
Parallel Breadth-First Search on
Distributed Memory Systems

Aydın Buluç Kamesh Madduri
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, CA

{ABuluc, KMadduri}@lbl.gov

ABSTRACT
Data-intensive, graph-based computations are pervasive in
several scientific applications, and are known to to be quite
challenging to implement on distributed memory systems.
In this work, we explore the design space of parallel algo-
rithms for Breadth-First Search (BFS), a key subroutine in
several graph algorithms. We present two highly-tuned par-
allel approaches for BFS on large parallel systems: a level-
synchronous strategy that relies on a simple vertex-based
partitioning of the graph, and a two-dimensional sparse ma-
trix partitioning-based approach that mitigates parallel com-
munication overhead. For both approaches, we also present
hybrid versions with intra-node multithreading. Our novel
hybrid two-dimensional algorithm reduces communication
times by up to a factor of 3.5, relative to a common vertex
based approach. Our experimental study identifies execu-
tion regimes in which these approaches will be competitive,
and we demonstrate extremely high performance on lead-
ing distributed-memory parallel systems. For instance, for a
40,000-core parallel execution on Hopper, an AMD Magny-
Cours based system, we achieve a BFS performance rate of
17.8 billion edge visits per second on an undirected graph of
4.3 billion vertices and 68.7 billion edges with skewed degree
distribution.

1. INTRODUCTION
The use of graph abstractions to analyze and understand

social interaction data, complex engineered systems such
as the power grid and the Internet, communication data
such as email and phone networks, biological systems, and
in general, various forms of relational data, has been gain-
ing ever-increasing importance. Common graph-theoretic
problems arising in these application areas include identi-
fying and ranking important entities, detecting anomalous
patterns or sudden changes in networks, finding tightly in-
terconnected clusters of entities, and so on. The solutions
to these problems typically involve classical algorithms for
problems such as finding spanning trees, shortest paths,
biconnected components, matchings, flow-based computa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC11, November 12-18, 2011, Seattle, Washington, USA
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

tions, in these graphs. To cater to the graph-theoretic anal-
yses demands of emerging “big data” applications, it is es-
sential that we speed up the underlying graph problems on
current parallel systems.

We study the problem of traversing large graphs in this
paper. A traversal refers to a systematic method of explor-
ing all the vertices and edges in a graph. The ordering of
vertices using a “breadth-first” search (BFS) is of particular
interest in many graph problems. Theoretical analysis in the
random access machine (RAM) model of computation indi-
cates that the computational work performed by an efficient
BFS algorithm would scale linearly with the number of ver-
tices and edges, and there are several well-known serial and
parallel BFS algorithms (discussed in Section 2). However,
efficient RAM algorithms do not easily translate into “good
performance” on current computing platforms. This mis-
match arises due to the fact that current architectures lean
towards efficient execution of regular computations with low
memory footprints, and heavily penalize memory-intensive
codes with irregular memory accesses. Graph traversal prob-
lems such as BFS are by definition predominantly memory
access-bound, and these accesses are further dependent on
the structure of the input graph, thereby making the algo-
rithms “irregular”.

The recently-created Graph 500 List [20] is an attempt to
rank supercomputers based on their performance on data-
intensive applications, and BFS is chosen as the first rep-
resentative benchmark. Distributed memory architectures
dominate the supercomputer market and computational sci-
entists have an excellent understanding on mapping numer-
ical scientific applications to these systems. Measuring the
sustained floating point execution rate (Flop/s) and compar-
ison with the theoretical system peak is a popular technique.
In contrast, little is known about the design and parallel per-
formance of data-intensive graph algorithms, and the pro-
grammability trade-offs involved. Thus, the current Graph
500 list does not yet accurately portray the data-crunching
capabilities of parallel systems, and is just a reflection of the
quality of various benchmark BFS implementations.

BFS on distributed-memory systems involves explicit com-
munication between processors, and the distribution (or par-
titioning) of the graph among processors also impacts per-
formance. We utilize a testbed of large-scale graphs with
billions of vertices and edges to empirically evaluate the
performance of our BFS algorithms. These graphs are all
sparse, i.e., the number of edges m is just a constant factor
times the number of vertices n. Further, the average path
length in these graphs is a small constant value compared

to the number of vertices, or is at most bounded by logn.

Our Contributions
We present two complementary approaches to distributed-
memory BFS on graphs with skewed degree distribution.
The first approach is a more traditional scheme using one-
dimensional distributed adjacency arrays for representing
the graph. The second method utilizes a sparse matrix rep-
resentation of the graph and a two-dimensional partitioning
among processors. The following are our major contribu-
tions:

• Our two-dimensional partitioning-based approach, cou-
pled with intranode multithreading, reduces the communi-
cation overhead at high process concurrencies by a factor
of 3.5.
• Both our approaches include extensive intra-node multi-

core tuning and performance optimization. The single-
node performance of our graph-based approach is com-
parable to, or exceeds, recent single-node shared memory
results, on a variety of real-world and synthetic networks.
The hybrid schemes (distributed memory graph partition-
ing and shared memory traversal parallelism) enable BFS
scalability up to 40,000 cores.
• To accurately quantify the memory access costs in BFS,

we present a simple memory-reference centric performance
model. This model succinctly captures the differences be-
tween our two BFS strategies, and also provides insight
into architectural trends that enable high-performance graph
algorithms.

2. BREADTH-FIRST SEARCH OVERVIEW

2.1 Preliminaries
Given a distinguished “source vertex” s, Breadth-First

Search (BFS) systematically explores the graph G to dis-
cover every vertex that is reachable from s. Let V and E
refer to the vertex and edge sets of G, whose cardinalities
are n = |V | and m = |E|. We assume that the graph is un-
weighted; equivalently, each edge e ∈ E is assigned a weight
of unity. A path from vertex s to t is defined as a sequence of
edges 〈ui, ui+1〉 (edge directivity assumed to be ui → ui+1

in case of directed graphs), 0 ≤ i < l, where u0 = s and
ul = t. The length of a path is the sum of the weights of
edges. We use d(s, t) to denote the distance between vertices
s and t, or the length of the shortest path connecting s and
t. BFS implies that all vertices at a distance k (or “level”
k) from vertex s should be first “visited” before vertices at
distance k + 1. The distance from s to each reachable ver-
tex is typically the final output. In applications based on a
breadth-first graph traversal, one might optionally perform
auxiliary computations when visiting a vertex for the first
time. Additionally, a “breadth-first spanning tree” rooted
at s containing all the reachable vertices can also be main-
tained.

Algorithm 1 gives a serial algorithm for BFS. The required
breadth-first ordering of vertices is accomplished in this case
by using two stacks – FS and NS – for storing vertices at
the current level (or “frontier”) and the newly-visited set of
vertices (one hop away from the current level) respectively.
The number of iterations of the outer while loop (lines 5-
11) is bounded by the length of the longest shortest path
from s to any reachable vertex t. Note that this algorithm

Algorithm 1 Serial BFS algorithm.

Input: G(V,E), source vertex s.
Output: d[1..n], where d[v] gives the length of the shortest

path from s to v ∈ V .
1: for all v ∈ V do
2: d[v] ← ∞
3: d[s]← 0, level← 1, FS ← φ, NS ← φ
4: push s→ FS
5: while FS 6= φ do
6: for each u in FS do
7: for each neighbor v of u do
8: if d[v] =∞ then
9: push v → NS

10: d[v]← level

11: FS ← NS, NS ← φ, level← level + 1

is slightly different from the widely-used queue-based serial
algorithm [14]. We can relax the FIFO ordering mandated
by a queue at the cost of additional space utilization, but
the work complexity in the RAM model is still O(m+ n).

