
MSP430 Addressing Modes

As Ad d/s Register Syntax Description

00 0 ds n � 3 Rn Register direct. The operand is the contents of Rn. Ad=0

01 1 ds n � 0, 2, 3 x(Rn) Indexed. The operand is in memory at address Rn+x.

10 - s n � 0, 2, 3 @Rn Register indirect. The operand is in memory at the address held in Rn.

11 - s n � 0, 2, 3 @Rn+ Indirect auto-increment. As above, then the register is incremented by 1 or 2.

Addressing modes using R0 (PC)

01 1 ds 0 (PC) LABEL Symbolic. x(PC) The operand is in memory at address PC+x.

11 - s 0 (PC) #x Immediate. @PC+ The operand is the next word in the instruction stream.

Addressing modes using R2 (SR) and R3 (CG), special-case decoding

01 1 ds 2 (SR) &LABEL Absolute. The operand is in memory at address x.

10 - s 2 (SR) #4 Constant. The operand is the constant 4.

11 - s 2 (SR) #8 Constant. The operand is the constant 8.

00 - s 3 (CG) #0 Constant. The operand is the constant 0.

01 - s 3 (CG) #1 Constant. The operand is the constant 1. There is no index word.

10 - s 3 (CG) #2 Constant. The operand is the constant 2.

11 - s 3 (CG) #�1 Constant. The operand is the constant �1.

MSP430 Instruction Set
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Instruction

0 0 0 1 0 0 opcode B/W As register Single-operand arithmetic

0 0 0 1 0 0 0 0 0 B/W As register RRC Rotate right through carry

0 0 0 1 0 0 0 0 1 0 As register SWPB Swap bytes

0 0 0 1 0 0 0 1 0 B/W As register RRA Rotate right arithmetic

0 0 0 1 0 0 0 1 1 0 As register SXT Sign extend byte to word

0 0 0 1 0 0 1 0 0 B/W As register PUSH Push value onto stack

0 0 0 1 0 0 1 0 1 0 As register CALL Subroutine call; push PC and move source to PC

0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 RETI Return from interrupt; pop SR then pop PC

0 0 1 condition 10-bit signed offset Conditional jump; PC = PC + 2�offset

0 0 1 0 0 0 10-bit signed offset JNE/JNZ Jump if not equal/zero

0 0 1 0 0 1 10-bit signed offset JEQ/JZ Jump if equal/zero

0 0 1 0 1 0 10-bit signed offset JNC/JLO Jump if no carry/lower

0 0 1 0 1 1 10-bit signed offset JC/JHS Jump if carry/higher or same

0 0 1 1 0 0 10-bit signed offset JN Jump if negative

0 0 1 1 0 1 10-bit signed offset JGE Jump if greater or equal

0 0 1 1 1 0 10-bit signed offset JL Jump if less

0 0 1 1 1 1 10-bit signed offset JMP Jump (unconditionally)

opcode source Ad B/W As destination Two-operand arithmetic

0 1 0 0 source Ad B/W As destination MOV Move source to destination

0 1 0 1 source Ad B/W As destination ADD Add source to destination

0 1 1 0 source Ad B/W As destination ADDC Add source and carry to destination

0 1 1 1 source Ad B/W As destination SUBC Subtract source from destination (with carry)

1 0 0 0 source Ad B/W As destination SUB Subtract source from destination

1 0 0 1 source Ad B/W As destination CMP Compare (pretend to subtract) source from destination

1 0 1 0 source Ad B/W As destination DADD Decimal add source to destination (with carry)

1 0 1 1 source Ad B/W As destination BIT Test bits of source AND destination

1 1 0 0 source Ad B/W As destination BIC Bit clear (dest &= ~src)

1 1 0 1 source Ad B/W As destination BIS Bit set (logical OR)

1 1 1 0 source Ad B/W As destination XOR Exclusive or source with destination

1 1 1 1 source Ad B/W As destination AND Logical AND source with destination (dest &= src)

MSP430 Emulated Instructions

�

� ��! ���
"�#�%�! � ��&��%�! � ��$�#�"%�! �

!������� ������$%�#��! %#!��	 $%#&�%�! $�

	��,*��!#�*�-��$%� *�
�*�$%��$%� �
�,*��!#�*�-�/0,��-���)�$%� ��!������������������������

�
�,*��!#�*�-��$%� ���������+1�

��61�
���0�

���,*��!#�*�-��$%)�$%� �������������������������#�

�
�,*��!#�*�-��$%� ���������+1�

��61�
�����

����,*��!#�*�-��$%)�$%� ���������������� �������#�

�

�#!�#�����!'��! %#!��

����$%� �$%���� �
���$%)��� ����������������������

�	��� 0��	�� �	��/5)��� ��������'�������(������� ����

�	��� 1��	�� �	��/5)��� �������'�������(������� ����

�
�� �! �� �
��/0)�3� �������������

���� .���������������62���� �
��.��6)��� ��� ��������� ��� �����

�

� ��! ���
"�#�%�! � ��&��%�! � ��$�#�"%�! �

��%��	 $%#&�%�! $�

�
�,*��!#�*�-��$%� 0��$%� �
�,*��!#�*�-�/0)�$%� ������������������

�
��� 0��� �	��/1)��� ����������#������

�
��� 0��� �	��/4)��� ������������!�������

�
��� 0��� �	��/2)��� ������$���������

�
�,*��!#�*�-��$%� .���%��"�

��62����

%��"��$%�

�
�,*��!#�*�-�.��6)�$%�
����#��&"������������������������������

����� 1��� �	��/1)��� ��������#������

����� 1��� �	��/4)��� ����������!�������

����� 1��� �	��/2)��� ����$���������

���,*��!#�*�-��$%� �$%�6�0������6�1�

�$%�6�0����6�1�

���,*��!#�*�-�/0)�$%�
����������������

�

� ��! ���
"�#�%�! � ��&��%�! � ��$�#�"%�! �

�#�%���%���	 $%#&�%�! $�

���,*��!#�*�-��$%� �$%6���$%� ����,*��!#�*�-�/0)�$%� ��������#����������������

����,*��!#�*�-��$%� �$%6���$%�,��������(-� ����,*��!#�*�-�/0)�$%� ����������������#����������������

���,*��!#�*�-��$%� �$%+1��$%� ���,*��!#�*�-�/1)�$%� ����������������������

����,*��!#�*�-��$%� �$%+2��$%� ���,*��!#�*�-�/2)�$%� �����������������������"����

	��,*��!#�*�-��$%� �$%61��$%� ���,*��!#�*�-�/1)�$%� ����������������������

	���,*��!#�*�-��$%� �$%62��$%� ���,*��!#�*�-�/2)�$%� �����������������������"����

���,*��!#�*�-��$%� �$%60�����6���$%������

�$%60�����$%�

����,*��!#�*�-�/0)�$%� � ��������� �������������"�&%�	
%�����#�

���������%�

0xxx

4xxx

8xxx

Cxxx

1xxx

14xx

18xx

1Cxx

20xx

24xx

28xx

2Cxx

30xx

34xx

38xx

3Cxx

4xxx

5xxx

6xxx

7xxx

8xxx

9xxx

Axxx

Bxxx

Cxxx

Dxxx

Exxx

Fxxx

RRC RRC.B SWPB RRA RRA.B SXT PUSH PUSH.B CALL RETI

000 040 080 0C0 100 140 180 1C0 200 240 280 2C0 300 340 380 3C0

JNE/JNZ

JEQ/JZ

JNC

JC

JN

JGE

JL

JMP

MOV, MOV.B

ADD, ADD.B

ADDC, ADDC.B

SUBC, SUBC.B

SUB, SUB.B

CMP, CMP.B

DADD, DADD.B

BIT, BIT.B

BIC, BIC.B

BIS, BIS.B

XOR, XOR.B

AND, AND.B

www.ti.com Instruction Set

3.4.5 Instruction Set Description

The instruction map is shown in Figure 3-12 and the complete instruction set is summarized in Table 3-17.

