
ICCAD: G: VLSI Routing: Seeing Nano Tree in Giga Forest
Gengjie Chen (Advisor: Evangeline F. Y. Young)

The Chinese University of Hong Kong

gjchen@cse.cuhk.edu.hk

1 PROBLEM AND MOTIVATION

We are using nanometer-size transistors and Giga Hertz clock fre-

quency in very large scale integration (VLSI). Under such extreme

conditions, timing, power, manufacturability and reliability are all

crucial issues in VLSI design. For example, 50% – 80% of gates in the

high-performance integrated circuit (IC) today are repeaters, which

do not perform useful computation but work for timing closure [40];

over 50% of the chip at around 7nm will be powered off and cannot

be utilized due to the power constraint [26].

The tree structure is the major topology used in VLSI routing.

Optimizing the tree and the forest is essential for a successful design

flow. However, the problems are in general challenging. First, even

for many single-net routing problems, finding an optimal tree from a

huge candidate forest is already NP-hard. Second, for multiple-net
routing, a large number of trees need to be built on the chip by sharing

resources and need to be well coordinated for avoiding conflicts.

Third, in order to achieve a full-flow success, it is also necessary to

foresee routing trees and to consider routability in early stages (e.g.,

placement). We devise efficient and effective algorithms to tackle

the three levels of challenges with not only practical considerations

in VLSI design but also mathematical rigorousness and guarantee.

The three levels of algorithms can be integrated together to help to

resolve the crucial timing, power, manufacturability and reliability

problems in VLSI routing.

2 BACKGROUND AND RELATEDWORK

For single-net routing, an important problem is the shallow-light
tree (SLT) problem. For a signal net, shallowness implies wire delay,

while lightness implies routing resource usage, power, cell delay and

wire delay [19]. Formally, in a spanning/Steiner tree with shallowness
α and lightness β , each path length is at most α times the shortest-

path distance, while the tree weight is β times the minimum tree

weight. For an (ᾱ, ¯β)-SLT, α ≤ ᾱ and β ≤ ¯β .
It is a well-studied problem if only one of the objectives between

light tree weight and shallow path length is pursued, whether the

domain is the spanning tree or the rectilinear Steiner one. For span-

ning trees, both minimum spanning tree (MST) and shortest-path tree
(SPT) can be obtained efficiently. For rectilinear Steiner trees, the one

with minimum tree weight is called a rectilinear Steiner minimum
tree (RSMT), while the lightest one with all paths from root being

shortest is a rectilinear Steiner minimum arborescence (RSMA). Both

problems are NP hard [27, 47] but many fast heuristics exist [18, 21].

SLT combines the two objectives together, as TABLE 1 and Figure 1

show [11]. A spanning SLT approximates SPT and MST simulta-

neously, where the trade-off is in the order of (1 + ϵ,O(1

ϵ)) [32].

Recently, Steiner SLTs are proved to be exponentially lighter than

spanning ones by Elkin and Solomon [24, 25]. The ES algorithm can

efficiently build a Steiner (1 + ϵ,O(log
1

ϵ))-SLT with a time complex-

ity of O(n2). The constants in the bound (1 + 2ϵ, 4 + 2⌈log
2

ϵ ⌉) are,

however, quite large.

Table 1: Spanning and Steiner Shallow-Light Tree (SLT)

Shallowest Lightest Shallow light

Spanning

Spanning SPT MST Spanning

(O (m + n logn)) (O (m + n logn)) SLT

Steiner

Steiner SPT SMT Steiner

(NP hard) (NP hard) SLT

Rectilinear

Steiner

RSMA RSMT Rectilinear

(NP hard) (NP hard) Steiner SLT

(a) A net on a regular

grid

(b) Spanning SPT

(α = 13

13
, β = 182

39
)

(c) RMST/RSMT

(α = 39

13
, β = 39

39
)

(d) RSMA

(α = 13

13
, β = 54

39
)

(e) Spanning SLT

(α = 17

13
, β = 61

39
)

(f) Steiner SLT

(α = 17

13
, β = 44

39
)

Figure 1: Routing trees with varied shallowness α and light-

ness β (root is marked by red).