2.2 Parallel BFS: Prior Work
Parallel algorithms for BFS date back to nearly three

decades [31, 32]. The classical parallel random access ma-
chine (PRAM) approach to BFS is a straightforward exten-
sion of the serial algorithm presented in Algorithm 1. The
graph traversal loops (lines 6 and 7) are executed in parallel
by multiple processing elements, and the distance update
and stack push steps (lines 8-10) are atomic. There is a bar-
rier synchronization step once for each level, and thus the
execution time in the PRAM model is O(D), where the D is
the diameter of the graph. Since the PRAM model does not
weigh in synchronization costs, the asymptotic complexity
of work performed is identical to the serial algorithm.

The majority of the novel parallel implementations de-
veloped for BFS follow the general structure of this “level-
synchronous” algorithm, but adapt the algorithm to better
fit the underlying parallel architecture. In addition to keep-
ing the parallel work complexity close to O(m+n), the three
key optimization directions pursued are

• ensuring that parallelization of the edge visit steps (lines
6, 7 in Algorithm 1) is load-balanced,
• mitigating synchronization costs due to atomic updates

and the barrier synchronization at the end of each level,
and
• improving locality of memory references by modifying the

graph layout and/or BFS data structures.

We discuss recent work on parallel BFS in this section,
and categorize them based on the parallel system they were
designed for.

Multithreaded systems: Bader and Madduri [4] present
a fine-grained parallelization of the above level-synchronous
algorithm for the Cray MTA-2, a massively multithreaded
shared memory parallel system. Their approach utilizes the
support for fine-grained, low-overhead synchronization pro-
vided on the MTA-2, and ensures that the graph traversal
is load-balanced to run on thousands of hardware threads.
The MTA-2 system is unique in that it relies completely on
hardware multithreading to hide memory latency, as there
are no data caches in this system. This feature also elim-
inates the necessity of tedious locality-improvement opti-
mizations to the BFS algorithm, and Bader and Madduri’s

implementation achieves a very high system utilization on
a 40-processor MTA-2 system. Mizell and Maschhoff [29]
discuss an improvement to the Bader-Madduri MTA-2 ap-
proach, and present performance results for parallel BFS on
a 128-processor Cray XMT system, a successor to the Cray
MTA-2.

The current generation of GPGPUs are similar to the Cray
XMT systems in their reliance on large-scale multithreading
to hide memory latency. In addition, one needs to ensure
that the threads perform regular and contiguous memory
accesses to achieve high system utilization. This makes op-
timizing BFS for these architectures quite challenging, as
there is no work-efficient way to ensure coalesced accesses to
the d array in the level synchronous algorithm. Harish and
Narayanan [22] discuss implementations of BFS and other
graph algorithms on NVIDIA GPUs. Due to the comparably
higher memory bandwidth offered by the GDDR memory,
they show that the GPU implementations outperform BFS
approaches on the CPU for various low-diameter graph fami-
lies with tens of millions of vertices and edges. Luo et al. [27]
present an improvement to this work with a new hierarchical
data structure to store and access the frontier vertices, and
demonstrate that their algorithm is up to 10× faster than
the Harish-Narayanan algorithm on recent NVIDIA GPUs
and low-diameter sparse graphs. You et al. [39] study BFS-
like traversal optimization on GPUs and multicore CPUs in
the context of implementing an inference engine for a speech
recognition application.

Multicore systems: There has been a spurt in recent
work on BFS approaches for multicore CPU systems. Cur-
rent x86 multicore architectures, with 8 to 32-way core-level
parallelism and 2-4 way simultaneous multithreading, are
much more amenable to coarse-grained load balancing in
comparison to the multithreaded architectures. Possible
p-way partitioning of vertices and/or replication of high-
contention data structures alleviates some of the synchro-
nization overhead. However, due to the memory-intensive
nature of BFS, performance is still quite dependent on the
graph size, as well as the sizes and memory bandwidths
of the various levels of the cache hierarchy. Recent work
on parallelization of the queue-based algorithm by Agar-
wal et al. [1] notes a problem with scaling of atomic in-
trinsics on multi-socket Intel Nehalem systems. To mitigate
this, they suggest a partitioning of vertices and correspond-
ing edges among multiple sockets, and a combination of
the fine-grained approach and the accumulation-based ap-
proach in edge traversal. In specific, the distance values
(or the “visited” statuses of vertices in their work) of local
vertices are updated atomically, while non-local vertices are
held back to avoid coherence traffic due to cache line inval-
idations. They achieve very good scaling going from one to
four sockets with this optimization, at the expense of intro-
ducing an additional barrier synchronization for each BFS
level. Xia and Prasanna [37] also explore synchronization-
reducing optimizations for BFS on Intel Nehalem multicore
systems. Their new contribution is a low-overhead “adap-
tive barrier” at the end of each frontier expansion that ad-
justs the number of threads participating in traversal based
on an estimate of work to be performed. They show sig-
nificant performance improvements over näıve parallel BFS
implementations on dual-socket Nehalem systems. Leiser-
son and Schardl [25] explore a different optimization: they
replace the shared queue with a new “bag” data structure

which is more amenable for code parallelization with the
Cilk++ run-time model. These three approaches use seem-
ingly independent optimizations and different graph families
to evaluate performance on, which makes it difficult to do
a head-to-head comparison. Since our target architecture in
this study are clusters of multicore nodes, we share some
similarities to these approaches.

Distributed memory systems: The general structure
of the level-synchronous approach holds in case of distributed
memory implementations as well, but fine-grained “visited”
checks are replaced by edge aggregation-based strategies.
With a distributed graph and a distributed d array, a pro-
cessor cannot tell whether a non-local vertex has been pre-
viously visited or not. So the common approach taken is
to just accumulate all edges corresponding to non-local ver-
tices, and send them to the owner processor at the end of
a local traversal. There is thus an additional all-to-all com-
munication step at the end of each frontier expansion. In-
terprocessor communication is considered a significant per-
formance bottleneck in prior work on distributed graph al-
gorithms [11, 26]. The relative costs of inter-processor com-
munication and local computation depends on the quality of
the graph partitioning and the topological characteristics of
the interconnection network.

The BFS implementation of Scarpazza et al. [33] for the
Cell/B.E. processor, while being a multicore implementa-
tion, shares a lot of similarities with the general “explicit
partitioning and edge aggregation” BFS strategy for dis-
tributed memory system. The implementation by Yoo et
al. [38] for the BlueGene/L system is a notable distributed
memory parallelization. The authors observe that a two-
dimensional graph partitioning scheme would limit key col-
lective communication phases of the algorithms to at most√
p processors, thus avoiding the expensive all-to-all com-

munication steps. This enables them to scale BFS to pro-
cess concurrencies as high as 32,000 processors. However,
this implementation assumes that the graph families under
exploration would have a regular degree distribution, and
computes bounds for inter-process communication message
buffers based on this assumption. Such large-scale scala-
bility with or without 2D graph decomposition may not be
realizable for graphs with skewed degree distributions. Fur-
thermore, the computation time increases dramatically (up
to 10-fold) with increasing processor counts, under a weak
scaling regime. This implies that the sequential kernels and
data structures used in this study were not work-efficient.
As opposed to Yoo et al.’s work, we give details of the data
structures and algorithms that are local to each processor in
Section 4. Cong et al. [12] study the design and implementa-
tion of several graph algorithms using the partitioned global
address space (PGAS) programming model. Recently, Ed-
monds et al. [16] gave the first hybrid-parallel 1D BFS im-
plementation that uses active messages.

Software systems for large-scale distributed graph algo-
rithm design include the Parallel Boost graph library (PBGL)
[21] and the Pregel [28] framework. Both these systems
adopt a straightforward level-synchronous approach for BFS
and related problems. Prior distributed graph algorithms
are predominantly designed for “shared-nothing” settings.
However, current systems offer a significant amount of par-
allelism within a single processing node, with per-node mem-
ory capacities increasing as well. Our paper focuses on graph
traversal algorithm design in such a scenario. We present

these new parallel strategies and quantify the performance
benefits achieved in Section 3.

