspections, 335

environment, real-time systems, 449–453
epics, 388–389, 599
error handling, real-time systems, 450–452
estimation. See also project planning

project size and effort, 370–372
requirements effort, 366–369

evaluating packaged solutions, 408–410
evaluating process improvement efforts, 529–530

documenting requirements. See also models, continued
vision and scope document template, 81–92
writing style, 208–211

documents, limitations of, 1–2, 503–504
driver, defined, 91
Dyché, Jill, 433

E
ecosystem maps, 50, 94, 225, 395, 599
educating stakeholders and developers, 44, 55, 58
efficiency requirements, 281–282, 450
effort estimates, 370–372, 467–468. See also project

planning
electronic prototypes, 301–303
elicitation, requirements, 16, 119–142. See also use

cases; also user stories
assumed and implied requirements, 140–141
availability requirements, 268–269
business analytics projects, 429–430
business process automation, 422–424
business rules, discovering, 177
cautions about, 139–140
completion of process, 138–139
customer input, classifying, 135–138
defined, 599
document analysis, 128–129
efficiency requirements, 282
focus groups, 124–125
follow-up activities, 134–135
framework for, 45–47
good practices, 44, 48–49
installability requirements, 270
interoperability requirements, 272
interviews, 121–122
missing requirements, identifying, 141–142, 222,

225, 227, 236, 238, 346
observations, 125–126
overview, 119–121
performance requirements, 266
planning for, 129–130
portability requirements, 284
preparing for, 130–132
quality attributes, 263–266
questionnaires, 127
reliability requirements, 274–275
reporting requirements, 253–254
reusability requirements, 284–285

 625

 functional requirements

recovery, 451
tolerance, 275–276, 450–452

fault tree analysis, 452
favored user classes, 103, 117
feasibility analysis, 50
feasible requirements, 204
Feature Driven Development. See agile development
feature trees, 11, 95–96, 395, 599
features

agile projects, 388–389
defined, 7, 11, 599
enhancement and replacement projects, 395–397
example, 95, 578
gap analysis, 396–397
packaged solution projects, 406–410
prioritizing, 50
requirements reuse, 356–358
risk management, 544
SRS document, 194
SRS document, sample, 586–588
vision and scope document, 89–90

finding missing requirements, 141–142, 222, 225, 227,
236, 238, 346

fishbone diagram, 525–526
fit criteria, 267, 330
flexibility requirements. See modifiability

requirements
flow diagrams, business process, 225, 423, 425
flowcharts, 153, 225, 226, 230, 236, 425, 599
flows, data, 92–93, 226–229
focus groups, 48, 108–109, 124–125
formal reviews. See inspections
function point, 370, 599
functional requirements

architecture design, project planning and, 373–374
business analytic projects, 435–436
business rules and, 180
customer input, 136
defined, 7, 9, 599
deriving, from business rules, 178–180
deriving, from models, 223
deriving, from nonfunctional requirements, 290
deriving, from system requirements, 440–441
deriving, from use cases, 160, 162
enhancement and replacement projects, 396–397
missing, 141–142, 222, 225, 227, 236, 238, 346
prioritizing, 50, 315, 318, 319, 324
requirement levels and types, 7–13
reusing, 356–358
specification of, 209–219

events
as scoping tool, 96
defined, 599
event list, 96

event-response tables, 9, 226, 240–242, 443–444,
599. See also user requirements

identifying, good practices, 48–49
evolutionary prototypes, 298–300, 342, 599. See also

prototypes
excellent requirements, characteristics of, 203–207
exception handling, 152–153, 275
exceptions, use cases, 147, 151, 152–153, 159
exception, defined, 599
execution time, 447
exit criteria

for change control, 475, 479
for inspections, 338

expectation gap, 26–27, 102, 295
extend relationship, use cases, 155–156, 599
extensibility requirements. See modifiability

requirements
extension requirements, COTS, 412
external entities, 92–93, 227–228, 271–272, 599
external events, 48–49, 92–93
external interface requirements

customer input, 137
defined, 7, 599
SRS document, 196–197
SRS document, sample, 592–593

Extreme Programming. See agile development

F
facilitation

business analyst skills, 66
completing elicitation sessions, 138–139
elicitation activities, cautions about, 139–140
elicitation activities, follow-up, 134–135
elicitation activities, performing, 132–134
focus groups, 124–125
preparing for elicitation, 130–132
workshops, 122–125

facilitator, defined, 599
facts, business rules, 170
Fagan, Michael, 333
fault

detection, 451
logging, 451
prevention, 451

626

functional specification

Hardy, Terry, 452
hazard analysis, 452
Herrmann, Debra, 452
hierarchical textual tags, 179, 187–188, 288, 587–588
high-resolution prototypes, 226
history of requirements changes, 54
Hoffman, Cecilie, 338
horizontal prototype, 297–298, 600. See also

prototypes
hundred-dollar approach, prioritization, 321–322

I
identifiers, SRS documents, 186–188
IIBA (International Institute for Business Analysis), xxv
impact analysis, requirements changes, 53, 484–488,

