MSP430 Addressing Modes MSP430 Emulated Instructions
Ad | As | d/s | Register | Syntax Description Mnemonic Operation Emulation Description
0 00 | ds n=3 Rn Register direct. The operand is the contents of Rn. Ag=0 Arithmetic Instructions
101 [ds|n=023]| x(Rn) | Indexed. The operand is in memory at address Rn+x. ADC(.B or .W) dst dst+C—dst ADDC(B or .W) #0,dst Add carry to destination
- 1101 s1n%023] @Rn | Register indirect. The operand is in memory at the address held in Rn. DADC(Bor.W)dst dst+C—dst (decimally) DADD(.B or .W) #0,dst Decimal add carry to destination
- |11 n=0,2 3| @Rn+ IE\\(:;rdeci a\fto-mcrzment. As aggw?:é;en the register is incremented by 1 or 2. DEC(B or .W) dst dst-1-»dst SUB(.B or .W) #1,dst Decrement destination
ressing modes using g - tinati .
1 (01 [ds| 0(PC) [LABEL [Symbolic. x(PC) The operand is in memory at address PC+x. :LECC(D;'::;\:?:“ ::: +21__’_dds; i?)l:)[('i:'m))?l'iz i‘e;:}e::"r?;esf“:i:fnn fwice
- [11] s | o(pc) #x__| Immediate. @PC+ The operand is the next word in the instruction stream. R S ’ L
Addressing modes using RZ (SR) and R (CG), special-case decodin INCD(.B or .W) dst dst+2—>dst ADD(.B or .W) #2,dst Increment destination twice
T o [265R) _g_&LABEL —94—)—(—)—"—9—%50'”16. TheToperardBAmETraNEAieseTH SBC(.B or .W) dst js::gi:::—‘:{n;ct»dst SUBC(.B or .W) #0,dst ?ubtrzcl source and borrow /.NOT. carry
- 10 s 2 (SR) #4 Constant. The operand is the constant 4. - = Zomdest
o 11 s 2 (SR) #8 Constant. The operand ?s the constant 8. Operation Description
- 00 S 3 (CG) #0 Constant. The operand !s the constant 0. _ _ Logical and Register Control Instructions
= ?:) : g Egg; :; gg:z:z:z I:Z 22:::';3 :: ::z zg:::::: ; iTherslislnolindexiword: INV(.B or.W) dst ‘NOT.dst—>dst XOR(.B or .W) #0(FF)FFh,dst Invert bits in destination
- 11 s 3 (CG) #—1 Constant. The operand i§ the constant —1. RLA(.B or .W) dst E;;TISEISI\;IKS‘IE: ADD(.B or .W) dst,dst Rotate left arithmetically
5Ta13 211 10T 9 | 3 I 7 3 5"|I|4SP34?02 |i‘l?tl|‘l;ctl0n Set Instruction RLC(.B or .W) dst E;;TISE‘I—‘SI\;;SE-CI ADDC(.B or .W) dst,dst Rotate left through carry
0[0|0|1]|0]|0]| opcode |BW| As register Single-operand arithmetic
olojo|1]o]o]o]o]o[BwW]|As register RRC Rotate right through carry Program Flow Control __
oToTol ToToTolol T o [4s | rouser [swes suapies o e e
oloflol1[ofo]o]i[o [ew]as register | RRA Rotate right arithmetic EINT 1-GIE BIS #8,SR Enable (general) interrupts
ofofof1|ofo]o1[1] 0o [As register SXT Sign extend byte to word Nop None MoV #0,R3 No operation
T lTeloeetae =m o e T IENe e oo RET @SP—PC__ SP+2—»SP MOV @SP+,PC Return from subroutine
ojojojt1]jofo]t1fof1]| O |As register CALL Subroutine call; push PC and move source to PC M Operation Emulation Description
o[oJol1Jolo 1]1] o] o JoJo[o] o] o]o]RETIRetun from interrupt; pop SR then pop PC Data Instructions
CLR(:B or.W) dst 0—dst MOV(.B or .W) #0,dst Clear destination
0jo|1 10-bit signed offset C: jump; PC = PC + 2xoff: CLRC 0—C BIC #1,5R Clear carry flag
ojJof1]o]oOo]oO 10-bit signed offset JNE/JNZ Jump if not equal/zero CLRN 0—=N BIC #4,SR Clear negative flag
olof[1]ofo]1 10-bit signed offset JEQ/JZ Jump if equal/zero CLRZ 02 BIC #2,5R Clear zero flag o
ARmnEG 10-bit signed offset INCIJLO Jump if no cary/lower POP(B or .W) dst S:il)z:tse;np MOV(.B or .W) @SP+,dst Pop byte/word from stack to destination