External memory algorithms: Random accesses to
disk are extremely expensive, and so locality-improvement
optimizations are the key focus of external memory graph
algorithms. External memory graph algorithms build on
known I/O-optimal strategies for sorting and scanning. Ajwani
and Meyer [2, 3] discuss the state-of-the-art algorithms for
BFS and related graph traversal problems, and present per-
formance results on large-scale graphs from several families.
Recent work by Pierce et al. [30] investigates implementa-
tions of semi-external BFS, shortest paths, and connected
components.

Other Parallel BFS Algorithms: There are several
alternate parallel algorithms to the level-synchronous ap-
proach, but we are unaware of any recent, optimized im-
plementations of these algorithms. The fastest-known al-
gorithm (in the PRAM complexity model) for BFS repeat-
edly squares the adjacency matrix of the graph, where the
element-wise operations are in the min-plus semiring (see [17]
for a detailed discussion). This computes the BFS order-
ing of the vertices in O(logn) time in the EREW-PRAM
model, but requires O(n3) processors for achieving these
bounds. This is perhaps too work-inefficient for travers-
ing large-scale graphs. The level synchronous approach is
also clearly inefficient for high-diameter graphs. A PRAM
algorithm designed by Ullman and Yannakakis [35], based
on path-limited searches, is a possible alternative on shared-
memory systems. However, it is far more complicated than
the simple level-synchronous approach, and has not been
empirically evaluated. The graph partitioning-based strate-
gies adopted by Ajwani and Meyer [3] in their external mem-
ory traversal of high-diameter graphs may possibly lend them-
selves to efficient in-memory implementations as well.

Other Related Work: Graph partitioning is intrinsic
to distributed memory graph algorithm design, as it helps
bound inter-processor communication traffic. One can fur-
ther relabel vertices based on partitioning or other heuris-
tics [13, 15], and this has the effect of improving memory
reference locality and thus improve parallel scaling.

A sparse graph can analogously be viewed as a sparse
matrix, and optimization strategies for linear algebra com-
putations similar to BFS, such as sparse matrix-vector mul-
tiplication [36], may be translated to the realm of graph
algorithms to improve BFS performance as well. Recent re-
search shows prospects of viewing graph algorithms as sparse
matrix operations [8,19]. Our work contributes to that area
by exploring the use of sparse-matrix sparse-vector multipli-
cation for BFS for the first time.

The formulation of BFS that is common in combinatorial
optimization and artificial intelligence search applications [5,
24] is different from the focus of this paper.

3. BREADTH-FIRST SEARCH ON
DISTRIBUTED MEMORY SYSTEMS

In this section, we briefly describe the high-level paral-
lelization strategy employed in our two distributed BFS schemes
with accompanying pseudo-code. Section 4 provides more
details about the parallel implementation of these algorithms.
The algorithms are seemingly straightforward to implement,
but eliciting high performance on current systems requires
careful data structure choices and low-level performance tun-

ing. Section 5.1 provides a rigorous analysis of both parallel
implementations.

3.1 BFS with 1D Partitioning
A natural way of distributing the vertices and edges of a

graph on a distributed memory system is to let each proces-
sor own n/p vertices and all the outgoing edges from those
vertices. We refer to this partitioning of the graph as ‘1D
partitioning’, as it translates to the one-dimensional decom-
position of the adjacency matrix corresponding to the graph.

The general schematic of the level-synchronous parallel
BFS algorithm can be modified to work in a distributed
scenario with 1D partitioning as well. Algorithm 2 gives
the pseudo-code for BFS on a cluster of multicore or mul-
tithreaded processors. The distance array is distributed
among processes. Every process only maintains the status of
vertices it owns, and so the traversal loop becomes an edge
aggregation phase. We can utilize multithreading within a
process to enumerate the adjacencies. However, only the
owner process of a vertex can identify whether it is newly
visited or not. Thus, all the adjacencies of the vertices in the
current frontier need to be sent to their corresponding owner
process, which happens in the All-to-all communication step
(line 21) of the algorithm. Note that the only thread-level
synchronization required is due to the barriers. The rest of
the steps such as buffer packing and unpacking can be per-
formed by the threads in a data-parallel manner. The key
aspects to note in this algorithm, in comparison to the serial
level-synchronous algorithm (Algorithm 1), is the extrane-
ous computation (and communication) introduced due to
the distributed graph scenario: creating the message buffers
of cumulative size O(m) and the All-to-all communication
step.

3.2 BFS with 2D Partitioning
We next describe a parallel BFS approach that directly

works with the sparse adjacency matrix of the graph. Fac-
toring out the underlying algebra, each BFS iteration is
computationally equivalent to a sparse matrix-sparse vec-
tor multiplication (SpMSV). Let A denote the adjacency
matrix of the graph, represented in a sparse boolean for-
mat, xk denotes the kth frontier, represented as a sparse
vector with integer variables. It is easy to see that the ex-
ploration of level k in BFS is algebraically equivalent to

xk+1 ← AT ⊗ xk �
⋃xi

i=1 (we will omit the transpose and
assume that the input is pre-transposed for the rest of this
section). The syntax ⊗ denotes the matrix-vector multipli-
cation operation on a special semiring, � denotes element-
wise multiplication, and overline represents the complement
operation. In other words, vi = 0 for vi 6= 0 and vi = 1 for
vi = 0. This algorithm becomes deterministic with the use of
(select,max)-semiring, because the parent is always chosen
to be the vertex with the highest label. The algorithm does
not have to store the previous frontiers explicitly as multiple
sparse vectors. In practice, it keeps a dense parents =

⋃xi
i=1

array, which is more space efficient and easier to update.
Our sparse matrix approach uses the alternative 2D de-

composition of the adjacency matrix of the graph. Consider
the simple checkerboard partitioning, where processors are
logically organized on a square p = pr×pc mesh, indexed by
their row and column indices so that the (i, j)th processor is
denoted by P (i, j). Edges and vertices (sub-matrices) are as-
signed to processors according to a 2D block decomposition.

Algorithm 2 Hybrid parallel BFS with vertex partitioning.

Input: G(V,E), source vertex s.
Output: d[1..n], where d[v] gives the length of the shortest

path from s to v ∈ V .
1: for all v ∈ V do
2: d[v] ← ∞
3: level← 1, FS ← φ, NS ← φ
4: ops ← find owner(s)
5: if ops = rank then
6: push s→ FS
7: d[s]← 0

8: for 0 ≤ j < p do
9: SendBufj ← φ . p shared message buffers

10: RecvBufj ← φ . for MPI communication
11: tBufij ← φ . thread-local stack for thread i

12: while FS 6= φ do
13: for each u in FS in parallel do
14: for each neighbor v of u do
15: pv ← find owner(v)
16: push v → tBufipv
17: Thread Barrier
18: for 0 ≤ j < p do
19: Merge thread-local tBufij ’s in parallel,

form SendBufj

20: Thread Barrier
21: All-to-all collective step with the master thread:

Send data in SendBuf , aggregate
newly-visited vertices into RecvBuf

22: Thread Barrier
23: for each u in RecvBuf in parallel do
24: if d[u] =∞ then
25: d[u]← level
26: push u→ NSi

27: Thread Barrier
28: FS ←

⋃
NSi . thread-parallel

29: Thread Barrier

Each node stores a sub-matrix of dimensions (n/pr)×(n/pc)
in its local memory.