494, 533
implied requirements, 140
in-or-out prioritization, 318
include relationships, use cases, 155–156, 600
incompleteness, in requirements documents,

188–189, 216–217
inferences, business rules, 173
initial release, scope of, 89–90
inspections, 52, 332–342, 600. See also peer reviews
installability requirements, 269–270
integration requirements, COTS, 412
integrity requirements, 270–271, 408
interfaces

analyzing, good practices, 51
architecture diagrams, 445–446
customer input, 137
dialog maps, 235–238
embedded projects, 446–447, 453
enhancement and replacement projects, 400–401
external interface requirements, 7, 10, 196–197,

592–593, 599
functional requirements, defined, 10
interface specification document, 447
mock-ups, 297–298
models for, 225–226
prototypes, 50, 299
real-time projects, 446–447, 453
SRS document, 189–190, 196–197
SRS document, sample, 592–593
system interface analysis, 127–128
user interface analysis, 128

internationalization requirements, 198

functional requirements, continued
use cases and, 160, 161–163
writing, 209–219

functional specification. See software requirements
specification (SRS)

G
gap analysis, 396–397, 412, 599
Gause, Donald, 105
Gilb, Tom, 187, 287, 600
glossary

good practices, 55, 199
reuse of, 353, 356, 364

goals, business. See business objectives
goals, requirements process improvement, 533–535
gold plating, 21, 600
good practices

ambiguous terms, avoiding, 213–216
analysis, 50–51
application of, 57–58
elicitation, 48–49
inspections, 333, 339–342
knowledge, 54–55
overview, 43–45
project management, 56–57
project planning, 379–380
prototypes, 310
reporting specifications, 254–255
requirement statements, documenting, 204–207
requirements development process framework,

45–47
requirements management, 53–54
requirements reuse, 360–364
specification, 51–52
validation, 52–53
writing style, requirements documentation, 208–211

Gottesdiener, Ellen, 72, 105, 122–123
government regulations. See business rules
Graham, Dorothy, 377
green-field project, 393, 600

H
hard real-time systems, 439. See also real-time

systems projects
hardware interfaces, 197
hardware requirements, 441

 627

 models

Lockwood, Lucy, 235
logging, faults, 451–452
logical data model, 195
low-fidelity prototypes, 301–303
low-resolution prototypes, 226

M
maintainability requirements, 267, 282, 283
management, project. See project management
management, requirements. See requirements

management
management commitment to excellent

requirements, signs of 521–522
market requirements document (MRD), 81. See also

vision and scope document
Martin, James, 247
mean time between failures (MTBF), 267, 274
mean time to repair (MTTR), 267
measuring

change activity, 483–484
requirements management effort, 467–468

metadata, 433
metrics

business performance, 424–426
key performance indicators, 425, 533–535
process improvement, 533–535
project size, 370
requirements change activity, 483–484
requirements process improvements, 533–535
success, 78, 85–86

Miller, Roxanne, 266–267
minimum marketable feature (MMF), 389
missing requirements, identifying, 141–142, 222, 225,

227, 236, 238, 346
mitigation, risk, 539, 541–542
mock-ups, 300, 342, 600. See also prototypes
models

agile projects, 243–244
business analyst role, 67
business analytics projects, 433
business objectives models, 86, 598
business process automation, 422–424
business process model and notation (BPMN), 422
business rules, discovering, 177
context diagrams, 92–93, 598
customer comments, use of, 223–224
DAR (display-action-response) model, 375–377
data flow diagrams, 226–230, 598
data relationship modeling, 245–248

interoperability requirements, 271–272, 408
interviews

elicitation of requirements, 49, 121–122
skills required, 65

Ishikawa diagram, 525–526
issue, requirements, defined, 600
issue tracking, 54, 466–467
IT business analyst. See business analyst (BA)
iteration,

agile projects, 21, 56, 370, 371, 385–389,
468–470, 489

defined, 600
design, 374
requirements development, 13, 17
specifying requirements for, 46, 47

J
Joint Application Design (JAD), 49

K
Kanban. See agile development
key performance indicator model (KPIM), 397, 423–426
key performance indicators (KPIs), 425, 533–535
knowledge, business analyst role, 68–71
knowledge, good practices around, 54–55
Koopman, Philip, 448, 452
Kudish, Joseph, 442–443

L
labeling requirements, 186–188
latency, 447
Lauesen, Soren, 267
Lavi, Johan, 442–443
Lawrence, Brian, 6
lean software development. See agile development
learning curve, process improvement efforts, 529–530
Leffingwell, Dean, 348
legacy systems. See also enhancement projects; also

replacement projects
business rules and, 177
requirements reuse, 357–358

levels and types of requirements, 7–13
Leveson, Nancy, 452
life cycles, development, 46–47, 330. See also agile

development; also waterfall development
listening skills, 65
localization requirements, 10, 198