Besides SLT, we also consider the wirelength and skew minimiza-

tion in clock trees. Here, skew, the maximum difference in signal

arrival time among all sinks, should be small to ensure timing cor-

rectness. There are in general two base formulations for clock tree

construction, zero-skew tree (ZST) and bounded-skew tree (BST).
Many methods have been proposed for building ZSTs. Among

them, deferred-merge embedding (ZST/DME) is a dynamic program-

ming approach [6]. For a given topology, it outputs the locations

of Steiner points achieving zero skew and optimal wirelength. For

determining the topology, Greedy-DME [23] is regarded as the best

algorithm in practice. Nowadays, ZST is not a good choice in practice

due to two reasons. First, ZST is too expensive in wirelength, which

implies excessive power usage [41] and usually comes with larger

path divergence and suffers from more on-chip variations. Second,

ZST is not necessary, considering the large tolerance (due to buffer

insertion and sizing) and the widely-used useful-skew optimization

techniques. Nonetheless, ZST is still useful as it can serve as the

backbone of a BST [7, 53]. Regarding BST, ZST/DME is extended to

BST/DME by generalizing the merging segments to regions [20]. Due

to the more complicated shapes of the merging regions, BST/DME

prunes many possibilities and is not optimal for a given topology.

ObstaclePin M1 Track M2 Track

M1 TAP Region M2 TAP Region Wire

1

2

3 1

2

3

(a)

1

2

3 1

2

3

(b)

1

2

3 1

2

3

(c)

1

2

3 1

2

3

(d)

Figure 2: (a) A toy buswith two pins and three bits to. (b) Rout-

ing bits one after one. (c) Result of our topology-aware path

planning. (d) Reulst of our track assignment for bits.

With theoretical interest, approximation algorithms are also pro-

posed [7, 53]. The algorithm is not as good as the best heuristics in

practice, but provides several inspirations for this work.

For multiple-net routing, it is challenging to coordinate differ-

ent nets for a full-chip success. Because of its enormous computa-

tional complexity, VLSI routing is usually performed in two stages,

global and detailed. In the global routing stage, the routing space is

split into an array of regular cells (g-cells), where a coarse-grained
routing solution is generated. It optimizes wire length, via count,

routability, timing and other metrics with a global view. Detailed
routing, on the other hand, realizes the global routing solution by

considering exact metal shapes and positions. It takes care of many

complicated detailed design rules due to manufacturability and reli-

ability [54]. Meanwhile, its solution space, a 3D grid graph, is signif-

icantly larger than that of global routing. In advanced technology

nodes, detailed routing becomes the most complicated and time-

consuming stage [39]. During the past decade, many approaches

were proposed to complete fast and high-quality global routing with

sustaining progress [28, 37]. However, there is insufficient effort for

exploring efficient and effective detailed routers in academia.

Meanwhile, the continuous development of modern VLSI tech-

nology has brought new challenges for on-chip interconnections.

Different from classic net-by-net routing, bus routing requires all the

nets (bits) in the same bus to share similar or even the same topology.

Otherwise, it is very difficult to match the delay of different bits and

close the timing. The techniques of net-by-net routing can hardly

be straightforwardly applied in bus routing due to the difficulty of

maintaining topology consistency. If processing bit by bit (e.g. route

bit 1, 2 and 3 sequentially as in Figure 2 (b)), the latter bits may lack

available track segments to be routed on. There are some previous

works handling issues related to escape routing on printed circuit

board (PCB) designs [33, 38]. However, for typical escape routing on

PCB designs, having the same topology among different bits of the

same bus is not a hard constraint. The work [36] tries to address the

bus routing problem. It routes a representative bit first and all the

other bits in the bus try to follow the topology of the representative

one. However, the topology may not be achievable due to the lack

of routing resources. To handle this issue, there is a post-refinement

stage where the original bus will be divided into several sub-buses

with different topologies.

To enable a full-flow success, it is also essential to consider routabil-

ity in early stages. The continuous shrinking of the semiconductor

feature size to 7 nmmake the local pin access difficult [51]. The global

routability also becomes more challenging due to ever increasing cir-

cuit size. It thus becomes more necessary to improve the routability

of a design before the routing stage. As a general approach, inflat-

ing/depopulating cells according to a congestion estimation at g-cell

level, has been successfully applied in both application-specific IC

(ASIC) and field-programmable gate array (FPGA) [30, 35]. Besides,

being programmable, the routing architecture in FPGA is quite dif-

ferent from that in ASIC [2]. There is work [29] considering the

segmented routing of FPGA by graph embedding, but the objective

is timing and congestion actually becomes worse in some cases. In

[16] propose a smooth function to approximate the discrete routing

cost under a nonlinear placement framework. As themajor weakness,

both works are not scalable for large designs due to the complicated

problem formulation.

In short, the major limitations of the previous work on VLSI rout-

ing are in three folds. First, many works heavily relies on heuristics

without any theoretical guarantee, which means inferior average-

case quality and unpredictable worst-case performance. Second, step-

after-step post processing may be effective in some situations, but

it is insufficient for a comprehensive routing problem where many

factors (e.g., power, timing, manufacturability) need to be simultane-

ously considered. Third, some methods cannot be scaled to today’s

chip with up to billions of transistors. To overcome the limitations,

we made the following contributions.

