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Abstract

We introduce a new notion of “regularity structure” that provides an algebraic framework
allowing to describe functions and / or distributions via a kind of “jet” or local Taylor
expansion around each point. The main novel idea is to replace the classical polynomial
model which is suitable for describing smooth functions by arbitrary models that are
purpose-built for the problem at hand. In particular, this allows to describe the local
behaviour not only of functions but also of large classes of distributions.

We then build a calculus allowing to perform the various operations (multiplication,
composition with smooth functions, integration against singular kernels) necessary to
formulate fixed point equations for a very large class of semilinear PDEs driven by
some very singular (typically random) input. This allows, for the first time, to give
a mathematically rigorous meaning to many interesting stochastic PDEs arising in
physics. The theory comes with convergence results that allow to interpret the solutions
obtained in this way as limits of classical solutions to regularised problems, possibly
modified by the addition of diverging counterterms. These counterterms arise naturally
through the action of a “renormalisation group” which is defined canonically in terms
of the regularity structure associated to the given class of PDEs.

Our theory also allows to easily recover many existing results on singular stochastic
PDEs (KPZ equation, stochastic quantisation equations, Burgers-type equations) and to
understand them as particular instances of a unified framework. One surprising insight
is that in all of these instances local solutions are actually “smooth” in the sense that
they can be approximated locally to arbitrarily high degree as linear combinations of a
fixed family of random functions / distributions that play the role of “polynomials” in
the theory.

As an example of a novel application, we solve the long-standing problem of building
a natural Markov process that is symmetric with respect to the (finite volume) measure
describing the ®3 Euclidean quantum field theory. It is natural to conjecture that the
Markov process built in this way describes the Glauber dynamic of 3-dimensional
ferromagnets near their critical temperature.
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1 Introduction

The purpose of this article is to develop a general theory allowing to formulate, solve
and analyse solutions to semilinear stochastic partial differential equations of the type

Lu = F(u,§), (1.1)

where L is a (typically parabolic but possibly elliptic) differential operator, ¢ is a
(typically very irregular) random input, and F' is some nonlinearity. The nonlinearity F'
does not necessarily need to be local, and it is also allowed to depend on some partial
derivatives of u, as long as these are of strictly lower order than £. One example of
random input that is of particular interest in many situations arising from the large-scale
behaviour of some physical microscopic model is that of white noise (either space-time
or just in space), but let us stress immediately that Gaussianity is not essential to the
theory, although it simplifies certain arguments. Furthermore, we will assume that F'
depends on ¢ in an affine way, although this could in principle be relaxed to some
polynomial dependencies.

Our main assumption will be that the equation described by (1.1) is locally subcriti-
cal (see Assumption 8.3 below). Roughly speaking, this means that if one rescales (1.1)
in a way that keeps both Lu and ¢ invariant then, at small scales, all nonlinear terms
formally disappear. A “naive” approach to such a problem is to consider a sequence of
regularised problems given by

Lue = F(ue, &) , (1.2)

where &. is some smoothened version of ¢ (obtained for example by convolution with a
smooth mollifier), and to show that u. converges to some limit v which is independent
of the choice of mollifier.

This approach does in general fail, even under the assumption of local subcriticality.
Indeed, consider the KPZ equation on the line [KPZ86], which is the stochastic PDE
formally given by

Oth = 02h + (0,h)? + €, (1.3)

where £ denotes space-time white noise. This is indeed of the form (1.1) with £ = 0; —
02 and F(h, &) = (0,h)?+¢ and it is precisely this kind of problem that we have in mind.
Furthermore, if we zoom into the small scales by writing iL(.ﬁC, t) = 6~ Y2h(6x, §%t) and
fN(x7 t) = 63/2¢(5x, 6t) for some small parameter &, then we have that on the one hand
§~ equals ¢ in distribution, and on the other hand h solves

Orh = 02h + 6'/2(0,h)* + € .

As 0 — 0 (which corresponds to probing solutions at very small scales), we see
that, at least at a formal level, the nonlinearity vanishes and we simply recover the
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stochastic heat equation. This shows that the KPZ equation is indeed locally subcritical
in dimension 1. On the other hand, if we simply replace & by & in (1.3) and try to take
the limit € — 0, solutions diverge due to the ill-posedness of the term (9,.h)?.

However, in this case, it is possible to devise a suitable renormalisation procedure
[BG97, Hail3], which essentially amounts to subtracting a very large constant to the
right hand side of a regularised version of (1.3). This then ensures that the corresponding
sequence of solutions converges to a finite limit. The purpose of this article is to build a
general framework that goes far beyond the example of the KPZ equation and allows to
provide a robust notion of solution to a very large class of locally subcritical stochastic
PDEs that are classically ill-posed.

Remark 1.1 In the language of quantum field theory (QFT), equations that are subcrit-
ical in the way just described give rise to “superrenormalisable” theories. One major
difference between the results presented in this article and most of the literature on
quantum field theory is that the approach explored here is truly non-perturbative and
therefore allows one to deal also with some non-polynomial equations like (PAMg) or
(KPZ) below. We furthermore consider parabolic problems, where we need to deal with
the problem of initial conditions and local (rather than global) solutions. Nevertheless,
the mathematical analysis of QFT was one of the main inspirations in the development
of the techniques and notations presented in Sections § and 10.

Conceptually, the approach developed in this article for formulating and solving
problems of the type (1.1) consists of three steps.

1. In an algebraic step, one first builds a “regularity structure”, which is sufficiently
rich to be able to describe the fixed point problem associated to (1.1). Essentially, a
regularity structure is a vector space that allows to describe the coefficients in a kind
of “Taylor expansion” of the solution around any point in space-time. The twist is
that the “model” for the Taylor expansion does not only consist of polynomials, but
can in general contain other functions and / or distributions built from multilinear
expressions involving .

2. In an analytical step, one solves the fixed point problem formulated in the algebraic
step. This allows to build an “abstract” solution map to (1.1). In a way, this is a
closure procedure: the abstract solution map essentially describes all “reasonable”
limits that can be obtained when solving (1.1) for sequences of regular driving noises
that converge to something very rough.

3. In a final probabilistic step, one builds a “model” corresponding to the Gaussian
process £ we are really interested in. In this step, one typically has to choose a
renormalisation procedure allowing to make sense of finitely many products of
distributions that have no classical meaning. Although there is some freedom
involved, there usually is a canonical model, which is “almost unique” in the sense
that it is naturally parametrized by elements in some finite-dimensional Lie group,
which has an interpretation as a “renormalisation group” for (1.1).

We will see that there is a very general theory that allows to build a “black box”,
which performs the first two steps for a very large class of stochastic PDEs. For the last
step, we do not have a completely general theory at the moment, but we have a general
methodology, as well as a general toolbox, which seem to be very useful in practice.
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1.1 Some examples of interesting stochastic PDEs

Some examples of physically relevant equations that in principle fall into the category
of problems amenable to analysis via the techniques developed in this article include:

o The stochastic quantisation of ®* quantum field theory in dimension 3. This formally
corresponds to the equation

0P =AD— 3+ ¢, (@%)

where ¢ denotes space-time white noise and the spatial variable takes values in
the 3-dimensional torus, see [PW81]. Formally, the invariant measure of (&%) (or
rather a suitably renormalised version of it) is the measure on Schwartz distri-
butions associated to Bosonic Euclidean quantum field theory in 3 space-time
dimensions. The construction of this measure was one of the major achieve-
ments of the programme of constructive quantum field theory, see the articles
[Gli68, EO71, GJ73, FO76, Fel74], as well as the monograph [GJ87] and the refer-
ences therein.

In two spatial dimensions, this problem was previously treated in [AR91, DPDO03].
It has also been argued more recently in [ALZ06] that even though it is formally
symmetric, the 3-dimensional version of this model is not amenable to analysis via
Dirichlet forms. In dimension 4, the model (%) becomes critical and one does not
expect to be able to give it any non-trivial (i.e. non-Gaussian in this case) meaning
as a random field for d > 4, see for example [Fr682, Aiz82, KE83].

Another reason why (®*) is a very interesting equation to consider is that it is related
to the behaviour of the 3D Ising model under Glauber dynamic near its critical
temperature. For example, it was shown in [BPRS93] that the one-dimensional
version of this equation describes the Glauber dynamic of an Ising chain with a
Kac-type interaction at criticality. In [GLP99], it is argued that the same should hold
true in higher dimensions and an argument is given that relates the renormalisation
procedure required to make sense of (®%) to the precise choice of length scale as a
function of the distance from criticality.

e The continuous parabolic Anderson model
oy = Au + &u (PAM)

where £ denotes spatial white noise that is constant in time. For smooth noise, this
problem has been treated extensively in [CM94]. While the problem with & given by
spatial white noise is well-posed in dimension 1 (and a good approximation theory
exists, see [IPPO8]), it becomes ill-posed already in dimension 2. One does however
expect this problem to be renormalisable with the help of the techniques presented
here in spatial dimensions 2 and 3. Again, dimension 4 is critical and one does not
expect any continuous version of the model for d > 4.

o KPZ-type equations of the form
Oh = 02+ g1 (W)(0:h)* + g2(WDuh + gs(h) + ga(W)E (KPZ)

where £ denotes space-time white noise and the g; are smooth functions. While
the classical KPZ equation can be made sense of via the Cole-Hopf transform
[Col51, Hop50, BG97], this trick fails in the more general situation given above or
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in the case of a system of coupled KPZ equations, which arises naturally in the study
of chains of nonlinearly interacting oscillators [BGJ13].

A more robust concept of solution for the KPZ equation where g4 = ¢g; = 1 and
g2 = g3 = 0, as well as for a number of other equations belonging to the class
(KPZ) was given recently in the series of articles [Hail2, Haill, HW13, Hail3],
using ideas from the theory of rough paths that eventually lead to the development
of the theory presented here. The more general class of equations (KPZ) is of
particular interest since it is formally invariant under changes of coordinates and
would therefore be a good candidate for describing a natural “free evolution” for
loops on a manifold, which generalises the stochastic heat equation. See [Fun92]
for a previous attempt in this direction and [BGJ12] for some closely related work.

e The Navier-Stokes equations with very singular forcing
ow=Av—Pw-Vv+¢&, (SNS)

where P is Leray’s projection onto the space of divergence-free vector fields. If we
take £ to have the regularity of space-time white noise, (SNS) is already classically
ill-posed in dimension 2, although one can circumvent this problem, see [AC90,
DPDO02, AF04]. However, it turns out that the actual critical dimension is 4 again,
so that we can hope to make sense of (SNS) in a suitably renormalised sense in
dimension 3 and construct local solutions there.

One common feature of all of these problems is that they involve products between
terms that are too irregular for such a product to make sense as a continuous bilinear
form defined on some suitable function space. Indeed, denoting by C* for @ < 0 the
Besov space Bg;m, it is well-known that, for non-integer values of « and (3, the map
(u,v) — uv is well defined from C® x C? into some space of Schwartz distributions
if and only if o 4+ 8 > 0 (see for example [BCD11]), which is quite easily seen to be
violated in all of these examples.

In the case of second-order parabolic equations, it is straightforward to verify (see

also Section 6 below) that, for fixed time, the solutions to the linear equation
X =AX+¢,

belong to C* for a < 1 — 4 when ¢ is space-time white noise and v < 2 — % when
& is purely spatial white noise. As a consequence, one expects @ to take values in C*
with a < —1/2, so that ®3 is ill-defined. In the case of (PAM), one expects  to take
values in C* with « < 2 — d/2, so that the product u€ is well-posed only for d < 2.
As in the case of (®*), dimension 2 is “borderline” with the appearance of logarithmic
divergencies, while dimension 3 sees the appearance of algebraic divergencies and
logarithmic subdivergencies. Note also that, since £ is white noise in space, there is
no theory of stochastic integration available to make sense of the product u&, unlike
in the case when ¢ is space-time white noise. (See however [GIP12] for a very recent
article solving this particular problem in dimension 2.) Finally, one expects the function
h in (KPZ) to take values in C* for o < %, so that all the terms appearing in (KPZ) are
ill-posed, except for the term involving gs.

Historically, such situations have been dealt with by replacing the products in
question by their Wick ordering with respect to the Gaussian structure given by the
solution to the linear problem Lu = &, see for example [JLM85, AR91, DPD02,
DPDO03, DPDTO7] and references therein. In many of the problems mentioned above,
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such a technique is bound to fail due to the presence of additional subdivergencies.
Furthermore, we would like to be able to consider terms like g1 (h)(0,h)? in (KPZ)
where ¢g; is an arbitrary smooth function, so that it is not clear at all what a Wick ordering
would mean. Over the past few years, it has transpired that the theory of controlled
rough paths [Lyo98, Gub04, Gub10] could be used in certain situations to provide a
meaning to the ill-posed nonlinearities arising in a class of Burgers-type equations
[HV11, Haill, HW13, HMW12], as well as in the KPZ equation [Hail3]. That theory
however is intrinsically a one-dimensional theory, which is why it has so far only been
successfully applied to stochastic evolution equations with one spatial dimension.

In general, the theory of rough paths and its variants do however allow to deal
with processes taking values in an infinite-dimensional space. It has therefore been
applied successfully to stochastic PDEs driven by signals that are very rough in time (i.e.
rougher than white noise), but at the expense of requiring additional spatial regularity
[GT10, CFO11, Teill].

One very recent attempt to use related ideas in higher dimensions was made in
[GIP12] by using a novel theory of “controlled distributions”. With the help of this
theory, which relies heavily on the use of Bony’s paraproduct, the authors can treat for
example (PAM) (as well as some nonlinear variant thereof) in dimension d = 2. The
present article can be viewed as a far-reaching generalisation of related ideas, in a way
which will become clearer in Section 2 below.

1.2 On regularity structures

The main idea developed in the present work is that of describing the “regularity” of a
function or distribution in a way that is adapted to the problem at hand. Traditionally,
the regularity of a function is measured by its proximity to polynomials. Indeed, we say
that a function u: R? — R is of class C* with o > 0 if, for every point x € Rd, it is
possible to find a polynomial P, such that

|f() — Pe(y)| < o —y|™ .

What is so special about polynomials? For one, they have very nice algebraic properties:
products of polynomials are again polynomials, and so are their translates and derivatives.
Furthermore, a monomial is a homogeneous function: it behaves at the origin in a self-
similar way under rescalings. The latter property however does rely on the choice of
a base point: the polynomial iy — (y — 2)¥ is homogeneous of degree k& when viewed
around z, but it is made up from a sum of monomials with different homogeneities
when viewed around the origin.

In all of the examples considered in the previous subsection, solutions are expected
to be extremely irregular (at least in the classical sense!), so that polynomials alone are
a very poor model for trying to describe them. However, because of local subcriticality,
one expects the solutions to look at smallest scales like solutions to the corresponding
linear problems, so we are in situations where it might be possible to make a good
“guess” for a much more adequate model allowing to describe the small-scale structure
of solutions.

Remark 1.2 In the particular case of functions of one variable, this point of view
has been advocated by Gubinelli in [Gub04, Gub10] (and to some extent by Davie in
[Dav08]) as a way of interpreting Lyons’s theory of rough paths. (See also [LQO2,
LCLO07, FV10b] for some recent monographs surveying that theory.) That theory does
however rely very strongly on the notion of “increments” which is very one-dimensional
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in nature and forces one to work with functions, rather than general distributions. In
a more subtle way, it also relies on the fact that one-dimensional integration can be
viewed as convolution with the Heaviside function, which is locally constant away from
0, another typically one-dimensional feature.

This line of reasoning is the motivation behind the introduction of the main novel
abstract structure proposed in this work, which is that of a “regularity structure”. The
precise definition will be given in Definition 2.1 below, but the basic idea is to fix a finite
family of functions (or distributions!) that will play the role of polynomials. Typically,
this family contains all polynomials, but it may contain more than that. A simple way of
formalising this is that one fixes some abstract vector space 7' where each basis vector
represents one of these distributions. A “Taylor expansion” (or “jet”) is then described
by an element a € T which, via some “model” IT: T' — &’ (Rd), one can interpret as
determining some distribution ITa € S’(R?). In the case of polynomials, T would be
the space of abstract polynomials in d commuting indeterminates and IT would be the
map that realises such an abstract polynomial as an actual function on RY.

As in the case of polynomials, different distributions have different homogeneities
(but these can now be arbitrary real numbers!), so we have a splitting of 7" into “ho-
mogeneous subspaces” T;,. Again, as in the case of polynomials, the homogeneity of
an element a describes the behaviour of Ila around some base point, say the origin
0. Since we want to be able to place this base point at an arbitrary location we also
postulate that one has a family of invertible linear maps F,: T — T such thatif a € T,
then ITF; a exhibits behaviour “of order o (this will be made precise below in the case
of distribution) near the point x. In this sense, the map II, = II o F,, plays the role
of the “polynomials based at z”, while the map I',,, = F, ! o F, plays the role of a
“translation operator” that allows to rewrite a “jet based at 3™ into a “‘jet based at x”".

We will endow the space of all models (II, F') as above with a topology that enforces
the correct behaviour of II, near each point z, and furthermore enforces some natural
notion of regularity of the map x — F,. The important remark is that although this
turns the space of models into a complete metric space, it does not turn it into a linear
(Banach) space! It is the intrinsic nonlinearity of this space which allows to encode
the subtle cancellations that one needs to be able to keep track of in order to treat the
examples mentioned in Section 1.1. Note that the algebraic structure arising in the
theory of rough paths (truncated tensor algebra, together with its group-like elements)
can be viewed as one particular example of an abstract regularity structure. The space
of rough paths with prescribed Holder regularity is then precisely the corresponding
space of models. See Section 4.4 for a more detailed description of this correspondence.

1.3 Main results: abstract theory

Let us now expose some of the main abstract results obtained in this article. Unfor-
tunately, since the precise set-up requires a number of rather lengthy definitions, we
cannot give precise statements here. However, we would like to provide the reader with
a flavour of the theory and refer to the main text for more details.

One of the main novel definitions consists in spaces D and D7 (see Definition 3.1
and Remark 3.5 below) which are the equivalent in our framework to the usual spaces
C7. They are given in terms of a “local Taylor expansion of order v at every point,
together with suitable regularity assumption. Here, the index + measures the order of
the expansion, while the index « (if present) denotes the lowest homogeneity of the
different terms appearing in the expansion. In the case of regular Taylor expansions,
the term with the lowest homogeneity is always the constant term, so one has o = 0.
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However, since we allow elements of negative homogeneity, one can have o < 0 in
general. Unlike the case of regular Taylor expansions where the first term always
consists of the value of the function itself, we are here in a situation where, due to the
fact that our “model” might contain elements that are distributions, it is not clear at all
whether these “jets” can actually be patched together to represent an actual distribution.
The reconstruction theorem, Theorem 3.10 below, states that this is always the case as
soon as v > 0. Loosely speaking, it states the following, where we again write C* for
the Besov space BY, . (Note that with this notation C° really denotes the space L,
C! the space of Lipschitz continuous functions, etc. This is consistent with the usual
notation for non-integer values of «.)

Theorem 1.3 (Reconstruction) For every v > 0 and a < 0, there exists a unique
continuous linear map R: D) — C*(RY) with the property that, in a neighbourhood of
size € around any x € R, Rf is approximated by 11, f(x), the jet described by f(z),
up to an error of order 7.

The reconstruction theorem shows that elements f € D7 uniquely describe distribu-
tions that are modelled locally on the distributions described by II, f(x). We therefore
call such an element f a “modelled distribution”. At this stage, the theory is purely
descriptive: given a model of a regularity structure, it allows to describe a large class
of functions and / or distributions that “locally look like” linear combinations of the
elements in the model. We now argue that it is possible to construct a whole calculus
that makes the theory operational, and in particular sufficiently rich to allow to formulate
and solve large classes of semilinear PDEs.

One of the most important and non-trivial operations required for this is multiplica-
tion. Indeed, one of the much lamented drawbacks of the classical theory of Schwartz
distributions is that there is no canonical way of multiplying them [Sch54]. As a matter
of fact, it is in general not even possible to multiply a distribution with a continuous
function, unless the said function has sufficient regularity.

The way we use here to circumvent this problem is to postulate the values of the
products between elements of our model. If the regularity structure is sufficiently large
to also contain all of these products (or at least sufficiently many of them in a sense to be
made precise), then one can simply perform a pointwise multiplication of the jets of two
modelled distributions at each point. Our main result in this respect is that, under some
very natural structural assumptions, such a product is again a modelled distribution. The
following is a loose statement of this result, the precise formulation of which is given in
Theorem 4.7 below.

Theorem 1.4 (Multiplication) Let x be a suitable product onT" and let f; € D3} and
Jo € D2 with v; > 0. Set o« = a1 + g and v = (71 + a2) A (2 + ). Then, the
pointwise product f1 x fa belongs to D).

In the case of f € Dj, all terms in the local expansion have positive homogeneity,
so that R f is actually a function. It is then of course possible to compose this function
with any smooth function g. The non-trivial fact is that the new function obtained in this
way does also have a local “Taylor expansion” around every point which is typically of
the same order as for the original function f. The reason why this statement is not trivial
is that the function R f does in general not possess much “classical” regularity, so that
R f typically does not belong to C”. Our precise result is the content of Theorem 4.16
below, which can be stated loosely as follows.
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Theorem 1.5 (Smooth functions) Let g: R — R be a smooth function and consider
a regularity structure endowed with a product * satisfying suitable compatibility as-
sumptions. Then, for y > 0, one can build a map G : D — D such that the identity
(RG(NH)(x) = g((Rf)(x)) holds for every x € R%

The final ingredient that is required in any general solution theory for semilinear
PDEs consists in some regularity improvement arising from the linear part of the
equation. One of the most powerful class of such statements is given by the Schauder
estimates. In the case of convolution with the Green’s function G of the Laplacian, the
Schauder estimates state that if f € C*, then G * f € C*2, unless o + 2 € N. (In
which case some additional logarithms appear in the modulus of continuity of G * f.)
One of the main reasons why the theory developed in this article is useful is that such an
estimate still holds when f € D®. This is highly non-trivial since it involves “guessing”
an expansion for the local behaviour of G « R f up to sufficiently high order. Somewhat
surprisingly, it turns out that even though the convolution with G is not a local operator
at all, its action on the local expansion of a function is local, except for those coefficients
that correspond to the usual polynomials.

One way of stating our result is the following, which will be reformulated more
precisely in Theorem 5.12 below.

Theorem 1.6 (Multi-level Schauder estimate) Ler K : R\ {0} — R be a smooth
kernel with a singularity of order B—d at the origin for some 3 > 0. Then, under certain
natural assumptions on the regularity structure and the model realising it, and provided
that v + B € N, one can construct for v > 0 a linear operator K : D} — D(ﬂgfﬁ)m
such that the identity

RK,f =K+ Rf,

holds for every f € DY. Here, * denotes the usual convolution between two functions /
distributions.

We call this a “multi-level” Schauder estimate because it is a statement not just
about f itself but about every “layer” appearing in its local expansion.

Remark 1.7 The precise formulation of the multi-level Schauder estimate allows to
specify a non-uniform scaling of R%. This is very useful for example when considering
the heat kernel which scales differently in space and in time. In this case, Theorem 1.6
still holds, but all regularity statements have to be interpreted in a suitable sense. See
Sections 2.3 and 5 below for more details.

At this stage, we appear to possibly rely very strongly on the various still unspecified
structural assumptions that are required of the regularity structure and of the model
realising it. The reason why, at least to some extent, this can be “brushed under the
rug” without misleading the reader is the following result, which is a synthesis of
Proposition 4.11 and Theorem 5.14 below.

Theorem 1.8 (Extension theorem) 17 is always possible to extend a given regularity
structure in such a way that the assumptions implicit in the statements of Theorems 1.4—
1.6 do hold.

Loosely speaking, the idea is then to start with the “canonical” regularity structure
corresponding to classical Taylor expansions and to enlarge it by successively applying
the extension theorem, until it is large enough to allow a closed formulation of the
problem one wishes to study as a fixed point map.
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1.4 On renormalisation procedures

The main problem with the strategy outlined above is that while the extension of an
abstract regularity structure given by Theorem 1.8 is actually very explicit and rather
canonical, the corresponding extension of the model (II, F') is unique (and continuous)
only in the case of the multi-level Schauder theorem and the composition by smooth
functions, but not in the case of multiplication when some of the homogeneities are
strictly negative. This is a reflection of the fact that multiplication between distributions
and functions that are too rough simply cannot be defined in any canonical way [Sch54].
Different non-canonical choices of product then yield truly different solutions, so one
might think that the theory is useless at selecting one “natural” solution process.

If the driving noise £ in any of the equations from Section 1.1 is replaced by a
smooth approximation £©, then the associated model for the corresponding regularity
structure also consists of smooth functions. In this case, there is of course no problem in
multiplying these functions, and one obtains a canonical sequence of models (II®), F(©))
realising our regularity structure. (See Section 8.2 for details of this construction.) At
fixed ¢, our theory then simply yields some very local description of the corresponding
classical solutions. In some special cases, the sequence (II'®), F®)) converges to a limit
that is independent of the regularisation procedure for a relatively large class of such
regularisations. In particular, due to the symmetry of finite-dimensional control systems
under time reversal, this is often the case in the classical theory of rough paths, see
[Lyo98, CQ02, FV10a].

One important feature of the regularity structures arising naturally in the context
of solving semilinear PDEs is that they come with a natural finite-dimensional group
R of transformations that act on the space of models. In some examples (we will treat
the case of (®*) with d = 3 in Section 10.5 and a generalisation of (PAM) with d = 2
in Section 10.4), one can explicitly exhibit a subgroup 9y of R and a sequence of
elements M, € R such that the “renormalised” sequence M, (II®), F®)) converges to
a finite limiting model (IL, F). In such a case, the set of possible limits is parametrised
by elements of R, which in our setting is always just a finite-dimensional nilpotent
Lie group. In the two cases mentioned above, one can furthermore reinterpret solutions
corresponding to the “renormalised” model M_(II®®, F'®)) as solutions corresponding
to the “bare” model (II*®, F(®), but for a modified equation.

In this sense, R (or a subgroup thereof) has an interpretation as a renormalisation
group acting on some space of formal equations, which is a very common viewpoint
in the physics literature. (See for example [Del04] for a short introduction.) This thus
allows to usually reinterpret the objects constructed by our theory as limits of solutions
to equations that are modified by the addition of finitely many diverging counterterms. In
the case of (PAM) with d = 2, the corresponding renormalisation procedure is essentially
a type of Wick ordering and therefore yields the appearance of counterterms that are
very similar in nature to those arising in the Itd-Stratonovich conversion formula for
regular SDEs. (But with the crucial difference that they diverge logarithmically instead
of being constant!) In the case of (®*) with d = 3, the situation is much more delicate
because of the appearance of a logarithmic subdivergence “below” the leading order
divergence that cannot be dealt with by a Wick-type renormalisation. For the invariant
(Gibbs) measure corresponding to (®%), this fact is well-known and had previously been
observed in the context of constructive Euclidean QFT in [Gli68, Fel74, FO76].

Remark 1.9 Symmetries typically play an important role in the analysis of the renor-
malisation group R. Indeed, if the equation under consideration exhibits some symmetry,
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at least at a formal level, then it is natural to approximate it by regularised versions
with the same symmetry. This then often places some natural restrictions on $Rg C R,
ensuring that the renormalised version of the equation is still symmetric. For example,
in the case of the KPZ equation, it was already remarked in [Hail3] that regularisation
via a non-symmetric mollifier can cause the appearance in the limiting solution of an
additional transport term, thus breaking the invariance under left / right reflection. In
Section 1.5.1 below, we will consider a class of equations which, via the chain rule,
is formally invariant under composition by diffeomorphisms. This “symmetry” again
imposes a restriction on Ry ensuring that the renormalised equations again satisfy the
chain rule.

Remark 1.10 If an equation needs to be renormalised in order to have a finite limit, it
typically yields a whole family of limits parametrised by R (or rather Ry in the presence
of symmetries). Indeed, if M_(II®, F(®)) converges to a finite limit and M is any fixed
element of R, then M M, (II®, F®) obviously also converges to a finite limit. At first
sight, this might look like a serious shortcoming of the theory: our equations still aren’t
well-posed after all! It turns out that this state of affairs is actually very natural. Even
the very well-understood situation of one-dimensional SDEs of the type

dx = f(x)dt + o(x) dW(t), (1.4)

exhibits this phenomena: solutions are different whether we interpret the stochastic
integral as an It6 integral, a Stratonovich integral, etc. In this particular case, one would
have SR ~ R endowed with addition as its group structure and the action of R onto
the space of equations is given by M.(f,0) = (f,o + coo’), where M, € R is the
group element corresponding to the real constant c. Switching between the Itd and
Stratonovich formulations is indeed a transformation of this type with ¢ € {i%}

If the equation is driven by more than one Brownian motion, our renormalisation
group increases in size: one now has a choice of stochastic integral for each of the
integrals appearing in the equation. On symmetry grounds however, we would of course
work with the subgroup 2Ry C R which corresponds to the same choice for each. If we
additionally exploit the fact that the class of equations (1.4) is formally invariant under
the action of the group of diffeomorphisms of R (via the chain rule), then we could
reduce Ry further by postulating that the renormalised solutions should also transform
under the classical chain rule. This would then reduce R to the trivial group, thus
leading to a “canonical” choice (the Stratonovich integral). In this particular case, we
could of course also have imposed instead that the integral [ W dI¥ has no component
in the Oth Wiener chaos, thus leading to Wick renormalisation with the Itd integral as a
second “canonical” choice.

1.5 Main results: applications

‘We now show what kind of convergence results can be obtained by concretely applying
the theory developed in this article to two examples of stochastic PDEs that cannot be
interpreted by any classical means. The precise type of convergence will be detailed in
the main body of the article, but it is essentially a convergence in probability on spaces
of continuous trajectories with values in C* for a suitable (possibly negative) value of
a. A slight technical difficulty arises due to the fact that the limit processes do not
necessarily have global solutions, but could exhibit blow-ups in finite time. In such
a case, we know that the blow-up time is almost surely strictly positive and we have
convergence “up to the blow-up time”.
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1.5.1 Generalisation of the parabolic Anderson model
First, we consider the following generalisation of (PAM):
0w = Au + fij(w) Oju dju + g(u)é , u(0) = ug , (PAMg)

where f and g are smooth function and summation of the indices ¢ and j is implicit.
Here, ¢ denotes spatial white noise. This notation is of course only formal since neither
the product g(u)&, nor the product 9;u 0;u make any sense classically. Here, we view u
as a function of time ¢ > 0 and of 2 € T2, the two-dimensional torus.

It is then natural to replace £ by a smooth approximation & which is given by the
convolution of ¢ with a rescaled mollifier o. Denote by u. the solution to the equation

Orue = Au, + fzy(ua) (aiua 8jua - 61"7‘0592(%2)) + g(u£)<££ - QCEQI(UE)) , (L5)

again with initial condition ug. Then, we have the following result:

Theorem 1.11 Let o € (%, 1). There exists a choice of constants C. such that, for
every initial condition uy € C*(T?), the sequence of solutions u. to (1.5) converges to
a limit u. Furthermore, there is an explicit constant K, depending on o such that if
one sets C, = —% loge 4 K, then the limit obtained in this way is independent of the
choice of mollifier o.

Proof. This is a combination of Corollary 9.3 (well-posedness of the abstract formu-
lation of the equation), Theorem 10.19 (convergence of the renormalised models to a
limiting model) and Proposition 9.4 (identification of the renormalised solutions with
(1.5)). The explicit value of the constant C. is given in (10.32). O

Remark 1.12 In the case f = 0, this result has recently been obtained by different
(though related in spirit) techniques in [GIP12].

Remark 1.13 Since solutions might blow up in finite time, the notion of convergence
considered here is to fix some large cut-off L > 0 and terminal time 7" and to stop the
solutions u. as soon as ||u.(t)|lo > L, and similarly for the limiting process u. The
convergence is then convergence in probability in C2([0, T'] x T2) for the stopped process.
Here elements in C¢' are a-Holder continuous in space and §-Holder continuous in

time, see Definition 2.14 below.

Remark 1.14 It is lengthy but straightforward to verify that the additional diverging
terms in the renormalised equation (1.5) are precisely such that if 1): R — Ris a
smooth diffeomorphism, then v, “ 1¥(ue) solves again an equation of the type (1.5).
Furthermore, this equation is precisely the renormalised version of the equation that
one obtains by just formally applying the chain rule to (PAMg)! This gives a rigorous
justification of the chain rule for (PAMg). In the case (KPZ), one expects a similar
phenomenon, which would then allow to interpret the Cole-Hopf transform rigorously
as a particular case of a general change of variables formula.

1.5.2 The dynamical ®} model

A similar convergence result can be obtained for (®*). This time, the renormalised
equation takes the form

atus - A’LLE + Csus - Ug’ + 65 s (16)
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where wu. is a function of time ¢ > 0 and space x € T3, the three-dimensional torus.
It turns out that the simplest class of approximating noise is to consider a space-time
mollifier o(z,t) and to set & e & x o, where o, is the rescaled mollifier given by
0-(z,t) = e o(x /e, /).

With this notation, we then have the following convergence result, which is the
content of Section 10.5 below.
Theorem 1.15 Let o € (—%, —%). There exists a choice of constants C. such that, for
every initial condition uy € C*(T?), the sequence of solutions u. converges to a limit
u. Furthermore, if C. are chosen suitably, then this limit is again independent of the
choice of mollifier ¢.

Proof. This time, the statement is a consequence of Proposition 9.8 (well-posedness of
the abstract formulation), Theorem 10.22 (convergence of the renormalised models) and
Proposition 9.10 (identification of renormalised solutions with (1.6)). |

Remark 1.16 It turns out that the limiting solution « is almost surely a continuous
function in time with values in C*(T?). The notion of convergence is then as in
Remark 1.13. Here, we wrote again C* as a shorthand for the Besov space B, .

Remark 1.17 As already noted in [Fel74] (but for a slightly different regularisation
procedure, which is more natural for the static version of the model considered there),
the correct choice of constants C. is of the form

C. = % + Cyloge + Cs
where C and C3 depend on the choice of g in a way that is explicitly computable, and
the constant C5 is independent of the choice of p. It is the presence of this additional
logarithmic divergence that makes the analysis of (®*) highly non-trivial. In particular,
it was recently remarked in [ALZ06] that this seems to rule out the use of Dirichlet form
techniques for interpreting (®4).

Remark 1.18 Again, we do not claim that the solutions constructed here are global.
Indeed, the convergence holds in the space C([0, 1], C%), but only up to some possibly
finite explosion time. It is very likely that one can show that the solutions are global
for almost every choice of initial condition, where “almost every” refers to the measure
built in [Fel74]. This is because that measure is expected to be invariant for the limiting
process constructed in Theorem 1.15.

1.5.3 General methodology

Our methodology for proving the kind of convergence results mentioned above is the
following. First, given a locally subcritical SPDE of the type (1.2), we build a regularity
structure Jr which takes into account the structure of the nonlinearity F' (as well as the
regularity index of the driving noise and the local scaling properties of the linear operator
L), together with a class .#Zr of “admissible models” on 7 which are defined using
the abstract properties of Z and the Green’s function of £. The general construction
of such a structure is performed in Section 8. We then also build a natural “lift map”
Z: C(RY) — . (see Section 8.2), where d is the dimension of the underlying space-
time, as well as an abstract solution map S: C* x .#r — D", with the property that
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RS (ug, Z(£.)) yields the classical (local) solution to (1.2) with initial condition u
and noise £.. Here, R is the “reconstruction operator” already mentioned earlier. A
general result showing that S can be built for “most” subcritical semilinear evolution
problems is provided in Section 7. This relies fundamentally on the multi-level Schauder
estimate of Section 5, as well as the results of Section 6 dealing with singular modelled
distributions, which is required in order to deal with the behaviour near time 0.

The main feature of this construction is that both the abstract solution map S and
the reconstruction operator R are continuous. In most cases of interest they are even
locally Lipschitz continuous in a suitable sense. Note that we made a rather serious
abuse of notation here, since the very definition of the space D" does actually depend
on the particular model Z(&.)! This will not bother us unduly since one could very
easily remedy this by having the target space be “.#r x D"”, with the understanding
that each “fiber” D7 is modelled on the corresponding model in .#7. The map S would
then simply act as the identity on .Z.

Finally, we show that it is possible to find a sequence of elements M. € R such that
the sequence of renormalised models M. Z(&.) converge to some limiting model Z and
we identify RS (ug, M:Z(€.)) with the classical solution to a modified equation. The
proof of this fact is the only part of the whole theory which is not “automated”, but has
to be performed by hand for each class of problems. However, if two problems give rise
to the same structure .# and are based on the same linear operator £, then they can
be treated with the same procedure, since it is only the details of the solution map S
that change from one problem to the other. We treat two classes of problems in detail in
Sections 9 and 10. Section 10 also contains a quite general toolbox that is very useful
for treating the renormalisation of many equations with Gaussian driving noise.

1.6 Alternative theories

Before we proceed to the meat of this article, let us give a quick review of some of the
main existing theories allowing to make sense of products of distributions. For each of
these theories, we will highlight the differences with the theory of regularity structures.

1.6.1 Bony’s paraproduct

Denoting by A, f the jth Paley-Littlewood block of a distribution f, one can define the
bilinear operators

7T<(f7g): Z AzfAjg’ 7T>(fag):77<(gvf)’ 7T-o(fvg): Z AifAjg»

i<j—1 li—j|<1

so that, at least formally, one has fg = 7. (f, g9)+ 7= (f, 9) +7o(f, 9). (See [Bon81] for
the original article and some applications to the analysis of solutions to fully nonlinear
PDE:s, as well as the monograph and review article [BCD11, BMN10]. The notation
of this section is borrowed from the recent work [GIP12].) It turns out that 7. and 7~
make sense for any two distributions f and g. Furthermore, if f € C* and g € C? with
a+ 3 > 0, then

T<(f,9)€C’,  w(f,9)€CY,  m(f,g)€CTF, (1.7)

so that one has a gain of regularity there, but one does again encounter a “barrier” at
a+p=0.
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The idea exploited in [GIP12] is to consider a “model distribution” 7 and to consider
“controlled distributions” of the type

f=m(f" )+ £,

where both f7 and f* are more regular than 7). The construction is such that, at small
scales, irregularities of f “look like” irregularities of 7. The hope is then that if f is
controlled by 7, g is controlled by (, and one knows of a renormalisation procedure
allowing to make sense of the product n¢ (by using tools from stochastic analysis for
example), then one can also give a consistent meaning to the product fg. This is the
philosophy that was implemented in [GIP12, Theorems 9 and 31].

This approach is very close to the one taken in the present work, and indeed it is
possible to recover the results of [GIP12] in the context of regularity structures, modulo
slight modifications in the precise rigorous formulation of the convergence results. There
are also some formal similarities: compare for example (1.7) with the bounds on each
of the three terms appearing in (4.4). The main philosophical difference is that the
approach presented here is very local in nature, as opposed to the more global approach
used in Bony’s paraproduct. It is also more general, allowing for an arbitrary number
of controls which do themselves have small-scale structures that are linked to each
other. As a consequence, the current work also puts a strong emphasis on the highly
non-trivial algebraic structures underlying our construction. In particular, we allow for
rather sophisticated renormalisation procedures going beyond the usual Wick ordering,
which is something that is required in several of the examples presented above.

1.6.2 Colombeau’s generalised functions

In the early eighties, Colombeau introduced an algebra ¢ (Rd) of generalised functions
on R? (or an open subset thereof) with the property that S’ (Rd) cY (Rd) where S’
denotes the usual Schwartz distributions [Col83, Col84]. Without entering into too
much detail, Z(R?) is essentially defined as the set of smooth functions from S (RY),
the set of Schwartz test functions, into R, quotiented by a certain natural equivalence
relation.

Some (but not all) generalised functions have an “associated distribution”. In other
words, the theory comes with a kind of “projection operator” P: ¢ R% = S'(RY
which is a left inverse for the injection ¢: S’ (RY) — 9(R?). However, it is important
to note that the domain of definition of P is not all of Z(R%). Furthermore, the
product in 4(R%) behaves as one would expect on the images of objects that one would
classically know how to multiply. For example, if f and g are continuous functions, then
P((¢tf)(tg)) = fg. The same holds true if f is a smooth function and g is a distribution.

There are some similarities between the theory of regularity structures and that of
Colombeau generalised functions. For example, just like elements in ¢, elements in
the spaces D (see Definition 3.1 below) contain more information than what is strictly
required in order to reconstruct the corresponding distribution. The theory of regularity
structures involves a reconstruction operator R, which plays a very similar role to the
operator P from the theory of Colombeau’s generalised functions by allowing to discard
that additional information. Also, both theories allow to provide a rigorous mathematical
interpretation of some of the calculations performed in the context of quantum field
theory.

One major difference between the two theories is that the theory of regularity
structures has more flexibility built in. Indeed, it allows some freedom in the definition
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of the product between elements of the “model” used for performing the local Taylor
expansions. This allows to account for the fact that taking limits along different smooth
approximations might in general yield different answers. (A classical example is the
fact that sin(x/¢) — 0 in any reasonable topology where it does converge, while
sin®(x/e) — 1/2. More sophisticated effects of this kind can easily be encoded
in a regularity structure, but are invisible to the theory of Colombeau’s generalised
functions.) This could be viewed as a disadvantage of the theory of regularity structures:
it requires substantially more effort on the part of the “user” in order to specify the
theory completely in a given example. Also, there isn’t just “one” regularity structure:
the precise algebraic structure that is suitable for analysing a given problem does depend
a lot on the problem in question. However, we will see in Section 8 that there is a
general procedure allowing to build a large class of regularity structures arising in the
analysis of semilinear SPDEs in a unified way.

1.6.3 White noise analysis

One theory that in principle allows to give some meaning to (&%), (PAM), and (SNS)
(but to the best of the author’s knowledge not to (PAMg) or (KPZ) with non-constant
coefficients) is the theory of “white noise analysis” (WNA), exposed for example in
[H@UZ10] (see also [Hid75, HP90] for some of the earlier works). For example, the
case of the stochastic Navier-Stokes equations has been considered in [MR04], while the
case of a stochastic version of the nonlinear heat equation was considered in [BDP97].
Unfortunately, WNA has a number of severe drawbacks that are not shared by the theory
of regularity structures:

e Solutions in the WNA sense typically do not consist of random variables but of
“Hida distributions”. As a consequence, only some suitable moments are obtained
by this theory, but no actual probability distributions and / or random variables.

e Solutions in the WNA sense are typically not obtained as limits of classical solutions
to some regularised version of the problem. As a consequence, their physical
interpretation is unclear. As a matter of fact, it was shown in [Cha00] that the WNA
solution to the KPZ equation exhibits a physically incorrect large-time behaviour,
while the Cole-Hopf solution (which can also be obtained via a suitable regularity
structure, see [Hail3]) is the physically relevant solution [BG97].

There are exceptions to these two rules (usually when the only ill-posed product is of
the form F'(u) - £ with £ some white noise, and the problem is parabolic), and in such
cases the solutions obtained by the theory of regularity structures typically “contain” the
solutions obtained by WNA. On the other hand, white noise analysis (or, in general, the
Wiener chaos decomposition of random variables) is a very useful tool when building
explicit models associated to a Gaussian noise. This will be exploited in Section 10
below.

1.6.4 Rough paths

The theory of rough paths was originally developed in [Lyo98] in order to interpret
solutions to controlled differential equations of the type

dY (t) = F(Y)dX(t),

where X : RT — R™ is an irregular function and F': R — RY™ is a sufficiently
regular collection of vector fields on R%. This can be viewed as an instance of the
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general problem (1.1) if we set £L = 0, and £ = %, which is now a rather irregular

distribution. It turns out that, in the case of Holder-regular rough paths, the theory of
rough paths can be recast into our framework. It can then be interpreted as one particular
class of regularity structures (one for each pair («, m), where m is the dimension of
the rough path and « its index of Holder regularity), with the corresponding space of
rough paths being identified with the associated space of models. Indeed, the theory
of rough paths, and particularly the theory of controlled rough paths as developed
in [Gub04, Gub10], was one major source of inspiration of the present work. See
Section 4.4 below for more details on the link between the two theories.

1.7 Notations

Given a distribution £ and a test function ¢, we will use indiscriminately the notations
(&, ) and £(ip) for the evaluation of £ against . We will also sometimes use the abuse
of notation [ ¢p(z) &(z)dz or [ ¢(x)&(dx).

Throughout this article, we will always work with multiindices on R%. A multiindex
k is given by a vector (k1, ..., kq) with each k; > 0 a positive integer. For x € RY,
we then write ¥ as a shorthand for x]fl e :z:gd. The same notation will still be used
when X € T for some algebra T'. For a sufficiently regular function g: R? — R, we
write D" g(x) as a shorthand for 91 - - - 9% g(x). We also write k! as a shorthand for
k! kgl

Finally, we will write a A b for the minimum of a and b and a V b for the maximum.
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2 Abstract regularity structures

We start by introducing the abstract notion of a “regularity structure”, which was already
mentioned in a loose way in the introduction, and which permeates the entirety of this
work.

Definition 2.1 A regularity structure 7 = (A, T, G) consists of the following ele-
ments:
e Anindex set A C R such that 0 € A, A is bounded from below, and A is locally
finite.

e A model space T, which is a graded vector space 7" = EBQ cA T,,witheachT, a
Banach space. Furthermore, T;) = R and its unit vector is denoted by 1.
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o A structure group G of linear operators acting on 7" such that, for every I' € G,
every o € A, and every a € T, one has

Ta—ac@T;. (2.1)

B<a

Furthermore, 'l = 1 forevery I" € G.

Remark 2.2 It will sometimes be an advantage to consider G as an abstract group,
together with a representation I' of G on T'. This point of view will be very natural in
the construction of Section 7 below. We will then sometimes use the notation g € G
for the abstract group element, and Iy for the corresponding linear operator. For the
moment however, we identify elements of G directly with linear operators on 7" in order
to reduce the notational overhead.

Remark 2.3 Recall that the elements of T' = @, 4 T, are finite series of the type
a=>y acA da with a,, € T,. All the operations that we will construct in the sequel
will then make sense component by component.

Remark 2.4 A good analogy to have in mind is the space of all polynomials, which
will be explored in detail in Section 2.2 below. In line with this analogy, we say that
T, consists of elements that are homogeneous of order . In the particular case of
polynomials in commuting indeterminates our theory boils down to the very familiar
theory of Taylor expansions on RY, so that the reader might find it helpful to read
the present section and Section 2.2 in parallel to help build an intuition. The reader
familiar with the theory of rough paths [Lyo98] will also find it helpful to simultaneously
read Section 4.4 which shows how the theory of rough paths (as well as the theory of
“branched rough paths” [Gub10]) fits within our framework.

The idea behind this definition is that 7" is a space whose elements describe the
“jet” or “local expansion” of a function (or distribution!) f at any given point. One
should then think of T}, as encoding the information required to describe f locally “at
order o in the sense that, at scale ¢, elements of T;, describe fluctuations of size <.
This interpretation will be made much clearer below, but at an intuitive level it already
shows that a regularity structure with A C R will describe functions, while a regularity
structure with A ¢ R, will also be able to describe distributions.

The role of the structure group G will be to translate coefficients from a local
expansion around a given point into coefficients for an expansion around a different
point. Keeping in line with the analogy of Taylor expansions, the coefficients of a
Taylor polynomial are just given by the partial derivatives of the underlying function
 at some point x. However, in order to compare the Taylor polynomial at x with the
Taylor polynomial at y, it is not such a good idea to compare the coefficients themselves.
Instead, it is much more natural to first translate the first polynomial by the quantity
y — x. In the case of polynomials on R?, the structure group G will therefore simply
be given by R¢ with addition as its group property, but we will see that non-abelian
structure groups arise naturally in more general situations. (For example, the structure
group is non-Abelian in the theory of rough paths.)

Before we proceed to a study of some basic properties of regularity structures, let us
introduce a few notations. For an element a € T, we write Q,a for the component of a
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in T, and ||a||o = ||Qaal for its norm. We also use the shorthand notations
T;:@T , T;:@T , (2.2)
y>a <o

with the conventions that 7,7 = {0} if « > max A and T; = {0} if @ < min A. We
furthermore denote by Ly (T') the space of all operators L on 7" such that La € T, for
a € T, and by L~ the set of operators L suchthat L —1 € L;,sothat G C L~.

The condition that I'a — a € T, for a € T, together with the fact that the index
set A is bounded from below, implies that, for every o € A there exists n > 0 such
that (I"' — 1)"T,, = 0 for every I' € G. In other words, G is necessarily nilpotent. In
particular, one can define a function log: G — L by

no Nkl
logT'=>" %(F — k. (2.3)
k=1

Conversely, one can define an exponential map exp: L, — L~ by its Taylor series, and
one has the rather unsurprising identity I' = exp(log I'). As usual in the theory of Lie
groups, we write g = log GG as a shorthand.

A useful definition will be the following:

Definition 2.5 Given a regularity structure as above and some o < 0, a sector V' of
regularity « is a graded subspace V = € gea Vp with Vg C T having the following
properties.

e One has Vg = {0} for every 8 < a.

e The space V is invariant under G, i.e. 'V C V forevery I' € G.

e Forevery 3 € A, there exists a complement V5 C T} such that T} is given by the
direct sum T = V3 @ V3.
A sector of regularity O is also called function-like for reasons that will become clear in
Section 3.4.

Remark 2.6 The regularity of a sector will always be less or equal to zero. In the case
of the regularity structure generated by polynomials for example, any non-trivial sector
has regularity 0 since it always has to contain the element 1. See Corollary 3.16 below
for a justification of this terminology.

Remark 2.7 Given a sector V', we can define Ay, C A as the set of indices o such
that V,, # {0}. If @ > 0, our definitions then ensure that 7, = (V, Ay, G) is again a
regularity structure with 7, C 7. (See below for the meaning of such an inclusion.) It
is then natural to talk about a subsector W C V if W is a sector for .73,.

Remark 2.8 Two natural non-empty sectors are given by 7y = span{1} and by T, with
« = min A. In both cases, G automatically acts on them in a trivial way. Furthermore,
as an immediate consequence of the definitions, given a sector V' of regularity « and a
real number 7y > «, the space V' N T2 is again a sector of regularity c.

In the case of polynomials on R, typical examples of sectors would be given by
the set of polynomials depending only on some subset of the variables or by the set of
polynomials of some fixed degree.
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2.1 Basic properties of regularity structures

The smallest possible regularity structure is given by % = ({0}, R, {1}), where {1}
is the trivial group consisting only of the identity operator, and with 1 = 1. This
“trivial” regularity structure is the smallest possible structure that accommodates the
local information required to describe an arbitrary continuous function, i.e. simply the
value of the function at each point.

The set of all regularity structures comes with a natural partial order. Given two
regularity structures .7 = (A,T,G) and 7 = (A, T,G) we say that .7 contains .7
and write .7 C 7 if the following holds.

e Onehas A C A.

e There is an injection ¢: T — T such that, for every o € A, one has «(T,,) C Th,.

e The space «(T) is invariant under G and the mapj: G — LT, T) deﬁrled by the
identity 5T = +~!T"s is a surjective group homomorphism from G to G.

With this definition, one has .75 C .7 for every regularity structure .7, with ¢1 = 1 and
J given by the trivial homomorphism. -

One can also define the product 7 = .7 ® 7 of two regularity structures .7 =
(A, T,G)and F = (A, T,G)by T = (A, T, G) with

o A=A+ A,

o T = EB(Q,B) Toa ® Tg and T7 = @a+5:,y T, ® Tg, where both sums run over

pairs (o, 3) € A x A,

e G=G®G,
Setting 1 =1®1 (where 1 and 1 are the unit elements of .7 and .7 respectively),
it is easy to verify that this definition satisfies all the required axioms for a regularity
structure. If the individual components of 7" and / or T" are infinite-dimensional, this
construction does of course rely on choices of tensor products for T, ® T.

Remark 2.9 One hasboth 7 € 7 ®  and . C 7 ® 7 with obvious inclusion
maps. Furthermore, one has .7 ® %) ~  for the trivial regularity structure 7.

2.2 The polynomial regularity structure

One very important example to keep in mind for the abstract theory of regularity
structures presented in the main part of this article is that generated by polynomials
in d commuting variables. In this case, we simply recover the usual theory of Taylor
expansions / regular functions in R%. However, it is still of interest since it helps
building our intuition and provides a nicely unified way of treating regular functions
with different scalings.

In this case, the model space 1" consists of all abstract polynomials in d indeter-
minates. More precisely, we have d “dummy variables” {X;}¢_, and T consists of
polynomials in X. Given a multiindex k = (k1, ..., kq), we will use throughout this
article the shorthand notation

ke def kg kg
Xk xk L Xk

Finally, we denote by 1 = X0 the “empty” monomial.

In general, we will be interested in situations where different variables come with
different degrees of homogeneity. A good example to keep in mind is that of parabolic
equations, where the linear operator is given by 0; — A, with the Laplacian acting on
the spatial coordinates. By homogeneity, it is then natural to make powers of ¢ “count
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double”. In order to implement this classical idea, we assume from now on that we fix
a scaling 5 € N of R?, which is simply a vector of strictly positive relatively prime
integers. The Euclidean scaling is simply given by s. = (1,...,1).

Given such a scaling, we defined the “scaled degree” of a multiindex &k by

d
kls = siki - (2.4)
=1

With this notation we define, for every n € N, the subspace T;, C T by
T, = span{X* : |k|, = n} .