Algorithm 3 gives the high-level pseudocode of our parallel
algorithm for BFS on 2D-distributed graphs. This algorithm
implicitly computes the “breadth-first spanning tree” by re-
turning a dense parents array. The inner loop block starting
in line 4 performs a single level traversal. All vectors and the
input matrix are 2D-distributed as illustrated in Figure 1. f ,
which is initially an empty sparse vector, represents the cur-
rent frontier. t is an sparse vector that holds the temporary
parent information for that iteration only. For a distributed
vector v, the syntax vij denotes the local n/p sized piece
of the vector owned by the P (i, j)th processor. The syntax
vi denotes the hypothetical n/pr or n/pc sized piece of the
vector collectively owned by all the processors along the ith
processor row P (i, :) or column P (:, i).

Each computational step can be efficiently parallelized
with multithreading. The multithreading of the SpMSV op-
eration in line 7 naturally follows the splitting of the local
sparse matrix data structure row-wise to t pieces. The vector
operations in lines 9–10 is parallelized simply by exploiting
loop-level parallelism.

TransposeVector redistributes the vector so that the
subvector owned by the ith processor row is now owned by
the ith processor column. In the case of pr = pc =

√
p, the

Algorithm 3 Parallel 2D BFS algorithm.

Input: A: undirected graph represented by a boolean
sparse adjacency matrix, s: source vertex id.

Output: π: dense vector, where π[v] is the predecessor ver-
tex on the shortest path from s to v, or −1 if v is un-
reachable.

1: procedure BFS 2D(A, s)
2: f(s)← s
3: for all processors P (i, j) in parallel do
4: while f 6= ∅ do
5: TransposeVector(fij)
6: fi ← Allgatherv(fij , P (:, j))
7: ti ← Aij ⊗ fi
8: tij ← Alltoallv(ti, P (i, :))
9: tij ← tij � πij

10: πij ← πij + tij
11: fij ← tij

5

8

!

x
1

!

x
1,1

!

x
1,2

!

x
1,3

!

x
2,1

!

x
2,2

!

x
2,3

!

x
3,1

!

x
3,2

!

x
3,3

!

x
2

!

x
3

!

A
1,1

!

A
1,2

!

A
1,3

!

A
2,1

!

A
2,2

!

A
2,3

!

A
3,1

!

A
3,2

!

A
3,3

Figure 1: 2D vector distribution illustrated by in-
terleaving it with the matrix distribution.

operation is simply a pairwise exchange between P (i, j) and
P (j, i). In the more general case, it involves an all-to-all
exchange among processor groups of size pr + pc.
Allgather(fij , P (:, j)) syntax denotes that subvectors

fij for j = 1, .., pr is accumulated at all the processors on
the jth processor column. Similarly, Alltoallv(ti, P (i, :))
denotes that each processor scatters the corresponding piece
of its intermediate vector ti to its owner, along the ith pro-
cessor row.

There are two distinct communication phases in a BFS al-
gorithm with 2D partitioning: a pre-computation “expand”
phase over the processor column (pr processes), and a post-
computation “fold” phase over the processor row (pc pro-
cesses).

In 1D decomposition, the partitioning of frontier vectors
naturally follows the vertices. In 2D decomposition, how-
ever, vertex ownerships are more flexible. One practice is
to distribute the vector entries only over one processor di-
mension (pr or pc) [23], for instance the diagonal proces-
sors if using a square grid (pr = pc), or the first processors
of each processor row. This approach is mostly adequate
for sparse matrix-dense vector multiplication (SpMV), since
no local computation is necessary for the “fold” phase after
the reduce step, to which all the processors contribute. For
SpMSV, however, distributing the vector to only a subset of
processors causes severe imbalance as we show in Section 4.3.

A more scalable and storage-efficient approach is to let
each processor have approximately the same number of ver-
tices. In this scheme, which we call the “2D vector dis-

tribution” in contrast to the “1D vector distribution”, we
still respect the two-dimensional processor grid. In other
words, the 2D vector distribution matches the matrix distri-
bution. Each processor row (except the last) is responsible
for t = bn/prc elements. The last processor row gets the
remaining n − bn/prc(pr − 1) elements Within the proces-
sor row, each processor (except the last) is responsible for
l = bt/pcc elements. In that sense, all the processors on
the ith processor row contribute to the storage of the ver-
tices that are numbered from vipr+1 to v(i+1)pr . The only
downside of the this approach is that the “expand” phase be-
comes an all-gather operation (within the processor column)
instead of the cheaper broadcast.

4. IMPLEMENTATION DETAILS

4.1 Graph Representation
For the graph-based BFS implementation, we use a ‘com-

pressed sparse row’ (CSR)-like representation for storing ad-
jacencies. All adjacencies of a vertex are sorted and com-
pactly stored in a contiguous chunk of memory, with ad-
jacencies of vertex i + 1 next to the adjacencies of i. For
directed graphs, we store only edges going out of vertices.
Each edge (rather the adjacency) is stored twice in case of
undirected graphs. An array of size n + 1 stores the start
of each contiguous vertex adjacency block. We use 64-bit
integers to represent vertex identifiers. This representation
is space-efficient in the sense that the aggregate storage for
the distributed data structure is on the same order as the
storage that would be needed to store the same data struc-
ture serially on a machine with large enough memory. Since
our graph is static, linked data structures such as adjacency
lists would incur more cache misses without providing any
additional benefits.

On the contrary, a CSR-like representation is too waste-
ful for storing sub-matrices after 2D partitioning. The ag-
gregate memory required to locally store each submatrix in
CSR format is O(n

√
p+m), while storing the whole matrix

in CSR format would only take O(n + m). Consequently,
a strictly O(m) data structure (possibly with fast index-
ing support) is required. One such data structure, doubly-
compressed sparse columns (DCSC), has been introduced
before [7] for hypersparse matrices that arise after 2D de-
composition. DCSC for BFS consists of an array IR of row
ids (size m), which is indexed by two parallel arrays of col-
umn pointers (CP) and column ids (JC). The size of these
parallel arrays are on the order of the number of columns
that has at least one nonzero (nzc) in them.

For the hybrid 2D algorithm, we split the node local ma-
trix rowwise to t (number of threads) pieces. Each thread
local n/(prt)×n/pc sparse matrix is stored in DCSC format.

A compact representation of the frontier vector is also im-
portant. It should be represented in a sparse format, where
only the indices of the non-zeros are stored. We use a stack
in the 1D implementation and a sorted sparse vector in the
2D implementation. Any extra data that are piggybacked to
the frontier vectors adversely affect the performance, since
the communication volume of the BFS benchmark is directly
proportional to the size of this vector.

4.2 Shared memory computation
There are two potential bottlenecks to multithreaded par-

allel scaling in Algorithm 2 on our target architectural plat-

forms (multicore systems with modest levels of thread-level
parallelism). Consider pushes of newly-visited vertices to
the stack NS. A shared stack for all threads would involve
thread contention for every insertion. We use thread-local
stacks (indicated by NSi in the algorithm) for storing these
vertices, and merging them at the end of each iteration to
form FS, the frontier stack. Note that the total number
of queue pushes is bounded by n, the number of vertices
in the graph. Hence, the cumulative memory requirement
for these stacks is bounded, and the additional computation
performed due to merging would be O(n). Our choice is
different from the approaches taken in prior work (such as
specialized set data structures [25] or a shared queue with
atomic increments [1]). For multithreaded experiments con-
ducted in this study, we found that our choice does not limit
performance, and the copying step constitutes a minor over-
head, less than 3% of the execution time.

