
A Tutorial on Thompson Sampling
Daniel J. Russo1, Benjamin Van Roy2, Abbas Kazerouni2, Ian
Osband3 and Zheng Wen4

1Columbia University
2Stanford University
3Google DeepMind
4Adobe Research

ABSTRACT

Thompson sampling is an algorithm for online decision prob-
lems where actions are taken sequentially in a manner that
must balance between exploiting what is known to maxi-
mize immediate performance and investing to accumulate
new information that may improve future performance. The
algorithm addresses a broad range of problems in a compu-
tationally efficient manner and is therefore enjoying wide
use. This tutorial covers the algorithm and its application,
illustrating concepts through a range of examples, including
Bernoulli bandit problems, shortest path problems, product
recommendation, assortment, active learning with neural
networks, and reinforcement learning in Markov decision
processes. Most of these problems involve complex informa-
tion structures, where information revealed by taking an
action informs beliefs about other actions. We will also dis-
cuss when and why Thompson sampling is or is not effective
and relations to alternative algorithms.

In memory of Arthur F. Veinott, Jr.

1
Introduction

The multi-armed bandit problem has been the subject of decades of
intense study in statistics, operations research, electrical engineering,
computer science, and economics. A “one-armed bandit” is a somewhat
antiquated term for a slot machine, which tends to “rob” players of their
money. The colorful name for our problem comes from a motivating
story in which a gambler enters a casino and sits down at a slot machine
with multiple levers, or arms, that can be pulled. When pulled, an arm
produces a random payout drawn independently of the past. Because
the distribution of payouts corresponding to each arm is not listed, the
player can learn it only by experimenting. As the gambler learns about
the arms’ payouts, she faces a dilemma: in the immediate future she
expects to earn more by exploiting arms that yielded high payouts in
the past, but by continuing to explore alternative arms she may learn
how to earn higher payouts in the future. Can she develop a sequential
strategy for pulling arms that balances this tradeoff and maximizes the
cumulative payout earned? The following Bernoulli bandit problem is a
canonical example.

Example 1.1. (Bernoulli Bandit) Suppose there are K actions, and
when played, any action yields either a success or a failure. Action

3

4 Introduction

k ∈ {1, ...,K} produces a success with probability θk ∈ [0, 1]. The
success probabilities (θ1, .., θK) are unknown to the agent, but are
fixed over time, and therefore can be learned by experimentation. The
objective, roughly speaking, is to maximize the cumulative number of
successes over T periods, where T is relatively large compared to the
number of arms K.

The “arms” in this problem might represent different banner ads
that can be displayed on a website. Users arriving at the site are shown
versions of the website with different banner ads. A success is associated
either with a click on the ad, or with a conversion (a sale of the item
being advertised). The parameters θk represent either the click-through-
rate or conversion-rate among the population of users who frequent the
site. The website hopes to balance exploration and exploitation in order
to maximize the total number of successes.

A naive approach to this problem involves allocating some fixed
fraction of time periods to exploration and in each such period sampling
an arm uniformly at random, while aiming to select successful actions
in other time periods. We will observe that such an approach can be
quite wasteful even for the simple Bernoulli bandit problem described
above and can fail completely for more complicated problems.

Problems like the Bernoulli bandit described above have been studied
in the decision sciences since the second world war, as they crystallize the
fundamental trade-off between exploration and exploitation in sequential
decision making. But the information revolution has created significant
new opportunities and challenges, which have spurred a particularly
intense interest in this problem in recent years. To understand this,
let us contrast the Internet advertising example given above with the
problem of choosing a banner ad to display on a highway. A physical
banner ad might be changed only once every few months, and once
posted will be seen by every individual who drives on the road. There is
value to experimentation, but data is limited, and the cost of of trying
a potentially ineffective ad is enormous. Online, a different banner ad
can be shown to each individual out of a large pool of users, and data
from each such interaction is stored. Small-scale experiments are now a
core tool at most leading Internet companies.

5

Our interest in this problem is motivated by this broad phenomenon.
Machine learning is increasingly used to make rapid data-driven deci-
sions. While standard algorithms in supervised machine learning learn
passively from historical data, these systems often drive the generation
of their own training data through interacting with users. An online
recommendation system, for example, uses historical data to optimize
current recommendations, but the outcomes of these recommendations
are then fed back into the system and used to improve future recom-
mendations. As a result, there is enormous potential benefit in the
design of algorithms that not only learn from past data, but also explore
systemically to generate useful data that improves future performance.
There are significant challenges in extending algorithms designed to
address Example 1.1 to treat more realistic and complicated decision
problems. To understand some of these challenges, consider the problem
of learning by experimentation to solve a shortest path problem.