For a monomial P of the type P(X) = X, we then refer to |k|, as the scaled degree of
P. Setting A = N, we have thus constructed the first two components of a regularity
structure.

Our structure comes with a natural model, which is given by the concrete realisation
of an abstract polynomial as a function on R%. More precisely, for every z € RY, we
have a natural linear map IT, : T — C>(R?) given by

(ILX*) ) = (y — )F . 2.5)

In other words, given any “abstract polynomial” P(X), II, realises it as a concrete
polynomial on R based at the point z.

This suggests that there is a natural action of R? on 7" which simply shifts the base
point x. This is precisely the action that is described by the group G which is the last
ingredient missing to obtain a regularity structure. As an abstract group, G' will simply
be a copy of R? endowed with addition as its group operation. For any h € R? ~ G,
the action of I'j, on an abstract polynomial is then given by

(TpP)(X)=P(X +h).
It is obvious from our notation that one has the identities
Tpoly = Fh.t,-fl > My n Ty =11,

which will play a fundamental role in the sequel.

The triple (N, T, G) constructed in this way thus defines a regularity structure, which
we call .7 5. (It depends on the scaling s only in the way that T’ is split into subspaces,
so s does not explicitly appear in the definition of .7 5.)

In this construction, the space 7" comes with more structure than just that of a
regularity structure. Indeed, it comes with a natural multiplication x given by

(P Q)(X) = P(X)Q(X) .

It is then straightforward to verify that this representation satisfies the properties that
e ForPeT,,andQ € T,,onehas PxQ € Ty 4n.
e The element 1 is neutral for .
e Forevery h € R?and P,Q € T, one has T1,(P x Q) = T, P x ', Q.

Furthermore, there exists a natural element (1, - ) in the dual of 7" which consists of
formally evaluating the corresponding polynomial at the origin. More precisely, one
sets (1, X*) = 85 0.
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As a space of polynomials, T arises naturally as the space in which the Taylor
expansion of a function ¢: R — R takes values. Given a smooth function ¢: R — R
and an integer £ > 0, we can “lift” ¢ in a natural way to 7" by computing its Taylor
expansion of order less than ¢ at each point. More precisely, we set

Xk
(Tep)@) = Y Sy Dl (2.6)

|k|s <t

where, for a given multiindex k& = (k1, ..., kq), D*¢ stands as usual for the partial
derivative 9% - .. 85%0(90). It then follows immediately from the general Leibniz rule
that for C* functions, 7; is “almost” an algebra morphism, in the sense that in addition
to being linear, one has

Tele - ¥)(@) = Tep(@) * Tep(x) + R(@) 2.7)

where the remainder R(z) is a sum of homogeneous terms of scaled degree greater or
equal to /.

We conclude this subsection by defining the classes CS of functions that are C* with
respect to a given scaling s. Recall that, for a € (0, 1], the class C* of “usual” a-Ho6lder
continuous functions is given by those functions f such that |f(z) — f(y)| < | — y|®,
uniformly over = and y in any compact set. For any a > 1, we can then define C*
recursively as consisting of functions that are continuously differentiable and such that
each directional derivative belongs to C*~ 1.

Remark 2.10 /N In order to keep our notations consistent, we have slightly strayed
from the usual conventions by declaring a function to be of class C' even if it is only
Lipschitz continuous. A similar abuse of notation will be repeated for all positive
integers, and this will be the case throughout this article.

Remark 2.11 We could have defined the spaces C* for a € [0, 1) (note the missing
point 1!) similarly as above, but replacing the bound on f(x) — f(y) by

lgrgo\f(:ﬁh)*f(xﬂ/m\a =0, (2.8)

imposing uniformity of the convergence for x in any compact set. If we extended this
definition to o > 1 recursively as above, this would coincide with the usual spaces C k
for integer k, but the resulting spaces would be slightly smaller than the Holder spaces
for non-integer values. (In fact, they would then coincide with the closure of smooth
functions under the a-Hélder norm.) Since the bound (2.8) includes a supremum and a
limit rather than just a supremum, we prefer to stick with the definition given above.

Keeping this characterisation in mind, one nice feature of the regularity structure
just described is that it provides a very natural “direct” characterisation of C* for any
a > 0 without having to resort to an inductive construction. Indeed, in the case of
the classical Euclidean scaling s = (1, ..., 1), we have the following result, where for
a € T, we denote by ||al|,, the norm of the component of a in T},.

Lemma 2.12 A function ¢: RY — R is of class C* with o > 0 if and only if there
exists a function ¢: R — T, such that (1, $(x)) = @(x) and such that

6@ + h) = Cag(@)llm S [H*7™, (2.9)

uniformly over m < «, |h| < 1 and x in any compact set.
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Proof. For « € (0,1], (2.9) is just a rewriting of the definition of C*. For the general
case, denote by D the space of T-valued functions such that (2.9) holds. Denote
furthermore by D;: T' — T the linear map defined by D; X; = §,;1 and extended to
higher powers of X by the Leibniz rule. For ¢ € D“ with o > 1, we then have that:
e The bound (2.9) for m = 0 implies that ¢ = (1, @) is differentiable at « with ith
directional derivative given by 9;¢(x) = (1, D;p(x)).
e The case m = 1 implies that the derivative 0;¢ is itself continuous.

e Since the operators D; commute with I';, for every h, one has D;ip € D>~ for
everyi € {1,...,d}.

The claim then follows at once from the fact that this is precisely the recursive charac-

terisation of the spaces C“. O

This now provides a very natural generalisation of Holder spaces of arbitrary order
to non-Euclidean scalings. Indeed, to a scaling s of R%, we can naturally associate the
metric d, on R given by

d
do(@,y) £ fas —yil /o0 (2.10)
=1

We will also use in the sequel the notation |s| = s1 + ... + s4, which plays the role of a
dimension. Indeed, with respect to the metric ds, the unit ball in R? is easily seen to
have Hausdorff dimension |s| rather than d. Even though the right hand side of (2.10)
does not define a norm (it is not 1-homogeneous, at least not in the usual sense), we will
usually use the notation ds(x,y) = ||z — y/|s-

Remark 2.13 It may occasionally be more convenient to use a metric with the same
scaling properties as d; which is smooth away from the origin. In this case, one can for
example take p = 2 lecm(sy, ..., 54) and set

5 def d /s 1/p
ds(z,y) = (Z lzi — yil” ‘) :
i=1

It is easy to see that ds and d are equivalent in the sense that they are bounded by fixed
multiples of each other. In the Euclidean setting, ds would be the ¢! distance, while ds
would be the ¢2 distance.

With this notation at hand, and in view of Lemma 2.12, the following definition is
very natural:

Definition 2.14 Given a scaling s on R? and v > 0, we say that a function ¢: RY — R
is of class CZ if there exists a function ¢: R? — T, with (1, ¢(z)) = ¢(z) for every
and such that, for every compact set & C Rd, one has

@ + h) = Th@)llm < RIS, (2.11)

uniformly over m < a, ||h||s < 1land z € R.

Remark 2.15 One can verify that the map z — ||z||2 is in C¢ for v € (0, 1]. Another
well-known example [Wal86, Hai09] is that the solutions to the additive stochastic heat
equation on the real line belong to C¢! (R?) for every a < % provided that the scaling s
is the parabolic scaling s = (2, 1). (Here, the first component is the time direction.)
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Remark 2.16 The choice of ¢ in Definition 2.14 is essentially unique in the sense
that any two choices ¢ and ¢ satisfy Qpp1(x) = Qppo(x) for every x and every
¢ < «. (Recall that Q, is the projection onto 7.) This is because, similarly to the
proof of Lemma 2.12, one can show that the components in 7} have to coincide with
the corresponding directional derivatives of ¢ at z, and that, if (2.11) is satisfied locally
uniformly in z, these directional derivatives exist and are continuous.

2.3 Models for regularity structures

In this section, we introduce the key notion of a “model” for a regularity structure, which
was already alluded to several times in the introduction. Essentially, a model associates
to each “abstract” element in 7" a “concrete” function or distribution on R?. In the above
example, such a model was given by an interplay of the maps II, that would associate
to a € T a polynomial on R? centred around z, and the maps ', that allow to translate
the polynomial in question to any other point in RY.

This is the structure that we are now going to generalise and this is where our theory
departs significantly from the theory of jets, as our model will typically contain elements
that are extremely irregular. If we take again the case of the polynomial regularity
structures as our guiding principle, we note that the index o € A describes the speed at
which functions of the form Il,a with a € T, vanish near x. The action of I is then
necessary in order to ensure that this behaviour is the same at every point. In general,
elements in the image of II, are distributions and not functions and the index « can be
negative, so how do we describe the behaviour near a point?

One natural answer to this question is to test the distribution in question against
approximations to a delta function and to quantify this behaviour. Given a scaling s, we
thus define scaling maps

SS:RY 5 R, S(xy,...,xq) = (0" xy,...,0 %xy) . (2.12)
These scaling maps yield in a natural way a family of isometries on L*(RY) by

(S2,0)) = 67 lp(Si(y — ) . (2.13)

They are also the natural scalings under which || - ||s behaves like a norm in the sense
that |Sox||s = 6~ *||z|s. Note now that if P is a monomial of scaled degree £ > 0 over
R? (where the scaled degree simply means that the monomial z; has degree s; rather
than 1) and : R — R is a compactly supported function, then we have the identity

/ Py — )(S,0)() dy = / P8 21, 6% 20)p(2) d
=" / P(2)p(z)dz . (2.14)

Following the philosophy of taking the case of polynomials / Taylor expansions as our
source of inspiration, this simple calculation motivates the following definition.

Definition 2.17 A model for a given regularity structure .7 = (A, T, G) on R¢ with
scaling s consists of the following elements:
e AmapT': R x R? = G such that T, = 1, the identity operator, and such that
Iyyly. =T, forevery x,y, z in R
e A collection of continuous linear maps II,.: T — S’ (Rd) such that IT, = II; o I'yy
for every z,y € R%.
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Furthermore, for every v > 0 and every compact set & C R, there exists a constant
C & such that the bounds

|(Hwa)(85,w§0)| < C("Y,ﬁt”a”(SZ o layallm < Cya |ﬁ_m ) (2.15)

lall[lz -yl

hold uniformly over all z, y € K, all § € (0, 1], all smooth test functions ¢: Bs(0,1) —
R with ||¢]ler < 1,all £ € Awith ¢ < v, all m < ¢, and all @ € T;. Here, r is the
smallest integer such that ¢ > —r for every £ € A. (Note that | I'zyal/mm = ||[Teya—allm
sincea € Ty and m < £.)

Remark 2.18 We will also sometimes call the pair (II, I') a model for the regularity
structure 7.

The following figure illustrates a typical example of model for a simple regularity

structure where A = {O7 5,1, 2} and each T, is one-dimensional:

Nl

a=1 a=

[N

o

Write 7, for the unit vector in T,,. Given a %-Hélder continuous function f: R — R,
the above picture has

a=10

Yy
(L)) = F@)~ f@) . ([r)o) = [ (Fe) fa)ds

while I, 7y and II,7; are given by the canonical one-dimensional model of polynomials.
A typical action of I, is illustrated below:

Lyy
=

AN N

€ )

Here, the left figure shows 11, Ts, while the right figure shows II, T3 = =1I qu“ In
this particular example, this is obtained from 11, T3 by adding a sultable affine functlon,
i.e. a linear combination of 11,7y and II, 7.

Remark 2.19 Given a sector V' C T, it will on occasion be natural to consider models
for Z, rather than all of .7. In such a situation, we will say that (II, I") is a model for
Z on V, or just a model for V.

Remark 2.20 Given a map (x,y) — I'y, as above, the set of maps x — 11, as above is
actually a linear space. We can endow it with the natural system of seminorms ||II||, &
given by the smallest constant C_g such that the first bound in (2.15) holds. Similarly,
we denote by ||T'||;« the smallest constant C, s such that the second bound in (2.15)



ABSTRACT REGULARITY STRUCTURES 27

holds. Occasionally, it will be useful to have a notation for the combined bound, and we
will then write
12

ot = M+ [T (2.16)
where we set Z = (I, I).

Remark 2.21 The first bound in (2.15) could alternatively have been formulated as
|(Ia)(¢)| < Cllal|6¢ for all smooth test functions ¢ with support in a ball of radius §
around z (in the d,-distance), which are bounded by § ¢! and such that their derivatives
satisfy sup,, | D p(z)| < 6~ 151=1¢l> for all multiindices ¢ of (usual) size less or equal to
T.

One important notion is that of an extension of a model (II, I'):

Definition 2.22 Let 7 C 7 be two regularity structures and let (1, I') be a model for
7. A model (IL, T") is said to extend (I, I") for .7 if one has

Ieya =Tzyta, Il ,a = f[xLa s
for every @ € T and every x,y in RY. Here, ¢ is as in Section 2.1.

We henceforth denote by .# ~ the set of all models of .77, which is a slight abuse
of notation since one should also fix the dimension d and the scaling s, but these are
usually very clear from the context. This space is endowed with a natural system of
pseudo-metrics by setting, for any two models Z = (II,I") and Z = (I, "),

H|Z§Z|“v;ﬁ = HH_ﬁ”v;ﬁ+ ||F_f‘H7;ﬁ : 2.17)
While ||-; -||;s defined in this way looks very much like a seminorm, the space .#z is
not a linear space due to the two nonlinear constraints

Tyyl'y: =T, , and II, =11, 01, , (2.18)

and due to the fact that G is not necessarily a linear set of operators. While .#z is not
linear, it is however an algebraic variety in some infinite-dimensional Banach space.

Remark 2.23 In most cases considered below, our regularity structure contains 7 s
for some dimension d and scaling 5. In such a case, we denote by 7' C T the image
of the model space of .7 in T under the inclusion map and we only consider models
(I1, T') that extend (in the sense of Definition 2.22) the polynomial model on T'. It
is straightforward to verify that the polynomial model does indeed verify the bounds
and algebraic relations of Definition 2.17, provided that we make the identification
Iy ~ T withh =z —y.

Remark 2.24 If, for every a € Ty, I1,,a happens to be a function such that |[IT,a(y)| <
C||lz — y||% for y close to x, then the first bound in (2.15) holds for £ > 0. Informally, it
thus states that IT,a behaves “as if” it were ¢-Hdlder continuous at z. The formulation
given here has the very significant advantage that it also makes sense for negative values
of 4.
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Remark 2.25 Given a linear map II: T — S'(D), and a function F': D — G, we can

always set -
Luy=F@) Fy ', I,=IoF@)™". (2.19)

Conversely, given a model (IL, I') as above and a reference point o, we could set
F@) =Ty, MO=II,, (2.20)

and I" and II could then be recovered from I and II by (2.19). The reason why we
choose to keep our seemingly redundant formulation is that the definition (2.17) and the
bounds (2.15) are more natural in this formulation. We will see in Section 8.2 below that
in all the cases mentioned in the introduction, there are natural maps II and F such that
(1L, I") are given by (2.19). These are however not of the form (2.20) for any reference
point.

Remark 2.26 It follows from the definition (2.3) that the second bound in (2.15) is
equivalent to the bound

log Cayallm < llallllz —ylle™™ (2.21)

for all a € T}. Similarly, one can consider instead of (2.17) the equivalent distance
obtained by replacing I';,, by logI';,, and similarly for I',,.

Remark 2.27 The reason for separating the notion of a regularity structure from the
notion of a model is that, in the type of applications that we have in mind, the regularity
structure will be fixed once and for all. The model however will typically be random
and there will be a different model for the regularity structure for every realisation of
the driving noise.

2.4 Automorphisms of regularity structures

There is a natural notion of “automorphism” of a given regularity structure. For this, we
first define the set Lf{ of linear maps L: T — T such that, for every o € A there exists
v € Asuch that La € B, 5., T for every a € T,,. We furthermore denote by L
the set of all linear operators () of the form

Qa—a=La, LEL(J{.

Finally, we denote by L° the set of invertible “block-diagonal” operators D such that
DT, C T, forevery a € A.
With these notations at hand, denote by L™ the set of all operators of the form

M=DoQ, DelL’, QelLf.

This factorisation is unique since it suffices to define D = ) acA Q.M Q. and to set
Q = D~'M, which yields an element of L]. Note also that conjugation by block-
diagonal operators preserves L . Furthermore, elements in L] can be inverted by using
the identity

A-Ly'=1+) L", (2.22)

n>1

although this might map some elements of 7, into an infinite series. With all of these
notations at hand, we then give the following definition:
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Definition 2.28 Given a regularity structure = (A, T, G), its group of automor-
phisms Aut .7 is given by

Aut7 ={MecL": M'TMecG VI e€G}.

Remark 2.29 This is really an abuse of terminology since it might happen that Aut .7
contains some elements in whose inverse maps finite series into infinite series and
therefore does not belong to L. In most cases of interest however, the index set A is
finite, in which case Aut .7 is always an actual group.

The reason why Aut.7 is important is that its elements induce an action on the
models for 7 by

Ry D) — (II,T), M, =1,M, T,,=M"'T,M.
One then has:

Proposition 2.30 For every M € Aut.7, Ry is a continuous map from Mz into
itself.

Proof. It is clear that the algebraic identities (2.18) are satisfied, so we only need to
check that the analytical bounds of Definition 2.17 hold for (1L, I').
For II, this is straightforward since, for a € T,, and any M € L™, one has

Mea(y)) = M Ma@)) = > M,QsMa(y})
BEAN[a,Y]
<Clalla >, AN <CXa]la,

BEAN[a,Y]

where, for a given test function 1 we use the shorthand 1)} = SQ V¥ and where Cisa
finite constant depending only on the norms of the components of M and on the value v
appearing in the definition of L.

For I', we similarly write, for a € Ty, and 8 < «,

||(1:‘wy - 1)&”5 - ||M_1(Fwy - 1)Ma||5 < CZ H(Fwy - 1)MGH§
¢<B

<CY Y IMallgle—ylls <Cd> Y allalle—yllE¢ .

¢<BE2C (<BE2(CVa)

Since one has on the one hand ¢ < 3 and on the other hand £ > «, all terms appearing
in this sum involve a power of ||z — y|| that is at least equal to & — 3. Furthermore, the
sum is finite by the definition of L™, so that the claim follows at once. 0

3 Modelled distributions

Given a regularity structure .7, as well as a model (I, I"), we are now in a position to
describe a class of distributions that locally “look like” the distributions in the model.
Inspired by Definition 2.14, we define the space D” (which depends in general not only
on the regularity structure, but also on the model) in the following way.
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Definition 3.1 Fix a regularity structure 7 and a model (II, I'). Then, for any v € R,
the space D7 consists of all 7" -valued functions f such that, for every compact set

£ C R%, one has

5= 3.1)

/1145 = sup sup [|f(x)l[s + sup  sup
TER B<y wwes poy |l =yl

lz—ylls<1
Here, the supremum runs only over elements 3 € A. We call elements of DY modelled
distributions for reasons that will become clear in Theorem 3.10 below.

Remark 3.2 One could alternatively think of D7 as consisting of equivalence classes
of functions where f ~ g if Quf(z) = Qng(x) for every € R? and every a < 7.
However, any such equivalence class has one natural distinguished representative, which
is the function f such that Q,, f(x) = 0 for every o > +y, and this is the representative
used in (3.1). (In general, the norm || - ||, would depend on the choice of representative
because I';, 7 can have components in 77" even if 7 itself doesn’t.) In the sequel, if we
state that f € D7 for some f which does not necessarily take values in 7., it is this
representative that we are talking about. This also allows to identify D7 as a subspace
of D7 for any 4 > . (Verifying that this is indeed the case is a useful exercise!)

Remark 3.3 The choice of notation D7 is intentionally close to the notation C” for the
space of y-Holder continuous functions since, in the case of the “canonical” regularity
structures built from polynomials, the two spaces essentially agree, as we saw in
Section 2.2.

Remark 3.4 The spaces D7, as well as the norms || - ||, do depend on the choice of
I', but not on the choice of II. However, Definition 2.17 strongly interweaves I' and
II, so that a given choice of T typically restricts the choice of II very severely. As we
will see in Proposition 3.31 below, there are actually situations in which the choice of '
completely determines II. In order to compare elements of spaces D7 corresponding to
different choices of I', say f € D(I") and f € DY(D), it will be convenient to introduce
the norm

If = fllyss = sup sup || f(2) — f@)|5,
TER By

which is independent of the choice of I'. Measuring the distance between elements of
D7 in the norm || - ||, will be sufficient to obtain some convergence properties, as long
as this is supplemented by uniform bounds in || - ||,.

Remark 3.5 It will often be advantageous to consider elements of D” that only take
values in a given sector V' of T'. In this case, we use the notation D7 (V') instead. In
cases where V' is of regularity « for some o« > min A, we will also occasionally use
instead the notation D) to emphasise this additional regularity. Occasionally, we will
also write D7(I") or D7(I'; V') to emphasise the dependence of these spaces on the
particular choice of I'.

Remark 3.6 A more efficient way of comparing elements f € D7(I') and feD@D
for two different models (II, ') and (I, I') is to introduce the quantity

r r - f _Fx fa: fi
UF: Pl = I = P+ sup  sup L@ =@ =Ly /@) + Loy S5

e B o=yl
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Note that this quantity is not a function of f — f, which is the reason for the slightly
unusual notation || f; fl,.

It turns out that the spaces D” encode a very useful notion of regularity. The idea
is that functions f € D" should be interpreted as “jets” of distributions that locally,
around any given point z € R%, “look like” the model distribution II,, f(z) € S’. The
results of this section justify this point of view by showing that it is indeed possible to
“reconstruct” all elements of D as distributions in R?. Furthermore, the corresponding
reconstruction map R is continuous as a function of both the element in f € D and
the model (I, I') realising the regularity structure under consideration.

To this end, we further extend the definition of the Holder spaces C¢ to include
exponents o < 0, consisting of distributions that are suitable for our purpose. Informally
speaking, elements of C&* have scaling properties akin to ||z — y|| when tested against
a test function localised around some = € R?. In the following definition, we write Cj
for the space of compactly supported C" functions. For further properties of the spaces
C¢, see Section 3.2 below. We set:

Definition 3.7 Let o < 0 and let r = —|«|. We say that £ € S’ belongs to C if it
belongs to the dual of Cjj and, for every compact set &, there exists a constant C' such
that the bound

(€, 82.m) < C5%,

holds for all n € C" with ||n]jc- < 1 and suppn C Bs(0,1),all § < 1, and all z € R.
Here, B;(0, 1) denotes the ball of radius 1 in the distance d;, centred at the origin.

From now on, we will denote by By  the set of all test functions 7 as in Definition 3.7.
For { € C¢ and R a compact set, we will henceforth denote by ||£||, the seminorm
given by

1€]lass = sup sup sup (¢, S m)] . (3.2)
z€ERNEBY ; 6<1

We also write || - || for the same expression with & = R%.

Remark 3.8 The space C' is essentially the Besov space B, ., (see e.g. [Mey92]),
with the slight difference that our definition is local rather than global and, more
importantly, that it allows for non-Euclidean scalings.

Remark 3.9 The seminorm (3.2) depends of course not only on «, but also on the
choice of scaling s. This scaling will however always be clear from the context, so we
do not emphasise this in the notation.

The following “reconstruction theorem” is one of the main workhorses of this theory.

Theorem 3.10 (Reconstruction theorem) Let 7 = (A, T, G) be a regularity struc-
ture, let (11, T") be a model for  on R? with scaling s, let « = min A, and let r > |a|.

Then, for every vy € R, there exists a continuous linear map R: DY — CZ with the
property that, for every compact set & C R%,

(Rf — T f@)SS .| S Nzl £ llsi - (3.3)

uniformly over all test functions n € By o, all 6 € (0,1], all f € D7, and all x € K. If
v > 0, then the bound (3.3) defines R f uniquely. Here, we denoted by & the 1-fattening
of R, and the proportionality constant depends only on vy and the structure of 7.
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Furthermore, if I1,T) is a second model for 7 with associated reconstruction
operator R, then one has the bound

[(Rf=Rf 1L, f(@)+11, f(2))(S ,m)| < 67 (||

&l f5 Fly g HII=T 5 0 flz)

(3.4)
uniformly over x and 1) as above. Finally, for 0 < k < 7v/(y — «) and for every C > 0,
one has the bound

(Rf = Rf — Iy f(2) + I, f(@))(S2 )| (3.5)
SO = Fllq + =T[5 5 + [0 =T5.5)

i

where we set 7y =y — K(y — ), and where we assume that || f||.,. 5,
are bounded by C, and similarly for f, Il and T.

v; R and HF”'y,fi

Remark 3.11 At first sight, it might seem surprising that I does not appear in the
bound (3.3). It does however appear in a hidden way through the definition of the spaces
D7 and thus of the norm [ f||.,. z. Furthermore, (3.3) is quite reasonable since, for I’
fixed, the map R is actually bilinear in f and II. However, the mere existence of R
depends crucially on the nonlinear structure encoded in Definition 2.17, and the spaces
D7 do depend on the choice of I'. Occasionally, when the particular model (II, I") plays
arole, we will denote R by Rr in order to emphasise its dependence on I'.

Remark 3.12 Setting f (y) = f(y) — I'yz f(x), we note that one has
Rf =, f(z) = Rf =1L, f(x) = Rf .

As a consequence, the bound (3.3) actually depends only on the second term in the right
hand side of (3.1).

Remark 3.13 In the particular case when (II, T') = (I, '), the bound (3.4) is a trivial
consequence of (3.3) and the bilinearity of R in f and II. As it stands however, this
bound needs to be stated and proved separately. The bound (3.5) can be interpreted as
an interpolation theorem between (3.3) and (3.4).

Proof (uniqueness only). The uniqueness of the map R in the case v > 0 is quite easy
to prove. Take f € D7 as in the statement and assume that the two distributions &;
and &; are candidates for R f that both satisfy the bound (3.3). Our aim is to show that
one then necessarily has £; = &». Take any smooth compactly supported test function
P R? - R, and choose an even smooth function n: B; — Ry with f n(x)dx = 1.
Define

V() = (2, 4) = / $(@) (S2n) () de .

so that, for any distribution &, one has the identity

£(s) = / (@) (€, S8 ) do (3.6)

Choosing £ = & — &, it then follows from (3.3) that

)| < 87 /D V() ) dar |
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which converges to 0 as 6 — 0. On the other hand, one has 15 — 1 in the C*° topology,
so that £(vs5) — &£(1). This shows that £(¥) = 0 for every smooth compactly supported
test function 1), so that £ = 0.

The existence of a map R with the required properties is much more difficult to
establish, and this is the content of the remainder of this section. O

Remark 3.14 We call the map R the “reconstruction map” as it allows to reconstruct a
distribution in terms of its local description via a model and regularity structure.

Remark 3.15 One very important special case is when the model (II, I") happens to
be such that there exists o > 0 such that II,a € C¢ (RY) for every a € T, even though
the homogeneity of a might be negative. In this case, for f € D7 withy > 0, Rf isa
continuous function and one has the identity (R f)(z) = (II,. f(z))(x). Indeed, setting
Rf(z) = (I, f(x))(z), one has

[Rf(y) = Rf@)| < |(Iy f(@))(@) = (W f@)@)] + [Ty (Tya f(2) = F@)) )] -

By assumption, the first term is bounded by C'||z—y||$ for some constant C'. The second
term on the other hand is bounded by C/||z — y||J by the definition of D7, combined
with the fact that our assumption on the model implies that (IT,a)(z) = 0 whenever a
is homogeneous of positive degree.

A straightforward corollary of this result is given by the following statement, which
is the a posteriori justification for the terminology “regularity” in Definition 2.5:

Corollary 3.16 In the context of the statement of Theorem 3.10, if f takes values in a
sector 'V of regularity 5 € [, 0), then one has Rf € C? and, for every compact set &
and v > 0, there exists a constant C' such that

IRfllg:s < CI|L,.5

| /1

Proof. Immediate from (3.3), Remark 2.20, and the definition of || - || ;4. O

.5 -

Before we proceed to the remainder of the proof of Theorem 3.10, we introduce
some of the basic notions of wavelet analysis required for its proof. For a more detailed
introduction to the subject, see for example [Dau92, Mey92].

3.1 Elements of wavelet analysis

>

Recall that a multiresolution analysis of R is based on a real-valued “scaling function’
¢ € L%(R) with the following two properties:

1. One has [ p(x)p(x + k) dz = &y for every k € Z.
2. There exist “structure constants” a; such that

o) = arpr —k) . 3.7)

keZ

One classical example of such a function ¢ is given by the indicator function () =
1j0,1)(x), but this has the substantial drawback that it is not even continuous. A celebrated
result by Daubechies (see the original article [Dau88] or for example the monograph
[Dau92]) ensures the existence of functions ¢ as above that are compactly supported
but still regular:
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Theorem 3.17 (Daubechies) For every r > 0 there exists a compactly supported
function @ with the two properties above and such that ¢ € C"(R). O

From now on, we will always assume that the scaling function ¢ is compactly
supported. Denote now A,, = {27 "k : k € Z} and, forn € Z and x € A,,, set

Pl (y) = 2 2p(2"(y — 1)) - (3.8)

One furthermore denotes by V,, C L?(R) the subspace generated by {¢? : x € A, }.
Property 2 above then ensures that these spaces satisfy the inclusion V,, C V,,4; for
every n. Furthermore, it turns out that there is a simple description of the orthogonal
complement V.- of V,, in V,,;1. It turns out that it is possible to find finitely many
coefficients by, such that, setting

Y@) = brpe — k), (3.9)

keZ

and defining %" similarly to (3.8), the space V,; is given by the linear span of {y" :
x € Ay}, see for example [Pin02, Chap. 6.4.5]. (One has actually by, = (—DFaq_y, but
this isn’t important for us.) The following result is taken from [Mey92]:

Theorem 3.18 One has (Y, 1,") = On .m0z for every n,m € Z and every v € A,
y € A,,. Furthermore, <<p2,1/1;”> = 0 for every m > n and every x € A, y € A,,.
Finally, for every n € Z, the set

{op 2 € A U{YT : m>n, v ey},
forms an orthonormal basis of L*(R). O

Intuitively, one should think of the (7 as providing a description of a function at
scales down to 27" and the 17" as “filling in the details” at even smaller scales. In
particular, for every function f € L?, one has

lim P f £ lim » {f,oh)el =1, (3.10)

n— o0
zEA,

and this relation actually holds for much larger classes of f, including sufficiently
regular tempered distributions [Mey92].

One very useful properties of wavelets, which can be found for example in [Mey92,
Chap. 3.2], is that the functions 7" automatically have vanishing moments:

Lemma 3.19 Let ¢ be a compactly supported scaling function as above which is C"
for r > 0 and let 1) be defined by (3.9). Then, fR () x™ dx = 0 for every integer
m <. O

For our purpose, we need to extend this construction to R%. Classically, such an
extension can be performed by simply taking products of the ¢ for each coordinate.
In our case however, we want to take into account the fact that we consider non-trivial
scalings. For any given scaling s of R and any n € Z, we thus define

d
N = {2 ke s ky €2 CRY,
=1
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where we denote by e; the jth element of the canonical basis of R?. For every z € A7,
we then set

d
o) = [ e i) - (3.11)
j=1

Since we assume that ¢ is compactly supported, it follows from (3.7) that there exists a
finite collection of vectors K C Aj and structure constants {aj, : k& € K} such that the
identity
P2 =D arerti @) . (3.12)
kex

holds. In order to simplify notations, we will henceforth use the notation
27 = (27" k., 27 M Ry

so that the scaling properties of the ¢»* combined with (3.12) imply that

W) =Y arpl )% W) - (3.13)
ke

Similarly, there exists a finite collection ¥ of orthonormal compactly supported
functions such that, if we define V;, similarly as before, V- is given by

Vb =span{y)™® :p €U x €A},

In this expression, given a function 1) € W, we have set ¢ = 27 "I*I/282 "y where
the scaling map was defined in (2.13). (The additional factor makes sure that the scaling
leaves the L2 norm invariant instead of the L' norm, which is more convenient in this
context.) Furthermore, this collection forms an orthonormal basis of VnL. Actually, the
set U is given by all functions obtained by products of the form Hlewi(a:i), where
Y_ =1 and Y4 = ¢, and where at least one factor consists of an instance of .

3.2 A convergence criterion in C'

The spaces C* with o < 0 given in Definition 3.7 enjoy a number of remarkable proper-
ties that will be very useful in the sequel. In particular, it turns out that distributions in
C¢ can be completely characterised by the magnitude of the coefficients in their wavelet
expansion. This is true independently of the particular choice of the scaling function ¢,
provided that it has sufficient regularity.

In this sense, the interplay between the wavelet expansion and the spaces C¢ is
very similar to the classical interplay between Fourier expansion and fractional Sobolev
spaces. The feature of wavelet expansions that makes it much more suitable for our
purpose is that its basis functions are compactly supported with supports that are more
and more localised for larger values of n. The announced characterisation is given by
the following.

Proposition 3.20 Ler o < 0 and £ € S'(RY). Consider a wavelet analysis as above
with a compactly supported scaling function o € C” for some r > |a|. Then § € C& if
and only if £ belongs to the dual of C§ and, for every compact set & C RY, the bounds

_ nls|

(o) S27 2 7, (&) ST, (3.14)

hold uniformly over n > 0, every ) € U, everyx € A} N R, and everyy € AjN K.
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The proof of Proposition 3.20 relies on classical arguments very similar to those
found for example in the monograph [Mey92]. Since the spaces with inhomogeneous
scaling do not seem to be standard in the literature and since we consider localised
versions of the spaces, we prefer to provide a proof. Before we proceed, we state the
following elementary fact:

Lemma 3.21 Leta € Randletb_, b, € R. Then, the bound

no o0
z 2an27b,(n07n) + Z 2an2fb+(nfng) < gano

n=0 n=no
holds provided that by > a and b_ > —a. O

Proof of Proposition 3.20. 1t is clear that the condition (3.14) is necessary, since it boils
down to taking n € ¥ and § = 27" in Definition 3.7. In order to show that it is also
sufficient, we take an arbitrary test function 7 € C” with support in B; and we rewrite

(6,82 .m) as

(€S2,m) =D 3 A& ) (W=, S m) + Y (€90 e, SEm) . (3.15)

n>0yeAs, YEAG

Let furthermore ng be the smallest integer such that 270 < §. For the situations where
the supports of ,>* and Sg’mn overlap, we then have the following bounds.

First, we note that if (z, y) contributes to (3.15), then |z — y||s < C for some fixed
constant C. As a consequence of this, it follows that one has the bound

1€, vy ") S 9= "5 e (3.16)

uniformly over all pairs (z, y) yielding a non-vanishing contribution to (3.15).
For n > nyg, and ||z — y||s < C§, we furthermore have the bound

ngls|

(e, 82, m)] < 2-nmolrt i) g e (3.17)

so that

n —(n—ng)(r—121)malsl
3wy, 88 ,m| S 27l 3™

yeas,

Here and below, the proportionality constants are uniform over all 7 with ||n||¢c- < 1
with suppn C Bj. On the other hand, for n < ng, and ||z — y||s < C27™°, we have
the bound

n,s nm
[y ®, Seam S 277 (3.18)
so that, since only finitely many terms contribute to the sum,
n 'rLﬂ

Do lwye Seaml 27

yeA;,
Since, by the assumptions on r and «, one has indeed r + % > a+ %l and |§—‘ > @ —a,
we can apply Lemma 3.21 to conclude that the first sum in (3.15) is indeed bounded by
a multiple of §%, which is precisely the required bound. The second term on the other
hand satisfies a bound similar to (3.18) with n = 0, so that the claim follows. |
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Remark 3.22 For o > 0, it is not so straightforward to characterise the Holder regular-
ity of a function by the magnitude of its wavelet coefficients due to special behaviour at
integer values, but for non-integer values the characterisation given above still holds,
see [Mey92].

Another nice property of the spaces C¢ is that, using Proposition 3.20, one can
give a very useful and sharp condition for a sequence of elements in V,, to converge
to an element in C¢'. Once again, we fix a multiresolution analysis of sufficiently high
regularity (i.e. r > |«|) and the spaces V;, are given in terms of that particular analysis.
For this characterisation, we use the fact that a sequence { f,, },>0 with f,, € V,, for
every n can always be written as

fa= D AReR. AL ={pb° fa) - (3.19)

TEAS,

Given a sequence of coefficients A, we then define § A7 by

— +1
AT = AT =N AL,
kel

where the set IC and the structure constants aj are as in (3.12). We then have the
following result, which can be seen as a generalisation of the “sewing lemma” (see
[Gub04, Prop. 1] or [FALP06, Lem. 2.1]), which can itself be viewed as a generalisation
of Young’s original theory of integration [You36]. In order to make the link to these
theories, consider the case where R? is replaced by an interval and take for ¢ the Haar
wavelets.

Theorem 3.23 Let s be a scaling of R, let & < 0 < =, and fix a wavelet basis with
regularity v > |a. For everyn > 0, let x — A be a function on R? satisfying the
bounds

ns

A7 < JJAl27 e, [SAT S AT, (3.20)

for some constant || A||, uniformly over n > 0 and = € R%.
Then, the sequence { fy, }n>0 given by fn = > cr. A% @2 converges in CZ for
every & < « and its limit f belongs to C. Furthermore, the bounds

If = falla SNAI2TC" 0 Puf = falla S NAlI1277", (321
hold for & € (o — 7, a), where Py, is as in (3.10).

Proof. By linearity, it is sufficient to restrict ourselves to the case |A| = 1. By
construction, we have f,+1 — f € V41, so that we can decompose this difference as
for1 = fan=9gn+0fn. (3.22)

where 0 f,, € V,:- and g,, € V,,. By Proposition 3.20, we note that there exists a constant
C such that, for every n > 0 and m > n, and for every 5 < 0, one has

IS on] <c s lssl,
k=n B ke{n,....m}

so that a sufficient condition for the sequence {>_}_, d fx }n>0 to have the required
properties is given by

10fnlla =0, sup |6 frnlla < 00 . (3.23)

lim
n— o0
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Regarding the bounds on 4 f,,, we have

<5fn,¢g’5> = <fn+1 - fn7w275> = Z aIyA;H_l s

lz—ylls <EK2-nlsl

where the a,, = (cpZ+1=5 , ™) are a finite number of uniformly bounded coefficients
and K > 0 is some fixed constant. It then follows from the assumption on the coeffi-
cients A} that

n —nlel oy
({0 fn, ) S 2772 -

Combining this with the characterisation of C¢* given in Proposition 3.20, we conclude
that )
6falla S 277", 0fulla S1, (3.24)

so that the condition (3.23) is indeed satisfied.
It remains to show that the sequence of partial sums of the g5 from (3.22) also satis-
fies the requested properties. Using again the characterisation given by Proposition 3.20,

we see that
m

HZ ng < sup > [1Qnga - (3.25)
k=n a

N20 k=n

From the definition of g,,, we furthermore have the identity

<gn7902’5> = <fn+1 - fn7@g’5> = (Z ak:<fn+17<p;liéfnsk>) - <fn7@g’5>

kex
— —5Ar (3.26)
so that one can decompose g,, as
gn=— Y SATLS. (327)
TEAS,

It follows in a straightforward way from the definitions that, for m < n, there exists a
constant C' such that we have the bound

(s, gm®)] < C2m By <o - (3.28)
Since on the other hand, one has
{z € A, o —yls < 0277 S 20
we obtain from this and (3.27) the bound
(W, ga)| S 2075 sup{[042] « [|lo = ylls < €27}
S (3.29)

where we used again the fact that ||z —y/||s < ds(y, dD) by the definition of the functions
tb,"*. Combining this with the characterisation of C¢* given in Proposition 3.20, we
conclude that

1Qmgnlla S 29T < s

so that
m m
Z ||QNnga 5 Z 2(1N—'yk 5 2aN—'y(NVn) )
k=n k=nVN

This expression is maximised at N = 0, so that the bound || };"  gilla S 277"
follows from (3.25). Combining this with (3.24), we thus obtain (3.21), as stated. [
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A simple but important corollary of the proof is given by

Corollary 3.24 In the situation of Theorem 3.23, let & C R? be a compact set and let
R be its 1-fattening. Then, provided that (3.20) holds uniformly over R, the bound (3.21)
still holds with || - ||« replaced by || - || a;a-

Proof. Follow step by step the argument given above noting that, since all the arguments
in the proof of Proposition 3.20 are local, one can bound the norm || - || o, & by the smallest
constant such that the bounds (3.14) hold uniformly over z,y € K. O

3.3 The reconstruction theorem for distributions

One very important special case of Theorem 3.23 is given by the situation where there
exists a family z — ¢, € S'(R?) of distributions such that the sequence f,, is given by
(3.19) with A? = (¢!*, (,). Once this is established, the reconstruction theorem will
be straightforward. In the situation just described, we have the following result which,
as we will see shortly, can really be interpreted as a generalisation of the reconstruction
theorem.

Proposition 3.25 [In the above situation, assume that the family (. is such that, for

some constants K1 and Ko and exponents o < 0 < v, the bounds

(P2, =G| € Ko @+ la—yllo) 27 F 7 (g, )] < K2
(3.30)

hold uniformly over all x,y such that |x — yl||s < 1. Here, as before,  is the scaling

function for a wavelet basis of regularity r > |c|. Then, the assumptions of Theorem 3.23

are satisfied. Furthermore, the limit distribution f € CZ satisfies the bound

(f = €S2 o) S K167, 3.31)

uniformly over n € By . Here, the proportionality constant only depends on the choice
of wavelet basis, but not on K.

Proof. We are in the situation of Theorem 3.23 with A” = (,(¢2®), so that one has the
identity

SAY = ap(Ce — Gy ) (3.32)
kex

where we used the shortcut y = = + 27"k in the right hand side. It then follows
immediately from (3.30) that the assumptions of Theorem 3.23 are indeed satisfied,
so that the sequence f,, converges to some limit f. It remains to show that the local
behaviour of f around every point x is given by (3.31).

For this, we write

f=Co=fao = PnoCa) + D (fas1 = fn — (Pry1 — Pu)Ca) - (3.33)

n>ngo

for some ng > 0. We choose n to be the smallest integer such that 270 < §. Note
that, as in (3.17), one has for n > ng the bounds
(s, 82,0 S 25 2 nmnollrk ) (e S8 )| < 2" g
‘ ‘ (3.34)
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Since, by construction, the first term in (3.33) belongs to V,,,, we can rewrite it as

(o = ProCa)(S2,m = Y (G — Ca)(@)®®) (0o, 82 m) .

yEA;O

Since terms appearing in the above sum with ||z — y||s > J are identically 0, we can
use the bound "
ngls
[(Gy = Ca)(py® ) S K277 2
Combining this with (3.34) and the fact that there are only finitely many non-vanishing
terms in the sum, we obtain the bound

[(Fro = ProCa)(S2am| S K127™07 & K167, (3.35)

which is of the required order.

Regarding the second term in (3.33), we decompose f, 1 — f5 as in the proof of
Theorem 3.23 as f, 11— fn, = gn+0f, with g, € V,, and 6 f,, € an. As a consequence
of (3.26) and of the bounds (3.30) and (3.34), we have the bound

[{gn SSm <D Hgn, 0 ) [y, 82 ,m)|
YEAS,
< 3 1Ay gy, 88 m)| < Kyzmrralebseran
YEAS,

where we made use of (3.32) for the last bound. Summing this bound over all n > ny,
we obtain again a bound of order K747, as required. It remains to obtain a similar bound
for the quantity

Z ((;fn - (Pn—i-l - Pn)CT)(Sg,Tn) .

n>ngo

Note that §f,, is nothing but the projection of f,, 1 onto the space V. Similarly,
(Prn4+1 — Prn)(, is the projection of (, onto that same space. As a consequence, we have
the identity

(5fn_(73n+1 - Pn)gz)(sg’wn)
= D DD G G TN ) (W, S ) -

zeAp ! YEAT YET

Note that this triple sum only contains of the order of 2*~"0)l5| terms since, for any
given value of y, the sum over z only has a fixed finite number of non-vanishing terms.
At this stage, we make use of the first bound in (3.34), together with the assumption
(3.30) and the fact that 27" < ||x — z||s < ¢ for every term in this sum. This yields
for this expression a bound of the order

n

K12(n—n0)|5\5'y—a2— l;‘ —anQn(’iQ‘sl2—(n—n0)(7>+\5|/2) — Kl(s'y—aQ—r(n—no)—an )

Since, by assumption, r is sufficiently large so that r > |/, this expression converges to
0 as n — oco. Summing over n > ng and combining all of the above bounds, the claim
follows at once. |

Remark 3.26 As before, the construction is completely local. As a consequence, the
required bounds hold over a compact K, provided that the assumptions hold over its
1-fattening R.
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We now finally have all the elements in place to give the proof of Theorem 3.10.

Proof of Theorem 3.10. We first consider the case v > 0, where the operator R is
unique. In order to construct R, we will proceed by successive approximations, using
a multiresolution analysis. Again, we fix a wavelet basis as above associated with a
compactly supported scaling function . We choose ¢ to be C" for > | min A|. (Which
in particular also implies that the elements ¢ € ¥ annihilate polynomials of degree r.)

Since, for any given n > 0, the functions ¢* are orthonormal and since, as n — oo,
they get closer and closer to forming a basis of very sharply localised functions of L2, it

appears natural to define a sequence of operators R,,: D? — C” by

Rof = > (L f@)er®) e,

TEAS,

and to define R as the limit of R,, as n — oo, if such a limit exists.

We are thus precisely in the situation of Proposition 3.25 with , = II, f(x). Since
we are interested in a local statement, we only need to construct the distribution R f
acting on test functions supported on a fixed compact domain K. As a consequence, since
all of our constructions involve some fixed wavelet basis, it suffices to obtain bounds on
the wavelet coefficients ¥ with x such that ¥ is supported in £, the 1-fattening of &.

It follows from the definitions of D7 and the space of models .# ~ that, for such
values of z, one has

n

L=l _ o
2 9

[ f (@), 02") | S WS Nl 22

where, as before, @ = min A is the smallest homogeneity arising in the description of
the regularity structure 7. Similarly, we have

S Z AN & ITL]]L, &l — y”z%Qf%,@n ,
<y

where the sum runs over elements in A. Since, in the assumption of Proposition 3.25,
we only consider points (z, y) such that ||z — y||s = 27", the bound (3.30) follows.

As a consequence, we can apply Theorem 3.23 to construct a limiting distribution
Rf = lim,— o Ry f, where convergence takes place in C& for every & < «. Further-
more, the limit does itself belong to CS*. The bound (3.3) follows immediately from
Proposition 3.25.

In order to obtain the bound (3.4), we use again Proposition 3.25, but this time with
(e = I, f(x) — I, f(x). We then have the identity

Similarly to above, it then follows from the definition of || f; f[|.« that

n I T £ —« —Ls‘—ozn
(G = Cys 02 S (M5l £5 Flls + 1T = Tl gl f s )l = wlls ™27 72 ;
from which the requested bound follows at once.
~ The bound (3.5) is obtained again from Proposition 3.25 with ¢, = II, flx) —
I, f(z). This time however, we aim to obtain bounds on this quantity by only making
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use of bounds on || f — f||. rather than || f; f||,.«. Note first that, as a consequence of
(3.36), we have the bound

nls]
2

[(Ce = Gy @) S llz —yllg™"27 = 7" (3.37)

On the other hand, we can rewrite ¢, — ¢, as

Co — Gy =L (f(2) — f(@) + A, — )Ty f(y) — f(2))

It follows at once that one has the bound

n|s|

(o = Cyr @) S (If = Fllyss + T = Tl + I = Tllpig)27 = "

Combining this with (3.37) and making use of the bound a A b < a®b'=", which is
valid for any two positive numbers a and b, we have

n|s|

[(Ce = Cys 02" S (”f*fH%ﬁJFHH*ﬁHW;RWL”F*I;H'v;ﬁ)'ﬁ”x*y”:/iazi e,

from which the claimed bound follows.

We now prove the claim for v < 0. It is clear that in this case R cannot be unique
since, if R f satisfies (3.3) and £ € CJ, then Rf + £ does again satisfy (3.3). Still, the
existence of R f is not completely trivial in general since I1,, f(x) itself only belongs to
C¢ and one can have o < 7y < 0 in general. It turns out that one very simple choice for
R f is given by

RE=35" S (Maf@), vy + 3 (M f@), o262 . (3.38)

n>0 €A Yev zeA?

This is obviously not canonical: different choices for our multiresolution analysis yield
different definitions for R. However, it has the advantage of not relying at all on
the axiom of choice, which was used in [LV07] to prove a similar result in the one-
dimensional case. Furthermore, it has the additional property that if f is “constant” in
the sense that f(x) = I'y,, f(y) for any two points = and y, then one has the identity

Rf =1 f(z), (3.39)

where the right hand side is independent of x by assumption. (This wouldn’t be the case
if the second term in (3.38) were absent.) Actually, our construction is related in spirit
to the one given in [Unt10], but it has the advantage of being very straightforward to
analyse.

For R f as in (3.38), it remains to show that (3.3) holds. Note first that the second part
of (3.38) defines a smooth function, so that we can discard it. To bound the remainder,
let ) be a suitable test function and note that one has the bounds

g-nls—rng=lsl—r jfo-n < g,

sl .
2"3 otherwise.

[(Sae.ams ¥y ) S {

Furthermore, one has of course (S2 .7, ¢*) = O unless ||z — yls < 6 + 27" Italso
follows immediately from the definition (3.38) that one has the bound

|(Rf = o f(@) by )] = [(TLy f(y) — To f(2)) Wy )| = [y (f() — Tya f(@)) (10"
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S S o -yl P2
B<y

where the proportionality constant is as in (3.3). These bounds are now inserted into the
identity

(Rf =T f@)S2,m =Y > D (Rf =T f@) Wy °)Ss .m, %) -

n>0yeAr pew

For the terms with 27 < §, we thus obtain a contribution of the order

glel 3 onlel §7 gr-ynlstimgnlthomg el < g1

2-n<§ By

Here, the bound follows from the fact that we have chosen r such that » > || and the
factor §1°12715! counts the number of non-zero terms appearing in the sum over 3. For
the terms with 27" > §, we similarly obtain a contribution of

S Mol <o,

2-n>§ B<y

where we used the fact that 5 < v < 0. The claim then follows at once. O

Remark 3.27 Recall that in Proposition 3.25, the bound on f — (, depends on K but
not on K. This shows that in the reconstruction theorem, the bound on R f — IT, f(x)
only depends on the second part of the definition of || f||.s. This remark will be
important when dealing with singular modelled distributions in Section 6 below.

3.4 The reconstruction theorem for functions

A very important special case is given by the situation in which 7 contains a copy of
the canonical regularity structure 7, s (write 7' C T for the model space associated to
the abstract polynomials) as in Remark 2.23, and where the model (II, I') we consider
yields the canonical polynomial model when restricted to 7. We consider the particular
case of the reconstruction theorem applied to elements f € DY(V'), where V is a sector
of regularity 0, but such that

VcT+Tr, (3.40)

for some « € (0, 7). Loosely speaking, this states that the elements of the model IT used
to describe R f consist only of polynomials and of functions that are Holder regular of
order «v or more.

This is made more precise by the following result:

Proposition 3.28 Let f € DV(V), where V is a sector as in (3.40). Then, R f coincides
with the function given by

Rf(x) = (1, f(x)), (3.41)
and one has Rf € CZ.

Proof. The fact that the function z + (1, f(x)) belongs to C¢' is an immediate conse-
quence of the definitions and the fact that the projection of f onto 7" belongs to D. It
follows immediately that one has

| Ri@ = 1 @) v de £ 37
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from which, by the uniqueness of the reconstruction operator, we deduce that one does
indeed have the identity (3.41). O

Another useful fact is the following result showing that once we know that f € D7
for some v > 0, the components of f in T} for 0 < k < -~y are uniquely determined by
the knowledge of the remaining components. More precisely, we have

Proposition 3.29 If f,g € D" with v > 0 are such that f(x) — g(z) € ®0<k<7 Ty,
then f = g.

Proof. Setting h = f — g, one has Rh = 0 from the uniqueness of the reconstruction
operator. The fact that this implies that » = 0 was already shown in Remark 2.16. 7

Remark 3.30 In full generality, it is not true that / is completely determined by the
knowledge of Rh. Actually, whether such a determinacy holds or not depends on the
intricate details of the particular model (II, I') that is being considered. However, for
models that are built in a “natural” way from a sufficiently non-degenerate Gaussian
process, it does tend to be the case that Rh fully determines h. See [HP13] for more
details in the particular case of rough paths.

3.5 Consequences of the reconstruction theorem

To conclude this section, we provide a few very useful consequences of the reconstruc-
tion theorem which shed some light on the interplay between II and I'. First, we show
that for o > 0, the action of II, on T, is completely determined by I'. In a way, one
can interpret this result as a generalisation of [Lyo98, Theorem 2.2.1].

Proposition 3.31 Let .7 be a regularity structure, let o« > 0, and let (I1, T") be a model
for T over R with scaling s. Then, the action of I1 on Ty, is completely determined by
the action of 11 on T and the action of I" on T,,. Furthermore, one has the bound

supsup sup  sup & |(ILa)Se o) < M0zl Tllai - (3.42)
TERO<L pEBY ) acTa

where R denotes the 1-fattening of & as before and r > | min A|. If (I, T) is a second
model for the same regularity structure, one furthermore has the bound

sup sup 6 °|(Mpa — Toa)(S2 . 0)| < T = 1|z (T lacq + 1T llas)
TER §;p5a - - (343)
I = Tllaz (Wl a2 + 11 0 »

where the supremum runs over the same set as in (3.42).
Proof. Forany a € T, and z € R, we define a function faz: R? - T, by
fa,ac(y) = Fyxa —a. (3.44)

It follows immediately from the definitions that f, , € D and that, uniformly over all
a with ||a|| < 1, its norm over any domain R is bounded by the corresponding norm of
T". Indeed, we have the identity

Fyzfa,w(z) - fa,w(y) = (Fya:a - Fyza) - (F'qwa/ - a)
=a—T4y.a,
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so that the required bound follows from Definition 2.17.