ofoft1]o]1]1 10-bit signed offset JC/JHS Jump if carry/higher or same temp—>dst
olo|1]1]o]o 10-bit signed offset JN Jump if negative SETC 1-=C BIS #1,SR Set carry flag
ool [1]o]n 10-bit signed offset JGE Jump if greater or equal ;g: ;:;" z:: :‘;':i z:t ;‘sf:z:; flag]
ofof1f1f1]o0 10-bit signed offset JL Jump if less TST(.B or .W) dst dst + OFFFFh + 1 CMP(.E or W) #0,dst Test destination
ojol1 111 10-bit signed offset JMP Jump (unconditionally) dst + OFFh +1
000 040 080 0CO 100 140 180 1CO 200 240 280 2CO 300 340 380 3CO
opcode source Ad |B/W | As T p ari 0Oxxx
oli1fo]o source Ad [BW | As | destination | MOV Move source to destination 4xxx
of1]0]1 source Ad |BW | As destination | ADD Add source to destination 8xxx
of1]1]0 source Ad |BW | As | destination | ADDC Add source and carry to destination Cxxx
o1 1] source Ad | BW | As | destination | SUBC Subtract source from destination (with carry) 1xxx | RRC [RRCB | SWPB RRA | RRAB| SXT PUSH [PUSH.B| CALL RETI
1]o0fo0]o0 source Ad |B/W | As | destination | SUB Subtract source from destination 14xx
1]ofo]1 source Ad |BW [As | destination | CMP Compare (pretend to subtract) source from destination 18xx
1]of1f0 source Ad |BW | As destination | DADD Decimal add source to destination (with carry) 1Cxx
1lof1 |1 source Ad |B/W | As | destination | BIT Test bits of source AND destination 20xx JNE/INZ
1il1]ofo source Ad |B/W | As | destination | BIC Bit clear (dest &= ~src) 24xx JEQIZ
1]1]0of1] souce |Ad[BW| As | destination | BIS Bit set (logical OR) 28xx JINC
11110 source Ad |BW | As destination | XOR Exclusive or source with destination 20xx JC
1111 source Ad |B/W| As | destination | AND Logical AND source with destination (dest &= src) 30xx N
Special Registers: _ PC (Program Counter)=R0; SP (Stack Pointer)=R1; hemebmone | 34 JGE
us Register)=R2; CG (Constants Generator)=R3; sretaffeced | 38xx JL
No. Emulated Mnemonic _Operand(s) Description V Nz fan IMP
1 © ADC(B) dst Add C to destination dst+C—dst oo Axxx MOV, MOV.B
2 ADD(B) src,dst Add source to destination src+dst—dst Foxox o Bxox ADD. ADD.B
3 ADDC(.B) src,dst Add source and C to destination src+dst+C—dst A B30k ADDb ADDCB
4 AND(.B) srcdst AND source and destination src .and. dst — dst o * * * 730x SUBCY SUBCB
5 BIC(.B) sre,dst Clear bits in destination not.src .and. dst — dst -e e 8y SUB éUB B
6 BIS(.B) sre,dst Set bits in destination src .or. dst — dst -e e 9xxx CMP CMF’:B
7 BIT(.B) sre,dst Test bits in destination src .and. dst o * * = Axx DADb DADDB
8§ ®© BR dst Branch to destination dst —» PC EE Bxxx BIT BlfB
9 CALL dst Call destination PC+2 — stack, dst — PC E Cxxx Blé Blé B
10 ©® CLR(B) dst Clear destination 0 — dst - D BIS. BIS IB
11 ® CLRC Clear C 0—-C .- 0 -
2 @ CLRN Clear N 0N 0 - Broxx XOR, XORB
13 ® CIRZ Clear Z 02 Y i AND, AND.B
14 CMP(.B) sre,dst Compare source and destination dst - src oo wﬁfm maching code opcode source Reg (g W st destination Additional Data 1 il
15 ® DADC(B) dst Add C decimally to destination dst + C — dst (decimally) *ooE o E o x ‘mov.w RS, R6 4506 0 1 0 o s 0 0 0 o s
16 DADD(.B) sre,dst Add source and C decimally to dst stc + dst + C — dst (decimally) *oroxox add.b R4, RE 438 0 1 o0 1 4 0j140 ¢ 8
17 ® DEC(B) dst Decrement destination dst- 1 — dst oxox o ::::;S):z :::: : : : ; : Z : ; : :
18 ® DECD(B) dst Double-decrement destination dst-2 — dst oxor o w,,um'a(“, CB05 0002 0000 T 1 o o s T 1 o 1 s o002 0000