Figure 3-12. Core Instruction Map

Table 3-17. MSP430 Instruction Set

Mnemonic Description V N Z C

ADC(.B)
(1)

dst Add C to destination dst + Cĺ dst * * * *

ADD(.B) src,dst Add source to destination src + dstĺ dst * * * *

ADDC(.B) src,dst Add source and C to destination src + dst + Cĺ dst * * * *

AND(.B) src,dst AND source and destination src .and. dstĺ dst 0 * * *

BIC(.B) src,dst Clear bits in destination not.src .and. dstĺ dst - - - -

BIS(.B) src,dst Set bits in destination src .or. dstĺ dst - - - -

BIT(.B) src,dst Test bits in destination src .and. dst 0 * * *

BR
(1)

dst Branch to destination dstĺ PC - - - -

CALL dst Call destination PC+2ĺ stack, dst ĺ PC - - - -

CLR(.B)
(1)

dst Clear destination 0ĺ dst - - - -

CLRC
(1)

Clear C 0ĺ C - - - 0

CLRN
(1)

Clear N 0ĺ N - 0 - -

CLRZ
(1)

Clear Z 0ĺ Z - - 0 -

CMP(.B) src,dst Compare source and destination dst - src * * * *

DADC(.B)
(1)

dst Add C decimally to destination dst + Cĺ dst (decimally) * * * *

DADD(.B) src,dst Add source and C decimally to dst src + dst + Cĺ dst (decimally) * * * *

DEC(.B)
(1)

dst Decrement destination dst - 1ĺ dst * * * *

(1)
Emulated Instruction

65SLAU144I±December 2004±Revised January 2012 CPU

Submit Documentation Feedback

Copyright � 2004±2012, Texas Instruments Incorporated

Rn

x(Rn)

LABEL

&LABEL

MSP430 Addressing Modes

As Ad d/s Register Syntax Description

00 0 ds n � 3 Rn Register direct. The operand is the contents of Rn. Ad=0

01 1 ds n � 0, 2, 3 x(Rn) Indexed. The operand is in memory at address Rn+x.

10 - s n � 0, 2, 3 @Rn Register indirect. The operand is in memory at the address held in Rn.

11 - s n � 0, 2, 3 @Rn+ Indirect auto-increment. As above, then the register is incremented by 1 or 2.

Addressing modes using R0 (PC)

01 1 ds 0 (PC) LABEL Symbolic. x(PC) The operand is in memory at address PC+x.

11 - s 0 (PC) #x Immediate. @PC+ The operand is the next word in the instruction stream.

Addressing modes using R2 (SR) and R3 (CG), special-case decoding

01 1 ds 2 (SR) &LABEL Absolute. The operand is in memory at address x.

10 - s 2 (SR) #4 Constant. The operand is the constant 4.

11 - s 2 (SR) #8 Constant. The operand is the constant 8.

00 - s 3 (CG) #0 Constant. The operand is the constant 0.

01 - s 3 (CG) #1 Constant. The operand is the constant 1. There is no index word.

10 - s 3 (CG) #2 Constant. The operand is the constant 2.

11 - s 3 (CG) #�1 Constant. The operand is the constant �1.

MSP430 Instruction Set
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Instruction

0 0 0 1 0 0 opcode B/W As register Single-operand arithmetic

0 0 0 1 0 0 0 0 0 B/W As register RRC Rotate right through carry

0 0 0 1 0 0 0 0 1 0 As register SWPB Swap bytes

0 0 0 1 0 0 0 1 0 B/W As register RRA Rotate right arithmetic

0 0 0 1 0 0 0 1 1 0 As register SXT Sign extend byte to word

0 0 0 1 0 0 1 0 0 B/W As register PUSH Push value onto stack

0 0 0 1 0 0 1 0 1 0 As register CALL Subroutine call; push PC and move source to PC

0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 RETI Return from interrupt; pop SR then pop PC

0 0 1 condition 10-bit signed offset Conditional jump; PC = PC + 2�offset

0 0 1 0 0 0 10-bit signed offset JNE/JNZ Jump if not equal/zero

0 0 1 0 0 1 10-bit signed offset JEQ/JZ Jump if equal/zero

0 0 1 0 1 0 10-bit signed offset JNC/JLO Jump if no carry/lower

0 0 1 0 1 1 10-bit signed offset JC/JHS Jump if carry/higher or same

0 0 1 1 0 0 10-bit signed offset JN Jump if negative

0 0 1 1 0 1 10-bit signed offset JGE Jump if greater or equal

0 0 1 1 1 0 10-bit signed offset JL Jump if less

0 0 1 1 1 1 10-bit signed offset JMP Jump (unconditionally)

opcode source Ad B/W As destination Two-operand arithmetic

0 1 0 0 source Ad B/W As destination MOV Move source to destination

0 1 0 1 source Ad B/W As destination ADD Add source to destination

0 1 1 0 source Ad B/W As destination ADDC Add source and carry to destination

0 1 1 1 source Ad B/W As destination SUBC Subtract source from destination (with carry)

1 0 0 0 source Ad B/W As destination SUB Subtract source from destination

1 0 0 1 source Ad B/W As destination CMP Compare (pretend to subtract) source from destination

1 0 1 0 source Ad B/W As destination DADD Decimal add source to destination (with carry)

1 0 1 1 source Ad B/W As destination BIT Test bits of source AND destination

1 1 0 0 source Ad B/W As destination BIC Bit clear (dest &= ~src)

1 1 0 1 source Ad B/W As destination BIS Bit set (logical OR)

1 1 1 0 source Ad B/W As destination XOR Exclusive or source with destination

1 1 1 1 source Ad B/W As destination AND Logical AND source with destination (dest &= src)

MSP430 Addressing Modes

As Ad d/s Register Syntax Description

00 0 ds n � 3 Rn Register direct. The operand is the contents of Rn. Ad=0

01 1 ds n � 0, 2, 3 x(Rn) Indexed. The operand is in memory at address Rn+x.

10 - s n � 0, 2, 3 @Rn Register indirect. The operand is in memory at the address held in Rn.

11 - s n � 0, 2, 3 @Rn+ Indirect auto-increment. As above, then the register is incremented by 1 or 2.

Addressing modes using R0 (PC)

01 1 ds 0 (PC) LABEL Symbolic. x(PC) The operand is in memory at address PC+x.

11 - s 0 (PC) #x Immediate. @PC+ The operand is the next word in the instruction stream.

Addressing modes using R2 (SR) and R3 (CG), special-case decoding

01 1 ds 2 (SR) &LABEL Absolute. The operand is in memory at address x.

10 - s 2 (SR) #4 Constant. The operand is the constant 4.

11 - s 2 (SR) #8 Constant. The operand is the constant 8.

00 - s 3 (CG) #0 Constant. The operand is the constant 0.

01 - s 3 (CG) #1 Constant. The operand is the constant 1. There is no index word.

10 - s 3 (CG) #2 Constant. The operand is the constant 2.

11 - s 3 (CG) #�1 Constant. The operand is the constant �1.