We claim that one then has II;a = R f, ,, which depends only on the action of II
on T}, . This follows from the fact that, for every y € R?, one has IT,.a = IT,T',,.a, so
that

(Mpa — Ty fa o ()S2ym) = ya)(S2,m S A1 g.5ll fae |
< Y11

o R

[z » (3.45)

;R

for all suitable test functions 7. The claim now follows from the uniqueness part of the
reconstruction theorem. Furthermore, the bound (3.42) is a consequence of (3.45) with
y = x, noting that f, ,(z) = 0.

It remains to obtain the bound (3.43). For this, we consider two models as in the
statement, and we set fa,x(y) = fyxa — a, We then apply the generalised version of the
reconstruction theorem, Proposition 3.25, noting that we are exactly in the situation that
it covers, with ¢, = Il fo 2 (y) — I:Iy fa@(y). We then have the identity

Cy - Cz = (Hy(wa - I) - ﬁy(fym - I))a - (Hz(rza: - I) - ﬁz(fzx - I))a
=1I,Iy, — Da — I:Iy(f‘yz —Da
= (I, — )Ty, — Da + (T, — Ty.)a .

It follows that one has the bound

n|s|

27z <Cy - CZ7SOZ75> < |- ﬁ”a;f{

Dl Y lly = zllg =727
B<a

R Z Hy - Z||(51_ﬁ2_ﬁn >
B<a

+ HF - f”u;,‘_i ﬁ'

where, in both instances, the sum runs over elements in A. Since we only need to
consider pairs (y, z) such that ||y — z||s > 27", this does imply the bound (3.30) with
the desired constants, so that the claim follows from Proposition 3.25. [

Another consequence of the reconstruction theorem is that, in order to characterise a
model (II, I') on some sector V' C T, it suffices to know the action of I';,, on V/, as well
as the values of (Il,a)(p2°) fora € V, x € A7 and ¢ the scaling function of some
fixed sufficiently regular multiresolution analysis as in Section 3.1. More precisely, we
have:

Proposition 3.32 A model (I1,T") for a given regularity structure is completely deter-
mined by the knowledge of (I1ya)(®) for x € A} and n > 0, as well as Ty, a for
T,y € RY.
Furthermore, for every compact set & C R and every sector V, one has the bound
nls|

’ I n,s
IT|v.s < (14 ||T||v.q) sup sup sup sup 2°"F =2 [(Mpa) ()] )
a€Ay a€Vy n>0 TEAT(R) HCL”

(3.46)

Here, we denote by ||I1||v,a the norm given as in Definition 2.17, but where we restrict
ourselves to vectors a € V. Finally, for any two models (I1,I') and (11, I"), one has

_ n|s Hm *]-:-[r it
=Ty < 1+ [Dllv) sup sup sup sup 2o+ 25t [e = He)a]
a€Ay a€Vy n>0 meA;L(ﬁ) ||(L||
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Proof. Givena € V, and z € R, we define similarly to above a function f¢: RV
by fi(y) = I'yza. (This time « can be arbitrary though.) One then has II, f2(y) =
IL,I'y.a = Il a, so that R f¢ = IL,a. On the other hand, the proof of the reconstruction
theorem only makes use of the values (II,a)(¢-°) and the function (z, y) — Iy, so
that the claim follows.

The bound (3.46), as well as the corresponding bound on IT — IT are an immediate
consequence of Theorem 3.23, noting again that the coefficients A? only involve
evaluations of (II;a)(¢2°) and the map I',,,,. O

x

Although this result was very straightforward to prove, it is very important when
constructing random models for a regularity structure. Indeed, provided that one has
suitable moment estimates, it is in many cases possible to show that the right hand
side of (3.46) is bounded almost surely. One can then make use of this knowledge to
define the distribution II,,a by R f2 via the reconstruction theorem. This is completely
analogous to Kolmogorov’s continuity criterion where the knowledge of a random
function on a dense countable subset of R? is sufficient to define a random variable on
the space of continuous functions on R? as a consequence of suitable moment bounds.
Actually, the standard proof of Kolmogorov’s continuity criterion is very similar in spirit
to the proof given here, since it also relies on the hierarchical approximation of points
in R? by points with dyadic coordinates, see for example [RY91].

3.6 Symmetries

It will often be useful to consider modelled distributions that, although they are defined
on all of R?, are known to obey certain symmetries. Although the extension of the
framework to such a situation is completely straightforward, we perform it here mostly
in order to introduce the relevant notation which will be used later.

Consider some discrete symmetry group .# which acts on R? via isometries T,. In
other words, for every g € ., T} is an isometry of R? and Tyg = Ty o Ty. Given a
regularity structure .7, we call amap M: . — L° (where LV is as in Section 2.4)
an action of . on .7 if M, € Aut.7 for every g € . and furthermore one has the
identity My3 = M3 o M, for any two elements g,§ € .. Note that .7 also acts
naturally on any space of functions on R? via the identity

(Tro) (@) = (T, ) .

With these notations, the following definition is natural:

Definition 3.33 Let . be a group of symmetries of R? acting on some regularity
structure 7. A model (II, T") for .7 is said to be adapted to the action of . if the
following two properties hold:
e For every test function 0: R? — R, every 2 € R?, every a € T, and every g € .57,
one has the identity (Ilt,.a)(T,; %) = (I Mga) ().
e Forevery z,y € R? and every g € .7, one has the identity MUt 21,y = Doy M,.

A modelled distribution f: R — T is said to be symmetric if My f(Tyx) = f(x) for
every T € R? and every g € 7.

Remark 3.34 One could additionally impose that the norms on the spaces T, are
chosen in such a way that the operators M, all have norm 1. This is not essential but
makes some expressions nicer.
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Remark 3.35 In the particular case where .7 contains the polynomial regularity struc-
ture 7, ; and (II, T") extends its canonical model, the action M, of .7 on the abstract
element X is necessarily glven by My X = Ay, X, where A, is the d x d matrix such
that T}, acts on elements of R? by Tyx = Agx + by, for some vector b,. This can be
checked by making use of the first 1dent1ty in Definition 3.33.

The action on elements of the form X * for an arbitrary multiindex k is then naturally
given by M, (X*) = (A, X)F =T[, y AT X ks,

Remark 3.36 One could have relaxed the first property to the identity (Ilz, .a) (Tyy) =
(—1)*9(II, M,a)(y)), where e: . — {£1} is any group morphism. This would then
also allow to treat Dirichlet boundary conditions in domains generated by reflections.
We will not consider this for the sake of conciseness.

Remark 3.37 While Definition 3.33 ensures that the model (II, I") behaves “nicely”
under the action of ., this does not mean that the distributions I, themselves are sym-
metric in the sense that IT;(¢)) = 11,(7,;¢). The simplest possible example on which
this is already visible is the case where . consists of a subgroup of the translations. If
we take .7 to be the canonical polynomial structure and M to be the trivial action, then
it is straightforward to verify that the canonical model (IL, I') is indeed adapted to the
action of .. Furthermore, f being “symmetric” in this case simply means that f has a
suitable periodicity. However, polynomials themselves of course aren’t periodic.

Our definitions were chosen in such a way that one has the following result.

Proposition 3.38 Let . be as above, acting on 7, let (11, T") be adapted to the action
of &, and let f € D7 (for some y > 0) be symmetric. Then, R f satisfies (Rf)(T;v) =
(Rf) (@) for every test function 1 and every g € .

Proof. Take a smooth compactly supported test function ¢ that integrates to 1 and fix an
element g € .. Since T}, is an isometry of R, its action is given by Ty(x) = Agx + by
for some orthogonal matrix A, and a vector b, € R<. We then define pI(x) = go(A;lx),
which is a test function having the same properties as ¢ itself.

One then has the identity

U@ = lim / )@ ) dy -

Furthermore, this convergence holds not only pointwise, but in every space C*. As a
consequence of this, combined with the reconstruction theorem, we have

(R1)) = Jim / (RI)(S20) ew)dy = lim / L, £(4)) (52, ¢) () dy

:>I\I—>H}J (T, My My f(Ty)(Ty S22 0) ¥(y) dy

lim / L, J@) (T3S g1, ) (T ) ) dy

tim [ (0, F@)(S2,9%) (T70)) dy = (R0
— R4

as claimed. Here, we used the symmetry of f and the adaptedness of (IL, I') to obtain
the second line, while we performed a simple change of variables to obtain the third
line. O
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One particularly nice situation is that when the fundamental domain R of .7 is
compact in R In this case, provided of course that (II, T') is adapted to the action of
&, the analytical bounds (2.15) automatically hold over all of RY. The same is true for
the bounds (3.1) if f is a symmetric modelled distribution.

4 Multiplication

So far, our theory was purely descriptive: we have shown that T-valued maps with
a suitable regularity property can be used to provide a precise local description of a
class of distributions that locally look like a given family of “model distributions”. We
now proceed to show that one can perform a number of operations on these modelled
distributions, while still retaining their description as elements in some D7.

The most conceptually non-trivial of such operations is of course the multiplication
of distributions, which we address in this section. Surprisingly, even though elements
in D7 describe distributions that can potentially be extremely irregular, it is possible
to work with them largely as if they consisted of continuous functions. In particular, if
we are given a product x on 7" (see below for precise assumptions on %), then we can
multiply modelled distributions by forming the pointwise product

(fxg)@) = f(x)* g(x), .1

and then projecting the result back to 77" for a suitable ~.

Definition 4.1 A continuous bilinear map (a, b) — a % b is a product on 7" if
e Foreverya € T, and b € T, onehas ax b € T, 3.

e Onehaslxa=ax1=aforeverya cT.

Remark 4.2 In all of the situations considered later on, the product » will furthermore
be associative and commutative. However, these properties do not seem to be essential
as far as the abstract theory is concerned.

Remark 4.3 What we mean by “continuous” here is that for any two indices o, 5 € A,
the bilinear map x: T,, x Tg — T g is continuous.

Remark 4.4 If V; and V5 are two sectors of .7 and * is defined as a bilinear map on
V1 x Vs, we can always extend it to 1" by setting a = b = 0 if either a belongs to the
complement of V; or b belongs to the complement of V5.

Remark 4.5 We could have slightly relaxed the first assumption by allowing a x b €
Tj+ - However, the current formulation appears more natural in the context of inter-
preting elements of the spaces T, as “homogeneous elements”.

Ideally, one would also like to impose the additional property that I'(a x b) =
(T'a) x (I'b) for every I' € G and every a,b € T. Indeed, assume for a moment that
II, takes values in some function space and that the operation * represents the actual
pointwise product between two functions, namely

Uz (a % b)(y) = (ILza)(y) AL:b)(y) - (4.2)
In this case, one has the identity

1,7, (a % b) = L (a % b) = (,a) (1) = (1,T4ya) (1,T,,b)
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— T, (Taya * Tayb) -

In many cases considered in this article however, the model space T is either finite-
dimensional or, even though it is infinite-dimensional, some truncation still takes place
and one cannot expect (4.2) to hold exactly. Instead, the following definition ensures
that it holds up to an error which is “of order .

Definition 4.6 Let .7 be a regularity structure, let V' and W be two sectors of .7, and
let x be a product on .7. The pair (V, W) is said to be v-regular if T'(axb) = ('a)* (I'b)
for every I' € G and for every a € V,, and b € Wpg such that o + 3 < y and every
I'ed.

We say that (V, W) is regular if it is y-regular for every . In the case V' =W, we
say that V' is (y-)regular if this is true for the pair (V, V).

The aim of this section is to demonstrate that, provided that a pair of sectors is
~-regular for some v > 0, the pointwise product between modelled distributions in
these sectors yields again a modelled distribution. Throughout this section, we assume
that V" and W are two sectors of regularities o1 and «a respectively. We then have the
following:

Theorem 4.7 Let (V, W) be a pair of sectors with regularities oy and o respectively,
let f1 € D" (V) and fo € D2(W), and let v = (71 + a2) A (2 + a1). Then, provided
that (V, W) is y-regular, one has f1 x fo € DY(T) and, for every compact set K, the
bound

If1 % follyis S IFlhasall folloeia@ 4 Tl 00)*

holds for some proportionality constant only depending on the underlying structure 7.

Remark 4.8 If we denote as before by D an element of DY (V) for some sector V' of
regularity «, then Theorem 4.7 can loosely be stated as

f1€'Dgtll & ng,D;g = fl*fgeDg,

where @ = a3 + ag and v = (71 + a2) A (2 + a1). This statement appears to be
slightly misleading since it completely glosses over the assumption that the pair (V, W)
be y-regular. However, at the expense of possibly extending the regularity structure .7
and the model (IL, I'), we will see in Proposition 4.11 below that it is always possible to
ensure that this assumption holds, albeit possibly in a non-canonical way.

Remark 4.9 The proof of this result is a rather straightforward consequence of our defi-
nitions, combined with standard algebraic manipulations. It has nontrivial consequences
mostly when combined with the reconstruction theorem, Theorem 3.10.

Proof of Theorem 4.7. Note first that since we are only interested in showing that f; x
fo € D7, we discard all of the components in T;F . (See also Remark 3.2.) As a
consequence, we actually consider the function given by

F@ = (fiey )@ Y Qufi@)* Qufa(w) . (4.3)

m+n<y

It then follows immediately from the properties of the product that

If1 %y fallyis S fallveall f2llwis s



MULTIPLICATION 50

where the proportionality constant depends only on v and .7, but not on .
From now on we will assume that || f1[|v.s < 1 and || f2]lw.s < 1, which is not a
restriction by bilinearity. It remains to obtain a bound on

Fwy(fl *oy L)) — (fr Ky f2)(@) .

Using the triangle inequality and recalling that Qo(f1 x f2) = Q¢(f1 * f2) for v < £,
we can write

[Tay f@) = f@)le < [|Tay (f1 %y f2)@) = (Lay f1(y)) * (Lay f2(y) ]
+ [(Cay f1() — f1(@) x (Tay f2(y) — f2(2)) ||
+ [(Pay f1(y) — fr(@)) * f2(2)]]¢
+ [[f1(x) * (Cay fo(y) — fa(@))]]e - 4.4)

It follows from (4.3) and the definition of (V, W) being ~-regular that for the first term,
one has the identity

Loy f®) = Tayi@) * Tayfo@) = = Y TayQufi®)) * (Tay Qu foy)) -
m4+n>~y

4.5)
Furthermore, one has

B1+B2=L
SO T gl =yl
B1+B2=L
ST, srslle =yl (4.6)

where we have made use of the facts that m + n > v and that ||z — y||s < 1.
It follows from the properties of the product x that the second term in (4.4) is
bounded by a constant times

> Tay h@) = 1@, [Ty f2) — f2@)]l5,
B1+B2=L
S D le—yll P e =yl S e -yl 2
B1+B2=L

The third term is bounded by a constant times

S I i) = @ 2@l S o=yl Lza, S o=yl e,
B1+B2=¢L

where the second inequality uses the identity 57 + B2 = £. The last term is bounded
similarly by reversing the roles played by f; and fs. 0

In applications, one would also like to have suitable continuity properties of the
product as a function of its factors. By bilinearity, it is of course straightforward to
obtain bounds of the type

Ifi*fo— o *92”7;ﬁ Sfi— 91H71;ﬁ||f2||72;ﬁ +11f2 — 92““72;33» |91||71;ﬁ >
Ifix fo = g1 x g2llyis S Nf1 = g1llvzsll follzis + 1 f2 = g2llvasllgnllyiss »
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provided that both f; and g; belong to D7 with respect to the same model. Note also
that as before the proportionality constants implicit in these bounds depend on the size
of I" in the domain K. However, one has also the following improved bound:

Proposition 4.10 Let (V, W) be as above, let (11, I') and (IL,T) be two models for 7,
and let fy € D (V;T), fo € D=2(W;T), g1 € D"(V;T), and g5 € D2(W;T).
Then, for every C' > 0, one has the bound

£ % f23 91 % gallis S Mf15 91l + 125 92llaiw + 1T = Tllyy y0i

uniformly over all f; and g; with || fi|l;.& + llgilly:; < C, as well as models satisfying
ITIly: +52:8 + T |41 40:8 < C. Here, the proportionality constant depends only on C.

Proof. As before, our aim is to bound the components in 7y for £ < -~y of the quantity

fl(x) * fZ(x) - 91(55) *QZ(x) - F:I:y(fl Koy f2)(y) + Fzy(gl *ry 92)(y) .

First, as in the proof of Theorem 4.7, we would like to replace I';, (f1 *y f2)(y) by
I'zy f1(y) * I'zy f2(y) and similarly for the corresponding term involving the g;. This
can be done just as in (4.6), which yields a bound of the order

= —¢
(T = Lllyyrziw + 11 = g1llyiss + 1f2 = g2llhei) 2 —9ll3 77

as required. We rewrite the remainder as

f1(@) * fa(@) — g1(2) * g2(2) — Doy f1() * Day f2(y) + Tayg1(y) * Tayg2(y)
= (fi(@) — g1(®@) — Tuy [1 () + Ty 91(y)) * fo(x)
+ Loy f1(@) * (fo(@) — g2(@) — Tay fo(y) + Tayg2(y))
+ Tay (1) — [1(W) * (Tayg2(®) — g2(2))
+ Tay fi®) = Tay f1@)) * (Tayg2(y) — g2(x))

+(91(W) — Tayg1(®)) * (f2(x) — g2())
EN 4T +Ts+Ty+Ts . (4.7)

It follows from the definition of ||-; -||,,« that we have the bound

ITulle S Mgl D> -yl

m+4n=~L
m>ayin>ag
(As usual, sums are performed over exponents in A.) Since the largest possible value
for m is equal to £ — «x, this is the required bound. A similar bound on 75 follows in
virtually the same way. The term 73 is bounded by

ITsle S I = gilass Y le =yl

m+n=~
m>ajin>ag
Again, the largest possible value for n is given by ¢ — «q, so the required bound follows.
The bound on 77 is obtained in a similar way, replacing || f1 — g1 4.5 by [IT = |[4::5-
The last term T3 is very similar to 75 and can be bounded in the same fashion, thus
concluding the proof. 0
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As already announced earlier, the regularity condition on (V, W) can always be
satisfied by possibly extending our regularity structure. However, at this level of
generality, the way of extending 7 and (II, ") can of course not be expected to be
canonical! In practice, one would have to identify a “natural” extension, which can
potentially require a great deal of effort. Our abstract result however is:

Proposition 4.11 Let .7 be a regularity structure such that each of the T, is finite-
dimensional, let (V, W) be two sectors of 7, let (I1, ") be a model for 7, and let v € R.
Then, it is always possible to find a regularity structure 7 containing 7 and a model
(I1,T) for 7 extending (I1,T"), such that the pair (\V, W) is y-regular in 7.

Proof. Tt suffices to consider the situation where there exist o and 8 in A such that
(V, W) is (a + [3)-regular but x isn’t yet defined on V,, and Wjg. In such a situation, we
build the required extension as follows. First, extend the action of G to T' & (V, ® Wp)
by setting

Fa®b)=Ta*Tb, acV,, beWs, Teq, (4.8)

where x is defined on V, X Wg by a b = a ® b. (Outside of V,, x Wpg, we simply set
% = %.) Then, consider some linear equivalence relation ~ on T,, 1 g @ (V, ® Wp) such
that

a~b=Ta—a=Tb-b VI €G, 4.9)

and such that no two elements in T}, g are equivalent. (Note that the implication only
goes from left to right. In particular, it is always possible to take for ~ the trivial
relation under which no two distinct elements are equivalent. However, allowing for
non-trivial equivalence relations allows to impose additional algebraic properties, like
the commutativity of x or Leibniz’s rule.) Given such an equivalence relation, we now
define 7 = (A, T, G) by setting

A:AU{Q+B}7 TaJrﬂ:(TaJrﬁ@(Va@Wﬂ))/N :

For v # a + [, we simply set Tw = T,. Furthermore, we use % as the product in T
which, by construction, coincides with *, except on T,, ® Ts. Finally, the group G is
identical to G as an abstract group, but each element of G is extended to T, + 5 in the
way described above. Property (4.9) ensures that this is well-defined in the sense that
the action of G on different elements of an equivalence class of ~ is compatible.

It remains to extend (II, T') to a model (I, T') for 7 as an abstract group element,
with its action on T given by (4.8). For I, we simply set I';.,, = I';,,. The definition (4.9)
then ensures that the bound (2.15) for I also holds for elements in 7T, 5. Regarding II,
since Ty, 44 still contains 7,4 5 as a subspace, it remains to define it on some basis of the
complement of T, in T, . For each such basis vector a, we can then proceed as in
Proposition 3.31 to construct II,a for some (and therefore all) x € RY. More precisely,
we define I1,a by Il,a = R f, . with f, » as in (3.44), where R is the reconstruction
operator given in the proof of Theorem 3.10. In case « + 8 < 0, the choice of R is not
unique and we explicitly make the choice given in (3.38) for a suitable wavelet basis.
This definition then implies for any two points x and z the identity

Hzrzxa - H:L’a = Hza - Hma + Hz(rzxa - a) = R(fa,z - fa,x) + Hz(rzma - a) 5

where we used the linearity of R. Note now that (f, » — fo,)(¥) = [y.(a — I'.za),
so that we are precisely in the situation of (3.39). This shows that our construction
guarantees that R(f,. — fax) = —II.(T.za — a), so that the algebraic identity
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II,T",,a = IIa holds for any two points, as required. The required analytical bounds
on Il a on the other hand are an immediate consequence of Theorem 3.10.

As a byproduct of our construction and of Proposition 3.31, we see that the extension
is essentially unique if o + 8 > 0, but that there is considerable freedom whenever
a+8<0. O

Remark 4.12 At this stage one might wonder what the meaning of R(f; * f2) is in
situations where the distributions R f; and R fo cannot be multiplied in any “classical”
sense. In general, this strongly depends on the choice of model and of regularity
structure. However, we will see below that in cases where the model was built using
a natural renormalisation procedure and the f; are obtained as solutions to some fixed
point problem, it is usually possible to interpret R(f1 x f2) as the weak limit of some
(possibly quite non-trivial) expression involving the f;’s.

Remark 4.13 In situations where a model happens to consist of continuous functions
such that one has indeed IT,.(axb)(y) = (IL.a)(y)(IL.b)(y), it follows from Remark 3.15
that one has the identity R(f1 * f2) = R f1 R f2. In some situations, it may thus happen
that there are natural approximating models and approximating functions such that
R f1 = lim.0 Re f1,c (and similarly for f2) and R(f1xf2) = lime0(Re f1,6)(Re f2;)-
See for example Section 4.4, as well as [CQO02, FV10a].

However, this need not always be the case. As we have already seen in Section 2.4,
the formalism is sufficiently flexible to allow for products that encode some renormali-
sation procedure, which is actually the main purpose of this theory.

4.1 Classical multiplication
We are now able to give a rather straightforward application of this theory, which can be

seen as a multidimensional analogue of Young integration. In the case of the Euclidean
scaling, this result is of course well-known, see for example [BCD11].

Proposition 4.14 For a, 5 € R, the map (f, g) — [ - g extends to a continuous bilinear
map from Cg‘(Rd) X Cf(Rd) to CSAB(RCZ) if a + B > 0. Furthermore, if @ € N, then
this condition is also necessary.

Remark 4.15 More precisely, if £ is a compact subset of R and R its 1-fattening, then
there exists a constant C' such that

1f - gllansis < Cllifllaz l19llp: - (4.10)

for any two smooth functions f and g.

Proof. The necessity of the condition « + 8 > 0 is straightforward. Fixing a compact
set & C R? and assuming that « + 8 < 0 (or the corresponding strict inequality for
integer values), it suffices to exhibit a sequence of C" functions f,,, g, € C(R) (with
r > max{|al, |S|}) such that { f,,} is bounded in C(8), g,, is bounded in C2(R), and
(fnygn) — o0, where (-, ) denotes the usual L?-scalar product. This is because, since
fn and g,, are supported in K, one can easily find a smooth compactly supported test
function ¢ such that (f,,, gn) = (©, frngn)-

A straightforward modification of [Mey92, Thm 6.5] shows that the characterisation
of Proposition 3.20 for f € C(R) to belong to C¢ is also valid for &« € R, \ N (since f
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is compactly supported, there are no boundary effects). The required counterexample
can then easily be constructed by setting for example

_ ni —klgl ok ks
fn—kzzoﬁ > ke kg,

zeEAINR

and similarly for g,, with o replaced by 3. Here, & C R is such that the support of each
of the 1/%* is indeed in &. (One may have to start the sum from some ko > 0.) Noting
that lim,,, oo (fr, gn) = 00 as soon as « + 5 < 0, this is the required counterexample.

Combining Theorem 4.7 and the reconstruction theorem, Theorem 3.10, we can
give a short and elegant proof of the sufficiency of a + 8 > 0 that no longer makes
any reference to wavelet analysis. Assume from now on that £ € C¢ for some o < 0
and that f € CZ for some /3 > |a|. By bilinearity, we can also assume without loss of
generality that the norms appearing in the right hand side of (4.10) are bounded by 1.
We then build a regularity structure .7 in the following way. For the set A, we take
A=NUN+ ). For T, we set T'= V & W, where each of the sectors V and W is a
copy of 7 s, the canonical model. We also choose I as in the canonical model, acting
simultaneously on each of the two instances.

As before, we denote by X k the canonical basis vectors in V. We also use the
suggestive notation “Z.X*” for the corresponding basis vector in W, but we postulate
that EX* € T, x|, rather than EX* € Tjj,,. With this notation at hand, we also
define the product x between V and W by the natural identity

(EXF) % (X*) = 2XxkFE,

It is straightforward to verify that, with this product, the pair (V, W) is regular.
Finally, we define amap J: C& — .# 7 givenby J: £ > (I1¢,T), where I is as in
the canonical model, while TI¢ acts as

ExF ) =@w-oF, EXHw =@ -y,

with the obvious abuse of notation in the second expression. It is then straightforward to
verify that II,, = II, o I';,,, and that the map J is Lipschitz continuous.

Denote now by R¢ the reconstruction map associated to the model J(€) and, for u €
C?, denote by Tsu as in (2.6) the unique element in D?(V') such that (1, (Tzu)(z)) =
u(x). Note that even though the space D?(V) does in principle depend on the choice
of model, in our situation it is independent of ¢ for every model J(&). Since, when
viewed as a W-valued function, one has = € D>°(W), one has Tgu x = € DpotB by
Theorem 4.7. We now consider the map

B(u,&) = R (Tpu*E) .

By Theorem 3.10, combined with the continuity of J, this is a jointly continuous map
from CJ x CS into C¢', provided that oo 4+ 8 > 0. If € happens to be a smooth function,
then it follows immediately from Remark 3.15 that B(u, ) = u(x)&(x), so that B is
indeed the requested continuous extension of the product. O

4.2 Composition with smooth functions

In general, it makes no sense to compose elements f € D7 with arbitrary smooth
functions. In the particular case when f € DY(V) for a function-like sector V' however,
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this is possible. Throughout this subsection, we decompose elements a € V as a =
al + a, with @ € T, and @ = (1,a). (This notation is suggestive of the fact that @
encodes the small-scale fluctuations of Il a near x.) We denote by ¢ > 0 the smallest
non-zero value such that V # 0, so that one actually has a € Tg“ .

Given a function-like sector V' and a smooth function F': R” — R, we lift F' to a
function F': V" — V by setting

- D*F(a) _,,
Fla)y=>)_ —r (4.11)
k
where the sum runs over all possible multiindices. Here, a = (aq, ..., a,) witha; € V
and, for an arbitrary multiindex k = (k1, ..., k,), we used the shorthand notation
at =ath k. oxagk

with the convention that @** = 1.

In order for this definition to make any sense, the sector V' needs of course to be
endowed with a product x which also leaves V invariant. In principle, the sum in
(4.11) looks infinite, but by the properties of the product , we have a** ¢ TIZI ¢ Since
( is strictly positive, only finitely many terms in (4.11) contribute at each order of
homogeneity, so that F(a) is well-defined as soon as F' € C*. The main result in this
subsection is given by:

Theorem 4.16 Let V' be a function-like sector of some regularity structure 7, let
¢ > 0 be as above, let v > 0, and let F' € C*(R* R) for some r > 7/< V 1. Assume
furthermore that V' is ~y-regular. Then, for any f € DYV(V), the map F.,(f) defined by

(@) = QT F(f),

again belongs to DV(V'). If one furthermore has F' € CH(R”, R) forx > (v/¢V 1) +1,
then the map f — F(f) is locally Lipschitz continuous in the sense that one has the
bounds

IES () = By @llyis SNF=gllvs. 155D = Fy@llyis S 1 — 9l

for any compact set R C RY, where the proportionality constant in the first bound is
uniform over all f, g with || f||y.5 +||glly;5 < C, while in the second bound it is uniform
overall f, g with || f|lv.s + llgllv:s < C, for any fixed constant C. We furthermore
performed a slight abuse of notation by writing again || f||y.x (for example) instead of

Zign HfiHv;ﬁ-

Proof. From now on we redefine ¢ so that { = v in the case when A contains no index
between 0 and . In this case, our original condition x > ~/¢ V 1 reads simply as
Kk >~/C.

Let L = |v/¢|, which is the length of the largest multiindex appearing in (4.11)
which still yields a contribution to 7. Writing b(z) = Q7 F( f(x)), we aim to find
a bound on I'y;b(z) — b(y). It follows from a straightforward generalisation of the
computation from Theorem 4.7 that

i, (4.12)

DFE(f =

!
|k|<L
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DFE(f S %
= ¥ PO 0 fay 4 Ry

|k|<L

with a remainder term Ry such that ||Ry(z,y)||3 < |Ja — y[|27, forall 8 < 4. Since
I'yz1 = 1, we can furthermore write

Tyof(x) = Tyu f(2) — f@)1 = f(y) + (f(y) — f@)1 + Ry(z,y),

where, by the assumption on f, the remainder term R; again satisfies the bound

|1Rf(z, Pllp S lle — y||7~" for all B < ~. Combining this with the bound we already
obtained, we get

DFF(f(2)) , - - -
Pt = 3 T () 4 Gy~ fa™ + Ray . @13)
k<L ’
with
Rz, p)lls S llw = yll3~"
for all 3 < ~ as above. We now expand D* F around f(y), yielding

DFTER(f(y))

@ = F@) + Ol =y L @14

DFF(fay =)

|k+£|<L

where we made use of the fact that | f(z) — f(y)| < ||z — y||$ by the definition of D7,
and the fact that F' is C?/¢ by assumption. Similarly, we have the bound

(@) + (F@) — Fep)™ |5 < llv -yl 7, (4.15)

so that, combining this with (4.13) and (4.14), we obtain the identity

Dk+€F y B _ _ ok = _
Pty = 3 Tt ()4 (Fa— Fent) ™ (F — Fw) + R, .
|k+€|<L -
(4.16)
where R3 is again a remainder term satisfying the bound

1B plls < lle = yllI=" . (4.17)

Using the generalised binomial identity, we have
1 - _ _ k= _ FooNkm
> W + G — o™ G - fo = 12"

k!
k+l0=m

>

so that the component in 77" of the first term in the right hand side of (4.16) is precisely
equal to the component in 7' of b(y). Since the remainder satisfies (4.17), this shows
that one does indeed have b € D7 (V).
The first bound in (4.12) is immediate from the definition (4.11), as well as the fact
that the assumption implies the local Lipschitz continuity of D¥ F for every |k| < L.
The second bound is a little more involved. One way of obtaining it is to first define
h = f — g and to note that one then has the identity

- - ' DMeF(g(x) + th kg
Pt~ Py =3 [ WYL (52 + 1) Bty d
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I pkr(s h 5 7
iy /O D F(g(a;)ﬁ @D 1 (5(@) + thi@) k() dt
ki

! DF+ei F(g(x) + th(z))

- Z %l (G(x) + th(x)) " hi(x) dt .
ki Y0 :
Here, k runs over all possible multiindices and 7 takes the values 1, ..., n. We used the

notation e; for the ith canonical multiindex. Note also that our way of writing the second
term makes sense since, whenever k; = 0 so that k — e; isn’t a multiindex anymore, it
vanishes thanks to the prefactor ;.

From this point on, the calculation is virtually identical to the calculation already
performed previously. The main differences are that F' appears with one more derivative
and that every term always appears with a prefactor h, which is responsible for the
bound proportional to [|A].. O

4.3 Relation to Hopf algebras

Structures like the one of Definition 4.6 must seem somewhat familiar to the reader used
to the formalism of Hopf algebras [Swe69]. Indeed, there are several natural instances of
regularity structures that are obtained from a Hopf algebra (see for example Section 4.4
below). This will also be useful in the context of the kind of structures arising when
solving semilinear PDEs, so let us quickly outline this construction.

Let ‘H be a connected, graded, commutative Hopf algebra with product x and a
compatible coproduct A so that A(f x g) = Af x Ag. We assume that the grading is
indexed by Zi for some d > 1, so that H = @kezi H}., and that each of the H, is

finite-dimensional. The grading is assumed to be compatible with the product structures,
meaning that

ki Hg @ He = Higr . A He— P He@ Mo (4.18)
l+m=k

Furthermore, H, is spanned by the unit 1 (this is the definition of connectedness),
the antipode .4 maps Hj, to itself for every k, and the counit 1* is normalised so that
(1*,1) = 1.

The dual H* = P rezd ‘H;; is then again a graded Hopf algebra with a product o
given by the adjoint of A and a coproduct A* given by the adjoint of x. (Note that while
* is assumed to be commutative, o is definitely not in general!) By (4.18), both o and
A* respect the grading of *. There is a natural action I" of H* onto H given by the
identity

(6,Tgf) = ({tog, f), (4.19)
valid for all £, g € H* and all f € H. An alternative way of writing this is
Lyf=0®g9Af, (4.20)

where we view ¢ as a linear operator from H to R. It follows easily from (4.18) that, if ¢
and f are homogeneous of degrees d, and d . respectively, then Iy f is homogeneous of
degree dy — dg, provided that dy — d, € Z . If not, then one necessarily has I'y f = 0.

Remark 4.17 Another natural action of H* onto H would be given by
(t.Tyf) = ((A"g)ot, f),

where, A*, the adjoint of A, is the antipode for 7*. Since it is an anttihomomorphism,
one has indeed the required identity I'g, 'y, = I'g,og,-
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Since we assumed that « is commutative, it follows from the Milnor-Moore theorem
[MM65] that H* is the universal enveloping algebra of P(#H*), the set of primitive
elements of H* given by

PHY={geH : A'g=1"®Rg+gx1}.

Using the fact that the coproduct A* is an algebra morphism, it is easy to check that
P(H*) is indeed a Lie algebra with bracket given by [g1, g2] = g1 © g2 — g2 © g1. This
yields in a natural way a Lie group G C ‘H* given by G = exp(P(H*)). It turns out
(see [Swe67]) that this Lie group has the very useful property that

A(g=g®g, VgeG.
As a consequence, it is straightforward to verify that one has the remarkable identity

Ly(fi % f2) = Mg f1) Ty f2), 4.21)

valid for every g € G. This is nothing but an exact version of the regularity requirement
of Definition 4.6! Note also that (4.21) is definitely not true for arbitrary elements
g€ H”.

All this suggests that a very natural way of constructing a regularity structure is
from a graded commutative Hopf algebra. The typical set-up will then be to fix scaling
exponents {a; }L ; and to write (o, k) = Ele a;ky for any index k € Z%. We then
set

A={{ok) - kezi}, Ty= P Hi.
(e,k)=

With this notation at hand, we have:

Lemma 4.18 In the setting of this subsection, (A, T, G) is a regularity structure, with
G acting on T via I'. Furthermore, T equipped with the product  is regular.

Proof. Inview of (4.21), the only property that remains to be shown is that I'ya—a € T
fora € T,.

It is easy to show that P(?{*) has a basis consisting of homogeneous elements and
that these belong to Hj, for some k& # 0. (Since A*1* = 1* ® 1*.) As a consequence,
fora €T, g € P(H*),andn > 0, we have I'gna € T for some 3 < ~. Since every
element of G is of the form exp(g) for some g € P(H*) and since g — Iy is linear, one
has indeed I'ya —a € T7. O

Remark 4.19 The canonical regularity structure is an example of a regularity structure
that can be obtained via this construction. Indeed, a natural dual to the space H of
polynomials in d indeterminates is given by the space H* of differential operators
over R? with constant coefficients, which does itself come with a natural commutative
product given by the composition of operators. (Here, the word “differential operator’
should be taken in a somewhat loose sense since it consists in general of an infinite
power series.) Given such a differential operator £ and an (abstract) polynomial P, a
natural duality pairing (£, P) is given by applying £ to P and evaluating the resulting
polynomial at the origin. Somewhat informally, one sets

[l

(L, P) = (LP)©) .
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The action I described in (4.19) is then given by simply applying L to P:
'eP=LP.

It is indeed obvious that (4.19) holds in this case. The space of primitives of #* then
consists of those differential operators that satisfy Leibniz’s rule, which are of course
precisely the first-order differential operators. The group-like elements consist of their
exc%)onentials, which act on polynomials indeed precisely as the group of translations on
R".

4.4 Rough paths

A prime example of a regularity structure on R that is quite different from the canonical
structure of polynomials is the structure associated to F-valued geometric rough paths
of class C” for some v € (0, 1], and some Banach space E. For an introduction to the
theory of rough paths, see for example the monographs [LQ02, LCL07, FV10b] or the
original article [Lyo98]. We will see in this section that, given a Banach space F, we
can associate to it in a natural way a regularity structure 93}, which describes the space
of E-valued rough paths. The regularity index « will only appear in the definition of the
index set A. Given such a structure, the space of rough paths with regularity - turns out
to be nothing but the space of models for 7.

Setting A = YN, we take for 7" the tensor algebra built upon E*, the topological
dual of E:

T=@Pn,. Tu,=(E)"", (4.22)
k=0

where (E*)®? = R. The choice of tensor product on E and E* does not matter in
principle, as long as we are consistent in the sense that (E®%)* = (E*)®* for every k.
We also introduce the space T, (which is the predual of T') as the tensor algebra built
from F, namely T}, = T((F)).

Remark 4.20 One would like to write again T, = @;OZO E®% However, while we
consider for T’ finite linear combinations of elements in the spaces T, for T, it will
be useful to allow for infinite linear combinations.

Both T" and 7, come equipped with a natural product. On T, it will be natural to
consider the tensor product ®, which will be used to define G and its action on 7. The
space 1" also comes equipped with a natural product, the shuffle product, which plays in
this context the role that polynomial multiplication played for the canonical regularity
structures. Recall that, for any alphabet W, the shuffle product LU is defined on the free
algebra over WV by considering all possible ways of interleaving two words in ways that
preserve the original order of the letters. In our context, if a, b and c are elements of E*,
we set for example

(@@ W@aRe)=a®RbRa®Rc+2aRaRbRc+2aRaRcRb+aRcRa®b.

Regarding the group G, we then perform the following construction. For any two
elements a, b € T,, we define their “Lie bracket” by

[a,b] =a®b—-bRa.
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We then define £ C T, as the (possibly infinite) linear combinations of all such brackets,
and we set G = exp(£) C T, with the group operation given by the tensor product ®.
Here, for any element a € T}, we write

oo a@k
exp(a) = Z W
k=0

with the convention that a®° = 1 € Tj. Note that this sum makes sense for every
element in 7}, and that exp(—a) = (exp(a))_l. For every a € G, the corresponding
linear map I', acting on 7' is then obtained by duality, via the identity

(e, Tyb) = (a7 @ ¢, D) , (4.23)

where (-, -) denotes the pairing between T" and T,. Let us denote by 2R}, the regularity
structure (A, T, G) constructed in this way.

Remark 4.21 The regularity structure 937, is yet another example of a regularity struc-
ture that can be obtained via the general construction of Section 4.3. In this case,
our Hopf algebra is given by 7', equipped with the commutative product LI and the
non-commutative coproduct obtained from & by duality. The required morphism prop-
erty then just reflects the fact that the shuffle product is indeed a morphism for the
deconcatenation coproduct. The choice of action is then the one given by Remark 4.17.

What are the models (I, T') for the regularity structure 9R7,? It turns out that the
elements I'y; (which we identify with an element X ; in T} acting via (4.23)) are
nothing but what is generally referred to as geometric rough paths. Indeed, the identity
T'st o'y, = Ty, translates into the identity

Xouw = X5t @ Xt 4.24)

which is nothing but Chen’s relations [Che54]. The bound (2.21) on the other hand
precisely states that the rough path X is y-Holder continuous in the sense of [FV10b]
for example. Finally, it is well-known (see (4.21) or [Reu93]) that, for a € T}, and
b e Ty, withk +¢ < p,and any I' € G, one has the shuffle identity,

T'(awb) = (Ta) W (TD) ,

which can be interpreted as a way of encoding the chain rule. This should again be
compared to Definition 4.6, which shows that the shuffle product is indeed the natural
product for 7" in this context and that 7" is regular for LLI.

By Proposition 3.31, since our regularity structure only contains elements of positive
homogeneity, the model II is uniquely determined by I'. It is straightforward to check
that if we set

(Hsa)(t) = (Xstu a> s

then the relations and bounds of Definition 2.17 are indeed satisfied, so that this is the
unique model II compatible with a given choice of I" (or equivalently X).

The interpretation of such a rough path is as follows. Denote by X; the projection
of X o; onto F, the predual of T',. Then, for every a € T}, with & € N, we interpret
(X ¢, a) as providing a value for the corresponding k-fold iterated integral, i.e.,

t tr to
(X o1, a) "= / / / Xy, ©...®dX,, , ©dX,,a).  (4.25)
s s S
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A celebrated result by Chen [Che54] then shows that indeed, if £ — X; € Fis a
continuous function of bounded variation, and if X is defined by the right hand side of
(4.25), then it is the case that X ,; € G for every s, ¢ and (4.24) holds.

Now that we have identified geometric rough paths with the space of models realising
R7,, it is natural to ask what is the interpretation of the spaces D8 introduced in Section 3.
An element f of D” should then be thought of as describing a function whose increments
can locally (at scale ) be approximated by linear combinations of components of X,
up to errors of order €°. Setting p = |1/7], it can be checked that elements of D* with
8 = pry are nothing but the controlled rough paths in the sense of [Gub04].

Writing fo(t) for the component of f(¢) in Ty = R, it does indeed follow from the
definition of D” that

| fot) = (X st, f(s))| S |t — )7

Since, on the other hand, (X 5;,1) = 1, we see that one has indeed

fo®) — fo(s) = (X &, Qi £(5)) + O(|t — s|%),

where Qg is the projection onto the orthogonal complement to 1.

The power of the theory is then that, even though f; itself is typically only ~-
Holder continuous, it does in many respects behave “as if” it was actually S-Holder
continuous, and one can have 8 > ~. In particular, it is now quite straightforward to
define “integration maps” Z, for a € E* such that F' = 7, f should be thought of as
describing the integral Fy(t) = fg fo(s) d{Xs, a), provided that 5 + v > 1.

It follows from the interpretation (4.25) that if fo(t) = (X, b) for some element
b € T, then it is natural to have Fy(t) = (X¢,b ® a). At first sight, this suggests that
one should simply set F(t) = (Z,f)(t) = f(t) ® a. However, since (1, f(t) ® a) = 0,
this would not define an element of Dg for any 8 > ~ so one still needs to find the
correct value for (1, F'(t)). The following result, which is essentially a reformulation of
[Gub10, Thm 8.5] in the geometric context, states that there is a unique natural way of
constructing this missing component.

Theorem 4.22 For every 3 > 1 — and every a € E* there exists a unique linear map
I,: DP — C7 such that (I, f)(0) = 0 and such that the map T, defined by

(Iaf)(t) = f(t) ®Ka+ (Iaf)(t) 1,
maps DP into DF with B =(BAYp)+1.

Remark 4.23 Even in the context of the classical theory of rough paths, one advantage
of the framework presented here is that it is straightforward to accommodate the case of
driving processes with different orders of regularity for different components.

Remark 4.24 Using Theorem 4.22, it is straightforward to combine it with Theo-
rem 4.16 in order to solve “rough differential equations” of the form dY = F(Y)dX.
It does indeed suffice to formulate them as fixed point problems

Y =y + Z(F(Y)) .

As a map from DA ([0,T7) into itself, Z then has norm O(TB =5, which tends to 0 as
T — 0 and the composition with F' is (locally) Lipschitz continuous for sufficiently
regular F', so that this map is indeed a contraction for small enough 7.
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Remark 4.25 In general, one can imagine theories of integration in which the chain rule
fails, which is very natural in the context of numerical approximations. In this case, it
makes sense to replace the tensor algebra by the Connes-Kreimer Hopf algebra of rooted
trees [Bro0O4], which plays in this context the role of the “free” algebra generated by the
multiplication and integration maps. This is precisely what was done in [Gub10], and
one can verify that the construction given there is again equivalent to the construction of
Section 4.3. See also [But72, HW74] for more details on the role of the Connes-Kreimer
algebra (whose group-like elements are also called the “Butcher group” in the numerical
analysis literature) in the context of the numerical approximation of solutions to ODEs
with smooth coefficients. See also [HK12] for an analysis of this type of structure from
a different angle more closely related to the present work.

S Integration against singular kernels

In this section, we show how to integrate a modelled distribution against a kernel (think
of the Green’s function for the linear part of the stochastic PDE under consideration)
with a well-behaved singularity on the diagonal in order to obtain another modelled
distribution. In other words, given a modelled distribution f, we would like to build
another modelled distribution /C f with the property that

(REN@ = (K< RA)@ < | KepRiG) s G0

for a given kernel K : R? x RY — R, which is singular on the diagonal. Here, R
denotes the reconstruction operator as before. Of course, this way of writing is rather
formal since neither R f nor RKC f need to be functions, but it is more suggestive than
the actual property we are interested in, namely

(RIS = (K RO = RAK ). Koe) 2 [ Keapwads.,

(5.2)
for all sufficiently smooth test functions . In the remainder of this section, we will
always use a notation of the type (5.1) instead of (5.2) in order to state our assumptions
and results. It is always straightforward to translate it into an expression that makes
sense rigorously, but this would clutter the exposition of the results, so we only use the
more cumbersome notation in the proofs. Furthermore, we would like to encode the
fact that the kernel K “improves regularity by 3” in the sense that, in the notation of
Remark 4.8, K is bounded from D7 into D(V;f B8N0 for some 8 > 0. For example, in the
case of the convolution with the heat kernel, one would like to obtain such a bound with
3 = 2, which would be a form of Schauder estimate in our context.

In the case when the right hand side of (5.1) actually defines a function (which
is the case for many examples of interest), it may appear that it is straightforward to
define K: simply encode it into the canonical part of the regularity structure by (5.1)
and possibly some of its derivatives. The problem with this is that since, for f € D7,
one has Rf € C?, the best one can expect is to have RKf € C*+#. Encoding this
into the canonical regularity structure would then yield an element of D(‘)HB , provided
that one even has o + 3 > 0. In cases where v > «, which is the generic situation
considered in this article, this can be substantially short of the result announced above.
As a consequence, K f should in general also have non-zero components in parts of 7’
that do not encode the canonical regularity structure, which is why the construction of
K is highly non-trivial.
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Let us first state exactly what we mean by the fact that the kernel K : R? x R? — R
“improves regularity by order 5

Assumption 5.1 The function K can be decomposed as
K@,y) =Y Kn(,y), (5.3)
n>0
where the functions K,, have the following properties:

e Foralln > 0, the map K, is supported in the set {(x,y) : ||z —ylls <27}

e For any two multiindices k and ¢, there exists a constant C such that the bound
|D’fD§Kn(x, )| < C2Us|=B+els+1k|s)n i (5.4)

holds uniformly over alln > 0 and all x,y € RY.

e For any two multiindices k and !, there exists a constant C such that the bounds

| / (v~ ) DKoty da] < 20",
Rd

(5.5)

[ =o' DK dy| < 027,
R

hold uniformly over alln > 0 and all x,y € RY.

In these expressions, we write D1 for the derivative with respect to the first argument
and Dy, for the derivative with respect to the second argument.

Remark 5.2 In principle, we typically only need (5.4) and (5.5) to hold for multiindices
k and ¢ that are smaller than some fixed number, which depends on the particular
“Schauder estimate” we wish to obtain. In practice however these bounds tend to hold
for all multiindices, so we assume this in order to simplify notations.

A very important insight is that polynomials are going to play a distinguished role in
this section. As a consequence, we work with a fixed regularity structure 7 = (4, T, G)
and we assume that one has .7; ; C 7 for the same scaling s and dimension d as
appearing in Definition 5.1. As already mentioned in Remark 2.23, we will use the
notation 7" C T for the subspace spanned by the “abstract polynomials”. Furthermore,
as in Section 2.2, we will denote by X k the canonical basis vectors of T, where k
is a multiindex in N¢. We furthermore assume that, except for polynomials, integer
homogeneities are avoided:

Assumption 5.3 For every integer value n. > 0, T,, = T, consists of the linear span of
elements of the form X* with |k|s = n. Furthermore, one considers models that are
compatible with this structure in the sense that (11, X k)(y) =(y— x)k.

In order to interplay nicely with our structure, we will make the following additional
assumption on the decomposition of the kernel K:

Assumption 5.4 There exists > 0 such that
/ Kae) Py =0, (5.6)
R

for everyn > 0, every x € RY, and every polynomial P of scaled degree less than or
equal to .
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All of these three assumptions will be standing throughout this whole section. We
will therefore not restate this explicitly, except in the statements of the main theorems.
Even though Assumption 5.4 seems quite restrictive, it turns out not to matter at all.
Indeed, a kernel K that is regularity improving in the sense of Definition 5.1 can
typically be rewritten as K = Ky + K such that Ky is smooth and K additionally
satisfies both Assumptions 5.1 and 5.4. Essentially, it suffices to “excise the singularity”
with the help of a compactly supported smooth cut-off function and to then add and
subtract some smooth function supported away from the origin which ensures that the
required number of moments vanish.

In many cases of interest, one can take K to depend only on the difference between
its two arguments. In this case, one has the following result, which shows that our
assumptions typically do cover the Green’s functions of differential operators with
constant coefficients.

Lemma 5.5 Let K: R\ {0} — R be a smooth function which is homogeneous under
the scaling s in the sense that there exists a 3 > 0 such that the identity

K(Sx)=01"PK(x), (5.7)

holds for all x # 0 and all 6 € (0,1]. Then, it is possible to decompose K as
K(x) = K(z) + R(x) in such a way that the “remainder” R is C* on all ofRd and
such that the map (x,y) — K(x — y) satisfies Assumptions 5.1 and 5.4.

Proof. Note first that if each of the K, is a function of x —y, then the bounds (5.5) follow
from (5.4) by integration by parts. We therefore only need to exhibit a decomposition
K, such that (5.4) is satisfied and such that (5.6) holds for every polynomial P of some
fixed but arbitrary degree.

Let N: R\ {0} — R, be a smooth “norm” for the scaling s in the sense that
N is smooth, strictly positive, with convex sublevel sets, and N (ng) = 5" I'N(z).
(See for example Remark 2.13.) Then, we can introduce “spherical coordinates” (r, 6)
with € Ry and 0 € S £ N~1(1) by r(z) = N(x), and 6(z) = Si®z. With these
notations, (5.7) is another way of stating that K can be factored as

K@) =r?"Ilow), (5.8)

for some smooth function © on S. Here and below, we suppress the implicit dependency
of r and 6 on x.

Our main ingredient is then the existence of a smooth “cutoff function” ¢: Ry —
[0, 1] such that ¢(r) = 0 for r & [1/2, 2], and such that

> @' =1, (5.9)

neZ

for all » > 0 (see for example the construction of Paley-Littlewood blocks in [BCD11]).
We also set pr(r) = Zn<0 ©(2"r) and, for n > 0, @,(r) = ©(2™r). With these
functions at hand, we define

K,(x) = pp(mK(@),  R@)=pr(K@).

Since ¢ 1s supported away from the origin, the function R is globally smooth. Further-
more, each of the K, is supported in the ball of radius 27", provided that the “norm”
N was chosen such that N(z) > 2/z|s.
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It is straightforward to verify that (5.4) also holds. Indeed, by the exact scaling
property (5.7) of K, one has the identity

Ko(x) = 2"l g0 82 "2y,

and (5.4) then follows immediately form the fact that K is a compactly supported
smooth function.