19 ® DINT Disable interrupts 0— GIE P bicw 2(R8), 4(R7) 897 0002 0004 1 1 0 o s 10 0 1 7
20 ® EINT Enable interrupts 1 — GIE .- - o | bewioaAMRD DO3B ARAA t 10t ° 0 0t 1 L ARAR
2 ® INC(B) st Increment destination dst +1 > dst) W me To e o i e o i o ol s
22 ® INCD(B) dst Double-increment destination dst+2 — dst oo T LABEL YT m—— o o 1 1 Thoc x| (ot amet wordsl
23 © INV(B) dst Invert destination .not.dst — dst oxoxo cmp R13, 2(R8) 9088 0002 10 o0 1 [10 0 o s 0002
24 JC/JHS label Jump if C set/Jump if higher or same F inz LABEL 2[00 000 000] 0o 0 1 o 00xx X | x| x X |loffset-inst words)
25 JEQ/)Z label Jump if equal/Jump if Z set .- nu:::::r:m (_(!m"h:::dew P T S P Ea—— .
26 JGE label Jump if greater or equal I e =
27 JL label Jump if less EE addcwR1LR1L |4 (emulated code) A o 1 1 o 3 o 0 0 o B
28 MP label Jump PC + 2 x offset — PC EE W R10) ED
29 N abel Jump if N set R v.v"f:DnF::F‘, r0 e (emulate:s ::uem T 1 1 o 5 o o 1 1 A
30 JNC/JLO label Jump if C not set/Jump if lower <o o [addwaoooos Rl |€ emustedcosel A | 01 0 1 5 0o o o0 1 5
31 JNE/JNZ label Jump if not equal/Jump if Z not set - - - - [sRBit After the operation is complete, the SR bits are set based on these
32 MOV(B) sre,dst Move source to destination sre — dst P oVerflow: "signed" overflow - leading digit (MSB) switched from (+) to (-) or from (-) to (+)
3 © Nop No operation o add.w incw exemees n bnery incd.b add.b
34 © POP(B) dst Pop item from stack to destination @SP — dst, SP+2 — SP T V' | 0100 0000 0000 0000 0111 1111 1111 1111 0111 1110 1011 0000
35 PUSH(.B) src Push source onto stack SP-2 — SP, src — @SP -e e +0111 0100 0010 1011 + 1000 1000
36 ® RET Return from subroutine @SP — PC, SP + 2 — SP PR 1011 0100 0010 1011 1000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0011 1000
37 RETI Return from interrupt P Negative: The leading digit (MSB) is 1 - the number "negative if you are ung signed numbers
38 © RLA(B) dst Rotate left arithmetically e cmpw RSB b subh
39 © RLC(B) dst Rotate left through C * * « +| V| 0000 0010 0101 0101 0101 0000 1111 1010 0000 0000 0000 0000 0000 0101
40 RRA(.B) dst Rotate right arithmetically o * * * 1111 1100 1110 0000 - 0000 0111
41 RRC(.B) dst Rotate right through C % % Z:rj,;:lj\l” ilhlelb];tsea?:.é 0101 1010 1111 0000 0101 0000 0000 1111 1111 0000 0000 1111 1110
42 © SBC(B) dst Subtract not(C) from destination dst + OFFFFh + C — dst o examples in binory
43 © SETC Set C 1-C .- 1 , sub.w rra.w and.b xor.b
44 ® SETN Set N 1—N PR 0000 0010 0101 0101 0000 0000 0000 0001 1010 1010 0010 1101
45 ® SETZ SetZ 1>7 o1 -0000 0010 0101 0101 0101 0101 0010 1101
46 SUB(B) sredst Subtract source from destination dst + notsre + 1 = dst R _0C 0000 D000 ToR D000 Thon OO0 SOn Toon oD DN GO 0000 oonh 00 o8
47 SUBC(.B) src,dst Subtract source and not(C) from dst dst + .not.src + C — dst oo examples in binary
48 SWPB dst Swap bytes .. ¢ add.w rra.w rlc.b rre.b
49 SXT dst Extend sign 0 * * * 1000 0000 0000 0000 | 0000 0100 0000 0001 0000 0000 1000 0010 | 0000 0000 1101 1011
€ 1000 0000 0000 0001
50 © TST(B) dst Test destination dst+OFFFFh+1 0o * 1 (1) 0000 0000 0000 0001 | 0000 G010 0000 0000 (1) |(1) 0000 0000 0000 0100 | 0000 0000 0110 1101 (1)
51 XOR(.B) sre,dst Exclusive OR source and destination src .xor. dst — dst oo 15 74 i) 1z T 70 S s 7 S 5 E) B 3 °
[Reserved [v [scei[sceo|[g[S [[n [z [o |