MSP430 Instruction Set
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Instruction

0 0 0 1 0 0 opcode B/W As register Single-operand arithmetic

0 0 0 1 0 0 0 0 0 B/W As register RRC Rotate right through carry

0 0 0 1 0 0 0 0 1 0 As register SWPB Swap bytes

0 0 0 1 0 0 0 1 0 B/W As register RRA Rotate right arithmetic

0 0 0 1 0 0 0 1 1 0 As register SXT Sign extend byte to word

0 0 0 1 0 0 1 0 0 B/W As register PUSH Push value onto stack

0 0 0 1 0 0 1 0 1 0 As register CALL Subroutine call; push PC and move source to PC

0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 RETI Return from interrupt; pop SR then pop PC

0 0 1 condition 10-bit signed offset Conditional jump; PC = PC + 2�offset

0 0 1 0 0 0 10-bit signed offset JNE/JNZ Jump if not equal/zero

0 0 1 0 0 1 10-bit signed offset JEQ/JZ Jump if equal/zero

0 0 1 0 1 0 10-bit signed offset JNC/JLO Jump if no carry/lower

0 0 1 0 1 1 10-bit signed offset JC/JHS Jump if carry/higher or same

0 0 1 1 0 0 10-bit signed offset JN Jump if negative

0 0 1 1 0 1 10-bit signed offset JGE Jump if greater or equal

0 0 1 1 1 0 10-bit signed offset JL Jump if less

0 0 1 1 1 1 10-bit signed offset JMP Jump (unconditionally)

opcode source Ad B/W As destination Two-operand arithmetic

0 1 0 0 source Ad B/W As destination MOV Move source to destination

0 1 0 1 source Ad B/W As destination ADD Add source to destination

0 1 1 0 source Ad B/W As destination ADDC Add source and carry to destination

0 1 1 1 source Ad B/W As destination SUBC Subtract source from destination (with carry)

1 0 0 0 source Ad B/W As destination SUB Subtract source from destination

1 0 0 1 source Ad B/W As destination CMP Compare (pretend to subtract) source from destination

1 0 1 0 source Ad B/W As destination DADD Decimal add source to destination (with carry)

1 0 1 1 source Ad B/W As destination BIT Test bits of source AND destination

1 1 0 0 source Ad B/W As destination BIC Bit clear (dest &= ~src)

1 1 0 1 source Ad B/W As destination BIS Bit set (logical OR)

1 1 1 0 source Ad B/W As destination XOR Exclusive or source with destination

1 1 1 1 source Ad B/W As destination AND Logical AND source with destination (dest &= src)

	

�(��� 6,��-�@�2���#������!���

�������� ������������ ��!�������
��

,��� - �*1� ��� ��� ���
0����	�����

���� �������� ��7
0����	�����

���� �������� ��8

��")#��;'��< :;6< 6 7 6 6 ; 6 6 6 6 < + +

���)���:'��> ;::> 6 7 6 7 : 6 7 6 6 > + +

��)#�2�='��78 �=8� 7 6 7 7 = 6 6 7 6 �

��)��6,�=-'��7; �=<� 7 6 7 7 = 6 7 7 6 �

���)��8,�>-'�6,�>- �>�>�6668�6666 7 7 6 6 > 7 7 6 7 > 6668 6666

���)#�8,�>-'�:,�=- �>?=�6668�666: 7 7 6 6 > 7 6 6 7 =

���)#�36$����'��77 �69������ 7 7 6 7 6 6 6 7 7 � ����

���)���76 77:� 6 6 6 7 6667 6 7 6 6 �

���)#��77 766� 6 6 6 7 6666 6 6 6 6 �

��������� 9�.77$$�$$$�$$$$/ 6 6 7 7 77$$ $ $ $ $,����� �+�&����)�#����-

�����79'�8,�>- ?�>>�6668 7 6 6 7 � 7 6 6 6 > 6668

��%������ 8�.66$$�$$$$�$$$$/ 6 6 7 6 66$$ $ $ $ $,����� �+�&����)�#����-

���)���76 ;�:�

���
���������� ��,��!�� �������-�� 6 7 6 7 � 6 7 6 6 �

���)#��77 <�6�

����

��������� ��,��!�� �������-�� 6 7 7 6 � 6 6 6 6 �

��")#��76 �99�

��	

������������� ��,��!�� �������-�� 7 7 7 6 9 6 6 7 7 �

���)#��77 ;97�

���

������������� ��,��!�� �������-�� 6 7 6 7 9 6 6 6 7 �

������ ���,���-

������

�		�� ����� ���	�� �		��
 0100 0000 0000 0000 0111 1111 1111 1111 0111 1110 1011 0000
+0111 0100 0010 1011 + 1000 1000
 1011 0100 0010 1011 1000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0011 1000

�
��� ����� 	
��� �����
 0000 0010 0101 0101 0101 0000 1111 1010 0000 0000 0000 0000 0000 0101
 1111 1100 1110 0000 - 0000 0111
 1111 1111 0011 0101 1010 1111 0000 0101 0000 0000 1111 1111 0000 0000 1111 1110

����� ����� ��	�� �����
 0000 0010 0101 0101 0000 0000 0000 0001 1010 1010 0010 1101
-0000 0010 0101 0101 0101 0101 0010 1101
 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

�		�� ����� ����� �����
 1000 0000 0000 0000 0000 0100 0000 0001 0000 0000 1000 0010 0000 0000 1101 1011
 1000 0000 0000 0001
(1) 0000 0000 0000 0001 0000 0010 0000 0000 (1) (1) 0000 0000 0000 0100 0000 0000 0110 1101 (1)

�
�	����	���	��������������
	�	����	�����������	��	�����	�������	�	�����������

��������!�������������������#���$����'�"������������%��������%���� ���������������������������

�	������!�%������%����������"���������������#���$�����
���������#($����#"$���������#"$����#($

���!������������������&

���� !�%��������%����������"�������������������������
��"����������������
��������	���	��	��

��
��
�����������

��
��
�����������

��
��
�����������

��
��
�����������

�

�

�

�

	

�(��� 6,��-�@�2���#������!���

�������� ������������ ��!�������
��

,��� - �*1� ��� ��� ���
0����	�����

���� �������� ��7
0����	�����

���� �������� ��8

��")#��;'��< :;6< 6 7 6 6 ; 6 6 6 6 < + +

���)���:'��> ;::> 6 7 6 7 : 6 7 6 6 > + +

��)#�2�='��78 �=8� 7 6 7 7 = 6 6 7 6 �

��)��6,�=-'��7; �=<� 7 6 7 7 = 6 7 7 6 �

���)��8,�>-'�6,�>- �>�>�6668�6666 7 7 6 6 > 7 7 6 7 > 6668 6666

���)#�8,�>-'�:,�=- �>?=�6668�666: 7 7 6 6 > 7 6 6 7 =

���)#�36$����'��77 �69������ 7 7 6 7 6 6 6 7 7 � ����

���)���76 77:� 6 6 6 7 6667 6 7 6 6 �

���)#��77 766� 6 6 6 7 6666 6 6 6 6 �

��������� 9�.77$$�$$$�$$$$/ 6 6 7 7 77$$ $ $ $ $,����� �+�&����)�#����-

�����79'�8,�>- ?�>>�6668 7 6 6 7 � 7 6 6 6 > 6668

��%������ 8�.66$$�$$$$�$$$$/ 6 6 7 6 66$$ $ $ $ $,����� �+�&����)�#����-

���)���76 ;�:�

���
���������� ��,��!�� �������-�� 6 7 6 7 � 6 7 6 6 �

���)#��77 <�6�

����

��������� ��,��!�� �������-�� 6 7 7 6 � 6 6 6 6 �

��")#��76 �99�

��	

������������� ��,��!�� �������-�� 7 7 7 6 9 6 6 7 7 �

���)#��77 ;97�

���

������������� ��,��!�� �������-�� 6 7 6 7 9 6 6 6 7 �

������ ���,���-

MSP430 Addressing Modes

As Ad d/s Register Syntax Description

00 0 ds n � 3 Rn Register direct. The operand is the contents of Rn. Ad=0

01 1 ds n � 0, 2, 3 x(Rn) Indexed. The operand is in memory at address Rn+x.

10 - s n � 0, 2, 3 @Rn Register indirect. The operand is in memory at the address held in Rn.

11 - s n � 0, 2, 3 @Rn+ Indirect auto-increment. As above, then the register is incremented by 1 or 2.

Addressing modes using R0 (PC)

01 1 ds 0 (PC) LABEL Symbolic. x(PC) The operand is in memory at address PC+x.

11 - s 0 (PC) #x Immediate. @PC+ The operand is the next word in the instruction stream.

Addressing modes using R2 (SR) and R3 (CG), special-case decoding

01 1 ds 2 (SR) &LABEL Absolute. The operand is in memory at address x.

10 - s 2 (SR) #4 Constant. The operand is the constant 4.

11 - s 2 (SR) #8 Constant. The operand is the constant 8.

00 - s 3 (CG) #0 Constant. The operand is the constant 0.

01 - s 3 (CG) #1 Constant. The operand is the constant 1. There is no index word.