It remains to modify this construction in such a way that (5.6) holds as well. For this,
choose any function ) which is smooth, supported in the unit ball around the origin,
and such that, for every multiindex & with |k|s < r, one has the identity

(1- 2*5*‘k|5)/ka(x) dx = /xkffo(x) dx .
It is of course straightforward to find such a function. We then set
Ko(@) = Ko@) — (@) + 2 94(Sla) |
as well as
Kn(x) =2 0" F"Ky(ST ). R(x) = R(@) + (@) .
Since v is smooth and K, has the same scaling properties as before, it is clear that the

required bounds are still satisfied. Furthermore, our construction is such that one has
the identity

N-1 N-1
S Ka@)= Y Kalw) — @) + 27O IN g2 0
n=0 n=0

so that it is still the case that K(z) = R(z) + En>0 K, (). Finally, the exact scaling
properties of these expressions imply that -

‘/aﬁkgugmn:2—WHMM"/}#Ab@»dx
:24W%Mn/xWKdm—¢@0+ﬂ”ﬁw@§mdx
_ g~ +lkln / (Ko@) — (1 — 27~ Wleypa)) do = 0,
as required. o

Remark 5.6 A slight modification of the argument given above also allows to cover
the situation where (5.8) is replaced by K(z) = ©(6) log r. One can then set

r

Rﬂmz—mm/m%ﬂhm

and the rest of the argument is virtually identical to the one just given. In such a situation,
one then has 8 = |s], thus covering for example the case of the Green’s function of the
Laplacian in dimension 2.
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Of course, in order to have any chance at all to obtain a Schauder-type bound as
above, our model needs to be sufficiently “rich” to be able to describe K f with sufficient
amount of detail. For this, we need two ingredients. First, we need the existence of a
map Z: T — T that provides an “abstract” representation of /C operating at the level
of the regularity structure, and second we need that the model II is adapted to this
representation in a suitable manner.

In our definition, we denote again by T the sector spanned by abstract monomials
of the type X* for some multiindex k.

Definition 5.7 Given a sector V, a linear map Z: V' — T is an abstract integration map
of order 3 > 0 if it satisfies the following properties:

e OnehasZ:V, — T, pforevery a € A.
e OnehasZa = 0 foreverya € VN T.
e Onehas ZT'a — I'Za € T forevery a € V and every I € G.
(The first property should be interpreted as Za = 0ifa € V,anda + 8 & A.)

Remark 5.8 At first sight, the second and third conditions might seem strange. It
would have been aesthetically more pleasing to impose that Z commutes with G, i.e.
that ZI' = I'Z. This would indeed be very natural if Z was a “direct” abstraction of our
integration map in the sense that

I,Za = / K(-, 2)(ya)(dz) . (5.10)
Rd

The problem with such a definition is that if a € T, with a > —f, so that Za € Tj
for some & > 0, then (2.15) requires us to define II,Za in such a way that it vanishes
to some positive order for localised test functions. This is simply not true in general,
so that (5.10) is not the right requirement. Instead, we will see below that one should
modify (5.10) in a way to subtract a suitable polynomial that forces the II,Za to vanish
at the correct order. It is this fact that leads to consider structures with ZI'a — I'Za € T
rather than ZI'a — 'Za = 0.

Our second and main ingredient is that the model should be “compatible” with the
fact that Z encodes the integral kernel K. For this, given an integral kernel K as above,
an important role will be played by the function 7 : R? — Léi which, for every a € T,
and every a € A, is given by

Xk
J(@)a = Z F/ D¥K(x,2)(I,a)(dz) , (5.11)
. Rd

|k|s <a+p

where we denote by D; the differentiation operator with respect to the first variable. It
is straightforward to verify that, writing K = »_ K, as before and swapping the sum
over n with the integration, this expression does indeed make sense.

Definition 5.9 Given a sector V' and an abstract integration operator Z on V', we say

that a model II realises K for 7 if, for every a € A, every a € V, and every z € RY,
one has the identity

II,Za = / K(,2)(IIa)(d2) — I, J(@)a, (5.12)
Rd
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Remark 5.10 The rigorous way of stating this definition is that, for all smooth and
compactly supported test functions ¢ and for all a € T, one has

(Mo =Y / 0K, dy (5.13)
n>0 R
where the function K7, is given by
K¢ .. (2) = K,(y,2) — Z MD’“K (z,2) (5.14)
n;xry n\Y, k' 1 n ) . .

[kls <a+p

The purpose of subtracting the term involving the truncated Taylor expansion of K is
to ensure that II, Za vanishes at z at sufficiently high order. We will see below that in
our context, it is always guaranteed that the sum over n appearing in (5.13) converges
absolutely, see Lemma 5.19 below.

Remark 5.11 The case of simple integration in one dimension is very special in this
respect. Indeed, the role of the “Green’s function” K is then played by the Heaviside
function. This has the particular property of being constant away from the origin, so
that all of its derivatives vanish. In particular, the quantity 7 (x)a then always takes
values in Tj. This is why it is possible to consider expansions of arbitrary order in the
theory of rough paths without ever having to incorporate the space of polynomials into
the corresponding regularity structure.

Note however that the “rough integral” is not an immediate corollary of Theo-
rem 5.12 below, due in particular to the fact that Assumption 5.4 does not hold for the
Heaviside function. It is however straightforward to build the rough integral of any
controlled path against the underlying rough path using the formalism developed here.
In order not to stray too far from our main line of investigation we refrain from giving
this construction.

With all of these definitions at hand, we are now in the position to provide the
definition of the map K on modelled distributions announced at the beginning of this
section. Actually, it turns out that for different values of v one should use slightly
different definitions. Given f € D7, we set

(Kyf)@) =Zf(@) + T @) f@) + Ny f)@), (5.15)

where 7 is as above, acting pointwise, J is given in (5.11), and the operator N, maps f
into a T'-valued function by setting

Xk
W N@ = > 5 /R ,DIE @, (RS =T f(2)(dy) (5.16)

|kls <v+8

(We will show later that this expression is indeed well-defined for all f € D7)

With all of these definitions at hand, we can state the following two results, which
are the linchpin around which the whole theory developed in this work revolves. First,
we have the announced Schauder-type estimate:

Theorem 5.12 Let 7 = (A, T, G) be a regularity structure and (I1, T") be a model for
T satisfying Assumption 5.3. Let K be a B-regularising kernel for some 3 > 0, let T be
an abstract integration map of order [3 acting on some sector V', and let 1 be a model
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realising K for L. Let furthermore v > 0, assume that K satisfies Assumption 5.4 for
r = v + B, and define the operator K, by (5.15).
Then, provided that v + 3 & N, K, maps DV(V') into DB, and the identity

RK,f =K *Rf, (5.17)

holds for every f € DV(V). Furthermore, if (I, T) is a second model realising K and
one has | € DV(V;T), then the bound

1o £ Koy Fllasgis S W5 Fllyeg + 1T = TL5 + T = Tll g i »

holds. Here, 8 is a compact and R is its 1-fattening. The proportionality constant
implicit in the bound depends only on the norms || f|| fll.5 as well as similar
bounds on the two models.

QA

Remark 5.13 One surprising feature of Theorem 5.12 is that the only non-local term
in K, is the operator A\, which is a kind of “remainder term”. In particular, the “rough”
parts of K f, i.e. the fluctuations that cannot be described by the canonical model
consisting of polynomials, are always obtained as the image of the “rough” parts of f
under a simple local linear map. We will see in Section 8 below that, as a consequence
of this fact, if f € D7 is the solution to a stochastic PDE built from a local fixed point
argument using this theory, then the “rough” part in the description of f is always given
by explicit local functions of the “smooth part”, which can be interpreted as some kind
of renormalised Taylor series.

The assumptions on the model II and on the regularity structure 7 = (A, T, G) (in
particular the existence of a map Z with the right properties) may look quite stringent
at first sight. However, it turns out that it is always possible to embed any regularity
structure .7 into a larger regularity structure in such a way that these assumptions are
satisfied. This is our second main result, which can be stated in the following way.

Theorem 5.14 (Extension theorem) Let 7 = (A, T, G) be a regularity structure con-
taining the canonical regularity structure 7 ; as stated in Assumption 5.3, let 8 > 0,
and let V. C T be a sector of order 7 with the property that for every a ¢ N with
Vo # 0, one has o + 8 & N. Let furthermore W C V be a subsector of V and let K
be a kernel on R? satisfying Assumptions 5.1 and 5.4 for every r < 4. Let (II,T") be a
model for 7, and let T: W — T be an abstract integration map of order [3 such that I1
realises K for T.

Then, there exists a regularity structure T containing 7, a model (H D) for T
extending (I1, T"), and an abstract integration map 7 of order (3 acting on V =V such
that:

e The model 11 realises K for 7.

e The map 71 extends T in the sense that Ta = 1Ta foreverya € W.

Furthermore, the map (I1,T") — (ﬁ, f‘) is locally bounded and Lipschitz coAntiimous
in the sense that if 11,1") and (IL,T) are two models for F and (f[7 f‘) and (I1,T) are
their respective extensions, then one has the bounds

My g + ITlly.q S Mlva@ + 1Ty (5.18)
L= 11 g + T = Tl S I = g1+ [Ty + I Tly& 0 = Clly.q

for any compact & C R and its 2-fattening R.
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Remark 5.15 In this statement, the sector W is also allowed to be empty. See also
Section 8.2 below for a general construction showing how one can build a regularity
structure from an abstract integration map.

The remainder of this section is devoted to the proof of these two results. We start
with the proof of the extension theorem, which allows us to introduce all the objects
that are then needed in the proof of the multi-level Schauder estimate, Theorem 5.12.

5.1 Proof of the extension theorem

Before we turn to the proof, we prove the following lemma which will turn out to be
very useful:

Lemma 5.16 Let 7: R — T be as above, let V C T be a sector, and let T: V — T
be adapted to the kernel K. Then one has the identity

Loy(Z+TW) = (T4 T@)lay, (5.19)
forevery x,y € RY

Proof. Note first that 7 is well-defined in the sense that the following expression
converges:

1 .
(J(@)a), = o } : § (1,Qa)(DY Kn(x, ) - (5.20)
: YEA n>0
|kls <v+B8 —

Indeed, applying the bound (5.29) which will be obtained in the proof of Lemma 5.19
below, we see that the sum in (5.20) is uniformly convergent for every v € A.

In order to show (5.19) we use the fact that, by the definition of an abstract integration
map, we have I';,Za — ZT'y,a € T for every a € T and every pair x,y € RY. Since
II,, is injective on 7' (it maps an abstract polynomial into its concrete realisation based
at x), it therefore suffices to show that one has the identity

I (Z+ J(W) =Wa(Z + T(@)ay -
This however follows immediately from (5.12). |

Proof of Theorem 5.14. We first argue that we can assume without loss of generality
that we are in a situation where the sector V' is given by a finite sum

V=V ®Va, @...0V, (5.21)

n 2

where the «; are an increasing sequence of elements in A, and where furthermore
Wa, = Vo, forall k < n. Indeed, we can first consider the case V = V,, and
W = W,, and apply our result to build an extension to all of V,,,. We then consider the
case V =V, ® Vg, and W = V,,, & W,,,, etc. We then denote by W the complement
of W, inV,, sothatV, =W, &W,,.

The proof then consists of two steps. First, we build the regularity structure T =
(A, T, @) and the map Z, and we show that they have the required properties. In a
second step, we will then build the required extension (12[7 I') and we will show that it
satisfies the identity given by Definition 5.9, as well as the bounds of Definition 2.17
required to make it a bona fide model for 7.

The only reason why 7 needs to be extended is that we have no way a priori to
define Z to W, so we simply add a copy of it to 7" and we postulate this copy to be



INTEGRATION AGAINST SINGULAR KERNELS 70

image of W under the extension 7 of Z. We then extend G in a way which is consistent
with Definition 5.7. More precisely, our construction goes as follows. We first define

A=AU{a, +8},
where o, is as in (5.21), and we define 7 to be the space given by
T=ToW.

We henceforth denote elements in T by (a,b) with a € T and b € W, and the injection
map ¢: T — T is simply given by ta = (a, 0). Furthermore, we set

o Ta®W ifa=a,+§6
“7 | T,®0 otherwise.

With these notations, one then indeed has the identity T = Doci T, as required.

In order to complete the construction of 7, it remains to extend G. As a set, we
simply set G=Gx My o8 \where M, denotes the set of linear maps from W into

Zj (i.e. the polynomials of scaled degree strictly less than «r). The composition rule on
G is then given by the following skew-product:

(T, My) o T2, M3) = (T'1 Ty, T M + My + (IMZ —IT1)T2 — 1)) . (5.22)

One can check that this composition rule yields an element of G. Indeed, by assumption,
G leaves T invariant, so that I'; M5 is indeed again an element of M, %" +8, Furthermore,

I'yZ — IT'; is an element of L€ C MS"’+B by assumption, so that the last term also
maps W into TOZ .+ as required. For any (I', M) € G, we then give its action on T by
setting

T, M)a,b) = T'a+Z(Ib—b) + Mb,b) .

Observe that
T, M)(a,b) — (a,b) = (T'a — a) + Z(T'b — b) + Mb,0) ,

so that this definition does satisfy the condition (2.1).
Straightforward verification shows that one has indeed

(T, My) o (g, M3))(a,b) = (I'y, M1)((T'2, Ma)(a, b)) .

Since it is immediate that this action is also faithful, this does imply that the operation o
defined in (5.22) is associative as required. Furthermore, one can verify that (1, 0) is
neutral for the operation o and that (I', M) has an inverse given by

@C,M)~ =TT (M + @I -ID)T - 1)),
so that (G, o) is indeed a group. This shows that T = (fl, T, G) is indeed again a
regularity structure. Furthermore, the map j: G — G given by j(I', M) = I is a group
homomorphism which verifies that, for every a € T and I € G, one has the identity

(T, M))a =Ta =1 Ta,0) =T, M)a .

This shows that ¢ and j do indeed define a canonical inclusion 7 C A , see Section 2.1.
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It is now very easy to extend Z to the image of all of V' in T. Indeed, for any a € V,
we have a unique decomposition a = ag + a1 with agp € W and a; € W. We then set

1(a,0) = Zag, a1) -

Since a; = 0 for a € W, one has indeed Zra = f(a, 0) = (Za, 0) = (Za in this case, as
claimed in the statement of the theorem. As far as the abstract part of our construction
is concerned, it therefore remains to verify that 7 defined i in this way does verify our
definition of an abstract integration map. The fact that I:V, — Ta+5 is a direct

consequence of the fact that we have simply postulated that 0 & W C TanJr 5. Since the
action of Z on T did not change in our construction, one still has IT = 0. Regarding
the third property, for any (I', M) € G and every a = a; + az € V as above, we have

I(T, M)(a,0) = Z(Ta,0) = (ZTa; + Z(Tay — az), as) ,

where we use the fact that ['as — ao € V' by the structural assumption (5.21) we made
at the beginning of this proof. On the other hand, we have

(T', M)Z(a,0) = (T', M)(Zay, az) = (TZay + Z(Tay — az) + May, as) ,

so that the last property of an abstract integration map is also satisfied.
It remains to provide an explicit formula for the extended model (L, D). Regarding
II, forb € W and z € R%, we simply define it to be given by

ﬁz(a, b) =Ilza + / K(, 2)(I1.b)(dz) — I, T (x)b, (5.23)
R4

where 7 is given by (5.11), which guarantees that the model I realises K for Z on V.
Again, this expression is only formal and should really be interpreted as in (5.13). It
follows from Lemma 5.19 below that the sum in (5.13) converges and that it furthermore
satisfies the required bounds when tested against smooth test functions that are localised
near x. Note that the map II, — IAIT is linear and does not depend at all on the realisation
of I'. As a consequence, the bound on the difference between the extensions of different
regularity structures follows at once. It remains to define fry € G and to show that it
satisfies both the algebraic and the analytical conditions given by Definition 2.17.
We set

Loy = Cays May) . Mayb =T @)Tayb— Loy T . (5.24)

By the definition of 7, the linear map M, defined in this way does indeed belong to
M. %/”+B . Making use of Lemma 5.16, we then have the identity

Tuyoly. = (Doylys, Doy (TWTy. — Ty T (2)) + T @)y — Doy T ()
+ TpyZ — I )Ty — 1))
= (Tpz, ~T02T(2) + Tay Ty + T@) ey — Ty T (1)
(T @y — Tuy Tz — 1))
= (Dps, T@)ys — 2T (2))

which is the first required algebraic identity. Regarding the second identity, we have

1,00y (a,b) = T, (Coya + Z(Tayb — b) + T (@) pyb — Tuy T ()b, b)
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= lza + / K(, 2)Hz(Layb — 0)(d2) — 11 T (2)(Tayb — b)
.
+ 1L J @) eyb — 1, T ()b + / K(, D)Ib(dz) — 1. T (x)b
R?

= Il a+ / K, 2)I,b(dz) — IL,J (y)b
Rd
= 11,(a,b) . (5.25)

Here, in order to go from the first to the second line, we used the fact that 7 realises K
for Z on W by assumption.

It then only remains to check the bound on fzy stated in (2.15). Since lz‘z,gy(a7 0) =
(I'zya, 0), we only need to check that the required bound holds for elements of the form
(0, b). Note here that (0,b) € Tan+5, but that (b, 0) € Tan. As a consequence,

IZ@ayb = Bl = [Tayb = blly—p S llz = ylld 077 = o — gl 77,

as required. It therefore remains to obtain a similar bound on the term || M, b||,. In
view of (5.24), this on the other hand is precisely the content of Lemma 5.21 below,
which concludes the proof. O

Remark 5.17 It is clear from the construction that .7 is the “smallest possible” exten-
sion of .7 which is guaranteed to have all the required properties. In some particular
cases it might however happen that there exists an even smaller extension, due to the
fact that the matrices M, appearing in (5.24) may have additional structure.

The remainder of this subsection is devoted to the proof of the quantitative estimates
given in Lemma 5.19 and Lemma 5.21. We will assume without further restating it
that some regularity structure .7 = (A4, T, G) is given and that K is a kernel satisfying
Assumptions 5.1 and 5.4 for some 8 > 0. The test functions K7, introduced in (5.14)
will play an important role in these bounds. Actually, we will encounter the following
variant: for any multiindex % and for a € R, set

@ ( _:C)Z
Kli:xy@):DfKn(y,z)—H;; . Y i DI K@),

sothat K& = K% . We then have the following bound:

n,ry n,ry*

Lemma 5.18 Let Kﬁ:g‘y be as above, a € T, for some o € A, and assume that

a + 3 & N. Then, one has the bound

e S+a 7’65
(T, a) (K2 )| < 1M lass, (1 + [Tllags,) S 25" [lw — gl ™ P~ Me - (5.26)
>0

and similarly for |(ILa)(K%%,)|. Here, the sum runs over finitely many strictly pos-
itive values and we used the shorthand R, for the ball of radius 2 centred around x.
Furthermore, one has the bound

(I, — Tya) (K52, S (I = lags, (1 + [T

n,xry

a;ﬁx) + HﬁHa,ﬁI HF - f”a,ﬁz)

n S+a —|kl|s
R el (5.27)
6>0

(and similarly for 11, — I1,,) for any two models (11, T') and (I, T").
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Proof. Tt turns out that the cases o + 5 > |k|s and o + 8 < |k|s are treated slightly
differently. (The case a+ 3 = |kl is ruled out by assumption.) In the case a+ 5 > |k/s,
it follows from Proposition A.1 that we can express K*:¢ as

n;ry
Khe @)=Y /

) DMK, (y + h, 2)Q"(x — y,dh) (5.28)
teoA, 'R

where A, is the set of multiindices given by A, = {¢ : |k 4+ {|s < o + 8} and the
objects DA, and Q° are as in Proposition A.1. In particular, note that |£|s > a+3— |k|s
for every term appearing in the above sum.

At this point, we note that, thanks to the first two properties in Definition 5.1, we
have the bound

[(ya) (DY K, (y, )| S 2R Fenmeon=bn1)| . q, (5.29)

uniformly over all y with ||y — z||s < 1 and for all @ € T,,. Unfortunately, the function
DF+ K, is evaluated at (y + h, z) in our case, but this can easily be remedied by shifting
the model:

(ya) (DY Ky + b, ) = My 1 Tyin oa) (DT Ky + by )

< Z ||h||§*(2\k+f|5n*0l*5n , (5.30)
(La

where the sum runs over elements in A (in particular, it is a finite sum). In order to obtain
the bound on the second line, we made use of the properties (2.15) of the model. We
now use the fact that Q°(y — x, ) is supported on values h such that ||2||s < ||z — y]|s

and that
d

v ‘s
Q'(y — . R S [T Iy — il S lle —yll™ . (5.31)
i—1
Combining these bounds, it follows that one has indeed

- es s — -
(L) (KRS )] S 3 o — ylle ™ H gl tlon—tn=pn_
(974

where the sum runs over finitely many values of ¢ and ¢ with ( < « and |{|s >
a+ f — |k|s. Since, by assumption, one has o + 8 ¢ N, it follows that one actually has
|¢|s > o + B — |k|s for each of these terms, so that the required bound follows at once.
The bound with II,, replaced by II, follows in exactly the same way as above.

In the case a + 8 < |k|s, we have Kﬁ;gx(z) = D¥ K, (z, 2) and, proceeding almost
exactly as above, one obtains

|(Iea)(Df Ko, )| S 2Wemmen=6n
|(Iya)(Df Ky (z, )| < Z |z — y|| oS 2lklan—¢n=pn

(Lo

with proportionality constants of the required order.
Regarding the bound on the differences between two models, the proof is again
virtually identical, so we do not repeat it. O

Definition 5.9 makes sense thanks to the following lemma:
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Lemma 5.19 In the same setting as above, for any o € A with o + 8 & N, the right
hand side in (5.13) with a € T, converges absolutely. Furthermore, one has the bound

> / (Tea)(K, ) v @) dy S AP lase, (14 T lass,) » (5.32)
Rd

n>0

uniformly over all x € RY, all X\ € (0,1), and all smooth functions supported in Bs(1)
with ||1||c- < 1. Here, we used the shorthand notation 1} = Siww, and R, is as
above. As in Lemma 5.18, a similar bound holds for 11, — 11, but with the expression
from the right hand side of the first line of (5.18) replaced by the expression appearing
on the second line.

Remark 5.20 The condition that o + S ¢ N is actually known to be necessary in
general. Indeed, it is possible to construct examples of functions f € C(R?) such that
Kxf¢ C2(R2), where K denotes the Green’s function of the Laplacian [Mey92].

Proof. We treat various regimes separately. For this, we obtain separately the bounds

(Ia) (K3 y) S M ass, (14 [Dllass,) Y e = yllet7402°" (5.33a)
6>0

/ JLea) G Ur ) dy S [ ass, Do X027, (5.33b)
R §>0

for ||z — y||s < 1. Both sums run over some finite set of strictly positive indices J.
Furthermore, (5.33a) holds whenever ||z — y||s < 27", while (5.33b) holds whenever
27" < ). Using the expression (5.13), it is then straightforward to show that (5.33)
implies (5.32) by using the bound

[ = lzedeay s 37,
R

and summing the resulting expressions over n.

The bound (5.33a) (as well as the corresponding version for the difference between
two different models for our regularity structure) is a particular case of Lemma 5.18,
so we only need to consider the second bound. This bound is only useful in the regime
2= < ), so that we assume this from now on. It turns out that in this case, the bound
(5.33b) does not require the use of the identity 11, = II,I',,, so that the corresponding
bound on the difference between two models follows by linearity. For fixed n, it follows
from the linearity of II,a that

/ (o) (K W2 ) dy = (M) ( / Kty 02 dy)
R4 R4

We decompose K7, . according to (5.14) and consider the first term. It follows from

the first property in Definition 5.1 that the function
Y20 = [ Kaw2vdo dy (534
R L

is supported in a ball of radius 2\ around x, and bounded by C2~#"\~l*l for some
constant C'. In order to bound its derivatives, we use the fact that

Dk A
072 = S D [ b -+ [ D2 Rutdy.
k<t ) R? R¢
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where the remainder R, (y) satisfies the bound | R, ()| < A~ 15! 1¢ls ||z — y|||55|5 . Making
use of (5.4) and (5.5), we thus obtain the bound

sup |DZYT:\(2)| < E 9—Bn\—Isl—lkls + 9—Bn ) —Is|=|¢ls
Z€R? k<t
< 9—Bn\—Isl=14s (5.35)

Combining these bounds with Remark 2.21, we obtain the estimate
(Mpa)(V,)| S A%27Fm

It remains to obtain a similar bound on the remaining terms in the decomposition of

K7, .- This follows if we obtain a bound analogous to (5.35), but for the test functions

Zp () = DK, (%, 2) / (y — ) 2y dy .
Rd

These are supported in a ball of radius 27" around x and bounded by a constant multiple
of 2U¢s+lsl=Am \I¢ls  Regarding their derivatives, the bound (5.4) immediately yields

sup |Der)L\,Z(Z)| < oUels+1kls+[s] = y[€]s
2z€R4

Combining these bounds again with Remark 2.21 yields the estimate
(Ia)(Zy )] < 20ema=Bmyltls

Since the indices ¢ appearing in (5.14) all satisfy |¢|; < « + 3, the bound (5.33b) does
indeed hold for some finite collection of strictly positive indices J. O

The following lemma is the last ingredient required for the proof of the extension
theorem. In order to state it, we make use of the shorthand notation

def

where, given a regularity structure .7 and a model (I, I"), the map 7 was defined in
(5.11).

Lemma 5.21 Let V' C T be a sector satisfying the same assumptions as in Theo-
rem 5.14. Then, for every o € A, a € V,,, every multiindex k with |k|s < a + (3, and
every pair (z,y) with || — y||s < 1, one has the bound

a+pB—|k|s
(Tay @i S Illass, (1+ D las, )l — s ™14 (5.37)

where R, is as before. Furthermore, if we denote by ja:y the function defined like (5.36),
but with respect to a second model (I1,T), then we obtain a bound similar to (5.37) on
the difference J,,a — jwya,, again with the expression from the right hand side of the
first line of (5.18) replaced by the expression appearing on the second line.

Proof. For any multiindex k with |k|s < o + , we can rewrite the kth component of
Jzya as

1
(ja:ya)k = %l Z( Z (IL; Qszya)(leKn(xv ) (5.38)

"n>0 Jklo—B<y<a
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(x—y)

L (11,0) (DF Ky, )

] s <a+B—|k|s

wr 1 ok
:ﬁzjmy a.

n>0

As usual, we treat separately the cases ||z — y||s < 27" and ||z — y||s > 27". In the
case ||z — ylls <27, we rewrite 7, a as

ToFa = (ya)(Khe) — > (1.QyTwya)(DFKn(z, ) - (5.39)
'Yf‘k‘s_ﬁ

The first term has already been bounded in Lemma 5.18, yielding a bound of the type
(5.37) when summing over the relevant values of n. Regarding the second term, we
make use of the fact that, for v < « (which is satisfied since |k|s < o + (), one has the
bound ||I'yyally < ||z —ylls . Furthermore, for any b € T, one has

(ILb)(DE K (2, ) < [[b20Fle=A=m (5.40)

In principle, the exponent appearing in this term might vanish. As a consequence of our
assumptions, this however cannot happen. Indeed, if ~y is such that v + 8 = |k|s, then
we necessarily have that + itself is an integer. By Assumptions 5.3 and 5.4 however, we
have the identity

(IL,b)(DEK,(z, ) =0,

for every b with integer homogeneity.
Combining all these bounds, we thus obtain similarly to before the bound

n [e4 —|kls+d0n
T2k al < Mg, (14 I Tllass,) S Iz — ylle o7 Hle+ogom (5.41)
>0

where the sum runs over a finite number of exponents. This expression is valid for all
n > 0 with ||z — y||s < 27", Furthermore, if we consider two different models (II, T")
and (I, T'), we obtain a similar bound on the difference 7" a — J%Fa.

In the case ||z — y||s > 27", we treat the two terms in (5.38) separately and, for
both cases, we make use of the bound (5.40). As a consequence, we obtain

A D S ] (b
|k|s—5<VS0t

+ Y oy fleokle =g
[l]s <a+B—|k|s

with a proportionality constant as before. Thanks to our assumptions, the exponent of
2™ appearing in each of these terms is always strictly negative. We thus obtain a bound
like (5.41), but where the sum now runs over a finite number of exponents § with § < 0.
Summing both bounds over n, we see that (5.37) does indeed hold for 7, . In this case,
the bound on the difference again simply holds by linearity. O

5.2 Multi-level Schauder estimate

We now have all the ingredients in place to prove the “multi-level Schauder estimate”
announced at the beginning of this section. Our proof has a similar flavour to proofs of
the classical (elliptic or parabolic) Schauder estimates using scale-invariance, like for
example [Sim97].
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Proof of Theorem 5.12. We first note that (5.16) is well-defined for every k with |k|s <
~ + (. Indeed, it follows from the reconstruction theorem and the assumptions on K
that

(Rf = M f(@) (DY Ky (2, ) S 20Kle=F=m (5.42)

which is summable since the exponent appearing in this expression is strictly negative.
Regarding IC., f — IC,, f, we use (3.4), which yields

(Rf = Rf — I, f(x) + [, f(2)) (DF K (2, )| (5.43)
S 2Rl =B=n () £5 Fllq + 1T —T0]|.5)

where the proportionality constants depend on the bounds on f, f, and the two models.
In particular, this already shows that one has the bounds

I fllvrpsm S W lyir s IS S = Ky Fllaasin S IS5 fllysm + 1T =105

so that it remains to obtain suitable bounds on differences between two points.
We also note that by the definition of /C,, and the properties of Z, one has for £ ¢ N
the bound

S lle = H”ﬂ ‘

which is precisely the required bound. A similar calculation allows to bound the terms
involved in the definition of ||, f; K., f|l,+ 4.4, so that it remains to show a similar
bound for ¢ € N.

It follows from (5.19), combined with the fact that Z does not produce any compo-
nent in 7" by assumption, that one has the identity

(Frylc'yf(y))k - (/nyf(m))k = (meN'yf(y))k - (N'yf(ﬂf))k
+ (j(x)(rxyf(y) - f(z)))k s

so our aim is to bound this expression. We decompose J as J = ano J™ and
N, = 32,50 NI, where the nth term in each sum is obtained by replacing K by K,
in the expressions for 7 and AV, respectively. It follows from the definition of \V,,, as
well as the action of I" on the space of elementary polynomials that one has the identities

1
CAP i) - Y Ry, ) (D K )

‘|k+a <y+B f
(T @y f)y = 7 3 (L Q5T f) (D Kz, ) (5.44)
6eB,c
(TP@ @)y = 3 ST (10,95 f@) (DK, )
dE€EBy,

where the set By, is given by
Bpy={6d€A: |kls—B<d<n}.

(The upper bound y appearing in By, actually has no effect since, by assumption, f has
no component in 75 for § > ~.) As previously, we use different strategies for small
scales and for large scales.
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We first bound the terms at small scales, i.e. when 2~" < ||z — y||. In this case, we
bound separately the terms V™ f, T, N'™ f, and T (2)(Ty f(y) — f(x)). In order
to bound the distance between K., f and K, f, we also need to obtain similar bounds
on N\ f — N f T NS f — Doy NI £, as well as T™(@)(Cay f (1) — f(2)) —
J (”)(x)(f‘zy fy) — f(x)). Here, we denote by 7 the same function as 7, but defined
from the model (I, T'). The same holds for Nv-

Recall from (5.42) that we have for Né”) f the bound

(N f ()| S 20Fl=B=m (5.45)

so that, since we only consider indices k such that |k|s — 5 — v < 0, one obtains

Yoo W @)l S e =yl

n: 27" <|lz—ylls

as required. In the same way, we obtain the bound

n \ /(1) £, —|kls £ B
S N @ -ND F@) ] S Nyl Pl s HIT-TT8)
n:27"<|lz—ylls
where we made use of (5.43) instead of (5.42).
Similarly, we obtain for (., N'™ f(y)),, the bound
L L D

‘k+£‘s<7+5

Summing over values of n with 27" < ||z — y

s, we can bound this term again by a
multiple of |z — y/| Br=lkls virtually the same way, we obtain the bound

|(me~/\/»(yn)f - f‘xergn)f_)k|
— ks =
Sl =yl ™o ps 7

where rewrote the left hand side as (Upy — [y N f + Ty (N f — NI ) and then
proceeded to bound both terms as above.

We now turn to the term involving 7. From the definition of 7", we then obtain
the bound

|'y;§ + HH - ﬂ”v;ﬁ + ||F - f‘H'erB;ﬁ) ’

(TP @ Ty f@) = F@D)] = Y (Qs(Tay fy) — f(@))(DF Kn(z, )
d€By,
S —yll7 020kl mom (5.46)
dEBy

It follows from the definition of By, that |k|s — 8 — § < 0O for every term appearing in

this sum. As a consequence, summing over all n such that 27" < ||z — y||s, we obtain

a bound of the order ||z — y|| 7777 IFls a5 required. Regarding the corresponding term

arising in IC,, f — KC, f, we use the identity
1, Q5 (Cay f(y) — f(2)) — T Q5(Tay f(y) — f(2)) (5.47)

= (I, — I1,) Q5 (Tuy f () — f(2))
+ [, Qs(f(@) — f(x) — Tuy f@) + Tuy FW))
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and we bound both terms separately in the same way as above, making use of the
definition of || f; f]|.,. in order to control the second term.

It remains to obtain similar bounds on large scales, i.e. in the regime 27" > ||z —y||s.
We define

TEE k(NS @) + T @) f@),, .
T3 Z B ((Tay N )W) + TP @y f(1)) ) -

Inspecting the definitions of these terms, we then obtain the identities

TE=( Y LQf@ —Rf) (DI K, ).,

C<L|k|s—8
TF= Y (LOTuy ) (DK, )
¢>kls—B
Y.
o Z @ g;y) (Hyf(y) - Rf)(le+ZKn(y7 )) .
|k+£|s <y+B ’

Adding these two terms, we have

TE+ T = (I, f(y) — Rf)(KED) (5.48)
= Y (Q¢(Tay f() — f@) (DY Kn(x, ")) .
¢<L|k|ls—B

In order to bound the first term, we proceed similarly to the proof of the second part of
Lemma 5.18. The only difference is that the analogue to the left hand side of (5.30) is
now given by

(M, f) — R (DKL, ) = (M f@) — Rf) (DY KL, ) (5.49)
+ (Iy(Cgy fy) — F@))(DEHK,(5, )

where we set § = y + h. Regarding the first term in this expression, recall from (5.42)
that
[Ty £ (@) — Rf) (DY K (7, )| < 20k =F=n

Since 8 + v € N by assumption, the exponent appearing in this expression is always
strictly positive, thus yielding the required bound. The corresponding bound on K, f —
K., f is obtained in the same way, but making use of (5.43) instead of (5.42).

To bound the second term in (5.49), we use the fact that f € D7 which yields

(T(Tyy f ) — F@) (DY Ko (@, NI S Ml —yl|7 20k
(<«

We thus obtain a bound analogous to (5.30), with « replaced by 7. Proceeding anal-
ogously to (5.47), we obtain a similar bound (but with a prefactor ||I' — I'l| ;5.5 +
Ilfs £ ll.,.%) for the corresponding term appearing in the difference between I, f and

K., f. Proceeding as in the remainder of the proof of Lemma 5.18, we then obtain the
bound

(L, @) — ROEEIN S D2 o =yt K (5.50)
§>0
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where the sum runs only over finitely many values of 4. The corresponding bound for
the difference is obtained in the same way.
Regarding the second term in (5.48), we obtain the bound

(I Q¢ (Tay () — F@)) (DY K ()| S ||l — yf| 7 ¢ 20kl =A=0m

At this stage, one might again have summability problems if ¢ = |k|; — 5. However,
just as in the proof of Lemma 5.21, our assumptions guarantee that such terms do not
contribute. Summing both of these bounds over the relevant values of n, the requested
bound follows at once. Again, the corresponding term involved in the difference can be
bounded in the same way, by making use of the decomposition (5.47).

It remains to show that the identity (5.17) holds. Actually, by the uniqueness part of
the reconstruction theorem, it suffices to show that, for any suitable test function ) and
any x € D, one has

(LK f(x) — K * RS S A,

for some strictly positive exponent §. Writing 1) = Sg\@w as a shorthand, we obtain
the identity

(LK f(x) — K = Rf)bD)

-/ (CEA S, ch(x»(Kn(y,-)— > U pi o)

n>0 [£]s<C+B
D D (1,0 @) (DL K. )
ceA|e|5<g+B o
|k|s <v+8B

(R (Eny, ->>) W) dy

*Z/ (M f () = RFYU) 02 () dy -

n>0

It thus remains to obtain a suitable bound on (IL, f(z) — Rf)(K}.,,). As is by now
usual, we treat separately the cases 27" < .

In the case 27" > A, we already obtained the bound (5.50) (with k£ = 0), which
yields a bound of the order of \¥*# when summed over n and integrated against 1?}. In

the case 27" < A, we rewrite K7, . as

[els<v+8 '

and we bound the resulting terms separately. To bound the terms involving derivatives
of K,,, we note that, as a consequence of the reconstruction theorem, we have the bound

(I, £(y) — Rf)(DLK ()| < 20l =B=m

Since this exponent is always strictly negative (because v + 5 ¢ N by assumption), this
term is summable for large n. After summation and integration against 1, we indeed
obtain a bound of the order of \¥*” as required.
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To bound the expression arising from the first term in (5.51), we rewrite it as
[0 = RO ) 220 dy = (@) - R,

where Yn/\ is as in (5.34). It then follows from (5.35), combined with the reconstruction
theorem, that

|(I, f(x) — RF (YN < 27PN,

Summing over all n with 27" < A, we obtain again a bound of the order A7t which
concludes the proof. O

Remark 5.22 Alternatively, it is also possible to prove the multi-level Schauder esti-
mate as a consequence of the extension and the reconstruction theorems. The argument
goes as follows: first, we add to T’ one additional “abstract” element b which we decree
to be of homogeneity . We then extend the representation (II, I') to b by setting

b ERf - f(x), Tuyb—b= f(x) = Tayf) .

(Of course the group G has to be suitable extended to ensure the second identity.) It is an
easy exercise to verify that this satisfies the required algebraic identities. Furthermore,
the required analytical bounds on II are satisfied as a consequence of the reconstruction
theorem, while the bounds on I are satisfied by the definition of D7.

Setting f(z) = f(z) + b, it then follows immediately from the definitions that
I, f () = Rf for every x. One can then apply the extension theorem to construct an
element Zb such that (5.12) holds. In particular, this shows that the function F given by

Fx)=Tf@) +J@)f(x),

satisfies Hwﬁ'(x) = K xR f for every x. Noting that FwyF(x) = f?‘(y), it is then
possible to show that on the one hand the map = — F(z) —Tb belongs to DY 4, and
that on the other hand one has F(x) —Ib= (K, f)(x), so the claim follows.

The reason for providing the longer proof is twofold. First, it is more direct and
therefore gives a “reality check” of the rather abstract construction performed in the
extension theorem. Second, the direct proof extends to the case of singular modelled
distributions considered in Section 6 below, while the short argument given above does
not.

5.3 The symmetric case

If we are in the situation of some symmetry group .% acting on .7 as in Section 3.6, then
itis natural to impose that K is also symmetric in the sense that K (Tyx, T,y) = K(x,y),
and that the abstract integration map Z commutes with the action of .# in the sense that
MyT =1IM, forevery g € 7.

One then has the following result:

Proposition 5.23 In the setting of Theorem 5.12, assume furthermore that a discrete
symmetry group . acts on R% and on 7, that K is symmetric under this action, that
(IL,T) is adapted to it, and that T commutes with it. Then, if f € D7 is symmetric, so is

Ky f.
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Proof. For g € ., we write again its action on R? as Tyx = Agx + by. We want to
verify that My (K., f)(Tyx) = (K, f)(x). Actually, this identity holds true separately for
the three terms that make up /C,, f in (5.15).

For the first term, this holds by our assumption on Z. To treat the second term, recall
Remark 3.37. With the notation used there, we have the identity

A X)E
M,J(Tyx)a = Z % / DYK(Tyz, 2) (L7, ,a)(dz)
[kls <a ’

k
lkls<a

Xk

[kls <a

as required. Here, we made use of the symmetry of K, combined with the fact that A,
is an orthogonal matrix, to go from the second line to the third. The last term is treated
similarly by exploiting the symmetry of R f given by Proposition 3.38. O

Finally, one has

Lemma 5.24 In the setting of Lemma 5.5, if K is symmetric, then it is possible to
choose the decomposition K = K + R in such a way that both K and R are symmetric.

Proof. Denote by ¢ the crystallographic point group associated to .. Then, given any
decomposition K = Ky + Ry given by Lemma 5.5, it suffices to set

1 1
K(z) = @l Y K(Az),  R(@) = 7l > R(Az).

Aec9 AcY

The required properties then follow at once. O

5.4 Differentiation

Being a local operation, differentiating a modelled distribution is straightforward, pro-
vided again that the model one works with is sufficiently rich. Denote by D; the (usual)
derivative of a distribution on R? with respect to the ith coordinate. We then have the
following natural definition:

Definition 5.25 Given a sector V' of a regularity structure .7, a family of operators
P;: V. — T is an abstract gradient for R? with scaling s if

e one has Z,a € T,,_, forevery a € V,,
e one has 'Y;a = Z;Ta for every a € V and every 1.

Regarding the realisation of the actual derivations D;, we use the following defini-
tion:

Definition 5.26 Given an abstract gradient & as above, a model (I, T") on R? with
scaling s is compatible with Z if the identity

DiH_tCL = HT‘@ﬂZ ’

holds for every a € V and every z € R%.
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Remark 5.27 Note that we do not make any assumption on the interplay between the
abstract gradient & and the product . In particular, unless one happens to have the
identity Z;(a x b) = a x ;b + Z;a x b, there is absolutely no a priori reason forcing
the Leibniz rule to hold. This is not surprising since our framework can accommodate
It6 integration, where the chain rule (and thus the Leibniz rule) fails. See [HK12] for a
more thorough investigation of this fact.

Proposition 5.28 Let 9 be an abstract gradient as above and let f € D3(V) for some
B > s; and some model (I1, ") compatible with 9. Then, 2; f € Dg:; and the identity
RZ;f = D;Rf holds.

Proof. The fact that Z; f € Dg:i is an immediate consequence of the definitions, so

we only need to show that RZ; f = D;Rf.

By the “uniqueness” part of the reconstruction theorem, this on the other hand
follows immediately if we can show that, for every fixed test function v and every
x € D, one has

(I, Z: f(x) — D;RF)W)) SN,

for some § > 0. Here, we defined ¥} = ng\,w¢ as before. By the assumption on the
model II, we have the identity

(I, Z; f(x) — DiRf)(@2) = (DIl f(x) — DiRF)(@)) = — (M, f(x) — RE)Dis)) .

Since Dﬂ/}i‘ = AiﬁingmDﬂﬁ, it then follows immediately from the reconstruction
theorem that the right hand side of this expression is of order \®~%¢, as required. [

Remark 5.29 The polynomial regularity structures .7  do of course come equipped
with a natural gradient operator, obtained by setting Z; X; = 0;;1 and extending this to
all of T' by imposing the Leibniz rule.

Remark 5.30 In cases where a symmetry .% acts on .7, it is natural to impose that the
abstract gradient is covariant in the sense that if g € .% acts on R? as Tyz = A,z + b,
and M, denotes the corresponding action on 7', then one imposes that

d
M,Zm =Y AT,

j=1
for every 7 in the domain of &. This is consistent with the fact that
(L. My Zi7)(@)) = (g0 Z57)(Tip) = (Dilly, o 7)(TE0)
= — (g, 7)(D;THp) = — AY (T, o 7)(TE D)
= — A (M) (D) = AY (1, 2;My 7)) ,

where summation over j is implicit. It is also consistent with Remark 3.35.

6 Singular modelled distributions

In all of the previous section, we have considered situations where our modelled dis-
tributions belong to some space D”, which ensures that the bounds (3.1) hold locally
uniformly in R%. One very important situation for the treatment of initial conditions and
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/ or boundary values is that of functions f: R? — T which are of the class D7 away
from some fixed sufficiently regular submanifold P (think of the hyperplane formed by
“time 07, which will be our main example), but may exhibit a singularity on P.

In order to streamline the exposition, we only consider the case where P is given by
a hyperplane that is furthermore parallel to some of the canonical basis elements of RY.
The extension to general submanifolds is almost immediate. Throughout this section,
we fix again the ambient space R? and its scaling s, and we fix a hyperplane P which
we assume for simplicity to be given by

P={zeR’:2;=0, i=1,...,d}.

An important role will be played by the “effective codimension” of P, which we denote
by
m=sy+...+5;5. (6.1)

Remark 6.1 In the case where P is a smooth submanifold, it is important for our
analysis that it has a product structure with each factor belonging to a subspace with
all components having the same scaling. More precisely, we consider a partition &
of the set {1, ..., d} into J disjoint non-empty subsets with cardinalities {d; }3-]:1 such
that s; = s; if and only if 7 and j belong to the same element of 7. This yields a
decomposition
R? ~R% x .- x R% .

With this notation, we impose that P is of the form M x...x M ;, with each of the M
being a smooth (or at least Lipschitz) submanifold of R% . The effective codimension m
is then given by m = Z;}:1 m;, where m; is the codimension of M in R%, multiplied
by the corresponding scaling factor.

We also introduce the notations

lzllp =1Ads(z, P),  |lz,yllp = [zllp Allyle -
Given a subset R C Rd, we also denote by Kp the set

Rp={@, €@\ \PY x4y and |z—yls <z, ylp}-

With these notations at hand, we define the spaces D}’” similarly to D7, but we introduce
an additional exponent 7 controlling the behaviour of the coefficients near P. Our precise
definition goes as follows:

Definition 6.2 Fix a regularity structure .7 and a model (I, I'), as well as a hyperplane
P as above. Then, for any v > 0 and € R, we set

[ @)l

o I|.f(@)]]e
(n—0OA0 ° 0f 0~ = sup sup
[zl

ves\p o<y |lzlB

£ s = sup sup
TER\P L<y

The space D);" (V) then consists of all functions f: R? \P— T’ such that, for every
compact set K C Rd, one has

-T,
fllyma + sup 1/ (@) v Wlle

|”f”|%n;ﬁ = _ —
@wesr t<v [z —yll3 |z, ylh "

6.2)

Similarly to before, we also set

Hﬂm—ﬂm—rwﬂw+Fwﬂwm.

iy —
sl wllp

f=Flyma+ sup sup
(@,y)ERPp €<y lz —yl

r def
W5 Fllymss =
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Remark 6.3 In the particular case of .7 = .7  and (I, T') being the canonical model
consisting of polynomials, we use the notation C};" (V) instead of D);" (V).

At distances of order 1 from P, we see that the spaces DY;" and D7 coincide.
However, if £ is such that ds(x, P) ~ X\ for all x € &, then one has, roughly speaking,

|||f|||vnﬁ ~ /\V_UMJC”‘W;R : (6.3)

In fact, this is not quite true: the components appearing in the first term in (6.2) scale
slightly differently. However, it turns out that the first bound actually follows from the
second, provided that one has an order one bound on f somewhere at order one distance
from P, so that (6.3) does convey the right intuition in most situations.

The spaces D}," will be particularly useful when setting up fixed point arguments
to solve semilinear parabolic problems, where the solution exhibits a singularity (or at
least some form of discontinuity) at ¢ = 0. In particular, in all of the concrete examples
treated in this article, we will have P = {(¢,z) : t = 0}.

Remark 6.4 The space D},’O does not coincide with D7. This is due to the fact that our
definition still allows for some discontinuity at P. However, D},” essentially coincides
with D7, the difference being that the supremum in (6.2) only runs over elements in Kp.
If P is a hyperplane of codimension 1, then f(x) can have different limits whether x
approaches P from one side or the other.

Definition 6.2 is tailored in such a way that if £ is of bounded diameter and we
know that

sup || f(2)]]¢ < 00
L<y

for some x € K\ P, then the bound on the first term in (6.2) follows from the bound
on the second term. The following statement is a slightly different version of this fact
which will be particularly useful when setting up local fixed point arguments, since it
yields good control on f(x) for  near P.

For z € R% and § > 0, we write S32 for the value

5
Spr = (6x1,...,0T5,Z3,1,.--,%q) -
With this notation at hand, we then have:

Lemma 6.5 Let R be a domain such that for every x = (x1,...,xq) € R, one has
Sbx € R forevery § € [0,1]. Let f € D" for some v > 0 and assume that, for
every { < m, the map x — Qg f(x) extends continuously to all of R in such a way that
Q¢ f(x) = 0for x € P. Then, one has the bound

01/ 0vms S NS

with a proportionality constant depending affinely on ||U'(|. . Similarly, let feDp"
with respect to a second model (11,T") and assume this time that lim,_, p Q,(f(x) —
f(@)) = 0 for every £ < n. Then, one has the bound

0f = Flyvms S U5 I

with a proportionality constant depending again affinely on ||U||.q and |T|.5.

YR

v+ ||F - f”'y;ﬁq”fm’y-,mﬁ + |”JF”|%71:,§) ,
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Proof. For ds(x, P) > 1 or { > 1, the bounds follow trivially from the definitions, so
we only need to consider the case ds;(x, P) < 1 and ¢ < 7. We then set z,, = 812;nx
and xo, = ng. We also use the shorthand I';, = T'; |+, , and we assume without loss
of generality that || f||.,;& < 1. Note that the sequence x,, converges to ., and that

2041 = Znlls = [#nt1 = Toolls = [|2n41llp = 27"Vl . (6.4)

The argument now goes by “reverse induction” on ¢. Assume that the bound
| f@)lm < |zl holds for all m > ¢, which we certainly know to be the case when
£ is the largest element in A smaller than 7 since then this bound is already controlled

by || flly.n:5- One then has
< 2771(7’7£)H$”$7Z + Z 27"(7"74)ng”}?‘@*”(ﬁ*m)Hﬂmfm
m>{

< 27| nt

where we made use of the definition of || f||,,.« and (6.4) to bound the first term and of
the inductive hypothesis, combined with (6.4) and the bounds on I' for the second term.
It immediately follows that

If@lle = 1f @) = F@olle < Y f@ns) = F@anlle S Y2725,

n>0 n>0

which is precisely what is required for the first bound to hold. Here, the induction
argument on ¢ works because A is locally finite by assumption. -
The second bound follows in a very similar way. Setting 6 f = f — f, we write

||6f(xn+1) - 6f(xn)||€ S ||f(xn+1) - f($n+1) - Fn,f(xn) + fnf($n)||€
+ |1 =) f(@n) — (1= To) flan)lle -

The first term in this expression is bounded in the same way as above. The second term
is bounded by

11 =T f@a) = @ =T f@alle S 27" Nzl 5 Uf, fllyass + IT = Tllyss) -
from which the stated bound then also follows in the same way as above. O

The following kind of interpolation inequality will also be useful:

Lemma 6.6 Let v > 0 and k € (0,1) and let f and f satisfy the assumptions of
Lemma 6.5. Then, for every compact set K, one has the bound

1£: Flla—ryvms < 0F = F15 pn (1]

’

)1*/{

s+ 1]

7R
where the proportionality constant depends on ||T'||,.5 + ||IT||: 4

Proof. All the operations are local, so we can just as well take & = R?. First, one then
has the obvious bound

[ f(@) = Tay f@) — f@) + Loy fDle < (I fllyn + 1]

ol =yl 3 N yllp
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On the other hand, one also has the bound

I f(@) = Tuy f@) — F@) + Tay FDlle S U = Flaymllz vl

where the proportionality depends on the sizes of I" and I'. As a consequence of these
two bounds, we obtain

7 57 Fie 7 1—x
1f@) = Loy f@) = f@) + Ty f@lle S T = 150Nl + 1 F )

Xl =yl OOy

i 7 1-k —RK)y— —(1—k

SO = 150U s+ W) "l = gllS =,y 5077
which is precisely the required bound. Here, we made use of the fact that we only
consider points with ||z — y||s < ||z, y||p to obtain the last inequality.

Regarding the bound on ||f(x) — f(x)||¢, one immediately obtains the required

bound

1@ = F@lle S 1F = FU50 U T + 1) "l 50N

simply because both [| - ., and || - ||,,, dominate that term. O

In this section, we show that all of the calculus developed in the previous sections
still carries over to these weighted spaces, provided that the exponents 7 are chosen in
a suitable way. The proofs are mostly based on relatively straightforward but tedious
modifications of the existing proofs in the uniform case, so we will try to focus mainly
on those aspects that do actually differ.

6.1 Reconstruction theorem

We first obtain a modified version of the reconstruction theorem for elements f € D",
Since the reconstruction operator R is local and since f belongs to D away from P,
there exists a unique element R f in the dual of smooth functions that are compactly
supported away from P which is such that

(Rf — M f(@)(W) SN,

forall z ¢ P and A < d(z, P). The aim of this subsection is to show that, under
suitable assumptions, R f extends in a natural way to an actual distribution R f on RY.
In order to prepare for this result, the following result will be useful.

Lemma 6.7 Let 7 = (A, T, G) be a regularity structure and let (I1,T) be a model
for T over R® with scaling s. Let ¢ € B o with v > | min A| and A\ > 0. Then, for
f € D7, one has the bound

(Rf —TLf@)D)| SN sup  su |7%

y,2€Ban(@ <y ||z —y|

where the proportionality constant is of order 1 + ||T'|| 5. By @) 1 1L v: Box ()-

Remark 6.8 This is essentially a refinement of the reconstruction theorem. The differ-
ence is that the bound only uses information about f in a small area around the support
of .
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Proof. Inspecting the proof of Proposition 3.25, we note that one really only uses the
bounds (3.30) only for pairs = and y with ||z — y||s < CX for some fixed C' > 0. By
choosing n sufficiently large, one can furthermore easily ensure that C' < 2. O

Proposition 6.9 Let f € D}"(V) for some sector V' of regularity o < 0, some v > 0,
and some 11 < ~y. Then, provided that o A n > —wm where wm is as in (6.1), there
exists a unique distribution Rf € C§™" such that (Rf)(¢) = (ﬁf)((p)for smooth test
functions that are compactly supported away from P. If f and f are modelled after two
models Z and Z, then one has the bound

||Rf - ﬁf”a/\"];ﬁ 5 ”|f7 .ﬂ”’y,n;jﬁ + |||Z7 Z‘”’y,ﬁ ’

where the proportionality constant depends on the norms of f, f. Z and Z. Here, R is
any compact set and R is its 1-fattening.