12.3.1 TACTL, Timer_A Control Register

Low Power Modes

Port P1 input, P1IN: reading returns the logical values on the inputs if they are
configured for digital input/output. This register is read-only and volatile. It does not
need to be initialized because its contents are determined by the external signals.
Port P1 output, PIOUT: writing sends the value to be driven to each pin if it is

configured as a digital output. If the pin is not currently an output, the value is stored in
a buffer and appears on the pin if it is later switched to be an output. This register is not

d and you should therefore write to PIOUT before configuring the pin for

Port P1 direction, PIDIR: clearing a bit to 0 configures a pin as an input, which is the
default in most cases. Writing a 1 switches the pin to become an output. This is for
digital input and output; the register works differently if other functions are selected

Port P1 resistor enable, PIREN: setting a bit to 1 activates a pull-up or pull-down
resistor on a pin. Pull-ups are often used to connect a switch to an input as in

the section “Read Input from a Switch™ on page 80. The resistors are inactive by
default (0). When the resistor is enabled (1), the corresponding bit of the PIOUT
register selects whether the resistor pulls the input up to Vec (1) or down to Vs (0).
Port P1 selection, PISEL: selects either digital input/output (0, default) or an
alternative function (1). Further registers may be needed to choose the particular

Port P1 interrupt enable, P1IE: enables interrupts when the value on an input pin

changes. This feature is activated by setting appropriate bits of P1IE to 1. Interrupts are
off (0) by default. The whole port shares a single interrupt vector although pins can be
enabled individually.

Port P1 interrupt edge select, PIIES: can generate interrupts either on a positive
edge (0), when the input goes from low to high, or on a negative edge from high to

low (1). It is not possible to select interrupts on both edges simultaneously but this is not
a problem because the direction can be reversed after each transition. Care is needed

if the direction is changed while interrupts are enabled because a spurious interrupt may
be generated. This register is not initialized and should therefore be set up before
interrupts are enabled.

Port P1 interrupt flag, PIIFG: a bit is set when the selected transition has been

