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ABSTRACT

An intermittency model that is formulated in local variables is proposed for representing

bypass transition in Reynolds-Averaged Navier-Stokes (RANS) computations. No external

data correlation is used to fix transition. Transition is initiated by diffusion, and a source term

carries it to completion. A sink term is created to predict the laminar region before transition

and vanishes in the turbulent region. Both the source and sink are functions of a wall-distance

Reynolds number and turbulence scales. A modification is introduced to predict transition in

separated boundary layers. The transition model is incorporated with the k−ω RANS model.

The model is validated with several test cases. Decent agreement with the available data is

observed in a range of flows.

An extended model for roughness-induced transition is proposed based on this intermittency

model. To predict roughness effects in the fully turbulent boundary layer, published boundary

conditions for k and ω are used. They depend on the equivalent sand grain roughness height,

and account for the effective displacement of wall distance origin. Similarly in our approach,

wall distance in the transition model for smooth surfaces is modified by an effective origin,

which depends on equivalent sand grain roughness. Flat plate test cases are computed to show

that the proposed model is able to predict transition onset in agreement with a data correlation

of transition location versus roughness height, Reynolds number, and inlet turbulence intensity.

Experimental data for turbine cascades are compared to the predicted results to validate the

proposed model.
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Nomenclature

< ũ > phase-averaged streamwise velocity

δ∗ displacement boundary layer thickness

γ intermittency function

γeff effective intermittency function for separated flow modification

λθ local pressure gradient parameter

ν molecular viscosity

νT eddy viscosity

ω turbulence specific dissipation rate

Ωij rate of rotation tensor, i, j=1, 2 and 3

θ momentum thickness

ũ instantaneous streamwise velocity

b halfwidth of the wake

d wall-normal distance

d+ dimensionless wall-normal distance

K acceleration parameter

k turbulence kinetic energy

kL energy of laminar fluctuations
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r roughness height, or equivalent sand grain roughness height

r+ dimensionless roughness height

Rt turbulence Reynolds number

Rν vorticity Reynolds number or wall distance Reynolds number

Rrms root mean square roughness height

Reθt momentum thickness Reynolds number at the transition onset location

Sk skewness of roughness

Sij rate of strain tensor, i, j=1, 2, and 3

Tu free-stream turbulence intensity

U the component of mean velocity in x direction

u the component of fluctuation velocity in x direction

u∗ friction velocity

U∞ mean free-stream velocity

Udef deficit velocity of the wake

Uref reference velocity

v the component of fluctuation velocity in y direction

w the component of fluctuation velocity in z direction

y(1) wall distance of the grid point next to the wall
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CHAPTER 1. OVERVIEW

1.1 Motivation of the Work

While RANS models for a wide range of fully turbulent flows are available in general CFD

codes, models for laminar-to-turbulent transition are far more limited. One of the difficulties

is that transition takes place through different mechanisms in various engineering flows.

When free-stream turbulence level (
√

2k/3/Uref ) is about 1% or more (Langtry, 2006),

the boundary layers proceed from laminar to fully turbulent without the occurrence of linear

instability of the base state (Tollmien-Schilichting waves). This mode of transition is referred

to as bypass transition. Turbulence diffuses into the laminar boundary layer, and generates

disturbances known as Klebanoff modes. These grow in amplitude, and transition to turbulence

occurs. (Zaki and Durbin, 2005; Durbin and Wu, 2007)

In addition to a continuously turbulent free-stream, one very important instance of bypass

transition arises in turbomachinery, in which the boundary layer is subject to periodically

passing turbulent wakes. This is referred to as wake induced transition.

Moreover, separation induced transition is another common mechanism, in which a laminar

boundary layer separates under the influence of an adverse pressure gradient and transition

occurs within the separated shear layer due to the inflection point instability.

It is well known that surface roughness can trip a boundary layer. Bypass transition is

triggered by free-stream disturbances penetrating into the boundary layer and/or by surface

roughness. Nevertheless, there are few data correlations or prediction methods for roughness

induced transition. They are needed for many applications. For instance, to increase the effi-

ciency of turbomachinery performance, designers must account for effects of surface roughness

on both heat transfer and aerodynamic loss.
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It is challenging to develop a model which is valid for all different mechanisms. For general

use in CFD, the model must be formulated in local variables, eschewing dependency on the

boundary layer thickness or free-stream turbulence.

1.2 Introduction of the Work

The objective of the present work is to develop a model that invokes an intermittency

function to represent bypass transition based on the k − ω RANS turbulence model. Only

one transport equation for intermittency γ is used in this new model. The γ equation is

formulated in local variables with no reference to data correlation and is tensorally invariant.

The current model addresses bypass transition both in attached and separated flow. Although

separation induced transition proceeds by a different mechanism from attached flow transition,

some measure has been taken to locate the separation and trigger transition at the proper

location.

This bypass transition model for smooth walls is then extended to account for the effects

of wall roughness. An effective displacement depending on the equivalent sand grain roughness

height is imposed on the wall distance in the γ equation. Modifications are designed to predict

the transition location moving upstream appropriately due to surface roughness. To correctly

simulate the roughness effects on the skin friction and heat transfer coefficients in the fully tur-

bulent regime, formula proposed by Knopp et al. (2009) are chosen as the boundary conditions

for k and ω on rough walls.

A wide range of test cases are performed to validate the model, including flat plate cases, a

diffuser with a separation bubble, a compressor blade cascade, a high pressure and a low pressure

turbine blade cascade. Various flow conditions are employed, such as different Reynolds num-

bers, pressure gradients, free-stream turbulence intensities, periodic passing turbulent wakes,

and surface roughness.
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CHAPTER 2. REVIEW OF LITERATURE

2.1 Introduction

This chapter will cover a brief introduction on the categories of laminar-to-turbulent tran-

sition and the researches in the past of transition modeling through a literature view.

2.2 Modes of Transition

2.2.1 Orderly Transition

In early research on linear inviscid stability theory, a famous and useful general result is

that the occurrence of an inflection point in the basic velocity profile is a necessary condi-

tion for instability. Later on, solutions to viscous instability problem (Orr-Sommerfeld prob-

lem) for Blasius’s boundary layer were first solved by Tollmien and Schlichting theoretically.

Schubauer and Skramstad (1947), by introducing controlled oscillations with a vibrating rib-

bon of desired frequencies and amplitudes, experimentally confirmed the theoretical results

about the “nose” of the marginal curves (critical Reynolds number and wavenumber for the

marginally stable mode) quite convincingly. Klebanoff et al. (1962) refined and developed the

experiments and found that at first two-dimensional Tollmien-Schilichting (T-S) waves grow in

amplitude downstream. But when they reach a certain critical amplitude (1% of the free-stream

velocity), they become perturbed three-dimensionally. Secondary instability theory introduced

by Herbert (1983) attributes the growth of these three-dimensional disturbances to subhar-

monic resonance in the new basic flow, which is composed of the primary laminar flow and

the small amplitude T-S waves. The 3-D disturbances develop into Λ vortices, which lift up

away from the wall. This is where nonlinear development takes over and the turbulent spots

born. Initially, they are very sparse. Subsequently downstream, they grow in size, increase
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in frequency and merge to form the fully turbulent boundary layer. This type of transition is

referred to as natural transition, or orderly transition. It will naturally happen with very small

free-stream turbulence of less than 1% intensity. Kleiser and Zang (1991) provided a review

about the early simulations to predict the complete transition process numerically. Since the

growth rate is so slow, transition to turbulence might not complete until a stream-wise distance

is as large as 20 times farther downstream from the leading edge than the initial starting point

of linear instability (Durbin et al., 2002). The schematic illustration for spatial evolution of

the natural transition is shown in Figure 2.2.1.

Figure 2.2.1 Schematic of spatial evolution of the natural transition. From Schlichting (1979).
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2.2.2 Bypass Transition

Under realistic conditions, the processes of natural transition are either entirely absent or are

difficult to identify within the transitional region of the flow. These instances of boundary layer

breakdown have become broadly known as bypass transition. Under free-stream turbulence

level of about 1.0% or more, boundary layers proceed from laminar to fully turbulent without

the occurrence of 2-D T-S waves. Instead, transition is preceded by the formation of large-

amplitude elongated disturbances, termed Klebanoff modes (Kendall, 1985). These elongated

disturbances are created from isotropic free-stream turbulence. The dominant disturbances are

the streamwise component u (10–20 % of the mean free-stream velocity) while the wall-normal

and spanwise velocities of the perturbations remain the order of the free-stream turbulence

intensity Tu (Liu et al., 2008). The perturbation is long in the sense that it takes the form

of forward and backward jets, or streaks. Figure 2.2.2 is two plane views of the jets, with

(a) observed in contours of the u (top) and v (bottom) component of perturbation velocity

in x − z plane and (b) depicted the disturbance vectors in x − y plane. The direct numerical

simulation (DNS) by Jacobs and Durbin (2001) captured the amplification of the streaks, their

secondary instability due to high-frequency forcing from the turbulent free stream, and finally

the inception of turbulent spots. Zaki and Durbin (2005) carried out DNS which found that the

streaks appear owing to the penetration of only low frequency perturbation from the free stream

into the boundary layer, and the transition is triggered by the high frequency non-penetrating

disturbances interacting with the jet-like disturbances when they lift up to the upper bound

of the shear layer. Therefore, the term bypass has become synonymous with transition due to

free-stream vortical perturbations. Durbin and Wu (2007) provided a review for this type of

transition including relevant concepts, theory and simulations.
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(a) Contours of u (top) and v (bottom) in a plane near the wall under conditions of bypass transition.

From Durbin and Reif (2011).

(b) Disturbance vectors in x− y plane showing the jet-like modes. From Liu et al. (2008).

Figure 2.2.2 Schematic of the Klebanoff modes.

However, the term bypass does not preclude the presence of T-S waves entirely. When

both boundary-layer streaks and T-S waves are present, their interaction can be stabiliz-

ing or destabilizing. For instance, both the secondary instability analysis and experiments

(Cossu and Brandt, 2004; Fransson et al., 2005) confirmed that steady streaks are stabiliz-

ing, reduce the growth rate of T-S waves and suppress transition, whereas some experiments
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(Boiko et al., 1994) suggested that streaks enhance breakdown in natural transition. Liu et al.

(2008) studied numerically the interaction between T-S waves and streaks, which shows that Λ

vortices occur and breakdown, similar to the secondary instability of T-S waves. This intriguing

result is explained as a competition between the reduction of growth rate of the primary T-S

waves and the secondary instability of the T-S waves, both owing to the streaks. If the streaks

prevent the T-S waves from increasing to the amplitude necessary to the secondary instability,

transition will be suppressed, whereas if the T-S waves are sufficiently strong and overcome the

negative effect of the streaks on their amplification, the streaks will enhance the breakdown via

secondary instability.

Note that flow conditions, such as the mean pressure gradient (Abu-Ghannam and Shaw,

1980), the leading-edge shape (Kendall, 1991), etc. may cause different transition onset and

length, even with seemingly the same free-stream turbulence level. Bypass transition can also

happen due to surface roughness where the disturbances are activated from the perturbations

at the wall instead of from the free-stream turbulence. This is also termed as roughness induced

transition (discussed below in Section 2.2.5).

2.2.3 Separation Induced Transition

When a laminar boundary layer separates, transition may occur in the shear layer of the

separated flow as a result of the inviscid instability mechanism. Due to the enhanced mix-

ing caused by the turbulent flow, the shear layer may reattach. This reattachment forms a

laminar-separation/turbulent-reattachment bubble on the surface. See Figure 2.2.3. The sep-

aration point is denoted as Xs. Xt and XT represent the onset and ending points of transition

respectively. XR is the reattachment point.
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Figure 2.2.3 Schematic of a separation bubble. From Malkiel and Mayle (1996).

Separation bubbles have been classified as long or short based on their effect on the pressure

distribution on an airfoil (Mayle, 1991). A small change in the Reynolds number or angle of

attack can make a bubble change dramatically from short to long (Mayle and Schulz, 1997). If

the bubble is very long and even fails to reattach, the separated flow will be so dominant that

it will result in much more drag and a dramatic loss of lift and even cause the airfoil to stall.

Since long bubbles produce large losses and large deviations in exit flow angles, they should be

avoided. On the other hand, short bubbles are an effective way to force the flow turbulent and

may be considered as a means to control performance. The present difficulty is in predicting

whether the bubble will be long or short (Mayle, 1991).

In recent turbomachine designs, the suction side boundary layer over a blade is more subject

to separation, particularly in the compressor stage (Lardeau et al., 2012). Understanding tran-

sition in separated region can therefore impact the design for improvement of the efficiency of the

compressor performance. Experimental (Lou and Hourmouziadis, 2000; Volino and Hultgren,

2001) and DNS (Wissink and Rodi, 2006b; Zaki and Durbin, 2006; Zaki et al., 2010) studies

examined the response of transition and separation to the pressure gradient and free-stream

turbulence intensity. Strong acceleration (i.e. favorable pressure gradient) prevents transition

while adverse pressure gradient causes laminar separation and hence transition in the shear lay-

ers. With low free-steam turbulence, the dominant mechanism is associated with the inflection
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point in the velocity profile in the early stage of separation, similar to the Kelvin-Helmholtz

(K-H) instability in free-shear layers. In this case, transition occurs slowly, and the bubble is

long and may involve all of the stages listed for orderly transition (Mayle, 1991). In other words,

the T-S and K-H instability may coexist and interact with each other. With high free-stream

turbulence, the jet-like streaks, or Klebanoff modes, may occur upstream of the separated flow.

Fluctuations in streaks consequently give rise to a faster breakdown of the K-H spanwise ori-

ented vortices downstream in the initial stage of the separated region. The energy carried by

the Klebanoff modes increases with the free-stream turbulence intensity, and thus leads to a

earlier transition and a greater reduction in the separation bubble length.

2.2.4 Wake Induced Transition

Upstream and downstream blade interactions in passages of multi-stage axial turbomachines

result in a complex and inherently unsteady flow field. For instance, the boundary layer over

a blade surface is subject to a substantial degree of unsteadiness that owes to impinging wakes

of the upstream stator or rotor. The considerable effect of upstream wakes arises primarily

because substantial regions of laminar and transitional flows exist on the suction surface of

blades of intermediate stages. The impinging turbulent wake markedly alters the path to

transition. Figure 2.2.4 illustrates this type of rotor-stator wake interaction. Rather than the

bypass transition associated with continuous free-stream turbulence, this type of transition is

referred to as wake induced transition.
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Figure 2.2.4 Schematic of rotor-stator wake interaction. From Wu et al. (1999). Urotor: rotor

velocity in the stator reference frame; Uout: rotor exit flow velocity in the rotor

reference frame; Uref : stator inflow velocity in the stator reference frame.

An idealized benchmark case to mimic wake induced transition in turbomachines would be

flat plate boundary layer transition induced by periodically passing wakes, though the com-

plexities of pressure gradients, surface curvature and leading edge are omitted. Liu and Rodi

(1991) carried out this basic flat plate case experimentally, and DNS by Wu et al. (1999) fol-

lowing the experimental configuration obtained accurately statistical fields via averaging over

samples both at constant phase and in the direction of homogeneity. Figure 2.2.5 depicts the

relative velocity field gained by subtracting the phase averaged velocity from the instantaneous

velocity. The three sections are three successive instants in time, with time increasing from top
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to bottom and time interval of 0.1 of the wake passing period. A backward jet is regarded as the

precursor to the turbulent spot (Durbin et al., 2002). In the top section, a certain free-stream

eddy causes jetting motion near the wall. Then the K-H type instability that grows on the

negative jet develops small-scale eddies that evolve into the turbulent spot. Wu and Durbin

(2000) predicted the wake induced transition over flat plate by RANS method and achieved

agreement with the DNS data in many crucial respects. DNSs of flow through passages of linear

turbomachinery cascades are nowadays feasible at the range of transitional Reynolds numbers.