• We study two fundamental problems for single-net routing

with mathematical rigorousness. Regarding the trade-off be-

tween wirelength and path length in signal net, our proposed

Steiner SLT algorithm achieves a best bound of (1 + ϵ, 2 +
⌈log

2

ϵ ⌉) [11, 13]. For clock tree, we prove the equivalence

between zero-skew tree problem and hierarchical clustering

problem. The new insight lead us to simple yet more effective

algorithms for pursuing wirelength and skew [12].

• Wepropose two fast and high-quality routers for twomultiple-

net routing problems beyound the relatively well-studied

global routing problem. Special design rules are satisfied to-

gether with other design rules in a correct-by-construction

manner. For detailed routing, a scalable framework with two-

level sparse data structures and path search capturing the

nontrivial minimum area constraint is designed [10]. In order

to meet the topology consistency constraint in bus routing,

a efficient maze router under a concurrent and hierarchical

scheme is proposed [14].

• We also optimize the routability in early design stages to en-

sure a full-flow success. In FPGA packing and placement, a

simultaneous packing and placement flow with some FPGA-

routing-architecture-aware optimization techniques are pro-

posed to achieve both the global and local routability [9, 43,

2

(a) MST TM (b) Forest F (c) SALT T

Figure 3: Sample run of SALT algoritm (ϵ = 1). (a) Construct

MST TM , where each blue arrow points from a vertex v to its

parentp[v]. (b) Updatep[v] and identify breakpointsB (circled

by green) during the DFS on TM , which results to a forest F
with tree roots being B. (c) Obtain the Steiner SPTTB onG[B∪
{r }], and T = F ∪TB is the final Steiner SLT.

44]. For the placement legalization of multi-row cells, a few

routability issues (e.g., edge spacing, pin access, pin short) are

considered besides minimizing the disturbance to the global

placement with routability optimized [34].

3 APPROACH AND UNIQUENESS

3.1 Single-Net Routing

3.1.1 Trade-Off Between Wirelength and Path length. We propose

SALT algorithm for the Steiner SLT on general graphs, where the

trade-off between wirelength and path length is controlled by a pa-

rameter ϵ . The algorithm is briefed by Figure 3. SALT first identifies

some breakpoints on an initial topology (MST) and then connect

them to the root by a Steiner SPT, which is similar to ES [25]. How-

ever, we propose to use (i) a tighter criterion for identifying break-

points and (ii) a better initial topology (i.e., an MST instead of a

Hamiltonian path). The bound of SALT algorithm is stated by Theo-

rem 1. To the best of our knowledge, the bound is tighter than all the

previous methods for constructing general-graph spanning/Steiner

SLTs.

Theorem 1. SALT generates a Steiner (1 + ϵ, 2 + ⌈log
2

ϵ ⌉)-SLT.

Proof. Refer to Theorem 3 of [13]. �

When applied to the Manhattan space for VLSI routing, SALT is

simplified with runtime reduced fromO(n2) toO(n logn). Moreover,

we further decrease path lengths and treeweight by integrating SALT

with the classical RSMA [45] and RSMT [18] algorithms. It provides

a smooth trade-off between RSMA and RSMT controlled by ϵ . This
is similar to what KRY and PD algorithms do for MST and SPT, but

with an exponentially tighter bound. Moreover, three safe refinement

techniques and a shallowness-constrained edge substitution method

are also adopted to further improve the result.

3.1.2 Trade-Off Between Wirelength and Skew. A problem similar to

ZST is the hierarchical clustering (HC) [50]. In HC, each point starts

as a cluster by itself, and pairs of clusters are merged when moving

up the hierarchy. By retrospecting the classical DME algorithm, we

found the equivalence between ZST and HC. First of all, there is

solution correspondence between ZST and HC. To be more specific,

a ZST T implies a HC, where leaves(v) of every v ∈ T is treated

as a cluster, and vice versa (see Figure 4 for two ZST/HC instances

on the same set of points). Moreover, the wirelength of a ZST is a

𝑝3

𝑝1 𝑝4

𝑝2

(a) HC with diameter sum

= d ({p3, p4 }) + d ({p2, p3, p4 }) +
d (P) = 4 + 10 + 10 = 24.

𝑝3

𝑝1 𝑝4

𝑝2

(b) ZST corresponding to (a) with

wirelength = 1

2
(24 + 10) = 17.

𝑝3

𝑝1 𝑝4

𝑝2

(c) HC with diameter sum

= d ({p3, p4 })+d ({p1, p2 })+d (P) =
4 + 8 + 10 = 22.

𝑝3

𝑝1 𝑝4

𝑝2

(d) ZST corresponding to (c) with

wirelength = 1

2
(22 + 10) = 16.

Figure 4: Equivalence between zero-skew tree (ZST) and hier-

archical clustering (HC) on points P = {p1,p2,p3,p4}.

linear function of the sum of diameters of its corresponding HC, as

Theorem 2 states.