10 - s 3 (CG) #2 Constant. The operand is the constant 2.

11 - s 3 (CG) #�1 Constant. The operand is the constant �1.

MSP430 Instruction Set
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Instruction

0 0 0 1 0 0 opcode B/W As register Single-operand arithmetic

0 0 0 1 0 0 0 0 0 B/W As register RRC Rotate right through carry

0 0 0 1 0 0 0 0 1 0 As register SWPB Swap bytes

0 0 0 1 0 0 0 1 0 B/W As register RRA Rotate right arithmetic

0 0 0 1 0 0 0 1 1 0 As register SXT Sign extend byte to word

0 0 0 1 0 0 1 0 0 B/W As register PUSH Push value onto stack

0 0 0 1 0 0 1 0 1 0 As register CALL Subroutine call; push PC and move source to PC

0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 RETI Return from interrupt; pop SR then pop PC

0 0 1 condition 10-bit signed offset Conditional jump; PC = PC + 2�offset

0 0 1 0 0 0 10-bit signed offset JNE/JNZ Jump if not equal/zero

0 0 1 0 0 1 10-bit signed offset JEQ/JZ Jump if equal/zero

0 0 1 0 1 0 10-bit signed offset JNC/JLO Jump if no carry/lower

0 0 1 0 1 1 10-bit signed offset JC/JHS Jump if carry/higher or same

0 0 1 1 0 0 10-bit signed offset JN Jump if negative

0 0 1 1 0 1 10-bit signed offset JGE Jump if greater or equal

0 0 1 1 1 0 10-bit signed offset JL Jump if less

0 0 1 1 1 1 10-bit signed offset JMP Jump (unconditionally)

opcode source Ad B/W As destination Two-operand arithmetic

0 1 0 0 source Ad B/W As destination MOV Move source to destination

0 1 0 1 source Ad B/W As destination ADD Add source to destination

0 1 1 0 source Ad B/W As destination ADDC Add source and carry to destination

0 1 1 1 source Ad B/W As destination SUBC Subtract source from destination (with carry)

1 0 0 0 source Ad B/W As destination SUB Subtract source from destination

1 0 0 1 source Ad B/W As destination CMP Compare (pretend to subtract) source from destination

1 0 1 0 source Ad B/W As destination DADD Decimal add source to destination (with carry)

1 0 1 1 source Ad B/W As destination BIT Test bits of source AND destination

1 1 0 0 source Ad B/W As destination BIC Bit clear (dest &= ~src)

1 1 0 1 source Ad B/W As destination BIS Bit set (logical OR)

1 1 1 0 source Ad B/W As destination XOR Exclusive or source with destination

1 1 1 1 source Ad B/W As destination AND Logical AND source with destination (dest &= src)

No. Emulated Mnemonic Operand(s) V N Z C

1 � ADC(.B) dst Add C to destination dst+C�dst * * * *
2 ADD(.B) src,dst Add source to destination src+dst�dst * * * *
3 ADDC(.B) src,dst Add source and C to destination src+dst+C�dst * * * *
4 AND(.B) src,dst AND source and destination src .and. dst � dst 0 * * *
5 BIC(.B) src,dst Clear bits in destination not.src .and. dst � dst - - - -
6 BIS(.B) src,dst Set bits in destination src .or. dst � dst - - - -
7 BIT(.B) src,dst Test bits in destination src .and. dst 0 * * *
8 � BR dst Branch to destination dst � PC - - - -
9 CALL dst Call destination PC+2 � stack, dst � PC - - - -

10 � CLR(.B) dst Clear destination 0 � dst - - - -
11 � CLRC Clear C 0�C - - - 0
12 � CLRN Clear N 0�N - 0 - -
13 � CLRZ Clear Z 0�Z - - 0 -
14 CMP(.B) src,dst Compare source and destination dst - src * * * *
15 � DADC(.B) dst Add C decimally to destination dst + C � dst (decimally) * * * *
16 DADD(.B) src,dst Add source and C decimally to dst src + dst + C � dst (decimally) * * * *
17 � DEC(.B) dst Decrement destination dst - 1 � dst * * * *
18 � DECD(.B) dst Double-decrement destination dst - 2 � dst * * * *
19 � DINT Disable interrupts 0 � GIE - - - -
20 � EINT Enable interrupts 1 � GIE - - - -
21 � INC(.B) dst Increment destination dst +1 � dst * * * *
22 � INCD(.B) dst Double-increment destination dst+2 � dst * * * *
23 � INV(.B) dst Invert destination .not.dst � dst * * * *
24 JC/JHS label Jump if C set/Jump if higher or same - - - -
25 JEQ/JZ label Jump if equal/Jump if Z set - - - -
26 JGE label Jump if greater or equal - - - -
27 JL label Jump if less - - - -
28 JMP label Jump PC + 2 � offset � PC - - - -
29 JN label Jump if N set - - - -
30 JNC/JLO label Jump if C not set/Jump if lower - - - -
31 JNE/JNZ label Jump if not equal/Jump if Z not set - - - -
32 MOV(.B) src,dst Move source to destination src � dst - - - -
33 � NOP No operation - - - -
34 � POP(.B) dst Pop item from stack to destination @SP � dst, SP+2 � SP - - - -
35 PUSH(.B) src Push source onto stack SP - 2 � SP, src � @SP - - - -
36 � RET Return from subroutine @SP � PC, SP + 2 � SP - - - -
37 RETI Return from interrupt * * * *
38 � RLA(.B) dst Rotate left arithmetically * * * *
39 � RLC(.B) dst Rotate left through C * * * *
40 RRA(.B) dst Rotate right arithmetically 0 * * *
41 RRC(.B) dst Rotate right through C * * * *
42 � SBC(.B) dst Subtract not(C) from destination dst + 0FFFFh + C � dst * * * *
43 � SETC Set C 1�C - - - 1
44 � SETN Set N 1�N - 1 - -
45 � SETZ Set Z 1�Z - - 1 -
46 SUB(.B) src,dst Subtract source from destination dst + .not.src + 1 � dst * * * *
47 SUBC(.B) src,dst Subtract source and not(C) from dst dst + .not.src + C � dst * * * *
48 SWPB dst Swap bytes - - - -
49 SXT dst Extend sign 0 * * *
50 � TST(.B) dst Test destination dst+0FFFFh+1 0 * * 1
51 XOR(.B) src,dst Exclusive OR source and destination src .xor. dst � dst * * * *

Description

��
�����������
���	�
��
���
����
���Special Registers: PC (Program Counter)=R0; SP (Stack Pointer)=R1;

 SR (Status Register)=R2; CG (Constants Generator)=R3;

www.ti.com CPU Registers

Figure 3-6. Status Register Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OSC CPU
Reserved V SCG1 SCG0 GIE N Z C

OFF OFF

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Table 3-1 describes the status register bits.

Table 3-1. Description of Status Register Bits

Bit Description

V Overflow bit. This bit is set when the result of an arithmetic operation overflows the signed-variable range.

Set when:ADD(.B),ADDC(.B)

Positive + Positive = Negative

Negative + Negative = Positive

Otherwise reset

Set when:SUB(.B),SUBC(.B),CMP(.B)

Positive ± Negative = Negative
Negative ± Positive = Positive
Otherwise reset

SCG1 System clock generator 1. When set, turns off the SMCLK.

SCG0 System clock generator 0. When set, turns off the DCO dc generator, if DCOCLK is not used for MCLK or SMCLK.

OSCOFF Oscillator Off. When set, turns off the LFXT1 crystal oscillator, when LFXT1CLK is not use for MCLK or SMCLK.

CPUOFF CPU off. When set, turns off the CPU.

GIE General interrupt enable. When set, enables maskable interrupts. When reset, all maskable interrupts are disabled.

N Negative bit. Set when the result of a byte or word operation is negative and cleared when the result is not negative.

Word operation: N is set to the value of bit 15 of the result.

Byte operation: N is set to the value of bit 7 of the result.

Z Zero bit. Set when the result of a byte or word operation is 0 and cleared when the result is not 0.