Examples include Wissink and Rodi (2006a), Zaki et al. (2009) and Wissink et al. (2014).

Figure 2.2.5 Fluctuation velocity field, with successive instants from top to bottom. This

figure shows the development of a backward jet in the relative velocity field and

its breakdown to turbulence. From Durbin et al. (2002).
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2.2.5 Roughness Induced Transition

In reality, most of the blades in turbomachines quickly become roughened due to various

damage mechanisms (Licari and Christensen, 2011), though they are initially hydrodynami-

cally smooth. In general, surface roughness adversely affects turbomachinery performance by

increasing external heat transfer and by increasing aerodynamic loss.

Arts et al. (1990) pointed out that a smooth vane can have transition occurring far down-

stream the leading edge on the suction side at moderate Reynolds numbers, even with high

inflow turbulence intensities; but, as the roughness height increases, the transition onset grad-

ually moves upstream to the leading edge. Figure 2.2.6 shows the measured heat transfer

coefficients in the test of Stripf et al. (2005). Only at the highest roughness does the heat

transfer appear to be fully turbulent over the entire surface. When the boundary layer be-

comes turbulent, heat transfer can increase by a factor of 10 (Stripf et al., 2009a). The change

in blade surface heat transfer with transition is a very good indicator of transition onset and

length. Arts (1995) showed that in the first turbine stage just the presence of film cooling holes

on the blade surfaces causes transition to turbulence. Transition is typically not an issue for

this stage due to film cooling. In later stages, where film cooling may not be used and Reynolds

numbers are lower, heat transfer may remain a concern due to roughness induced transition if

blades have only internal cooling. The optimization of cooling technologies requires the exact

knowledge of the heat transfer distribution for rough surface transitional boundary layers.

Boyle and Stripf (2009) mentioned that surface roughness generally decreases aerodynamic

efficiency of a turbine blade cascade according to relevant literature. But Boyle and Senyitko

(2003) show that at low Reynolds numbers roughness improves aerodynamic efficiency, while

at high Reynolds numbers roughness doubles vane loss. Therefore, to improve the efficiency at

both low and high Reynolds numbers, exploring the effects of roughness on the boundary layer

is necessary. A recent review of Bons (2010) also reported that a definite region of “roughness

benefit” could be obtained if the roughness-induced transition could suppress the separation

bubble at low Reynolds numbers within low pressure turbine stage. Rao et al. (2014) presented

their work on the individual and coupled effects of the incoming free-stream turbulence and
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surface roughness on the transition of a separated shear layer via large eddy simulation (LES).

Note that there is a compromise between the positive effects of suppression of the bubble and

the negative effects arising from the increasing loss in the reattached rough-surface turbulent

boundary layer (Zhang, 2006).

Figure 2.2.6 Experimental data for heat transfer coefficients versus the surface distance. Fig-

ure reproduced from Boyle and Stripf (2009), and data originally from the test

of Stripf et al. (2005).

2.3 Transition Modeling

There are generally three approaches for transition modeling and prediction: rely on the

closure model to transition from laminar to turbulent solutions; use a data correlation to decide

when to switch from laminar to turbulent solutions; or devise additional model equations to

represent transition. In the last approach, two branches have been explored: the first is to

develop an equation for the energy of fluctuations that occur in the laminar region upstream

of transition; the second is to develop an equation for the intermittency function, γ(x,t).
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2.3.1 Turbulence Models

Most turbulence models are developed for fully turbulent flows and calibrated with turbulent

data. However, most transport equation models do converge to a laminar solution at low

Reynolds number and to a turbulent solution at sufficiently high Reynolds number. The model

equations do evidence a transition between laminar and turbulent solution branches. Most

eddy viscosity closure models predict early transition.

As turbine blades often operate at low enough Reynolds numbers to come across signifi-

cant portions of laminar flow on their surfaces, their boundary layers are better described as

buffeted laminar layers. But in such instances, the bulk of the flow may be turbulent and the

overall flow calculation must be with a turbulence model. Therefore bypass transition, which

is stochastic by nature, is dominant in such boundary layers. Turbulent spots are highly lo-

calized, irregular motions inside the boundary layer. So the turbulence models which describe

statistical fluid dynamics are not entirely irrelevant; but neither are they entirely rational. Very

often the models are solved without revision, depending on their capability of early transition

prediction. But when accurate predictions of the laminar and transitional regions are required,

the turbulence model must be modified by a method to predict transition.

2.3.2 Data Correlation Based Models

This approach requires a criterion that allows the determination of the position of transition

onset, and switches from a laminar to a turbulent computation at this prescribed transition

point. For a zero pressure gradient flow, the position of the transition onset has been correlated

by Mayle (1991) as

Reθt = 400Tu−0.625, (2.3.1)

where Reθt is the momentum thickness Reynolds number at the transition onset location.

Abu-Ghannam and Shaw (1980) proposed a criterion for the transition location accounting for

the pressure gradient, which reads

Reθt = 163 + exp

[
F (λθ)−

F (λθ)

6.91
Tu

]
, (2.3.2)



15

where

F (λθ) = 6.91 + 12.75λθ + 63.64λ2
θ for λθ < 0

F (λθ) = 6.91 + 2.48λθ − 12.27λ2
θ for λθ > 0,

(2.3.3)

θ is the momentum thickness and λθ =

(
θ2

ν

)(
∂U∞

∂x

)
is the local pressure gradient parameter.

Tu is the free-stream turbulence intensity in percentage, 100
√

2k/3/U∞, measured in the free

stream. Transition occurs where the local momentum thickness Reynolds number exceeds the

above critical value.

Suzen et al. (2000) proposed another correlation which provided slightly better approxima-

tion than the correlation of Abu-Ghannam and Shaw (1980) for favorable pressure gradients

while maintaining the good features of Abu-Ghannam and Shaw in adverse pressure gradient

region. The transition criterion was re-correlated to Tu and the acceleration parameter, K,

Reθt = (120 + 150Tu−2/3)coth[4(0.3−K × 105)], (2.3.4)

where K =

(
ν

U2
∞

)(
∂U∞

∂x

)
.

Another approach is to modulate either the eddy viscosity or the production term in the

k equation to increase it from zero to its full value across a transition zone. The basic idea is

to introduce an intermittency function, γ, that increases from zero to unity, and to replace the

eddy viscosity by γνT . If the transition has been predicted to occur at x t by making use of a

transition criterion like Equation (2.3.1), formulas like

γ = 1− e−(x−xt)2/l2t , x > xt, (2.3.5)

have been used (Dhawan and Narasimha, 1958). γ is slowly ramped up from zero to unity until

the fully turbulent boundary is achieved. Here lt is a transition length (l2t = ν2/(n̂σU2
∞
)), which

has been estimated to be about 126 times the momentum thickness (lt = 126θ) in zero pressure-

gradient boundary layers. The parameter n̂σ relates to the propagation rate of turbulent spots

in laminar boundary layer. There are many other algebraic models for intermittency and these

are usually based on properties like turbulent spot production and propagation rate. Examples

include Gostelow et al. (1994) and Solomon et al. (1996). Steelant and Dick (1996) provided

the following correlations of n̂σ versus Tu and K,

n̂σZPG = 1.25× 10−11 × Tu7/4, (2.3.6)
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n̂σ

n̂σZPG
=





(474Tu−2.9)1−exp(2×106K), K < 0,

10−3227K0.5985

, K > 0.

(2.3.7)

where n̂σZPG is for cases of zero pressure gradient.

2.3.3 Transport Equation Based Models

2.3.3.1 Laminar fluctuation model

As mentioned at the beginning of this section, this type of model is devised with a transport

equation for the energy of fluctuations in the laminar boundary layer-the Klebanoff modes

or instability waves-and has closer connection to the phenomenology of transition. These

fluctuations grow and produce turbulent kinetic energy. The key elements of the equation

for the energy of laminar (non-turbulent) fluctuations, kL, are its production and transfer to

turbulence.

Model equations proposed by Mayle and Schulz (1997), and subsequently Lardeau et al.

(2004) and Lardeau et al. (2009), in a general form, are written as,

DtkL = PL +∇ ·TL −DL −R, (2.3.8)

where PL is the production term and depends on the type of transition considered (bypass

or separated-induced), the energy flux TL is assumed to be purely viscous, i.e. TL = ν∇kL,

while the dissipation rate DL is approximated analogous to that for turbulent flows, namely on

dimensional grounds with the kinetic energy and wall-normal distance as the relevant scales,

i.e. DL = 2νkL/d
2, where d is the distance from the wall. The right most term R represents

breakdown of laminar fluctuations into turbulence, or the transfer of laminar kinetic energy to

its turbulent counterpart. The same term, with positive sign, is added to the turbulent kinetic

energy equation: Dtk = P +R− ǫ . . ..

Mayle and Schulz (1997) proposed a form of the source term

PL = Cω
U2
∞

ν

√
kLk∞exp(−d+/C+),

based on the assumption that shear production is zero, and Lardeau et al. (2004) adopted

this. U∞ and k∞ are the mean velocity and kinetic energy in the free stream respectively.
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d+ = du∗/ν is the dimensionless wall distance with u∗ =
√
ν∂nU |w, being the skin friction. Cω

depends on the effective frequency and the turbulence level in free stream, and C+ = 13. For

separation-induced transition, Lardeau et al. (2009) adapted the production term compatible

with the turbulent-flow form: PL = 2νL |S|2. Here |S|2 = SijSij and Sij is the rate of strain

tensor.

The total kinetic energy proposed by Lardeau et al. (2004) is written as ktol = (1−γ)kL+γk

and the eddy viscosity νT = fµCµ
ktol(γk)

ǫ . The damping fuction fµ represents the influence of

molecular viscosity on its turbulent counterpart. Here the intermittency function γ is used to

damp the tendency of the turbulence model from inducing early transition by an excessive and

rapidly build-up turbulence production. At this point, data correlation similar to Equation

(2.3.5) was used for γ distribution, so was Equation (2.3.4) for γ switch-on. This is thereby

not formulated locally.

Walters and Cokljat (2008) proposed the form

DtkL = 2νT l|S|2 −R−DL +∇ · (ν∇kL), (2.3.9)

in which 2νT l|S|2 is the rate of production of laminar fluctuations. To accommodate both

bypass and natural transition, νT l has two components,

νT l = νBP + νNT ,

associated with large-scale eddies and with instability.

Initially, the large-scale eddies are contained in free-stream turbulence. Klebanoff modes are

spawned by these large-length-scale motions. The model is motivated by this phenomenology.

Walters and Cokljat (2008) wrote

vBP = 3.4× 10−6fτl
Ωλ2

eff

ν

√
kT lλeff , (2.3.10)

with

λeff = min[2.495d,
√
k/ω]

providing the length scale; and

kT l = k

[
1−

(
λeff

L

)2/3
]
,
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where L =
√
k/ω, representing the large-scale component of the turbulent kinetic energy. The

laminar fluctuation Equation (2.3.9) is conjoined with the k-ω model.

In Equation (2.3.10), Ω is the magnitude of the vorticity vector; and fτl is the damping

function

fτl = 1− exp

[
−4360

kT l

2λ2
eff |S|2

]
.

The numerical coefficients were adjusted to fit data. The component νBP becomes small where

d is large and where d is small. This matches the exponential observation that Klebanoff modes

develop in the central part of the boundary layer.

Natural transition is invoked by

νNT = 10−10βL
|Ω|d2
ν

|Ω|d2, (2.3.11)

with

βL =





0, RΩ < 1000,

1− e−(0.005RΩ−5), RΩ > 1000,

where RΩ = |Ω|d2/ν, and |Ω| =
√
2ΩijΩij . This acts analogously to an instability criterion.

In a Blasius boundary layer, maxy RΩ = 2.193Rθ. Thus the instability criterion is Rθ > 456

(which is higher than the value of 200 from linear stability theory).

Their R form is

R = 0.21BL
kL
τT

,

where τT = λeff/
√
k. As the turbulent energy grows, τ decreases, transferring energy from

laminar fluctuations to turbulence. The coefficient BL controls the onset of transition,

BL =





0, Rk < 35,

1− e−(Rk−35)/8, Rk > 35,

where Rk =
√
kd/ν. The transition criterion is based on the Reynolds number Rk, which

contains wall distance and turbulent kinetic energy. Thus breakdown initiates well above the

wall, as occurs in experiments.

Walters and Cokljat (2008) also modified R for natural transition, and introduce other

limiting and interpolation functions to improve agreement with data.
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2.3.3.2 Intermittency transport equation

The data correlation function, Equation (2.3.5), of Dhawan and Narasimha (1958) proposed

a prescribed intermittency distribution across the transition. But it was not clear in general

how to predict the transition location, or how to adapt the function to general flows.

A relatively new approach to intermittency modeling is to propose a transport equation

for the intermittency factor where the source terms are devised to mimic the behavior of some

algebraic intermittency models, such as Equation (2.3.5). This equation can be derived into a

transport equation. Note that for x > xt.

dγ

dx
= 2

x− xt
l2t

e−(x−xt)2/l2t = 2
1− γ

lt
[−log(1− γ)]1/2 .

If x is regarded as the stream-wise direction, this can be generalized to

u · ∇γ = |u|2(1− γ)

lt
[−log(1− γ)]1/2 .

If γ is small
√
−log(1− γ) ≈ √

γ. Adding a diffusion term provides a transport equation

Dtγ = 2(1− γ)
√
γ
|u|
lt

+∇ · [(ν + νT )∇γ], (2.3.12)

where νT is the eddy viscosity. This is a starting point for more elaborate formulations. The

main advantages of this approach is that it is possible to model the transition process not

only in the flow direction but also across the boundary layer and thus provide a more realistic

prediction of the transition. The transport equation controls the rise of γ from zero in laminar

flow to unity in turbulent flow. The onset position of transition still has to be determined by a

data correlation like Equation (2.3.2). The correlation involves the boundary layer momentum

thickness and the free-stream turbulence. The former is an integral property and the latter a

remote variable. This is unsuitable for unstructured-grid CFD codes. Otherwise in boundary

layer codes or structured-grid CFD codes, this approach is feasible since the grid lines are

aligned normal to the wall and the required variables can be obtained by searching in the grid

j coordinate (i.e. in the wall normal direction by assuming the grid is strictly aligned with the

wall).

Steelant and Dick (1996) proposed a transport equation for intermittency, in which the

source term of the equation was developed such that the γ distribution of Dhawan and Narasimha
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(1958) can be reproduced. But it was restricted to the boundary layer computations. A data

correlation for transition onset was used. Suzen and Huang (2000) proposed an extended ver-

sion of the model of Steelant and Dick (1996) and produced a realistic variation of γ in the

cross-stream direction, still requiring a data correlation. Suzen et al. (2003) involved a corre-

lation for Reθt in separated flows, again not in terms of local parameters. This is unsuitable

for general use in CFD.

To implement such equation in unstructured-grid CFD codes for more general engineer-

ing circumstances, some models which are formulated in only local variables are developed

(Menter et al., 2006a,b; Langtry and Menter, 2009). In their method, the data correlation is

replaced by a transport Equation (2.3.13) for transition Reynolds number. The intermittency

function solves a second transport equation (2.3.14).