Theorem 2. For points/sinks P in the Manhatten space, a ZST T
has a wirelength cost lenдth(T) equivalent to the sum of diameters∑
v ∈T d(leaves(v)) of its corresponding HC:

lenдth(T) =
1

2

(
∑
v ∈T

d(leaves(v)) + d(P)) (1)

Proof. Refer to Theorem 4 of [12]. �

With this new insight, we design an effective O(n logn)-time

iterative merging algorithm for ZST construction, which is also

an O(1)-approximation algorithm. Besides, an optimal trie-based

dynamic programming is proposed, which can also be used to make

efficient local refinement to a sub-optimal ZST.

Based on the improved ZST method, we construct BST by combin-

ing RSMT and ZST with a help of a tree decomposition algorithm. A

initial RSMT is decomposed into several subtrees under a constraint

on the maximum distance of each subtree. Our proposed tree de-

composition method can optimally minimize the number subtrees

in linear time. The centers of the subtrees are then connected to a

source by ZST and lead to a BST.

3.2 Multiple-Net Routing

3.2.1 Detailed Routing. Our detailed routing framework is superi-

orly scalable in runtime as well as memory usage and provides more

correct-by-construction design rule satisfaction.

To handle a 3D detailed routing grid graph of enormous size, a set

of two-level sparse data structures is designed, as shown in Figure 5.

The global grid graph stores routed edges sparsely by binary search

tree and intervals to enable economic memory usage and fast update.

3

routing region of a net routing topologylocal grid graph

global grid graph

record

edge

usage

maze

route

query
cache

Figure 5: An overview of the two-level grid graph data struc-

tures for detailed routing.

When routing a net, a local grid graph is created according to the

routing region of the net. It stores vertex/edge information (e.g., edge

cost) explicitly by direct-address tables, which can be regarded as

a cache of the global grid graph. After a net is routed, its solution

will be record in the global grid graph so that later nets will avoid

conflicting with it.

Since the minimum-area constraint is dynamic in nature and

cannot be captured by the edge cost in the local grid graph, an

optimal correct-by-construction path search algorithm is proposed.

Besides, an efficient bulk synchronous parallel scheme is adopted to

further reduce the runtime usage.

3.2.2 Bus Routing. We routes all the bits in a bus concurrently,

instead of processing bit after bit. Such concurrency directly cap-

tures topology consistency constraint together with other objec-

tives (e.g. wirelength) and constraints (e.g. spacing) in a correct-

by-construction manner. A hierarchical framework, consisting of

a topology-aware path planning (TAP) and a track assignment for

bits (TAB), is designed for the efficiency. TAP is efficient as it works

on a coarse-grained solution space (see Figure 2 (c)). TAB generates

fine-grained routing solution, which gains efficiency by searching

on the regions provided by TAB only (see Figure 2 (d)). We also

utilize an effective rip-up and reroute scheme to further improve the

routing solution quality.

3.3 Routability

3.3.1 Routability-Driven FPGA Packing and Placement. In a typical

FPGA implementation flow, after logic synthesis, the netlist consists

of lookup tables (LUTs), flip-flops (FFs), and some coarse-grained

cores. During packing, LUTs and FFs are grouped together into basic

logic elements (BLEs) and then further clustered into configurable

logic blocks (CLBs). After packing, placement legally maps all the

CLB blocks onto the FPGA. A proper packing can fully utilize the

intra-BLE and intra-CLB routing resources and leave sufficient inter-

CLB routing to global connections. However, packing without a phys-

ical view of placement may cause many long inter-CLB connetions

and routing hotspots. Not only the convectional flow (pack-place)

but also some recent works (place-pack-place [35], place-pack [42])

suffer from this artificial separation of packing and placement, as

Figure 6(a) shows.

We propose a stair-step framework that interleaves the packing

and placement stages (briefly illustrated by Figure 6(b)). It not only

makes the optimization flow more smooth and integrated, but also

enables fast feedback of accurate estimation (e.g., routability) from a

final state to an intermediate state. Under this framework, we further

adopt some routing-architecture-aware techniques including par-

tition allocation, CLB slot assignment and alignment optimization,

together with the ASIC-like congestion alleviation methods in global

and detailed placement stages.

3.3.2 Routability-Driven Cell Legalization. VLSI placement usually

start with a global placement, where cells may overlap with each

other and may not align with placement sites. A legalization has

to minimize the disturbance to global placement, where routability

has been optimized with a global view. We first devise a incremen-

tal legalization method for multi-row-height cells. It inserts a cell

optimally into a window, minimizing an average displacement of

all the cells in the region from their global placement positions. Be-

sides, a few routability issues, including edge spacing, pin short,

and pin access (shown by Figure 7), are either incorporated into

the cost function or converted to hard constraints in the formula-

tion. A bipartite graph matching is then adopted to minimize the

maximum displacement among a group of cells that can exchange

their positions without creating additional violations. Finally, the

minimum-cost flow formulation of the fixed-row-and-order problem

optimizes a weighted sum of the maximum and average displace-

ment, with range constraints on the cell movements to avoid pin

short and pin access violations.