C Carry bit. Set when the result of a byte or word operation produced a carry and cleared when no carry occurred.

3.2.4 Constant Generator Registers CG1 and CG2

Six commonly-used constants are generated with the constant generator registers R2 and R3, without

requiring an additional 16-bit word of program code. The constants are selected with the source-register

addressing modes (As), as described in Table 3-2.

Table 3-2. Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 00 ± ± ± ± ± Register mode

R2 01 (0) Absolute address mode

R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 0FFFFh 1, word processing

The constant generator advantages are:

� No special instructions required

� No additional code word for the six constants

� No code memory access required to retrieve the constant

49SLAU144I±December 2004±Revised January 2012 CPU

Submit Documentation Feedback
Copyright � 2004±2012, Texas Instruments Incorporated

Timer_A Registers www.ti.com

12.3.1 TACTL, Timer_A Control Register

15 14 13 12 11 10 9 8

Unused TASSELx

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

IDx MCx Unused TACLR TAIE TAIFG

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Unused Bits 15-10 Unused

TASSELx Bits 9-8 Timer_A clock source select

00 TACLK

01 ACLK

10 SMCLK

11 INCLK (INCLK is device-specific and is often assigned to the inverted TBCLK) (see the

device-specific data sheet)

IDx Bits 7-6 Input divider. These bits select the divider for the input clock.

00 /1

01 /2

10 /4

11 /8

MCx Bits 5-4 Mode control. Setting MCx = 00h when Timer_A is not in use conserves power.

00 Stop mode: the timer is halted.

01 Up mode: the timer counts up to TACCR0.

10 Continuous mode: the timer counts up to 0FFFFh.

11 Up/down mode: the timer counts up to TACCR0 then down to 0000h.

Unused Bit 3 Unused

TACLR Bit 2 Timer_A clear. Setting this bit resets TAR, the clock divider, and the count direction. The TACLR bit is

automatically reset and is always read as zero.

TAIE Bit 1 Timer_A interrupt enable. This bit enables the TAIFG interrupt request.

0 Interrupt disabled

1 Interrupt enabled

TAIFG Bit 0 Timer_A interrupt flag

0 No interrupt pending

1 Interrupt pending

378 Timer_A SLAU144I±December 2004±Revised January 2012
Submit Documentation Feedback

Copyright � 2004±2012, Texas Instruments Incorporated

Timer_A Registers www.ti.com

12.3.4 TACCTLx, Capture/Compare Control Register

15 14 13 12 11 10 9 8

CMx CCISx SCS SCCI Unused CAP

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r r0 rw-(0)

7 6 5 4 3 2 1 0

OUTMODx CCIE CCI OUT COV CCIFG

rw-(0) rw-(0) rw-(0) rw-(0) r rw-(0) rw-(0) rw-(0)

CMx Bit 15-14 Capture mode

00 No capture

01 Capture on rising edge

10 Capture on falling edge

11 Capture on both rising and falling edges

CCISx Bit 13-12 Capture/compare input select. These bits select the TACCRx input signal. See the device-specific data

sheet for specific signal connections.

00 CCIxA

01 CCIxB

10 GND

11 VCC

SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input signal with the timer clock.

0 Asynchronous capture

1 Synchronous capture

SCCI Bit 10 Synchronized capture/compare input. The selected CCI input signal is latched with the EQUx signal and can

be read via this bit

Unused Bit 9 Unused. Read only. Always read as 0.

CAP Bit 8 Capture mode

0 Compare mode

1 Capture mode

OUTMODx Bits 7-5 Output mode. Modes 2, 3, 6, and 7 are not useful for TACCR0, because EQUx = EQU0.

000 OUT bit value

001 Set

010 Toggle/reset

011 Set/reset

100 Toggle

101 Reset

110 Toggle/set

111 Reset/set

CCIE Bit 4 Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG flag.

0 Interrupt disabled

1 Interrupt enabled

CCI Bit 3 Capture/compare input. The selected input signal can be read by this bit.

OUT Bit 2 Output. For output mode 0, this bit directly controls the state of the output.

0 Output low

1 Output high

COV Bit 1 Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software.

0 No capture overflow occurred

1 Capture overflow occurred

CCIFG Bit 0 Capture/compare interrupt flag

0 No interrupt pending

1 Interrupt pending

380 Timer_A SLAU144I±December 2004±Revised January 2012
Submit Documentation Feedback

Copyright � 2004±2012, Texas Instruments Incorporated

0h

0FFFFh

EQU0
TAIFG

Output Mode 1: Set

Output Mode 2:Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4:Toggle

Output Mode 5: Reset

Output Mode 6:Toggle/Set

Output Mode 7: Reset/Set

TACCR0

TACCR1

EQU1 EQU0
TAIFG

EQU1 EQU0
TAIFG

Interrupt Events

Timer_A Operation www.ti.com

Table 12-2. Output Modes

OUTMODx Mode Description

The output signal OUTx is defined by the OUTx bit. The OUTx signal updates immediately
000 Output

when OUTx is updated.

The output is set when the timer counts to the TACCRx value. It remains set until a reset of
001 Set

the timer, or until another output mode is selected and affects the output.

The output is toggled when the timer counts to the TACCRx value. It is reset when the timer
010 Toggle/Reset

counts to the TACCR0 value.

The output is set when the timer counts to the TACCRx value. It is reset when the timer
011 Set/Reset

counts to the TACCR0 value.

The output is toggled when the timer counts to the TACCRx value. The output period is
100 Toggle

double the timer period.

The output is reset when the timer counts to the TACCRx value. It remains reset until another
101 Reset

output mode is selected and affects the output.

The output is toggled when the timer counts to the TACCRx value. It is set when the timer
110 Toggle/Set

counts to the TACCR0 value.

The output is reset when the timer counts to the TACCRx value. It is set when the timer
111 Reset/Set

counts to the TACCR0 value.

12.2.5.2 Output Example² Timer in Up Mode

The OUTx signal is changed when the timer counts up to the TACCRx value, and rolls from TACCR0 to

zero, depending on the output mode. An example is shown in Figure 12-12 using TACCR0 and TACCR1.

Figure 12-12. Output Example²Timer in Up Mode

372 Timer_A SLAU144I±December 2004±Revised January 2012
Submit Documentation Feedback

Copyright � 2004±2012, Texas Instruments Incorporated

www.ti.com Digital I/O Registers

8.3 Digital I/O Registers

The digital I/O registers are listed in Table 8-2.