DtR̃eθt = Pθt +∇ · [2.0(ν + νT )∇R̃eθt], (2.3.13)

where the source term Pθt = 0.03
ρU2

500ν
(Reθt − R̃eθt)(1.0− Fθt), and Fθt is a blending function,

which is equal to zero in the free-stream and one in the boundary layer.

Dtγ = Pγ − Eγ +∇ · [(ν + νT )∇γ]. (2.3.14)

The source term Pγ and sink term Eγ are defined as follows,

Pγ = 2.0|S|(1− γ)(γFonset)
0.5Flength, (2.3.15)

Eγ = 0.06|Ω|γ(50γ − 1)Fturb, (2.3.16)

Here |S| =
√

2SijSij , and |Ω| =
√
2ΩijΩij . Flength is an empirical correlation that controls the

length of transition, and Fonset controls the transition onset location. The form of Fonset is as

follows,

Fonset1 =
Reν

2.193 ·Reθc

Fonset2 = min(max(Fonset1, F
4
onset1), 2.0)

Fonset3 = max

(
1−

(
Rt

2.5

)3

, 0

)

Fonset = max(Fonset2 − Fonset3, 0),

(2.3.17)
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where

Rt ≡
νT
ν

Rν ≡ d2|S|
ν

.

(2.3.18)

Note that the criterion of onset is now controlled by a local parameter Rν instead of a integral

parameter Rθt in Equation (2.3.2). So far, Reθc and Flength still need to be determined so as to

let production term (2.3.15) be well defined. In Langtry and Menter (2009), these two variables

are both functions of R̃eθt, which is the solution of Equation (2.3.13). Data correlations are

used to construct the functions for Reθc and Flength in γ equation, and Reθt in R̃eθt equation.

The idea is similar to earlier models that specify transition location, then solve a γ-equation

to represent the transitional zone. But in Langtry and Menter (2009) the data correlation in-

volved in the source term Pθt in Equation (2.3.13) invokes the mean velocity and the streamline

direction. That data correlation is not Gallilean invariant, which is problematic for multiple

moving walls in the domain.

Another key point is the sink term Eγ in Equation (2.3.14). Its effect is to drive γ towards

zero in laminar boundary layer so that a trivial solution γ = 1 can be avoided. This idea is

also used in the present model. More discussion will be given below.

For the purpose of explanation, the model introduced above is not exactly the same as the

one in Langtry and Menter (2009). More parameters and complicated correlations are used to

match the experimental data.

2.3.4 Transition Modeling for Rough Wall Cases

A few recent studies proposed roughness induced transition models. Some of them are based

on a data-correlation as the criteria of transition onset. In general, the correlation is regarding

the critical momentum thickness Reynolds number at the transition location, Reθt−rough. Its

form is Reθt−rough as a function of critical Reynolds number for smooth walls Reθt−smooth,

the roughness parameter, and turbulence intensity. The correlation in Stripf et al. (2009a)

depends on the effects of both the roughness height and density, while Boyle and Stripf (2009)

propose a simpler formula, which only depends on the roughness height. The former needs more

information about the roughness geometry than the latter, and in addition, the dimensionless
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roughness height used by the former is the ratio of the true roughness height to the displacement

boundary layer thickness, r/δ∗, rather than the more general form, r+ = ru∗/ν. r is the

roughness height, and u∗, defined as u2
∗
= (ν+νT )∂nU |w for rough walls, is the friction velocity.

Lorenz et al. (2013) extended Stripf’s onset correlation based on more transition onset data,

including more roughness geometry parameters.

To complete this type of models, an intermittency expression depending on the stream-

wise coordinate downstream of transition onset, and a roughness turbulence model for the

fully turbulent region, are needed. More details about the roughness model for fully turbulent

boundary layers will be discussed below in Section 3.4.1.

For actually rough surfaces, roughness is parameterized by equivalent sand grain roughness,

r. The rough surface is replaced by an effective, smooth surface, on which new boundary con-

ditions are imposed. Although the geometry of real roughness is required by some correlations

that evaluate the equivalent sand grain roughness, a correlation proposed by Koch and Smith

(1976) provides a simple way to obtain the equivalent sand grain roughness solely from statisti-

cal parameters of the surface. That method was modified by Boyle and Stripf (2009) to obtain

better agreement with the measured data. The revised correlation for r is

r = 4.3Rrms(1 + CskSk), (2.3.19)

where Csk is set to 1.0, and the root mean square roughness height Rrms and skewness Sk are

both statistical parameters, which read

Rrms =

√∑n
i=1(yi − ȳ)2

n− 1
,

and

Sk =

∑n
i=1(yi − ȳ)3

nR3
rms

.

Here n is the number of grain elements in roughness calculation.

As the correlation proposed by Boyle and Stripf (2009) is a simple one, it will be used in the

next chapter, to calibrate parameters. In this approach, transition starts when the momentum

thickness Reynolds number Reθ reaches a critical value, Reθt.

Reθt−rough =
Reθt−smooth

1 + Tu−0.625(0.05(r+ − 5))1.25
, (2.3.20)
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Tu is the free-stream turbulence intensity at the transition onset location, and r+ is the di-

mensionless roughness height. Reθt−smooth is evaluated by Equation (2.3.1). The term r+ − 5

implies that a surface roughness can be considered hydraulically smooth if r+ is less than 5.

One can also notice that by this correlation, the transition onset becomes independent of the

local turbulence intensity at high r+ values.

Another type of approach is based on transport equations, using local variables. Dassler et al.

(2010) proposed an extension of an existing transition model for smooth walls, which is known

as the γ−Reθt model (Menter et al., 2006a,b; Langtry and Menter, 2009). An additional trans-

port equation is added on for a “Roughness Amplification”, Ar, that serves as a transition onset

criterion. The production term of the transport equation for R̃eθt in the γ − Reθt model is

modified by a function of Ar to introduce effects of surface roughness.

A more recent paper Elsner and Warzecha (2014) combined the roughness transition model

by Stripf et al. (2009a) and the γ −Reθt model. The transported variable R̃eθt in the smooth

wall model is modified based on the transition onset criterion given by Stripf et al. (2009a).

However, the integral quantity δ∗ has to be calculated at each time step, so this model is not

based on strictly local variables.
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CHAPTER 3. DEVELOPMENT OF THE MODEL

3.1 Introduction

This chapter will explain the rational of the basis of the proposed model first. Then the

development of the model formulation will be introduced term by term and the roles of tunable

parameters will be illustrated.

3.2 Rational of the Current Model

A data correlation given by Praisner and Clark (2007) shows that

Θ2
transition = 0.07

νλ∞

u′
∞

. (3.2.1)

Θtransition is the momentum thickness at transition. λ∞ is referred to as the free-stream integral

length scale, and u′ the magnitude of the streamwise velocity fluctuation. The data cover a

wide range of pressure gradients, Reynolds numbers, free-stream turbulence intensities and

length scales as well as including low supersonic Mach numbers. All those data were collapsed

by (3.2.1) independently of all other parameters. Praisner and Clark (2007) cite the estimate

Cµω = u′/λ for the variable of the k − ω model. Then (3.2.1) becomes

Θ2
transition =

7ν

9ω∞

. (3.2.2)

Interestingly, only the time scale of the free-stream turbulence is involved in this correlation.

That seems to be too simple, since other data correlations invoke the free-stream turbulence

intensity in addition to the dependency on the rate of turbulence decay. But what is most

interesting, is that when turbulence scale is included, pressure gradients and other parame-

ters are secondary. Turbulence scale involves the free-stream eddy viscosity k∞/ω∞ and the

dissipation rate Cµk∞ω∞.
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In the present model, the value of γ varies from unity within free-stream turbulent flow

to zero in the laminar boundary layer. The function γ is used to suppress production of the

turbulent kinetic energy. Bypass transition is initiated through the diffusion of free-stream

disturbances into the boundary layer. As γ rises from zero toward unity within the boundary

layer, production of γ switches on and the eddy viscosity rises. Meanwhile, in order to have the

laminar boundary layer before transition, a sink term is invoked to work within the boundary

layer and drive γ towards zero. This model was originally proposed in Durbin (2012). That

formulation was deficient in the sink term, and was only tested by boundary layer computations.

It contained no method to represent transition in separated flow.

3.3 Modeling for Smooth Wall Cases

The current model is derived from a basic model published in Durbin (2012). The inter-

mittency transport equation in that model is of the form

Dγ

Dt
= ∂j

[( ν

σl
+

νT
σγ

)
∂jγ
]
+ Fγ |Ω| (γmax − γ)

√
γ. (3.3.1)

with the boundary conditions γ = 1 in the free-stream and ∂nγ = 0 on walls. |Ω| is the mean

vorticity. An assessment of this initial approach showed good agreement with the experimental

data in flat plate cases, both with and without pressure gradient. The model did not depend

explicitly on the pressure gradient, which is consistent with the fact that turbulence closures

generally do not depend directly on the pressure gradient.

The formulation (3.3.1) applied only to bypass transition in attached flow and was imple-

mented in a boundary layer code. In order to extend its application to general CFD codes and

hence to predict more practical engineering flows, some changes have been made.

Consider an intermittency transport equation as follows,

Dγ

Dt
= ∂j

[( ν

σl
+

νT
σγ

)
∂jγ
]
+ Pγ − Eγ . (3.3.2)

The source term is in the same form as (3.3.1),

Pγ = Fγ |Ω| (γmax − γ)
√
γ. (3.3.3)
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The sink term is defined as,

Eγ = GγFturb|Ω|γ1.5. (3.3.4)

All the factors and constants will be explained in the following sections.

3.3.1 Diffusion Term

The influence of the two constants σl and σγ on the transition in the diffusion term is given

below. They are set to be 5.0 and 0.2, respectively.

From the diffusion term itself, we can predict that increasing σγ decreases turbulent dif-

fusivity and delays transition, and vice versa. In the current model, σγ is selected to be 0.2.

If it is doubled or more, the diffusion is suppressed and the transition delayed. The model is

less sensitive to this parameter once it becomes less than 0.2. When σγ is halved, the result

changes very slightly; but it does give obvious early transition when σγ is 0.02 or even smaller.

This is due to the sink term which is designed to drive γ to zero in order to have a laminar

region before transition. After transition, the sink vanishes and hence just doubling the value

of σγ delays the transition significantly. See Figure 3.3.1. Skin friction coefficient (Cf ) curves

are plotted along the stream-wise direction of a flat plate test case, T3A, one of the T3 series of

flat-plate experiments conducted by the European Research Community on Flow Turbulence

and Combustion (ERCOFTAC). See Langtry and Menter (2009) and Durbin (2012).

However, the effect of σl is a little bit subtle. When it is doubled, the Cf curve transitions

early; whereas, transition occurs further downstream if σl is halved – a reverse effect of σγ

(see Figure 3.3.2). Durbin (2012) attributes this to alteration of the mean shear in the upper

part of the boundary layer. Decreasing σl appears to decrease the mean shear and hence

generate lower k and delay the transition. To illustrate the respective effects of the laminar

and turbulent diffusivity, the diffusion term with another three cases – only ν = 0, only νT = 0

and ν = νT = 0 are set and compared with the normal case. See Figure 3.3.3, and the black

lines represent the profiles of the δ99 boundary layers. The deficiency of laminar diffusion, i.e.

ν = 0, enhances diffusion with high values of γ in the boundary layers. The lack of turbulent

diffusion presents an opposite effect.



27

Rex

C
f

0 200000 400000 600000 800000 1E+06
0

0.002

0.004

0.006

0.008

0.01

Figure 3.3.1 Sensitivity of σγ to the transition location. σγ = 0.2 (solid), σγ = 0.02 (dash),

σγ = 0.1 (dash-dot), σγ = 0.4 (dash-dotdot), σγ = 0.8 (long-dash).
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Figure 3.3.2 Sensitivity of σl to the transition location. σl = 5.0 (solid), σl = 10.0 (dash),

σl = 2.5 (dash-dot).
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(a) ν and νT are both normal values.
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(b) ν = 0 but νT is normal.
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(c) ν is normal but νT = 0.
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(d) ν and νT are both zero.

Figure 3.3.3 Contours of γ for the T3A case, with different values of ν and νT in the diffusion

term. The black lines represent the profiles of the δ99 boundary layers.

3.3.2 Source Term

Note that γmax = 1.1 instead of unity is placed in the source term (Equation 3.3.3). This is

in order to enhance the effect of the source term to drive γ to one. Accordingly, γ could exceed

unity due to such source, which is not allowed. After each step of the computation, γ is forced
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to the value of min(γ, 1) to prevent values greater than unity. This has a small effect, but

it does force a full transition to turbulence guaranteeing γ to be unity after transition. This

clipper will be embedded into the standard k− ω RANS model with which Equation (3.3.2) is

coupled.

Mean shear is represented by the magnitude of the mean rotation rate |Ω| (i.e.
√
2 · ΩijΩji).

It recalls that turbulence is caused by mean shear. |Ω| is an invariant measure of shear, and it

vanishes in the irrotational free-stream.

The factor Fγ is a function of two parameters, Rν and Tω. Fγ switches on as transition

proceeds. Once it comes into play, γ will increase up to unity within the region that Fγ affects.

Therefore, turbulent kinetic energy k increases as well as the eddy viscosity. Figure 3.3.4 depicts

the contours of the source term, whose trigger-on point is at the upstream of the transition

onset location. By comparing Figure 3.3.3(a), the effect of the source term is clear to be seen.
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Figure 3.3.4 Contours of the source term for the T3A case. The black line represents the

profile of the δ99 boundary layer.

Three non-dimensional parameters are involved, where d is distance to the wall. Rt is the

ratio of eddy viscosity to molecular viscosity, namely the turbulent Reynolds number. The
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parameter Tω is Rt multiplied by |Ω|/ω to make it vanish in the free-stream. Another view of

Tω is that in parallel flow Tω = |uv|/νω. In the log-layer it equals to u2
∗
/νω = 1/ω+.





Rt ≡
νT
ν
,

Tω ≡ Rt
|Ω|
ω

,

Rν ≡ d2|Ω|
2.188ν

.

(3.3.5)

Rν is the vorticity Reynolds number, which depends only on local variables. Note that

near a wall it goes like wall distance squared, i.e. Rν → y2+/2.188, as y+ → 0. It is defined

as such that in the Blasius boundary layer its maximum in the normal wall direction is equal

to the momentum thickness Reynolds number: maxy Rν = Rθ. When the boundary layer is

subjected to pressure gradients, the relationship between momentum thickness and vorticity

Reynolds number will change due to the change of the profile of Rν . In Falkner-Skan boundary

layers maxy Rν is less than Rθ for favorable pressure gradients and greater than Rθ for adverse

pressure gradients. So a fixed value of Rν will correspond to a higher Rθ for favorable pressure

gradients and a lower Rθ as the pressure gradient becomes adverse. In addition, this relative

relation between Rν and Rθ can also be used to predict separation-induced transition when

strong adverse pressure gradient exists.

Langtry and Menter (2009) also stated a physical reason of using Rν , by arguing that the

combination y2|Ω| is responsible for the growth of disturbances inside a boundary layer, while

ν is responsible for their damping. To be concise, Rν implicitly contains information on Rθ

which in data correlations is used to indicate the onset of transition.

Now come back to the definition of Fγ . Tω is used to form a critical Reynolds number, Rc.

It is a decreasing function of Tω. If the turbulence intensity is low, Tω will be low and Rc will

be high. Rc is a linear ramp down between 400 and 40.

Rc = 400− 360min

(
Tω

2
, 1

)
. (3.3.6)

As the local Reynolds number Rν crosses Rc from below, Fγ ramps up from zero. Again

a linear ramp is used. Meanwhile, a ramp down is included if the Reynolds number crosses
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Rνbound = 100/0.7 without the flow becoming turbulent. This approach is to suppress Fγ for

low free-stream turbulence. The concrete formula for Fγ is

Fγ = 2max [0,min (100− 0.7Rν , 1)]

×min [max (Rν −Rc, 0) , 4] .