4 RESULTS AND CONTRIBUTIONS

4.1 Single-Net Routing

For trade-off between wirelength and path length, SALT shows supe-

rior performance, compared with both classical and recent routing

tree construction methods (including FLUTE [18], CL [21], ABP [5],

KRY [32], ES [25], Bonn [46], PD [4], and PD-II [3]), which is illus-

trated by Figure 8. It can be clearly observed that our method has

the best Pareto frontier between RSMT and RSMA.

Figure 9(a) shows the result of BST construction (with # sinks be-

ing 16384). Here, our method shows better Pareto frontiers compared

with BST/DME [20]. In general, as the skew bound becomes larger,

a smooth decrease of wirelength from ZST to RSMT can also be ob-

served. Moreover, our method is faster than BST/DME (Figure 9(b)).

For relatively large nets, a 10× speed-up stably exists.

4.2 Multiple-Net Routing

Compared with the most recent works on detailed routing [31, 48],

our detailed router achieves superior quality of result on ISPD 2018

benchmarks [39]. We have 13.7×–394× reduction in design rule

violations together with shorter wirelength and fewer vias used.

Moreover, our detailed routers is 8.2 and 32 times faster than the

two works on average respectively.

For our bus router, we compare it with the winners in a recent

contest [1]. Compared with them, it not only reduces spacing and

short violations greatly but also achieves topology consistency for

all buses. Under the contest evaluation scheme, it achieves the best

total cost in seven out of eight cases. On average, our score is 1.97,

3.28, and 6.90 times better than the first, second and third places. At

4

placement

p
a
ck

in
g

LUT/FF

BLE

CLB

flat netlist

placed design

pack-place p
la

ce
-p

ac
k
-p

la
ce

place-pack

(a) Three types of flows in previous work.

placement

p
a
ck

in
g

LUT/FF

BLE

CLB

flat netlist

placed design

1

2

3

4

5

flat global

placement
soft BLE packing

BLE global

placement

CLB physical

packing

two-level detailed

placement

slot assignment

in CLB

flat netlist

placed designplacement

packing

1

3

5

2

4

6

(b) Our proposed flow of simultaneous packing and placement.

Figure 6: Different FPGA packing and placement flows.

Cell
M1 Cell Pin
M2 Cell Pin
M1 Rail
M2 Rail

Pin Access

Pin Short

Figure 7: Pin short and pin access issues in cell legalization.

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Lightness '

1.0

1.1

1.2

1.3

1.4

1.5

Sh
al

lo
w

ne
ss

CL (RSMA)
FLUTE (RSMT)
ABP/BRBC
KRY
PD
ES
Bonn
PD-II
SALT

Figure 8: Comparing SALT with other methods.

the same time, our bus router runs significantly faster than the first

place (with 1.6×–631× speed-up). This indicates the effectiveness

and efficiency of the concurrent and hierarchical scheme for bus

routing.

4.3 Routability

We use the benchmarks and evaluation flow provided by Xilinx [52]

to evaluate our routability-driven packing and placement for FPGAs.

The routed wirelength reported by the commercial FPGA router is

the quality metric, which requires a truly routing-friendly packing

and placement. Compared with a state-of-the-art work [35], our

approach has 5.1% better routed wirelength and 5.5× speedup.

0 0.5 1

1

1.2

1.4

1.6

1.8

Avg. norm. skew

A
v
g
.
n
o
r
m
.
w
i
r
e
l
e
n
g
t
h FLUTE (RSMT)

Our ZST

BST/DME

Our BST

(a) Wirelength on 100 random nets

with 16384 sinks.

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

10
−4

10
−2

10
0

sinks

A
v
g
.
r
u
n
t
i
m
e
(
s
)

(b) Runtime on random nets with

various sizes.

Figure 9: Comparison our BST method with BST/DME.

The proposed routability-driven legalizer is first compared with

some state-of-the-art placers [15, 17, 49] for total displacement mini-

mization only. Here, 20%, 17% and 9% improvement can be observed

respectively. When routability constraints and objectives are consid-

ered, we compared with the first place of ICCAD 2017 Contest [22].

Our method gets rid of all the edge spacing violations, improves the

pin access by 8.3%, and achieves 18% and 12% reduction in average

and maximum displacement at the same time.