628

moderator, inspection team role

risk management, 543
specifications, good practices, 52

non-human users, 104
normal flow, use cases, 152–153, 155–156, 600
numbering requirements, SRS documents, 186–188

O
object state models, 226
objectives, business

business objectives model, 86, 598
business objectives, defined, 598
completion decisions and, 99
success metrics, 85–86
vision and scope document, 84–87

observational skills, 66
observations, requirements elicitation, 125–126
on-site customer, 25, 115–116
operating environment, SRS document, 193
operational profile, 287, 409, 600
organization chart analysis, 105
organizational culture

creating respect for requirements, 36–37
process improvement fundamentals, 522–524
requirements tools and, 513
resistance to change, 521–522

organizational policies. See business rules
out-of-scope requirements, 78, 90, 97
outsourced projects

acceptance criteria, 420
acquirer-supplier interactions, 418–419
change management, 419
level of requirements detail, 416–417
overview of, 415–416

P
packaged solution projects

common challenges, 413–414
configuration requirements, 412
costs, 406, 408–409
evaluating candidates, 408–409
extension requirements, 412
identifying requirements, 406–410
implementation requirements, 411–413
integration requirements, 412
overview, 405–406
solution selection, 406, 408–409

models, continued
decision tables and decision trees, 239–240,

598–599
dialog maps, 235–238, 599
ecosystem maps, 95, 599
embedded projects, 441–446
enhancement and replacement projects, 395,

400–401
entity-relationship diagrams, 245–248, 599
event-response tables, 240–242, 599
feature trees, 95–96, 599
good practices, 51
missing requirements, identifying, 141–142, 222,

225, 227, 236, 238, 346
outsourced projects, 417–418
overview of, 222–223
real-time projects, 441–446
requirements elicitation, 122, 131–132
scope representation techniques, 92–96
selection of appropriate, 225–226
simulations, good practices, 53
SRS document, 199
state tables, 232–234, 602
state-transition diagrams, 232–234, 602
swimlane diagrams, 230–231, 602
tools for drawing, 506
UML diagrams, 243

moderator, inspection team role, 334, 336, 338
modifiability requirements, 282–283, 408
modifiable requirements, 206
MoSCoW prioritization, 320–321

N
NAH (not applicable here), 362
navigation map, 235. See also dialog maps
necessary requirements, 204
negative requirements, clarifying, 216
NIH (not invented here), 362
nonfunctional requirements, 261–294. See also

constraints; also external interface
requirements; also quality attributes

agile projects, 293–294
COTS projects, 208
defined, 7, 10–11, 600
packaged solution projects, 208
real-time and embedded systems, 449–453
requirement levels and types, 7–13
requirements traceability, 497–498

 629

 project requirements, vs. product requirements

prioritization. See priorities, setting of
priority, as a requirement attribute, 319, 462
problem reports as source of requirements, 49
procedure, defined, 530, 600
process assets, 530–533, 600
process description, defined, 531
process flows, 225, 423, 425, 600
process improvement action plan, 527–528
process improvement. See requirements process

improvement
process, defined, 600
product backlog, 387, 406, 468–470, 597
product champions, 109–114, 117, 601
product features. See features
product line, 352, 356–357
product owner, 63, 71–72, 115–116, 386, 391, 601
product requirements vs. project requirements,

14–15
product vision, 78–79, 87–88, 577, 603
product, defined, 4, 600
product-centric strategy, 16
project charter, 81. See also vision and scope

document
project management. See also good practices; also

project planning; also risk management
collaborative teams, creating, 72–73
good practices for, 56–57
outsourced projects, 418–419
reaching agreement on requirements, 38–41
requirement process improvement and, 518–520
stakeholder analysis, 27–29

project manager, as business analyst, 70
project planning. See also project management

designing and coding, 373–377
estimating project size and effort, 370–372
estimating requirements effort, 366–369
good practices, 56–57, 379–380
outsourced projects, 418–419
overview of, 365–366
requirements and, 519
requirements effort, estimating, 366–369
risk management, 543, 545
scheduling, requirements and, 372
scope creep, managing, 472–473
testing, 377–379
tracking effort, 467–468
tracking requirements status, 464–466

project priorities, 91–92. See also priorities, setting of
project requirements, vs. product requirements,

14–15

pairwise comparisons for prioritization, 264–265, 318
paper prototypes, 301–303, 600
parking lots, 123
passaround review, 332–333
peer reviews. See also inspections

challenges, 340–342
defect checklist for requirements, 338–339
defined, 600
during elicitation, 160–161
good practices, 52
outsourced projects, 418
review process, 332–338
tips for performing, 339–340

performance. See also quality attributes
efficiency requirements, 281–282
enhancement and replacement projects, 397
packaged solution projects, 408
real-time and embedded systems, 449–453
requirements, 266, 272–273, 408, 449, 593
SRS document, 197–198
timing requirements, real-time systems, 447–449

personas, user, 107–108
pilot, defined, 600
pilots, process improvement, 526, 528–529
plan, defined, 530
Planguage, 226, 266–267, 287–288

defined, 600
policies, company. See business rules
policy, defined, 530
portability requirements, 283–284
postconditions, use cases, 151, 156, 158–159

defined, 600
preconditions, use cases, 151, 156, 158–159, 600
predictability, timing requirements, 448
primary actor, 148
primitive data elements, 250. See also data dictionary
priorities, setting of

agile projects, 387
business analytics projects, 430–431
enhancement and replacement projects,