(3.3.7)

In other words,

Fγ =





0, if Rν 6 Rc, or if Rν > 100/0.7,

8, if Rν > Rc + 4 and Rν 6 100/0.7− 1.
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(a) Fγ vs. Rν with Rc = 100.
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(b) Cf with different Rνbound.

Figure 3.3.5 Rνbound is equal to 100/0.5 (dash); 100/0.7 (solid); 100/0.9 (dash-dot).

Note that this is a recalibration of the formulas in Durbin (2012) because of the addition of

Eγ to Equation (3.3.2). The specific upper limit of 4 in the second factor of the right-hand side

of Equation (3.3.7) has a small effect; a greater value does not change the result very much.

A plot of Fγ versus Rν is given in Figure 3.3.5, when the critical Reynolds number Rc is 100,

which illustrates how Fγ ramps up then down. The upper limit of Rν where Fγ crosses from

non-zero to zero (Rνbound) is sensitive to the location of transition. If it is set to be greater than

100/0.7, transition is accelerated; if it is less, transition is delayed. However, due to the effect

of the sink term discussed in the next section, if for example Rνbound = 100/0.5 is used, the Cf
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curve will be barely changed rather than showing an early transition. When Rνbound = 100/0.9,

it does result in a late transition.

3.3.3 Sink Term

Without a sink term, the γ-equation (3.3.2) would have the solution γ ≡ 1. The numerical

elliptic solver will converge to unity within the whole domain, which will produce fully turbulent

results. See Figure 3.3.6.

Rex

C
f

0 200000 400000 600000 800000 1E+06
0

0.002

0.004

0.006

0.008

0.01

Figure 3.3.6 Skin friction coefficient vs. Rex in a flat plate test case (T3A); the solid curve

represents the result based on the model without sink term. The other three

represent the experimental data (square), theoretical laminar (dash) solution,

and semi-empirical turbulent solution (dash-dot) respectively.

In order to force γ close to zero within the laminar region, a sink term is added in Equation

(3.3.2). Another feature of the sink term is that it has to vanish after transition because γ

is supposed to be unity in the fully turbulent region. This feature is implemented by the

multiplication of two functions, Gγ and Fturb. See Figure 3.3.7 – contours of the sink term,

along with Figure 3.3.3(a) and 3.3.4. γ is low within the laminar region under the work of the

sink term and rises to unity downstream after the source term switches on whereas the sink
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switches off. Note that the sink term in Langtry (2006) does not shut off in the fully turbulent

region. γ remains very small near the wall after transition.
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Figure 3.3.7 Contours of the sink term for the T3A case. The black line represents the profile

of the δ99 boundary layer.

The definition of Gγ is similar to Fγ in the source term, as defined in Equation (3.3.8). It

is used to ensure the laminar region before transition. It ramps up from Rν = 18 and ramps

down after Rν = 100. See Figure 3.3.8. A factor 7.5 in (3.3.8) is chosen for the strength of the

sink term.

Gγ = 7.5max [0,min (100−Rν , 1)]

×min [max (Rν − 18, 0) , 1] .

(3.3.8)

In other words,

Gγ =





0, if Rν 6 18, or if Rν > 100,

7.5, if Rν > 19 and Rν 6 99.

The lower boundRνlbound = 18 is critical, to some extent. In the test case T3B (Langtry and Menter,

2009), with high free-stream turbulence intensity, the model will be invalid if Rνlbound too large.
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For such a case, the laminar region is thin and short. Therefore, a relatively high Rνlbound may

not catch the thin laminar region near the wall and hence the sink term may vanish. See Figure

3.3.8. Too small a value for Rνlbound is not proper either because the sink term is supposed to

vanish after transition. Recall that Rν goes like y2+ near the wall so that too small Rνlbound,

say 0, makes Gγ non-zero into the turbulent region, with the sink term not vanishing.
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(a) Gγ vs. Rν .
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(b) Cf with different Rνlbound.

Figure 3.3.8 Rνlbound is equal to 18 (solid); 22 (dash); 26 (dash-dot). From 18 to 22, the

difference is tiny; but from 22 to 26, Cf curve suddenly becomes fully turbulent.

Fturb is a function of Rν and Rt. It will vanish outside the laminar boundary layer. It is

defined as,

Fturb = e−(RνRt)
1.2

. (3.3.9)

The power 1.2 is selected to match data. A large value of it will reduce the region affected by

Fturb, which in turn suppresses the sink and leads to early transition.

3.3.4 Separation Modification

When a laminar boundary layer approaches separation, inflection point instability becomes a

cause of transition. In this mechanism, an instability wave serves as the precursor to transition,
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and the phenomenology is different from bypass transition. However, free-stream turbulence

can promote break down of instability waves into turbulence.

Langtry (2006) pointed out that when separated flow transition was involved, their model

(without modification for separation) would predict the turbulent reattachment location too far

downstream. The same issue happens to the present model. And in some cases the reattach-

ment may not occur at all. The low turbulent kinetic energy k in the separating shear layer is

the deficiency of the model because k grows too slowly to cause the boundary layer to become

turbulent and reattach at the right location. The main idea proposed by Langtry (2006) is to

allow the intermittency function to exceed 1 wherever the laminar boundary layer separates.

This will lead to large production of k and hence allow k to grow rapidly to accelerate the

transition or reattachment.

In order to invoke this idea, a criterion to locate the laminar separation should be introduced.

Consider a series of velocity profiles of the Falkner-Skan boundary layer. See Figure 3.3.9. The

parameter yU ′′/U ′ (blue curves) will have a positive region in adverse pressure gradients and

become large if the flow separates. It does not involve turbulence parameters and hence may

be a good parameter to locate the laminar separation. Replacing U ′ by an invariant of mean

velocity gradient, |S|, the parameter becomes d · (nw · ∇|S|) /|S|. d is the wall distance and

nw is the unit normal vector of the wall. These two are not local variables, and they have to

be evaluated by locating the closest point of each grid to the wall. |S| is defined as
√
SijSji so

that
√
2|S| equals to |∂yU | in parallel flows.

Note that ∇|S| (i.e. |U ′|′) is used instead of ∇S (i.e. U ′′). The difference between these

two is illustrated in Figure 3.3.10 (see the two right most curves). The inflection point, marked

by a circle, is what is needed to locate, i.e. the zeros in the two right most curves. Close to

the wall, the right most blue curve appears to cross the vertical axis but in fact here is a jump

rather than a continuous steep rise. Hence both can locate the inflection point properly. While

∇S is ambiguous and complex since S is a tensor rather than a scalar, the scalar |S| is selected

for simplicity.



36

The final form of parameter that is used is as follows,

Rs ≡ d · nw · ∇|S|ω√
2|S|2

. (3.3.10)

This is actually the parameter described above multiplied by ω/
(√

2|S|
)
. The extra factor

increases Rs in the separated layer.
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Figure 3.3.9 The blue curve evaluates yU ′′/U ′ for Falkner-Skan boundary layer profiles. The

pressure gradient parameter β=-0.1988 is just before separation. x-axis: vertical

coordinate to the wall; y-axis: velocity and functions of its derivative.
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Figure 3.3.10 Comparison of a velocity profile in a separated region and related derivatives. U ,

U ′ and |U ′|, U ′′, and |U ′|′ are plotted from left to right. The velocity profile was

extracted within the separated region from LES data by Lardeau et al. (2012).

|U ′|′ (i.e. ∇|S|), rather than U ′′ is actually used to define the parameter Rs in

Equation (3.3.10).

The effective intermittency function γeff in Equation (3.3.11) is the modification to the

intermittency function γ for predicting transition by laminar separation. The limiter min(1, γ)
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Figure 3.3.11 Linear ramps for FRν . Rνlbound = 200 (solid); Rνlbound = 100 (dash) and too

early reattachment is seen; Rνlbound = 300 (dash-dot) and no reattachment is

seen.

was explained above in Section 3.3.2.

γeff = max [min(1, γ),min (2, FRtFRνFRs)] . (3.3.11)

This modification involves 3 factors defined as follows,

FRt = e−(Rt/10)
3

, (3.3.12)

FRν = max (Rν − 200, 0) , (3.3.13)

FRs = min [1.0,max (10 + 5Rs, 0)]

×min [1.0,max (10− 5Rs, 0)] ,

(3.3.14)

They are functions of Rt, Rν , and Rs, respectively. Linear ramps are again used as in the

source and sink terms. The test case chosen to evaluate the model is a flat plate separated flow

which has been simulated in both Wissink and Rodi (2006b) and Lardeau et al. (2012) using
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Figure 3.3.13 Distribution of γeff and line contours of Ux around the separation bubble for

the flat plate separation test case.
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direct numerical simulation (DNS) and large eddy simulation (LES) respectively. FRs as defined

above serves as a factor to locate the separation and switch the modification. In separated flow,

FRs is positive between the layers where |S| = 0 and nw · ∇|S| = 0. The influence of the lower

bound of Rs for the ramp up is shown in Figure 3.3.12. As to the upper bound of the ramp

down, values greater than 2 affect very little since Rs itself has an upper bound. FRν is used

for both triggering the modification and representing its strength. Shown by Figure 3.3.11, the

greater the threshold Rν is, the later the reattachment will be. FRt plays the role of removing

the modification in the free-stream. Figure (3.3.13) displays the distribution of γeff along with

the contour of stream-wise velocity around a separated region. γeff is greater than 1 after the

separation point and becomes unity when the flow is fully turbulent. Before the separation

point, γeff is close to zero in the boundary layer. It exceeds unity only within a thin region

around the separation bubble to achieve the reattachment. It appears to be a good parameter

to represent the separation-induced transition.

3.3.5 Revision of the k − ω Model

The current formulation is applied to the k−ω RANS closure (Wilcox, 1993). The produc-

tion term of the k equation is multiplied by γeff . This is the only appearance of γ within the

turbulence model.

Dk

Dt
= Pk − Cµkω + ∂j

[(
ν +

νT
σk

)
∂jk
]
, (3.3.15)

Pk = min
(
2νT |S|2, k|S|/

√
3
)
γeff , (3.3.16)

Dω

Dt
= 2Cω1|S|2 − Cω2ω

2 + ∂j

[(
ν +

νT
σω

)
∂jω

]
, (3.3.17)

where Cµ = 0.09, Cω1 = 5/9, Cω2 = 3/40 and σω = σk = 2. The eddy viscosity νT is k/ω. Non-

zero γ will diffuse into the boundary layer, allowing k to be produced, thereby creating eddy

viscosity and further enhancing the diffusion of γ. In this way, transition occurs by penetration

of free-stream turbulence into the boundary layer via molecular and turbulent diffusion.
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The rational of the limiter for the production term in (3.3.16) is explained in Durbin and Reif

(2011) (page 139-141). It is to fix the stagnation-point anomaly of turbulence kinetic energy.

For example, in some cases like flow around a blade leading edge, the limiter can avoid unphys-

ically large levels of k near the stagnation-point.

This model has been published in Ge et al. (2014).

3.4 Modeling for Rough Wall Cases

In this section, the details of the roughness modification will be presented and the rational

will be provided. The modification consists of two steps: the first step is to add an effective

displacement the origin, depending on the equivalent sand grain roughness height, to the wall

distance. The data correlation (2.3.20) is used to calibrate the effective displacement. The

second step is to modify some parameters in the sink term of the intermittency equation in

order to make the model suitable to turbine blade cases where, there is a strong acceleration

downstream of the stagnation point.

Before introducing the roughness modification, a roughness model is required to predict fully

turbulent boundary layers over rough walls. In the literature, different boundary conditions

were used to represent the roughness effects with a dependence of roughness heights and effective

wall origins. The first subsection below is a review for such models.

3.4.1 Prediction for Fully Turbulent Boundary Layers on Rough Walls

Surface roughness will increase the drag force. In a channel flow with constant pressure

gradient, the increased drag would decrease the mass flux and hence the velocity profile would

shift. In the log-law layer, the velocity profile impacted by roughness can be expressed in the

form below,

U

u∗
=

1

κ
log(y+) +B +∆Br(r

+) (3.4.1)

where u∗ is the friction velocity, and r+ is the dimensionless sand grain roughness height.

See their definition in Section 2.3.4. Here y+ = yu∗/ν and y is the wall distance. In log-law

formulation, it is conventional to use y instead of d to denote the wall distance, while the latter is
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preferred for the modeling formulation of the current work and used in other places throughout

this thesis. The function ∆Br(r
+) represent the alternation of the addictive constant B = 5.5.

Ligrani and Moffat (1986) proposed a curve fit based on the measured data,

∆Br =





0, r+ < 2.25,

ξ(8.5−B − 1/κlog(r+)), 2.25 6 r+ 6 90,

8.5−B − 1/κlog(r+), r+ > 90.

(3.4.2)

These three formulas correspond to effectively smooth, transitionally rough, and fully rough

conditions respectively. The blend function ξ is

ξ = sin

(
π/2 · log(r+/2.25)

log(90/2.25)

)

which increase from 0 to 1 through the transitionally rough range.

Based on the sand grain roughness, Durbin et al. (2001) proposed a rough wall modification

for the two layer k−ǫ model. This approach is aimed to predict the shift of the velocity profiles

due to roughness. An effective displacement of the wall distance origin is introduced and related

to the sand grain roughness height through a calibration procedure. The effective displacement

is related to a hydrodynamic roughness length in this paper, that is used to modify the length

scales for the lower layer and the boundary condition for ǫ. The following equation is used to

blend between the smooth and fully rough boundary conditions for k:

k|w =
u2
∗√
Cµ

min
[
1,
(
r+/90

)2]
, (3.4.3)

Note that this approach was originally developed only for sand roughness and should be ad-

justed if applied to other roughness geometries. To use this model for other roughness types,

their equivalent sand grain roughness needs to be estimated in advance.

Similar roughness boundary conditions for fully turbulent boundary layer have been pro-

posed to extend the standard k−ω model, such as the well-known Wilcox’s roughness modifica-

tion (Wilcox, 1998). Only the wall-value of ω is modified to model effects of surface roughness.
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k|w = 0,

ω|w =
u2
∗

ν
Sr, Sr =





(50/r+)2, 5 < r+ < 25,

100/r+, r+ > 25.

(3.4.4)

This is valid for values of r+ up to about 400 in sand grain roughness. For r+ 6, the effectively

smooth boundary conditions are

k|w = 0,

ω|w = 60
ν

βy2(1)
,

(3.4.5)

where y(1) is the wall distance of the grid point next to the wall. Both Dassler et al. (2010) and

Elsner and Warzecha (2014) used the k − ω-SST model, and they choose Wilcox’s roughness

boundary condition to predict the fully turbulent boundary layer with rough surfaces.

While the Wilcox model requires a very fine mesh resolution (y+(1) ≈ 0.01 or even less) and

is not accurate for transitionally rough walls, newer models by Seo (2004) and Knopp et al.

(2009) give satisfactory results with near wall grid spacing close to that for smooth walls

(y+(1) ≈ 0.3 is sufficient). In addition, predictions of roughness effects under for the transi-

tionally rough condition are improved by these models as well.