15 14 13 12 1 10 9 8 SCG1 SCGO OSCOFF CPUOFF Mode CPU and Clocks Status
Unused | TASSELX 0 0 0 0 Active CPU is active, all enabled clocks are active
() w(0) () w(0) () w(0) -(0) w-(0) 0 0 0 1 LPM0_ | GPU, MCLK are disabled, SMCLK, ACLK are active
7 6 5 4 3 2 1 o CPU, MCLK are disabled. DCO and DC generator are
X MCx [Unused | TAGIR | TAE | TAFG 0 1 0 1 LPM1 | disabled i the DCO ie not used for SMCLK. ACLK is
() w0) w-(0) w0) w-(0) (0 (0 w0
© © « © © © © © 1 0 0 1 LPM2 CPU, MCLK, SMCLK, DCO are disabled. DC generator
Unused Bits 15-10 Unused remains enabled. ACLK is active. 1ali:
TASSELx Bits 98 Timer_A clock source select B B o B LpMa | CPU, MCLK, SMCLK, DCO are disabled. DC generator
0 TACLK disabled. ACLK is acive. output.
o1 ACLK 1 1 1 1 LPM4 CPU and all clocks disabled
10 SMCLK
11 INCLK (INGLK is device-specific and is often assigned o the inverted TBCLK) (see the 827 P1andP2interrupts
device-specilc data sheel) Each pin in ports P1 and P2 have interrupt capability, configured with the PxIFG, PxIE, and PXIES
10x Bits 76 Input divider. These bis select the divider for the input clock. registers. All P1 pins source a single interrupt vector, and all P2 pins source a different single interrupt
o vector. The PxIFG register can be tested to determine the source of a P1 or P2 interrupt. ;
o0 using PI1SEL.
I 82.7.1 Interrupt Flag Registers P1IFG, P2IFG
® . .
MCx Bitss4 Mode control, Seting MGx = 00h when Timer_A i not it use conserves pow. Each PxIFGX bit is the interrupt flag for its corresponding I/O pin and is set when the selected input signal
Ston mado: he mer s hted. edge occurs at the pin. All PxIFGx interrupt flags request an interrupt when their corresponding PxIE bit
o e o s o 1o TAGCHO and the GIE bit are set. Each PxIFG flag must be reset with software. Software can also set each PxIFG
P mode: the timer counts up to flag, providing a way to generate a software initiated interrupt.
10 Continuous mode: the timer counts up to OFFFFh. B - No int ' di
11 Up/down mode: the timer counts up to TACCRO then down to 0000h, it =0:Mojnierrupt s pending
Unused . Unused Bit = 1: An interrupt is pending
TACLR 8it2 Timer_A clear. Setiing this bt resets TAR, the clock divider, and the count direction. The TACLR bitis Only transitions, not static levels, cause interrupts. If any PxIFGx flag becomes set during a Px interrupt
automatically reset and is aways read as zero. service routine, or is set after the RETI instruction of a Px interrupt service routine is executed, the set
TAIE Bit1 Timer_A interrupt enabie. This bit enables the TAIFG interrupt request. PxIFGx flag generates another interrupt. This ensures that each transition is acknowledged
0 Interrupt disabled h
1 Interrupt enabled N function.
TAFG Bito Timer_A interrupt flag NOTE: PxIFG Flags When Changing PxOUT or PxDIR
No interrupt pending Writing to P1OUT, P1DIR, P20UT, or P2DIR can result in setting the corresponding P1IFG
1 Interrupt pencing or P2IFG flags.
Table 12-2. Output Modes
OUTMODX Wode Description 8272 Interrupt Edge Select Registers P1IES, P2IES
000 uput | ™o ouputelgnal OUTX s dofired by tha OUT b The OUTs sl pcales immaclataly Each PxIES bit selects the interrupt edge for the corresponding /O pin.
;’he" : "‘ i “f“’i o e TAGGRY e T et Bit = 0: The PxIFGx flag is set with a low-to-high transition
 output is set when the fimer counls fo the x value. It remains set unfi a rese of .
oot Set e timer, or uniil another output mode is selected and alfecis the output. Bit = 1: The PxIFGx flag is set with a high-to-low transition
010 TogglelReset | T 0Pt s toggled when the timer counts o the TACGRX value. s reset when the timer 8.27.3 Interrupt Enable P1IE, P2IE
counts to the TACCRO value. Each PxIE bit enables the associated PxIFG interrupt flag
The output is set when the fimer counls to the TACGRx value. I is reset when the timer
o1t SetReser | [he CUtpulis set when the Bit = 0: The interrupt is disabled.
00 Toggle | T output s toggled when the timer counts o the TAGGRX value. The oulpu perod is Bit = 1: The interrupt is enabled.
ogg! double the timer period. 8.1 Digital VO Introduction
101 Resat | O tnt) afes o e TACOFb value [t remains reset untl another MSP430 devices have up to eight digital I/O ports implemented, P1 to P8. Each port has up to eight /0
s e TAGGRT v T s whe e pins. Every /O pin is individually configurable for input or output direction, and each /O line can be
 output i toggled when the fimer counts (the i value. It s set when the fimer v i
110 Togglerset | 1o utput is foggied when ¢ individually read or written to.
m ReseuSet | The output s reset when the fimer counts fo the TAGGRX value. It s set when the fimer Ports P1 and P2 have interrupt capability. Each interrupt for the P1 and P2 I/O lines can be individually
counts o the TACCRO value. enabled and configured to provide an interrupt on a rising edge or falling edge of an input signal. All P1