4.4 Research Impact

My PhD study so far has led to 6 first-authored [8–13] and 4 coau-

thored [14, 34, 43, 44] publications about VLSI routing in premier

design automation journals and conferences. Our algorithms tackle

the three aspects of challenges, single-net routing, multiple-net rout-

ing, and early-stage routability optimization, with the considerations

of both practical VLSI design needs and mathematical rigorousness.

Our theoretical research on shallow-light tree construction has been

recognized by the Best Paper Award of International Conference

on Computer-Aided Design (ICCAD) in 2017. The method has also

been applied in the tool of Synopsys, a major vendor of electronic

design automation. Our dedication in building effective and efficient

routers as well as routability-driven placers has been recognized by

several first and second place awards in ICCAD and International

Symposium on Physical Design (ISPD) contests, hosted by leading

industrial companies including IBM, Xilinx, Cadence, Synopsys, and

Mentor Graphics.

5

REFERENCES

[1] 2018. ICCAD 2018 Contest. http://iccad-contest.org/2018/.

[2] Rajat Aggarwal. 2014. FPGA place & route challenges. In ACM International
Symposium on Physical Design (ISPD). 45–46.

[3] Charles J Alpert, Wing-Kai Chow, Kwangsoo Han, Andrew B Kahng, Zhuo Li,

Derong Liu, and Sriram Venkatesh. 2018. Prim-Dijkstra Revisited: Achieving Su-

perior Timing-driven Routing Trees. In ACM International Symposium on Physical
Design (ISPD). 10–17.

[4] Charles J Alpert, TC Hu, JH Huang, Andrew B Kahng, and D Karger. 1995. Prim-

Dijkstra tradeoffs for improved performance-driven routing tree design. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)
14, 7 (1995), 890–896.

[5] Baruch Awerbuch, Alan Baratz, and David Peleg. 1992. Efficient broadcast and
light-weight spanners. Technical Report.

[6] Ting-Hai Chao, Yu-Chin Hsu, Jan-Ming Ho, and AB Kahng. 1992. Zero skew clock

routing with minimum wirelength. IEEE Transactions on Circuits and Systems II
39, 11 (1992), 799–814.

[7] Moses Charikar, Jon Kleinberg, Ravi Kumar, Sridhar Rajagopalan, Amit Sahai, and

Andrew Tomkins. 2004. Minimizing wirelength in zero and bounded skew clock

trees. SIAM Journal on Discrete Mathematics (SIDMA) 17, 4 (2004), 582–595.
[8] Gengjie Chen, Jian Kuang, Zhiliang Zeng, Hang Zhang, Evangeline FY Young, and

Bei Yu. 2017. Minimizing thermal gradient and pumping power in 3D IC liquid

cooling network design. In ACM/IEEE Design Automation Conference (DAC). 70.
[9] Gengjie Chen, Chak-Wa Pui, Wing-Kai Chow, Ka-Chun Lam, Jian Kuang, Evange-

line FY Young, and Bei Yu. 2018. RippleFPGA: Routability-driven simultaneous

packing and placement for modern FPGAs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD) 37, 10 (2018), 2022–2035.

[10] Gengjie Chen, Chak-Wa Pui, Haocheng Li, Jinsong Chen, Bentian Jiang, and

Evangeline FY Young. 2019. Dr. CU: Detailed Routing by Sparse Grid Graph and

Minimum-Area-Captured Path Search. In IEEE/ACM Asia and South Pacific Design
Automation Conference (ASPDAC). 754–760.

[11] Gengjie Chen, Peishan Tu, and Evangeline FY Young. 2017. SALT: provably good

routing topology by a novel steiner shallow-light tree algorithm. In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). 569–576.

[12] Gengjie Chen and Evangeline FY Young. 2019. Dim Sum: Light Clock Tree by

Small Diameter Sum. In IEEE/ACM Proceedings Design, Automation and Test in
Eurpoe (DATE).

[13] Gengjie Chen and Evangeline FY Young. 2019. SALT: provably good routing

topology by a novel steiner shallow-light tree algorithm. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD) (2019).

[14] Jingsong Chen, Jinwei Liu, Gengjie Chen, Dan Zheng, and Evangeline FY Young.

2019. MARCH: Maze Routing Under a Concurrent and Hierarchical Scheme for

Buses. In ACM/IEEE Design Automation Conference (DAC).
[15] Jianli Chen, Ziran Zhu, Wenxing Zhu, and Yao-Wen Chang. 2017. Toward Op-

timal Legalization for Mixed-Cell-Height Circuit Designs. In ACM/IEEE Design
Automation Conference (DAC). 52:1–52:6.

[16] Sheng-Yen Chen and Yao-Wen Chang. 2015. Routing-architecture-aware analytical

placement for heterogeneous FPGAs. In ACM/IEEE Design Automation Conference
(DAC). 27:1–27:6.