Under fully rough conditions, the log-layer solution k = u2
∗
/
√

Cµ extends to the effective

wall origin, where the log-layer eddy viscosity νT = u∗κ(y + d0) reduces to u∗κd0. Here d0

is the effective displacement of the wall origin. d0 can be determined analytically under fully

rough conditions based on the shift of the velocity profile in the log-layer. This shift has been

measured experimentally and fitted such that the new velocity profile can be written

U/u∗ = 1/κ log(y/r) + 8.5

where κ = 0.41. Then, if d0 is defined in terms of U by

U/u∗ = 1/κ log((y + d0)/d0)

the last two equations give

y + d0
d0

=
y

r
e8.5κ
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Using the approximation d0 ≪ y,

d0 = e−8.5κr ≈ 0.03r. (3.4.6)

From the definition νT = k/ω, the boundary condition for ω under fully rough condition

should be

ω =
u∗√
Cµκd0

. (3.4.7)

Generally, the ω boundary condition represented as

ω|w =
60ν

βy2eff
, (3.4.8)

where yeff = max[y(1), yr] in Knopp’s model and yeff = (y(1) + yr) in Seo’s. Here y(1) is the

grid point next to the wall and

yr =
ν

u∗

(
60κ
√

Cµ

β
d+0

)1/2

,

to agree with (3.4.7), where β = 0.075.

The variable d+0 is a function of r+ that is obtained by calibration against the log-layer

displacement, ∆U(r+) (Durbin, 2009). Knopp proposes

d+0 = 0.03r+min

[
1,

(
r+

30

)2/3
]
min

[
1,

(
r+

45

)1/4
]
min

[
1,

(
r+

60

)1/4
]
. (3.4.9)

Seo gives

d+0 =





0.56

(
r+

20

)2.5

; 0 ≤ r+ < 20

0.63ζ(r+) + 0.028r+ ; 20 ≤ r+ < 90

0.031r+ − 0.27 ; 90 ≤ r+

where ζ(r+) = sin[π((r+ − 20)/70)
0.9

]. It is easy to see that ωw decreases with increasing r+,

which leads to increase of Cf .

Under transitionally rough conditions, Knopp et al. (2009) use a linear blending function

k|w =
u2
∗√
Cµ

min
(
1, r+/90

)
, (3.4.10)
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for the k boundary condition, while Seo (2004) retains (3.4.3).

To correctly simulate the roughness effects on the skin friction and heat transfer coefficients

in the fully turbulent regime, Equations (3.4.10)–(3.4.9) proposed by Knopp et al. (2009) are

chosen as the boundary conditions for k and ω on rough walls because of its better behavior

than Wilcox’s boundary conditions. The starting point of modeling for rough wall cases is to

implement Knopp’s model in the code used by the present work and validate the implementa-

tion.

Figure 3.4.1 shows the velocity profiles and Cf curves for different roughness heights r+

in the test cases by Ligrani and Moffat (1986). They are flat plate turbulent boundary layer

flows over spherical roughness elements. Equivalent sand grain roughness heights are given in

these cases. The inlet Tu = 0.1% and Rt = 0.1. Refer to Knopp et al. (2009) for more details

about flow setup. Data from Knopp’s paper and the results from the author’s implementation

are compared and very sight differences are obtained. The code platform is OpenFOAM. The

existing k − ω model in OpenFOAM along with new boundary conditions for k and ω is used.

The results for the smooth wall case in Figure 3.4.1 are gained by applying Equation 3.4.8

instead of the default boundary condition for ω in OpenFOAM. The curves marked by ‘theory’

in Figure 3.4.1(a) are calculated by Equation 3.4.1 and 3.4.2. More computation details will

be described in the next chapter.

3.4.2 Modification on the Effective Wall Origin

Inspired by the idea of the equivalent sand grain roughness and the displacement of origin

approach for the roughness modification in fully turbulent flow, a displacement of origin method

is developed for the intermittency equation. (However, the sink term in the intermittency

equation needs a non-displacement type of modification.) Equations (3.4.8), (3.4.9) and (3.4.10)

are chosen as the boundary conditions for k and ω on rough walls.

To modify the smooth wall transition model, Crr is added to the original model wherever

the wall distance appears.

Rν ≡ (d+ Crr)
2 |Ω|

2.188ν
, (3.4.11)
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Figure 3.4.1 Validation for the implementation of the Knopp’s rough wall boundary conditions

applied to the standard k − ω turbulence model. The near wall grid resolution

is y+(1) ≈ 0.3. Test case by Ligrani and Moffat (1986).

Rs ≡ (d+ Crr) ·
nw · ∇|S|ω√

2|S|2
, (3.4.12)

where d is the true wall distance, r is the equivalent sand grain roughness height, and Cr is a

constant coefficient. (See original definitions of Rν and Rs in Section 3.3.)

The key modification is to Rν . Rν is a replacement for Rθ, which is used to indicate

transition onset in data correlations. Rν is therefore a typical parameter for transition modeling

based on only local variable. For smooth surfaces, near the wall, Rν → d2+/2.188 as d+ → 0.

For rough surfaces, Rν invokes a displaced origin and becomes non-zero at the wall.

To calibrate the coefficient Cr in Equations (3.4.11) and (3.4.12), a flat plate test case with

zero pressure gradient is adapted from the T3A setup for smooth walls. The original free-stream

Tu for T3A is 3.5%, but the transition location is more sensitive to roughness with lower free-

stream Tu. Therefore Tu = 1.5% was selected for the present calibration. The inflow velocity

Uin = 5.2m/s and turbulence Reynolds number Rt = νT /ν = 14 are kept unchanged. The

predicted critical Reynolds number Reθt and the correlated Reθt−rough from Equation (2.3.20),

are in good agreement when Cr = 0.26 . When evaluating Reθt−rough using Equation (2.3.20),
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Reθt−smooth was not obtained from Equation (2.3.1); instead, the predicted velocity profiles

from simulations of smooth wall cases were integrated to compute Reθt−smooth and thereafter

to calculate Reθt−rough.
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Figure 3.4.2 Effects of Cr. This test case is a flat plate case with inflow turbulence intensity

Tu = 1.5%. The roughness height r = 10× 10−4m is set unchanged for different

Crs.

Figure 3.4.2 shows how the coefficient Cr determines the transition location: with small

Cr, the critical Reynolds number Reθt is overestimated, whereas early transition is predicted

with large Cr. This is understandable since Crr defines the effective wall displacement, which

is an indicator of the extent to which surface roughness will affect the near wall region of the

boundary layer. For given r, the larger Cr, the farther the wall origin extends into the flow,

and the earlier the transition occurs.

However, this simple change is not enough, even for flat plate cases. As one may expect, a

change may bring improvement in one place, but it may cause some issues in another. In this

case, the sink term will not vanish after transition is complete, which leads to the intermittency

function γ not being unity. As a result, the skin friction will be under-estimated in the fully

turbulent region. The lower Rν bound, in the function Gγ , is modified to fix this issue.

To shed light on how this modification works for the intermittency equation, the expression
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of the sink term of the intermittency equation (Section 3.3) is recalled:

Eγ = GγFturb|Ω|γ1.5

with Gγ and Fturb defined as

Gγ−smooth = 7.5max [0,min (100−Rν , 1)]×min [max (Rν − 18, 0) , 1] ,

Fturb−smooth = e−(RνRt)
1.2

.

The subscript ‘smooth’ means the definition for a smooth wall, which will be changed for a

rough wall. As mentioned above, when r+ > 5, surface roughness will influence transition

onset. Therefore, the sink term should be affected by the surface roughness. Gγ switches from

0 to 7.5 in the range 18 < Rν < 100. Near the wall this implies 18 < d2+/2.188 < 100 or

6.3 < d+ < 14.8. This needs to be adjusted.
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Figure 3.4.3 The effect of Rc2. This test case is the same as Figure 3.4.2.

To adjust the active region, the sink term is modified as

Gγ−temp1 = 7.5max [0,min (100−Rν , 1)]

×min [max (Rν − (18 +Rc2), 0) , 1] ,

(3.4.13)

Rc2 = 3.0

[
(Crr)

2 |Ω|
2.188ν

]0.8
. (3.4.14)
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Figure 3.4.4 The effects of coefficients in Rc2. This test case is the same as Figure 3.4.2.

This switches off Gγ in the near wall region after transition is complete, thereby making the

sink term vanish appropriately. For smooth walls, Rc2 becomes zero, eliminating the roughness

effect. The contribution of Rc2 is illustrated by Figure 3.4.3. Without Rc2, the Cf curve is

underestimated due to the existence of sink term in the fully turbulent region. (The Cf curves

in Figure 3.4.2 were obtained with Rc2 included in the sink term.)

The two coefficients – the multiplicative constant and the exponent of Rc2 – affect the

results, as shown in Figure 3.4.4. Figure 3.4.4(a) shows that the results are far less sensitive

to the coefficient in Rc2 than to the key coefficient Cr. As the selected value, 3.0, is halved or

doubled, very slight differences are obtained. 4 times the selected value leads to early transition,

because the lower bound of Rv for Gγ is too high and hence the sink term shrinks. 0.25 times

the selected value will not shift the transition location, but this provides too small Rc2 so that

Cf is underestimated in the fully turbulence region. Similarly, a larger value of the exponent

causes earlier transition, and a lower value makes Cf smaller after transition, as depicted in

Figure 3.4.4(b).

Note that the upper bound on Rν in the function Gγ has not been adjusted so far, because

in the fully turbulent region Rν = 100 generally occurs far away from the wall, where the sink
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term is driven to be zero by the factor Fturb. But it has to be modified for cases having a strong

acceleration, like the region right after the leading edge of a turbine blade. This is explained

in the next section.

3.4.3 Modification for Strong Acceleration Flows

In some realistic cases, for example near the leading edge of a turbine blade, flow acceleration

can be very large. A strong acceleration causes very large values of |Ω| in the near wall

region (effectively, r+ becomes large). Consequently, Rν , defined by Equation (3.4.11), becomes

extremely large close to the wall if r 6= 0. Then the sink term will vanish right after the

stagnation point, because both the factors, Fturb and Gγ , of the sink term vanish for large Rν .

This can be overcome by decreasing Rν in Fturb and increasing the upper bound of Rν in

Gγ . It turns out that the former is more effective. We introduce a revision to Rν so that Fturb

will not suppress the sink term in highly strained flow:

Fturb = e−(RνnewRt)
1.2

, (3.4.15)

Rνnew = Rνe
−F 1.5

Q /350, (3.4.16)

FQ = max

[
0,

r2
√
|Q|sign(Q)

ν

]
, (3.4.17)

where Q = ΩijΩij − SijSij . Q is the difference between the magnitude of the rate of rotation

and the rate of strain. For zero pressure gradient flow, Q is zero. For favorable pressure gradient

flow, Q is positive, and it is negative in adverse pressure gradients. Based on this property, Q

serves to indicate the high acceleration region on a turbine blade. Hence FQ is non-zero in a

favorable pressure gradient and it decreases Rνnew .

Without this modification, the sink term would always vanish right after the stagnation

point over the suction surface, even for low inflow Reynolds numbers and small roughness:

see Figure 3.4.5(a). The modified Fturb fixes this quite effectively. Figure 3.4.5(b) shows a

reasonable laminar region over the front part of the suction surface.
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Figure 3.4.5 The effect of the modified Fturb. This test case uses the Stripf’s turbine, with

inflow chord Reynolds number Rec = 1.4 × 105, turbulence intensity at the

mid-pitch of the leading edge location Tul.e. = 2.7%, and roughness height

r = 1.47× 10−4m.

The constants in Equation (3.4.16) were calibrated with the correlation-based model in

Boyle and Stripf (2009) for a high pressure turbine blade case which was experimentally tested

by Stripf et al. (2005) and Stripf (2007). The quantity F 1.5
Q /350 is plotted in Figure 3.4.6. It is

nonzero only in a very thin region of strong acceleration, on the suction surface. More details

about this test case are introduced in the next chapter.

For high roughness, the modified Rν may exceed the upper bound of 100, in Gγ , even close

to the wall. This issue can be solved by increasing this upper bound as follows

Gγ = 7.5max [0,min ((100 +Rc3)−Rν , 1)]

×min [max (Rν − (18 +Rc2), 0) , 1] .

(3.4.18)

Rc3 = 0.3
(d+ Crr)

2
√
|Q|sign(Q)

ν
,

Rc3 = max [min (Rc3, 100) ,−100] . (3.4.19)

Rc3 is again a function of Q so that it becomes active in the acceleration region. It uses the

effective wall distance instead of the roughness height r; the aim is to take into account pressure
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gradient effects, even for smooth wall cases. Favorable pressure gradients can enhance the sink

term and delay the transition. Adverse pressure gradients can suppress the sink term and

accelerate the transition. The limiters in Equation (3.4.19) make the modified upper bound of

Rν range between 0 and 200.

The coefficient 0.3 in Rc3 is calibrated on Stripf’s turbine test cases. Its effect on Cf is de-

picted in Figure 3.4.7. This shows the Nusselt number distribution over the suction surface ver-

sus the surface coordinate. When this coefficient is halved the transition is accelerated. When

it is doubled, the opposite effect is observed. The selected value, 0.3, gives good agreements

with Stripf’s data for a wide range of roughness heights, Reynolds numbers and free-stream

turbulence intensities.

The modification above for roughness induced transition has been published in Ge and Durbin

(2015).
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Figure 3.4.6 Contours of quantity F 1.5
Q /350. This test case is the same as Figure 3.4.5.
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Figure 3.4.7 Effects of the multiplicative coefficient in Rc3. This test case uses the Stripf’s

turbine, with inflow chord Reynolds number Rec = 2.5×105, turbulence intensity

at the mid-pitch of the leading edge location Tul.e. = 1.6%, and roughness height

r = 0.73× 10−4m.
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CHAPTER 4. COMPUTATION

4.1 Introduction

All cases are computed in OpenFOAM with the current transition model implemented in it.

SIMPLEFOAM and PISOFOAM solvers are employed to solve all transport equations involved

for steady and transient cases, respectively. CFD codes in OpenFOAM are based on finite

volume discretization. Schemes with second order of accuracy are applied in discretization of the

spatial and temporal derivatives. Relaxation factors are used in steady cases for convergence.

Section 4.2 is for validation of the transition model for smooth wall cases. Test cases include

a flat plate with different Reynolds numbers, various free-stream turbulence intensity Tu, zero

or non-zero pressure gradients, and with/without separation, a compressor blade cascade with

different Tu, and a flat plate with periodically impinging wakes. Section 4.3 is for validation

of the roughness extension. Flat plate cases, and both high and low pressure turbine blade

cases, with different Tu, and a wide range of roughness heights are selected for computation.

Complex cases are run in parallel at high performance computing platform.

4.2 Smooth Wall Cases

4.2.1 Flat Plate Cases

Test cases in this section are the T3A-C experiments conducted by ERCOFTAC. Cases

T3A and T3B have zero stream-wise pressure gradients with different turbulence intensities.

Note that another case, T3A-, is not included in the present work. It has low free-stream

turbulence intensity (0.9%) (Durbin, 2012). According to the classification of transition in

Langtry (2006), it tends to be orderly transition instead of bypass transition. The model in

Durbin (2012) works for T3A- in a boundary layer computation, but the current model predicts
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early transition for this case. Cases T3C1-5 combine the influences of free-stream turbulence

and favorable/adverse pressure gradients imposed by converging/expanding flow channel. The

main difference between the various T3C test cases is the free-stream velocity, and hence the

Reynolds number (T3C1 is an exception, which has high free-stream turbulence intensity and

slow turbulence decay).

