
1

Paper 006-31

Modular Programming using AF/SCL

Kevin Graham, Montura, San Francisco, California

ABSTRACT

Build modular SAS Frame applications using advanced programming techniques and features available in SAS SCL.
Easily separate critical logic and business rules from your code base without creating tangled source code. Isolate
and integrate decision-logic from task-logic without separating your brain from your sanity.

INTRODUCTION

Object programming is the science of program structure and organization. The goal in object programming is to
produce modular and reusable code. The problem is that applications can be object-oriented but not modular. Rules
are added, removed, or modified frequently and some changes can affect multiple sections of the application. The
implementation of rules is what usually kills program modularity.

This tutorial shows how to make a modular business rule.

WHAT IS OBJECT PROGRAMMING?

Objects and SAS/Macro actually have something in common – they both serve as a structure for the source code that
is a SAS program. Thinking of the object, and macro, as simple structures used to encapsulate a SAS program will
make this tutorial easier to understand.

The two most important aspects in object programming are “separation of concerns” and “integration of concerns”.
During the separation phase, the logic programmers call “decision logic” and “task logic” are physically separated into
different programs. During the integration phase, business rule programs are dynamically attached to the other
modules. This allows a rule to perform complex operations on the application without adding complexity.

STRUCTURES

A structure is composed of statements that mark the beginning and ending of a program. In Base/SAS, a macro is
encapsulated with %macro and %mend. Object-oriented programs are encapsulated with class and endclass. This
tutorial shows how legacy Base/SAS code can move from macro structure into object structure.

The code fragment below shows an SQL procedure transitioning into an object structure -- without any alteration.

Applications DevelopmentSUGI 31

Think of the method tags as replacements for %macro and %mend. These tags create a substructure used to
separate logical steps within a program. Each method must be called individually to execute and methods do not
execute in parallel. The following command invokes one method.

 call send(_self_, ‘step1’);

Most programs have a lot of steps, so I use an important coding standard at this point; which is coding method names
into a LIST at the top of the program. The list named activeMethods contains methods considered to be part of the
standard execution process. Not all methods will be executed during the standard process.

runInterface is a naming convention that indicates the “main driver”. Every object-oriented program in the application
is required to have this method. A do-loop iterates over each method in the specified LIST.

class standardStructure;
 public list activeMethods / (initialValue={
 'step1',
 'step2’
 });

 runInterface: method;
 dcl num i;

 do i=1 to listlen(activeMethods);
 call send(_self_, getitemc(activeMethods, i));
 end;
 endmethod;

 * cut ;
endclass;

2

Applications DevelopmentSUGI 31

3

FOUR SIMPLE RULES

A standard program template is used on all object programs, including Frame widgets. These rules become critical
during the development and debugging phases.

1. Use a do-loop to iterate through method execution.
2. Declare new variables at the top of the program.
3. Code and execute methods beginning at the top and ending at the bottom of the program.
4. Always insert numeric and character variables from a SAS table into a LIST, replicating the data vector.

OBJECT-ORIENTED DATA VECTOR

Base/SAS
The Data Step data vector, implemented by the SET statement, makes every data value in one row of a SAS dataset
accessible by name.

Object Oriented/SAS
The object-oriented data vector, implemented through a LIST, makes every element in the LIST available to every
program in the application. In the next section, I’ll show why objects are inserted into a LIST.

The figure below shows SCL code moving data into a list.

class standardStructure;
 public list dataVector / (sendEvent=‘N’);

 step1: method;
 endmethod;

 step2: method;
 dcl num rc dset;
 dset=open('work.temp', 'i');
 do while (fetch(dset)=0);
 rc=insertc(dataVector, getvarc(dset, varnum(dset, ‘company') , -1);
 end;
 rc=close(dset);
 endmethod;
endclass;

INTEGRATING BUSINESS RULES

Integrating business rules into any application can create two types of challenges.

1. The planning challenge is to account for a large number of business rules. The number of rules can be
expected to increase or decrease, at any time.

2. The technical challenge is to account for the planning challenge without going insane.

Batch-mode applications are far easier to design and code than interactive applications, so normally, the presence of
a GUI like SAS/Frame would add complication. The following figure shows a three-way communications path. In this
example, business rules modules may need data stored in non-visual program and the status of several Frame
widgets at the same time.

Applications DevelopmentSUGI 31

A VERY OLD CHALLENGE
OBJECT PROGRAMS DO NOT SHARE

CORP and COMBOBOX1 were both coded to perform a single function. Corp obtains a list of unique values from one
column in a relational table and stores the data in a list. COMBOBOX1 simply takes data from CORP for display on
the Frame.