Remark 6.10 The condition o A 7 > —m rules out the possibility of creating a non-
integrable singularity on P, which would prevent Rf from defining a distribution on
all of R%. (Unless one “cancels out” the singularity by a diverging term located on P,
but this would then lead to R f being well-posed only up to some finite distribution
localised on P.)

Remark 6.11 If o = 0 and n > 0, then due to our definition of C{*, Proposition 6.9
only implies that R f is a bounded function, not that it is actually continuous.

Proof. Since the reconstruction operator is linear and local, it suffices to consider the
case where || f||,,,2 < 1, which we will assume from now on.

Our main tool in the proof of this result is a suitable partition of the identity in the
complement of P. Let ¢: Ry — [0, 1] be as in Lemma 5.5 and let o: R — [0,1] be a
smooth function such that supp ¢ C [—1, 1] and

d gtk =1.

keZ
For n € Z, we then define the countable sets =’ by
2 ={reR?: z;=0fori<dandxz; € 27" Zfori > d} .

This is very similar to the definition of the sets A} in Section 3.1, except that the points
in 2% are all located in a small “boundary layer” around P. Forn € Z and x € E%, we
define the cutoff function ¢, ,, by

Pan¥) = Q2" Np()P(2" 1 (Ygpy — Tgp1)) -+ P(2"(Ya — xa))

where Np is a smooth function on R? \ P which depends only on (y1,...,¥ys), and
which is “1-homogeneous” in the sense that NV p(Dgy) = 0Np(y).
One can verify that this construction yields a partition of the unity in the sense that

Z Z @x,n(y) =1,

n€Zze=Y

for every y € R®\ P.
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Let furthermore ¢ be givenby ¢n = > N D . e=n, P One can then show

that, for every distribution £ € Cﬁo_‘ with @ > —m and every smooth test function ¢, one
has

Jim €= ¢n) = 0.

As a consequence, it suffices to show that, for every smooth compactly supported test
function 1), the sequence (R f) (@) is Cauchy and that its limit, which we denote by
(Rf)(@), satisfies the bound of Definition 3.7.

Take now a smooth test function 1) supported in B(0, 1) and define the translated
and rescaled versions 1/);‘ as before with A € (0, 1]. If ds(x, P) > 2, then it follows
from Lemma 6.7 that

(Rf — I, f() () < ds(a, PYI™YAT S A7, (6.6)

where the last bound follows from the fact that v > 1 by assumption. Since furthermore

(L f@)WD S Y [l @M S A, 6.7)

a<l<ly

we do have the required bound in this case.
In the case ds(x, P) < 2\, we rewrite %}; as

1/’2 = Z Z wi\(py,n s

n>ngo yEE}
where ny is the greatest integer such that 27"° > 3\. Setting

Xn,zy = )“5|2nls‘¢;\@y7n >
it is straightforward to verify that x, », satisfies the bounds

k —(|s|+|k|s
sup |D Xn,xy(z)| <2 (Is|+kls)n ,

z€R4

for any multiindex k. Furthermore, just as in the case of the bound (6.6), every point
in the support of Xy, -, is located at a distance of P that is of the same order. Using a
suitable partition of unity, one can therefore rewrite it as

M
Xn,zy = ngfzy s
i=1

where M is a fixed constant and where each of the Y/ )xy has its support centred in a ball

of radius %dg(Zj, P) around some point z;. As a consequence, by the same argument as
before, we obtain the bound

M
(Rf =T, () Xmay) S Y dalzj, Y7277 <27 (6.8)
j=1
Using the same argument as in (6.7), it then follows at once that

((RF) X ag)] S 27N (6.9)
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Note now that we have the identity

N
(RAOWan) = Y AT 270 YT (R ) () -

At this stage, we make use of the fact that x,, 5, = 0, unless ||z — y[|s S A\. Asa
consequence, for n > nyg, the number of terms contributing in the above sum is bounded
by (2" \)*|=™_ Combining this remark with (6.9) yields the bound

‘ A2l ST R 1) ()| S A2 @AD I

=n

yeEE

from which the claim follows at once, provided that a A 7 > —m, which is true by
assumption. The bound on R f — R f then follows in exactly the same way. 0

In the remainder of this section, we extend the calculus developed in the previous
sections to the case of singular modelled distributions.

6.2 Multiplication

We now show that the product of two singular modelled distributions yields again a
singular modelled distribution under suitable assumptions. The precise workings of the
exponents is as follows:

Proposition 6.12 Let P be as above and let f; € DR (VD) and f, € D3™(VP®)
for two sectors VIV and V'@ with respective regularities o and ovo. Let furthermore %
be a product on T such that VY, V@) is v-regular with v = (71 + a2) A (72 + o).
Then, the function [ = fix. f belongs to D}" with 1 = (1 +a2) A(12+01) A1 +132).
(Here, x- is the projection of the product  onto T’ as before.)

Furthermore, in the situation analogous to Proposition 4.10, writing f = f1 % fa
and g = g1 * g, one has the bound

/591

uniformly over any bounded set.

¥R S |||f1§91 mw,msﬁ + |||f2§92|”v27n2;ﬁ + HF - f‘||71+725ﬁ ’

Proof. We first show that f = f; x, f2 does indeed satisfy the claimed bounds. By
Theorem 4.7, we only need to consider points x, y which are both at distance less than 1
from P. Also, by bilinearity and locality, it suffices to consider the case when both f;
and f5 are of norm 1 on the fixed compact K. Regarding the supremum bound on f, we
have

IF@lle< D 1@l f@le <> flallf "0z
£ +02=F 0y +05=2
<l B
which is precisely as required.

It remains to obtain a suitable bound on f(x) — I'y, f(y). For this, it follows
from Definition 6.2 that it suffices to consider pairs (z,y) such that 2|z — y||s <
ds(x, P) A\ ds(y, P) < 1. For such pairs (z, y), it follows immediately from the triangle
inequality that

ds(z, P) = ||lzllp ~ llyllp ~ llz,ylp . (6.10)
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in the sense that any of these quantities is bounded by a multiple of any other quantity,
with some universal proportionality constants. For £ < +;, one then has the bounds

1fi@) = Tay fille S llz =yl fl, gl B

£ @)le < ||,y 00

(6.11)

>

fori € {1,2}.
As in (4.6), one then has

Ty f@) = @y ) * Cay foDle S D Nz = ylZ" AW Il f2@)ln

m+n>y
iy +n— — 0 2— 0
Sllz=yl3™ Y N ylp™ eyl 2 =™z, yll ™"
m+n>y
.y - A
=le—yl7" > oyl eyl B " e, yl B
m+n2>y
.y — A
Sl =yl Nyl syl B2 |, wl B
= |l =yl N, wlp - 6.12)

Here, in order to obtain the second line, we made use of (6.10), as well as the fact that
we are only considering points (z, y) such that |z — y||s < ||z, y|| p. Combining this
with the bound (4.4) from the proof of Theorem 4.7 and using again the bounds (6.11),
the requested bound then follows at once.

It remains to obtain a bound on || f; g||,,;. For this, we proceed almost exactly as
in Proposition 4.10. First note that, proceeding as above, one obtains the estimate

ITay f() — Layg(y) — ay f1 (@) * Doy fo(y) + Ly g1 () * Loy g2 (1) |6
<0 =Tllyygmair > e = ylZ 1A mll f20) 1

m+n>y
+ > =yl A@) = 0@l @)l
m+n>y
+ > e =yl g @llmll f20) — g2l -
m-+n>y

which then yields a bound of the desired type by proceeding as in (6.12). The remainder
is then decomposed exactly as in (4.7). Denoting by 77, ..., T5 the terms appearing
there, we proceed to bound them again separately.

For the term 7}, we obtain this time the bound

_ —n)A0 _
ITile S W gillemss Y Nz =gl3 =l eyl

m4n=¢
n>ag;m>a

Since, as in the proof of Proposition 4.10, all the terms in this sum satisfy vy —m > y—¢,
we can bound ||z — y||7* ™" by ||z — |7 ||z, y||5"* 7. We thus obtain the bound

.y 4 —
ITle S 1535 g1llon sl = yllz =yl 2207

Since 1 < (2 A ai2) + 11, this bound is precisely as required.
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The bound on 75 follows in a similar way, once we note that for the pairs (x, y)
under consideration one has

ITay r@lle S D e =yl N AW Im S 0 @l 1@l

m>/l m>4
S ol @ ye 0@, y) S o @y, (6.13)
m>L

where we used (6.10) to obtain the penultimate bound, so that I, f1(y) satisfies essen-
tially the same bounds as f;(z).
Regarding the term 75, we obtain

ITslle S 12 = g2llaims Y llw =yl Ml B~ Iyl

m4n=¢
mzoginzagy

from which the required bound follows in the same way as for 7. The term T3 is treated
in the same way by making again use of the remark (6.13), this time with g1(y) — f1(y)
playing the role of f1(y).

The remaining term 7} can be bounded in virtually the same way as 75, the main
difference being that the bounds on (', — I';,) f1(y) are proportional to ||[I' — T, .5,
so that one has

ITalle S IT = Dllyslle — yll7 =4 Yla, y||ren+m=
Combining all of these bounds completes the proof. O

6.3 Composition with smooth functions

Similarly to the case of multiplication of two modelled distributions, we can compose
them with smooth functions as in Section 4.2, provided that they belong to D}," (V') for
some function-like sector V' stable under the product %, and for some 1 > 0.

Proposition 6.13 Let P be as above, let v > 0, and let f; € D" (V) be a collection
of n modelled distributions for some function-like sector V- which is stable under the
product . Assume furthermore that V' is ~-regular in the sense of Definition 4.6.

Let furthermore F': R" — R be a smooth function. Then, provided that n € [0, 7],
the modelled distribution F,y( ) defined as in Section 4.2 also belongs to D}" (V).
Furthermore, the map F,: DF" (V) — DL(V) is locally Lipschitz continuous in any
of the seminorms || - || n. and || - [ly,n:5-

Remark 6.14 In fact, we do not need F' to be C°°, but the same regularity requirements
as in Section 4.2 suffice. Also, it is likely that one could obtain continuity in the strong
sense, but in the interest of brevity, we refrain from doing so.

Proof. Write b(z) = Fy( f(x)) as before. We also set ( € [0,~] as in the proof of
Theorem 4.16. Regarding the bound on |/b||, ., we note first that since we assumed
that 7 > 0, (6.2) implies that the quantities D* F'(f(x)) are locally uniformly bounded.
It follows that one has the bound

p@le s Y. 1@l - 1@, »

b4+l =C
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where the sum runs over all possible ways of decomposing ¢ into finitely many strictly
positive elements ¢; € A. Note now that one necessarily has the bound

(=LA +...+ (=L HIN0)>(n—OANO. (6.14)

Indeed, if all of the terms on the left vanish, then the bound holds trivially. Otherwise,
at least one term is given by 7 — ¢; and, for all the other terms, we use the fact that
(n—4£;) N0 > —£;. Since ||z p < 1, it follows at once that

b()]|e S ) @00,

as required.
In order to bound I'.,,b(y) — b(x), we proceed exactly as in the proof of Theorem 4.16.
All we need to show is that the various remainder terms appearing in that proof satisfy
bounds of the type
1R, )lle < Nl = wll3~" M, w3 (6.15)

Regarding the term R1(x, ), it follows from a calculation similar to (4.5) that it consists
of terms proportional to

Loy Qe f(y) % ... x Ty Qu. f(y)

where > ¢; > ~. Combining the bounds on I" with the definition of the space D},", we
know furthermore that each of these factors satisfies a bound of the type

ITay Qe fDlm S Nz —y

Combining this with the fact that Y ¢; > ~, that ||z — y||s < ||«| p, and the bound
(6.14), the bound (6.15) follows for R;.
Regarding Ry, it follows from the definitions that

1Ry @ llm < 2= yllg™ " [z, yllp - (6.17)

ST BN (6.16)

Furthermore, as a consequence of the fact that n > 0 and ||z — yl|s < ||«] p, it follows

from (6.16) and (6.17) that

ey f@llm S e =ylls™ . 1f@) + F@) = fF@m S 2 =yl -

Combining this with (6.17) and the expression for Ry, we immediately conclude that
R5 also satisfies (6.15).
Note now that one has the bound

@) — fF)| STy F@)llo + 2 — yl|2 =,y (6.18)
l —)ANO — 0
< Z 2 — yllé 1|2, yl| B0 < e — yllé flz, y)| B0,
<<y

where we used the fact that ¢ < +. Since we furthermore know that f(x) is uniformly
bounded in K as a consequence of the fact that 7 > 0, it follows that the bound equivalent
to (4.14) in this context is given by

B Dk+lF £ _ _ _
prrgan =Y PO 5y )+ ol - ulT el

|k+£]<L
(6.19)
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where L = |7/(] and the exponent p, is given by p. = (|k|¢ —~v — |k|n+ (yn/) AO.
We can furthermore assume without loss of generality that ¢ < 1. Furthermore, making
use of (6.18), it follows as in (4.15) that

IF@) + (F) = Fa@)™ 5 £ 30 D llr =yl = =0

m>0 /¢
(n—~€1)A\O (n—~£:m)NO
<z, yllp™" -l yllP ;
where the second sum runs over all indices ¢1, ..., {,, with >_¢; = § and ¢; > ( for

every . In particular, one has the bound

1(f@) + (F@) = Fan) ™ 5 < e =yl 0|z, y) 5

([k|=m)((n—O)N0) VRN —0,)A0
X DTNl y | SOOI g g BNy RO
m>0 £

Let us have a closer look at the exponents of ||z, y|| p appearing in this expression:

fime = B = Cm A+ ([ —m)(n = O AO)+ > (=) A,
=1

Note that, thanks to the distributivity of the infimum with respect to addition and to the
facts that > ¢; = 8 and ¢; > ¢, one has the bound

S 0~ £ A0 > inf (m— f+(m —m)) = mC — B+ inf G- ).
i=1 - -

As a consequence, we have i, ¢ > 0if n > ¢ and p,,, ¢ > |k|(n — ¢) otherwise, so that

I(Fw) + (F@) — Fa)™ |5 < llz — yl$™7 ) OO0

Note furthermore that, by an argument similar to above, one has the bound
mﬁ\kl(n*OAOZ(nfO%/\Oz(n*V)AOZU*%

where we used the fact that ( < ~ and the last identity follows from the assumption that
1 < . Combining this with (6.19) and the definition of R3 from (4.16), we obtain the
bound (6.15) for R3, which implies that F(f e D" as required.

The proof of the local Lipschitz continuity then follows in exactly the same way as
in the proof of Theorem 4.16. O

6.4 Differentiation

In the same context as Section 5.4, one has the following result:

Proposition 6.15 Let 7 be an abstract gradient as in Section 5.4 and let f € DL"(V)
for some v > s; and n € R. Then, Z;f € D}, """,

Proof. This is an immediate consequence of the definition (6.2) and the properties of
abstract gradients. O
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6.5 Integration against singular kernels

In this section, we extend the results from Section 5 to spaces of singular modelled
distributions. Our main result can be stated as follows.

Proposition 6.16 Let .7, V, K and j3 be as in Theorem 5.12 and let f € D}"(V)
with n < . Denote furthermore by « the regularity of the sector V and assume that
N A a > —m. Then, provided that v+ 8 ¢ Nandn+ € N, one has K., f € Dzﬁ
withy =~ + B and 7= (n N\ ) + B.

Furthermore, in the situation analogous to that of the last part of Theorem 5.12, one
has the bound

U £: K Flls S UFs Pl + I =T + D= Tl (6.20)
forall f € DL"(V;T) and fe DLV ).

Proof. We first observe that \, f is well-defined for a singular modelled distribution
as in the statement. Indeed, for every x ¢ P, it suffices to decompose K as K =
K® 4+ K@, where K is given by KW' =Y~ K, and ny is sufficiently large so
that 27" < d.(z, P)/2, say. Then, the fact that (5.16) is well-posed with K replaced
by K® follows from Theorem 5.12. The fact that it is well-posed with K replaced
by K@ follows from the fact that K® is globally smooth and compactly supported,
combined with Proposition 6.9.

To prove that K, f belongs to D?fﬂ MAFTB 7y we proceed as in the proof of
Theorem 5.12. We first consider values of ¢ with ¢ ¢ N. For such values, one has
as before Q/(K, f)(x) = Q/Zf(x) and Q,I's, (K, f)(y) = QeI+, f(y), so that the
required bounds on [|IC,, f(z)||¢, |, f(z) — Ty s f(@)||0s [|IC, f () — Ky f ()]0, @S
well as || K., f(x) — Ty K,y f(z) — Ky f(2) + Ty K f(2)||¢ follow at once. (Here and
below we use the fact that ||z, y[|5 " < ||z, y|| %" *~" since one only considers pairs
(z,y) such that o5 < 1.)

It remains to treat the integer values of ¢. First, we want to show that one has the
bound

n—0)AO
I, f@lle S Nl B~

and similarly for ||iC,, f — /. f||¢. For this, we proceed similarly to Theorem 5.12,
noting that if 2=™+1 < ||z|| p then, by Remark 3.27, one has the bound

(Rf = Lo f@)) (DI K, )| S 200 =F=0m || 377
(In this expression, ¢ is a multiindex.) Furthermore, regarding 7 (x) f(z), one has
p g g

ITP@f@lle S D @2 pmon
(>—p
Combining these two bounds and summing over the relevant values of n yields

—04+((n—COA0
D KPSl Y0 flalprt e

2=+ Oz p (>4-p

which is indeed bounded by Hav||§§_é)AO as required since one always has { > a. For
|z]|p < 2™+ on the other hand, we make use of the reconstruction theorem for
modelled distributions which yields

(Rf — I f(@)(D{Kn(x, ) + Q. T ™ (@) f ()]
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SIRAHDIKn@, )|+ Y (e f@) (D Ky, )|
C<|tls—B
SQ(IEIfﬁf(nAw))nJr Z 2(|Z\sfﬂf@‘)on||(IQ*C)/\0'
¢<Is—B

Summing again over the relevant values of n yields again

Z HICE/n)fHZ < Z Hﬂl?jﬂ_éHm_CMO) ,

2-n+D> | z]| p ¢<t—p

which is bounded by Has||g_g)/\0 for the same reason as before. The corresponding
bounds on ||, f — K., f||, are obtained in virtually the same way.

It therefore remains to obtain the bounds on ||/C,, f(2)—T'z, KC, f(y)|| ¢ and || IC,, f (x)—
Ly Ko f(y) — Koy f(2) + Ty Ky f(@)]|e- For this, we proceed exactly as in the proof of
Theorem 5.12, but we keep track of the dependency on x and y, rather than just the
difference. Recall also that we only ever consider the case where (z,y) € Kp, so that
|z, yllp > ||z —yl||s. This time, we consider separately the three cases 27" < ||z —y
27 € [z~ yle, Llle, yllpl and 27 > Lz, yllp.

When 27" < ||z — y||s, we use Remark 3.27 which shows that, when following the
exact same considerations as in Theorem 5.12, we always obtain the same bounds, but
multiplied by a factor ||z, y||> 7. The case 2™ < ||z — y||, therefore follows at once.

We now turn to the case 27" € [||z — yl|s, 2|2, y[|p]. As in the proof of The-
orem 5.12 (see (5.48) in particular), we can again reduce this case to obtaining the

bounds

59

(e Q¢ (Pay f@) — F@)) (DK@, )] S [yl 57 o — gl 0 Hegon
§>0

. 4 —|kls n
(M, f) = ROESZL] S gl 37 D e =yl 72
6>0

for every ¢ < |k|s — O and where the sums over ¢ contain only finitely many terms. The
first line is obtained exactly as in the proof of Theorem 5.12, so we focus on the second
line. Following the same strategy as in the proof of Theorem 5.12, we similarly reduce
it to obtaining bounds of the form

(1L, £@) = REDLE @ ) S 2yl Sl — g S5 o
6>0

where ¥ is such that ||z — g||s < ||z — y||s and £ is a multiindex with |¢|s > |k|s + (0 V
(v + /). Since we only consider pairs () such that ||z — y||s < ||z, y||p, one has
ly, @llp ~ ||z, y||p. As a consequence, we obtain as in the proof of Theorem 5.12

(g (Tgy f@W) — FA)(DIKA@, )| S Ml gl 57 o — yl[7~ 200 mc=m
<y

Furthermore, since 27" < ||z, y|| p, we obtain as in (6.6) the bound
|y @) = RFDIKn(@, )| S 21070y [

The rest of the argument is then again exactly the same as for Theorem 5.12. The
corresponding bounds on the distance between /C,, f and KC,, f follows analogously.
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It remains to consider the case 27" > 1|z, y|| p. In this case, we proceed as before
but, in order to bound the term involving IL, f(y) — R f, we simply use the triangle
inequality to rewrite it as

(I f ) = R (2| < 1My fe) (KR )|+ (R (KR,

We then use again the representation (5.28) for K*:7 . together with the bounds

n;xy’

(RF) (DMK (3, )| < 20k+ta=B—(@nmn
(I, f@) (DY K@) £ D [lyllp e 02kt mimon,

a<(<y

Here, the first bound is a consequence of the reconstruction theorem for singular
modelled distributions, while the second bound follows from Definition 6.2. Since

2(“‘7"!‘2'5_5_(05/\77))” S 2(|k+€\5—6—a)n + 2(“‘7"!‘[‘5_5_77)71 ,

and since 7 € [a, ) by assumption, we see that the first bound is actually of the same
form as the second, so that

(0, f) ~ RADE @) S S [yl 9N0ktle=s=om
a<(<y

where the sum runs over finitely many terms. Performing the integration in (5.28) and
using the bound (5.31), we conclude that
(1L, /() = R KR, S Z e — ylIi™ [l y| OOk Om

n;zry

where we used the fact that ||y||p ~ ||z, y||p. Here, the sum runs over exponents ¢ as
before and multiindices ¢ such that |k + ¢|s > 5 + 7. Summing this expression over the
relevant range of values for n, we have

L) s (MAO+B—|k+L]s
Y @ fe) - R Ks;y|<2\\x—yu"||xy||"< s

27" 2|lzsyllp

+B—|k Na)—
< ||x—y||z Polble 1z, g o=

where we used the fact that ||z — y||s < ||z, y|| p to obtain the second bound. Again,
the corresponding bounds on the distance between K, f and K, f follow analogously,
thus concluding the proof. O

Remark 6.17 The condition o A 7 > —m is only required in order to be able to apply
Proposition 6.9. There are some situations in which, even though o A n < —m, there
exists a canonical element R f € C&"*" extending R f. In such a case, Proposition 6.16
still holds and the bound (6.20) holds provided that the corresponding bound holds for
Rf—TRSf.

7 Solutions to semilinear (S)PDEs

In order to solve a typical semilinear PDE of the type

Ou = Au + F(u) , u(0) = ug ,
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a standard methodology is to rewrite it in its mild form as
t
) = S(tua + [ S(t— 9Fa(s)ds
0

where S(t) = e is the semigroup generated by A. One then looks for some family of
spaces X7 of space-time functions (with X7 containing functions up to time 7") such
that the map given by

t
(Mu)(t) = St)up + / St — s)F(u(s))ds ,
0

is a contraction in X7, provided that the terminal time 7" is sufficiently small. (As soon
as F' is nonlinear, the notion of “sufficiently small” typically depends on the choice of
U, thus leading to a local solution theory.) The main step of such an argument is to
show that the linear map S given by

t
(Sv)(t) = / St — s)v(s)ds,
0

can be made to have arbitrarily small norm as 7" — 0 as a map from some suitable space
Yr into X'y, where YV is chosen such that F' is then locally Lipschitz continuous as a
map from X7 to YVr, with some uniformity in T’ € (0, 1], say.

The aim of this section is to show that, in many cases, this methodology can still
be applied when looking for solutions in D} for suitable exponents ~ and 7, and for
suitable regularity structures allowing to formulate a fixed point map of the type of
M. At this stage, all of our arguments are purely deterministic. However, they rely
on a choice of model for the given regularity structure one works with, which in many
interesting cases can be built using probabilistic techniques.

7.1 Short-time behaviour of convolution kernels

From now on, we assume that we work with d — 1 spatial coordinates, so that the
solution u we are looking for is a function on RY. (Or rather a subset of it.) In order to
be able to reuse the results of Section 5, we also assume that S(t) is given by an integral
operator with kernel G(¢, -). For simplicity, assume that the scaling s and exponent 3 are
such that, as a space-time function, GG furthermore satisfies the assumptions of Section 5.
(Typically, one would actually write G = K + R, where R is smooth and a K satisfies
the assumptions of Section 5. We will go into more details in Section 8 below.) In this
section, time plays a distinguished role. We will therefore denote points in R either by
(t,z) witht € Rand 2 € R¥ ! or by z € RY, depending on the context.

In our setting, we have so far been working solely with modelled distributions
defined on all of RY, so it not clear a priori how a map like S should be defined when
acting on (possibly singular) modelled distributions. One natural way of reformulating
it is by writing

Sv=Gx* (R, (7.1)

where R™: R x R¥™! — Ris given by R"(t,z) = 1 fort > 0 and R (t,z) = 0
otherwise.

From now on, we always take P C R? to be the hyperplane defined by “time 07,
namely P = {(¢,z) : t = 0}, which has effective codimension m = s;. We then note
that the obvious interpretation of R as a modelled distribution yields an element of
D3>, whatever the details of the underlying regularity structure. Indeed, the second
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term in (6.2) always vanishes identically, while the first term is non-zero only for ¢ = 0,
in which case it is bounded for every choice of 7. It then follows immediately from
Proposition 6.12 that the map v — R™ v is always bounded as a map from D) into
D). Furthermore, this map does not even rely on a choice of product, since R"is
proportional to 1, which is always neutral for any product.

In order to avoid the problem of having to control the behaviour of functions at
infinity, we will from now on assume that we have a symmetry group . acting on R?
in such a way that

e The time variable is left unchanged in the sense that there is an action T of .7
on R?™! such that Ty (t, z) = (t, T, ).

e The fundamental domain & of the action 7T is compact in R4~

We furthermore assume that . acts on our regularity structure .7 and that the model
(II,T) for 7 is adapted to its action. All the modelled distributions considered in
the remainder of this section will always be assumed to be symmetric, and when we
write D7, D}, etc, we always refer to the closed subspaces consisting of symmetric
functions.

One final ingredient used in this section will be that the kernels arising in the context
of semilinear PDEs are non-anticipative in the sense that

t<s = K(tuz),(s,y)=0.

We furthermore use the notations O = [—1, 2] X R ' and O = (—o0, T X R
Finally, we will use the shorthands || - ||, as a shorthand for || - || .0, and similarly
for || - ||;z- The backbone of our argument is then provided by Proposition 3.31 which
guarantees that one can give bounds on K, f on O, solely in terms of the behaviour of
fonOr.

With all of these preliminaries in place, the main result of this subsection is the
following.

Theorem 7.1 Let v > 0 and let K be a non-anticipative kernel satisfying Assump-
tions 5.1 and 5.4 for some B > 0 and r > v+ [3. Assume furthermore that the regularity
structure J comes with an integration map T of order 3 acting on some sector V of
regularity o > —s1 and assume that the models Z = (11,1") and Z = (IL,T) both
realise K for T on' V. Then, there exists a constant C such that, for every T € (0, 1],
the bounds

I B Flyap.r < CT* | flly e
Iy B £ Ko B fllypar < CT* (I Fllyr + 12, Zlvi0)

hold, provided that f € D}"(V;T) and f € DL"(V;T) for some n > —s;. Here, 7
and k are such thatn = M N a)+ B — kand k > 0.

In the first bound, the proportionality constant depends only on || Z||.0, while in
the second bound it is also allowed to depend on || f||-.n.t + || f]

One of main ingredients of the proof is the fact that (}C, Ry f)(¢, z) is well-defined
using only the knowledge of f up to time ¢. This is a consequence of the following
result, which is an improved version of Lemma 6.7.

|%n;T-
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Proposition 7.2 In the setting of Lemma 6.7, and assuming that p(0) # 0, one has the
improved bound

(R~ TLf@)@) SN sup  sup D Lo/ Wle
y,zEsupp P £<y |z — ?JH;Y

: (7.2)

where the proportionality constant is as in Lemma 6.7.

Proof. Since the statement is linear in f, we can assume without loss of generality that
the right hand side of (7.2) is equal to 1. Let ¢ be the scaling function of a wavelet basis
of R? and let ¢! be defined by

Pp(z) = (S "z — ) .

Note that this is slightly different from the definition of the ¢;-* in Section 3.1! The
reason for this particular scaling is that it ensures that yEAS ¢y (2) = 1. Again, we
have coefficients aj such that, similarly to (3.13),

PR =D a2
kel

for some finite set K C Zd, and this time our normalisation ensures that » keic Ak = 1.
For every n > 0, define

Ay ={y € A3 : suppyy Nsupp ey # 0},

and, for any y € AY, we denote by y|,, some point in the intersection of these two
supports. There then exists some constant C' depending only on our choice of scaling
function such that ||y — y|,|ls < C27™. Let now R,, be defined by

R, Y (R~ fyl))@del)
yeAY

and let ng be the smallest value such that 270 < A. It is then straightforward to see
that one has

[(Rf =T f(2)(¥)2) — Ry | :] > ([ f@) =Ty, fl)@Rem| S A . (7.3)

yEAY,

Furthermore, using as in Section 3.1 the shortcut z = y 4+ 27"k, one then has for every
n > 1 the identity

Roov= Y Y an(Rf =Ty, fWln-1))@3e7)

yEAf_l ke
= > > a(Rf — 1Ly, fGl)) @t
yeAi}—l kel
+ Y0 ar(y, fGln) = Ty, fl 1)) (@207
yeA:ﬁf—l ke

=Ru+ Y Y ar(lly, fzln) =y, f@la-1))@0el) . (14)

yeAZ:l ke
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Note now that, in (7.4), one has ||z, — y|n_1]ls < C27" for some constant C. It
furthermore follows from the scaling properties of our functions that if n > ny and
7 € Ty with ||7]| = 1, one has

(L, 7) (@2 ™) < A~ lslg—tn—lsin

with a proportionality constant that is uniform over all y and z such that ||y — z||s <
C2™". Asa consequence, each summand in the last term of (7.4) is bounded by some
fixed multiple of A~15/2=77~IsI" Since furthermore the number of terms in this sum is
bounded by a fixed multiple of 2"\l this yields the bound

|Rp—1— Ry 52777 (7.5)

Finally, writing .S,, (1) for the 2~"-fattening of the support of 1/, we see that, as a
consequence of Lemma 6.7 and using a similar argument to what we have just used to
bound R,,_1 — R,,, one has

[Rnl <277/

Y3Sn (@) -

This is the only time that we use information on f (slightly) away from the support
of %;\- This however is only used to conclude that lim,,_, ., |R,,| = 0, and no explicit
bound on this rate of convergence is required. Combining this with (7.5) and (7.3), the
stated bound follows. O

Proof of Theorem 7.1. First of all, we see that, as a consequence of Proposition 7.2, we
can exploit the fact that K is non-anticipative to strengthen (6.20) to

”VC“/f; ’@f"le 5 H|f» f”I’Yﬂ];T + ||H - ﬁ”v;O + ||F - f‘||’7;0 > (7.6)

in the particular case where furthermore f(t, ) = 0 for ¢ < 0 and similarly for f. Of
course, a similar bound also holds for ||, f|l5,7.7-

The main ingredient of the proof is the following remark. Since, provided that
n > —s1, we know that RR™ f € C2"" by Proposition 6.9, it follows that the quantity

Z / D¥K(z,2)(RRY f)(2)dz ,
Rd

is continuous as soon as |k|s; < (o A7) + (. Furthermore, since K is non-anticipative
and RR™ f = 0 for negative times, this quantity vanishes there.

As a consequence, we can apply Lemma 6.5 which shows that the bound (7.6) can
in this case be strengthened to the additional bounds

1K R e _

sup sup — Sl
z€0T L<y+pB ||z||(}§/\a)+’8 ¢ o
||’C7R+JC(2) - ’CWR+JF(Z)||Z 7 >
sup  sup — S W flymr 12, Zllyio -
2607 £<y+8 [|z||@rer+h=¢ vn K

Since, for every z,Z € O, one has ||z||p < T"/* as well as ||z, Z|| p < T"/**, we can
combine these bounds with the definition of the norm || - ||+ 3,77 to show that one has

IR s st S T N f Wy

and similarly for ||, R* f; K, R" f||+p.5.7, thus concluding the proof. O
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In all the problems we consider in this article, the Green’s function of the linear part
of the equation, i.e. the kernel of L~ where £ is as in (1.2), can be split into a sum
of two terms, one of which satisfies the assumptions of Section 5 and the other one of
which is smooth (see Lemma 5.5). Given a smooth kernel R : R? x R? — R that is
supported in {(z,2) : ||z — Z||s < L} for some L > 0, and a regularity structure .7/
containing .7; 4 as usual, we can define an operator R, : C¥ — D7 by

Xk
(RO = > o /R DFR(z, €@ dz. .7

[kls <y

(As usual, this integral should really be interpreted as £(D¥ R(z, -)), but the above
notation is much more suggestive.) The fact that this is indeed an element of D7 is
a consequence of the fact that R is smooth in both variables, so that it follows from
Lemma 2.12. The following result is now straightforward:

Lemma 7.3 Let R be a smooth kernel and consider a symmetric situation as above. If
furthermore R is non-anticipative, then the bounds

H|R’Y7E)’R+f_”|7+ﬁﬁ§T < CT'”f”|%1]%T ’ -
IR RR" f; RyRRY flloip.mr < CT(If; fllynir + 125 Zl0) s

holds uniformly over all T' < 1.

Proof. Since R is assumed to be non-anticipative, one has (Rﬂ%RJr £, z) = 0 for
every t < 0. Furthermore, the map (¢, ) — (RVRRJr f)(t, x) is smooth (in the classical
sense of a map taking values in a finite-dimensional vector space!), so that the claim
follows at once. Actually, it would even be true with 7" replaced by an arbitrarily large
power of T in the bound on the right hand side. 0

7.2 The effect of the initial condition

One of the obvious features of PDEs is that they usually have some boundary data. In
this article, we restrict ourselves to spatially periodic situations, but even such equations
have some boundary data in the form of their initial condition. When they are considered
in their mild formulation, the initial condition enters the solution to a semilinear PDE
through a term of the form S(¢)ug for some function (or distribution) uy on R 'and S
the semigroup generated by the linear evolution.

All of the equations mentioned in the introduction are nonlinear perturbations of the
heat equation. More generally, their linear part is of the form

L=0-Q(\Vy),

where @ is a polynomial of even degree which is homogeneous of degree 2¢g for some
scaling s on RY™! and some integer ¢ > 0. (In our case, this would always be the
Euclidean scaling and one has ¢ = 1.) In this case, the operator L itself has the property
that

LS p =648 Lyp . (7.8)

where s is the scaling on R? = R x R%! given by s = (2¢,5). Denote by G the
Green’s function G of £ which is a distribution satisfying LG = dy in the distributional
sense and G(z,t) = 0 for t < 0. Assuming that £ is such that these properties define G
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uniquely (which is the case if £ is hypoelliptic), it follows from (7.8) and the scaling
properties of the Dirac distribution that G has exact scaling property

G(S822) = 6F1G(2) , (7.9)

which is precisely of the form (5.7) with 8 = 2¢. Under well-understood assumptions
on @, L is known to be hypoelliptic [Hor55], so that its Green’s function G is smooth.
In this case, the following lemma applies.

Lemma 7.4 If G satisfies (7.9), is non-anticipative, and is smooth then there exists a
smooth function G : R? — R such that one has the identity

|5 1/2q

Gty =t 21 (St o), (7.10)

and such that, for every (d — 1)-dimensional multiindex k and every n > 0, there exists
a constant C' such that the bound

IDFGy) < CA+ [y, (7.11)
holds uniformly over y € R4

Proof. The existence of G such that (7.10) holds follows immediately from the scaling
property (7.9). The bound (7.11) can be obtained by noting that, since G is smooth off
the origin and satisfies G(x,t) = 0 for ¢ < 0, one has, for every n > 0, a bound of the
type

|DEG(, D] St (7.12)

uniformly over all z € R4~ with ||z||s = 1. It follows from (7.10) that

[5]+1kls

DFG(a,t) =t 20 = (DFG) (S 2) .

Setting y = St'/* 2 and noting that ||y||s = 1/t'/27 if ||z||s = 1, it remains to combine
this with (7.12) to obtain the required bound. O

Given a function (or distribution) ug on R% ! with sufficiently nice behaviour at
infinity, we now denote by Guy its “harmonic extension”, given by

(Guo)(z,t) = Gz —y,Huo(y)dy . (7.13)

Rd—1

(Of course this is to be suitably interpreted when w is a distribution.) This expression
does define a function of (¢, x) which, thanks to Lemma 7.4, is smooth everywhere
except att = 0. As in Section 2.2, we can lift Gug at every point to an element of the
model space T' (provided of course that .7; s C .7 which we always assume to be the
case) by considering its truncated Taylor expansion. We will from now on use this point
of view without introducing a new notation.

We can say much more about the function Gug, namely we can find out precisely
to which spaces D}," it belongs. This is the content of the following Lemma, variants
of which are commonplace in the PDE literature. However, since our spaces are not
completely standard and since it is very easy to prove, we give a sketch of the proof
here.
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Lemma 7.5 Let uy € C?(Rd_l) be periodic. Then, for every a € N, the function
v = Guyg defined in (7.13) belongs to D} for every v > (a V 0).

Proof. We first aim to bound the various directional derivatives of v. In the case o < 0,
it follows immediately from the scaling and decay properties of (G, combined with the
definition of C¢* that, for any fixed (¢, =), one has the bound

|(Guo)(z, 1) S t2,

valid uniformly over z (by the periodicity of ug) and over ¢ € (0, 1]. As a consequence
(exploiting the fact that, as an operator, G commutes with all spatial derivatives and that
one has the identity 9;Guy = Q(V)Guyg), one also obtains the bound

a—lkls

|(D*Guo)(@, )| St 2, (7.14)

where k is any d-dimensional multiindex (i.e. we also admit time derivatives).

For ac > 0, we use the fact that elements in C¢* can be characterised recursively as
those functions whose kth distributional derivatives belong to Cy' ~IKls 1t follows that
the bound (7.14) then still holds for |k|s > «, while one has |(D*Gug)(z,t)| < 1 for
|k|s < . This shows that the first bound in (6.2) does indeed hold for every integer
value ¢ as required.

In this particular case, the second bound in (6.2) is then an immediate consequence
of the first by making use of the generalised Taylor expansion from Proposition A.1.
Since the argument is very similar to the one already used for example in the proof of
Lemma 5.18, we omit it here. O

Starting from a Green’s function G as above, we would like to apply the theory
developed in Section 5. From now on, we will assume that we are in the situation where
we have a symmetry given by a discrete subgroup . of the group of isometries of
R with compact fundamental domain K. This covers the case of periodic boundary
conditions, when . is a subgroup of the group of translations, but it also covers
Neumann boundary conditions in the case where . is a reflection group.

Remark 7.6 One could even cover Dirichlet boundary conditions by reflection, but
this would require a slight modification of Definition 3.33. In order to simplify the
exposition, we refrain from doing so.

To conclude this subsection, we show how, in the presence of a symmetry with
compact fundamental domain, a Green’s function G as above can be decomposed in a
way similar to Lemma 5.5, but such that R is also compactly supported. We assume
therefore that we are given a symmetry . acting on RY~! with compact fundamental
domain and that G respects this symmetry in the sense that, for every g € . acting on
RY~! via an isometry Ty: x — Agx + by, one has the identity G(t, ) = G(t, A4z).
We then have the following result:

Lemma 7.7 Let G and . be as above. Then, there exist functions K and R such that
the identity
(G*u)(2) = (K *u)(2) + (R*u)(2), (7.15)

holds for every symmetric function u supported in R4 X R and every z € (—oo, 1] %
RN

Furthermore, K is non-anticipative and symmetric, and satisfies Assumption 5.1
with 8 = 2q, as well as Assumption 5.4 for some arbitrary (but fixed) value r. The
function R is smooth, symmetric, non-anticipative, and compactly supported.
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Proof. 1t follows immediately from Lemmas 5.5 and 5.24 that one can write
G=K+R,

where K has all the required properties, and R is smooth, non-anticipative, and sym-
metric. Since u is supported on positive times and we only consider (7.15) for times
t < 1, we can replace R by any function R which is supported in {(¢,z) : t < 2} say,
and such that R(t, ) = R(t, z) for t < 1.

It remains to replace R by a kernel R which is compactly supported. It is well-known
[Biell, Biel2] that any crystallographic group .# can be written as the skew-product
of a (finite) crystallographic point group ¢ with a lattice I of translations. We then fix a
function : R¥™! — [0, 1] which is compactly supported in a ball of radius C, around
the origin and such that ) 7, _\ ¢(z + k) = 1 for every z. Since elements in ¢ leave
the lattice A invariant, the same property holds true for the maps = — @(Azx) for every
AcY.

It then suffices to set

1 ~
R(t,z) = @l > Y Rtz + k)p(Az) .

AcY ke

The fact that R is compactly supported follows from the same property for ¢. Fur-
thermore, the above sum converges to a smooth function by Lemma 7.4. Also, using
the fact that v is invariant under translations by elements in A by assumption, it is
straightforward to verify that R * u = R * u as required. Finally, for any Ay € ¢, one
has

1

R(t, Apgx) = ? Z Z R(t, Aoz + k)p(AAo)
| |Ae%kEA
1 ~
= > R(t, Ao + k)p(Ax)
| |Ae%keA
= o 3 S Rt 4 bp(An) = Rit,)
91 i

so that R is indeed symmetric for .. Here, we first exploited the fact that elements of
% leave the lattice A invariant, and then used the symmetry of R. O

7.3 A general fixed point map

We have now collected all the ingredients necessary for the proof of the following result,
which can be viewed as one of the main abstract theorems of this article. The setting for
our result is the following. As before, we assume that we have a crystallographic group
& acting on R?!. We also write RY = R x Rd_l, endow R? with a scaling s, and
extend the action of .# to R? in the obvious way. Together with this data, we assume
that we are given a non-anticipative kernel G : R? \ 0 — R that is smooth away from
the origin, preserves the symmetry ., and is scale-invariant with exponent 3 — |s| for
some fixed 8 > 0.

Using Lemma 7.7, we then construct a singular kernel K and a smooth compactly
supported function R on R? such that (7.15) holds for symmetric functions w that are
supported on positive times. Here, the kernel K is assumed to be again non-anticipative
and symmetric, and it is chosen in such a way that it annihilates all polynomials of
some arbitrary (but fixed) degree > 0. We then assume that we are given a regularity
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structure .7 containing 75 ¢ such that .% acts on it, and which is endowed with an
abstract integration map Z of order 2¢q € N. (The domain of Z will be specified later.)
We also assume that we have abstract differentiation maps 2; which are covariant with
respect to the symmetry . as in Remark 5.30. We also denote by .#7, the set of
all models for 7 which realise K on 7, . As before, we denote by K., the concrete
integration map against K acting on D” and constructed in Section 5, and by R, the
integration map against R constructed in (7.7).

Finally, we denote by P = {(t,z) € RxR*™" : ¢t = 0} the “time 0” hyperplane and
we consider the spaces D}, as in Section 6. Giveny > 4 > 0,amap F': R%x T, — Ty,
and amap f: R? — T,, we denote by F'(f) the map given by

def

(F(H)(2) = F(z, f(2)) . (7.16)

If it so happens that, via (7.16), F' maps D}, into D;’ﬁ for some 7,77 € R, we say that
F'is locally Lipschitz if, for every compact set & C R and every R > 0, there exists a
constant C' > 0 such that the bound

IFCH = F(g)l

holds for every f,g € DF" with || f[l+.m:8 + llglly,ns < R. as well as for all models Z
with || Z||4;5 < R. We also impose that the similar bound

1F) = F@lsme < CLf —glyms - (7.17)

s < CIf = gllyms s

holds.
We say that it is strongly locally Lipschitz if furthermore

17 E@lls.ms < CUF: gllyvms + 12 = Z1:5) -

for any two models Z, Z with | Z||.,.z + | Z]l.,.z < R, where this time f € D}"(2),
g € DF(Z), and £ denotes the 1-fattening of £. Finally, given an open interval I C R,
we use the terminology

113 29

u=Kyv on I

to mean that the identity u(¢, z) = (K,v)(¢, z) holds for every t € I and x € R, and
that for those values of (¢, z) the quantity (K, v)(¢, z) only depends on the values v(s, y)
fors € Jandy € R L.

With all of this terminology in place, we then have the following general result.

Theorem 7.8 Let V and V' be two sectors of a regularity structure 7 with respective
regularities (,( € R with ( < ( + 2q. In the situation described above, for some
v >4 > 0and somen € R, let F': R? x Vy — V”y be a smooth function such that,
if f € DE" is symmetric with respect to ., then F(f), defined by (7.16), belongs to
D" and is also symmetric with respect to .. Assume furthermore that we are given
an abstract integration map L as above such that Q- IV C V.

Ifn < (@A) +2¢ v <73+2q (7AC) > —2q, and F is locally Lipschitz then, for
every v € D" which is symmetric with respect to .5, and for every symmetric model
7 = (IL,T) for the regularity structure 7 such that T is adapted to the kernel K, there
exists a time T > 0 such that the equation

u=(Ks+R,R)R"F(u)+v, (7.18)
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admits a unique solution uw € D}Y" on (0,T). The solution map St: (v, Z) — u is
Jjointly continuous in a neighbourhood around (v, Z) in the sense that, for every fixed v
and Z as above, as well as any € > 0, there exists 0 > 0 such that, denoting by u the
solution to the fixed point map with data v and Z, one has the bound

[l @llymir < €,

provided that || Z; Z]0 + 03 9l iz < 6.

If furthermore F is strongly locally Lipschitz then the map (v, Z) — wu is jointly
Lipschitz continuous in a neighbourhood around (v, Z) in the sense that 6 can locally
be chosen proportionally to ¢ in the bound above.

Proof. We first consider the case of a fixed model Z = (IL, I), so that the space D}5"
(defined with respect to the given multiplicative map I') is a Banach space. In this case,
denote by M%(u) the right hand side of (7.18). Note that, even though MIZp appears
not to depend on Z at first sight, it does so through the definition of XC5.

It follows from Theorem 7.1 and Lemma 7.3, as well as our assumptions on the
exponents v, 7, 17 and 7] that there exists £ > 0 such that one has the bound

|||M1Z?(U) - Mg(a)m%n;T ST F(uw) — F(ﬂ)M%ﬁ;T .

It follows from the local Lipschitz continuity of F' that, for every R > 0, there exists a
constant C' > 0 such that

‘”M%(U) - M%(Q)HHW;T < CT"||u — am%n;T >

uniformly over T € (0, 1] and over all w and @ such that |[ully,,7 + [|@]y.nr < R.
Similarly, for every R > 0, there exists a constant C' > 0 such that one has the bound

IMZ )|

v < CT™ + o)y st -

As a consequence, as soon as ||v||, . is finite and provided that T" is small enough
MZ maps the ball of radius ||v||,,. + 1 in D}5" into itself and is a contraction there,
so that it admits a unique fixed point. The fact that this is also the unique global fixed
point for MZ% follows from a simple continuity argument similar to the one given in the
proof of Theorem 4.8 in [Hail3].

For a fixed model Z, the local Lipschitz continuity of the map v +— u for sufficiently
small 7" is immediate. Regarding the dependency on the model Z, we first consider the
simpler case where F' is assumed to be strongly Lipschitz continuous. In this case, the
same argument as above yields the bound

lME () ME@ ir < CT™ (s @llynr + 125 Z]lc0) -

so that the claim follows at once.

It remains to show that the solution is also locally uniformly continuous as a function
of the model Z in situations where F' is locally Lipschitz continuous, but not in the
strong sense. Given a second model Z = (II, T'), we denote by @ the corresponding
solution to (7.18). We assume that Z is sufficiently close to Z so that both M% and
M% are strict contractions on the same ball. We also use the shorthand notations
u™ = (M%)"(0) and u™ = (M%)"(0). Using the strict contraction property of the
two fixed point maps, we have the bound

flu — a“%n;T S lu— “(n)”%n;T + ||u(n) - a(n)“%n;T + ||ﬁ(n) - ﬂ”%n;T
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So"+ Hu(n) - a(n)ﬂ'y,n;T >

for some constant ¢ < 1. As a consequence of Lemma 6.5, Lemma 6.6, (7.17),
Proposition 6.16, and using the fact that there is a little bit of “wiggle room” between y
and 4 + 2¢, we obtain the existence of a constant x > 0 such that one has the bound

[lu(n) - ﬂ(n)ﬂy,n;T 5 |||MJZ?(U(n71))§M%(ﬂ(nil))”%n;T
SIF@" D) F@™ ™ Ny —war + 125 Zllyo
s UF(U(H_D) - F(ﬁ("_l))ﬂ%‘,m + IHZ; Z|||7;O
S Ju™ ™ = a5+ 125 2o

~

uniformly in n. By making 7" sufficiently small, one can furthermore ensure that the
proportionality constant that in principle appears in this bound is bounded by 1. Since

u? = @0, we can iterate this bound 7 times to obtain

™ = @l e S12; 2150

with a proportionality constant that is bounded uniformly in n. Setting ¢ = || Z; Z|| .0,
a simple calculation shows that the term " and the term £*" are of (roughly) the same
order when n ~ loglog ™!, which eventually yields a bound of the type

|—V

ll; ﬂm’ym;T < llog || Z; Z\Ilw;o

i

for some exponent v > 0, uniformly in a small neighbourhood of any initial condition
and any model Z. While this bound is of course suboptimal in many situations, it
is sufficient to yield the joint continuity of the solution map for a very large class of
nonlinearities. O

Remark 7.9 The condition (77 A {) > —2q is required in order to be able to apply
Proposition 6.16. Recall however that the assumptions of that theorem can on occasion
be slightly relaxed, see Remark 6.17. The relevant situation in our context is when F'
can be rewritten as F'(z,u) = Fy(z,u) + F1(2), where Fj satisfies the assumption of
our theorem, but F; does not. If we then make sense of (K5 + R.Y’R)RJFF 1 “by hand”
as an element of D" and impose sufficient restrictions on our model Z such that this
element is continuous as a function of Z, then we can absorb it into v so that all of our
conclusions still hold.

Remark 7.10 In many situations, the map F" has the property that
Qiiog™=9i2,T = Qi Fz1) =09, F(z17). (7.19)

Denote as before by 7' C T the sector spanned by abstract polynomials. Then, provided
that (7.19) holds, for every z € R? and every v € T, the equation

T = Q;(IF(Z,T)—&—U) ,

admits a unique solution §(z,v) in V. Indeed, it follows from the properties of the
abstract integration map Z, combined with (7.19), that there exists n > 0 such that the
map F, ,: 7+ Q7 (ZF(z,7) + v) has the property that szl(T) = F, (7).

It then follows from the definitions of the operations appearing in (7.21) that, if we
denote by Qu the component of « in T', one has the identity

u(t, z) = F((t, ), Qut,x)),  t€ (0,11, (7.20)
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for the solution to our fixed point equation (7.21). In other words, if we interpret
the Qu(t, x) as a “renormalised Taylor expansion” for the solution u, then any of the
components Q-u(t, x) is given by some explicit nonlinear function of the renormalised
Taylor expansion up to some order depending on (. This fact will be used to great effect
in Section 9.3 below.

Before we proceed, we show that, in the situations of interest for us, the local
solution maps built in Theorem 7.8 are consistent. In other words, we would like to be
able to construct a “maximal solution” by piecing together local solutions. In the context
considered here, it is a priori not obvious that this is possible. In order to even formulate
what we mean by such a statement, we introduce the set P, = {(s,y) : s = t} and
write R, for the indicator function of the set {(s,y) : s > t}, which we interpret as
before as a bounded operator from ’D]);n into itself for any v > 0 and € R.

From now on, we assume that G is the parabolic Green’s function of a constant
coefficient parabolic differential operator £ on R?~!. In this way, for any distribution
Ug on Rdil, the function v = Gug defined as in Lemma 7.5 is a classical solution to the
equation Jyv = Lo for t > 0. We then consider the class of equations of the type (7.18)
with v = Gug, for some function (or possibly distribution) ug on R?~!. We furthermore
assume that the sector V' is function-like. Recall Proposition 3.28, which implies that
any modelled distribution u with values in V' is such that Ru is a continuous function
belonging to Cf for some 8 > 0. In particular, (Ru)(t, -) is then perfectly well-defined
as a function on R?~! belonging to c§ . We then have the following result:

Proposition 7.11 In the setting of Theorem 7.8, assume that { = 0 and —s1 < n < (8
withn & N and 3 as above. Let ug € CIR?™Y) be symmetric and let T > 0 be
sufficiently small so that the equation

u= (K5 + R,R)R"F(u) + Gug , (7.21)

admits a unique solution uw € D}" on (0,T). Let furthermore s € (0,T) and T > T be
such that
i = (K5 + R,R)R F(u) + Gus ,
where ug = (Ru)(s, -), admits a unique solution i € Dy on (s, ).
Then, one necessarily has u(t, x) = u(t, x) for every x € Rt and everyt € (s,T).
Furthermore, the element 4. € D" defined by u(t, x) = u(t, z) for t < s and u(t, z) =
U(t, x) for t > s satisfies (7.21) on (0, T).