[17] Wing Kai Chow, Chak Wa Pui, and Evangeline F. Y. Young. 2016. Legalization

Algorithm for Multiple-Row Height Standard Cell Design. In ACM/IEEE Design
Automation Conference (DAC). 83:1–83:6.

[18] Chris Chu and Yiu-Chung Wong. 2008. FLUTE: Fast lookup table based rectilinear

Steiner minimal tree algorithm for VLSI design. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD) 27, 1 (2008), 70–83.

[19] Jason Cong, Lei He, Cheng-Kok Koh, and Patrick H Madden. 1996. Performance

optimization of VLSI interconnect layout. Integration, the VLSI Journal 21, 1-2
(1996), 1–94.

[20] Jason Cong, Andrew B Kahng, Cheng-Kok Koh, and C-W Albert Tsao. 1998.

Bounded-skew clock and Steiner routing. ACM Transactions on Design Automation
of Electronic Systems (TODAES) 3, 3 (1998), 341–388.

[21] Javier Córdova and Yann-Hang Lee. 1994. A heuristic algorithm for the rectilinear
Steiner arborescence problem. Technical Report.

[22] Nima Karimpour Darav, Ismail S. Bustany, Andrew Kennings, and Ravi Mamidi.

2017. ICCAD-2017 CAD Contest in Multi-Deck Standard Cell Legalization and

Benchmarks. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). 867–871.

[23] Masato Edahiro. 1993. A clustering-based optimization algorithm in zero-skew

routings. In ACM/IEEE Design Automation Conference (DAC). 612–616.
[24] Michael Elkin and Shay Solomon. 2011. Steiner Shallow-Light Trees are Exponen-

tially Lighter than Spanning Ones. In IEEE Symposium on Foundations of Computer
Science (FOCS). 373–382.

[25] Michael Elkin and Shay Solomon. 2015. Steiner shallow-light trees are exponen-

tially lighter than spanning ones. SIAM Journal on Computing (SICOMP) 44, 4
(2015), 996–1025.

[26] Hadi Esmaeilzadeh, Emily Blem, Renée St Amant, Karthikeyan Sankaralingam,

and Doug Burger. 2013. Power challenges may end the multicore era. Commun.
ACM 56, 2 (2013), 93–102.

[27] Michael R Garey and David S. Johnson. 1977. The rectilinear Steiner tree problem

is NP-complete. SIAM Journal on Applied Mathematics (SIAP) 32, 4 (1977), 826–834.
[28] Michael Gester, Dirk Müller, Tim Nieberg, Christian Panten, Christian Schulte,

and Jens Vygen. 2013. BonnRoute: Algorithms and data structures for fast and

good VLSI routing. ACM Transactions on Design Automation of Electronic Systems
(TODAES) 18, 2 (2013), 32.

[29] Padmini Gopalakrishnan, Xin Li, and Lawrence Pileggi. 2006. Architecture-aware

FPGA placement using metric embedding. In ACM/IEEE Design Automation Con-
ference (DAC). 460–465.

[30] Xu He, Tao Huang, Linfu Xiao, Haitong Tian, and Evangeline F. Y. Young. 2013.

Ripple: A robust and effective routability-driven placer. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD) 32, 10 (2013),
1546–1556.

[31] Andrew B Kahng, Lutong Wang, and Bangqi Xu. 2018. TritonRoute: an initial de-

tailed router for advanced VLSI technologies. In IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). 81:1–81:8.

[32] Samir Khuller, Balaji Raghavachari, and Neal Young. 1995. Balancing minimum

spanning trees and shortest-path trees. Algorithmica 14, 4 (1995), 305–321.
[33] Hui Kong, Tan Yan, and Martin D. F. Wong. 2010. Optimal simultaneous pin

assignment and escape routing for dense PCBs. In IEEE/ACM Asia and South
Pacific Design Automation Conference (ASPDAC). 275–280.

[34] Haocheng Li, Wing-Kai Chow, Gengjie Chen, Evangeline FY Young, and Bei Yu.

2018. Routability-driven and fence-aware legalization formixed-cell-height circuits.

In ACM/IEEE Design Automation Conference (DAC). 150.
[35] Wuxi Li, Shounak Dhar, and David Z. Pan. 2016. UTPlaceF: a routability-driven

FPGA placer with physical and congestion aware packing. In IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD). 66:1–66:7.

[36] Derong Liu, Bei Yu, Vinicius Livramento, Salim Chowdhury, Duo Ding, Huy Vo,

Akshay Sharma, and David Z Pan. 2018. Synergistic Topology Generation and

Route Synthesis for On-Chip Performance-Critical Signal Groups. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) (2018),
18.