12.25.2 Output Example — Timer in Up Mode

The OUTx signal is changed when the timer counts up to the TACCRx value, and rolls from TACCRO to
zero, depending on the output mode. An example is shown in Figure 12-12 using TACCRO and TACCR1.

OFFFFh
TACCRO
TACCR®
on
‘Output Mode 1: Set
Output Mode 2:Toggle/Reset
Output Mode 3: SeuReset
Glitput Mode 4:Toggle
Output Mode 5: Reset
[Output Mode 6:Togglerset
[Output Mode 7: Resetset
EQuo EQUI EQUO EQUI EQUO
e e aur raw Interrupt Events
Figure 12-12. Output Example—Timer in Up Mode
Port Register Short Form Address Register Type Initial State
Tinput PN 0200 Read only
Output P1OUT o021h Read/write Unchanged
Direction PIDIR 022h Readiwrite Reset with PUC
Interrupt Flag P1IFG 023h Readiwrite Reset with PUC
P1 Interrupt Edge Select PIIES 024h Readiwrite Unchanged
Interrupt Enable P1E 025h Readiwrite Reset with PUC
Port Select P1SEL 026h Readhwrite Reset with PUC
Port Select 2 PISEL2 04ih Readhwrite Reset with PUC
Resistor Enable PIREN 027h Readiwrite Reset with PUC
12.3.4 TACCTLX, Capture/Compare Control Register
15 14 18 12 " 10 E] 8
[CMx | CCisx SCS | scCl | Unused | CAP
- (0) w-0) ™w-0) - (0) w-0) T) w-(0)
7 6 5 4 3 2 1 0
[OUTMODX [cce ccl [our [cov [ccra
- 0) w(0) o) w-0) v e 0) w-0) w-(0)
cmx Bt 1514 Capture mode
No capture
01 Capture on rising edge
10 Capture on faling edge
11 Capture on both rising and fallng edges.
caisx Bit13-12 Capturelcompare input select. These bits select the TACGRX input signal. See the device-specifc data
sheet for specifc signal connections.
w0 coma
o cons
10 GND
" Ve
scs BIt11 Synchronize capture source. This bitis used to synchronize the capture input signal with the timer clock
Asynchronous capture
1 ‘Synchronous capture
scel BIt10 Synchionized capturelcompare input. The selected CCI input signal s latched with the EQU signal and can
e read via this bt
Unused Bt Unused. Read only. Always read as 0
cap Bits Capture mode
Compare mode
Capture mode
ouTMODx Bits 75 Ompul mode. Modes 2,3, 6, and 7 are not useful for TACGRO, because EQUx = EQUO.
OUT bit value
01 et
010 Togglerreset
011 Setieset
100 Toggle
101 Reset
110 Togglelset
111 Resetset
ccie Bit4 Gapture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG fag.
Interrupt disabled
1 Interrupt enabled
cal Bit3 Gapture/compare input. The selected input signal can be read by this bt
out Bit2 Output. For output mode 0, this bit directly controls the state of the outpu.
o Ouputiow
1 Output high
cov Bit 1 Gapture overflow. This bit indicates a capture overflow occurred. COV must be reset with software.
0 Nocapture overflow occurred
1 Capture overflow occurred
CceIFG Bito Capture/compare interrupt flag
0 Nointerrupt pending
1 Interrupt pending

TPulldown Pullup

0 \Y

o

1/0 lines source a single interrupt vector, and all P2 I/O lines source a different, single interrupt vector.
The digital I/O features include:

« Independently programmable individual Os

Any combination of input or output

Individually configurable P1 and P2 interrupts

Independent input and output data registers.