Two different domains are used. Both are two dimensional (2D) with only one cell in span-

wise direction. One is for the zero pressure gradient test cases (T3A and T3B). It is comprised

of a flat plate wall with a length of 1.5 m and a symmetric flat top surface with height of 0.8

m. The inlet surface is at 0.04 m upstream of the plate leading edge to eliminate an ambiguous

specification of free-stream conditions. The narrow bottom surface between the inlet and the

plate leading edge is set as a symmetric boundary. The inlet boundary has uniformly fixed-

value velocity, Uin, turbulent kinetic energy, kin, specific dissipation rate, ωin and zero pressure

gradient. The outlet boundary has zero-gradient U , k, and ω along with zero pressure (the

reference pressure). A grid-independence check is performed, and a mesh of 160 (stream-wise)

× 100 (wall-normal) is found to be sufficient. The first neighbor node to the wall is located

at y+(1) ≈ 1.0 in the turbulent region. Different values of y+(1), 0.05, 0.1, 0.5 and 1.0, have

been tested for grid convergence check. The results are not notably sensitive when y+(1) 6 1.0.

The wall-normal grid expansion ratio is 1.1, and the stream-wise grid expansion ratio from the

leading edge is 1.05, which is consistent with Langtry (2006). The same expansion ratios are

adopted for the mesh of T3C cases.
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Figure 4.2.1 Mesh used to compute T3A and T3B cases showing every other line in x and y.

The other is for varying pressure gradient test cases (T3C series), which consists of a flat
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plate bottom wall with length of 1.65 m and a slip top wall with various height. At the entrance,

the gap between the upper and bottom walls is 0.3 m and the height varies along the stream-wise

direction corresponding to the experimental data of the pressure gradient variation. The length

of bottom surface between the inlet and the leading edge is 0.15 m and again set as a symmetric

boundary. Boundary types of inlet and outlet are the same as those of the zero pressure gradient

cases. A mesh 230 (stream-wise) × 125 (wall-normal) is used. The first spacing is set to be

y+(1) ≈ 0.1 in the turbulent region. Values of y+(1) 6 0.1 have been used, which turns out

that 0.1 is sufficient. For y+(1) > 0.5, noticeable delay of transition will happen. The upper

contour is determined by an explicit expression offered in Suluksna et al. (2009). Note that

the upper contour of T3C4 is different from the other T3C cases due to a different pressure

gradient. Moreover, the length of the plate for T3C4 is 2.00 m, longer than that of other cases,

because in this case transition occurs very close to the exit in the experimental data. Extension

of the numerical domain guarantees the source term works upstream of the new exit.
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Figure 4.2.2 Mesh used to compute T3C series cases showing every other line in x and y.

Table 4.2.1 Summary of inlet conditions for flat plate cases.

Case Uin(m/s) Tuin(%) Rt ν(×10−5m2s−1)

T3A 5.2 3.5 14 1.5

T3B 9.4 6.5 100 1.5

T3C1 6.0 10.0 50 1.5

T3C2 5.0 3.7 12 1.5

T3C3 3.8 3.4 8 1.5

T3C4 1.2 3.5 3.5 1.5

T3C5 8.6 4.3 17 1.5

The SIMPLE algorithm for steady flow is applied to solve all the partial differential equa-

tions. Numerical discretization of second order accuracy is employed. These numerical setups

are used for all the other test cases for the present work. The fluid density ρ and the molecular
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(d) Turbulence intensity decay in T3B.

Figure 4.2.3 Free-stream velocity and turbulence intensity in T3A and T3B cases. Experiment

data (symbols), simulation results (lines).
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Figure 4.2.4 Normalized free-stream velocity in T3C cases. Experiment data (symbols), sim-

ulation results (lines). The circle symbol and long-dash line refer to case T3C4,

and the other T3C cases collapse together.
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Figure 4.2.5 Free-stream turbulence intensity in T3C cases. Experiment data (symbols), sim-

ulation results (lines).
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viscosity µ are 1.2 kg/m3 and 1.8× 10−5 kg/m · s, respectively. Then the kinematic viscosity

ν = µ/ρ = 1.5 × 10−5 m2s−1. The Reynolds number, Rex, is based on the length from the

leading edge and local free-stream velocity. The inlet velocity, Uin, is specified to match the

data of measured local free-stream velocity through the channel. The inlet turbulent kinetic

energy kin can be obtained based on the definition of turbulent intensity. See Equation (4.2.1),

Tuin =

√
2/3kin
Uref

, (4.2.1)

where Uref equals to Uin in zero-pressure-gradient cases, but to local free-stream velocity in

varying-pressure-gradient cases. The inlet viscosity ratio, Rt, is used to calculate and specify

the inlet specific dissipation rate, ωin,

ωin =
kin
Rtν

. (4.2.2)

Both Tuin and Rt are determined by agreement with the data for decay of the free-stream

turbulence intensity. Figures 4.2.3, 4.2.4 and 4.2.5 show the free-stream velocity and turbulence

intensity for the T3 series. Good agreement between simulations and the experimental data

has been obtained by using inlet conditions in Table 4.2.1.

There is experimental evidence that both turbulence time-scale and intensity affect bypass

transition, i.e. the results are sensitive to the free-stream or inlet conditions. Computations

with the current model illustrate this.

Skin friction curves computed with the same inlet dissipation rate (ωin) and with varying

turbulence intensity are shown in Figure 4.2.6(a). Note that k ∝ Tu2, with other conditions

unchanged, the greater the intensity, the greater the kinetic energy. As we can see from the

figure, increasing Tu accelerates transition.

Skin friction curves computed with the same Tu = 3.5% and with different ωin are dis-

played in (4.2.6.b). Decreasing ωin makes turbulent energy decay slower and increases the

eddy viscosity in the free stream. Both effects accelerate transition, and vice versa.

Contours of intermittency function, γ near the wall for zero pressure gradient cases are

displayed in Figure 4.2.7(a) and Figure 4.2.7(c) for T3A and T3B cases respectively. Due to
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Figure 4.2.6 Sensitivity to inlet k and ω (test case: T3A).

the effect of the sink term, γ rapidly decreases to zero near wall right after the leading edge.

With the diffusion of γ from high values inside the free-stream to low values within the laminar

boundary layer, transition is initiated, and hence the sink term starts to vanish with the source

term switching on. At around the transition location, γ increases to one and the boundary

layer becomes turbulent. Figure 4.2.7(b) and (4.2.7.d) present contours of turbulent kinetic

energy k. At the transition region, k starts to grow from zero and reaches the turbulent level

when transition is complete.

The computed skin friction coefficient for the T3A case is compared with the experimental

data in Figure 4.2.8(a). The Blasius laminar boundary layer solution and semi-empirical tur-

bulent boundary layer solution are also plotted. The simulation result is in decent agreement

with the measured data. The laminar region is slightly above the data and the transition part

of the curve is a little sharper than the data. In the words, the onset location of transition is a

bit late and the transition length is therefore short as it reaches the fully turbulent region on

time. This issue exists in all the other T3 cases.

The computed skin friction coefficient for T3B is compared with the experimental data in
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Figure 4.2.7 Contours of intermittency function and turbulence intensity for T3A and T3B.

Figure 4.2.8(b). Due to the high turbulence intensity, the skin friction before the completion

of transition is over-predicted. But it does make an improvement compared with results in

Langtry and Menter (2009). The minimum skin friction obtained by the current model is close

to 0.004 while results of other models are just around 0.005.

The T3C test cases can be classified into two groups. T3C1 is a high free-stream turbulence

level case (first date point with Tu ≈ 8.0%), and the other T3C cases are moderate free-stream

turbulence level cases (first data point with Tu ≈ 2.5%).

Like the case T3B, with high free-stream turbulence intensity, the skin friction for T3C1

shown in Figure 4.2.9(a) is better than the result of Suluksna et al. (2009). The smallest skin

friction is closer to the experimental data.

The results for T3C2 are shown in Figure 4.2.9(b). In this case, the transition occurs in

the adverse pressure gradient region because of the low Reynolds number. The onset location

of transition is a bit late. But as mentioned above, the fast transition makes it up and meets
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Figure 4.2.8 Skin friction for T3A and T3B. Experimental (symbols), laminar (dash), turbu-

lent (dash-dot), simulation (solid).

the turbulent region at almost the same Reynolds number as measured.

The case T3C3 has even later transition than T3C2 as displayed in Figure 4.2.9(c), because

its Reynolds number is smaller and the turbulence decay is faster than T3C2. In addition, it is

getting closer to separation. Both of these are predicted by the current model with acceptable

agreement with the data though late transition is predicted again.

T3C4 is regarded as a benchmark for separation-induced transition in Langtry and Menter

(2009) and Suluksna et al. (2009). However, the onset location of transition is very close to

the exit according to the experimental data, which has only one data point after transition.

Another problem is that the data shows a very tiny separation region. Even if this case may not

be proper to test a model for transitional separated flow due to these two drawbacks, Figure

4.2.9(d) still shows that the current model is able to predict the transition and reattachment

after flow separates with an acceptable error compared with the data. Another case of flat

plate separated flow from Lardeau et al. (2012) is invoked to test the separation modification

to the basic model as discussed in Section (4.2.2).

Figure 4.2.9(e) presents the skin friction coefficient computed by the current model for the

T3C5 case. Transition occurs before the throat of the flow channel, i.e. within the favorable
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Figure 4.2.9 Skin friction for T3C cases. Experiment data (symbols), simulation results

(lines).
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Figure 4.2.10 Mesh for flat plate separated flow case showing every other line in x and y.

pressure gradient region since the inlet velocity and therefore the Reynolds number is high. Be-

cause of the strong favorable pressure gradient the transition length is extended to some extent.

The model approximately predicts the behavior with small difference from the experimental

data.

4.2.2 A Flat Plate Separated Flow

This test case was firstly studied experimentally by Lou and Hourmouziadis (2000), and

numerically by Wissink and Rodi (2006b) based on DNS and by Lardeau et al. (2012) based

on LES. The current model is able to predict locations of transition and reattachment with

decent accuracy compared to the LES data of Lardeau et al. (2012). The inlet is set half of

the ”chord” length L upstream of the leading edge. But the plate length in the present work

is extended to the computational exit, X/L = 1.5, in order to allow a fully turbulent region

downstream and uniform pressure profile at the exit. For simplicity, X/L is replaced with X

in the following plots. The contour of the upper wall is exactly as Lardeau et al. (2012). The

bottom surface from the inlet to the leading edge is specified as a symmetric boundary, and

after the leading edge, it is a non-slip wall boundary to the outlet. The whole top surface

is a slip wall boundary. Uniform profiles for Uin, kin and ωin are specified at the inlet. The

Reynolds number, based on the chord length L and the inflow velocity Uin is 60,000. kin and

ωin are again determined to match the decay of the free-stream turbulence intensity of the

LES data. At the outlet, zero pressure gradient is used for most of the variables except p

with uniform zero value. The 2D mesh for this case in Figure 4.2.10 is 200 (stream-wise) × 80

(wall-normal), with first grid spacing y+(1) ≈ 0.1 in the turbulent region. A mesh finer than

this has little effect on the results.
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Two simulations with different free-stream turbulence intensities are performed. The higher

the free-stream turbulence intensity is, the earlier the transition and reattachment will be.

Details about the inlet conditions are listed in Table 4.2.2. Figure 4.2.11 shows the free-stream

turbulence intensity distributions for these two simulations. The reference velocity to define

Tu is the local free-stream velocity. Though the inlet Tu is different from the LES data, the

present simulations reproduce very similar levels of Tu after the leading edge where X = 0.

Table 4.2.2 Summary of inlet conditions for the flat plate separated flow case.

Case Uin(m/s) Tuin(%) ωin(s
−1) ν(×10−5m2s−1)

Simulation 1 0.9 5.8 90 1.5

Simulation 2 0.9 7.5 60 1.5

+
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+
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+
+

+ + + + + + + + + + + + + + + + + + + + + +
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Figure 4.2.11 Distributions of free-stream turbulence intensity for the flat plate separated flow

case. “Simulation 1” (�), “Simulation 2” (+); current model (solid), LES by

Lardeau et al. (2012) (dash).

The pressure distribution and skin friction on the wall for Simulation 1 are displayed in

Figure 4.2.12. The reference pressure is the exit pressure, and the reference velocity is simply

Uin for both Cp and Cf . There should be a sudden increase of pressure and a pressure plateau

in the separated region, but the current model does not predict the plateau very clearly. And

also the smallest pressure is underestimated by the model. The level of Cf at the beginning

of the turbulent region is under-predicted, but this is attributed to the k − ω model. The

intermittency model transits to full turbulence after the flow reattaches, but the k − ω model

itself cannot predict the correct level of Cf in the turbulent region.

The location of separation and reattachment simulated by the current model is relatively
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Figure 4.2.12 Plots for Simulation 1. Current model (solid), LES by Lardeau et al. (2012)

(dash), k − ω model (dash-dot).
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Figure 4.2.13 Contours of stream-wise velocity around the separation bubble for Simulation

1.
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accurate, though the transition occurs a bit early. This again leads to the observation that

the nature of transition of separated boundary layer is different from the bypass transition.

The former has an inflection point but the latter does not. It is difficult to simulate such a

complicated case very accurately by using a simple RANS model since the transition in this

case may be induced by various mechanisms. However, the current model is a considerable

improvement on the original k − ω RANS model, which is shown in Figure 4.2.12(b).

Figure 4.2.13 depicts the contours of stream-wise mean velocity computed both by LES and

the current model. The separation bubble produced by the model is thiner than that of LES.
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Figure 4.2.14 Skin friction for Simulation 2. Current model (solid), LES by Lardeau et al.

(2012) (dash).

The skin friction coefficient of Simulation 2 is plotted in Figure 4.2.14. Similar to simulation

1, the model predicts the locations of separation and reattachment with good agreement with

the LES data, but the transition location and the turbulence level are not accurate. In addition,

comparing the results shown both in Figure 4.2.12(b) and 4.2.14, the difference between the

two Cf curves of the model is slight, whereas that of the LES data is noticeable. This means

that the results based on the model are not sensitive to the free-stream turbulence intensity

except for an earlier reattachment in Simulation 2 which has higher free-stream Tu.
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Figure 4.2.15 Mesh for compressor blade cascade case showing every third line in x and y.

4.2.3 A Compressor Blade Cascade

In this section, a 2D flow through a V103 low pressure compressor blade passage with two

different free-stream turbulence intensities is simulated by the current model and the results

are compared with the DNS data in Zaki et al. (2010).

Table 4.2.3 Summary of inlet conditions for the compressor blade cascade case.

Case Uin(m/s) Tuin(%) ωin(s
−1) ν(×10−5m2s−1)

Simulation 1 2.0775 9.0 130 1.5

Simulation 2 2.0775 11.0 100 1.5

The computational domain with the grid is shown in Figure 4.2.15. The coordinates of the

blade are based on a NACA 65 airfoil (Zaki et al., 2010). The mesh is 223 (stream-wise) ×

286 (wall-normal) with the first grid spacing y+(1) ranging between 0.1 and 1.0. To simulate

the compressor blade cascade, periodic boundary conditions upstream and downstream of the

blade surface are used. The periodic surfaces are specified at X/L < 0 and X/L > 1, where the

axial chord L is selected as the reference length scale. A non-slip boundary condition is applied

on the blade surfaces. The blade pitch, i.e. the height of the inlet and outlet is P = 0.59L.

The inlet is located at X/L = −0.5, and the outlet is extended to X/L = 2. For simplicity,

X/L is denoted as X below. At the inlet boundary, uniform Uin, kin and ωin are specified to

produce the desired free-stream mean velocity and turbulence decay. The angle between the

inlet mean velocity vector and the horizontal axis is α = 42◦. The Reynolds number based on
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Figure 4.2.16 Contours of turbulence intensity for both simulations.

Uin and L is 138,500. The outlet boundary condition is the same as the other cases described

above.