[37] Wen-Hao Liu,Wei-Chun Kao, Yih-Lang Li, and Kai-Yuan Chao. 2013. NCTU-GR 2.0:

Multithreaded collision-aware global routing with bounded-length maze routing.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD) 32, 5 (2013), 709–722.

[38] Qiang Ma, Evangeline F. Y. Young, and Martin D. F. Wong. 2011. An optimal

algorithm for layer assignment of bus escape routing on PCBs. In ACM/IEEE
Design Automation Conference (DAC). 176–181.

[39] Stefanus Mantik, Gracieli Posser, Wing-Kai Chow, Yixiao Ding, and Wen-Hao

Liu. 2018. ISPD 2018 Initial Detailed Routing Contest and Benchmarks. In ACM
International Symposium on Physical Design (ISPD). 140–143.

[40] Igor L Markov. 2014. Limits on fundamental limits to computation. Nature 512,
7513 (2014), 147–154.

[41] David Papa, Charles Alpert, Cliff Sze, Zhuo Li, Natarajan Viswanathan, Gi-Joon

Nam, and Igor Markov. 2011. Physical synthesis with clock-network optimization

for large systems on chips. IEEE/ACM International Symposium onMicroarchitecture
(MICRO) 31, 4 (2011), 51–62.

[42] Ryan Pattison, Ziad Abuowaimer, Shawki Areibi, Gary Gréwal, and Anthony

Vannelli. 2016. GPlace: a congestion-aware placement tool for ultrascale FPGAs. In

IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 68:1–68:7.
[43] Chak-Wa Pui, Gengjie Chen, Wing-Kai Chow, Ka-Chun Lam, Jian Kuang, Peishan

Tu, Hang Zhang, Evangeline FY Young, and Bei Yu. 2016. RippleFPGA: A routability-

driven placement for large-scale heterogeneous FPGAs. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). 67.

[44] Chak-Wa Pui, Gengjie Chen, Yuzhe Ma, Evangeline FY Young, and Bei Yu. 2017.

Clock-aware ultrascale FPGA placement with machine learning routability predic-

tion. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
929–936.

[45] Sailesh K Rao, P Sadayappan, Frank K Hwang, and Peter W Shor. 1992. The

rectilinear Steiner arborescence problem. Algorithmica 7, 1-6 (1992), 277–288.
[46] Rudolf Scheifele. 2017. Steiner Trees with Bounded RC-Delay. Algorithmica 78, 1

(2017), 86–109.

[47] Weiping Shi and Chen Su. 2005. The rectilinear Steiner arborescence problem is

NP-complete. SIAM Journal on Computing (SICOMP) 35, 3 (2005), 729–740.
[48] Fan-Keng Sun, Hao Chen, Ching-Yu Chen, Chen-Hao Hsu, and Yao-Wen Chang.

2018. A multithreaded initial detailed routing algorithm considering global routing

guides. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
82:1–82:7.

[49] Chao-Hung Wang, Yen-Yi Wu, Jianli Chen, Yao-Wen Chang, Sy-Yen Kuo, Wenxing

Zhu, and Genghua Fan. 2017. An effective legalization algorithm for mixed-cell-

height standard cells. In IEEE/ACM Asia and South Pacific Design Automation
Conference (ASPDAC). 450–455.

[50] Rui Xu and Donald Wunsch. 2005. Survey of clustering algorithms. IEEE Transac-
tions on Neural Networks (TNN) 16, 3 (2005), 645–678.

[51] Xiaoqing Xu, Nishi Shah, Andrew Evans, Saurabh Sinha, Brian Cline, and Greg

Yeric. 2017. Standard cell library design and optimization methodology for ASAP7

PDK. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
IEEE, 999–1004.

6

http://iccad-contest.org/2018/

[52] Stephen Yang, Aman Gayasen, Chandra Mulpuri, Sainath Reddy, and Rajat Ag-

garwal. 2016. Routability-Driven FPGA Placement Contest. In ACM International
Symposium on Physical Design (ISPD). 139–143.

[53] Alexander Z Zelikovsky and Ion I Mandoiu. 2002. Practical approximation algo-

rithms for zero-and bounded-skew trees. SIAM Journal on Discrete Mathematics

(SIDMA) 15, 1 (2002), 97–111.
[54] Yanheng Zhang and Chris Chu. 2013. RegularRoute: An efficient detailed router

applying regular routing patterns. IEEE Transactions on Very Large Scale Integration
Systems (TVLSI) 21, 9 (2013), 1655–1668.

7

	1 Problem and Motivation
	2 Background and Related Work
	3 Approach and Uniqueness
	3.1 Single-Net Routing
	3.2 Multiple-Net Routing
	3.3 Routability

	4 Results and Contributions
	4.1 Single-Net Routing
	4.2 Multiple-Net Routing
	4.3 Routability
	4.4 Research Impact

	References