Table 8-2. Digital I/O Registers

Port Register Short Form Address Register Type Initial State

Input P1IN 020h Read only -

Output P1OUT 021h Read/write Unchanged

Direction P1DIR 022h Read/write Reset with PUC

Interrupt Flag P1IFG 023h Read/write Reset with PUC

P1 Interrupt Edge Select P1IES 024h Read/write Unchanged

Interrupt Enable P1IE 025h Read/write Reset with PUC

Port Select P1SEL 026h Read/write Reset with PUC

Port Select 2 P1SEL2 041h Read/write Reset with PUC

Resistor Enable P1REN 027h Read/write Reset with PUC

Input P2IN 028h Read only -

Output P2OUT 029h Read/write Unchanged

Direction P2DIR 02Ah Read/write Reset with PUC

Interrupt Flag P2IFG 02Bh Read/write Reset with PUC

P2 Interrupt Edge Select P2IES 02Ch Read/write Unchanged

Interrupt Enable P2IE 02Dh Read/write Reset with PUC

Port Select P2SEL 02Eh Read/write 0C0h with PUC

Port Select 2 P2SEL2 042h Read/write Reset with PUC

Resistor Enable P2REN 02Fh Read/write Reset with PUC

Input P3IN 018h Read only -

Output P3OUT 019h Read/write Unchanged

Direction P3DIR 01Ah Read/write Reset with PUC
P3

Port Select P3SEL 01Bh Read/write Reset with PUC

Port Select 2 P3SEL2 043h Read/write Reset with PUC

Resistor Enable P3REN 010h Read/write Reset with PUC

Input P4IN 01Ch Read only -

Output P4OUT 01Dh Read/write Unchanged

Direction P4DIR 01Eh Read/write Reset with PUC
P4

Port Select P4SEL 01Fh Read/write Reset with PUC

Port Select 2 P4SEL2 044h Read/write Reset with PUC

Resistor Enable P4REN 011h Read/write Reset with PUC

Input P5IN 030h Read only -

Output P5OUT 031h Read/write Unchanged

Direction P5DIR 032h Read/write Reset with PUC
P5

Port Select P5SEL 033h Read/write Reset with PUC

Port Select 2 P5SEL2 045h Read/write Reset with PUC

Resistor Enable P5REN 012h Read/write Reset with PUC

Input P6IN 034h Read only -

Output P6OUT 035h Read/write Unchanged

Direction P6DIR 036h Read/write Reset with PUC
P6

Port Select P6SEL 037h Read/write Reset with PUC

Port Select 2 P6SEL2 046h Read/write Reset with PUC

Resistor Enable P6REN 013h Read/write Reset with PUC

341SLAU144I±December 2004±Revised January 2012 Digital I/O

Submit Documentation Feedback

Copyright � 2004±2012, Texas Instruments Incorporated

CLOAD − External Capacitance − pF

F
o

s
c

−
T
y
p

ic
a

l
O

s
c
ill

a
ti
o

n
 F

re
q

u
e

n
c
y

−
M

H
z

−
T

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

1.35

1.50

10 50 100

VCC = 3.0 V

www.ti.com Digital I/O Operation

Figure 8-2. Typical Pin-Oscillation Frequency

8.2.7 P1 and P2 Interrupts

Each pin in ports P1 and P2 have interrupt capability, configured with the PxIFG, PxIE, and PxIES

registers. All P1 pins source a single interrupt vector, and all P2 pins source a different single interrupt

vector. The PxIFG register can be tested to determine the source of a P1 or P2 interrupt.

8.2.7.1 Interrupt Flag Registers P1IFG, P2IFG

Each PxIFGx bit is the interrupt flag for its corresponding I/O pin and is set when the selected input signal

edge occurs at the pin. All PxIFGx interrupt flags request an interrupt when their corresponding PxIE bit

and the GIE bit are set. Each PxIFG flag must be reset with software. Software can also set each PxIFG

flag, providing a way to generate a software initiated interrupt.

Bit = 0: No interrupt is pending

Bit = 1: An interrupt is pending

Only transitions, not static levels, cause interrupts. If any PxIFGx flag becomes set during a Px interrupt

service routine, or is set after the RETI instruction of a Px interrupt service routine is executed, the set

PxIFGx flag generates another interrupt. This ensures that each transition is acknowledged.

NOTE: PxIFG Flags When Changing PxOUT or PxDIR

Writing to P1OUT, P1DIR, P2OUT, or P2DIR can result in setting the corresponding P1IFG

or P2IFG flags.

8.2.7.2 Interrupt Edge Select Registers P1IES, P2IES

Each PxIES bit selects the interrupt edge for the corresponding I/O pin.

Bit = 0: The PxIFGx flag is set with a low-to-high transition

Bit = 1: The PxIFGx flag is set with a high-to-low transition

339SLAU144I±December 2004±Revised January 2012 Digital I/O

Submit Documentation Feedback
Copyright � 2004±2012, Texas Instruments Incorporated

Digital I/O Introduction www.ti.com

8.1 Digital I/O Introduction

MSP430 devices have up to eight digital I/O ports implemented, P1 to P8. Each port has up to eight I/O

pins. Every I/O pin is individually configurable for input or output direction, and each I/O line can be

individually read or written to.

Ports P1 and P2 have interrupt capability. Each interrupt for the P1 and P2 I/O lines can be individually

enabled and configured to provide an interrupt on a rising edge or falling edge of an input signal. All P1

I/O lines source a single interrupt vector, and all P2 I/O lines source a different, single interrupt vector.

The digital I/O features include:

� Independently programmable individual I/Os

� Any combination of input or output

� Individually configurable P1 and P2 interrupts

� Independent input and output data registers

� Individually configurable pullup or pulldown resistors

� Individually configurable pin-oscillator function (some MSP430 devices)

NOTE: MSP430G22x0 : These devices feature digital I/O pins P1.2, P1.5, P1.6 and P1.7. The

GPIOs P1.0, P1.1, P1.3, P1.4, P2.6, and P2.7 are implemented on this device but not

available on the device pin-out. To avoid floating inputs, these GPIOs, these digital I/Os

should be properly initialized by running a start-up code. See initialization code below:

mov.b #0x1B, P1REN; ; Terminate unavailable Port1 pins properly ; Config as Input with

pull-down enabled

xor.b #0x20, BCSCTL3; ; Select VLO as low freq clock

The initialization code configures GPIOs P1.0, P1.1, P1.3, and P1.4 as inputs with pull-down

resistor enabled (that is, P1REN.x = 1) and GPIOs P2.6 and P2.7 are terminated by

selecting VLOCLK as ACLK ± see the Basic Clock System chapter for details. The register

bits of P1.0, P1.1, P1.3, and P1.4 in registers P1OUT, P1DIR, P1IFG, P1IE, P1IES, P1SEL

and P1REN should not be altered after the initialization code is executed. Also, all Port2

registers are should not be altered.

8.2 Digital I/O Operation

The digital I/O is configured with user software. The setup and operation of the digital I/O is discussed in

the following sections.

8.2.1 Input Register PxIN

Each bit in each PxIN register reflects the value of the input signal at the corresponding I/O pin when the

pin is configured as I/O function.

Bit = 0: The input is low

Bit = 1: The input is high

NOTE: Writing to Read-Only Registers PxIN

Writing to these read-only registers results in increased current consumption while the write

attempt is active.

8.2.2 Output Registers PxOUT

Each bit in each PxOUT register is the value to be output on the corresponding I/O pin when the pin is

configured as I/O function, output direction, and the pullup/down resistor is disabled.

Bit = 0: The output is low

Bit = 1: The output is high

336 Digital I/O SLAU144I±December 2004±Revised January 2012
Submit Documentation Feedback

Copyright � 2004±2012, Texas Instruments Incorporated

www.ti.com Digital I/O Operation

If the pin's pullup/pulldown resistor is enabled, the corresponding bit in the PxOUT register selects pullup

or pulldown.

Bit = 0: The pin is pulled down

Bit = 1: The pin is pulled up

8.2.3 Direction Registers PxDIR

Each bit in each PxDIR register selects the direction of the corresponding I/O pin, regardless of the

selected function for the pin. PxDIR bits for I/O pins that are selected for other functions must be set as

required by the other function.

Bit = 0: The port pin is switched to input direction

Bit = 1: The port pin is switched to output direction

8.2.4 Pullup/Pulldown Resistor Enable Registers PxREN

Each bit in each PxREN register enables or disables the pullup/pulldown resistor of the corresponding I/O

pin. The corresponding bit in the PxOUT register selects if the pin is pulled up or pulled down.

Bit = 0: Pullup/pulldown resistor disabled

Bit = 1: Pullup/pulldown resistor enabled

8.2.5 Function Select Registers PxSEL and PxSEL2

Port pins are often multiplexed with other peripheral module functions. See the device-specific data sheet

to determine pin functions. Each PxSEL and PxSEL2 bit is used to select the pin function - I/O port or

peripheral module function.

Table 8-1. PxSEL and PxSEL2

PxSEL2 PxSEL Pin Function

0 0 I/O function is selected.

0 1 Primary peripheral module function is selected.

1 0 Reserved. See device-specific data sheet.

1 1 Secondary peripheral module function is selected.

Setting PxSELx = 1 does not automatically set the pin direction. Other peripheral module functions may

require the PxDIRx bits to be configured according to the direction needed for the module function. See

the pin schematics in the device-specific data sheet.