Proof. Settingv = R u € Dv;", it follows from the definitions of 5 and R, that one
has for ¢ € (s,T7] the identity

t
<17 ’U(t, $)> = / G(t - Tr,T— y)(RF(U))(T7 l/) dy d’l"
0 JR-1

+ G(t, v — yuo(y) dy
Rd—l

t
_ / / G(t — @ — ) (RF))(r, ) dy dr
s Rd-1

+ / Gt — s,z —yus(y dy .
Rd—l
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Here, the fact that there appears no additional term is due to the fact that f > —2g,
so that the term (1, 7 (¢, )(F(u)(t, x))) cancels exactly with the corresponding term
appearing in the definition of A5. This quantity on the other hand is precisely equal to

(1,((K5 + R,R)RI F(v) + Gus)(t, z)) .

Setting
w= (K5 + RyR) R F(v) + Gus ,

we deduce from the definitions of the various operators appearing above that, for
¢ € N, one has Qw(z) = QyZF(z,v(z)). However, we also know that v satisfies
Quu(z) = QuIZF(z,v(z)). We can therefore apply Proposition 3.29, which yields the
identity w = v, from which it immediately follows that v = @ on (0, T)).

The argument regarding 4 is virtually identical, so we do not reproduce it here. [

This shows that we can patch together local solutions in exactly the same way as
for “classical” solutions to nonlinear evolution equations. Furthermore, it shows that
the only way in which local solutions can fail to be global is by an explosion of the
CZ-norm of the quantity (Ru)(t, -). Furthermore, since the reconstruction operator R is
continuous into cg , this norm is continuous as a function of time, so that for any cut-off
value L > 0, there exists a (possibly infinite) first time ¢ at which ||u(t, )|, = L.

Given a symmetric model Z = (I, ") for .7, a symmetric initial condition uy € Cg,
and some (typically large) cut-off value L > 0, we denote by u = ST (ug, Z) € D"
and T = T (ug, Z) € Ry U {400} the (unique) modelled distribution and time such
that

u=(K5+ Rﬂ%)R*'F(u) + Guyg ,
on [0, T, such that ||(Ru)(t,-)||, < L fort < T, and such that ||(Ru)(t, )|, > L for
t > T. The following corollary is now straightforward:

Corollary 7.12 Let L > 0 be fixed. In the setting of Proposition 7.11, let S* and T"
be defined as above and set O = [—1,2] x R, Then, for everye > 0and C' > 0
there exists § > 0 such that, setting T = 1 AT (ug, Z) NT (g, Z), one has the bound

||SL(u0, Z) - SL(EO, Z)”'y,n;T <eg,

for all ug, To, Z, Z such that 1Z]l+.0 <C,
o — ol < 6. and |1; Zllr,o < 6.

Z|

v;0 < C,

UOHU <L/2

ﬂOHn < L/2,

Proof. The argument is straightforward and works in exactly the same way as analogous
statements in the classical theory of semilinear PDEs. The main ingredient is the fact
that for every ¢ > 0, one can obtain an a priori bound on the number of iterations
required to reach the time ¢ A T (ug, 2). O

8 Regularity structures for semilinear (S)PDEs

In this section, we show how to apply the theory developed in this article to construct an
abstract solution map to a very large class of semilinear PDEs driven by rough input
data. Given Theorem 7.8, the only task that remains is to build a sufficiently large
regularity structure allowing to formulate the equation.

First, we give a relatively simple heuristic that allows one to very quickly decide
whether a given problem is at all amenable to the analysis presented in this article. For
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the sake of conciseness, we will assume that the problem of interest can be rewritten as
a fixed point problem of the type

w=K * F(u,Vu, &) + g , 8.1)

where K is a singular integral operator that is S-regularising on R? with respect to some
fixed scaling s, F' is a smooth function, £ denotes the rough input data, and g describes
some initial condition (or possibly boundary data). In general, one might imagine that
F also depends on derivatives of higher order (provided that S is sufficiently large) and
/ or that F itself involves some singular integral operators. We furthermore assume that
F is affine in £. (Accommodating the general case where F' is polynomial in £ would
also be possible with minor modifications, but we stick to the affine case for ease of
presentation.)

It is also straightforward to deal with the situation when F' is non-homogeneous in
the sense that it depends on the (space-time) location explicitly, as long as any such
dependence is sufficiently smooth. For the sake of readability, we will refrain from
presenting such extensions and we will focus on a situation which is just general enough
to be able to describe all of the examples given in the introduction.

Remark 8.1 In all the examples we are considering, K is the Green’s function of some
differential operator £. In order to obtain optimal results, it is usually advisable to fix
the scaling s in such a way that all the dominant terms in £ have the same homogeneity,
when counting powers with the weights given by s.

Remark 8.2 We have seen in Section 7.1 that in general, one would really want to
consider instead of (8.1) fixed point problems of the type

u= ((K+ R)* (R"F(u,Vu,&))) + o , (8.2)

where R denotes again the characteristic function of the set of positive times and R is
a smooth non-anticipative kernel. However, if we are able to formulate (8.1), then it is
always straightforward to also formulate (8.2) in our framework, so we concentrate on
(8.1) for the moment in order not to clutter the presentation.

Denoting by @ < 0 the regularity of £ and considering our multi-level Schauder
estimate, Theorem 5.12, we then expect the regularity of the solution u to be of order at
most 3 + a, the regularity of Vu to of order at most 5 + « — 1, etc. We then make the
following assumption:

Assumption 8.3 (local subcriticality) In the formal expression of F, replace £ by a
dummy variable =. For any i € {1,...,d}, if B + a < s;, then replace furthermore
any occurrence of O;u by the dummy variable P;. Finally, if 8 + o < 0, replace any
occurrence of u by the dummy variable U.

We then make the following two assumptions. First, we assume that the resulting
expression is polynomial in the dummy variables. Second, we associate to each such
monomial a homogeneity by postulating that = has homogeneity o, U has homogeneity
B+ «, and P; has homogeneity 8+ « — s;. (The homogeneity of a monomial then being
the sum of the homogeneities of each factor.) With these notations, the assumption of
local subcriticality is that terms containing E do not contain the dummy variables and
that the remaining monomials each have homogeneity strictly greater than c.



REGULARITY STRUCTURES FOR SEMILINEAR (S)PDES 112

Whenever a problem of the type (8.1) satisfies Assumption 8.3, we say that it is
locally subcritical. The role of this assumption is to ensure that, using Theorems 4.7,
4.16, and 5.12, one can reformulate (8.1) as a fixed point map in D" for sufficiently
high + (actually any v > |a| would do) by replacing the convolution K* with /C,
as in Theorem 5.12, replacing all products by the abstract product x, and interpreting
compositions with smooth functions as in Section 4.2.

For such a formulation to make sense, we need of course to build a sufficiently rich
regularity structure. This could in principle be done by repeatedly applying Proposi-
tion 4.11 and Theorem 5.14, but we will actually make use of a more explicit construction
given in this section, which will also have the advantage of coming automatically with
a “renormalisation group” that allows to understand the kind of convergence results
mentioned in Theorem 1.11 and Theorem 1.15. Our construction suggests the follow-
ing “metatheorem”, which is essentially a combination of Theorem 7.8, Theorem 4.7,
Theorem 4.16, and Theorem 8.24 below.

Metatheorem 8.4 Whenever (8.1) is locally subcritical, it is possible to build a regu-
larity structure allowing to reformulate it as a fixed point problem in D7 for v large
enough. Furthermore, if the problem is parabolic on a bounded domain (say the torus),
then the fixed point problem admits a unique local solution.

Before we proceed to building the family of regularity structures allowing to formu-
late these SPDEs, let us check that Assumption 8.3 is indeed verified for our examples
(®%), (PAM), and (KPZ). Note first that it is immediate from Proposition 3.20 and the
equivalence of moments for Gaussian random variables that white noise on R? with
scaling s almost surely belongs to C¢' for every o < — ‘%l (See also Lemma 10.2 below.)
Furthermore, the heat kernel is 2-regularising, so that 5 = 2 in all of the problems
considered here.

In the case of (&%) in dimension d, space-time is given by R**! with scaling
s = (2,1,...,1), so that |s| = d + 2. This implies that £ belongs to C& for every
a < 7% =-1- %. In thiscase f +a ~ 1 — % so that, following the procedure
of Assumption 8.3, the monomials appearing are U? and =. The homogeneity of U3
is3(B+a) ~ 3 — 3—2(1, which is greater than —1 — g if and only if d < 4. This is
consistent with the fact that 4 is the critical dimension for Euclidean ®* quantum field
theory [Aiz82]. Classical fixed point arguments using purely deterministic techniques
on the other hand already fail for dimension 2, where the homogeneity of « becomes
negative, which is a well-known fact [GRS75]. In the particular case of d = 2 however,
provided that one defines the powers (K * £)* “by hand”, one can write u = K * £ + v,
and the equation for v is amenable to classical analysis, a fact that was exploited for
example in [DPD03, HRW12]. In dimension 3, this breaks down, but our arguments
show that one still expects to be able to reformulate (®*) as a fixed point problem in
D7, provided that v > % This will be done in Section 7.3 below.

Rd-‘rl

For (PAM) in dimension d (and therefore space-time with the same scaling
d

as above), spatial white noise belongs to C¢' for a < —3. As a consequence, Assump-
tion 8.3 does in this case boil down to the condition 2 4+ « > 0, which is again the case
if and only if d < 4. This is again not surprising. Indeed, dimension 4 is precisely
such that, if one considers the classical parabolic Anderson model on the lattice Z*
and simply rescales the solutions without changing the parameters of the model, one
formally converges to solutions to the continuous model (PAM). On the other hand, as
a consequence of Anderson localisation, one would expect that the rescaled solution

converges to an object that is “trivial” in the sense that it could only be described either
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by the O distribution or by a Dirac distribution concentrated in a random location, which
is something that falls outside of the scope of the theory presented in this article. In
dimensions 2 and 3 however, one expects to be able to formulate and solve a fixed point
problem in D7 for v > % This time, one also expects solutions to be global, since the
equation is linear.

In the case of (KPZ), one can verify in a similar way that Assumption 8.3 holds. As
before, if we consider an equation of this type in dimension d, we have |s| = d + 2,
so that one expects the solution u to be of regularity just below 1 — %. In this case,
dimension 2 is already critical for three unrelated reasons. First, this is the dimension
where u ceases to be function-valued, so that compositions with smooth functions ceases
to make sense. Second, even if the functions g; were to be replaced by polynomials, g4
would have to be constant in order to satisfy Assumption 8.3. Finally, the homogeneity
of the term |V h|? is —d. In dimension 2, this precisely matches the regularity —1 — %
of the noise term.

We finally turn to the Navier-Stokes equations (SNS), which we can write in the
form (8.1) with K given by the heat kernel, composed with Leray’s projection onto
the space of divergence-free vector fields. The situation is slightly more subtle here,
as the kernel is now matrix-valued, so that we really have d? (or rather d(d + 1)/2
because of the symmetry) different convolution operators. Nevertheless, the situation is
similar to before and each component of K is regularity improving with 3 = 2. The
condition for local subcriticality given by Assumption 8.3 then states that one should
have (1 — g) + (—g) >—1— %, which is satisfied if and only if d < 4.

8.1 General algebraic structure

The general structure arising in the abstract solution theory for semilinear SPDEs of the
form (&%), (PAM), etc is very close to the structure already mentioned in Section 4.3.
The difference however is that T" only “almost” forms a Hopf algebra, as we will see
presently.

In general, we want to build a regularity structure that is sufficiently rich to allow
to formulate a fixed point map for solving our SPDEs. Such a regularity structure will
depend on the dimension d of the underlying space(-time), the scaling s of the linear
operator, the degree 3 of the linear operator (which is equal to the regularising index of
the corresponding Green’s function), and the regularity « of the driving noise . It will
also depend on finer details of the equation, such as whether the nonlinearity contains
derivatives of u, arbitrary functions of u, etc.

At the minimum, our regularity structure should contain polynomials, and it should
come with an abstract integration map 7 that represents integration against the Green’s
function K of the linear operator £. (Or rather integration against a suitable cut-
off version.) Furthermore, since we might want to represent derivatives of u, we
can introduce the integration map Zj for a multiindex k, which one should think as
representing integration against D K. The “naive” way of building 7" would be then
to consider all possible formal expressions J that can be obtained from the abstract
symbols = and {X;}% |, as well as the abstract integration maps Z. More formally,
we can define a set F by postulating that {1,=, X;} C F and, whenever 7,7 € F,
we have 77 € F and Zy(7) € F. (However, we do not include any expression
containing a factor of Z,(X*), thus reflecting Assumption 5.4 at the algebraic level.)
Furthermore, we postulate that the product is commutative and associative by identifying
the corresponding formal expressions (i.e. XZ(=Z) = Z(Z) X, etc), and that 1 is neutral
for the product.
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One can then associate to each 7 € F a weight |7|; which is obtained by setting
1]s =0,
IT7]s = [7]s + 7[5 ,
for any two formal expressions 7 and 7 in F, and such that
‘E‘s =, |Xz|5 =5, |Ik(7-)|s = |T|5 +8 - ‘k‘|5 .

Since these operations are sufficient to generate all of F, this does indeed define | - |5.

Example 8.5 These rules yield the weights
IEZo(E2XM) s = 3a+ |kls + B—|l]s, | XPI(E)|s = ks + 20+ ),

Sfor any two multiindices k and .

We could then define T, simply as the set of all formal linear combinations of
elements 7 € F with |7|s = 7. The problem with this procedure is that since o < 0,
we can build in this way expressions that have arbitrarily negative weight, so that the set
of homogeneities A C R would not be bounded from below anymore. (And it would
possibly not even be locally finite.)

The ingredient that allows to circumvent this problem is the assumption of local
subcriticality loosely formulated in Assumption 8.3. To make this more formal, assum-
ing again for simplicity that the right hand side I’ of our problem (8.1) depends only
on &, u, and some partial derivatives J;u, we can associate to F' a (possibly infinite)
collection 91 of monomials in =, U, and P; in the following way.

Definition 8.6 For any two integers m and n, and multiindex k, we have ZmU" P* ¢
M if F contains a term of the type £™u™(Du)* for m > m, 7 > n, and k > k.
Here, we consider arbitrary smooth functions as polynomials of “infinite order”, i.e. we
formally substitute g(u) by ©* and similarly for functions involving derivatives of u.
Note also that & and % are multiindices since, in general, P is a d-dimensional vector.

Remark 8.7 Of course, My is not really well-defined. For example, in the case of
(®*), we have F(u, £) = € — u?, so that

Mp ={Z,U™ : m<3}.

However, we could of course have rewritten this as F'(u, &) = & + g(u), hiding the fact
that g actually happens to be a polynomial itself, and this would lead to adding all higher
powers {U"},~3 to Mp. In practice, it is usually obvious what the minimal choice of
m F is.

Furthermore, especially in situations where the solution w is actually vector-valued,
it might be useful to encode into our regularity structure additional structural properties
of the equation, like whether a given function can be written as a gradient. (See the series
of works [HM 12, HW13, HMW12] for situations where this would be of importance.)

Remark 8.8 In the case of (PAM), we have
Mr ={1,U,UZ,Z},
while in the more general case of (PAMg), we have
Mp ={U",U"E,U"P,,U"P,P; : n>0,14,j€{1,2}}.

This and ($*) are the only examples that will be treated in full detail, but it is straight-
forward to see what 91 would be for the remaining examples.
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Remark 8.9 Throughout this whole section, we consider the case where the noise &
driving our equation is real-valued and there is only one integral kernel required to
describe the fixed point map. In general, one might also want to consider a finite family
{E@} of formal symbols describing the driving noises and a family {Z”} of symbols
describing integration against various integral kernels. For example, in the case of
(SNS), the integral kernel also involves the Leray projection and is therefore matrix-
valued, while the driving noise is vector-valued. This is an immediate generalisation that
merely requires some additional indices decorating the objects = and Z and all the results
obtained in the present section trivially extend to this case. One could even accommodate
the situation where different components of the noise have different degrees of regularity,
but it would then become awkward to state an analogue to Assumption 8.3, although
it is certainly possible. Since notations are already quite heavy in the current state of
things, we refrain from increasing our level of generality.

Given a set of monomials 9tz as in Definition 8.6, we then build subsets {4y, },>0,
{Pi}r>0 and {W,, } >0 of F by the following algorithm. We set Wy = Uy = P = ()
and, given subsets A, B C F, we also write AB for the set of all products 77 with
7 € Aand T € B, and similarly for higher order monomials. (Note that this yields the
convention A2 = {77 : 7,7 € A} £ {r? : 7 € A})

Then, we define the sets W,,, U,, and Pfl for n > 0 recursively by

Wa=W,au | QUw1,Pus,B),
QeEMF

U, = {XFYU{Z(r) : TeW,}, (8.3)
Pl ={XMYU{Ti(1) : TEW,},

where in the set {X k}, k runs over all possible multiindices. In plain words, we take
any of the monomials in 97 and build W,, by formally substituting each occurrence of
U by one of the expressions already obtained in {/,,_1 and each occurrence of P; by one
of the expressions from P!,_;. We then apply the maps Z and Z; respectively to build
Uy, and P!, ensuring further that they include all monomials involving only the symbols
X;. With these definitions at hand, we then set

FrE [ JWaulhy). (8.4)

n>0

In situations where F' depends on u (and not only on Du and £ like in the case of the
KPZ equation for example), we furthermore set

Up & U U, . (8.5)
n>0

We similarly define Pj = |J,,~, P in the case when F depends on d;u. The idea of
this construction is that //r contains those elements of F that are required to describe the
solution u to the problem at hand, P% contains the elements appearing in the description
of 0;u, and Fp contains the elements required to describe both the solution and the
right hand side of (8.1), so that FF is rich enough to set up the whole fixed point map.

The following result then shows that our assumption of local subcriticality, As-
sumption 8.3, is really the correct assumption for the theory developed in this article to

apply:
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Lemma 8.10 Ler o < 0. Then, the set {T € Fr : |7|s <~} is finite for every v € R
if and only if Assumption 8.3 holds.

Proof. We only show that Assumption 8.3 is sufficient. Its necessity can be shown by

similar arguments and is left to the reader. Set o™ = inf{|7|s : 7 € U, \ Up,_1} and

o\™ =inf{|7|s : 7€ PP\ P }. We claim that under Assumption 8.3 there exists

¢ > 0 such that o™ > o™~ + ¢ and similarly for o{™, which then proves the claim.
Note now that W; = {Z}, so that one has

aV=(@+HA0, o =(a+B-s)A0.

Furthermore, Assumption 8.3 implies that if ZPUYP* € My \ {Z}, then

patqa+ B+ kila+pf—5)>a, (8.6)

and k; is allowed to be non-zero only if 5 > s;. This immediately implies that
one has |7]s > « forevery 7 € Fp, |7|s > (a + B) A O for every 7 € Up, and
|T|s > (o + B — 5;) A O for every 7 € PL. (If this were to fail, then there would be a
smallest index n at which it fails. But then, since it still holds at n — 1, condition (8.6)
ensures that it also holds at n, thus creating a contradiction.)

Let now ¢ > 0 be defined as

¢= (p—Da+ga+B)+ Y kla+B-s)].

inf {
ErUIPkEMp\{Z}

Then we see that o/? > oY + ¢ and similarly for agz)' Assume now by contradiction
that there is a smallest value 7 such that either o™ < o™~V 4+ ¢ oral™ < "™V 4 ¢
for some index <. Note first that one necessarily has n > 3 and that, for any such
n, one necessarily has agn) = a™ — s; by (8.3) so that we can assume that one has
a™ < oD 4 ¢

Note now that there exists some element 7 € U, with |7|s = o™ and that 7 is
necessarily of the form 7 = Z(7) with 7 € W,, \ W,,_1. In other words, 7 is a product of
elements in U,,_1 and P! _; (and possibly a factor =) with at least one factor belonging
to either U,,_1 \ Uy,_2 or P} _; \ P:_,. Denote that factor by o, so that 7 = ou for
some u € W,.

Assume that o € U,,—1 \ U,,—2, the argument being analogous if it belongs to one
of the P{_, \ Pi_,. Then, by definition, one has |o|s > o®~Y. Furthermore, one
has o~ > a(=2 4 (, so that there exists some element & € U, 5 \ U,,_3 with
|6]s < |o|s — ¢. By the same argument, one can find & € W,,_; with |d|s < |uls.
Consider now the element 7 = Z(61). By the definitions, one has 7 € U,,_1 and, since
6 & U,_3, one has 7 & U,,_». Therefore, we conclude from this that

—1 ~
o <A < rls = C=a™ = ¢,
thus yielding the contradiction required to prove our claim. O

Remark 8.11 If F' depends explicitly on u, then one has U € 9 F, SO that one auto-
matically has Up C Fp. Similarly, if ' depends on J;u, one has Py, C Fp.
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Remark 8.12 If 7 € Fr is such that there exists 7 and 75 in F with 7 = 775, then
one also has 71,75 € Fp. This is a consequence of the fact that, by Definition 8.6,
whenever a monomial in 91 can be written as a product of two monomials, each of
these also belongs to M p.

Similarly, if Z(7) € Fr or Z;(t) € Fr for some 7 € F, then one actually has
T € Fp.

Given any problem of the type (1.1), and under Assumption 8.3, this procedure thus
allows us to build a candidate 7" for the model space of a regularity structure, by taking
for T, the formal linear combinations of elements in Fx with |7|s = . The spaces T,
are all finite-dimensional by Lemma 8.10, so the choice of norm on T, is irrelevant. For
example, we could simply decree that the elements of 7 form an orthonormal basis.
Furthermore, the natural product in F extends to a product x on 7" by linearity, and by
setting 7 x T = O whenever 7,7 € Fp are such that 77 & Fp.

While we now have a candidate for a model space 7', as well as an index set A (take
A ={|7|s : T € Fr}), we have not yet constructed the structure group G that allows
to “translate” our model from one point to another. The remainder of this subsection is
devoted to this construction. In principle, G is completely determined by the action of
the group of translations on the X*, the assumption that 'S = Z, the requirements

I'rr) =Tn)+~T7),

for any 7,7 € Fr such that 77 € Fp, as well as the construction of Section 5.1.
However, since it has a relatively explicit construction similar to the one of Section 4.3,
we give it for the sake of completeness. This also gives us a much better handle on
elements of GG, which will be very useful in the next section. Finally, the construction of
G given here exploits the natural relations between the integration maps Z;, for different
values of k (which are needed when considering equations involving derivatives of the
solution in the right hand side), which is something that the general construction of
Section 5.1 does not do.

In order to describe the structure group G, we introduce three different vector spaces.
First, we denote by H i the set of finite linear combinations of elements in Fr and by
‘H the set of finite linear combinations of all elements in F. We furthermore define a set
F consisting of all formal expressions of the type

X" H T, 7j s (8.7)
J

where the product runs over finitely many terms, the 7; are elements of F, and the k;
are multiindices with the property that |7;|s + 8 — |k;|s > 0 for every factor appearing
in this product. We should really think of 7 as being essentially the same as 7, so
that one can alternatively think of F as being the set of all elements 7 € F such that
either 7 = 1 or |7|s > 0 and such that, whenever 7 can be written as 7 = 7172, one
also has either 7, = 1 or |1;|s > 0. The notation 7 instead of Z;, will however serve to
reduce confusion in the sequel, since elements of . play a role that is distinct from the
corresponding elements in JF. It is no coincidence that the symbol 7 is the same as in
Section 5 since elements of the type Jj, 7 are precisely placeholders for the coefficients
J(x)T defined in (5.11). Similarly, we define }";5 as the set of symbols as in (8.7), but
with the 7; assumed to belong to Fr. Expressions of the type (8.7) come with a natural
notion of homogeneity, given by |k|s + > ;(|7;[s + 8 — |k;|s), which is always positive
by definition.
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We then denote by H . the set of all finite linear combinations of all elements in F_,
and similarly for 7. Note that both # and H.; are algebras, by simply extending the
product (7, 7) — 77 in a distributive way. While H r is a linear subspace of H, it is not
in general a subalgebra of H, but this will not concern us very much since it is mostly
the structure of the larger space H that matters. The space ’H; on the other hand is an
algebra. (Actually the free algebra over the symbols {X;, J,7}, where j € {1,...,d},
T € Fr, and k is an arbitrary d-dimensional multiindex with |k|s < |7]s + 5.)

We now describe a structure on the spaces H and H . that endows H . (resp. HIJE)
with a Hopf algebra structure and H (resp. H ) with the structure of a comodule over
Hy (resp. ’H;). The purpose of these structures is to yield an explicit construction
of a regularity structure that is sufficiently rich to allow to formulate fixed point maps
for large classes of semilinear (stochastic) PDEs. This construction will in particular
allow us to describe the structure group G in a way that is similar to the construction in
Section 4.3, but with a slight twist since T' = H g itself is different from both the Hopf
algebra . and the comodule H.

We first note that for every multiindex k, we have a natural linear map Ti: 1 — Ho
by setting

jk(T) =T, |kls <|7ls+ 5, jk(T) =0, otherwise.

Since there can be no scope for confusion, we will make a slight abuse of notation and
simply write again Jj, instead of J;,. We then define two linear maps A: H — H R H
and AT: H, — Hi @ Hy by

Al=1®1, Afl=1®1,
AX;,=X;21+10X;,, ATX;=X,91+1®X;
AZ=2®1,

and then, recursively, by

A(rT) = (AT) (AT) (8.8a)
Xt xm
ATy = (T @ AT+ 5 ® = Trytm (8.8b)
lm
as well as

AT(r7) = (AT ) (AT 7) (8.92)

+ (—X)"
A Gr) = 3 (Fere © 5 ) AT 416 Fir . (8.9b)

L

In both cases, these sums run in principle over all possible multiindices ¢ and m. Note
however that these sums are actually finite since, by definition, for |¢|; large enough it
is always the case that J; 1,7 = 0.

Remark 8.13 By construction, for every 7 € F, one has the identity A7 =7 ® 1+

Do ar) @ 12, for some constants ¢; and some elements with [7"|, < || and

177 4 |7P|s = |7]s. This is a reflection in this context of the condition (2.1).
Similarly, for every o € F_, one has the identity

A+a:a®1+1®a+z:ciagl)®a§2),

7
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for some constants ¢; and some elements with |O’§1)| s+ |0§2)|J = |o|s. Note also that
(8.9) is coherent with our abuse of notation for 7, in the sense that if 7 and k are such
that J7 = 0, then the right hand side automatically vanishes.

Remark 8.14 The fact that it is A (rather than A™") that appears in the right hand side
of (8.9b) is not a typo: there is not much choice since 7 € F and not in F. The
motivation for the definitions of A and AT will be given in Section 8.2 below where
we show how it allows to canonically lift a continuous realisation ¢ of the “noise” to a
model for the regularity structure built from these algebraic objects.

Remark 8.15 In the sequel, we will use Sweedler’s notation for coproducts. Whenever
we write AT = > 7 ® 72 this should be read as a shorthand for: “There exists a
finite index set I, non-zero constants {¢; };cs, and basis elements {Tfl)}ig, {7_7;(2)}1'6[
such that the identity AT =), ; CiTi(l) ® 7'1»(2) holds.” If we then later refer to a joint
property of 7 and 7?, this means that the property in question holds for every pair

(r:", 71?)) appearing in the above sum.

The structure just introduced has the following nice algebraic properties.

Theorem 8.16 The space H is a Hopf algebra and H is a comodule over H. In
particular, one has the identities

(I ANHAT = (A® AT, (8.10a)
(I @ ANHAYT = (AT @ DATT, (8.10b)

for every 7 € H. Furthermore, there exists an idempotent antipode A: Hy — H,
satisfying the identity

MI @ HATT = (1%, 7)1 = M(A® DA, (8.11)

where we denoted by M: H ® Hy — H the multiplication operator defined by
M(T ® T) = 77, and by 1* the element of H_ such that (1*,1) = 1 and (1*,7) = 0
forallT € Fy\{1}.

Proof. We first prove (8.10a). Both operators map lonto 1 ® 1 ® 1, Zonto Z2® 1 ® 1,
and X;onto X; ®1®14+10 X; ®1+1®1® X;. Since F is then generated by
multiplication and action with Z;,, we can verify (8.10a) recursively by showing that it
is stable under products and applications of the integration maps.

Assume first that, for some 7 and 7 in JF, the identity (8.10a) holds when applied to
both 7 and 7. By (8.8a), (8.9a), and the induction hypothesis, one then has the identity

(I @ ADHAGFT) = (I @ ANATAT) = (I ® ANAT) (I @ AT)AT)
= (A ® DAT)((A @ DAT) = (A @ I(ATAT) = (A @ DA(T7),
as required.

It remains to show that if (8.10a) holds for some 7 € F, then it also holds for Z; 7
for every multiindex k. First, by (8.8b) and (8.9b), one has the identity

Xt xm
I® A+)AIkT =U® A+)(Ik X I)AT + E W ® At (ij+2+m7>
Lm

=T, 0 1@ DI ® ADHAT
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¢ m "
+ Z X <X7®X*)A Thett4m4nT » (8.12)

£,m,n
where we used the multiplicative property of A" and the fact that

Xk Z ﬁ Xk—m

A+ = .
k! m! © (k —m)!

m<k

(Note again that the seemingly infinite sums appearing in (8.12) are actually all finite
since J,7 = 0 for k large enough. This will be the case for every expression of this
type appearing below.) At this stage, we use the recursion relation (8.9b) which yields

Z(% ® %)A"’JkerJrnT = Z(Xm ® X Jk+m+n7'>

m,n m,n m!
+ Z (7\7k+£+m+n ® ﬁ( ;!()E>AT
= (% ® X" jk+m+n7) + Z(%jk—&-m & I)AT

n 4
Here we made use of the fact that ), =k )f,—, (72( ) always vanishes, except when
k = 0 in which case it just yields 1. Inserting this in the above expression, we finally

obtain the identity
(I®ANAL,T = (T, ® I @ )T @ ANHAT

n

XZ Xm X
+ E — © — TerttminT
m! n!

+ Z ( et @ 1) A7

On the other hand, using again (8.8b), (8.9b), and the binomial identity, we obtain
Xt xm

(A® DATyr = (AL, ® DAT+ 3 (A@ I) (— ® =—TirtrmT)

i m!

l,m
XZ m
— @21 DAGDAT+Y. T & (- Teeeom O ) AT
lm

Xt xm Xn
+ Z W ® W ® ij—&-f—l—m—i—n'r .

Lm,n

Comparing this expression with (8.13) and using the induction hypothesis, the claim
follows at once.

We now turn to the proof of (8.10b). Proceeding in a similar way as before, we
verify that the claim holds for 7 = 1, 7 = X;, and 7 = =. Using the fact that AT is a
multiplicative morphism, it follows as before that if (8.10b) holds for 7 and 7, then it
also holds for 77. It remains to show that it holds for Jj,7. One verifies, similarly to
before, that one has the identity

(=X)"

(A @ DAY T = 1®1®Jkr+1®Z(Jk+e® g

o )ar
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_ l _ m
+Z(jk+z+m®( 2() ®( 77)1(!) )(A@I)AT,

l,m

while one also has

1

-X
(& a8 Jir =103 (e Tl )ar 41010 Jir
14

_XZ _X)m
+Z(..7k+£+m®( ﬂ) o ¢ m!) )(I®A+)Ar.

lm

The claim now follows from (8.10a).

It remains to show that 7{, admits an antipode A: H, — H_. This is automatic
for connected graded bialgebras but it turns out that in our case, although it admits a
natural integer grading, H is not connected for it (i.e. there is more than one basis
element with vanishing degree). It is of course connected for the grading | - |, but this is
not integer-valued. The general construction of A however still works in essentially the
same way. The natural integer grading | - | on . for this purpose is defined recursively
by | X;| = || = |1| =0, and then |77| = |7| 4+ |7| and | J 7| = |7| + 1. In plain terms,
it counts the number of times that an integration operator arises in the formal expression
T.

Recall that A should be a linear map satisfying (8.11), and we furthermore want A to
be a multiplicative morphism namely, for 7 = 7,72, we impose that A7 = (A711)(AT2).
To construct .4, we start by setting

AX; = —X; Al=1. (8.14)

Given the construction of H, it then remains to define A on elements of the type Jx7
with 7 € H and | Jx7|s > 0. This should be done in such a way that one has

MI @ HAT T =0, (8.15)

which then guarantees that the first equality in (8.11) holds for all 7 € H_. This is
because M(I ® A)AT is then a multiplicative morphism which vanishes on X; and
every element of the form J; 7, and, except for 7 = 1, every element of F has at least
one such factor.

To show that it is possible to enforce (8.15) in a coherent way, we proceed by
induction. Indeed, by the definition of AT and the definition of M, one has the identity

¢
MI @ AN Gir =3 M (ijg ® %A) AT+ ATt .
¢

Therefore, AJj7 is determined by (8.15) as soon as we know (I ® A)A7. This can be
guaranteed by iterating over F in an order of increasing degree. (In the sense of the
number of times that the integration operator appears in a formal expression, as defined
above.)

We can then show recursively that the antipode also satisfies M(A ® I)ATT =
1*(7)1. Again, we only need to verify it inductively on elements of the form ;7. One
then has

—X)¢
( | ) M(.Aj]ﬁ.@ ®I)AT

MAS DA Tyt = Ter + )=
J4
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_X)KXm
= JkT - Z (ETM(jk+€+m RA® I)(A ® I)AT
£,m

=TT —M(T @ A2 I)(I ® AY)AT,
where we used the fact that 3, % = O unless n = 0 in which case itis 1.
At this stage, we use the fact that it is straightforward to verify inductively that

(@ 19)AT =1, (8.16)

for every 7 € H, so that an application of our inductive hypothesis yields M(A ®
DAT T = JuT — T = 0 as required. The fact that A2%7 = 7 can be verified in a
similar way. It is also a consequence of the fact that the Hopf algebra 7, is commutative
[Swe69]. 0

Remark 8.17 Note that  is not a Hopf module over H ; since the identity A(77) =
AT AT7 does in general not hold for any 7 € H and 7 € H,. However, H = H @ H
can be turned in a very natural way into a Hopf module over # . The module structure
isgiven by (7 ® 7))o = 7 ® (T172) for 7 € ‘H and 71, 7o € H, while the comodule
structure A: H — H @ H . is given by

A(r@7) =Ar-AtF,

where (1) ® 72) - (T1 ® T2) = (11 @ T1) ® (1972) for 1y € H and 7,71, 7o € rH.;,..
These structures are then compatible in the sense that (A ® 1 )A =U® A*)A and
A(r7) = Ar - A7 It is not clear at this stage whether known general results on these
structures (like the fact that Hopf modules are always free) can be of use for the type of
analysis performed in this article.

We are now almost ready to construct the structure group G in our context. First,
we define a product o on H* , the dual of H_, by

Definition 8.18 Given two elements g, g € H7, their product g o g is given by the dual
of AT, i.e., itis the element satisfying

(gog,m) =(9®9, A7),
forall T € H,.

From now on, we will use the notations (g, 7), g(7), or even g7 interchangeably for
the duality pairing. We also identify X ® R with X in the usual way (z ® ¢ ~ cx) for
any space X . Furthermore, to any g € H’ , we associate a linear map I'g: H — H in
essentially the same way as in (4.19), by setting

Iy = ®g)AT . (8.17)

Note that, by (8.16), one has I'y=7 = 7. One can also verify inductively that the co-unit
1* is indeed the neutral element for o. With these definitions at hand, we have

Proposition 8.19 Forany g,5 € H*, one hasI'yI'g = I'yog. Furthermore, the product
o is associative.
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Proof. One has the identity

Plar=T,(I@ AT = ® g (A @ DAT
=I®geI e ANAT=(I®(gog)AT,

where we first used Theorem 8.16 and then the definition of the product o. The associa-
tivity of o is equivalent to the coassociativity (8.10b) of A*, which we already proved
in Theorem 8.16. U

We now have all the ingredients in place to define the structure group G:

Definition 8.20 The group G is given by the group-like elements g € H* , i.e. the
elements such that g(7172) = g(71) g(72) for any 7; € H_. Its action on H is given by
g—Ty.

This definition is indeed meaningful thanks to the following standard result:

Proposition 8.21 Given g,g € G, one has g o g € G. Furthermore, each element

g € G has a unique inverse g~ .

Proof. This is standard, see [Swe69]. The explicit expression for the inverse is simply
g~ (1) = g(A7). o

Finally, we note that our operations behave well when restricting ourselves to the
spaces Hp and ’H; constructed as explained previously by only considering those
formal expressions that are “useful” for the description of the nonlinearity F":

Lemma 8.22 One has A: Hr — Hp @ H} and AV : Hf — HE @ HE.

Proof. We claim that actually, even more is true. Recall the definitions of the sets W,,,
Uy, and P! from (8.3) and denote by (W,,) the linear span of W, in H , and similarly
for (U,,) and (P?). Then, denoting by X any of these vector spaces, we claim that A
has the property that AX C X ® H 1, which in particular then also implies that the
action of G leaves each of the spaces X invariant. This can easily be seen by induction
over n. The claim is clearly true for n = 0 by definition. Assuming now that it holds for
Uy —1) and (P! _,), it follows from the definition of 1V, and the morphism property of
A that the claim also holds for W,,. The identity (8.8b) then also implies that the claim
is true for (U,) and (P?), as required.

Regarding the property AT: Hf — Hi ® H}, it follows from the morphism
property of AT (and the fact that 7—[} itself is closed under multiplication) that we only
need to check it on elements 7 of the form 7 = Z;7 with 7 € Fp. Using (8.9b), the
claim then immediately follows from the first claim. O

Remark 8.23 This shows that the action of G onto H  is equivalent to the action of
the quotient group G'r obtained by identifying elements that act in the same way onto
HE.

This concludes our construction of the regularity structure associated to a general
subcritical semilinear (S)PDE, which we summarise as a theorem:
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Theorem 8.24 Let I' be a locally subcritical nonlinearity, let T' = Hp with T, =
({reFr :|rls =7}, A={|7|s : T € Fr}, and G be defined as above. Then,
Ir = (A, Hr,GF), defines a regularity structure 7. Furthermore, T is an abstract
integration map of order f3 for 7.

Proof. To check that I is a regularity structure, the only property that remains to
be shown is (2.1). This however follows immediately from the fact that if one writes
At = > 7D ® 7@, then each of these terms satisfies |[7V|, + |7?|, = |7| and
|7®]s > 0. Furthermore, one verifies by induction that the term 7 ® 1 appears exactly
once in this sum, so that for all other terms, 71 is of homogeneity strictly smaller than
that of 7.

The map Z obviously satisfies the first two requirements of an abstract integration
map by our definitions. The last property follows from the fact that

X — 12
PyTir = (I ® 9ATir = U @ )T ® DAT+ 3 ST g7 r)
SR

where we defined z, ¢ R? as the element with coordinates —g(X;). Noting that
(I ® 9)(Ty ® AT = I,I' 47, the claim follows. O

Remark 8.25 If some element of 9017 also contains a factor P;, then one can check in
the same way as above that Z; is an abstract integration map of order 8 — s; for 7.

Remark 8.26 Given F as above and r > 0, we will sometimes write .7, },(f) (or simply
T when F is clear from the context) for the regularity structure obtained as above,
but with T, = 0 for vy > r.

8.2 Realisations of the general algebraic structure

While the results of the previous subsection provide a systematic way of constructing a
regularity structure 7 that is sufficiently rich to allow to reformulate (8.1) as a fixed
point problem which has some local solution U € D} for suitable indices + and 7, it
does not at all address the problem of constructing a model (or family of models) (I, I")
such that RU can be interpreted as a limit of classical solutions to some regularised
version of (8.1).

It is in the construction of the model (IL,I") that one has to take advantage of
additional knowledge about £ (for example that it is Gaussian), which then allows to
use probabilistic tools, combined with ideas from renormalisation theory, to build a
“canonical model” (or in many cases actually a canonical finite-dimensional family of
models) associated to it. We will see in Section 10 below how to do this in the particular
cases of (PAMg) and (®*). For any continuous realisation of the driving noise however,
it is straightforward to “lift” it to the regularity structure that we just built, as we will
see presently.

Given any continuous approximation &, to the driving noise £, we now show how
one can build a canonical model (TII), T®)) for the regularity structure .7 built in the
previous subsection. First, we set

P2 @) = &), X)) =@ —2)" .
Then, we recursively define II'€)7 by

[ 77)(y) = (7)) (TO7) () (8.18)
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as well as

¢
—x
L)) = [ DEKwH MPnEds + 3 L (O Fr) . (819)
- !
In this expression, the quantities f(*)(7,7) are defined by

FO(Ter) =~ / DYK(x,2) (I7)(2) dz (8.20)
If we furthermore impose that

fOX) =—ai,  fOD) = (fO1)(fO7), (8.21)

and extend this to all of H; by linearity, then f*) defines an element of the group G
given in Definition 8.20 and Remark 8.23.
Denote by F© the corresponding linear operator on Hr, i.e. F& =T e where the

map g — Iy is given by (8.17). With these definitions at hand, we then define ' by

zy

I = (F) 1o F9 . (8.22)

Furthermore, for any 7 € F, we denote by V; the sector given by the linear span of
{T'r : T € G}. This is also given by the projection of A7 onto its first factor. We then
have:

Proposition 8.27 Let K be as in Lemma 5.5 and satisfying Assumption 5.4 for some
r > 0. Let furthermore 7, ;T) be the regularity structure obtained from any semilinear

locally subcritical problem as in Section 8.1 and Remark 8.26. Let finally €. : R? - R
be a smooth function and let (11, r'®) be defined as above. Then, II®, 7)) is a
model for 7, }7').

Furthermore, for any T € Fp such that T, € Fp, the model (I®),T'®)) realises
the abstract integration operator Ly, on the sector V.

Proof. We need to verify both the algebraic relations and the analytical bounds of
Definition 2.17. The fact that T§)T') = T') is immediate from the definition (8.22). In
view of (8.22), the identity HEE‘S)I‘%} = Hgf) follows if we can show that

(P r =P (FEP) ', (8.23)

for every 7 € Fr and any two points x and y. In order to show that this is the case,
it turns out that it is easiest to simply “guess” an expression for I (F(©) ™' 7 that is
independent of x and to then verify recursively that our guess was correct. For this, we
define a linear map IT®: Hp — C(RY) by

Ny =1, @A9X)W=y, [OAE)W=~,w),
and then recursively by
(M977)(y) = (I7)(y) (M97)(w) , (8.24)

as well as
(MOLr)(y) = / DYK(y,z) (I®7)(2)dz . (8.25)
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We claim that one has II©)(F©) '+ = II®7 for every 7 € Fr and every z € R
Actually, it is easier to verify the equivalent identity

NO7 = IOFE (8.26)

To show this, we proceed by induction. The identity obviously holds for 7 = = and
7 = 1. For 7 = X, we have by (8.21)

(MOFOX;)(y) = (° @ fO)X; @1 +10 X))y = yi — 2 = (TP X;)(y) -

Furthermore, in view of (8.24), (8.18), and the fact that F’ g(f) acts as a multiplicative
morphism, it holds for 77 if it holds for both 7 and 7.

To complete the proof of (8.23), it remains to show that (8.26) holds for elements of
the form Zj 7 if it holds for 7. It follows from the definitions that

Xm
FOTyr = T,FO1 + Z g(f) (WJkMerT)

= IkF(E) + Z Xt ni) (6) (ij+ﬁ+nz7_) (8.27)

X _
=L,FT + Z 7( 7 ") O (Tiper)

4

where we used (8.21), the morphism property of £, and the binomial identity. The
above identity is precisely the abstract analogue in this context of the identity postulated
in Definition 5.9.

Inserting this into (8.25), we obtain the identity

(y — o
Y 7 I (Tnrer) -
(8.28)
Since IT'®) F(®)7 = T1©)7 by our induction hypothesis, this is precisely equal to the right
hand side of (8.19), as required.
It remains to show that the required analytical bounds also hold. Regarding II'®,

(MOFPT,7)(y) = / DYK(y,») MOFP7)(2)dz + Y
¢

we actually show the slightly stronger fact that (ITE'7)(y) < |z — y||"*. This is
obvious for 7 = X; as well as for 7 = E since |Z|s < 0 and we assumed that £, is
continuous. (Of course, such a bound would typically not hold uniformly in £!) Since
|77|s = |7|s + |T|s, it is also obvious that such a bound holds for 77 if it holds for both
7 and 7. Regarding elements of the form Z; 7, we note that the second term in (8.19) is
precisely the truncated Taylor series of the first term, so that the required bound holds
by Proposition A.1 or, more generally, by Theorem 5.14. To conclude the proof that
(II®, T®)) is a model for our regularity structure, it remains to obtain a bound of the
type (2.15) for Fgf; In principle, this also follows from Theorem 5.14, but we can also
verify it more explicitly in this case.
Note that the required bound follows if we can show that

W@ L [(foA® f)A 7] S o -yl

for all 7 € Fj with |7|s < r. Again, this can easily be checked for 7 = X*. For
T = J) T, note that one has the identity

(= X)m

(ABDA*JiF =10 JF =Y (M®]) (Jk+z+m® Cae

lm

)(I®A+)A%.



REGULARITY STRUCTURES FOR SEMILINEAR (S)PDES 127

As a consequence, we have the identity
T = T - 3 W O Gr ).

It now suffices to realise that this is equal to the quantity (Flﬁfgjmy?) > Where T, was
introduced in (5.36), so that the required bound follows from Lemma 5.21. There is an
unfortunate notational clash between 7., and J}, appearing here, but since this is the
only time in the article that both objects appear simultaneously, we leave it at that.
The fact that the model built in this way realises K for the abstract integration
operator Z (and indeed for any of the Zj) follows at once from the definition (8.19). [

Remark 8.28 In general, one does not even need . to be continuous. One just needs
it to be in C¢* for sufficiently large (but possibly negative) o such that all the products
appearing in the above construction satisfy the conditions of Proposition 4.14.

This construction motivates the following definition, where we assume that the kernel
K annihilates monomials up to order r and that we are given a regularity structure J
built from a locally subcritical nonlinearity F' as above.

Definition 8.29 A model (11, T) for .7\ is admissible if it satisfies (IT, X*)(y) =
(y — x)*, as well as (8.19), (8.21), (8.22), and (8.20). We denote by .# the set of
admissible models.

Note that the set of admissible models is a closed subset of the set of all models
and that the models built from canonical lifts of smooth functions £ are admissible by
definition. Admissible models are also adapted to the integration map K (and suitable
derivatives thereof) for the integration map Z (and the maps Zj, if applicable). Actually,
the converse is also true provided that we define f by (8.20). This can be shown by a
suitable recursion procedure, but since we will never actually use this fact we do not
provide a full proof.

Remark 8.30 It is not clear in general whether canonical lifts of smooth functions are
dense in .Z . As the definitions stand, this will actually never be the case since smooth
functions are not even dense in C*! This is however an artificial problem that can easily
be resolved in a manner similar to what we did in the proof of the reconstruction theorem,
Theorem 3.10. (See also the note [FV06].) However, even when allowing for some
weaker notion of density, it will in general not be the case that lifts of smooth functions
are dense. This is because the regularity structure .7, }T) built in this section does not
encode the Leibniz rule, so that it can accommodate the type of effects described in
[Gub10, HM12, HK12] (or even just It6’s formula in one dimension) which cannot arise
when only considering lifts of smooth functions.

8.3 Renormalisation group associated to the general algebraic structure

There are many situations where, if we take for £, a smooth approximation to & such
that £, — ¢ in a suitable sense, the sequence (II®,T'®)) of models built from &,
as in the previous section fails to converge. This is somewhat different from the
situation encountered in the context of the theory of rough paths where natural smooth
approximations to the driving noise very often do yield finite limits without the need
for renormalisation [CQO02, FV10a]. (The reason why this is so stems from the fact
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that if a process X is symmetric under time-reversal, then the expression X;0, X is
antisymmetric, thus introducing additional cancellations. Recall the discussion on the
role of symmetries in Remark 1.9.)

In general, in order to actually build a model associated to the driving noise £, we
will need to be able to encode some kind of renormalisation procedure. In the context of
the regularity structures built in this section, it turns out that they come equipped with a
natural group of continuous transformations on their space of admissible models. At
the abstract level, this group of transformations (which we call k) will be nothing but a
finite-dimensional nilpotent Lie group — in many instances just a copy of R™ for some
n > 0. As already mentioned in the introduction, a renormalisation procedure then
consists in finding a sequence M, of elements in R such that M_(II®), T'®) converges
to a finite limit (IT, T"), where (II®, T'®) is the bare model built in Section 8.2. As
previously, different renormalisation procedures yield limits that differ only by an
element in fA.

Remark 8.31 The construction outlined in this section, and indeed the whole method-
ology presented here, has a flavour that is strongly reminiscent of the theory given in
[CKO00, CKO1]. The scope however is different: the construction presented here applies
to subcritical situations in which one obtains superrenormalisable theories, so that the
group ‘R is always finite-dimensional. The construction of [CK00, CKO1] on the other
hand applies to critical situations and yields an infinite-dimensional renormalisation

group.

Assume that we are given some model (II, I') for our regularity structure 7. As
before, we assume that I, is provided to us in the form

[y =F 'oF,, (8.29)

and we denote by f, the group-like element in the dual of 7—[} corresponding to F}.. As
a consequence, the operator I, F~ Lis independent of = and, as in Section 8.2, we will
henceforth denote it simply by

def

mM=1,F," . (8.30)

Throughout this whole section, we will thus represent a model by the pair (I1, f) where
IT is one single linear map IT: 7' — S’(R%) and £ is a map on R? with values in the
morphisms of ..

We furthermore make the additional assumption that our model is admissible, so
that one has the identities

Z,r = / DFK(-,y) (TI7)(dy) , (8.31)
Rd

fodor = — / D*K(x,y) (TLy7)(dy) . (832)
Rd

where, in view of (8.30), IT and II,, are related by
IIr =11, ® f, AAT, ,7={I® f,)AT.

Note that by definition, (8.32) only ever applies to elements with |7 7|s > 0, which
implies that the corresponding integral actually makes sense. In view of (8.8b) and
(5.12), this ensures that our model does realise K for the abstract integration operator
7 (and, if needed, the relevant derivatives of K for the Zy). It is crucial that any
transformation that we would like to apply to our model preserves this property, since
otherwise the operators X, cannot be constructed anymore for the new model.
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Remark 8.32 While it is clear that (I1, f) is sufficient to determine the corresponding
model by (8.29) and (8.30), the converse is not true in general if one only imposes (8.29).
However, if we also impose (8.32), together with the canonical choice f,.(X) = —uz,
then f is uniquely determined by the model in its usual representation (IL,I"). This
shows that although the transformations constructed in this section will be given in terms
of f, they do actually define maps defined on the set .# of all admissible models.

The important feature of fR is its action on elements 7 of negative homogeneity. It
turns out that, in order to describe it, it is convenient to work on a slightly larger set
Fo C Fr with some additional properties. Given any set C C Fp, we will henceforth
denote by Alg(C) C F;- the set of all elements in F; of the form X* [], J;,7;, for
some multiindices k and ¢; such that | 7, 7;|s > 0, and where the elements 7; all belong
to C. (The empty product also counts, so that one always has X* € Alg(C) and in
particular 1 € Alg(C).) We will also use the notation (C) for the linear span of a set C.
We now fix a subset Fy C Fp as follows.

Assumption 8.33 The set Fo C Fr has the following properties:
o The set Fy contains every T € Fp with |T]s < 0.

o There exists F, C Jy such that, for every T € Fy, one has At € (Fo) ®
(Alg(F).

Remark 8.34 Similarly to before, we write Ho = (Fo), F = Alg(F,), and Hj =
(Fo"). Proceeding as in the proofs of Lemmas 8.38 and 8.39 below, one can verify that
the second condition automatically implies that the operators A" and .4 both leave 'HS'
invariant.

Letnow M : Hg — Hg be alinear map such that M7, = Zy M 7 for every 7 € Fy
such that 7,7 € Fy. Then, we would like to use the map M to build a new model
(ITM, M) with the property that

aMr =TIMr . (8.33)

(The condition M Zy T = Z;, M7 is required to guarantee that (8.31) still holds for )
This is not always possible, but the aim of this section is to provide conditions under
which it is. In order to realise the above identity, we would like to build linear maps
AM:Hy — Ho x 7-[3' and M : ’Ha' — ’Ha' such that one has

IMr = (I, @ f) M7, My = f, M7, (8.34)

Remark 8.35 One might wonder why we choose to make the ansatz (8.34). The first
identity really just states that IT 7 is given by a bilinear expression of the type

M7= Clm fo(r) M7

T1,T2

which is not unreasonable since the objects appearing on the right hand side are the only
objects available as “building blocks” for our construction. One might argue that the
coefficients could be given by some polynomial expression in the f, (71), but thanks
to the fact that f, is group-like, this can always be reformulated as a linear expression.
Similarly, the second expression simply states that 2 is given by some arbitrary linear
(or polynomial by the same argument as before) expression in the f.
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Furthermore, we would like to ensure that if the pair (IT, f) satisfies the identities
(8.31) and (8.32), then the pair (IT", fM) also satisfies them. Inserting (8.34) into
(8.32), we see that this is guaranteed if we impose that

MJ, = M(Ji, @ DAM | (8.35a)

where, as before, M : 7—[8‘ X 7—[8’ — ’Ha' denotes the multiplication map. We also note
that if we want to ensure that (8.33) holds, then we should require that, for every x € Rd,
one has the identity TIM = IIM(FM)™' which we rewrite as 1M = IIMFM.
Making use of the first identity of (8.34) and of the fact that IT,, = IIF,, the left hand
side of this identity can be expressed as

I3 = (I® fo ® f)(A© DAY = (o f)( @ MYA © DAY T

Using the second identity of (8.34), the right hand side on the other hand can be rewritten
as
OMFYr =@ MM e DAT =M ® f)(M @ M)AT .