4

CORP and COMBOBOX1 compile and execute with no problem whatsoever. If you attempt to move data from CORP
into COMBOBOX then we have a major problem. This is where I found that two object programs in the same

Applications DevelopmentSUGI 31

application are unable to communicate. There is no way to transfer data between CORP and COMBOBOX1, so they
may as well exist in different galaxies.

I have never seen documentation that says objects in the same application can’t share data because they are unable
to “see” each other. Someone forgot about that one. The following code fragment was coded into COMBOBOX1 and
shows my first attempt to obtain data located in the CORP program. Of course, it didn’t work.

 step3: method;
 items=corp.corp;
 endmethod;

%GLOBAL FOR OBJECTS

I began looking for a quick-fix or workaround. To keep my programs and business rules modular, I had to have a
simple way to share data between business rule and Frame programs. The %global statement gave me a bright idea
-- I needed a globally accessible container that could be filled with object programs.

The Figure below illustrates my thought.

From a logical standpoint, I need to see two things happen.

1. Every program containing data or functionality needed elsewhere must be able to contribute a “pointer” to a
global pool - easily. The pointer must point back only to the contributing program.

2. Any program must access to the global pool.

From a financial standpoint, cost was no object, so long as the solution was free. And whatever the cost, the global
pool solution had to work exactly the same with Frame widgets and batch-mode programs. It was a major surprise to
find that SAS already supported the use of pointers.

5

Applications DevelopmentSUGI 31

WHAT IS A POINTER IN SAS?

A pointer is a location identifier in the form of a numeric variable. The SAS System maps this variable to the physical
location of the instance (object) in the computer’s memory. The pointer is an automatic variable named _self_.

In SAS source code, a pointer is located in a variable declared as an OBJECT. The variable anyName does not
contain a program. It can only contain information that points to a program.

 dcl object anyName;

THE %GLOBAL POOL

My global pool idea would only work if the container could hold an unlimited number of pointers. The SCL LIST fits the
bill here. LIST works like the Data Step array, but there’s no need to predetermine the number of elements. A list can
expand until it takes up all of your system memory.

The process begins with the event named “screen beans”. The event queries each program in the application looking
for eventhandlers of the same name. Only programs with an eventhandler of the same name can respond to this
event. Responding programs insert _self_ into the event parameter. The pointer is immediately stored in the LIST
located in the calling program. Event directives act as wireless connectors between SAS programs.

The following figure demonstrates the return path of a pointer, and the subsequent storage in a list.

Any number of eventhandlers can respond to a single event and the calling program does not know how many
programs will respond. This is why we need a list to contain an unknown number of elements.

6

Applications DevelopmentSUGI 31

Presto! A single SAS command (or two) performs a lot of work, as usual. The most powerful functionality in object
programming is the combination of EVENT and EVENTHANDLER. The SAS System extends this feature into the
realm of batch-mode programs.

BUSINESS RULES

The most important aspect in modular programming is the ability to engage and disengage a business rule.

The goal is to code each rule as standalone module that can be added, removed, and modified without affecting any
other program in the application. We really want the ability to change the functional response of several different parts
of the application at the same time, without reprogramming.

The solution is to pool object references of specific programs into a business rule module. The standard process of
the entire application can be changed dramatically through rule programs. Rule modules provide a mechanism to
have a standard process with many options.

• Include extra modules based on values in the data stream
• Enable or disable functions in multiple programs at the same time.
• Deviate from the standard process with new functions inserted into old code at a specific point.
• Execute optional steps.
• Alter data values in any program that control standard process execution, on a per-observation basis

The figure below shows a business rule that uses pointers to operate on several Frame widgets. In this case, decision
logic runs in batch-mode while task logic runs in interactive-mode.

This example was taken from a production program that contains several hundred business rules.
CONCLUSION

The transition into object-oriented programming begins with solid Base/SAS programming skills.

7

Applications DevelopmentSUGI 31

8

Object programming is easier than it looks.

REFERENCES

Repository Relationship Programming, www.uspto.gov

AUTHOR CONTACT INFORMATION

Montura Consulting
Kevin Graham
(510) 798-8367
Kevin@montura.com

Applications DevelopmentSUGI 31

http://www.uspto.gov/
mailto:Kevin@montura.com

	SUGI 31 Proceedings Table of Contents