NOTE: Setting PxREN = 1 When PxSEL = 1

On some I/O ports on the MSP430F261x and MSP430F2416/7/8/9, enabling the

pullup/pulldown resistor (PxREN = 1) while the module function is selected (PxSEL = 1) does

not disable the logic output driver. This combination is not recommended and may result in

unwanted current flow through the internal resistor. See the device-specific data sheet pin

schematics for more information.

;Output ACLK on P2.0 on MSP430F21x1

BIS.B #01h,&P2SEL ; Select ACLK function for pin

BIS.B #01h,&P2DIR ; Set direction to output *Required*

NOTE: P1 and P2 Interrupts Are Disabled When PxSEL = 1

When any P1SELx or P2SELx bit is set, the corresponding pin's interrupt function is

disabled. Therefore, signals on these pins will not generate P1 or P2 interrupts, regardless of

the state of the corresponding P1IE or P2IE bit.

337SLAU144I±December 2004±Revised January 2012 Digital I/O

Submit Documentation Feedback
Copyright � 2004±2012, Texas Instruments Incorporated

Digital I/O Operation www.ti.com

NOTE: Writing to PxIESx

Writing to P1IES, or P2IES can result in setting the corresponding interrupt flags.

PxIESx PxINx PxIFGx

0ĺ 1 0 May be set

0ĺ 1 1 Unchanged

1ĺ 0 0 Unchanged

1ĺ 0 1 May be set

8.2.7.3 Interrupt Enable P1IE, P2IE

Each PxIE bit enables the associated PxIFG interrupt flag.

Bit = 0: The interrupt is disabled.

Bit = 1: The interrupt is enabled.

8.2.8 Configuring Unused Port Pins

Unused I/O pins should be configured as I/O function, output direction, and left unconnected on the PC

board, to prevent a floating input and reduce power consumption. The value of the PxOUT bit is irrelevant,

since the pin is unconnected. Alternatively, the integrated pullup/pulldown resistor can be enabled by

setting the PxREN bit of the unused pin to prevent the floating input. See the System Resets, Interrupts,

and Operating Modes chapter for termination of unused pins.

340 Digital I/O SLAU144I±December 2004±Revised January 2012
Submit Documentation Feedback

Copyright � 2004±2012, Texas Instruments Incorporated

Active Mode

CPU Is Active
Peripheral Modules Are Active

LPM0

CPU Off, MCLK Off,
SMCLK On, ACLK On

CPUOFF = 1

SCG0 = 0
SCG1 = 0

CPUOFF = 1

SCG0 = 1
SCG1 = 0

LPM2

CPU Off, MCLK Off, SMCLK
Off, DCO Off, ACLK On

CPUOFF = 1

SCG0 = 0
SCG1 = 1

LPM3

CPU Off, MCLK Off, SMCLK
Off, DCO Off, ACLK On

DC Generator Off

LPM4

CPU Off, MCLK Off, DCO
Off, SMCLK Off,

ACLK Off

DC Generator Off

CPUOFF = 1

OSCOFF = 1
SCG0 = 1

SCG1 = 1

RST/NMI

NMI Active

PUC RST/NMI is Reset Pin

WDT is Active

POR

WDT Active,

Security Key Violation

WDT

Time Expired, Overflow WDTIFG = 1

WDTIFG = 1

RST/NMI

Reset Active
SVS_POR

WDTIFG = 0

LPM1

CPU Off, MCLK Off,
DCO off, SMCLK On,

ACLK On

DC Generator Off if DCO

not used for SMCLK

CPUOFF = 1

SCG0 = 1
SCG1 = 1

Operating Modes www.ti.com

Figure 2-9. Operating Modes For Basic Clock System

Table 2-2. Operating Modes For Basic Clock System

SCG1 SCG0 OSCOFF CPUOFF Mode CPU and Clocks Status

0 0 0 0 Active CPU is active, all enabled clocks are active

0 0 0 1 LPM0 CPU, MCLK are disabled, SMCLK, ACLK are active

CPU, MCLK are disabled. DCO and DC generator are

0 1 0 1 LPM1 disabled if the DCO is not used for SMCLK. ACLK is

active.

CPU, MCLK, SMCLK, DCO are disabled. DC generator
1 0 0 1 LPM2

remains enabled. ACLK is active.

CPU, MCLK, SMCLK, DCO are disabled. DC generator
1 1 0 1 LPM3

disabled. ACLK is active.

1 1 1 1 LPM4 CPU and all clocks disabled

42 System Resets, Interrupts, and Operating Modes SLAU144I±December 2004±Revised January 2012
Submit Documentation Feedback

Copyright � 2004±2012, Texas Instruments Incorporated

PullupPulldown

Digital Input, Output, and Displays 209

a buffer and appears on the pin if it is later switched to be an output. This register is not
initialized and you should therefore write to P1OUT before configuring the pin for
output.

Port P1 direction, P1DIR: clearing a bit to 0 configures a pin as an input, which is the
default in most cases. Writing a 1 switches the pin to become an output. This is for
digital input and output; the register works differently if other functions are selected
using P1SEL.

Port P1 resistor enable, P1REN: setting a bit to 1 activates a pull-up or pull-down
resistor on a pin. Pull-ups are often used to connect a switch to an input as in
the section “Read Input from a Switch” on page 80. The resistors are inactive by
default (0). When the resistor is enabled (1), the corresponding bit of the P1OUT
register selects whether the resistor pulls the input up to VCC (1) or down to VSS (0).

Port P1 selection, P1SEL: selects either digital input/output (0, default) or an
alternative function (1). Further registers may be needed to choose the particular
function.

Port P1 interrupt enable, P1IE: enables interrupts when the value on an input pin
changes. This feature is activated by setting appropriate bits of P1IE to 1. Interrupts are
off (0) by default. The whole port shares a single interrupt vector although pins can be
enabled individually.

Port P1 interrupt edge select, P1IES: can generate interrupts either on a positive
edge (0), when the input goes from low to high, or on a negative edge from high to
low (1). It is not possible to select interrupts on both edges simultaneously but this is not
a problem because the direction can be reversed after each transition. Care is needed
if the direction is changed while interrupts are enabled because a spurious interrupt may
be generated. This register is not initialized and should therefore be set up before
interrupts are enabled.

Port P1 interrupt flag, P1IFG: a bit is set when the selected transition has been
detected on the input. In addition, an interrupt is requested if it has been enabled. These
bits can also be set by software, which provides a mechanism for generating a software
interrupt (SWI).

In some cases the configuration of a pin selected by these registers can be overruled by
another function. For example, P1.0 in the F2013 can also be used as input A0+ to the
analog-to-digital converter (SD16_A). This module includes an analog input enable
register SD16AE. Selecting channel 0 with this register connects P1.0 to the SD16_A,

www.newnespress.com

208 Chapter 7

More complicated forms of input and output are treated in later chapters. Chapter 9 is
concerned with the conversion of “real” analog inputs into digital values that the
microcontroller can process. Special interfaces, such as SPI or I²C, are used to
communicate between the microcontroller and other digital components or systems.
These are covered in Chapter 10.

7.1 Digital Input and Output: Parallel Ports
The most straightforward form of input and output is through the digital input/output ports
using binary values (low or high, corresponding to 0 or 1). We already used these for
driving LEDs and reading switches. In this section we look at their wider capabilities.

There are 10–80 input/output pins on different devices in the current portfolio of
MSP430s; the F20xx has one complete 8-pin port and 2 pins on a second port, while
the largest devices have ten full ports. Almost all pins can be used either for digital
input/output or for other functions and their operation must be configured when the device
starts up. This can be tricky. For example, pin P1.0 on the F2013 can be a digital input,
digital output, input TACLK, output ACLK, or analog input A0+. This is a choice of five
functions and therefore needs at least 3 bits for selection. It was hard to puzzle this out for
older devices but newer data sheets have an admirably clear table for each pin in the
section Application Information. There is also a schematic drawing of the circuit
associated with the pin. For example, the function of P1.0 depends on P1DIR, P1SEL, and
the analog enable register SD16AE. This pin is a digital input by default after reset, which
is true for most pins but not all.