We see that these two expressions are guaranteed to be equal for any choice of IT and
[z if we impose the consistency condition

(I @ M)A @ DAM = (M @ M)A . (8.35b)

Finally, we impose that Misa multiplicative morphism and that it leaves X * invariant,
namely that . R X )
M(mi7m3) = (MT1)(MT2), Mx*=Xx*, (8.35¢)

which is a natural condition given its interpretation. In view of (8.34), this is required to
ensure that £ is again a group-like element with £ (X;) = —x;, which is crucial for
our purpose. It then turns out that equations (8.35a)—(8.35¢) are sufficient to uniquely
characterise AM and M and that it is always possible to find two operators satisfying
these constraints:

Proposition 8.36 Given a linear map M as above, there exists a unique choice of M
and AM satisfying (8.35a)—(8.35¢).

In order to prove this result, it turns out to be convenient to consider the following
recursive construction of elements in H . We define 7 = () and then, recursively,

FHD = {r e Fp : A1 € Hp ® (Alg(F™)} . (8.36)

Remark 8.37 In practice, a typical choice for the set F( of Assumption 8.33 is to take
Fo = F™ and F, = F™D for some sufficiently large n, which then automatically
has the required properties by Lemma 8.38 below. In particular, this also shows that
such sets do exist.

For example, 7 contains all elements of the form Z" X'* that belong to Fr, but
it might contain more than that depending on the values of « and 3. The following
properties of these sets are elementary:

e One has F»~1 ¢ F™, This is shown by induction. For n = 1, the statement is
trivially true. If it holds for some 7 then one has Alg(F™~Y) C Alg(F™) and
s0, by (8.36), one also has F) c ot ag required.
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o If 7,7 € F (™) are such that 77 € Fp, then 77 € F™ as an immediate conse-
quence of the morphism property of A, combined with the definition of Alg.

o If 7 € F™ and k is such that ;7 € Fp, then Z,7 € F™+V. As a consequence
of this fact, and since all elements in Fr can be generated by multiplication and
integration from = and the X, one has Un>0 Fm = Fp.

The following consequence is slightly less obvious:

Lemma 8.38 For everyn > 0 and 7 € F™, one has At € (F™) @ (Alg(F"~D)).
For everyn > 0 and T € Alg(F™), one has ATt € (Alg(F™)) ® (Alg(F™)).

Proof. We proceed by induction. For n = 0, both statements are trivially true, so
we assume that they hold for all n < k. Take then 7 € F**D and assume by
contradiction that A7 & (F*+D) @ (Alg(F®)). This then implies that (A ® AT ¢
Hr @ (Alg(FP)) @ (Alg(F®)). However, we have (A ® I)AT = (I @ AT)AT by
Theorem 8.16 and A* maps (Alg(F®)) to (Alg(F®)) @ (Alg(F™®)) by our induction
hypothesis, thus yielding the required contradiction.

It remains to show that A" has the desired property for n = k + 1. Since AT is a
multiplicative morphism, we can assume that 7 is of the form 7 = 7,7 with 7 € F*+D,
One then has by definition

(=X)™\
& =3 (Feem® ) AT+ 10T
By the first part of the proof, we already know that A7 € (F*+D) @ (Alg(F®)), so
that the first term belongs to (Alg(F** 1)) @ (Alg(F™®)). The second term on the other
hand belongs to (Alg(F@)) @ (Alg(F*+D)) by definition, so that the claim follows.
O

A useful consequence of Lemma 8.38 is the following.

Lemma 8.39 If 7 € Alg(F™) for some n > 0, then At € (Alg(F™)), where A is
the antipode in H . defined in the previous subsection.

Proof. The proof goes by induction, using the relations A(77) = A(7) A(7T), as well as

the identity
¢

AGer == > M(Tire £|A) AT, (837)
7 4

which is valid as soon as |73 7|s > 0. For n = 0, the claim is trivially true. For arbitrary

n > 0, by the multiplicative property of A, it suffices to consider the case 7 = J, 7 with

7 € F™. Since AT € (F™) @ (Alg(F™~Y)) by Lemma 8.38, it follows from our

definitions and the inductive assumption that the right hand side of (8.37) does indeed

belong to (Alg(F™)) @ (Alg(F™)) as required. O

‘We now have all the ingredients in place for the

Proof of Proposition 8.36. We first introduce the map D : H, ®7—[8‘ — Ho ®’H8‘ given
by D = (I @ M)(A ® I). It follows immediately from the definition of A and the fact
that, by Lemma 8.10, homogeneities of elements in F (and a fortiori of elements in
JFo) are bounded from below, that D can be written as

Dr7) =77 —D(rQ7),
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for some nilpotent map D. As a consequence, D is invertible with inverse given by the
Neumann series D~1 = > 50 D¥ ., which is always finite.

The proof of the statement then goes by induction over 7™ N F. Assume that M
and AM are uniquely defined on Alg(F™ N F,) and on F™ N F, respectively which,
by (8.35c¢), is trivially true for n = 0. (For AM this is also trivial since 7 is empty.)
Take then 7 € F™*+D N Fy. By (8.35b), one has

AMr = D Y(M @ M)AT .

By Lemma 8.38 and Remark 8.34, the second factor of A7 belongs to (Alg(F™ N F,))
on which M is already known by assumption, so that this uniquely determines AM 7.
On the other hand, in order to determine M on elements of Alg(F"+tU N F,) it
suffices by (8.35¢) and Remark 8.34 to determine it on elements of the form 7 = J; 7
with 7 € F+1 0 F,. The action of M on such elements is determined by (8.35a)
so that, since we already know by the first part of the proof that AM7 is uniquely
determined, the proof is complete. O

Before we proceed, we introduce a final object whose utility will be clear later on.
Similarly do the definition of AM, we define AM : H — H§ @ H7 by the identity

(AMA @ M)AT = (I @ MY(AT @ HAM . (8.38)

Note that, similarly to before, one can verify that the map D+ = (I ® MYAT @ 1) is
invertible on Hy ® Hg , so that this expression does indeed define AM uniquely.

Remark 8.40 Note also that in the particular case when M = I, the identity, one has
AMr =71, AMr=721,aswellas M = I.

With these notations at hand, we then give the following description of the “renor-
malisation group” fR:

Definition 8.41 Let 75 and F be as above. Then the corresponding renormalisation
group *R consists of all linear maps M : Hg — Ho such that M commutes with the 7y,
such that M X* = X%, and such that, for every 7 € Fy and every 7 € F, one can
write

Mr=ra1+) Mer®, Alr=rel1+) Vo7, (839
where each of the 7V € Fy and 7V ¢ }'S' is such that |7 |s > |7|s and |75 > |7|s.

Remark 8.42 Note that AM is automatically a multiplicative morphism. Since one
has furthermore AM X* = X* © 1 for every M, the second condition in (8.39) really
needs to be verified only for elements of the form Zy(7) with 7 € F,. The reason for
introducing the quantity AM and defining fR in this way is that these conditions appear
naturally in Theorem 8.44 below where we check that the renormalised model defined
by (8.34) does again satisfy the analytical bounds of Definition 2.17.

We first verify that our terminology is not misleading, namely that fR really is a
group:

Lemma 8.43 If My, M>; € R, then M1 M> € R. Furthermore, if M € R, then
M—! e
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Proof. Note first that if M = M; M, then, due to the identity v = IIM, M5, one
obtains the model (ITM | FM) by applying the group element corresponding to Ms to
(I FMiy Asa consequence, one can “guess’ the identities

AM = (I @ M)(AM' @ My)AMz2 (8.40a)
AM = (I @ M)(AM @ Ny)AM: (8.40b)
M = M1 Mz . (8.40c)

Since we know that (8.35) characterises AM and M, (8.40) can be verified by checking
that AM and M defined in this way do indeed satisfy (8.35). The identity (8.35¢) is
immediate, so we concentrate on the two other ones.

For (8.35a), we have

M(Ty @ DAM = M((J @ DAM @ M) AM2
= M(MJj, @ M) AM:
= MyM(Ti, ® I)AM2 = NI, ML T,

which is indeed the required property. Here, we made use of the morphism property of
M to go from the second to the third line.
For (8.35b), we use (8.40a) to obtain

(I @ M)A @ DAM = (I @ M)A @ T @ M)(AM @ M) AM-
= (I © M)((M; ® M)A @ M) AMz
= (M ® M) @ M)(A @ I)AM-
= (M, ® My)(My @ My)A = (M @ M)A ,

as required. Here, we used again the morphism property of M to go from the second to
the third line. We also used the fact that, by assumption, (8.35b) holds for both M/; and
M. Finally, we want to verify that the expression (8.40b) for AM s the correct one.
For this, it suffices to proceed in virtually the same way as for AM, replacing A by A
when needed.

To show that R is a group and not just a semigroup, we first define, for any x € R,
the projection P, : Ho — Ho given by P,7 = 0if |7|s > kand Py7 = 7 if |75 < K.
We also write 75N = P, ® I as a shorthand. We then argue by contradiction as follows.
Assuming that M ~! & R, one of the two conditions in (8.39) must be violated. Assume
first that it is the first one, then there exists a 7 € Fy and a homogeneity x < |7|s, such
that AM "+ can be rewritten as

AMﬂT:RAfT—&—RfT,

with P.RM 7+ = RM #£0, 75,.§Rf7' =0, and RM7 # 7 ® 1. We furthermore choose
for x the smallest possible value such that such a decomposition exists, i.e. we assume
that P RM 7 = 0 for every & < k.

It follows from (8.40a) that one has

Po(r @ 1) = P AT = (I @ M) (P AM @ MAM)AM "1

Since, by Definition 8.41, the identity P, AM7 = P,.(7 ® 1) holds as soon as |T|s > K,
one eventually obtains R
P (r®1)=RMr,
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which is a contradiction. Therefore, the only way in which one could have M~ ¢ R
is by violating the second condition in (8.39). This however can also be ruled out in
almost exactly the same way, by making use of (8.40b) instead of (8.40a) and exploiting
the fact that one also has Alr = 7 @ 1. O

The main result in this section states that any transformation M € R extends
canonically to a transformation on the set of admissible models for .7 for arbitrary
r > 0.

Theorem 8.44 Let M € R, where R is as in Definition 8.41, let v > 0 be such that the
kernel K annihilates polynomials of degree r, and let (I1, f) ~ (II, ') be an admissible
model for ,714&” with f and T related as in (8.29).

Define Hﬂ/f and fM on Hy and H(‘)" as in (8.34) and define T™ via (8.29). Then,
(IIM . T'M) is an admissible model for T on Ho. Furthermore, it extends uniquely to
an admissible model for all of 7, PET).

Proof. We first verify that the renormalised model does indeed yield a model for 5
on H,. For this, it suffices to show that the bounds (2.15) hold. Regarding the bound
on Hi\/[ , recall the first identity of (8.34). As a consequence of Definition 8.41, this
implies that (IT}7)(2) can be written as a finite linear combination of terms of the
type (I1,7)()) with |7|s > |7|s. The required scaling as a function of A then follows
at once.

Regarding the bounds on I';,, recall that I'yy 7 = (I ® 74y)AT with

Yoy = (foA @ fAT, (8.41)

and similarly for 7%. Since we know that (IL, I") is a model for Zﬁr), this implies that
one has the bound
eyl S lz =yl (8.42)

and we aim to obtain a similar bound for fy%. Recalling the definitions (8.41) as well as
(8.34), we obtain for . the identity

Yoy = (f2A® fUAMA® MAT = (fA® f)I @ M)A © DAY
= (foA® f, ® f)AT @ DAY = (1, @ f,) AV,

where the second equality is the definition of AM while the last equality uses the defini-
tion of 7, combined with the morphism property of f,,. It then follows immediately
from Definition 8.41 and (8.42) that the bound (8.42) also holds for 7% .

Finally, we have already seen that if (IT, T') is admissible, then 1> and fM satisfy
the identities (8.31) and (8.32) as a consequence of (8.35a), so that they also form an ad-
missible model. The fact that the model (ITM , T'™) extends uniquely (and continuously)
to all of .7, Iﬁr) follows from a repeated application of Theorem 5.14 and Proposition 3.31.

O

Remark 8.45 In principle, the construction of R given in this section depends on the
choice of a suitable set Fy. It is natural to conjecture that 2R does not actually depend
on this choice (at least if Fy is sufficiently large), but it is not clear at this stage whether
there is a simple algebraic proof of this fact.
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9 Two concrete renormalisation procedures

In this section, we show how the regularity structure and renormalisation group built in
the previous section can be used concretely to renormalise (PAMg) and (®%).

9.1 Renormalisation group for (PAMg)

Consider the regularity structure generated by (PAMg) with 9tz as in Remark 8.8,
f=2,anda € (—%, —1). In this case, we can choose

Fo={1LE X;E,Z(EEZ,Li(5), L(E)I;E)} , F.=1{E},

where 7 and j denote one of the two spatial coordinates. It is straightforward to check
that this set satisfies Assumption 8.33. Indeed, provided that o € (f%, —1), it does
contain all the elements of negative homogeneity. Furthermore, all of the elements
T € Fp satisfy AT = 7 ® 1, except for ZZ(Z) and X,;= which satisfy

AEIE) =ZIE®1+20JE), AXEZ=XEZ®14+Z0X,.

It follows that these elements indeed satisfy AT € Hy ® H(J{ , as required by our
assumption.

Then, for any constant C' € R and 2 x 2 matrix C, one can define a linear map M
on the span of F by

M(Z(®)E) =I(E)= - C1,
M(L(EL;(®) = T(E)I;E) — Cy;1,

as well as M (7) = 7 for the remaining basis vectors in Fy. Denote by Ry the set of all
linear maps M of this type.

In order to verify that 9}y C R as our notation implies, we need to verify that AM
and AM satisfy the property required by Definition 8.41. Note first that

MIE) = 1),

as a consequence of (8.35a). Since one furthermore has M X,; = X, this shows that
one has R
(M @ MHAT = (M @ DAT,

for every 7 € Fp. Furthermore, it is straightforward to verify that (M ® )AT = AMT
for every 7 € Fy. Comparing this to (8.35b), we conclude that in the special case
considered here we actually have the identity

ANMr=Mnrel, 9.1)

for every 7 € Fy. Indeed, when plugging (9.1) into the left hand side of (8.35b), we do
recover the right hand side, which shows the desired claim since we already know that
(8.35b) is sufficient to characterise AM . Furthermore, it is straightforward to verify that
AM Z(Z) = Z(Z) ® 1 so that, by Remark 8.42, this shows that M & R for every choice
of the matrix C;; and the constant C'.

Furthermore, this 5-parameter subgroup of R is canonically isomorphic to R®
endowed with addition as its group structure. This is the subgroup Ry that will be used
to renormalise (PAMg) in Section 9.3.
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9.2 Renormalisation group for the dynamical ®3 model

We now consider the regularity structure generated by (®*), which is our second main
example. Recall from Remark 8.7 that this corresponds to the case where

Mp = {Z,U" : n <3},

B =2and a < —5 In order for the relevant terms of negative homogeneity not to

depend on a, we will choose o € (——7 —7) The reason for this strange-looking value
18 is that this is precisely the value of « at which, setting ¥ = Z(Z) as a shorthand,
the homogeneity of the term W2Z(WU2Z(¥3)) vanishes, so that one would have to modify
our choice of Fq.
In this particular case, it turns out that we can choose for Fy and F, the sets

Fo={1,5,0,0% W3 w2X,; T(T3T, Z(¥3)P?, 9.2)
(V) (2, IV, Z(WY?, X}, Fo = {9, 0% 07},
where the index ¢ corresponds again to any of the three spatial directions.
Then, for any two constants C; and C5, we define a linear map M on Hg by
MY? =02 - (041
M(U%X;) = 02X, — 1 X
MU? =3 - 30,V

M(Z(¥*H)V?) = T(U?)(V? - 011) Col, 9.3)
M(Z(T*)¥) = (Z(¥®) - 3CL (V) ¥

M(Z(T3)W?) = (Z(T3) — 301101/))(\1/2 C11) — 30,0
M(Z(V)V?) = Z()(V? - C11)

as well as M7 = 7 for the remaining basis elements 7 € Fy. We claim that one has the
identity
ANMr=Mrye1, (9.4a)

for those elements 7 € Fy which do not contain a factor Z(¥?). For the remaining two
elements, we claim that one has

AMT(THT = (MZ(THP) @ 1+ 3C, X; @ Ji(D) , (9.4b)
AMTZW? = (MZ(P*P?) @ 1+ 3C; (P2 — O1DX; @ Jy(P),  (9.4¢)

where a summation over the spatial components X; is implicit.

For 7 € {1,Z,¥,¥2 U3}, one has AT = 7 ® 1, so that AM7 = (M7)® 1 as a
consequence of (8.35b). Similarly, it can be verified that (9.4a) holds for U2 X; and X;
by using again (8.35b). For the remaining elements, we first note that, as a consequence
of this and (8.35a), one has the identities

MZI(P™) =I(MY™),  MZ;0) = Z;(D) . 9.5)

All the remaining elements are of the form 7 = Z(¥")U™, so that (8.8) yields the
identity

AT=71+ 39" QTP + 61 (V" X,; @ Ti(¥) + " @ X; J:(V)) .
As a consequence of this and of (9.5), one has

(M ® M)AT=Mr@1+ MI™ @ J(MUI") (9.6)
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+ 0, (MY @ 1)(X; @ Ti(P) + 10 X;.T;(V)) .
Furthermore, for each of these elements, one has
Mr=MI™Z(MI™) + T, 9.7)

where 7 is an element such that A7 = 7®1. Combining this with the explicit expression
for M, one obtains the identity

AM7T=M7r®1+ MU @ J(MUI™)
+ 01 (MI" @1)(X; @ T;(P) + 1@ X;7:(D))
— 3C18,3(MI™ @ 1)(X; @ T;(V) + 1@ X; T;(D)) .

Comparing this expression with (9.6), we conclude in view of (8.35b) that one does
indeed have the identity

A7 = M7 @1+ 3C10,3 (MI™X,; ® Ji(D),

which is precisely what we claimed. A somewhat lengthy but straightforward calculation
along the same lines yields the identities

AFT(MIU™) =10 JT(ME™) + T(MI™) @1 = 6,1 (Ti(¥) © X;)
+ 3C16,3(Ji(V) ® Xi) |

as well as

(AMA® M)A*F(U™) = 10 J(MI"™) + T(MI™) @ 1 = 6,1 (Fi(V) @ X,)
—3C103(Xs Ti(P)® 1) .

Comparing these two expressions with (8.38), it follows that AM jg given by
A7) = JMI™) @ 1+ 301803 (X; @ T(¥) = XiT(V) @1) .

As a consequence of the expressions we just computed for A and AM and of the
definition of M, this shows that one does indeed have M € fR. Furthermore, it is
immediate to verify that this two-parameter subgroup is canonically isomorphic to R?
endowed with addition as its group structure. This is the subgroup 2Ry C R that will be
used to renormalise (®*) in Section 10.5.

9.3 Renormalised equations for (PAMg)

We now have all the tools required to formulate renormalisation procedures for the
examples given in the introduction. We give some details only for the cases of (PAMg)
and (®%), but it is clearly possible to obtain analogous statements for all the other
examples.

The precise statement of our convergence results has to account for the possibility
of finite-time blow-up. (In the case of the 3D Navier-Stokes equations, the existence
or absence of such a blow-up is of course a famous open problem even in the absence
of forcing, which is something that we definitely do not address here.) The aim of this
section is to show what the effect of the renormalisation group Rg built in Section 9.1
is, when applied to a model used to solve (PAMg).

Recall that the right hand side of (PAMg) is given by

fij(w) Oju Oju + g(u) €,



TWO CONCRETE RENORMALISATION PROCEDURES 138

and that the set of monomials 215 associated with this right hand side is given by
Mpr = {U”, UnE, Un’Pi,UnPin :n>0,14,5€ {1,2}} .

We now let I be the regularity structure associated to 9t via Theorem 8.24 with
d=3,5s=2,1,1),a=|E € (f%, —1), and $ = 2. As already mention when we
built it, the regularity structure 7% comes with a sector V' = (Up) C T which is given
by the direct sum of the abstract polynomials 7' with the image of Z:

V=ITaT. (9.8)

Since the element in F with the lowest homogeneity is =, the sector V' is function-like
and elements u € DY(V) with v > 0 satisfy Ru € CY@+2s_ Furthermore, the
sector V' comes equipped with differentiation maps &; given by Z,Z(1) = Z;(7) and
2; X% = k; X*~¢_ Tt follows immediately from the definitions that any admissible
model is compatible with these differentiation maps in the sense of Definition 5.26.

Assume for simplicity that the symmetry . is given by integer translations in R?,
so that its action on J is trivial. (In other words, we consider the case of periodic
boundary conditions on [0, 1] x [0, 1].) Fix furthermore v > —a and choose one of the
decompositions G = K + R of the heat kernel given by Lemma 7.7 with r > ~.

With all this set-up in place, we define the local map F,: V — T by

F(1) = fijiy (1) % Dit Dy + §o(T) % E.. 9.9)

Here, fijw and g, are defined from f;; and g as in Section 4.2. Furthermore, we have
explicitly used the symbol x to emphasise the fact that this is the product in 7. We also
set as previously P = {(t,z) : t = 0}.

We then have the following result:

Lemma 9.1 Assume that the functions f;; and g are smooth. Then, for every v > |
and forn € (0, a+2), the map w — F.(u) is locally Lipschitz continuous from D" (V')
into DT,

Remark 9.2 In fact, we only need sufficient amount of regularity for the results of
Section 4.2 to apply.

Proof. Letw € D}"(V) and note that V' is function-like. By Proposition 6.15, one
then has Z;u € D}, """ (W) for some sector W with regularity o + 1 < 0. This
is a consequence of the fact that 2,1 = 0, so that the element of lowest homogeneity
appearing in W is given by Z;(Z).

Applying Proposition 6.12, we see that Z;u x Zju € DT> ~*(W), where W is
of regularity 2a + 2. Since furthermore fijw(u) € D}"(V) by Proposition 6.13 (and
similarly for g.(u)), we can apply Proposition 6.12 once more to conclude that

fij;’y(u) * Diu* Diu € 'D’IYD-"-oz,Qn_Q .

Similarly, note that we can view the map z — = as an element of D},” for every v > 0,
but taking values in a sector of regularity a. By applying again Proposition 6.12, we
conclude that one has also

N - +a,2n—2
g,y(u)*:ED'IYDO‘ e

All of these operations are easily seen to be locally Lipschitz continuous in the sense of
Section 7.3, so the claim follows. 0
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Corollary 9.3 Denote by G the solution map for the heat equation, letn > 0, a €
(—%, —1), v > |a|, and K such that it annihilates polynomials of order ~. Then,
for every periodic initial condition ug € C" with n > 0 and every admissible model
Z € Mr, the fixed point map

u= (K5 + R,R)R"F,(u) + Guy, (9.10)

where I, is given by (9.9), has a unique solution in D" on (0,T') for T' > 0 sufficiently
small.

Furthermore, setting T, = Too(ug; Z) to be the smallest time for which (9.10) does
not have a unique solution, one has either T, = oo or limy_, 1 ||Ru(t, )|, = oo.
Finally, for every T' < T, and every § > 0, there exists € > 0 such that if ||Gg — uo||, <
eand || Z; Z||, < e, one has ||u; @], < 0.

Proof. Since oo > —2 and 1 > 0, it follows from Lemma 9.1 that all of the assumptions
of Theorem 7.8 and Corollary 7.12 are satisfied. O

Denote now by S the truncated solution map as given in Section (7.3). On the
other hand, for any (symmetric / periodic) continuous function &.: R> — R and
every (symmetric / periodic) ug € C"(RQ), we can build a “classical” solution map
ue = St(ug, £.) for the equation

Opte = Aug + fi5(uz) Oju0jue + g(ue) & u:(0, 2) = ug(x) , 9.11)

where the subscript L refers again to the fact that we stop solutions when ||u.(t, -)||,, > L.
Similarly to before, we also denote by T (uo, &) the first time when this happens. Here,
the solution map Sh(uyg, &) is the standard solution map for (9.11) obtained by classical
PDE theory [Kry96, Kry08].

Given an element M € Ry with the renormalisation group R defined as in Sec-
tion 9.1, we also define a “renormalised” solution map u. = _]@(uo7 &) in exactly the
same way, but replacing (9.11) by

Orue = Aue + fij(ue) (aiusajus - gQ(UE)éij) + g(ue) (55 - Cg/(ue)) P (9.12)

where ¢’ denotes the derivative of g. We then have the following result:

Proposition 9.4 Given a continuous and symmetric function &, denote by Z. the
associated canonical model realising 7, PET) given by Proposition 8.27. Let furthermore
M € R be as in Section 9.1. Then, for every L > 0 and symmetric uy € C"(R?), one
has the identities

RSE(ug, Z2) = St (up, &), and RS (ug, MZ.) = Ski(ug, £2) .

Proof. The fact that RS (ug, Z.) = ST (ug, &) is relatively straightforward to see.
Indeed, we have already seen in the proof of Proposition 7.11 that the function v =
RS (ug, Z.) satisfies for t < T (ug, Z.) the identity

t
v(t,x) = /O /RQ Gt — s,z —y)(REy(v))(s,y) dy ds + /RQ G(t,x — yuo(y) dy ,

where G denotes the heat kernel on R?. Furthermore, it follows from (8.18) and
Remark 4.13 that in the case of the canonical model Z., one has indeed the identity

(RE,())(s,y) = fij(Ru(s,y)) O;Ru(s, y)d;Ru(s, y) + g(Rv(s, y)) &(s, y) »
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valid for every v € D7 with v > |a| > 1. As a consequence, Rv satisfies the same
fixed point equation as the classical solution to (9.11).

It remains to find out what fixed point equation v satisfies when we consider instead
the model M Z., for which we denote the reconstruction operator by R . Recall first
Remark 3.15 which states that for every w € D7 with v > 0, one has the identity

(RMw)(2) = (TMEw(2))(z),

where we have made use of the notation M Z, = (II™:(® T'M:())  Furthermore, one
has (ITM+®)7)(z) = 0 for any element 7 with ||, > 0, so that we only need to consider
the coefficients of w belonging to the subspace spanned by the elements with negative
(or 0) homogeneity.

It follows from Lemma 9.1 that in order to compute all components of w = F,(v)
with negative homogeneity, we need to know all components of v with homogeneity
less than |«|. One can verify that as long as « > f%, the only elements in V' with
homogeneity less than |a| are given by {1, X1, X2, Z(Z)}. Since v(z) furthermore
belongs to the sector V, we can find functions ¢: R* — R and V&: R® — R? such
that

v(z) = () 1+ gPENIE) + (Ve(2), X) + o(z) ,
where the remainder o consists of terms with homogeneity strictly larger than |«/|. Here,
the fact that the coefficient of Z(Z) is necessarily given by g(y(z)) follows from the
identity (7.20), combined with an explicit calculation to determine §. Furthermore, we
make a slight abuse of notation here by denoting by X the spatial coordinates of X.
Note that in general, although V¢ can be interpreted as some kind of “renormalised
gradient” for ¢, we do not claim any kind of relation between ¢ and V. It follows that

Ziv(z) = g(p()Li(2) + Vip(2) 1 + 0i(2) ,
for some remainder g; consisting of terms with homogeneity greater than || — 1.
Regarding f;;.,(v) and g, (v), we obtain from (4.11) the expansions
Fiin@)(@) = fij (0N 1+ fi(p(N)g(e(NIE) + 04(2) ,
97 (W)(2) = g(p(2) 1+ g'(P(N)g(P(NL(E) + 04(2) ,
where both ¢y and g, contain terms proportional to X, as well as other components
of homogeneities strictly greater than |«|. Note also that when o > —%, the elements
of negative homogeneity are those in F( as in Section 9.1, but that one actually has
(MM X, =)(2) = 0 for every M € Ro.
It follows that one has the identity
E,0)(2) = fis () (Vip()Vso(2) 1 + (@) Vi) L (E)
+ 9PNV PDTIE) + PPN TLEVT (E))
+ 9(P(DE + g (PEIPEIEE + or(2)
At this stage we use the fact that, by (9.1), one has the identity
@ =OMr,

forall T € Fy, together with the fact that RM v(z) = ¢(2). A straightforward calculation
then yields the identity
RYMF,(0)(2) = fij RMo(2)(0iRM v(2)9;RM v(z) — Cijg*(RMv(2))
+gRMu@)(E(2) — Cg'RMv(2)) ,

which is precisely what is required to complete the proof. O
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9.4 Solution theory for the dynamical ®3 model

We now turn to the analysis of (®%). In this case, one has F = ¢ — u?, so that My
is given by {1,Z,U,U?,U3}. This time, spatial dimension is 3 and the scaling we
consider is once again the parabolic scaling s = (2, 1, 1, 1), so that the scaling dimension
of space-time is 5. Since £ denotes space-time white noise this time, we choose for o
some value o = |Z| < —%. It turns out that in order to be able to choose the set Fy in
Section 8.3 independently of «, we should furthermore impose o > —%. In this case,
the fixed point equation that we would like to consider is

u=(Ksy+R,R)R"(Z—u*) + Guy , 9.13)

with ug € CJ(R?), n > —2,v € (3,7 +2),and 5 > 0.

We are then in a situation which is slightly outside of the scope of the general result
of Corollary 7.12 for two reasons. First, Proposition 6.9 does a priori not apply to the
singular modelled distribution RT=. Second, the distribution RZ(Z) is of negative
order, so that there is in principle no obvious way of evaluating it at a fixed time.
Fortunately, both of these problems can be solved relatively easily. For the first problem,
we note that multiplying white noise by the indicator function of a set is of course not
a problem at all, so we are precisely in the situation alluded to in Remark 6.17. As
a consequence, all we have to make sure is that the convergence £, — ¢ takes place
in some space of distributions that allows multiplication with the relevant indicator
function. Regarding the distribution RZ(Z), it is also possible to verify that if & is
space-time white noise, then K = £ almost surely takes values not only in CZ(R?) for
n < —%, but it actually takes values in C(R, C ”(R?’)), which is precisely what is needed
to be able to evaluate it on a fixed time slice, thus enabling us to extend the argument of
Proposition 7.11.

The simplest way of ensuring that the reconstruction operator yields a well-defined
distribution on R* for R = is to build a suitable space of distributions “by hand” and to
show that smooth approximations to space-time white noise also converge in that space.
We fix again some final time, which we take to be 1 for definiteness. We then define for
any o < 0 and compact K the norm

1€hasn = sup [[€1e>slass »
seER

and we denote by C the intersections of the completions of smooth functions un-
der | - |,,.4 for all compacts . One motivation for this definition is the following
convergence result:

Proposition 9.5 Let & be white noise on R x T3, which we extend periodically to
R*. Let 0: R* = R be a smooth compactly supported function integrating to 1, set
0 = SZo, and define &, = o * £. Then, for every a € (=3, —g), one has £ € C2
almost surely and, for everyn € (—1, —%), one has K x ¢ € C(R,C"(R®)) almost surely.
Furthermore, for every compact & C R* and every r > 0, one has

E|§ —&lam Se 707 . 9.14)
Finally, for every k € (0, —% — 1), the bound

E sup [[(K *&(t, ) — (K « &), )y S e, (9.15)
te[0,1]

holds uniformly over € € (0, 1].
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Proof. In order to show that £ € CZ, note first that it is immediate that £1;>, € C¢ for
every fixed s € R. It therefore suffices to show that the map s — £1;> is continuous
in C2. For this, we choose a wavelet basis as in Section 3.2 and, writing ¥, = ¥ U {¢},
we note that for every p > 1, one has the bound

B[l —ElisolZe < D0 Y Y B2 e — s, ) [P

YeV, n>0zeArNR

<3N Y 2rmrl(E (e Lo, qu )P

YeW, n20zeArNR

2
S Z Z22anp+|5‘"p+‘5|n||1t€|0,s]¢:7nl’5”[/1; :
PeEW, n>0

Here we wrote £ for the 1-fattening of & and we used the equivalence of moments for
Gaussian random variables to obtain the second line. We then verify that

[Lecro,s1902°°

Provided that o € (—%, —2), it then follows that

%2 <1A2%s .

~

_5_a_ 5
E[[€1i>s — Elizollasn S s7 1727 .
Choosing first p sufficiently large and then applying Kolmogorov’s continuity criterion,
it follows that one does indeed have £ € CZ as stated.
In order to bound the distance between £ and £, we can proceed in exactly the
same way. We then obtain the same bound, but with ||L1¢c(o 592 °||3 . replaced by
[Lecio,12° — 0= * (Liero,192%) |3 2. A straightforward calculation shows that

[Licro,s100° — 0= * (Lico, i ®)|172 S TA2s N 220E2

~

As above, it then follows that, provided that o + k > —3,
_5_q—k E_5
E||(€ — &)licposillong Se727 4 s2 7

so that the requested bound (9.14) follows at once by choosing p sufficiently large.

In order to show (9.15), note first that K x £, = o, * (K * £). As a consequence, it
is sufficient to find some space of distributions X C C([0,1],C") such that K « £ € X
almost surely and such that the bound

lloe * ¢ = Clleqo,em S eFlIChx » (9.16)

holds uniformly over all € € (0,1] and ( € X. We claim that X = C5(R,C" ) isa
possible choice.
To show that (9.16) holds, we use the characterisation

l|0c * ¢ = Clleqo,,em)

= sup sup A7 SUP/W(I)QE(x -yt —5)(((y,s) — ((x,t) dedyds ,
t€10,1]1 A€(0,1] ¥

where the supremum runs over all test functions ¢ € B;;’O (for s the Euclidean scaling).
We also wrote 1/* for the rescaled test function as previously. One then rewrites the
above expressions as a sum 77 + T with

T = / P @)0u@ — ot — (Y, ) — Cy, ) du dy ds |
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T — / P@ou@ — ot — (s 1) — (o, B) da dy ds

= /(w*(m) —PrY)oe(@ — y, t — $)((y, ) dx dy ds .

To bound each of these terms, one considers separately the cases A < ¢ and A > «.
For T, it is then straightforward to verify that | 73| < (€7 A \")|t — s|®/2. Since one
has |t — s| < €2 due to the fact that ¢ is compactly supported, the requested bound
follows for T} . For T5, arguments similar to those used in Section 5.2 yield the bound
T < N1HR < R\ in the case A < € and |To| < AT~ 1e < eRA7 in the case ¢ < \.
The bound (9.16) then follows at once.

To show that K x £ belongs to X' almost surely, the argument is similar. Write
K =3, -, K, as in the assumption and set &M = K, x €. We claim that it then
suffices to show that there is § > 0 such that the bound

E(/ w)\(m)(g(n)(x’t) _ f(n)(%o)) dx)2 S 275n|t|ﬁ+6)\2n+2ﬁ+6 , (9.17)

holds uniformly over n > 0, A € (0, 1], and test functions @) € B;;’O. Indeed, this
follows at once by combining the usual Kolmogorov continuity test (in time) with
Proposition 3.20 (in space) and the equivalence of moments for Gaussian random
variables.

The left hand side of (9.17) is equal to

/ ( / V@) (Kn(w =y, t = 1) = Kn(@ —y, 7)) dw)2 dydr =: || 937 .

It is immediate from the definitions and the scaling properties of the K, that the volume
of the support of Ui is bounded by (A + 27")3272". The values of ¥\ inside this
support are furthermore bounded by a multiple of

25 A [E|25m ANTE
For A < 27" we thus obtain the bound
”\I,)\;t”%2 < 275n|t|k+626n+2(k+5)n _ 2n+2(k+6)n|t‘k+§
n ~ 9
while for A > 27" we obtain

||\Ij>\;t| < )\32—2n|t|R+§)\—6+F€+525(F€,+5)n — |t|R+6)\3(F€+5)—32—2n+5(7€+6)n
n ~ .

2
L2

It follows that since 7 is strictly less than —%, it is possible to choose % and § sufficiently

small to guarantee that the bound (9.17) holds, thus concluding the proof. 0

Remark 9.6 The definition of these spaces of distributions is of course rather ad hoc,
but it happens to be one that then allows us to restart solutions, which is amply sufficient
to apply the same procedure as in Corollary 7.12 to define local solutions to (9.13).

As before, the regularity structure .7 comes with a sector V' C T which is given
by (9.8). This time however, the sector V is not function-like, but has regularity
2+« € (—%, —%). Assume for simplicity that the symmetry . is again given by
integer translations in R, so that its action on .7 is trivial. Fix furthermore v > |20+ 4]
and choose one of the decompositions G = K + IR of the heat kernel given by Lemma 7.7
with r > 7.

Regarding the nonlinearity, we then have the following bound:
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Lemma 9.7 For every v > |2a + 4| and for n < « + 2, the map u — u? is locally
Lipschitz continuous in the strong sense from D);" (V') into D}+2a+4’3".

Proof. This is an immediate consequence of Proposition 6.12. O

With these results at hand, our strategy is now as follows. First, we reformulate the
fixed point map (9.13) as

u=—(Ks+R,R)R"u*+ Gug + v, ©.18)

v=(Ky+R,R)R"E. ’
Here, we define RRTE as the distribution &1;>0, which does indeed coincide with
RR*Z when applied to test functions that are localised away of the singular line t = 0,
and belongs to C¢ by assumption. This also shows immediately that v € D" for 1) and
~ as in Lemma 9.7. We then have the following result:

Proposition 9.8 Let .7 be the regularity structure associated as above to (®*) with
a € (—%, —%), B = 2 and the formal right hand side F(U,=,P) = Z — U3. Let
furthermore 1 € (—%, a+2)andlet Z = (II,T) € ¥ be an admissible model for T
with the additional properties that ¢ 2 R= belongs to C% and that K x ¢ € C(R,C").

Then, for every v > 0 and every L > 0, one can build a maximal solution map S
for (9.18) with the same properties as in Section 7.3. Furthermore, S” has the same
continuity properties as in Corollary 7.12, provided that Z and Z furthermore satisfy
the bounds

I€laio +1€lao <O tsgpl](H(K*ﬁ)(t, Wy + (K *(t,)ly) <C, (9.19)
€lo,

as well as

1€ —¢€lao <0, sup ([[(K  )(t,-) — (K * &)(t,)||y) <6 . (9:20)

te[0,1]

Here, we have set f_ = RE, where R is the reconstruction operator associated to Z.

Proof. We claim that, as a consequence of Lemma 9.7, the nonlinearity Fi(u) = —u?

satisfies the assumptions of Theorem 7.8 as soon as we choose v > |2« + 4|. Indeed, in
this situation, V' is the sector generated by all elements in Fr of the form Z7, while \%
is the span of 7 \ {Z}. As a consequence, one has ( = a + 2 and { = 3(a + 2), s0
that indeed ¢ < ¢ + 2.

Provided that  and ~y are as in Lemma 9.7, one then has 7 = 3n and ¥ = v+ 2a+ 4.
The condition < (7 A {) + 2q then reads 7 < 371 + 2, which translates into the
condition 7 > —1, which is satisfied by assumption. The condition v < 7 + 2q reads
o > —3, which is also satisfied by assumption. Finally, the assumption 77 A { > —2¢
reads n > —%, which is also satisfied. As a consequence, we can apply Theorem 7.8 to
get a local solution map.

To extend this local map up to the first time where |[(Ru)(t, -)||, blows up, the
argument is virtually identical to the proof of Proposition 7.11. The only difference is
that the solution u does not take values in a function-like sector. However, our local
solutions are of the type u(t, x) = Z= + v(t, z), with v taking values in a function-like
sector. (As a matter of fact, v takes values in a sector of order 3(« 4 2) 4 2.) The bounds
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(9.19) and (9.20) are then precisely what is required for the reconstruction operator to
still be a continuous map with values in C(R, C{) and for the fixed point equation

u=—(Ky+ RR)RIu* + Gus + v,
v=(Ks+R,R)RIZ,

to make sense for all s > 0. O

Remark 9.9 The lower bound —% for 1 appearing in this theorem is probably sharp.

This is because the space C ~3 is critical for the deterministic equation so that one
. . Q. 2

wouldn’t even expect to have a continuous solution map for d;u = Au — w3 in C~3! If

u? is replaced by u? however, the critical space is C~! and one can build local solutions

for any n > —1.

As in Section 9.3, we now identify solutions corresponding to a model that has
been renormalised under the action of the group 2Ry constructed in Section 9.2 with
classical solutions to a modified equation. Recall that this time, elements M &€ R, are
characterised by two real numbers C; and Cy. As before, denote by u. = S”(ug, &)
the classical solution map to the equation

Opue = Aug — ug +&,

stopped when ||u(t, -)||,, > L. Here, & is a continuous function which is periodic in
space, and uy € C"(T?). This time, it turns out that the renormalised map 81%4 is given
by the classical solution map to the equation

Orue = Aug + (3C) — 90U —u + &, , (9.21)
stopped as before when the norm of the solution reaches L. Indeed, one has again:

Proposition 9.10 Given a continuous function &.: R x T2 — R, denote by Z, =
(II®, T®)) the associated canonical model for the regularity structure 7, ;T) given by
Proposition 8.27. Let furthermore M € Ry be as in Section 9.2. Then, for every L > 0
and symmetric uy € C"(R?), one has the identities

RS (ug, Zo) = St (ug, &), and RS™(ug, MZ:) = Sk (uo, &) -

Proof. The proof is similar to the proof of Proposition 9.4. Just like there, we can find
periodic functions ¢: R* — R and V: R* — R? such that, writing ¥ = Z(Z) as a
shorthand, the solution u to the abstract fixed point map can be expanded as

u="V+pl—-T(V) = 3pT(V?) + (Vo, X) + 0u » (9.22)

where every component of o, has homogeneity strictly greater than —4 — 2«. In
particular, since (IT2®&W)(2) = (K * £.)(2), one has the identity

(Ru)(z) = (K &)(2) + ¢(2) ,

where we denote by R the reconstruction operator associated to Z.. As a consequence
of (9.22), F(u) = = — u? can be expanded in increasing degrees of homogeneity as

Fu) =2 — U3 — 30 0?2 4+ 302Z(V3) — 3% U + 6p UI(T?)
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+ 9p U2Z(T?) — 3(Vip, U2X) — 31 + oF ,

where every component of g has strictly positive homogeneity. This time, one has the
identity AM 7 = M7 ® 1+ 71 @ 7@ where each of the elements 7! includes at least
one factor X;. As a consequence, just like in the case of (PAMg), one has again the
identity (ITM©)7)(2) = (II© M 7)(2). It follows at once that, for u as in (9.22), one has
the identity

(RMEW))(2) = &(2) — (Ru)(2)® + 3C1 (K * £.)(2) + 3C1(2)
— QCg(K * 55)(,2) —9C5¢(2)
= £.(2) — (Ru)(2)® + (30 — 9Cy) (Ru)(2) .

The claim now follows in the same way as in the proof of Proposition 9.4. O

Remark 9.11 We could of course have taken for F' an arbitrary polynomial of degree 3.
If we take for example F'(u) = = — u® + au? for some real constant a, then we obtain
for our renormalised equation

Orue = Aue + 3(C1 — 3C)u, — ug + auz —a(Cy —3Cy) + & .

It is very interesting to note that, again, the renormalisation procedure formally “looks
like” simple Wick renormalisation, except that the renormalisation constant does not
equal the variance of the linearised equation. It is not clear at this stage whether this is a
coincidence or has a deeper meaning.

In the case where no term > appears, the renormalisation procedure is significantly
simplified since none of the terms involving Z(¥?) appears. This then allows to reduce
the problem to the methodology of [DPD02, DPDO03], see also the recent work [EJS13].
In this case, the renormalisation is the usual Wick renormalisation involving only the
constant (.

10 Homogeneous Gaussian models

One very important class of random models for a given regularity structure is given by
“Gaussian models”, where the processes II.a and I';, a are built from some underlying
Gaussian white noise £. Furthermore, we are going to consider the stationary situation
where, for any given test function ¢, any 7 € T, and any h € R?, the processes
x +— (,7)(py) and © — Ty 44y, are stationary as a function of z. (Here, we wrote ¢,
for the function ¢ translated so that it is centred around x.) Finally, in such a situation,
it will be natural to assume that the random variables (II,7)(z) and I, 7 belong to the
(inhomogeneous) Wiener chaos of some fixed order (depending only on 7) for £. This
is indeed the case for the canonical models Z. built from some continuous Gaussian
process & as in Section 8.2, provided that £.(2) is a linear functional of & for every z.
It is also the case for the renormalised model Z. = M© Z., where M© denotes any
element of the renormalisation group fR built in Section 8.3.

Our construction suggests that there exists a general procedure such that, by using
the general renormalisation procedure described in Section 8.3, it is typically possible to
build natural stationary Gaussian models that can then be used as input for the abstract
solution maps built in Section 7.3. As we have seen, the corresponding solutions can
then typically be interpreted as limits of classical solutions to a renormalised version of
the equation as in Section 9. Such a completely general statement does unfortunately
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seem out of reach for the moment, although someone with a deeper knowledge of
algebra and constructive quantum field theory techniques might be able to achieve this.
Therefore, we will only focus on two examples, namely on the case of the dynamical
@4 model, as well as the generalisation of the two-dimensional continuous parabolic
Anderson model given in (PAMg). Several of the intermediate steps in our construction
are completely generic though, and would just as well apply, mutatis mutandis, to (PAM)
in dimension 3, to (KPZ), or to (SNS).

10.1 Wiener chaos decomposition

In all the examples mentioned in the introduction, the driving noise £ was Gaussian.
Actually, it was always given by white noise on some copy of R which would always
include the spatial variables and, except for (PAM), would include the temporal variable
as well. Mathematically, white noise is described by a probability space (£2, .7, P), as
well as a Hilbert space H (typically some L? space) and a collection W}, of centred
jointly Gaussian random variables indexed by h € H with the property that the map
h — W), is a linear isometry from H into L2(€), P). In other words, one has the identity

EW,W;, = (h,h),
where the scalar product on the right is the scalar product in H.

Remark 10.1 We will usually consider a situation where some symmetry group . acts
on R%. In this case, H is actually given by L?(D), where D C R is the fundamental
domain of the action of .#. This comes with a natural projection 7: L>(R%) — H given

by (mp)(@) = 3 ge 5 (L)

In the setting of the above remark, this data also yields a random distribution, which
def

we denote by &, defined through §(p) = Wr,,. If we endow R? with some scaling s, we
have the following simple consequence of Proposition 3.20.

Lemma 10.2 The random distribution £ defined above almost surely belongs to C for

every a < —|s|/2. Furthermore, let o: R? — R be a smooth compactly supported

Junction integrating to one, set p. = S; yo, and define § = oc * &. Then, for every
ls]

a < —5, every k > 0, and every compact set & C R¢, one has the bound

—Qa—K

_ sl
a;RSE 2

E[¢ — ¢

Proof. The proof is almost identical to the proof of the first part of Proposition 9.5. The
calculations are actually more straightforward since the indicator functions 1;>, do not
appear, so we leave this as an exercise. O

It was first remarked by Wiener [Wie38] that there exists a natural isometry between
all of L?(£2,P) and the “symmetric Fock space”

H=H>",

k>0

where H®:* denotes the symmetric k-fold tensor product of H. Here, we identify
H®<F with H®* quotiented by the equivalence relations

€z‘1®~~®€ikN6i0(1)®"'®€id(k),
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where o is an arbitrary permutation of k£ elements. (This extends by linearity.)

If {ey, }n>0 denotes an orthonormal basis of H then, for any sequence ko, k1, . .. of
positive integers with only finitely many non-zero elements, Wiener’s isometry is given
by

def k. k
Kler, = klef™ @ef" @ ... & Hyy(We ) Hy, (W) ...,

where H,, denotes the nth Hermite polynomial, k! = kg!k{!- - -, and e, has norm 1.
Random variables in correspondence with elements in H®+" are said to belong to the
mth homogeneous Wiener chaos. The mth inhomogeneous chaos is the sum of all the
homogeneous chaoses of orders £ < m. See also [Nua06, Ch. 1] for more details.

We have a natural projection H®™ —» H®s™: just map an element to its equivalence
class. Composing this projection with Wiener’s isometry yields a natural family of maps
I,: H®™ — L2(Q, P) with the property that

E(L.(N)?) < IfI7.

where f € H®™ is identified with an element of L%(D%), and the right hand side denotes
its L? norm. In the case of an element f that is symmetric under the permutation of
its m arguments, this inequality turns into an equality. For this reason, many authors
restrict themselves to symmetric functions from the start, but it turns out that allowing
ourselves to work with non-symmetric functions will greatly simplify some expressions
later on.

Note that in the case m = 1, we simply have I;(h) = Wj. The case m = 0
corresponds to the natural identification of H? ~ R with the constant elements of
L?(2, P). To state the following result, we denote by S(r) the set of all permutations of
r elements, and by S(r, m) C S(m) the set of all “shuffles” of r and m — r elements,
namely the set of permutations of m elements which preserves the order of the first
and of the last m — r elements. For x € D™ and X € S(m), we write X(x) € D™ as
a shorthand for X(z); = zx). Forx € D" and y € D™™", we also denote by = LI y
the element of D™ given by (z1,...,Zy,Y1,-- ., Ym—r). With these notations, we then
have the following formula for the product of two elements.

Lemma 10.3 Let f € L*(D*) and g € L*(D™). Then, one has

Am

LHIn(@) =Y Teym—20(f 5r 9), (10.1)

r=0

where

Frorpun= > > / fS@ U 2)g(E@ U o(2) da
SEsi cesm

forall z€ D*""and 2 € D™,

Proof. See [Nua06, Prop. 1.1.2]. O

Remark 10.4 Informally speaking, Lemma 10.3 states that in order to build the chaos
decomposition of the product Iy(f)I,,(g), one should consider all possible ways of
pairing r of the ¢ arguments of f with r of the m arguments of g and integrate over
these paired arguments. This should really be viewed as an extension of Wick’s product
formula for Gaussian random variables.
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A remarkable property of the Wiener chaoses is the following equivalence of mo-
ments:

Lemma 10.5 Let X € L*(Q,P) be a random variable in the kth inhomogeneous

Wiener chaos. Then, for every p > 1, there exists a universal constant Cy, ,, such that
E\X2p| < Ckyp(EXQ)p.

Proof. This is a consequence of Nelson’s hypercontractive estimate [Nel73, Gro75],
combined with the fact that the Wiener chaos decomposition diagonalises the Ornstein-
Uhlenbeck semigroup. O

10.2 Gaussian models for regularity structures

From now on, we assume that we are given a probability space (2, %, P), together with
an abstract white noise h — W}, over the Hilbert space H = L?(D). We furthermore
assume that we are given a Gaussian random distribution £ which has the property that,
for every test function v, the random variable (1)) belongs to the homogeneous first
Wiener chaos of W.

Remark 10.6 One possible choice of noise £ is given by £(¢p) = Wy, which corre-
sponds to white noise. While this is a very natural choice in many physical situations,
this is not the only choice by far.

We furthermore assume that we are given a sequence &, of continuous approxima-
tions to & with the following properties:

e For every € > 0, the map x — £-(x) is continuous almost surely.

e Forevery € > 0 and every = € R%, £.(x) is a random variable belonging to the
first Wiener chaos of W.

e For every test function ¢/, one has

lim / Ee(@)p(x) de = E(W) ,
E— Rd

in L2(Q, P).

Given such an approximation, one would ideally like to be able to show that the
corresponding sequence (II®, I'®)) of canonical models built from &, in Section 8.2
converges to some limit. As already mentioned several times, this is simply not the
case in general, thus the need for a suitable renormalisation procedure. We will always
consider renormalisation procedures based on a sequence M. of elements in the renor-
malisation group R built in Section 8.3. We will furthermore take advantage of the fact
that we know a priori that the models (II*®, I'®)) belong to some fixed Wiener chaos.

Indeed, we can denote by ||7|| the number of occurrences of = in the formal expres-
sion 7. More formally, we set ||1]] = || X|| = 0, ||Z|| = 1, and then recursively

lrr = lrll -+ 070 1 Zerl =il

Then, as an immediate consequence of Lemma 10.3, for any fixed 7 € Fp, x € Rd,
and smooth test function ¢, the random variables (TI$'7)(¢)) and T's)7 belong to the
(inhomogeneous) Wiener chaos of order ||7]|. Actually, it belongs to the sum of the
homogeneous chaoses of orders ||7|| — 2n for n a positive integer, and this is still true
for the renormalised models. From now on, we denote 7 = {7 € Fr : |7|s < 0}.
The following convergence criterion is the foundation on which all of our convergence
results are built.
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Theorem 10.7 Let F' be a locally subcritical nonlinearity and let 7, Iff) be the corre-
sponding regularity structure built in Section 8, restricted to {T : |7|s < r}. Let M,
be a sequence of elements in its renormalisation group ‘R, let & be an approximation
to & as in Lemma 10.2 with associated canonical model Z, = (II©,T®), and let
ZE = (12[(5), f(g)) = M_.Z. be the corresponding sequence of renormalised models.