396–397
importance of, 313–315
prioritization, defined, 600
project, 91–92
quality attributes, 263–267
Quality Function Deployment (QFD), 322
requirements prioritization procedure,

322–327, 532
risk factors, 544
strategies and techniques for, 315–322

630

project scope

tools for creating, 505
user interfaces, 189–190, 226
vertical prototype, defined, 298, 603
working with, 303–306

Pugh, Ken, 348

Q
QFD. See quality function deployment
quality assurance. See also testing

nonfunctional requirements, defined, 10
requirements reuse, 364
software requirements specification (SRS), 9

quality attributes. See also performance
agile projects, 293–294
availability, 267–269, 594
constraints on, 291–292
customer input, 137
defined, 7, 10, 261–263, 601
defining, overview, 267
efficiency, 281–282, 450
embedded systems, 449–453
enhancement and replacement projects, 395
identifying and prioritizing, 263–267
implementation of, 290–291
installability, 269–270
integrity, 270–271, 408
interoperability, 271–272, 408
modifiability, 282–283, 408
overview of, 261–263
packaged solution projects, 408
performance, 266, 272–273, 408, 449, 593
Planguage, 287–288
prioritizing, 264–265
real-time systems, 449–453
reliability, 274–275, 450
requirements traceability, 497–498
reusability, 284–285
robustness, 275–276, 450, 594
safety, 276–277, 452, 593
scalability, 285–286
security, 277–279, 408, 452–453, 593
SRS document, 197–198
SRS document, sample, 593–594
timing requirements, real-time systems,

447–449
trade-offs, 288–290
usability, 279–281, 453, 593
verifiability, 286–287, 453, 593

project scope. See also change management; also
project planning; also vision and scope
document

agile projects, change management, 389
assumed and implied requirements, 140–141
change control policies, 474
completion decisions, 99
defined, 79, 602
defining for project, 13, 139–140
elicitation, good practices, 48–49
enhancement and replacement projects,

396–397
estimating effort, 370–372
good practices, 53–54
identifying and defining requirements, 78–81
outsourced projects, 419
packaged solution projects, 406–410
product vision and, 78–80
project management good practices, 56–57
requirements baseline, 459–460
requirements elicitation, 122–123
scope creep, 20–21, 472–473, 602
scope management, 97–98
scope representation techniques, 92–96
troubleshooting change management

problems, 572–574
vision and scope document, overview,

81–83
vision and scope document, sample, 576–580

project tracking, requirements and, 519
proof-of-concept prototypes, 297–298, 300, 342, 601
prototypes

dashboard reporting, 258
defined, 601
electronic prototype, 302–303
enhancement and replacement projects, 395
evaluating, 306–307
evolutionary prototype, 599, 299–300
good practices, 50, 310
horizontal prototype, defined, 297, 600
mock-up, 297–298, 600
outsourced projects, 417–418
overview of, 295–297
paper prototype, 301–302, 600
proof-of-concept, 298, 601
real-time projects, 446
reporting specifications, 255
requirement validation and, 342
risks of, 307–310
throwaway prototype, 298–299, 602–603

 631

 requirements management

Requirements Bill of Rights for customers, 30–33
requirements development. See also analysis,

requirements; also elicitation,
requirements; also specification,
requirements; also validation,
requirements

common problems, 19–22
defined, 15, 601
overview, 15–17
process assets for, 531–532
process framework for, 45–47
requirements management, boundary between, 18
tools for, 503–506

requirements document. See software requirements
specification (SRS)

requirements elicitation. See elicitation, requirements
requirements engineer. See business analyst (BA)
requirements engineering

common problems, 19–22
defined, 15, 601
framework for, 45–47
process assets for, 530–533
requirements development, 15
requirements management, 17–19
subdisciplines of, 15
tools for, 503–514

requirements levels and types, 7–13
requirements management. See also change

management; also tracing, requirements
agile projects, 468–470
baselining, 459–460
common problems, 19–22
defined, 17–18, 458, 601
good practices, 53–54
measuring effort, 467–468
overview, 15, 17–19, 46–47, 470
process assets for, 531–533
process overview, 457–459
product backlog, 387
project planning estimates, 366–372
requirements attributes, 462–463
requirements development, boundary between, 18
requirements repositories, 359–360
resolving issues, 466–467
risk factors, 546
tools for, 503–510
tools, selecting and using, 510–513
tracking status, 464–466
troubleshooting problems, 571
version control, 460–462

Quality Function Deployment (QFD), 322
quality of service requirements. See quality attributes
questionnaires, good practices, 49, 127