Next, consider the distance checks (lines 24-25) and up-
dates in Algorithm 2. This is typically made atomic to en-
sure that a new vertex is added only once to the stack NS.
We note that the BFS algorithm is still correct (but the out-
put is non-deterministic) even if a vertex is added multiple
times, as the distance value is guaranteed to be written cor-
rectly after the thread barrier and memory fence at the end
of a level of exploration. Cache coherence further ensures
that the correct value may propagate to other cores once
it is updated. We observe that we actually perform a very
small percentage of additional insertions (less than 0.5%) for
all the graphs we experimented with at six-way threading.
This lets us avert the issue of non-scaling atomics across
multi-socket configurations [1]. This optimization was also
considered by Leiserson et al. [25] (termed “benign races”)
for insertions to their bag data structure.

For the 2D algorithm, the computation time is dominated
by the sequential SpMSV operation in line 7 of Algorithm 3.
This corresponds to selection, scaling and finally merging
columns of the local adjacency matrix that are indexed by
the nonzeros in the sparse vector. Computationally, we form
the union

⋃
Aij(:, k) for all k where fi(k) exists.

We explored multiple methods of forming this union. The
first option is to use a priority-queue of size nnz (fi) and per-
form a unbalanced multiway merging. While this option has
the advantage of being memory-efficient and automatically
creating a sorted output, the extra logarithmic factor hurts
the performance at small concurrencies, even after using a
highly optimized cache-efficient heap. The cumulative re-
quirement for these heaps are O(m). The second option is
to use a sparse accumulator (SPA) [18] which is composed
of a dense vector of values, a bit mask representing the “oc-
cupied” flags, and a list that keeps the indices of existing
elements in the output vector. The SPA approach proved
to be faster for lower concurrencies, although it has disad-
vantages such as increasing the memory footprint due to the
temporary dense vectors, and having to explicitly sort the
indices at the end of the iteration. Our microbenchmarks [9]
revealed a transition point around 10000 cores (for flat MPI
version) after which the priority-queue method is more ef-
ficient, both in terms of speed and memory footprint. Our
final algorithm is therefore a polyalgorithm depending on
the concurrency.

4.3 Distributed-memory parallelism
We use the MPI message-passing library to express the

inter-node communication steps. In particular, we exten-
sively utilize the collective communication routines Alltoallv,
Allreduce, and Allgatherv.

Our 2D implementation relies on the linear-algebraic prim-
itives of the Combinatorial BLAS framework [8], with cer-
tain BFS-specific optimizations enabled.

We chose to distribute the vectors over all processors in-
stead of only a subset (the diagonal processors in this case)
of processors. In SpMSV, the accumulation of sparse con-
tributions requires the diagonal processor to go through an
additional local merging phase, during which all other pro-
cessors on the processor row sit idle, causing severe load im-
balance [9]. Distributing the vectors over all processors (2D
vector distribution) remedies this problem and we observe
almost no load imbalance in that case.

4.4 Load-balancing traversal
We achieve a reasonable load-balanced graph traversal by

randomly shuffling all the vertex identifiers prior to parti-
tioning. This leads to each process getting roughly the same
number of vertices and edges, regardless of the degree distri-
bution. An identical strategy is also employed in the Graph
500 BFS benchmark. The downside to this is that the edge
cut can be potentially as high as an average random bal-
anced cut, which can be O(m) for several random graph
families [34].

5. ALGORITHM ANALYSIS
The RAM and PRAM models capture asymptotic work

and parallel execution time complexity with extremely sim-
ple underlying assumptions of the machine model, and are
inadequate to analyze and contrast parallel BFS algorith-
mic variants on current parallel systems. For instance, the
PRAM asymptotic time complexity for a level-synchronous
parallel BFS is O(D) (where D is the diameter of the graph),
and the work complexity is O(m + n). These terms do not
provide any realistic estimate of performance on current par-
allel systems.

We propose a simple linear model to capture the cost
of regular (unit stride or fixed-stride) and irregular mem-
ory references to various levels of the memory hierarchy,
as well as to succinctly express inter-processor MPI com-
munication costs. We use the terms α and β to account
for the latency of memory accesses and the transfer time
per memory word (i.e., inverse of bandwidth) respectively.
Further, we use αL to indicate memory references to local
memory, and αN to denote message latency over the net-
work (remote memory accesses). The bandwidth terms can
also be similarly defined. To account for the differing access
times to various levels of the memory hierarchy, we addi-
tionally qualify the α term to indicate the size of the data
structure (in memory words) that is being accessed. αL,x,
for instance, would indicate the latency of memory access
to a memory word in a logically-contiguous memory chunk
of size x words. Similarly, to differentiate between various
inter-node collective patterns and algorithms, we qualify the
network bandwidth terms with the communication pattern.
For instance, βN,p2p would indicate the sustained memory
bandwidth for point-to-point communication, βN,a2a would
indicate the sustained memory bandwidth per node in case
of an all-to-all communication scenario, and βN,ag would
indicate the sustained memory bandwidth per node for an
allgather operation.

Using synthetic benchmarks, the values of α and β de-
fined above can be calculated offline for a particular parallel
system and software configuration. The programming model
employed, the messaging implementation used, the compiler
optimizations employed are some software factors that de-
termine the various α and β values.

5.1 Analysis of the 1D Algorithm
Consider the locality characteristics of memory references

in the level-synchronous BFS algorithm. Memory traffic
comprises touching every edge once (i.e., accesses to the ad-
jacency arrays, cumulatively m), reads and writes from/to
the frontier stacks (n), distance array checks (m irregular
accesses to an array of size n) and writes (n accesses to d).
The complexity of the 1D BFS algorithm in our model is thus
mβL (cumulative adjacency accesses) + nαn (accesses to ad-
jacency array pointers) + mαn (distance checks/writes).

In the parallel case with 1D vertex and edge partition-
ing, the number of local vertices nloc is approximately n/p
and the number of local edges is m/p. The local memory
reference cost is given by m

p
βL + n

p
αL,n/p + m

p
αL,n/p. The

distance array checks thus constitute the substantial fraction
of the execution time, since the αL,n/p term is significantly
higher than the βL term. One benefit of the distributed ap-
proach is the array size for random accesses reduces from n
to n/p, and so the cache working set of the algorithm is sub-
stantially lower. Multithreading within a node (say, t-way
threading) has the effect of reducing the number of processes
and increasing the increasing the process-local vertex count
by a factor of t.

The remote memory access costs are given by the All-to-all
step, which involves a cumulative data volume of m(p−1)/p
words sent on the network. For a random graph with a
uniform degree distribution, each process would send ev-
ery other process roughly m/p2 words. This value is typ-
ically large enough that the bandwidth component domi-
nates over the latency term. Since we randomly shuffle the
vertex identifiers prior to execution of BFS, these commu-
nication bounds hold true in case of the synthetic random
networks we experimented with in this paper. Thus, the
per-node communication cost is given by pαN + m

p
βN,a2a(p).

βN,a2a(p) is a function of the processor count, and several
factors, including the interconnection topology, node injec-
tion bandwidth, the routing protocol, network contention,
etc. determine the sustained per-node bandwidth. For in-
stance, if nodes are connected in a 3D torus, it can be shown
that bisection bandwidth scales as p2/3. Assuming all-to-
all communication scales similarly, the communication cost
can be revised to pαN + m

p
p1/3βN,a2a. If processors are con-

nected via a ring, then pαN+m
p
pβN,a2a would be an estimate

for the all-to-all communication cost, essentially meaning no
parallel speedup.

5.2 Analysis of the 2D Algorithm
Consider the general 2D processor grid of pr×pc. The size

of the local adjacency matrix is n/pr×n/pc. The number of
memory references is the same as the 1D case, cumulatively
over all processors. However, the cache working set is big-
ger, because the sizes of the local input (frontier) and output
vectors are n/pr and n/pc, respectively. The local mem-
ory reference cost is given by m

p
βL + n

p
αL,n/pc + m

p
αL,n/pr .