Individually configurable pullup or pulldown resistors

Individually configurable pin-oscillator function (some MSP430 devices)

NOTE: MSP430G22x0 : These devices feature digital /O pins P12, P1.5, P1.6 and P1.7. The
GPIOs P1.0, P1.1, P1.3, P1.4, P2.6, and P2.7 are implemented on this device but not
available on the device pin-out. To avoid floating inputs, these GPIOS, these digital 1/0s
should be properly initialized by running a start-up code. See initialization code below:
mov.b #0x1B, P1REN; ; Terminate unavailable Portt pins properly ; Config as Input with
pull-down enabled

xor.b #0x20, BCSCTLS; ; Select VLO as low freq clock

The initialization code configures GPIOs P1.0, P1.1, P1.3, and P1.4 as inputs with pull-down
resistor enabled (that is, PIREN.x = 1) and GPIOs P26 and P27 are terminated by
selecting VLOCLK as ACLK - see the Basic Clock System chapter for details. The register
bits of P1.0, P1.1, P1.3, and P1.4 in registers P1OUT, P1DIR, P1IFG, P1IE, P1IES, P1SEL
and P1REN should not be altered ater the initalization code is executed. Also, all Port2
registers are should not be altered.

8.2 Digital VO Operation

The digital /O is configured with user software. The setup and operation of the digital I/O is discussed in
the following sections.

8.2.1 Input Register PxIN
Each bit in each PxIN register reflects the value of the input signal at the corresponding I/O pin when the
pin is configured as I/O function.
Bit = 0: The input is low
Bit = 1: The input is high

NOTE: Wri

g to Read-Only Registers PxIN

Writing to these read-only registers results in increased current consumption while the write
attempt is active.

8.2.2 Output Registers PxOUT
Each bit in each PxOUT register is the value to be output on the corresponding I/0 pin when the pin is
configured as I/ function, output direction, and the pullup/down resistor is disabled.
Bit The output is low
Bit = 1: The output is high
If the pin's pullup/pulldown resistor is enabled, the corresponding bit in the PxOUT register selects pullup
or pulidown
Bit = 0: The pin is pulled down
Bit = 1: The pin is pulled up

8.2.3 Direction Registers PxDIR
Each bit in each PxDIR register selects the direction of the corresponding l/O pin, regardless of the
selected function for the pin. PxDIR bits for I/O pins that are selected for other functions must be set as
required by the other function.
Bit = 0: The port pin is switched to input direction
Bit = 1: The port pin is switched to output direction

8.2.4 Pullup/Pulldown Resistor Enable Registers PXREN
Each bit in each PxREN register enables or disables the resistor of the

detected on the input. In addition, an interrupt is requested if it has been enabled. These
bits can also be set by software, which provides a mechanism for generating a software
interrupt (SWI).

6.7 What Happens when an Interrupt Is Requested?

A lengthy chain of operations lies between the cause of a maskable interrupt and the start
of its ISR. It starts when a flag bit is set in the module when the condition for an interrupt
occurs. For example, TAIFG is set when the counter TAR returns to 0. This is passed to the
logic that controls interrupts if the corresponding enable bit is also set, TAIE in this case.
The request for an interrupt is finally passed to the CPU if the GIE bit is set. Hardware
then performs the following steps to launch the ISR:

1. Any currently executing instruction is completed if the CPU was active when the
interrupt was requested. MCLK is started if the CPU was off.
The PC, which points to the next instruction, is pushed onto the stack.

The SR is pushed onto the stack.

The interrupt with the highest priority is selected if multiple interrupts are waiting
for service.

The interrupt request flag is cleared automatically for vectors that have a single
source. Flags remain set for servicing by software if the vector has multiple
sources, which applies to the example of TAIFG.

6. The SR is cleared, which has two effects. First, further maskable interrupts are
disabled because the GIE bit is cleared; nonmaskable interrupts remain active.
Second, it terminates any low-power mode, as explained in the section
“Low-Power Modes of Operation™ on page 198. (The SCGO bit is not cleared in
the MSP430x4xx family, which means that the frequency-locked loop is not

automatically reactivated; see “Frequency-Locked Loop, FLL+” on page 172.)