R
rank ordering, prioritization, 318
Rational Unified Process, 47
rationale, as a requirements attribute, 462, 463
reader, inspection team role, 335, 337
real-time systems projects

defined, 601
interfaces, 446–447
modeling, 441–446
overview, 439, 453–454
quality attributes, 449–453
system requirements, architecture, and

allocation, 440–441
timing requirements, 447–449

recorder, inspection team role, 335
recoverability, 275–276
reengineering project. See replacement projects
regulations, government. See business rules
relationship, 247
reliability requirements, 274–275, 450
repeating group, data elements, 251. See also data

dictionary
replacement projects

adoption of new system, 401–402
iteration and, 402–403
lack of existing documentation, 398–401
overview of, 393–394
prioritizing using business objectives, 396–397
requirements techniques, 394–395

reports. See also business analytics projects
business analytics projects, 431–432
dashboard reporting, 257–258
enhancement and replacement projects, 395
report layouts, 225
specifications for, 252–256
SRS document, 195, 591

representation techniques, 212–213
requirement, defined, 5–6, 601
requirement attributes, 462–463, 51, 54, 601
requirement pattern, defined, 601
requirements allocation procedure, 532, 601
requirements analysis. See analysis, requirements
requirements analyst. See business analyst (BA)
Requirements Bill of Responsibilities for customers,

30, 33–36

632

requirements manager

specification issues, 569–570
validation issues, 570–571

response time, 266, 287–288
retrospective, 337, 601
reusability requirements, 284–285
reuse. See requirements, reuse of
reviewing requirements. See peer reviews
rework, 19, 521, 534
risk, 537, 602
risk management

documenting project risks, 539–541
overview, 537–539, 546
planning for, 542
requirements analysis, 544
requirements elicitation, 543–544
requirements management, 546
requirements specification, 545
requirements validation, 545
risk assessment, 539
risk avoidance, 539

risk mitigation, 539, 541–542
risks, business, 88, 577
risks, technical, and requirements prioritization,

322–323, 325–326
road map, for process improvement, 535
Robertson, James, 267
Robertson, Suzanne, 267
robustness requirements, 275–276, 450–452, 594
roles and permissions matrix, 171–172
root cause analysis, 524–526, 602
Rothman, Johanna, 326
Royce, Winston, 384

S
SaaS. See software as a service
safety requirements, 276–277, 452, 593
sample documents

business rules, 595
software requirements specification (SRS), 584–594
use cases, 581–583
vision and scope document, 576–580

Sawyer, Pete, 6
scalability requirements, 285–286, 290–291
scenarios, 149, 602
schedule. See project planning
scope creep, 20–21, 472–473
scope, project. See also change management; also

product vision; also project planning; also
vision and scope document

requirements manager. See business analyst (BA)
requirements mapping matrix, 495
requirements practices self-assessment, 551–557
requirements prioritization procedure, 532
requirements process improvement

action planning for, 527–528
assessment of current practices, 526–527, 551–557
fundamentals of, 522–524
learning curve, 529–530
management commitment to, 522
metrics for, 533–535
overview, 517–520
process assets, 530–533
process improvement cycle, 526–530
resistance to change, 521–522
road map for, 535
root cause analysis, 524–526

requirements review checklist, 338–339, 532
requirements specification. See specification,

requirements; also software requirements
specification (SRS)

requirements status tracking procedure, 532
requirements traceability matrix, 54, 495–498, 601.

See also tracing, requirements
requirements tracing. See tracing, requirements
requirements validation. See validation, requirements
requirements, characteristics of excellent, 203–207
requirements, reuse of

benefits of, 351–352
common scenarios for, 356–358
defined, 602
dimensions of, 352–355
good practices for, 360–364
quality attributes, reusability, 284–285
requirement patterns, 358–359
tools for, 359–360, 508
tracing requirements, 495
types of information to reuse, 355–356

requirements, troubleshooting problems with
analysis issues, 567–569
barriers to solution implementation, 560
change management issues, 572–574
communication issues, 564
elicitation issues, 565–566
overview, 559
planning issues, 562–564
process issues, 561–562
product issues, 562
requirements management issues, 571
signs of problems, 559–560

 633

 stakeholders

software design, requirements and, 373–377
software development life cycle, defined, 602
software interfaces, SRS document, 197, 592–593.