The higher number of cache misses associated with larger
working sets is perhaps the primary reason for the relatively

higher computation costs of the 2D algorithm.
Most of the costs due to remote memory accesses is con-

centrated in two operations. The expand phase is character-
ized by an Allgatherv operation over the processor column
(of size pr) and the fold phase is characterized by an All-
toallv operation over the processor row (of size pc).

The aggregate input to the Allgatherv step is O(n) over
all iterations. However, each processor receives a 1/pc por-
tion of it, meaning that frontier subvector gets replicated
along the processor column. Hence, the per node commu-
nication cost is prαN + n

pc
βN,ag(pr). This replication can

be partially avoided by performing an extra round of com-
munication where each processor individually examines its
columns and broadcasts the indices of its nonempty columns.
However, this extra step does not decrease the asymptotic
complexity for graphs that do not have good separators.

The aggregate input to the Alltoallv step can be as high
as O(m), although the number is lower in practice due to
in-node aggregation of newly discovered vertices that takes
place before the communication. Since each processor re-
ceives only a 1/p portion of this data, the remote costs due
to this step are at most pcαN + m

p
βN,a2a(pc).

We see that for large p, the expand phase is likely to be
more expensive than the fold phase. Our analysis success-
fully captures that the relatively lower communication costs
of the 2D algorithm by representing βN,x as a function of
the processor count.

6. EXPERIMENTAL STUDIES
We have extensively evaluated the performance of our two

parallel BFS schemes. We experiment with two parallel pro-
gramming models: “Flat MPI” with one process per core,
and a hybrid implementation with one or more MPI pro-
cesses within a node. We use synthetic graphs based on
the R-MAT random graph model [10], as well as a large-
scale real world graph that represents a web crawl of the
UK domain [6] (uk-union) that has 133 million vertices and
5.5 billion edges. The R-MAT generator creates networks
with skewed degree distributions and a very low graph di-
ameter. We set the R-MAT parameters a, b, c, and d to
0.59, 0.19, 0.19, 0.05 respectively. These parameters are iden-
tical to the ones used for generating synthetic instances in
the Graph 500 BFS benchmark. R-MAT graphs make for
interesting test instances: traversal load-balancing is non-
trivial due to the skewed degree distribution, the graphs
lack good separators, and common vertex relabeling strate-
gies are also expected to have a minimal effect on cache
performance. The diameter of the uk-union graph is signifi-
cantly higher (≈ 140) than R-MAT’s (less than 10), allowing
us to access the sensitivity of our algorithms with respect to
the number of synchronizations. We use undirected graphs
for all our experiments, but the BFS approaches can work
with directed graphs as well.

To compare performance across multiple systems using a
rate analogous to the commonly-used floating point opera-
tions/second, we normalize the serial and parallel execution
times by the number of edges visited in a BFS traversal
and present a ‘Traversed Edges Per Second’ (TEPS) rate.
For a graph with a single connected component (or one
strongly connected component in case of directed networks),
the baseline BFS algorithm would visit every edge twice
(once in case of directed graphs). We only consider traver-
sal execution times from vertices that appear in the large

Figure 2: BFS ‘strong scaling’ results on Franklin
for R-MAT graphs: Performance rate achieved (in
GTEPS) on increasing the number of processors
(top), and the corresponding average inter-node
MPI communication time (in seconds, bottom).

component, compute the mean search time (harmonic mean
of TEPS) using at least 16 randomly-chosen sources vertices
for each benchmark graph, and normalize the time by the
cumulative number of edges visited to get the TEPS rate. As
suggested by the Graph 500 benchmark, we first symmetrize
the input to model undirected graphs. For TEPS calcula-
tion, we only count the number of edges in the original di-
rected graph, despite visiting symmetric edges as well. The
performance rate captures both the communication time and
the computation time. For R-MAT graphs, the default edge
count to vertex ratio is set to 16 (which again corresponds
to the Graph 500 default setting), but we also vary the ratio
of edge to vertex counts in some of our experiments.

We collect performance results on two large systems: ‘Hop-
per’, a 6392-node Cray XE6 and ‘Franklin’, a 9660-node
Cray XT4. Both supercomputers are located at NERSC,
Lawrence Berkeley National Laboratory. Each XT4 node
contains a quad-core 2.3 GHz AMD Opteron processor, which
is tightly integrated to the XT4 interconnect via a Cray
SeaStar2 ASIC through a HyperTransport (HT) 2 interface
capable of 6.4 GB/s. The SeaStar routing chips are inter-
connected in a 3D torus topology, and each link is capable
of 7.6 GB/s peak bidirectional bandwidth. Each XE6 node
contains two twelve-core 2.1 GHz AMD Opteron processors,
integrated to the Cray Gemini interconnect through HT 3
interfaces. Each Gemini chip is capable of 9.8 GB/s band-
width. Two XE6 nodes share a Gemini chip as opposed to
the one-to-one relationship on XT4. The effective bisection
bandwidth of XE6 is slightly lower (ranging from 1-20%,
depending on the bisection dimension) than XT4’s. Each
twelve-core ‘MagnyCours’ die is essentially composed of two
6-core NUMA nodes. More information on the architectures

Figure 3: BFS ‘strong scaling’ results on Hop-
per for R-MAT graphs: Performance rate achieved
(in GTEPS) on increasing the number of proces-
sors (top), and the corresponding average inter-node
MPI communication time (in seconds, bottom).

can be found in the extended version [9].
We used the GNU C/C++ compilers (v4.5) for compiling

both implementations. The 1D versions are implemented in
C, whereas the 2D codes are implemented in C++. We use
Cray’s MPI implementation, which is based on MPICH2.
For intra-node threading, we use the GNU OpenMP library.

Figure 2 shows ‘strong scaling’ of our algorithms’ perfor-
mance (higher is better) on Franklin. We see that the flat
1D algorithms are about 1.5 − 1.8× faster than the 2D al-
gorithms on this architecture. The 1D hybrid algorithm,
albeit slower than the flat 1D algorithm for smaller con-
currencies, starts to perform significantly faster for larger
concurrencies. We attribute this effect partially to bisection
bandwidth saturation, and partially to the saturation of the
network interface card when using more cores (leading to
more outstanding communication requests) per node. The
2D hybrid algorithm tends to outperform the flat 2D algo-
rithm, but can not compete with the 1D algorithms on this
architecture as it spends significantly more time in compu-
tation. This is due to relatively larger cache working sizes,
as captured by our model in Section 5.

The communication costs, however, tell a different story
about the relative competitiveness of our algorithms. 2D
algorithms consistently spend less time (30-60% for scale 32)
in communication, compared to their relative 1D algorithms.
This is also expected by our analysis, as smaller number
of participating processors in collective operations tend to
result in faster communication times, with the same amount
of data. The hybrid 1D algorithm catches up with the flat
2D algorithm at large concurrencies for the smaller (scale
29) dataset, but still lags behind the hybrid 2D algorithm.

Strong scaling results on Hopper are shown in Figure 3.

Figure 4: BFS ‘weak scaling’ results on Franklin for
Graph 500 R-MAT graphs: Mean search time (left)
and MPI communication time (right) on fixed prob-
lem size per core (each core has ≈ 17M edges). In
both plots, lower is better.

0

2

4

6

8

10

SCALE 31, degree 4 SCALE 29, degree 16 SCALE 27, degree 64

P
er

fo
rm

an
ce

 R
at

e
(G

TE
P

S
)

1D Flat MPI 1D Hybrid 2D Flat MPI 2D Hybrid

Figure 5: BFS GTEPS performance rate achieved
on 4096 cores of Franklin by varying the average
vertex degree for R-MAT graphs.

In contrast to Franklin results, the 2D algorithms perform
better than their 1D counterparts. The more sophisticated
Magny-Cours chips of Hopper are clearly faster in integer
calculations, while the overall bisection bandwidth has not
kept pace. We did not execute the flat 1D algorithm on
40K cores as the communication times already started to
increase when going from 10K to 20K cores, consuming more
than 90% of the overall execution time. In contrast, the
percentage of time spent in communication for the 2D hybrid
algorithm was less than 50% on 20K cores.