In Table 4.2.3 are values of variables at the inlet for both simulations. And the corresponding

contours of the turbulence intensity are displayed in Figure 4.2.16. These are similar to the

distributions of Tu obtained by Zaki et al. (2010). The values of Tu at the mid-pitch follows

the DNS data from the leading edge to the trailing edge, which reproduces the same free-stream

turbulence intensity as Cases T2 and T3 in Zaki et al. (2010). Pressure coefficient and skin

friction on the surfaces of the blade are plotted in Figure 4.2.17 and 4.2.18 for both simulations.
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(b) Pressure coefficient for Simulation 2.

Figure 4.2.17 Pressure coefficient of the compressor blade case. Current model (solid), DNS

(dash-dot for Simulation 1, dash-dot-dot for simulation 2).

The reference pressure is at the leading edge and the reference velocity is Uin. Contours of γ

on the blade surfaces and separation bubbles over the suction sides for both simulations are

depicted in Figure 4.2.19.

In the separated region of Simulation 1, the model does not produce an obvious pressure

plateau and then a sudden pressure rise as the DNS data on the suction surface, though the

negative skin friction by the model extends farther than the DNS. The onsets of transition are

later and the lengths of transition are longer than DNS data on both surfaces.

The most significant issue for Simulation 2 is the unphysically separated region on the

suction surface predicted by the current model (Figure 4.2.18(d) and 4.2.19(d)). The transition

occurs too late to keep the flow attached. Note that transition on the suction surface occurs

in an adverse pressure gradient region, which tends to cause late transition by the current

model (see Section (4.2.1) about T3C cases). On the pressure side, the location and length of

transition appear close to the DNS data, whereas the level of the skin friction is higher in the

laminar region.

With higher free-stream turbulence intensity, transition occurs earlier and the length of

transition becomes shorter, which illustrates that the current model is able to prediect the
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Figure 4.2.18 Skin friction of the compressor blade case. Current model (solid), k− ω RANS

model (dash), DNS (dash-dot for Simulation 1, dash-dot-dot for simulation 2).
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Figure 4.2.19 Contours of γ and separation bubbles of the compressor blade cases.
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sensitivity to the free-stream turbulence intensity for this case.

In both simulations, the turbulent levels are lower than the DNS data. But again this is

caused by the original turbulence model as can been seen in the figures. After the transition,

the computations shifts to pure k − ω and Cf reaches the identical turbulent level predicted

by the k − ω model. One can infer that the current model for bypass transition may work

fine if the k − ω RANS model were able to predict the fully turbulent region of this flow more

accurately. In other words, benefit is indeed gained when this intermittency model is applied

to the k − ω model even for such a challenging case.

4.2.4 Periodic Wakes Impinging on a Flat Plate

Figure 4.2.20 shows the layouts of a experiment and a simulation for turbulent wake swept

across a flat plate boundary layer. These setups mimic the phenomenon of wake-induced

transition occurring within an intermediate stage of a turbomachine. Recall Figure 2.2.4.

Benchmark data from DNS of this test case (Wu et al., 1999) was presented and compared with

the RANS solutions in Wu and Durbin (2000). Again, this benchmark test case is simulated

by using the proposed transition model and the results along with a small subset of the DNS

data will be presented below.

In the experiment of Liu and Rodi (1991), a squirrel cage of cylinders produced an extra

wake on the upstream of the leading edge. There is a difficulty in the experiment on the

quantification of space-time, phase-averaged statistics, i.e. one wants < f > (x, y, 2πφ). Here

angle brackets denote a phase average, f is the variable of interest, and φ is the phase of the

periodic wake passing. This technical problem can be overcome by DNS, in which a wealth

of data can be generated. In the DNS of Wu et al. (1999), the turbulent wake velocities were

generated from a separate precomputation on a temporally decaying, self-similar plane wake,

and then superimposed to a Blasius profile at the domain inlet. Variables with respect to

the wake-coordinate system should be transformed to the flow domain coordinate system with

respect to the wake inclination angle α = tan−1(Ucyl/Uref ). See Figure 4.2.20.

In the RANS computation by Wu and Durbin (2000), self-similar wake profiles are translat-

ing periodically across the entrance to the flow domain superimposed onto a Blasius boundary
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Figure 4.2.20 The upper: schematic of the experiments of Liu and Rodi (1991); the lower:

schematic of the simulation of Wu and Durbin (2000).

layer profile with Reθ = 80. The flow domain is a rectangle, 0.1 6 x 6 3.5, 0 6 y 6 0.8

in dimensionless units. The characteristic length scale is the distance between the cylinder

translating trajectory and the leading edge, L = 1. See the lower portion of Figure 4.2.20. The

leading edge is at x = 0. The Reynolds number Re = UrefL/ν = 1.5 × 105, where Uref = 1

is the inlet reference velocity. The wakes’ half-width b is 0.1 and the centerline deficit velocity

Udef is 0.14 at the inlet x = 0.1, scaled by Uref . The only difference for the flow setup between

the current simulation and Wu and Durbin (2000) is the inlet location. The new domain en-

trance is at x = −0.05 and the leading edge is included within the domain, similar to the flat

plate cases in Section 4.2.1. Though in this case no Blasius profiles are needed at the new inlet,

proper wake profiles for U , k and ω should be specified such that the corresponding profiles at

x = 0.1 closely match the profiles of Wu and Durbin (2000), with Udef ≈ 0.14 and b ≈ 0.1. See

Figure 4.2.21. Udef and b at x = −0.05 are finally chosen 0.48 and 0.03, respectively.
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Figure 4.2.21 Dimensionless profiles of the wake at x = −0.05 (left column) and x = 0.1

(right column), where the wake halfwidth b = 0.03 and 0.1, and deficit velocity

Udef = 0.48 and 0.14, respectively. The data from Wu and Durbin (2000) are

denoted by dash lines and used for generation of their inlet profiles.
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The wake passing period is T = 1.67, and hence the distance between wake centers is

1.67×0.7 = 1.17, which is 11.7 times their half-width at x = 0.1. In this case wakes remain well

separated. Unsteady RANS computations with the proposed transition model are performed

on a 211 × 101 grid in streamwise and wall normal direction with 10 grid points in the pre-

leading-edge region and 201 grid points along the flat plate. The wall normal space is stretched

in y with y+(1) ≈ 1. In x direction, grid is refined around the leading edge and nearly uniform

further downstream.

Figure 4.2.22 depicts three sets of contours: the instantaneous streamwise velocity ũ from

DNS data in Wu et al. (1999); the phase-averaged stream velocity < ũ > of the DNS data;

and the result from the unsteady RANS simulation using the current transition model. One

can observe that the boundary layer is laminar for x < 1 and turbulent for x > 1.5 where the

boundary layer becomes thick. The thickening beneath the wake is also observed, which is the

forced response of the buffeted laminar boundary layer to the passing wakes. From the contours

of the RANS simulation, one can observe the growth of the wake width and the damping of

the wake deficit velocity are faster than the DNS data. This is caused by relative higher k at

location x = 0.1 obtained in the RANS simulation than the DNS. See Figure 4.2.21(d). The

higher the turbulence level, the more mixing and spreading of the wake to the free stream. The

first criterion of choosing values of k and ω in the wake profiles at the actual inlet x = −0.05

was to obtain correct Udef and b at x = 0.1 (Figure 4.2.21(b)). Velocity contours in the RANS

simulation appear nonphysical near the top boundary due to the symmetry boundary condition

used, but this would not impact the solution near the flat plate.
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(a) Instantaneous streamwise velocity at t = 32.5T from DNS of

Wu et al. (1999).

(b) Phase-averaged streamwise velocity at φ = 0.5 from DNS of

Wu et al. (1999).
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(c) Phase-averaged streamwise velocity at φ = 0.5 from the unsteady RANS

using the proposed model.

Figure 4.2.22 Comparison of contours of streamwise velocity between the DNS and present

simulation.
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Figure 4.2.23 Time-averaged mean Cf curves. Symbols: DNS of Wu et al. (1999); lines:

present model.
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Figure 4.2.24 Phase-averaged mean Cf curves. Symbols: DNS of Wu et al. (1999); lines:

present model.
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Figure 4.2.25 X-phase diagram of the phase-averaged mean Cf . The contour levels are from

0.0015 to 0.0065 with an increment of 0.0005.

Figure 4.2.24 shows the phase-averaged Cf curves at instant φ = 0.0, 0.2, and 0.4 in part (a),

and at φ = 0.5, 0.7, and 0.9 in part (b). A typical < Cf > curve at an instant perturbed by the

wakes, say φ = 0, cuts across the buffeted laminar region, switches into the turbulent region,

intersects a path of perturbed laminar flow, and finally traverses the downstream turbulent

region. Bell-shaped upward protrusions upstream of x = 2.0 are the footprint of the passing

wakes. They progress downstream, becoming increasingly noticeable. In a frame of reference

moving with a wake, it looks that the peak of a protrusion grows due to extended forcing of
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the buffeted laminar layer, and is different from the bifurcation to turbulence. This feature is

predicted by both DNS and RANS simulations. When x > 2.0, the flow is almost self-sustained

turbulent, although perturbations by the wakes still exist.

Space-time fields, < Cf > (x, φ) are displayed in Figure 4.2.25. Cf curves along the plate

at an instant are horizontal sections across the contour plot. DNS data are present in part

(a), and the RANS results by using the proposed model are in part (b). The transition region

shifts periodically as wakes pass across the inlet. The tongue-shaped protrusions in both Cf

contours (blue patches) are areas in which the laminar skin friction is highly disturbed by the

wakes. This is well predicted by the current transition model.

The contour levels downstream of transition are underestimated by the model compared

with the overshoot Cf in the DNS data. This is a common drawback of RANS simulations. The

time-averaged Cf plotted in Figure 4.2.23 also presents this feature. Slightly late transition

predicted by the current model is observed both in 4.2.25 and 4.2.23 compared to the DNS. At

φ = 0, both the DNS data and RANS solutions show Cf passes into and out of the turbulent

region. A laminar patch inserts the turbulent region at around x = 1.75. The transition model

successfully predicts this undulation form of transition (also see Figure 4.2.24 for φ = 0).

4.3 Rough Wall Cases

4.3.1 Flat Plate Cases

The set up for this case has been described in Section 3.4.2. It is modified from the T3A

test case (Roach and Brierley, 1992). The only change of the inflow condition is the turbulence

intensity, Tuin. Two values, Tuin = 1.5% and 3.5%, are specified. Another difference is

the wall boundary conditions for k and ω: Equations (3.4.10) and (3.4.8) are used. Grid

independence has been checked. The first grid point was refined down to y+(1) ≈ 0.1, to show

grid independence in the flat plate, rough wall cases. y+(1) was 1.0 in the smooth wall cases in

Ge et al. (2014). This is consistent with the grid requirements for Knopp’s model: from grid

independence tests, y+(1) . 0.3 is sufficient for accurate velocity profiles in the fully turbulent

region over rough surfaces.
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A prerequisite of the current modeling is that the transition location computed by the

smooth wall transition model should not shift when only the roughness boundary conditions

for k and ω are imposed, because the roughness should not affect the laminar boundary layer

(at least, for relative low roughness heights). The only influence should be an increase of the

Cf values in the fully turbulent region, compared to the smooth wall case.
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Figure 4.3.1 Contribution of the smooth Leading edge. The smooth wall case (solid), the case

with the rough wall boundary conditions and uniform roughness (dash), and

the case with the rough wall boundary conditions and a smooth leading edge

(dash-dot).

However, this prerequisite cannot be satisfied unless a tiny, smooth leading edge region is

specified. The reason is obvious: for an ideal, flat plate, the sharp leading edge leads to infinite

skin friction coefficient Cf ∼ 1/
√
x as x → 0; therefore, r+ becomes infinite, which is physically

unacceptable. If the roughness boundary conditions are imposed at the leading edge, the very

large r+ causes the boundary layer to transition immediately. Numerically, the computation

converges to a fully turbulent solution. For a realistic geometry, with a rounded leading edge,

with a stagnation point, Cf would be finite.

The need for a smooth leading edge is illustrated in Figure 4.3.1 where Tuin = 1.5% and
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r = 7 × 10−4m (r+ ≈ 12). The solid line represents the solution for the smooth wall case.

When boundary conditions (3.4.10) and (3.4.8) for k and ω are imposed on a wall with uniform

roughness, the result is the dash line. When a tiny smooth region (r = 0m if x < 0.01m) is

imposed, the Cf curve is the dash-dot line. The transition location predicted in this case is the

same as the smooth wall case, with greater Cf values in the fully turbulent region.
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(c) Rν with r = 10× 10−4m.

X

Y

0 0.5 1 1.50

0.005

0.01

0.015

0.02 gamma
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

(d) γ with r = 10× 10−4m.

Figure 4.3.2 Near wall distributions of Rν and γ compared between smooth and rough walls.

With this caveat about the leading edge, the new roughness modification is validated.

Contours of Rν and γ, with and without roughness, are plotted in Figure 4.3.2. Contours of

Rν with a rough wall in Figure 4.3.2(c) show higher values near the wall than those in Figure

4.3.2(a) with a smooth wall, as if there is a displacement of the wall origin upward into the flow

field in going from the smooth wall case to the rough wall case. The contours of γ in Figure

4.3.2(b) and 4.3.2(d) depict the laminar region moving upstream, as the roughness increases.
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(c) Rν vs. y+ at x =0.3 and 0.7.
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Figure 4.3.3 Profiles of U+ and Rν at x =0.3, 0.7, 1.0 and 1.45. Transition onset is around

x = 0.7 for the rough wall case, and x = 1.0 for the smooth wall case.

Figure 4.3.3 plots the profiles of U+ = U/u∗ and Rν for the two cases in Figure 4.3.2. Four

different locations are selected – x =0.3, 0.7, 1.0 and 1.45. Transition onset is around x = 0.7

for the rough wall case, and x = 1.0 for the smooth wall case. At x = 0.3, both cases are

laminar and their U+ and Rν are very close. From around x = 0.7, the rough wall case starts

to transition – the U+ decreases and the peak location of Rν with respect to y+ increases
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rapidly, whereas the smooth wall case keeps laminar. At around x = 1.0, transition starts to

occur for the smooth wall case where the U+ profiles falls and the peak location of Rν moves to

the right. The rough wall case becomes fully turbulent at this position. Close to the outflow at

x = 1.45, both the cases are turbulent, while there is a negative offset of U+ from the smooth

to rough case, representing the roughness effects in the fully turbulent boundary layer. It is

clearly shown in (c) and (d) that Rν values close to the wall is non-zero for the rough wall case.

The Cf curves predicted by the current model for several different roughness heights are

displayed in Figure 4.3.4. As the roughness increases, the transition location moves upstream

toward the leading edge. In the fully turbulent region, the Cf values become larger with higher

roughness. For higher turbulence intensity, Figure 4.3.4(b) shows that the transition locations

become less sensitive to the roughness height. Similarly, for higher roughness, the transition

locations become less sensitive to the free-stream turbulence intensity.

Reasonable agreement is observed between the critical Reynolds number Reθt predicted by

the model and that calculated from the correlation Equation (2.3.20). Table 4.3.1 contains

details for the case with Tuin = 1.5%. For the majority of the roughness heights, the predicted

Reθt is a little overestimated. For large roughness heights, when Reθt < 200, the model tends

to predict early transition.

Note that, from the Cf curves, it is very ambiguous which point, exactly, is the transition

location. The same question arises for the experimental data. In the present case, the point

where the Cf curves start to rise is assumed to be the onset of transition. To calculate the

momentum thickness at transition onset, θt, the velocity profile is extracted and integrated.