See also interfaces
software process improvement. See requirements

process improvement
software requirements

defined, 5–6
deriving from system requirements, 440–441
levels and types, 7–13

Software Requirements Bill of Responsibilities for
customers, 30, 33–36

Software Requirements Bill of Rights for customers,
30–33

software requirements specification (SRS). See also
documenting requirements

audiences for, 184
defined, 9, 183, 602
labeling requirements, 186–188
lack of, on enhancement and replacement

projects, 398–401
outsourced projects, 416–417
overview, 13, 183–186, 532
product vs. project requirements, 14–15
requirements baseline, 459–460
requirements traceability matrix, 495–498
sample document, 584–594
template for, 190–199
user classes, 106
user interfaces and, 189–190, 196–197

solution ideas, customer input, 138
solution, defined, 602
Sommerville, Ian, 6
specification, requirements. See also software

requirements specification (SRS)
agile projects, 201–202
defined, 602
good practices summary chart, 44
good practices, 51–52
requirements development framework, 45–47
requirements development, 15, 17
risk factors, 545
troubleshooting problems, 569

SRS. See software requirements specification (SRS)
stakeholder, defined, 602
stakeholders. See also customers; and also users

business context, vision and scope document,
90–92

decision makers, identifying, 38
elicitation session, preparing for, 131

agile projects, change management, 389
change control policies, 474
completion decisions, 99
defined, 79, 602
defining for project, 13, 139–140
elicitation, good practices, 48–49
enhancement and replacement projects, 396–397
estimating effort, 370–372
good practices, 53–54
identifying and defining requirements, 78–81
outsourced projects, 419
packaged solution projects, 406–410
project management good practices, 56–57
requirements baseline, 459–460
requirements elicitation, 122–123
requirements process improvement, 519
risk management, 543–544
scope creep, defined, 602
scope management, 20–22, 97–98, 472–473
scope representation techniques, 92–96
vision and scope document, overview, 81–83, 532
vision and scope document, sample, 576–580

Scrum. See agile development
secondary actor, 148
secondary scenarios, 152–153
security

data integrity requirements, 270–271
packaged solution projects, 408
real-time and embedded systems, 452–453
requirements for, 277–279, 408, 452–453, 593
requirements reuse, 355–356
SRS document, 198

self-assessment, current requirements practices,
551–557

shall, as keyword in requirements, 9, 209
sign-off, 39–41. See also baseline, requirements
signal events

defined, 241
event-response tables, 240–242
identifying, 48–49

simulations. See also prototypes
good practices, 53
mock-ups and proofs of concept, 297–298
user interfaces, 189–190

skill development, good practices, 54–55
SMART, 266, 347
soft real-time systems, 439. See also real-time

systems projects
software as a service (SaaS) projects. See packaged

solution projects

634

standards, industry

system state models, 226
system testing, requirements and, 519

T
taxonomy, business rules, 169
TBD (to be determined), 206, 208, 216, 221, 602
team building, 72–73
templates

change control board charter, 481, 533
change control process, 475–479
change impact analysis, 488
defined, 602
functional requirements, 207–208
interface specification document, 446–447
project risk documentation, 539–541
reporting specifications, 255–256
requirement patterns, 358–359
software requirements specification (SRS),

190–199, 532
tips for using, 82–83
use case, 146, 532
user story, 145
vision and scope document, 81–83, 532
vision statement, 87

temporal events
defined, 241
event-response tables, 241–242
identifying, 48–49

terminators, context diagrams, 92–93. See also
external entities

terminology, good practices, 55, 364
testability. See verifiability
testing

acceptance criteria, 347–349
creating validation tests, 342–347
dialog maps and, 344–347
enhancement and replacement projects, 400–401
fit criteria, 267
outsourced projects, 416, 420
packaged solution projects, 408–409
project planning and, 365–366, 377–379
prototype evaluations, 306–307
requirements process improvement, 518–520
requirements reuse and, 362
software requirements specification (SRS), 9
tracing requirements to tests, 495
troubleshooting issues, 570
use cases and functional requirements, 163

stakeholders. See also customers; also users,
continued

knowledge and training, good practices, 54–55
list of potential, 28
overlooked, 22
reaching agreement on requirements, 38–41
Requirements Bill of Responsibilities for customers,

30, 33–36
Requirements Bill of Rights for customers, 30–33
requirements process improvement, 520
resistance to change, 521–522
stakeholder analysis, 27–29

standards, industry. See business rules
state diagrams, 243
state machine diagrams, 232–234, 602
state tables, 226, 232–234, 602
statechart diagrams, 443
state-transition diagrams, 51, 226, 232–234,

442–443, 594, 602
status tracking, requirements, 457–459, 464–466,

469–470, 532
story points, 325, 370, 469
storyboards, 226, 301–303
straw man models, 122, 132
structure, data, 250. See also data dictionary
subject matter expert, 62, 70–71, 110, 602
success metrics, 85–86, 577
supportability requirements. See modifiability

requirements
surveys, good practices, 49
survivability, 275
swimlane diagrams

business process automation projects, 423
business process flow, 225
defined, 230, 602
enhancement and replacement projects, 400–401
overview of, 230–231
system external interfaces, 225
user task descriptions, 226

system, defined, 9–10, 439, 602
system analyst. See business analyst (BA)
system interface analysis, 127–128, 225
system requirements

allocation, 9–10, 440–441
architecture design, project planning and, 373–374
defined, 7, 9–10, 602
embedded and real-time systems projects,

440–441
partitioning of, 440–441

system requirements specification, 440

 635

 use cases

process issues, 561–562
product issues, 562
requirements management issues, 571
signs of requirements problems, 559–560
specification issues, 569–570
validation issues, 570–571