A convenient feature of all peripherals in the MSP430 is that they are implemented in
much the same way in all devices and families. For example, ports P1 and P2 have
interrupts in all cases, from the 14-pin F20xx to the 100-pin FG4618. Up to eight registers
are associated with the digital input/output functions for each pin. Here are the registers for
port P1 on a MSP430F2xx, which has the maximum number. Each pin can be configured
and controlled individually; thus some pins can be digital inputs, some outputs, some used
for analog functions, and so on.

Port P1 input, P1IN: reading returns the logical values on the inputs if they are
configured for digital input/output. This register is read-only and volatile. It does not
need to be initialized because its contents are determined by the external signals.

Port P1 output, P1OUT: writing sends the value to be driven to each pin if it is
configured as a digital output. If the pin is not currently an output, the value is stored in

www.newnespress.com

Low Power Modes

V
o
=0 V

o
=1

188 Chapter 6

F2013 as an example, the vector for TACCR0 CCIFG has an address 0xFFF2 and
therefore has a higher priority than the shared vector for TAIFG and TACCR1 CCIFG,
whose address is 0xFFF0. Five other vectors are used in this device to give a total of 9,
although space for up to 32 is reserved (16 in older devices).

Interrupts must be handled in such a way that the code that was interrupted can be resumed
without error. This means in particular that the values in the CPU registers must be
restored. The hardware can take two extreme approaches to this:

• Copies of all the registers are saved on the stack automatically as part of the
process for entering an interrupt. This is done in the Freescale HCS08, for example,
which is a CISC and has only a few registers. The disadvantage is the time
required, which means that the response to an interrupt is delayed. An alternative is
to switch to a second set of registers, which is done in the Z80 and descendants.

• The opposite approach is for the hardware to save only the absolute minimum,
which is the return address in the PC as in a subroutine. This is much faster but it is
up to the user to save and restore values of the critical registers, notably the status
register. The Microchip PIC16 takes this approach, consistent with its minimalist
philosophy.

The MSP430 is close to the second extreme but stacks both the return address and the
status register. The SR gets this privileged treatment because it controls the low-power
modes and the MCU must return to full power while it processes the interrupt. This is
explored further in the section “Low-Power Modes of Operation” on page 198. The other
registers must be saved on the stack and restored if their contents are modified in the ISR.
Instructions have been added to the MSP430X to push and pop multiple registers, which
makes this process faster.

6.7 What Happens when an Interrupt Is Requested?
A lengthy chain of operations lies between the cause of a maskable interrupt and the start
of its ISR. It starts when a flag bit is set in the module when the condition for an interrupt
occurs. For example, TAIFG is set when the counter TAR returns to 0. This is passed to the
logic that controls interrupts if the corresponding enable bit is also set, TAIE in this case.
The request for an interrupt is finally passed to the CPU if the GIE bit is set. Hardware
then performs the following steps to launch the ISR:

1. Any currently executing instruction is completed if the CPU was active when the
interrupt was requested. MCLK is started if the CPU was off.

www.newnespress.com

Functions, Interrupts, and Low-Power Modes 189

2. The PC, which points to the next instruction, is pushed onto the stack.

3. The SR is pushed onto the stack.

4. The interrupt with the highest priority is selected if multiple interrupts are waiting
for service.

5. The interrupt request flag is cleared automatically for vectors that have a single
source. Flags remain set for servicing by software if the vector has multiple
sources, which applies to the example of TAIFG.

6. The SR is cleared, which has two effects. First, further maskable interrupts are
disabled because the GIE bit is cleared; nonmaskable interrupts remain active.
Second, it terminates any low-power mode, as explained in the section
“Low-Power Modes of Operation” on page 198. (The SCG0 bit is not cleared in
the MSP430x4xx family, which means that the frequency-locked loop is not
automatically reactivated; see “Frequency-Locked Loop, FLL+” on page 172.)

7. The interrupt vector is loaded into the PC and the CPU starts to execute the
interrupt service routine at that address.

This sequence takes six clock cycles in the MSP430 before the ISR commences. The stack
at this point is shown in Figure 6.5. The position of SR on the stack is important if the
low-power mode of operation needs to be changed.

The delay between an interrupt being requested and the start of the ISR is called the
latency. If the CPU is already running it is given by the time to execute the current
instruction, which might only just have started when the interrupt was requested, plus the
six cycles needed to execute the launch sequence. This should be calculated for the slowest
instruction to get the worst case. Format I instructions take up to 6 clock cycles so the
overall latency is 12 cycles. The time required to start MCLK replaces the duration of the

(a) Before interrupt (b) After entering interrupt

return address
status register

SP←

SP←

Figure 6.5: Stack before and after entering an interrupt service routine. The return
address (PC) and status register (SR) have been saved, with SR on the top of the
stack.

www.newnespress.com

190 Chapter 6

current instruction if the device was in a low-power mode. The delay varies on each
occasion because the interrupt may be requested at different points during an instruction,
whose length may also differ. Thus there is no fixed interval between the request of an
interrupt and the start of its ISR. Use the hardware of a timer to read an input or change an
output at a precise time. Figure 6.6 shows an example of this and there are many more in
Chapter 8.

An interrupt service routine must always finish with the special return from interrupt
instruction reti, which has the following actions:

1. The SR pops from the stack. All previous settings of GIE and the mode control bits
are now in effect, regardless of the settings used during the interrupt service
routine. In particular, this reenables maskable interrupts and restores the previous
low-power mode of operation if there was one.

2. The PC pops from the stack and execution resumes at the point where it was
interrupted. Alternatively, the CPU stops and the device reverts to its low-power
mode before the interrupt.

This takes a further five cycles in the MSP430. The stack is restored to its state before the
interrupt was accepted.

6.8 Interrupt Service Routines
The framework of an interrupt service routine is more straightforward in assembly
language so I’ll describe this before explaining how they are implemented in C.

6.8.1 Interrupt Service Routines in Assembly Language

An ISR looks almost identical to a subroutine but with two distinctions:

• The address of the subroutine, for which we can use its name (a label on its first
line), must be stored in the appropriate interrupt vector.

• The routine must end with reti rather than ret so that the correct sequence of
actions takes place when it returns.

The other change in the program is that interrupts must be enabled or nothing happens.

I use the same old example, to toggle the LEDs on the Olimex 1121STK. The program is
shown in Listing 6.4, adapted from the C program in Listing 4.17. The timer runs in Up
mode with a period set by the value in TACCR0.

www.newnespress.com

190 Chapter 6

current instruction if the device was in a low-power mode. The delay varies on each
occasion because the interrupt may be requested at different points during an instruction,
whose length may also differ. Thus there is no fixed interval between the request of an
interrupt and the start of its ISR. Use the hardware of a timer to read an input or change an
output at a precise time. Figure 6.6 shows an example of this and there are many more in
Chapter 8.

An interrupt service routine must always finish with the special return from interrupt
instruction reti, which has the following actions:

1. The SR pops from the stack. All previous settings of GIE and the mode control bits
are now in effect, regardless of the settings used during the interrupt service
routine. In particular, this reenables maskable interrupts and restores the previous
low-power mode of operation if there was one.

2. The PC pops from the stack and execution resumes at the point where it was
interrupted. Alternatively, the CPU stops and the device reverts to its low-power
mode before the interrupt.

This takes a further five cycles in the MSP430. The stack is restored to its state before the
interrupt was accepted.

6.8 Interrupt Service Routines
The framework of an interrupt service routine is more straightforward in assembly
language so I’ll describe this before explaining how they are implemented in C.

6.8.1 Interrupt Service Routines in Assembly Language

An ISR looks almost identical to a subroutine but with two distinctions:

• The address of the subroutine, for which we can use its name (a label on its first
line), must be stored in the appropriate interrupt vector.

• The routine must end with reti rather than ret so that the correct sequence of
actions takes place when it returns.

The other change in the program is that interrupts must be enabled or nothing happens.

I use the same old example, to toggle the LEDs on the Olimex 1121STK. The program is
shown in Listing 6.4, adapted from the C program in Listing 4.17. The timer runs in Up
mode with a period set by the value in TACCR0.

www.newnespress.com

