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Preface

The study of the subgroup growth of infinite groups is an area of mathematical
research that has grown rapidly since its inception at the Groups St. Andrews
conference in 1985. It has become a rich theory requiring tools from and having
applications to many areas of group theory. Indeed, much of this progress is
chronicled by Lubotzky and Segal within their book [42].

However, one area within this study has grown explosively in the last few
years. This is the study of the zeta functions of groups with polynomial sub-
group growth, in particular for torsion-free finitely-generated nilpotent groups.
These zeta functions were introduced in [32], and other key papers in the de-
velopment of this subject include [10, 17], with [19, 23, 15] as well as [42]
presenting surveys of the area.

The purpose of this book is to bring into print significant and as yet
unpublished work from three areas of the theory of zeta functions of groups.

First, there are now numerous calculations of zeta functions of groups by
doctoral students of the first author which are yet to be made into printed form
outside their theses. These explicit calculations provide evidence in favour of
conjectures, or indeed can form inspiration and evidence for new conjectures.
We record these zeta functions in Chap. 2. In particular, we document the
functional equations frequently satisfied by the local factors. Explaining this
phenomenon is, according to the first author and Segal [23], “one of the most
intriguing open problems in the area”.

A significant discovery made by the second author was a group where
all but perhaps finitely many of the local zeta functions counting normal
subgroups do not possess such a functional equation. Prior to this discovery,
it was expected that all zeta functions of groups should satisfy a functional
equations. Prompted by this counterexample, the second author has outlined
a conjecture which offers a substantial demystification of this phenomenon.
This conjecture and its ramifications are discussed in Chap. 4.

Finally, it was announced in [16] that the zeta functions of algebraic groups
of types B;, C; and D; all possessed a natural boundary, but this work is
also yet to be made into print. In Chap.5 we present a theory of natural
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boundaries of two-variable polynomials. This is followed by Chap.6 where
the aforementioned result on the zeta functions of classical groups is proved,
and Chap. 7, where we consider the natural boundaries of the zeta functions
attached to nilpotent groups listed in Chap. 2.

The first author thanks Zeev Rudnick who first informed him of Con-
jecture 1.11, Roger Heath-Brown who started the ball rolling and Fritz
Grunewald for discussions which helped bring the ball to a stop. The first
author also thanks the Max-Planck Institute in Bonn for hospitality during
the preparation of this work and the Royal Society for support in the form of
a University Research Fellowship. The second author thanks the EPSRC for
a Research Studentship and a Postdoctoral Research Fellowship, and the first
author for supervision during his doctoral studies.

Oxford, Marcus du Sautoy
January 2007 Luke Woodward
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