U
understandability requirements. See modifiability

requirements
UML diagrams, 243
Unified Modeling Language (UML), 148–149, 232,

243, 445–446, 603
usability. See also quality attributes

embedded systems, 453
packaged solution projects, 408
prototype evaluations, 306–307
requirements, 279–281
SRS document, 197–198

usage-centric strategy, 16
usage scenarios, 149
use cases. See also user requirements

actors and roles, 147–148
benefits of, 164–165
business rules and, 156–157
chaining together, 156
defined, 144, 603
diagrams, 148–149
elements of, 149–150
eliciting use cases, 158–160
enhancement and replacement projects, 400–401
extend and include relationships, 155–156
functional requirements and, 161–163
identifying, 157–158
labeling conventions, 151
normal flow, alternative flows, and exceptions,

152–153
overview, 9, 143–147
pre- and postconditions, 151, 156
sample document, 581–583
setting priorities, 50
template for, 146, 150, 532
testing and, 144, 146–147, 343–344, 347
traps to avoid, 163–164
usage scenarios and, 149
use case diagrams, 148, 243, 395, 603
user stories and, 144–147, 152–153
users and actors, 147–148
validating, 160–161

use cases and user stories, 146–147
use cases and, 160–161, 346–348
validating use cases, 160–161
validation, good practices, 52–53
verifiability requirements, 286–287

textual tags, requirement labeling, 187–188
three-level scale, prioritization, 319–320
throwaway prototypes, 298–300, 602. See also

prototypes
time-based events. See temporal events
timeboxed development, 98–99. See also agile

development
timeboxing discussions, workshops, 124
timing requirements, on embedded and other

real-time systems, 447–449
to be determined. See TBD
tools for requirements engineering

overview, 503–505
requirements development tools, 505–506
requirements management tools, 506–510
selecting and using, 510–513

traceable requirements, 206
tracing requirements

allocated requirements, 441
defined, 603
levels and types, 7–13
missing requirements, identifying, 141–142, 222,

225, 227, 236, 238, 346
motivations for, 494–495, 500–501
overview, 491–493
packaged solution projects, 407, 410
procedure for, 499–501, 533
requirements management overview, 457–459
requirements traceability matrix, 495–498
tools for, 498–499
traceability data, 400
traceability table, 495

tracking changes, 461–462, 474
tracking effort on requirements activities, 467–468
tracking requirements status, 458, 464–466, 469
training and skills development, 54–55, 68–71
transition requirements, 14, 22, 402
troubleshooting

analysis issues, 567–569
barriers to implementing solutions, 560
change management issues, 572–574
communication issues, 564
elicitation issues, 565–566
overview, 559
planning issues, 562–564

636

user acceptance testing

features and, 388–389
overview, 143–147, 388–389
quality attributes, agile projects, 293–294
setting and changing priorities, 50, 314, 489
use cases and, 144–147, 152–153
user requirements, 9

user task models, 226
users. See also customers; also stakeholders

agile projects and, 115–116
classifying users, 102–104
conflicting requirements, resolution of, 116–117
customer comments, use in models, 223–224
enhancement and replacement projects, 395
importance of, 101–102
product champions, 109–114
SRS document, 193
user classes, identifying, 105–107
user observations, 125–126
user personas, 107–108
user representatives, 108–109

V
V model of software development, 330
validation, requirements. See also testing

acceptance criteria, 347–349
business analyst role, 64
defect checklist for requirements reviews,

338–339
defined, 331, 603
good practices, 44, 52–53
inspections, 332–338
outsourced projects, 420
overview of, 329–331
packaged solution projects, 408–409
peer reviews, 332–342
prototyping requirements, 342
requirements development, 15, 17, 45–47
requirements review tips and challenges, 339–342
requirements testing, 342–347
reviewing requirements, 332–342
risk factors, 545
testing requirements, 342–347
troubleshooting problems, 570
use cases, 160–161

verifiability requirements, 286–287
verifiable requirements, 205

user, defined, 603
user acceptance testing, 377–379
user classes, defined, 603. See also user analysis
user documentation, requirements and, 519–520
user goals. See user requirements
user interfaces

analyzing, good practices, 51
architecture diagrams, 445–446
control descriptions, 226
customer input, 137
design of, requirements and, 375–377
dialog maps, 235–238
embedded projects, 446–447, 453
flow, 235
interface specification document, 447
mock-ups, 297–298
models for, 226
prototypes, 50
real-time projects, 446–447, 453
requirements analysis, 128
SRS and, 189–190, 196–197
SRS document, sample, 592–593
user interface analysis, 128
wireframe prototype, 299

user involvement in requirements, 101–116
user requirements. See also use cases; also user

stories
business analytics projects, 431–432
business process automation requirements,

423–424
customer input, 136
defined, 7, 9, 603
elicitation, good practices, 48–49
packaged solution projects, 406–407
requirement levels and types, 7–13
requirements development, 16–17
stakeholder analysis, 28–29
techniques for identifying, overview, 143–144
user requirements document, 13, 400–401

user role. See actor
user stories. See also use cases; also user

requirements
agile projects, 199–201, 386–389, 489
defined, 145, 603
enhancement and replacement projects, 395,