“Weak scaling” performance results on Franklin are shown
in Figure 4, where we fix the edges per processor to a con-
stant value. To be consistent with prior literature, we present
weak scaling results in terms of the time it takes to complete
the BFS iterations, with ideal curve being a flat line. Inter-
estingly, in this regime, the flat 1D algorithm performs bet-
ter than the hybrid 1D algorithm, both in terms of overall
performance and communication costs. The 2D algorithms,
although performing much less communication than their
1D counterparts, come later in terms of overall performance
on this architecture, due to their higher computation over-
heads.

Figure 5 shows the sensitivity of our algorithms to varying
graph densities. In this experiment, we kept the number
of edges per processor constant by varying the number of
vertices as the average degree varies. The trend is obvious
in that the performance margin between the 1D algorithms
and the 2D algorithms increases in favor of the 1D algorithm
as the graph gets sparser. The empirical data supports our

 6
 7
 8
 9

50
0

10
00

20
00

40
00 50
0

10
00

20
00

40
00

M
ea

n
Se

ar
ch

 T
im

e
(s

ec
s)

2D Flat 2D Hybrid

Computa.
Communi.

 0
 1
 2
 3
 4
 5

Figure 6: Running times of the 2D algorithms on
the uk-union data set on Hopper (lower is better).
The numbers on the x-axis is the number of cores.
The running times translate into a maximum of 3
GTEPS performance, achieving a 4× speedup when
going from 500 to 4000 cores

analysis in Section 5, which stated that the 2D algorithm
performance was limited by the local memory accesses to its
relatively larger vectors. For a fixed number of edges, the
matrix dimensions (hence the length of intermediate vectors)
shrink as the graph gets denser, partially nullifying the cost
of local cache misses.

We show the performance of our 2D algorithms on the
real uk-union data set in Figure 6. We see that communi-
cation takes a very small fraction of the overall execution
time, even on 4K cores. This is a notable result because
the uk-union dataset has a relatively high-diameter and the
BFS takes approximately 140 iterations to complete. Since
communication is not the most important factor, the hybrid
algorithm is slower than flat MPI, as it has more intra-node
parallelization overheads.

To compare our approaches with prior and reference dis-
tributed memory implementations, we experimented with
the Parallel Boost Graph Library’s (PBGL) BFS implemen-
tation [21] (Version 1.45 of the Boost library) and the ref-
erence MPI implementation (Version 2.1) of the Graph 500
benchmark [20]. On Franklin, our Flat 1D code is 2.72×,
3.43×, and 4.13× faster than the non-replicated reference
MPI code on 512, 1024, and 2048 cores, respectively.

Since PBGL failed to compile on the Cray machines, we
ran comparison tests on Carver, an IBM iDataPlex system
with 400 compute nodes, each node having two quad-core
Intel Nehalem processors. PBGL suffers from severe mem-
ory bottlenecks in graph construction that hinder scalable
creation of large graphs. Our results are summarized in Ta-
ble 1 for graphs that ran to completion. We are up to 16×
faster than PBGL even on these small problem instances.

Extensive experimentation reveals that our single-node
multithreaded BFS version (i.e., without the inter-node com-
munication steps in Algorithm 2) is also extremely fast. We
compare the Nehalem-EP performance results reported in
the work by Agarwal et al. [1] with the performance on a
single node of the Carver system (also Nehalem-EP), and
notice that for R-MAT graphs with average degree 16 and
32 million vertices, our approach is nearly 1.30× faster. Our
approach is also faster than BFS results reported by Leis-
erson et al. [25] on the KKt_power, Freescale1, and Cage14

test instances, by up to 1.47×.

Table 1: Performance comparison with PBGL on
Carver. The reported numbers are in MTEPS for
R-MAT graphs with the same parameters as before.
In all cases, the graphs are undirected and edges are
permuted for load balance.

Core count Code
Problem Size

Scale 22 Scale 24

128
PBGL 25.9 39.4

Flat 2D 266.5 567.4

256
PBGL 22.4 37.5

Flat 2D 349.8 603.6

7. CONCLUSIONS AND FUTURE WORK
In this paper, we present a design-space exploration of

distributed-memory parallel BFS, discussing two fast“hybrid-
parallel” approaches for large-scale graphs. Our experimen-
tal study encompasses performance analysis on several large-
scale synthetic random graphs that are also used in the
recently announced Graph 500 benchmark. The absolute
performance numbers we achieve on the large-scale parallel
systems Hopper and Franklin at NERSC are significantly
higher than prior work. The performance results, coupled
with our analysis of communication and memory access costs
of the two algorithms, challenges conventional wisdom that
fine-grained communication is inherent in parallel graph al-
gorithms and necessary for achieving high performance [26].

We list below optimizations that we intend to explore in
future work, and some open questions related to design of
distributed-memory graph algorithms.
Exploiting symmetry in undirected graphs. If the
graph is undirected, then one can save 50% space by storing
only the upper (or lower) triangle of the sparse adjacency
matrix, effectively doubling the size of the maximum prob-
lem that can be solved in-memory on a particular system.
The algorithmic modifications needed to save a comparable
amount in communication costs for BFS iterations is not
well-studied.
Exploring alternate programming models. Partitioned
global address space (PGAS) languages can potentially sim-
plify expression of graph algorithms, as inter-processor com-
munication is implicit. In future work, we will investigate
whether our two new BFS approaches are amenable to ex-
pression using PGAS languages, and whether they can de-
liver comparable performance.
Reducing inter-processor communication volume with
graph partitioning. An alternative to randomization of
vertex identifiers is to use hypergraph partitioning software
to reduce communication. Although hypergraphs are ca-
pable of accurately modeling the communication costs of
sparse matrix-dense vector multiplication, SpMSV case has
not been studied, which is potentially harder as the sparsity
pattern of the frontier vector changes over BFS iterations.
Interprocessor collective communication optimiza-
tion. We conclude that even after alleviating the communi-
cation costs, the performance of distributed-memory parallel
BFS is heavily dependent on the inter-processor collective
communication routines All-to-all and Allgather. Under-
standing the bottlenecks in these routines at high process
concurrencies, and designing network topology-aware collec-
tive algorithms is an interesting avenue for future research.

Acknowledgments
This work was supported by the Director, Office of Science,
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. Discussions with John R. Gilbert, Steve Rein-
hardt, and Adam Lugowski greatly improved our under-
standing of casting BFS iterations into sparse linear algebra.
John Shalf and Nick Wright provided generous technical and
moral support during the project.

8. REFERENCES
[1] V. Agarwal, F. Petrini, D. Pasetto, and D.A. Bader.

Scalable graph exploration on multicore processors. In
Proc. ACM/IEEE Conference on Supercomputing
(SC10), November 2010.

[2] D. Ajwani, R. Dementiev, and U. Meyer. A
computational study of external-memory BFS
algorithms. In Proc. 17th annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’06), pages
601–610, January 2006.

[3] D. Ajwani and U. Meyer. Design and engineering of
external memory traversal algorithms for general
graphs. In J. Lerner, D. Wagner, and K.A. Zweig,
editors, Algorithmics of Large and Complex Networks:
Design, Analysis, and Simulation, pages 1–33.
Springer, 2009.

[4] D.A. Bader and K. Madduri. Designing multithreaded
algorithms for breadth-first search and st-connectivity
on the Cray MTA-2. In Proc. 35th Int’l. Conf. on
Parallel Processing (ICPP 2006), pages 523–530,
August 2006.