This quantity along with local free-stream Tu and Cf may introduce errors in evaluating both

the predicted and correlated Reθt. In addition, a wide range of critical Reynolds numbers are

obtained from cases with various roughness heights, whereas the number of parameters in the

present model is relatively few. Thus, very precise prediction of Reθt is not expected.
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Figure 4.3.4 Skin friction for flat plate cases with different roughness heights and different

inflow turbulence intensities.
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Table 4.3.1 Summary of roughness heights and transition locations (T3A: Tuin = 1.5%).

r (×10−4m) 5 7 10 15 20 25

r+ 8.5 12.0 17.4 27.2 37.5 48.0

Xt 0.83 0.78 0.67 0.48 0.35 0.11

Reθt−pr 412 401 372 303 255 132

Reθt−cr 427 394 346 282 226 173

Reθt−smooth 442

The subscript “pr” means predicted, and “cr” means correlated.

4.3.2 A High Pressure Turbine Blade Cascade

In this section, 2-D flow through a passage of a high pressure turbine (HPT) blade cascade

is tested with variation of inlet turbulence intensity, Reynold number and roughness height.

An experimental database is available in Stripf et al. (2005) and Stripf (2007).

X

Y

0 0.05 0.1

-0.1

-0.05

0

Figure 4.3.5 Mesh used to the HPT blade case showing every other line in tangential and

normal wall directions.

Coordinates for the turbine blade geometry are provided by Stripf (2007). The true chord

is 93.95mm and the axial chord is about 53mm. The blade pitch is 81.26mm. Figure 4.3.5

displays the mesh for this case. It is a 3-block grid with an O-grid block as the center part
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around the blade and two H-grid blocks as the extended inlet and outlet passages. The flow is

incompressible.

Cyclic boundary conditions are imposed on the top and bottom boundaries. The reference

pressure is set zero at the outlet and the pressure gradient is zero at the inlet. Table 4.3.2 lists

the flow conditions for all test cases. The inlet velocity has only the x-component with the value

shown as Uin. Tul.e. and Rt−l.e. represent the turbulence intensity and Reynolds number (k/ων)

at the mid-pitch of the leading edge location. The kinematic viscosity is 1.5×10−5m2s−1. The

inflow Reynolds number based on the true chord Rec is 2.5× 105 for TC1-2, and 1.4× 105 for

TC3-4. The number of grid points of the O-grid block is 321×101 for the high Rec and 161×101

for the low Rec, in circumferential and wall normal directions respectively. The H-grid blocks

have 15× 46 and 19× 46 grid points in x and y directions at the inlet and outlet for the high

Rec, and 15× 23 and 19× 23 for the low Rec. The first grid spacing is set to y+(1) ≈ 0.5 for

both grids. The pressure coefficient distribution Cp = (p− pstatic)/(ptotal− pstatic) on the blade

surface for Rec = 2.5× 105 is displayed in Figure 4.3.6.

To compute the heat transfer to the blade surface, the energy equation is solved along

with the continuity and momentum equations. An effective thermal diffusivity κeff = ν/Pr+

νT /PrT is used to represent heat transport. The laminar and turbulent Prandtl numbers, Pr

and PrT , are 0.72 and 0.86, respectively. The air density is 1.2kg/m3 and the heat capacity

cp is 1000m2/(s2K). A constant surface temperature, 300◦K, is specified, and the ambient

temperature is 400◦K.

Table 4.3.2 Summary of inlet conditions for the Stripf’s HPT blade case.

Case Uin(m/s) Tul.e.(%) Rt−l.e. ν(×10−5m2s−1)

TC1 39.915 2.4 12.0 1.5

TC2 39.915 1.6 5.5 1.5

TC3 22.352 4.3 21.6 1.5

TC4 22.352 2.7 8.4 1.5

The computed results are plotted in Figure 4.3.7 and 4.3.8. The Nusselt numbers predicted

by the current model on the suction surface are compared with the predicted heat transfer

coefficient by Boyle’s correlation-based model. Reasonable agreement is achieved, in term of
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Figure 4.3.6 Pressure distribution on the blade surface for Rec = 2.5 × 105. The circles

represent the experimental data of Stripf (2007) at the mid-span of the blade

surface. The solid line represents the simulation result.

the shape of the curves, and more importantly the transition location. As the roughness height

increases, the transition location moves upstream, to the leading edge.

Comparison between Figures 4.3.7(a) and (b) shows that for relative high roughness, the

transition onset becomes less sensitive to the free-stream Tu. This observation agrees with the

experimental database. Similarly, high Tu leads to less sensitivity to the roughness height. In

addition, one sees that the transition location on the rough wall is more sensitive to the chord

Reynolds number than that on the smooth wall. This is shown by comparing 4.3.7(a) and (c),

or 4.3.7(b) and (d).

There is some uncertainty about the free-stream turbulence in these experiments. The

inflow k and ω were adjusted for the current simulations so that the solid and dashed, red

curves provide similar transition locations in the smooth wall case. The experimental data

suggest a much quicker decay than the k − ω model does, even if a very high dissipation rate,

ω, is specified to the free-stream. Therefore, our method to determine the inlet k and ω is to

make the transition location the same as the experimental data for the smooth wall case.
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Figure 4.3.7 Results for the Stripf’s HPT blade case. The solid lines are the predicted curves

for the Nusselt number by the current model, and the dash lines are the pre-

dicted curves for the heat transfer coefficient by the correlation-based model in

Boyle and Stripf (2009).
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Figure 4.3.8 Skin friction coefficient for the Stripf’s HPT blade: Case TC2 and TC4.

In the fully turbulent region, it is reasonable that the heat transfer rate becomes higher as

the roughness increases. However in the experimental data, heat transfer is not very sensitive to

the roughness height. However, the Cf curves appears less sensitive to various roughness heights

in the fully turbulent region, especially for case TC4. See Figure 4.3.8(b). The dimensionless

roughness r+ is evaluated from Cf close to the trailing edge and listed in Tables 4.3.3 and

4.3.4. Only the highest roughness reaches the fully rough condition (r+ > 90). Most of the

cases are transitionally rough, which should cause sensitivity to the roughness geometry in the

fully turbulent region. In the experiment, the boundary layer may have not developed into a

fully turbulent condition, even after transition.

Table 4.3.3 Summary of roughness heights for the Stripf’s HPT blade, TC2.

r (×10−4m) 0.37 0.73 1.10 1.47 1.81 3.20

r+ 16.1 32.0 47.7 65.3 82.0 153.3

Table 4.3.4 Summary of roughness heights for the Stripf’s HPT blade, TC4.

r (×10−4m) 1.47 1.81 3.20

r+ 40.0 49.3 90.0
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4.3.3 A Low Pressure Turbine Blade Cascade

The database provided by Stripf (2007) also contains a low pressure turbine (LPT) blade cas-

cade. This may serve as a good supplementary validation of the roughness model. Stripf et al.

(2009b) and Boyle and Stripf (2009) use this case to validate their correlation-based model. In

addition to the effect of roughness height, some other factors, such as roughness density, and

locally varying roughness are investigated for this case in their papers. Since the current model

considers only the effective sand grain roughness height r, the influence of various r evaluated

by Boyle and Stripf (2009) for different rough surfaces are examined in this section along with

two different free-stream Tu. The predicted results are compared with the measured data given

in Stripf et al. (2009b).

X
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-0.05

0

Figure 4.3.9 Mesh used to the LPT blade case showing every other line in tangential and

normal wall directions.

The geometry is again obtained from Stripf (2007). The true chord is 113.34mm and the

axial chord is about 100mm. The blade pitch is 83.4mm. The same approach as the HPT case

is used to generate the LPT mesh; see Figure 4.3.9. The size of the O-grid block is 321× 101

with y+(1) ≈ 0.3. The H-grid blocks have 15 × 46 and 19 × 46 grid points at the inlet and

outlet. Similar boundary conditions are employed as the HPT case. The flow parameters are

shown in Table 4.3.5. The true chord Reynolds number Rec is 2.5 × 105. Parameters for the

energy equation are all the same as the previous case.

The computed results are depicted in Figure 4.3.10 and 4.3.11. Decent agreement is observed

between the Nusselt number distribution predicted by the current model and measured in the

experiment on the suction surface. The effect of the roughness height is shown clearly. The
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Table 4.3.5 Summary of inlet conditions for the Stripf’s LPT blade case.

Case Uin(m/s) Tul.e.(%) Rt−l.e. ν(×10−5m2s−1)

TC5 33.086 3.1 30.0 1.5

TC6 33.086 2.7 22.3 1.5

inflow conditions for k and ω for this case are again chosen based on the criterion that computed

results of the smooth wall cases should match the experimental data. By comparing the results

with two different Tu, one can infer that the transition location becomes less sensitive to Tu

as the roughness becomes higher, which is both presented by the experimental data and by

the current model. These observations are consistent with the HPT blade case. Both Nu and

Cf in fully turbulent region show very slight sensitivity to various roughness heights for LPT

cases. Various r+ for TC6 are given in Table 4.3.6, which are smaller than those in the HPT

case with comparable values of r, due to lower skin friction.

Table 4.3.6 Summary of roughness heights for the Stripf’s LPT blade, TC6.

r (×10−4m) 1.21 2.23 3.95

r+ 14.0 22.7 36.2
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Figure 4.3.10 Nusselt number for the Stripf’s LPT blade case. The solid lines are the predicted

curves for the Nusselt number by the current model, and the symbols present

the experimental data.
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Figure 4.3.11 Skin friction coefficient for the Stripf’s LPT blade: Case TC5 and TC6.
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CHAPTER 5. SUMMARY

5.1 Conclusion

The present work has proposed an intermittency bypass transition model that is simpler

than those published and without data correlation. Although it remains quite empirical, the

number of parameters is fewer and the role of each more apparent. It depends on only local

variables and hence is suitable for general computational fluid dynamics applications. One

single intermittency transport equation is developed and coupled with the k−ω RANS model.

Transition is initiated by diffusion and a source term carries it to turbulence. A sink term is

applied to ensure a laminar boundary layer before transition and it vanishes in the turbulent

region. Moreover, the model does not depend directly on pressure gradient and is capable of

predicting separation-induced transition and reattachment in a strong adverse pressure gradient

region.

Based on the concept of the equivalent sand grain roughness and effective displacement of

the origin, this intermittency model is extended to predict roughness effects on transition. The

local Reynolds number is modified by adding an effective displacement to the wall distance.

Some other modifications are needed for practical cases, like a turbine blade cascade. Boundary

conditions for the fully turbulent region of the boundary layer on rough walls are imposed. The

performance of this proposed model for prediction of roughness effects depends on the perfor-

mance of the model for smooth wall cases. The key point is that the roughness modification is

capable of properly shifting the smooth wall results for boundary layer transition.

A range of test cases were computed to validate the model for smooth walls, under different

free-stream Reynolds numbers, turbulence intensities, pressure gradients, and periodic passing

turbulent wakes. The numerical results showed decent agreement with the experimental or
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DNS data.

The rough wall model was validated by flat plate and turbine blade cases, with variations

of roughness height, Reynolds number, free-stream turbulence intensity and pressure gradient.

Reasonable agreement, especially in terms of transition location, with the results of a data

correlation-based model, or with experimental data, was obtained.

5.2 Suggestions for Future Work

One limitation of the current model is the inapplicability to cases with low free-stream

turbulence intensity (Tu < 1%). Because of the nature of the model, it is mainly proposed

to simulate bypass transition. The model is not suitable for cases with transition by linear

instability waves, for instance the T3A- case. Durbin (2012) provided a measure to suppress

the source term for case T3A- to delay its transition. However this does not work well in the

proposed model for general CFD codes and the predicted transition would be too early. Some

modification remains to be done to extend the scope of this model to low Tu cases.

The roughness model proposed cannot predict the prolonged transition lengths seen from

the data. The long transition region is presumably due to the separated roughness elements

in the experiments. Future efforts may be spent on this issue. In addition, Roughness effects

on transition in separated flows are not in the scope of the current work; they remain to be

explored in the future.
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APPENDIX. FULL MODEL FORMULATION

1 Model for Smooth Walls

The intermittency transport equation is as follows,

Dγ

Dt
= ∂j

[( ν

σl
+

νT
σγ

)
∂jγ
]
+ Pγ − Eγ , (1)

Pγ = Fγ |Ω| (γmax − γ)
√
γ, (2)

Eγ = GγFturb|Ω|γ1.5, (3)

where σl = 5.0, σγ = 0.2 and γmax = 1.1. The model depends on the parameters




Rt ≡
νT
ν
,

Tω ≡ Rt
|Ω|
ω

,

Rν ≡ d2|Ω|
2.188ν

.

(4)

Here |Ω| is defined by
√
2ΩijΩij . The source term contains

Fγ = 2max [0,min (100− 0.7Rν , 1)]

×min [max (Rν −Rc1, 0) , 4] .

(5)

Rc1 = 400− 360min

(
Tω

2
, 1

)
. (6)

The sink term contains

Gγ = 7.5max [0,min (100−Rν , 1)]

×min [max (Rν − 18, 0) , 1] .

(7)
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Fturb = e−(RνRt)
1.2

. (8)

The separation modification is applied via γeff . It depends on adverse pressure gradient

detector,

Rs ≡ d · nw · ∇|S|ω√
2|S|2

. (9)

Here |S| is defined by
√
SijSji.

γeff = max [min (1, γ) ,min (2, FRtFRνFRs)] . (10)

The limiter min (1, γ) clips off values greater than one for the γ field solved by the γ transport

equation. The 3 functions are defined as follows,

FRt = e−(Rt/10)
3

, (11)

FRν = max (Rν − 200, 0) , (12)

FRs = min [1.0,max (10 + 5Rs, 0)]

×min [1.0,max (10− 5Rs, 0)] .

(13)

The current formulation is applied to the k−ω RANS closure. The production term of the

k equation is multiplied by γeff . This is the only appearance of γ within the turbulence model.

Dk

Dt
= Pk − Cµkω + ∂j

[(
ν +

νT
σk

)
∂jk
]
, (14)

Pk = min
(
2νT |S|2, k|S|/

√
3
)
γeff , (15)

Dω

Dt
= 2Cω1|S|2 − Cω2ω

2 + ∂j

[(
ν +

νT
σω

)
∂jω

]
, (16)

where Cµ = 0.09, Cω1 = 5/9, Cω2 = 3/40 and σω = σk = 2. The eddy viscosity νT is k/ω.
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2 Model for Rough Walls

An effective origin for the wall distance is applied to the model for smooth walls.

Rν ≡ (d+ 0.26r)2 |Ω|
2.188ν

. (17)

Rs ≡ (d+ 0.26r) · nw · ∇|S|ω√
2|S|2

. (18)

Accordingly, the sink term has to be modified due to the change of Rν .

Gγ = 7.5max [0,min ((100 +Rc3)−Rν , 1)]

×min [max (Rν − (18 +Rc2), 0) , 1] .

(19)

Rc2 = 3.0

[
(0.26r)2 |Ω|

2.188ν

]0.8
. (20)

Rc3 = 0.3
(d+ 0.26r)2

√
|Q|sign(Q)

ν
,Rc3 = max [min (Rc3, 100) ,−100] , (21)

where Q = ΩijΩij − SijSij .

Fturb = e−(RνnewRt)
1.2

. (22)

Rνnew = Rνe
−F 1.5

Q /350. (23)

FQ = max

[
0,

r2
√
|Q|sign(Q)

ν

]
. (24)

Rc3 and Rνnew are used for strong favorable pressure gradient cases, such as a region right

after the leading edge on a suction surface of a turbine blade.
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