400–401
epics and, 388–389

 637

 Young, Ralph

voice of the user, 101, 108, 109
von Halle, Barbara, 177

W
walkthrough, 332–333
waterfall development, defined, 384, 603
waterfall development, limitations of, 384–385
Weinberg, Gerald, 105
Wiegers, Karl, 78, 225, 339, 366, 467
wireframe, 299, 603. See also prototypes
Withall, Stephen, 267, 358
work product, defined, 603
workshops

good practices, 49
requirements elicitation, 122–125

writing requirements documents, 203–220
writing style, requirements documentation, 207–211

Y
Young, Ralph, 61

verification, defined, 331, 603. See also validation
version control

good practices, 53
overview of, 460–462
requirements management tools, 506–510
requirements management, overview, 457–459

vertical prototype, 298, 603. See also prototypes
vision and scope document

agile projects, 98–99
business context, 90–92
business requirements, 83–88
defined, 8, 81, 603
deliverables, 13
good practices, 51–52
overview, 81–83
sample document, 576–580
scope and limitations section, 88–90
template for, 81–83, 532
vision statement, 87–88, 577

vision, product, 78–79, 603
vision statement, 87–88, 577
visual representations. See models

About the authors
KARL WIEGERS is principal consultant with Process Impact, a software
process consulting and education company in Portland, Oregon. His interests
include requirements engineering, peer reviews, project management, and
process improvement. Previously, he spent 18 years at Eastman Kodak
Company as a photographic research scientist, software developer,
software manager, and software process and quality improvement leader.
Karl received a PhD degree in organic chemistry from the University
of Illinois. When he’s not on the computer, Karl enjoys wine tasting, playing

guitar, writing and recording songs, and doing volunteer work.

Karl is the author of numerous books and articles on software development,
chemistry, self-help, and military history. His books include the two previous editions
of Software Requirements (Microsoft Press, 1999 and 2003), More About Software
 Requirements (Microsoft Press, 2006), Practical Project Initiation (Microsoft Press,
2007), Peer Reviews in Software (Addison-Wesley, 2002), and Creating a Software
 Engineering Culture (Dorset House Publishing, 1996). He is also the author of a
 memoir of life lessons, Pearls from Sand (Morgan James Publishing, 2011). Karl has
served on the editorial board for IEEE Software magazine and as a contributing editor
for Software Development magazine. He has delivered more than 300 seminars and
training courses on software requirements. You can reach Karl at www.processimpact
.com and www.karlwiegers.com. (Photo credit: Emily Down, Jama Software)

JOY BEATTY is a vice president at Seilevel, a professional services and
­training­company­in­Austin,­Texas,­that­helps­redefine­the­way­­customers­
 create software requirements. With 15 years of experience in business
analysis, Joy evolves new methods and helps customers implement best
practices that improve requirements elicitation and modeling. She assists
Fortune 500 companies as they build business analysis centers of excellence.
Joy has provided training to thousands of business analysts and is a
­Certified­­Business­Analysis­Professional­(CBAP).­Joy­graduated­from­Purdue­

University­with­BS­degrees­in­both­computer­science­and­mathematics.­Joy’s­passions­
beyond requirements include rowing, swimming, and being outside with her family.

Joy is actively involved as a leader in the requirements community. She has
worked­with­the­International­Institute­of­Business­Analysis­(IIBA)­on­A Guide to the
Business Analysis Body of Knowledge (BABOK Guide). Additionally, she writes about
 requirements methodologies in journals, white papers, and blog posts and presents
at requirements-related conferences. She also co-authored Visual Models for Software
Requirements (Microsoft Press, 2012). Joy can be reached at www.seilevel.com and
joy.beatty@seilevel.com.

http://www.seilevel.com
http://www.processimpact
http://www.karlwiegers.com

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

http://aka.ms/tellpress

	Cover
	Praise for this book
	Title Page
	Copyright
	Dedication
	Contents at a glance
	Contents
	Introduction
	Benefits this book provides
	Who should read this book
	Looking ahead
	Case studies
	From principles to practice
	Errata & book support
	We want to hear from you
	Stay in touch

	Acknowledgments
	CHAPTER 6: Finding the voice of the user
	User classes
	Classifying users
	Identifying your user classes

	User personas
	Connecting with user representatives
	The product champion

	External product champions
	Product champion expectations
	Multiple product champions
	Selling the product champion idea
	Product champion traps to avoid

	User representation on agile projects
	Resolving conflicting requirements

	CHAPTER 21: Enhancement and replacement projects
	Expected challenges
	Requirements techniques when there is an existing system
	Prioritizing by using business objectives
	Mind the gap
	Maintaining performance levels

	When old requirements don’t exist
	Which requirements should you specify?
	How to discover the requirements of an existing system

	Encouraging new system adoption
	Can we iterate?

	Index