[5] J. Barnat, L. Brim, and J. Chaloupka. Parallel
breadth-first search LTL model-checking. In Proc.
18th IEEE Int’l. Conf. on Automated Software
Engineering, pages 106–115, October 2003.

[6] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In Proc. 13th Int’l. World
Wide Web Conference (WWW 2004), pages 595–601,
2004.

[7] A. Buluç and J.R. Gilbert. On the representation and
multiplication of hypersparse matrices. In Proc. Int’l
Parallel and Distributed Processing Symp. (IPDPS
2008), pages 1–11. IEEE Computer Society, 2008.

[8] A. Buluç and J.R. Gilbert. The Combinatorial BLAS:
Design, implementation, and applications. The
International Journal of High Performance Computing
Applications, Online first, 2011.

[9] A. Buluç and K. Madduri. Parallel breadth-first
search on distributed memory systems. Technical
Report LBNL-4769E, Lawrence Berkeley National
Laboratory, 2011.

[10] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT:
A recursive model for graph mining. In Proc. 4th
SIAM Intl. Conf. on Data Mining (SDM), Orlando,
FL, April 2004. SIAM.

[11] A. Chan, F. Dehne, and R. Taylor.
CGMGRAPH/CGMLIB: Implementing and testing
CGM graph algorithms on PC clusters and shared
memory machines. Int’l. Journal of High Performance
Comput. Appl., 19(1):81–97, 2005.

[12] G. Cong, G. Almasi, and V. Saraswat. Fast PGAS
implementation of distributed graph algorithms. In

Proc. ACM/IEEE Conference on Supercomputing
(SC10), November 2010.

[13] G. Cong and K. Makarychev. Improving memory
access locality for large-scale graph analysis
applications. In Proc. 22nd Intl. Parallel and
Distributed Computing and Communication Systems
(PDCCS 2009), pages 121–127, September 2009.

[14] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, Inc.,
Cambridge, MA, 1990.

[15] E. Cuthill and J. McKee. Reducing the bandwidth of
sparse symmetric matrices. In Proc. 24th ACM
Annual Conf./Annual Meeting, pages 157–172, 1969.

[16] N. Edmonds, J. Willcock, T. Hoefler, and
A. Lumsdaine. Design of a large-scale hybrid-parallel
graph library. In International Conference on High
Performance Computing, Student Research
Symposium, Goa, India, December 2010. To appear.

[17] H. Gazit and G.L. Miller. An improved parallel
algorithm that computes the BFS numbering of a
directed graph. Information Processing Letters,
28(2):61–65, 1988.

[18] J.R. Gilbert, C. Moler, and R. Schreiber. Sparse
matrices in Matlab: Design and implementation.
SIAM Journal of Matrix Analysis and Applications,
13(1):333–356, 1992.

[19] J.R. Gilbert, S. Reinhardt, and V.B. Shah. A unified
framework for numerical and combinatorial
computing. Computing in Science and Engineering,
10(2):20–25, 2008.

[20] The Graph 500 List. http://www.graph500.org, last
accessed April 2011.

[21] D. Gregor and A. Lumsdaine. Lifting sequential graph
algorithms for distributed-memory parallel
computation. In Proc. 20th ACM SIGPLAN Conf. on
Object Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 423–437, October
2005.

[22] P. Harish and P.J. Narayanan. Accelerating large
graph algorithms on the GPU using CUDA. In Proc.
14th Int’l. Conf. on High-Performance Computing
(HiPC), pages 197–208, dec 2007.

[23] B. Hendrickson, R.W. Leland, and S. Plimpton. An
efficient parallel algorithm for matrix-vector
multiplication. International Journal of High Speed
Computing, 7(1):73–88, 1995.

[24] R.E. Korf and P. Schultze. Large-scale parallel
breadth-first search. In Proc. 20th National Conf. on
Artificial Intelligence (AAAI’05), pages 1380–1385,
July 2005.

[25] C.E. Leiserson and T.B. Schardl. A work-efficient
parallel breadth-first search algorithm (or how to cope
with the nondeterminism of reducers). In Proc. 22nd
ACM Symp. on Parallism in Algorithms and
Architectures (SPAA ’10), pages 303–314, June 2010.

[26] A. Lumsdaine, D. Gregor, B. Hendrickson, and J.W.
Berry. Challenges in parallel graph processing. Parallel
Processing Letters, 17:5–20, 2007.

[27] L. Luo, M. Wong, and W m. Hwu. An effective GPU
implementation of breadth-first search. In Proc. 47th
Design Automation Conference (DAC ’10), pages
52–55, June 2010.

http://www.graph500.org

[28] G. Malewicz, M.H. Austern, A.J.C. Bik, J.C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In Proc. Int’l.
Conf. on Management of Data (SIGMOD ’10), pages
135–146, June 2010.

[29] D. Mizell and K. Maschhoff. Early experiences with
large-scale XMT systems. In Proc. Workshop on
Multithreaded Architectures and Applications
(MTAAP’09), May 2009.

[30] R. Pearce, M. Gokhale, and N.M. Amato.
Multithreaded asynchronous graph traversal for
in-memory and semi-external memory. In Proc. 2010
ACM/IEEE Int’l. Conf. for High Performance
Computing, Networking, Storage and Analysis
(SC’10), pages 1–11, 2010.

[31] M.J. Quinn and N. Deo. Parallel graph algorithms.
ACM Comput. Surv., 16(3):319–348, 1984.

[32] A.E. Reghbati and D.G. Corneil. Parallel
computations in graph theory. SIAM Journal of
Computing, 2(2):230–237, 1978.

[33] D.P. Scarpazza, O. Villa, and F. Petrini. Efficient
Breadth-First Search on the Cell/BE processor. IEEE
Transactions on Parallel and Distributed Systems,
19(10):1381–1395, 2008.

[34] G.R. Schreiber and O.C. Martin. Cut size statistics of
graph bisection heuristics. SIAM Journal on
Optimization, 10(1):231–251, 1999.

[35] J. Ullman and M. Yannakakis. High-probability
parallel transitive closure algorithms. In Proc. 2nd
Annual Symp. on Parallel Algorithms and
Architectures (SPAA 1990), pages 200–209, July 1990.

[36] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick,
and J. Demmel. Optimization of sparse matrix-vector
multiplication on emerging multicore platforms.
Parallel Computing, 35(3):178–194, 2009.

[37] Y. Xia and V.K. Prasanna. Topologically adaptive
parallel breadth-first search on multicore processors.
In Proc. 21st Int’l. Conf. on Parallel and Distributed
Computing Systems (PDCS’09), November 2009.

[38] A. Yoo, E. Chow, K. Henderson, W. McLendon,
B. Hendrickson, and Ü. V. Çatalyürek. A scalable
distributed parallel breadth-first search algorithm on
BlueGene/L. In Proc. ACM/IEEE Conf. on High
Performance Computing (SC2005), November 2005.

[39] K. You, J. Chong, Y. Yi, E. Gonina, C. Hughes, Y-K.
Chen, W. Sung, and K. Kuetzer. Parallel scalability in
speech recognition: Inference engine in large
vocabulary continuous speech recognition. IEEE
Signal Processing Magazine, 26(6):124–135, 2009.

	1 Introduction
	2 Breadth-First Search Overview
	2.1 Preliminaries
	2.2 Parallel BFS: Prior Work

	3 Breadth-First Search on Distributed Memory Systems
	3.1 BFS with 1D Partitioning
	3.2 BFS with 2D Partitioning

	4 Implementation Details
	4.1 Graph Representation
	4.2 Shared memory computation
	4.3 Distributed-memory parallelism
	4.4 Load-balancing traversal

	5 Algorithm Analysis
	5.1 Analysis of the 1D Algorithm
	5.2 Analysis of the 2D Algorithm

	6 Experimental Studies
	7 Conclusions and Future Work
	8 References