Assume furthermore that there is k > 0 such that, for every test function ¢ € B;,o’
every x € RY, and every T € F_, there exists a random variable (f[xT)(go) belonging
to the inhomogeneous Wiener chaos of order ||T|| such that

E|(IL7)(p)|” S N°1letr, (10.2)
and such that, for some 6 > 0,
E|(IL7 — I 7)o" S e Al (10.3)

Then, there exists a unique admissible random model Z = (f[, ) of 7, }ff) such that, for
every compact set & C R and every p > 1, one has the bounds

E|ZIF S1.  EIZZ|f; S

Remark 10.8 As already seen previously, it is actually sufficient to take for ¢ the
scaling function of some sufficiently regular compactly supported wavelet basis.

Proof. Note first that the proportionality constants appearing in (10.2) and (10.3) are
independent of x by stationarity. Let now )V C F be any finite collection of basis
vectors, let V' = (V), and assume that V is such that AV C V ® H,, so that V is a
sector of J. Then, it follows from Proposition 3.32 that, for every compact set K, one
has the bound

~ r n pnls| A~ n
E”H”;\.},R § E((l —+ ”FHV,R)Z) Sup Sllp supi 2‘ |5p + 2 ‘(HTT)(SDT’E)V)) (104)
7€V n>0 TEAT(R)

n 7|spr+ 22zl 2 , z
SVEQ+ [Dvi)® 30> gnlsltrlernt 255 (g (o) (05 *)*) %

7€V n>0

where the proportionality constant depends on £ and the choice of V. Here, we used
stationarity and Lemma 10.5 to go from the first to the second line. A similar bound
also holds for 1:[(5), as well as for the difference between the two models.

The claim will now be proved by induction over F™, where 7™ was defined
in Section 8.3. Recall that for every n > 0, the linear span T,, = (F™) forms a
sector of I, that these sectors exhaust all of the model space 7', and that one has
AT, C T, ® (Alg(F™=D)). As a consequence, it is sufficient to prove that, for every

p > 0, one has the bounds
E|Z|f, . S1,  EIZZE, . S

The claim is trivial for n = 0, so we assume from now on that it holds for some
n > 0. As a consequence of the definition of F"*+1 and the fact that we only consider
admissible models, the action of f‘xy on it is determined by the corresponding values
fz (1) for 7 € Alg(F (). Since furthermore the functionals f% are multiplicative and,
on elements of the form Z, 7, we know from our definition of the canonical model and
of the renormalisation group that (8.32) holds, we conclude from the finiteness of the
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set ™ and from Theorem 5.14 that there exists some power k (possibly depending on
n) such that the deterministic bounds

2 5 k
7 sii8 S A+ [120700)"
1T =Tz, 108 S 1Z: Zellzin (1 + 1 Zllz,0)"
hold. We now write Fn+D = Fnth .FTH) where FHD = FtD £ while
the second set contains the remainder. Setting 7, ; = (F_ ("H)}, it follows from

Assumption 8.33 and (2.1) that AT, , C T, ® (Alg(F™)y).
It thus follows from (10.4) and (10.2) that

210 nls|—kpn
Tni1:8 E :E 2 :

TEVN>0

B SEQ+ I

Provided that p is large enough so that kp > |s|, which is something that we can always
assume without any loss of generality since p was arbitrary, it follows that 11 does indeed
satisfy the required bound on 7T}, ;. Regarding the difference I — 11, we obtain the
corresponding bound in an identical manner. In order to conclude the argument, it
remains to obtain a similar bound on all of 7, ;. This however follows by applying
Proposition 3.31, proceeding inductively in increasing order of homogeneity. Note that
each element we treat in this way has strictly positive homogeneity since we assume
that only 1 has homogeneity zero, and IT, 1 = 1, so nothing needs to be done there. [1

We assume from now on that we are in the setting of Theorem 10.7 and therefore only
need to obtain the convergence of (f[gf)r)(go) to a limiting random variable (ﬂIT)(gO)
with the required bounds when considering rescaled versions of . We also assume that
we are in a translation invariant situation in the sense that R? acts onto H via a group of
unitary operators {.S; },cre and there exists an element 9. € H such that

&(x) = I1(S30:) s

where I is as in Section 10.1. As a consequence, E|(I1,7)(¢,)|” is independent of x,
so that we only need to consider the case 2 = 0.
Since the map ¢ — (II9'7)(¢) is linear, one can find some functions (or possibly

distributions in general) WERT with
WER (@) € HOF (10.5)
where z € Rd, and such that
A0 = 3 ([ e rmay) (10.6)
k<]l

where I}, is as in Section 10.1. The same is of course also true of the bare model I1®,
and we denote the corresponding functions by WPt

Remark 10.9 Regarding f[f;f)T for x # 0, it is relatively straightforward to see that one
has the identity

([0 = 3 I /

PSPV dy) . (10)
R<iiel R

which again implies that the law of these random variables is independent of z.
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Remark 10.10 For every = € R?, )W©*7)(x) is a function on k copies of D. We
will therefore also denote it by VWX ) (2; 1, ..., yx). Note that the dimension of z
is not necessarily the same as that of the y;. This is the case for example in (PAMg)
where the equation is formulated in R* (one time dimension and two space dimensions),
while the driving noise ¢ lives in the Wiener chaos over a subset of R?.

We then have the following preliminary result which shows that, in the kind of
situations we consider here, the convergence of the models Z. to some limiting model
Z can often be reduced to the convergence of finitely many quite explicit kernels.

Proposition 10.11 In the situation just described, fix some T € F_ and assume that
WHET with

values in H®* and such that

(V0 @, WEr)@)] < O3 (lzlls + 12]10) 1z = 201777,
¢
where the sum runs over finitely many values ¢ € [0, 2|7|s + k + |s|). Here, we denoted

by (-,-) the scalar product in H®*.
Assume furthermore that there exists 0 > 0 such that

(EW (@), (V)@ < O 3 (ells + l12o)lle = 2527

¢
(10.8)

where we have set SYVER = WiEk) _ W(k), and where the sum is as above. Then, the
bounds (10.2) and (10.3) are satisfied for T.

Proof. In view of (10.6) and (10.7)Awe define, for every smooth test function v and
every = € R? the random variable (IT,7)(1)) by

ML) = Y (1970 = ¥ 4[| s@sorined) . 109
E<|I7I k<|\7'|\

‘We then have the bound
~ N 2
BIAO WP = BN < | [ o' @oione ]
= / / P P E(NVPT)(2), WRT)(2)) dz dz

— _ 2 5s— _
<P ‘Z (lzlls + 1218)° 11z — 215217~ dz dz

IIzlls <A
1Zlls <A

< A2 Z)\CHE\/ 2|52 g
¢

llz]ls <2A
< )\72|5\ Z )\C+2\5|+m+2\r|57( < )\n+2|-r\5 )
¢
A virtually identical calculation, but making use instead of the bound on JW(E;’”, also

yields the bound . .
E|(IY — TLr )W) S /A1l

as claimed. O
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10.3 Functions with prescribed singularities

Before we turn to examples of SPDEs for which the corresponding sequence of canonical
models for the regularity structure .7 can be successfully renormalised, we perform a
few preliminary computations on the behaviour of smooth functions having a singularity
of prescribed strength at the origin.

Definition 10.12 Let s be a scaling of R? and let K : R?\ {0} — R be a smooth
function. We say that K is of order ( if, for every sufficiently small multiindex k, there
exists a constant C such that the bound | D¥ K ()| < C||x||g_‘k‘5 holds for every  with
[[z]ls < 1.

For any m > 0, we furthermore write

Kl £ sup sup |||t | DFK () .
|kls <m xR

Remark 10.13 Note that this is purely an upper bound on the behaviour of K near the
origin. In particular, if K is of order (, then it is also of order { for every ¢ < (.

Lemma 10.14 Let K1 and K5 be two compactly supported functions of respective
orders (1 and (o. Then K1 K is of order ( = (1 + (3 and one has the bound

K1 K llem < ClElcuimll Ballcoim

where C' depends on the sizes of the supports of the K.
If 1 A G2 > —|s| and furthermore CZ 1+ Co + |s| satisfies { < 0, then K * Ko
is of order ¢ and one has the bound

151+ K|

am < Ol lcsml Kallgoim - (10.10)

In both of these bounds, m € N is arbitrary. In general, if € RL\N, then Ky * Ky
has derivatives of order |k|s < C at the origin and the function K given by

k
x
K@) = (K1 Kp)@) — Y ng(K1 % K5)(0) (10.11)
lkls<C
is of order C. Furthermore, one has the bound

(e

leim < CIE lcum K2 llcosm » (10.12)

where we set . = m V (|¢| + max{s;}).

Proof. The claim about the product K3 K5 is an immediate consequence of the gener-
alised Leibniz rule, so we only need to bounq Ky « Ko. We will first show that, for
every = # 0 and every multiindex & such that ¢ < |k|s, one does have the bound

DR (K + Ko) @) S )]s e

Killeysier 182 lleaspm (10.13)

as required. From such a bound, (10.10) follows immediately. To show that (10.12)
follows from (10.13), we note first that D¥ K = D*(K; * K5) for every k such that
|k|s > ¢, so that it remains to show that it is possible to find some numbers which we
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then call D* (K * K3)(0) such that if K is defined by (10.11), then similar bounds hold
for D¥ K with |k|s < C.

For this, we define the set of multiindices Az = {k : |k|s < ¢} and we fix a
decreasing enumeration Az = {ko, ..., kn}, i.e. [kmls > |kn|s whenever m < n. We
then start by setting K¥(z) = (K; * K5)(x) and we build a sequence of functions
K™(z) iteratively as follows. Assume that we have the bound | DF»+¢ K™ ()| <
Hx||§_|k”|5_5"' fori € {1,...,d}. (This is the case for n = 0 by (10.13).) Proceeding
as in the proof of Lemma 6.5 it then follows that one can find a real number C,, such

that [DF» K(z) — C| < [l]|s™*1*. We then set K+ D(@) = K™W(x) — C, 2.
It is then straightforward to verify that if we set K (x) = K™)(x), it has all the required
properties.

It remains to show that (10.13) does indeed hold. For this, let ¢: R be a smooth
function from R? to [0, 1] such that () = 0 for ||z, > 1 and @(x) = 1 for ||z||s < i
For r > 0, we also set ¢,(y) = ¢(S.y). Since K is bilinear in /; and K5, we can
assume without loss of generality that || Kj|¢,.z, = 1. With these notations at hand,

we can write

(K1 % K3)(2) = /Rd er(NE1(z — ) Ka(y) dy + /Rd or(z — YKi(z — y)Ka(y) dy
+ /Rd(l = r(y) — pr(@ — ) Ki(x — y)Ka(y) dy
= /Rd or(WK1(z — y)Ka(y) dy + /Rd er(WNE 1Y) Ka(z — y) dy
+ /Rd(l —or(y) — pr(z —Y)Ki(z — ) Ka(y) dy , (10.14)
so that, provided that r < ||z||s/2, say, one has the identity

DH(K K () — / e DK@ — Ko dy

R

+ /R , orK1(y)DF Koz — y) dy
+ /R L =ery) =@ - y))D* Ky (x — y)Ka(y) dy

k!
~ 2 G / Dfor(x — y) DM Ky (x — y) Ka(y) dy -
£<k (k= O Jra

It remains to bound these terms separately. For the first term, since the integrand is
supported in the set {y : ||y|ls < ||=||s/2} (thanks to our choice of ), we can bound
|D*K 1 (x — y)| by C||x||§17|k|5 and Ko (y) by ||y||$?. Since, for ¢ > —|s|, one has the
easily verifiable bound

/ Iyl§ dy S vl (10.15)
lylle<r

it follows that the first term in (10.14) is bounded by a multiple of ||xH§_|k|5

The same bound holds for the second term by symmetry.
For the third term, we use the fact that its integrand is supported in the set of
points y such that one has both ||y||s > ||z||s/4 and ||z — y||s > ||z||s/4. Since

, as required.
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llz — ylls > llylls — ||z||s by the triangle inequality, one has

1—¢
o=yl > ellylle + (== = <) llell

for every € € [0, 1] so that, by choosing  small enough, one has ||z — y||s > C|ly||s

for some constant C'. We can therefore bound the third term by a multiple of
/ IS dy ~ gl $ (10.16)
C=2llylls=ll=lls /4

from which the requested bound follows again at once. (Here, the upper bound on the
domain of integration comes from the assumption that the K; are compactly supported.)

The last term is bounded in a similar way by using the scaling properties of ¢, and
the fact that we have chosen 7 = ||z|s/2. O

In what follows, we will also encounter distributions that behave just as if they were
functions of order ¢, but with { < —|s|. We have the following definition:

Definition 10.15 Let —|s| — 1 < ¢ < —|s| and let K: R?\ {0} — R be a smooth
function of order ¢, which is supported in a bounded set. We then define the renormalised
distribution Z K corresponding to K by

#W = [ K@i — o) de

for every smooth compactly supported test function ).

The following result shows that these distributions behave under convolution in
pretty much the same way as their unrenormalised counterparts with { > —|s|.

Lemma 10.16 Let K1 and K5 be two compactly supported functions of respective
orders ¢ and G2 with —|s| — 1 < {3 < —|s| and —2|s| — (1 < (2 < 0. Then, the

function (Z K1) * Ky is of order { = 0 A (Cy + (o + |s|) and the bound

leim < CIE lcuim K2 llcaim »

holds for every m > 0, where we have set = m + max{s; }.

Proof. Similarly to before, we can write

DM(ZE) % Ks) (@) = / o)DM — o) dy + (RED) (6, DP Ko — )

R

+ / (1 — ¢p(y) — (@ — ) DF K1 (z — y) Ka(y) dy
Rd

k! / ) k¢
_ __r Do, (x —y) D" " K1(z — y)Ka(y) dy .
kzk Ok —0)! Jra

Here, we used the fact that, when tested against test functions that vanish at the origin,
Z K is again nothing but integration against K. All these terms are bounded exactly
as before, thus yielding the desired bounds, except for the second term. For this term,
we have the identity

(B (o DM Kol — ) = / K1()(r(y)D* Kol — ) — D*Ko(a)) dy
Rd
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= | K10 (D e = ) = D ) dy
FDM) [ K0 - ) dy. (101)
RY

For the first term, we use the fact that the integrand is supported in the region {y :
lylls < |lz||s/2} (this is the case again by making the choice r = ||x||s/2 as in the
proof of Lemma 10.14). As a consequence of the gradient theorem, we then obtain the
bound

d
_ks_ i
IDFEa(x = y) — DPE@)] S 3 Iyl )6 1Kl
=1

where we have set k& = |k|s + max{s;}. Observing that |y;| < ||ly||Z, the required
bound then follows from (10.15). The second term in (10.17) can be bounded similarly
as in (10.16) by making use of the bounds on K} and K. 0

To conclude this section, we give another two useful results regarding the behaviour
of such kernels. First, we show how a class of natural regularisations of a kernel of order
¢ converges to it. We fix a function g: R¢ — R which is smooth, compactly supported,
and integrates to 1, and we write as usual g.(y) = gl o(S5y). Given a function K on
Rd, we then set

def

K.=K=xp. .

We then have the following result:

Lemma 10.17 [n the above setting, if K is of order ( € (—|s|,0), then K. has bounded
derivatives of all orders. Furthermore, one has the bound

ID*K.(2)] < C(||z]|s + &)

Kll¢,jx, - (10.18)
Finally, for all { € [ — 1,() and m > 0, one has the bound

15 — Kellgan < €S CIE lcom » (10.19)

where m = m + max{s; }.

Proof. Without loss of generality, we assume that g is supported in the set {z : ||z||s <
1}. We first obtain the bounds on K itself. For ||x||s > 2e, we can write

DFK_(x) :/ DFK (x — y)o-(y) dy .
Rd

Since g, is supported in a ball of radius ¢, it follows from the bound ||z||s > 2¢ that
whenever the integrand is non-zero, one has ||z — y||s > ||z||s/2. We can therefore
bound D*K (z — y) by ||=||S ¥l
fact that . integrates to 1.

For ||z||s < 2e on the other hand, we use the fact that

K||¢;jx|. - and the requested bound follows from the

D*K_(z) =/ K(y)D*o.(x — y)dy .
Rd
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Since ||z||s < 2¢, the integrand is supported in a ball of radius 3¢. Furthermore, | D* o, |
is bounded by a constant multiple of £ ~I%/=/¥ls there, so that we have the bound

IDF K ()] < el K e / Iyl dy .

lylls <3e

so that (10.18) follows.
Regarding the bound on K — K, we write

DFK.(z) — D*K(2) = /R d(D’“K(x —y) — D*K(2)) 0.(y) dy .

For ||z||s > 2e, we obtain as previously the bound

d
_ks_ i
e 2 Lyl [l

=1

|D*K(x —y) — DK ()| S || K|

where we set k = |k|; + max{s;}. Integrating this bound against o., we thus obtain

d

i - ks* i - C— k's

ek D |zl s < el
=1

|D*K(z) — D"K.(@)| < |IK]|

where we used the fact that s; > 1 for every i. For ||z||s < 2¢ on the other hand, we
make use of the bound obtained in the first part, which implies in particular that

DK (@) — DFK.@) S K]

C—Ikls - C—|kls
e I2lls ™M S R D,
which is precisely the requested bound. O

Finally, it will be useful to have a bound on the difference between the values of
a singular kernel, evaluated at two different locations. The relevant bound takes the
following form:

Lemma 10.18 Ler K be of order { < 0. Then, for every o € [0, 1], one has the bound
[K(2) = K@) < 2= zl2 (=117 + 1z IE

I ¢im »
where m = sup; s;.
Proof. For a = 0, the bound is obvious, so we only need to show it for o = 1; the other

values then follow by interpolation.
If |z — Z||s > ||zlls A ||Z]|s» We use the “brutal” bound

[K(2) — K(2)] < [K@)|+ K@) < (2l + 1211 K l¢im
< 2(|2l5 AMZIDIE Nlgim < 201z = 2l1(N2l5™ A 21T DIE Ngim
< 2|z = zl|(l=lg™" + Izl K

||C;m ’

which is precisely what is required.
To treat the case ||z — Z||s < ||z||s A ||Z]|s, we use the identity

K() - K@3) = / (VK(y),dy) (10.20)

~

where 7y is any path connecting Z to z. It is straightforward to verify that it is always
possible to find « with the following properties:
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1. The path ~ is made of finitely many line segments that are parallel to the canonical
basis vectors {e; }¢_;.

2. There exists ¢ > 0 such that one has ||y||s > ¢(||2]|s A ||Z||s) for every y on 7.

3. There exists C' > 0 such that the total (Euclidean) length of the line segments
parallel to e; is bounded by C||z — Z

54
5

Here, both constants ¢ and C' can be chosen uniform in z and z. It now follows from the
definition of || K||¢.., that one has

0K < K e lylls™ -

It follows that the total contribution to (10.20) coming from the line segments parallel
to e; is bounded by a multiple of

I lgim 12 = 205 (12115 + 121157°) < WK Ngimllz = Zlls (121571 + 121157 -

where, in order to obtain the inequality, we have used the fact that s; > 1 and that we
are considering the regime ||z — Z||s < ||z||s A ||Z]]s- 0

10.4 Wick renormalisation and the continuous parabolic Anderson model

There is one situation in which it is possible to show without much effort that bounds of
the type (10.2) and (10.3) hold, which is when 7 = 775 and one has identity

(MO7)(2) ~ (MT97)(2) o (1975)(2) ,

either as an exact identity or as an approximate identity with a “lower-order” error
term, where ¢ denotes the Wick product between elements of some fixed Wiener chaos.
Recall that if f € H®* and g € H®*, then the Wick product between the corresponding
random variables is defined by

I (f) o 1e(9) = Ikte(f ® 9) -

In other words, the Wick product only keeps the “dominant” term in the product formula
(10.1) and discards all the other terms.

We have seen in Section 9.3 how to associate to (PAMg) a renormalisation group Ry
and how to interpret the solutions to the fixed point map associated to a renormalised
model. In this section, we perform the final step, namely we show that if &, is a smooth
approximation to our spatial white noise £ and Z. denotes the corresponding canonical
model, then one can indeed find a sequence of elements M. € PRy such that one has
M.Z, — Z. Recalling that elements in R are characterised by a real number C' and a
2 x 2 matrix C, we show furthermore that it is possible to choose the sequence M. in
such a way that the corresponding constant C' is given by a logarithmically diverging
constant C, while the corresponding 2 x 2 matrix C'is given by C;; = —1C.6;;.

We are in the setting of Theorem 10.7 and Proposition 10.11 with H = L?(T?), and
where the action of R® onto H is given by translation in the spatial directions. More
precisely, for z = (t,z) € R x R* and ¢ € H, one has

(S:0)(y) = @y — ) .

It turns out that in this case, writing as before z = (¢,z) and z = (t, ), the random
variables (I1$)7)(Z) are not only independent of ¢, but they are also independent of £. So
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we really view our model as a model on R? endowed with the Euclidean scaling, rather
than on R® endowed with the parabolic scaling. The corresponding integral kernel K is
obtained from K by simply integrating out the temporal variable.

Since the temporal integral of the heat kernel yields the Green’s function of the
Laplacian, we can choose K in such a way that

K@) = —ilogHw , (10.21)
27
for values of z in some sufficiently small neighbourhood of the origin. Outside of that
neighbourhood, we choose K as before in such a way that it is smooth, compactly
supported, and such that fR? 2*K(x)dx = 0, for every multiindex & with |k| < r for
some fixed and sufficiently large value of r. These properties can always be ensured by
a suitable choice for the original space-time kernel K. In particular, K is of order ¢ for
every ¢ < 0 in the sense of Definition 10.12.

Recall now that we define &, by & = o. * £, where p is a smooth compactly
supported function integrating to 1 and p. denotes the rescaled function as usual. From
now on, we consider everything in T2, so that o: R* — R. With this definition, we then
have the following result, which is the last missing step for the proof of Theorem 1.11.

Theorem 10.19 Denote by 7 the regularity structure associated to (PAMg) with o €
(—§7 —1) and B = 2. Let furthermore M. be a sequence of elements in Rg and define
the renormalised model ZE = M_Z.. Then, there exists a limiting model A independent
of the choice of mollifier o, as well as a choice of M. € Ry such that Z. = Zin
probability. More precisely, for any 8 < —1 — o, any compact set K, and any v < r,
one has the bound X

E[|M.Z:;: Z|| 15 S e,

uniformly over € € (0, 1].
Furthermore, it is possible to renormalise the model in such a way that the family of
all solutions to (PAMg) with respect to the model Z formally satisfies the chain rule.

Remark 10.20 Note that we do not need to require that the mollifier o be symmetric,
although a non-symmetric choice might require a renormalisation sequence M, which
does not satisfy the identity C;; = —3C6;;.

Proof. As already seen in Section 9.1, the only elements in the regularity structure
associated to (PAMg) that have negative homogeneity are

(2, X,2, T2, L(E)L;E)} .

By Theorem 10.7, we thus only need to identify the random variables (IT,7)(1) and
to obtain the bounds (10.2) and (10.3) for elements 7 in the above set. For 7 = Z, it
follows as in the proof of Proposition 9.5 that

E(TOS) )P SA2,  E[IPE - MLE)@)P S XA,

provided that 6 < %, which is precisely the required bound. For 7 = X; =, the required
bound follows immediately from the corresponding bound for 7 = =, so it only remains
to consider 7 = Z(E)Z and 7 = Z;(E)Z;(Z).

We start with 7 = Z(Z)Z, in which case we aim to show that

E|(TON)@eH? <A™, E|(IO7 — L)) <A (10.22)
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For this value of 7, one has the identity
mﬁmm:mw/m@f@—Km—m@@w—c@,
where C® is the constant appearing in the characterisation of M, € 93,. Note now that
E&(y)éc(2) = /R2 0:(y — )o(z — 1) d = 0 (y — 2)
and define the kernel K by
K.(y) = /Qs(y —2)K(2)dz .

With this notation, provided that we make the choice C® = (p., K.), we have the
identity

(7)) = /(f((y —2) = K(w—2))(&(2) 0&(y)) dz — / 0Py — K@ —2)dz .
In the notation of Proposition 10.11, we thus have

WEDT)(y) = (0 * K.)()

(WEDT)(y; 21, 22) = 0e(22 — Y)(Kely — 21) — Ke(—21)) -
This suggests that one should define the L2-valued distributions
WO = K,
Y WO =K@ . ) (1023)
WET)(y; 21, 22) = 8(22 — (K (Y — 21) — K(=21)) ,

and use them to define the limiting random variables (I1%)7)(1) via (10.9).
A simple calculation then shows that, for any two points y and 7 in R?, one has

(WEDT) (), WEDT)(5))
=wf@—@/ﬁzw—@—K&ﬂﬂ&@—@—Kxﬂ»w

= 0y — PWe(y, 9) - (10.24)

Writing Q. (y) “ f K(y — 2)K.(—z) dz and using furthermore the shorthand notation

Q1) = Qu(y) — Q(0) — (y, VQ(0)) (10.25)

we obtain . . .

We(y,9) = Qe(y — y) — Qe(y) — Qe(—79) .
As a consequence of Lemmas 10.14 and 10.17, we obtain for any 6 > 0 the bound
|Q=(2)| < |12]|>~° uniformly over & € (0, 1]. This then immediately implies that

Wy, )l S Iyll*~° + lgl*~°

uniformly over € € (0, 1].
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It follows immediately from these bounds that

| 1OV, 072 ) @) 0 ) dy d| £ 3

uniformly over € € (0, 1]. In the same way, it is straightforward to obtain an analogous
bound on W7, so it remains to find similar bounds on the quantity

(B2 7)™ = (L7 )@ — ([APT) @Y .
Writing SWED 7 = WEDr — W1 we can decompose this as

(OWEDTY(y; 21, 20) = (8(20 — ) — 0e(22 — ) (K(y — 21) — K(—21))
+ QE(ZQ - y)(éks(y - Zl) - 5K€(_Zl))

ef

= (W2 7)(y; 21, 22) + (OS2 7)(y; 21, 22) -

o

where we have set K. = K — K.. Accordingly, at the level of the corresponding
random variables, we can write

SHEDr = SHEDr 4 51D 7

and it suffices to bound each of these separately. Regarding 612152;22)7, it is straightforward
to bound it exactly as above, but making use of Lemma 10.17 in order to bound § K.
The result of this calculation is that the second bound in (10.22) does indeed hold for

5ﬁ(;;22), for every 0 < % and x > 0, uniformly over €, A € (0,1].
Let us then turn to 512[;512 )7 1t follows from the definitions that one has the identity
(WG )W) (WG ) @)
= (0 =) — 0@ —») — 0=y = + ey = PIW (¥, 9) -
At this stage, we note that we can decompose this as a sum of 9 terms of the form
(0y = 9) — 2y — P)Q) , (10.26)

where g. is one of 92, o., or o-(—-), = is one of y, § and y — ¥, and Q is defined
analogously to (10.25). Let us consider the case x = y. One then has the identity

/ (0:(y — ) — 3y — D) QW) Y (Y @) dy d (10.27)
_ / GO W )Wy — by — W (@) dy dh

Since the integrand vanishes as soon as ||k 2> &, we have the bound [y (y — h) —
Y ()| < A~3e. Combining this with the bound on Q obtained previously, this imme-
diately yields for any such term the bound e A==, provided that ¢ < \. However, a
bound proportional to A~ can be obtained by simply bounding each term in (10.27)
separately, so that for every § < %, one has again a bound of the type 2/ A\=20="%,
uniformly over all £, A € (0, 1].

The case z = ¥ is analogous by symmetry, so it remains to consider the case
x = y — y. In this case however, (10.27) reduces to

/ 0:(y — DO — PP @) dy dy
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which is even bounded by 279 A\~2, so that the requested bound follows again. This

concludes our treatment of the component in the second Wiener chaos for 7 = Z(Z)=.
Regarding the term WOt in the Oth Wiener chaos, it follows immediately from
Lemma 10.17 that, for any § > 0, one has the uniform bound

| 1OV, 070 r) @) 0 e dy d| £ 37

as required. For the difference )97, we obtain immediately from Lemma 10.17
that, for any x < 1 and § > 0, one has indeed the bound

| / (OVOr)), WO @) @ @) dy dg| < e A

uniformly over £, A € (0, 1]. This time, the corresponding bound on the difference
between W97 and W7 is an immediate consequence of Lemma 10.17.

We now turn to the case 7 = Z;(2)Z;(Z). This is actually the easier case, noting
that one has the identity

(7)) = / OiK(y — 2)é(2) dz / 0, K(y — 2)é(2)dz — CF

independently of z. If we now choose C'5 = (0; K, 0, K.), one has similarly to before
the identity

(A7) () = / 0K (y — 20, K (y — 22)(E(z1) 0 E-(20)) dza 2

so that in this case (ﬁ(;)T)(y) belongs to the homogeneous chaos of order 2 with
WEDT)(y; 21, 22) = O Ko (y — 21) 0i Ky — 22) .

It then follows at once from Lemma 10.17 that the required bounds (10.2) and (10.3) do
hold in this case as well.

Let us recapitulate what we have shown so far. If we choose the renormalisation
map M. associated to C® = (p., K.) and C‘S) = (9;K.,0;K.), which certainly
does depend on the choice of mollifier g, then the renormalised model Z. converges
in probability to a limiting model Z that is independent of p. However, this is not the
only possible choice for M.: we could just as well have added to C® and C_'Z(JE-) some
constants independent of € and g (or converging to such a limit as ¢ — 0) and we
would have obtained a different limiting model Z, so that we do in principle obtain a
4-parameter family of possible limiting models.

We now lift some of this indeterminacy by imposing that the limiting model yields a
family of solutions to (PAMg) which obeys the usual chain rule. As we have seen in (1.5),
this is the case if we obtain Z as a limit of renormalised models where Cij = —3C6y,
thus yielding a one-parameter family of models. Since we already know that with the
choices mentioned above the limiting model is independent of p, it suffices to find some
o such that the constants E;; defined by

- 1
— i © 4 g, .
E;; Ehn%)(C” + 20 5”) , (10.28)
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are finite. If we then define the model Z by Z=M B Z , where Mg denotes the action
of the element of Ry determined by C' = 0 and C’ij = Fj;, then the model 7 leads to a
solution theory for (PAMg) that does obey the chain rule.

It turns out that in order to show that the limits (10.28) exist and are finite, it is
convenient to choose a mollifier o which has sufficiently many symmetries so that

o(r1,r2) = o(x2,21) = o(x1, —%2) = o(—x1,T2) , (10.29)

for all z € R2. (For example, choosing a g that is radially symmetric will do.) Indeed,
by the symmetry of the singularity of K given by (10.21), it follows in this case that

K (x1,12) = —O Ko(—21,22) = N Ke(21, —22) |

for z in some sufficiently small neighbourhood of the origin, and similarly for d; K..
As a consequence, the function 0 K. 0; K. integrates to 0 in any sufficiently small
symmetric neighbourhood of the origin. It follows at once that in this case, one has

e—0

lim C'9) = / N K(z) K (z)dx , (10.30)
[EE

which is indeed finite (and independent of § > 0, provided that it is sufficiently small)
since the integrand is a smooth function.
It remains to treat the on-diagonal elements. For this, note that one has

/((811_(5(33))2 + (82I_(E(x))2) dx = —/I_(E(x) AK. (z)dx .

It follows from (10.21) that, as a distribution, one has the identity AK = dy + R, where
R is a smooth function. As a consequence, we obtain the identity

<81RE) a1I§vs> + <62K5, 82R€> = _<R€7 Q5> + /Re(w) (Qs * R)(Q?) dx 5

so that

lim (0, K, 01 Kc) + (02 Kz, 0, Ke) + (Ke, 02)) = (K, R) . (10.31)
On the other hand, writing (xl,ng- = (xo,x1), it follows from (10.21) and the
symmetries of o that K. (z1) = K. () for all values of z in a sufficiently small
neighbourhood of the origin, so that (0; K.)? — (0:K.)? integrates to O there. It follows
that

lim(<81K€,3lK€> — <82X5,82R5>) = /l | 5((81K($))2 _ (82K($))2) dx .
z||>

e—0

Combining this with (10.31) and (10.30), it immediately follows that the right hand side
of (10.28) does indeed converge to a finite limit. Furthermore, since the singularity is
avoided in all of the above expressions, the convergence rate is of order €. O

Remark 10.21 The value C'® can be computed very easily. Indeed, for € small enough,
one has the identity

e — /Q;Q(z)f{(z)dz: —%/Q?(Z)logllzﬂdz
(10.32)

1 1
——loge — — / 0*2(2)log ||z dz ,
s 2m
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which shows that only the finite part of C'®) actually depends on the choice of g. Since
this expression does not depend explicitly on K either, it also shows that in this case
there is a unique canonical choice of renormalised model Z. This is unlike in case of
the dynamical ®3 model where no such canonical choice exists.

10.5 The dynamical 3 model

We now finally turn to the analysis of the renormalisation procedure for (®*) in dimen-
sion 3. The setting is very similar to the previous section, but this time we work in
full space-time, so that the ambient space is R*, endowed with the parabolic scaling
s = (2,1,1,1). Our starting point is the canonical model built from &. = g, * £, where
¢ denotes space-time white noise on R x T? and g, is a parabolically rescaled mollifier
similarly to before.

We are then again in the setting of Theorem 10.7 and Proposition 10.11 but with
H = L% x T3). This time, the kernel K used for building the canonical model is
obtained by excising the singularity from the heat kernel, so we can choose it in such a
way that

1i~0 ||9'3||2
K@ = ; — s
¢ ) (4rt)s eXp( 4t )

for (t, ) sufficiently close to the origin. Again, we extend this to all of R* in a way which
is compactly supported and smooth away from the origin, and such that it annihilates
all polynomials up to some degree r > 2. The following convergence result is the last
missing ingredient for the proof of Theorem 1.15.

Theorem 10.22 Let T be the regularity structure associated to the dynamical ®%
18 _5

model for 3 = 2 and some o € (==, —3), let §. as above, and let Z be the associated
canonical model, where the kernel K is as above. Then, there exists a random model 7
independent of the choice of mollifier o and elements M. € Rq such that M. 7. — Z
in probability.

More precisely, for any 6 < —g — a, any compact set &, and any vy < r, one has
the bound

E|M.Z:; 2|0 S €°
uniformly over € € (0, 1].

Proof. Again, we are in the setting of Theorem 10.7, so we only need to show that the
suitably renormalised model converges for those elements 7 € Fr with non-positive
homogeneity. It can be verified that in the case of the dynamical ®3 model, these
elements are given by

F_o ={E,0, 02 03 U2X,; Z(V*V, Z(T*) V%, Z(T3) P2} .

Regarding 7 = =, the claim follows exactly as in the proof of Theorem 10.19. Regarding
7 = ¥ = Z(Z), the relevant bound follows at once from Proposition 10.11 and
Lemma 10.17, noting that (II©)W)(z) = (II©)W)(Z) belongs to the first Wiener chaos
with

WEDD)(2,2) = K.(Z — 2),
where we have set similarly to before K. = g. * K. This is because |¥|; < 0, so that
the second term appearing in (5.12) vanishes in this case. In particular, (ﬁ<;>\1/)(5) is

independent of z, so we also denote this random variable by (ﬂ(s)\I/)(Z). Here, we used
the fact that both K and K, are of order —3.
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The cases 7 = W2 and 7 = U3 then follow very easily. Indeed, denote by Cf) and
C’;E) the two constants characterising the element M. € Ry used to renormalise our
model. Then, provided that we make the choice

cy = / (K-(2))*dz (10.33)
R4

we do have the identities
([992)(2) = ([AO)) 0 (AOV)2),  (AOVP)(2) = (TOW)(2) .

As a consequence, (1:[(8)\11’“)(2) belongs to the kth homogeneous Wiener chaos and one
has
(VAV(E;k)\I/k)(Z; 21y 2k) = Ke(Zz1 —2)- - K (2 — 2) (10.34)

for k € {2,3} so that the relevant bounds follow again from Proposition 10.11 and
Lemma 10.17. Regarding 7 = W2 X, the corresponding bound follows again at once
from those for 7 = W2,

In order to treat the remaining terms, it will be convenient to introduce the following
graphical notation, which associates a function to a graph with two types of edges. The
first type of edge, drawn as «—se, represents a factor K, while the second type of edge,

R4, and the kernel is always evaluated at the difference between the variable that the
arrow points from and the one that it points to. For example, z; e—e 25 is a shorthand
for K(z1 — 22). Finally, we use the convention that if a vertex is drawn in grey, then the
corresponding variable is integrated out. As an example, the identity (10.34) with k = 3
and the identity (10.33) translate into

. o i . ;
(WEDT3)(2) = ¥ o = o (10.35)

Here, we made a slight abuse of notation, since the second picture actually defines a
function of one variable, but this function is constant by translation invariance. With this
graphical notation, Lemma 10.3 has a very natural graphical interpretation as follows.
The function f is given by a graph with £ unlabelled black vertices and similarly for
g with m of them. Then, the contribution of I;(f)I,,(g) in the (¢ + m — 2r)th Wiener
chaos is obtained by summing over all possible ways of contracting r vertices of f with
r vertices of g.

We now treat the case 7 = Z(¥3)W¥. Combining the comment we just made on the
interpretation of Lemma 10.3 with (9.4b) and the definition (10.35) of C'®, we then
have

E\/’3 \/"3 .
O R L
z 0 2

while the contribution to the second Wiener chaos is given by

R\ QY
<w<a2>7><z>3< 4 l) L3N -WEPr) . (1036)
z 0z

The reason why no contractions appear between the top vertices is that, thanks to the
definition of C’ig) in (10.35), these have been taken care of by our renormalisation
procedure.
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We first treat the quantity WED T The obvious guess is that, in a suitable sense,
one has the convergence W47t — W&+, where

W D7)(=) = {'— l;

In order to apply Proposition 10.11, we first need to obtain uniform bounds on the
quantity ((WEDT)(2), (WEDT)(2)). This can be obtained in a way similar to what we
did for bounding W2 Z(Z)= in Theorem 10.19. Defining kernels Q%> and P. by

Q(?’)(z ) = zee— 4 ; ez, Po(z — 2) = ZomomeZ |

we have the identity
(WVEIT)(2), WEIT)(2) = Pa(z — 2)8PQP(z, 2)
where, for any function ) of two variables, we have set

§PQ(z,2) = Q(z, 2) — Q(z,0) — Q(0, 2) + Q(0,0) .

(Here, we have also identified a function of one variable with a function of two variables
by Q(z, 2) < Q(z — Z).) It follows again from a combination of Lemmas 10.14 and
10.17 that, for every § > 0, one has the bounds

Q) — QPO S 21:7°. [P Szl

Here, in the first term, we used the notation z = (¢, x) and we write V, for the spatial
gradient. As a consequence, we have the desired a priori bounds for WE4 7, namely

(VEIT) @), WEIT)@)] S Hlz = 215 (e = 2070 + =l + D1zl

which is valid for every 6 > 0.

To obtain the required bounds on SWEDT we proceed in a similar manner. For
completeness, we provide some details for this term. Once suitable a priori bounds
are established, all subsequent terms of the type W7 can be bounded in a similar
manner, so we will no longer treat them in detail. Let us introduce a third kind of arrow,
denoted by e~~>e, which represents the kernel K — K .. With this notation, one has the
identity

(GWEDTY(2) = (I\; _ I\g g) N < L é ;>

NN N N
Y0P Tegoenn

0 2 =1

It thus remains to show that each of the four terms (51/%5;4)7)(2) satisfies a bound of
the type (10.8). Note now that each term is of exactly the same form as (W(E;4)T)(Z),
except that some of the factors K are replaced by a factor K and exactly one factor K,
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is replaced by a factor (K — K.). Proceeding as above, but making use of the bound
(10.19), we then obtain for each ¢ the bound

{EWVEDT)(2), (W T)(2))|
0 - S11—20— —260— S11—20—
S ez — 2|7 (|2 — ZH T 4 ||z 4 ||z 2,

which is valid uniformly over ¢ € (0, 1], provided that § < 1 and that x > 0. Here, we
made use of (10.19) and the fact that each of these terms always contains exactly two
factors (K — K.).

We now turn to W27, which we decompose according to (10.36). For the first
term, it follows from Lemmas 10.14 and 10.17 that we have the bound

(VD7) (2, VD r)(2)] = | o428 358z S |2 — 27

valid for every 6 > 0. (Recall that both K and K are of order —3, with norms uniform
in €.) In order to bound VAVEE;Q) 7, we introduce the notation z e+ 2 as a shorthand for
|z — 2||¢1}2—z| . <c for an unspecified constant C. (Such an expression will always
appear as a bound and means that there exists a choice of C' for which the bound holds
true.) We will also make use of the inequalities

1zl 12057 < ll=

Iz

17277+ 21727, (10.37a)
Nzls® S llz =zl “Ulzlls ™+ 12l157) (10.37b)

s

which are valid for every z, Z in R* and any two exponents «, 8 > 0. The first bound is
just a reformulation of Young’s inequality. The second bound follows immediately from
the fact that ||z||s V [|Z]|s > 3]z — Z]|..

With these bounds at hand, we obtain for every § € (0, 1) the bound

Oe =1 % o
A(E;2) (s 2) \,=
(V7)) Wy T T)(2)] S N o S, (10.38)

<2172 (G2) + G2) + Gz — 2) + G(0))

where the function G is given by

G(z — 2) = ze—sa— { }

Here, in order to go from the first to the second line in (10.38), we used (10.37b) with
a = 4, followed by (10.37a). As a consequence of Lemma 10.14, the function G is
bounded, so that the required bound follows from (10.38). Defining as previously WZ@)T
like WEEQ)T but with each instance of K. replaced by K, one then also obtains as before
the bound

(OWT7)(), (WEPT)@)] S (1211727 + 11217207 + 112 = =)172°77)

which is exactly what we require.
We now turn to the case 7 = Z(¥?)¥2. Denoting by 1. the random function
Pe(2) = (K * &)(2) = (K. * §)(2), one has the identity

(TMo7)(2) = ((K *¥22)(2) — (K * ¥2%)(0)) - (¥e(2) 0 ¥e(2)) — CF . (10.39)
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Regarding WED T we therefore obtain similarly to before the identity

.‘ }’ ."-.* "
(W(E ;4)7.)( 2) = "-.,\L{,f' _ i V )
z 0 z

Similarly to above, we then have the identity
(WVEIT)(2), WEIT)(2) = P2z = 2) 67022, 2) |

where P. is as above and Q@ is defined by

QP —2) = 2ee—4  J—>ez.

This time, it follows from Lemmas 10.14 and 10.17 that
QP (2) — QP(0) — (2, V.QP )] S |27,

for arbitrarily small § > 0 and otherwise the same notations as above. Combining this
with the bound already obtained for P, immediately yields the bound

(V7)) WEIT)@)] S 1= = 21157

as required. Again, the corresponding bound on 5/ then follows in exactly the
same fashion as before.
Regarding W27, it follows from Lemma 10.3 and (10.39) that one has the identity

A ..."\ . o...,“ .
(W(E;Q)T)(Z) _ 4<'4‘ _ & ? ) )
Z 0 z

We then obtain somewhat similarly to above
(WVEDT)(2), WEIT)(2)) = Pz = 2)8PQ% (2, 2)

where we have set

EVS

Q3 z(a,b) = ase— SRV

At this stage, we make use of Lemma 10.18. Combining it with Lemma 10.14, this
immediately yields, for any o € [0, 1], the bound

16PQ% (2, 2)| < |12]12112]|2(G(2, 2) + G(2,0) + G(0, 2) + G(0,0)) ,

where this time the function G is given by

ze. z
Gla,b) = .
b

ae

As a consequence of Lemma 10.14, we see that G is bounded as soon as a < %, which
yields the required bound. The corresponding bound on §A€27 is obtained as usual.
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Still considering 7 = Z(¥?)T2, we now turn to We 07, the component in the Oth
Wiener chaos. From the expression (10.39) and the definition of the Wick product, we
deduce that

0V = 2§ — 0t B2) 0. o)
The factor two appearing in this expression arises because there are two equivalent
ways of pairing the two “top” arrows with the two “bottom’ arrows. At this stage, it
becomes clear why we need the second renormalisation constant C;E): the first term in
this expression diverges as ¢ — 0 and needs to be cancelled out. (Here, we omitted the

label z for the first term since it doesn’t depend on it by translation invariance.) This
suggests the choice

CY =243 (10.41)
which then reduces (10.40) to
S OVEIT)() = 0mel 2 (10.42)

This expression is straightforward to deal with, and it follows immediately from Lem-
mas 10.14 and 10.17 that we have the bound |(W©97)(2)| < ||z[|5¢ for every exponent
0 >0.

This time, we postulate that W(© 7 is given by (10.42) with every occurrence of K.
replaced by K. The corresponding bound on §WWEO is then again obtained as above.
This concludes our treatment of the term 7 = Z(¥2)W2.

We now turn to the last element with negative homogeneity, which is 7 = Z(¥3)¥2,
This is treated in a way which is very similar to the previous term; in particular one
has an identity similar to (10.39), but with 4,2 replaced by /2% and C° replaced by
36’55)1[15 (2). One verifies that one has the identity

(WEDIT)(2), WEDIT)(2)) = P2z — 2)§PQP(2, 2)

where both P. and Q® were defined earlier. The relevant bounds then follow at once
from the previously obtained bounds.

The component in the third Wiener chaos is also very similar to what was obtained
previously. Indeed, one has the identity

3 s o .

N N
(W(E;B)T)(Z) -6 ('{L _ { ?,> ,
z 0 2z

so that R R ~
(WEDT)(2), WEIT)(2)) = Pelz — 2)0PQ% 1(2,2)
where we have set _

Q% -(a,b) = ase—=% $E—>ep .

This time however, we simply use (10.37a) in conjunction with Lemmas 10.14 and
10.17 to obtain the bound

Q2 2@, b)| < llz = 2l17° + [l = blIs° + lla — 2[17° + b - all° -
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The required a priori bound then follows at once, and the corresponding bounds on
SWEDT are obtained as usual.

It remains to bound the component in the first Wiener chaos. For this, one verifies
the identity

.,* 0.,‘ ", } .
(W(a ;1) )(Z) < flV _ 30(5) ) o l\
ﬁf 2°Y 6

£6 (W) - WSPT)(R)
Recalling that we chose C’éa) as in (10.41), we see that
WED7)(2:2) = (RLe) % Ko)(Z - 2)

where the kernel L. is given by L.(z) = P2(2)K (2). It follows from Lemma 10.16 that,
for every > 0, the bound

OV P7)@, WD) @) S Nz = 20110

holds uniformly for € € (0, 1] as required. Regarding VV(E D7, we can again apply the
bounds (10.37) to obtain

_%_5

15
Izlls *

OV PT)@), VP @)] < el
as required. Regarding WDr, we define it as
WO = Wil + Wihr
where Wé )7 is defined like W(I)T but with K, replaced by K, and where
WMP7)(z:2) = (RL) * K)(z - 2) -

Again, YWD 7 can be bounded in a manner similar to before, thus concluding the proof.
]

Remark 10.23 It is possible to show that C\% ~ e~! and C” ~ loge, but the precise
values of these constants do not really matter here. See [Fel74, FO76] for an expression
for these constants in a slightly different context.

Appendix A A generalised Taylor formula

Classically, Taylor’s formula for functions on R? is obtained by applying the one-
dimensional formula to the function obtained by evaluating the original function on
a line connecting the start and endpoints. This however does not yield the “right”
formula if one is interested in obtaining the correct scaling behaviour when applying
it to functions with inhomogeneous scalings. In this section, we provide a version of
Taylor’s formula with a remainder term having the correct scaling behaviour for any
non-trivial scaling s of RY. Although it is hard to believe that this formula isn’t known
(see [Bon09] for some formulae with a very similar flavour) it seems difficult to find it
in the literature in the form stated here. Furthermore, it is of course very easy to prove,
so we provide a complete proof.
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In order to formulate our result, we introduce the following kernels on R:

@ -y~

T W (@ dy) = So(dy) .

we(z, dy) = 1j0,41(y)

For ¢ = 0, we extend this in a natural way by setting po(x, dy) = 0,(dy). With these
notations at hand, any multiindex k& € N gives rise to a kernel Q* on R? by

d
Q¥ (x, dy) = [ [ ki, dys) , (A1)
i=1

where we define

k; )
“TH«(2,-) otherwise,
nl

uf(z,-):{ fik(2,) - f < mik).

where we defined the quantity

m(k) =min{j : k; #0}.

Note that, in any case, one has the identity uf(,& R) = 2,! , so that
k
k dy_ %
Q@ R = 17 .

Recall furthermore that N¢ is endowed with a natural partial order by saying that
k< tifk, < ¥ foreveryi € {1,...,d}. Given k € N?, we use the shorthand
ke ={#£k: {<k}

Proposition A.1 Ler A C N% be such that k € A = k. C A and define A = {k &
Atk — emw) € A}. Then, the identity

DFf(0) ,
fay=) 52"+ /R D' f(y) Q" (x.dy), (A2)
keA kedA

holds for every smooth function f on RY.

Proof. The case A = {0} is straightforward to verify “by hand”. Note then that, for
every set A as in the statement, one can find a sequence {A,} of sets such as in the
statement with A, = {0}, Aj4; = A, and A,, 11 = A, U {k,} for some k,, € 0A,. It
is therefore sufficient to show that if (A.2) holds for some set A, then it also holds for
A= AU {{} forany ¢ € OA.

Assume from now on that (A.2) holds for some A and we choose some £ € 0A.
Inserting the first-order Taylor expansion (i.e. (A.2) with A = {0}) into the term
involving D! f and using (A.1), we then obtain the identity

DFf(0
f@ =3 ,f!( Lat > /R [ DFfy) Q" (@, dy)

keA keoA\{¢}

d
Y / DI f(y) (Q% % Q) (a, dy) .
i—=1 7/ R?
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It is straightforward to check that one has the identities

n

T
Hm * Un = Um+4n > (,U* *ﬂn)(xa )= F,Uf* s Mk X e = My s M Ky = 0,

valid for every m, n > 0. As a consequence, it follows from the definition of OF that
one has the identity

Z+8’ . .
e ¢ Qe if i <m(Y),
QI xQ = { 0 otherwise.

The claim now follows from the fact that, by definition, A is precisely given by
QAN {LHU{l+e; : i <m@)}. O
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Appendix B Symbolic index

In this appendix, we collect the most used symbols of the article, together with their
meaning and the page where they were first introduced.

Symbol Meaning Page
1 Unit element in T' 18
1* Projection onto 1 119
|- |s Scaled degree of a multiindex 22
Il ls Scaled distance on R? 24
I ll;e  “Norm” of a model / modelled distribution 27,30
o Dual of AT 122
* Generic product on T' 48
* Convolution of distributions on R% 62
A Set of possible homogeneities for T’ 18
A Antipode of H 119
Alg(C)  Subalgebra of . determined by C 129
154 Regularity improvement of K 63
ce o-Holder continuous functions with scaling s 24
2 Abstract gradient 82
DY Modelled distributions of regularity 30
Dy" Singular modelled distributions of regularity 84
A Comodule structure of H over H 118
AT Coproduct in H 4 118
AM Action of M on II 129
AM Action of M on T’ 132
F Nonlinearity of the SPDE under consideration 3
F, Factorin I, = F, ' F, 128
F All formal expressions for the model space 115
Fi All formal expressions representing Taylor coefficients 115
Fr Subset of F generated by F’ 115
]-'bf Subset of F generated by F' 115
G Structure group 18
Iy Action of H onto H 122
X Dual of H 122
H Linear span of F 118
HE Linear span of F;- 118
H Linear span of F 118
T Abstract integration map for K 66
Tk Abstract integration map for D* K 113
J(x) Taylor expansion of K x* II, 66
TiT Abstract placeholder for Taylor coefficients of 11,7 117
R Generic compact set in R? 24
K Truncated Green’s function of £ 62, 64

K, Contribution of K at scale 27" 63
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Symbol Meaning Page
Ky oy Remainder of Taylor expansion of K, 67
KK, Operator such that R f = K xR f 62
L Linearisation of the SPDE under consideration 3
AY Diadic grid at level n for scaling s 34
M Multiplication operator on H.. 119
M Renormalisation map 129
M Action of M on f 129
M, Action of . on T’ 46
Mp Basic building blocks of F 114
M All models for .7 27
M All admissible models associated to F’ 127
N, Operator such that K, =7 + J + N, 67
(I1, f) Alternative representation of an admissible model 128
(IIM, M) Renormalised model 129
I1,T) Model for a regularity structure 25
wr Scaling function at level n around x 34
I Wavelet at level n around x 34
P Time 0 hyperplane 98
Pr Formal expressions required to represent Ju 115
Q. Projection onto T, 20
Q. Projection onto T, 20
R" Restriction to positive times 98
R Smooth function such that “G = K + R” 104
R, Convolution by R on D7 102
R Reconstruction operator 31
R Renormalisation group 132
s Scaling of R? 22
Sgym Scaling by § around z 25
S, Scaling by 9§ in directions normal to P 85
S Discrete symmetry group 46
T Model space 18
T, Elements of T" of homogeneity « 18
T Elements of T of homogeneity « and higher 20
T, Elements of T of homogeneity strictly less than o« 20
T, Action of . on R? 46
T Abstract Taylor polynomials in T' 27
T Generic regularity structure 7 = (A, T, G) 18
Ts Classical Taylor expansion of order 3 23
Ur Formal expressions required to represent « 115
V.W Generic sector of T’ 20
Xk Abstract symbol representing Taylor monomials 21
= Abstract symbol for the noise 54
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