The interrupt vector is loaded into the PC and the CPU starts to execute the
interrupt service routine at that address.

This sequence takes six clock cycles in the MSP430 before the ISR commences. The stack
at this point is shown in Figure 6.5. The position of SR on the stack is important if the
low-power mode of operation needs to be changed.

The delay between an interrupt being requested and the start of the ISR is called the
latency. If the CPU is already running it is given by the time to execute the current
instruction, which might only just have started when the interrupt was requested, plus the
six cycles needed to execute the launch sequence. This should be calculated for the slowest
instruction to get the worst case. Format I instructions take up to 6 clock cycles so the
overall latency is 12 cycles. The time required to start MCLK replaces the duration of the

(a) Before interrupt (b) After entering interrupt

pin. The corresponding bit in the PxOUT register selects if the pin is pulled up or pulled down.
Bit = 0: Pullup/pulldown resistor disabled
Bit = 1: Pullup/pulldown resistor enabled

8.2.5 Function Select Registers PxSEL and PxSEL2

Port pins are often multiplexed with other peripheral module functions. See the device-specific data sheet
to determine pin functions. Each PXSEL and PXSEL2 bit is used to select the pin function - /O port or
peripheral module function.

Table 8-1. PxSEL and PxSEL2

PxSEL2 | PxSEL Pin Function
[0[O function is selected.
[1| Primary peripheral module function is selected.
1 0 | Reserved. See device-specific data sheet
1 1| Secondary peripheral module function is selected.

Setting PxSELx = 1 does not automatically set the pin direction. Other peripheral module functions may
require the PxDIRx bits to be configured according to the direction needed for the module function. See
the pin schematics in the device-specific data sheet.

NOTE: Setting PxREN = 1 When PxSEL =1

On some I/O ports on the MSP430F261x and MSP430F2416/7/8/9, enabling the
pullup/pulidown resistor (PXREN = 1) while the module function is selected (PXSEL = 1) does
not disable the logic output driver. This combination is not recommended and may result in
unwanted current flow through the internal resistor. See the device-specific data sheet pin
schematics for more information.

;Output ACLK on P2.0 on MSP430F21x1
BIS.B #01h,6P2SEL ; Select ACLK function for p:
BIS.5 #Olh,ePIDIR | Set direction to output *Requireds

NOTE: P1and P2 Interrupts Are Disabled When PxSEL =1

When any P1SELx or P2SELX bit is set, the corresponding pin's interrupt function is

disabled. Therefore, signals on these pins will not generate P1 or P2 interrupts, regardess of
the state of the corresponding P1IE or P2IE bit.

«sp

return address

status register —sp

Figure 6.5: Stack before and after entering an interrupt service routine. The return
address (PC) and status register (SR) have been saved, with SR on the top of the
stack.

current instruction if the device was in a low-power mode. The delay varies on each
occasion because the interrupt may be requested at different points during an instruction,
whose length may also differ. Thus there is no fixed interval between the request of an
interrupt and the start of its ISR. Use the hardware of a timer to read an input or change an
output at a precise time. Figure 6.6 shows an example of this and there are many more in
Chapter 8.

An interrupt service routine must always finish with the special return from interrupt
instruction reti, which has the following actions:

1. The SR pops from the stack. All previous settings of GIE and the mode control bits
are now in effect, regardless of the settings used during the interrupt service
routine. In particular, this reenables maskable interrupts and restores the previous
low-power mode of operation if there was one.

The PC pops from the stack and execution resumes at the point where it was
interrupted. Alternatively, the CPU stops and the device reverts to its low-power
mode before the interrupt.

This takes a further five cycles in the MSP430. The stack is restored to its state before the
interrupt was accepted.

6.8.1 Interrupt Service Routines in Assembly Language

An ISR looks almost identical to a subroutine but with two distinctions:

e The address of the subroutine, for which we can use its name (a label on its first
line), must be stored in the appropriate interrupt vector.
.

The routine must end with reti rather than ret so that the correct sequence of
actions takes place when it returns.

The other change in the program is that interrupts must be enabled or nothing happens.