Example 1.2. (Online Shortest Path) An agent commutes from home
to work every morning. She would like to commute along the path that
requires the least average travel time, but she is uncertain of the travel
time along different routes. How can she learn efficiently and minimize
the total travel time over a large number of trips?

Figure 1.1: Shortest path problem.

6 Introduction

We can formalize this as a shortest path problem on a graph
G = (V,E) with vertices V = {1, ..., N} and edges E. An example
is illustrated in Figure 1.1. Vertex 1 is the source (home) and vertex N
is the destination (work). Each vertex can be thought of as an intersec-
tion, and for two vertices i, j ∈ V , an edge (i, j) ∈ E is present if there
is a direct road connecting the two intersections. Suppose that traveling
along an edge e ∈ E requires time θe on average. If these parameters
were known, the agent would select a path (e1, .., en), consisting of a
sequence of adjacent edges connecting vertices 1 and N , such that the
expected total time θe1 +...+θen is minimized. Instead, she chooses paths
in a sequence of periods. In period t, the realized time yt,e to traverse
edge e is drawn independently from a distribution with mean θe. The
agent sequentially chooses a path xt, observes the realized travel time
(yt,e)e∈xt along each edge in the path, and incurs cost ct =

∑
e∈xt yt,e

equal to the total travel time. By exploring intelligently, she hopes to
minimize cumulative travel time

∑T
t=1 ct over a large number of periods

T .
This problem is conceptually similar to the Bernoulli bandit in

Example 1.1, but here the number of actions is the number of paths
in the graph, which generally scales exponentially in the number of
edges. This raises substantial challenges. For moderate sized graphs,
trying each possible path would require a prohibitive number of samples,
and algorithms that require enumerating and searching through the
set of all paths to reach a decision will be computationally intractable.
An efficient approach therefore needs to leverage the statistical and
computational structure of problem.

In this model, the agent observes the travel time along each edge
traversed in a given period. Other feedback models are also natural: the
agent might start a timer as she leaves home and checks it once she
arrives, effectively only tracking the total travel time of the chosen path.
This is closer to the Bernoulli bandit model, where only the realized
reward (or cost) of the chosen arm was observed. We have also taken the
random edge-delays yt,e to be independent, conditioned on θe. A more
realistic model might treat these as correlated random variables, reflect-
ing that neighboring roads are likely to be congested at the same time.
Rather than design a specialized algorithm for each possible statistical

7

model, we seek a general approach to exploration that accommodates
flexible modeling and works for a broad array of problems. We will see
that Thompson sampling accommodates such flexible modeling, and
offers an elegant and efficient approach to exploration in a wide range
of structured decision problems, including the shortest path problem
described here.

Thompson sampling – also known as posterior sampling and probabil-
ity matching – was first proposed in 1933 (Thompson, 1933; Thompson,
1935) for allocating experimental effort in two-armed bandit problems
arising in clinical trials. The algorithm was largely ignored in the
academic literature until recently, although it was independently re-
discovered several times in the interim (Wyatt, 1997; Strens, 2000) as
an effective heuristic. Now, more than eight decades after it was intro-
duced, Thompson sampling has seen a surge of interest among industry
practitioners and academics. This was spurred partly by two influential
articles that displayed the algorithm’s strong empirical performance
(Chapelle and Li, 2011; Scott, 2010). In the subsequent five years, the
literature on Thompson sampling has grown rapidly. Adaptations of
Thompson sampling have now been successfully applied in a wide vari-
ety of domains, including revenue management (Ferreira et al., 2015),
marketing (Schwartz et al., 2017), web site optimization (Hill et al.,
2017), Monte Carlo tree search (Bai et al., 2013), A/B testing (Graepel
et al., 2010), Internet advertising (Graepel et al., 2010; Agarwal, 2013;
Agarwal et al., 2014), recommendation systems (Kawale et al., 2015),
hyperparameter tuning (Kandasamy et al., 2018), and arcade games
(Osband et al., 2016a); and have been used at several companies, includ-
ing Adobe, Amazon (Hill et al., 2017), Facebook, Google (Scott, 2010;
Scott, 2015), LinkedIn (Agarwal, 2013; Agarwal et al., 2014), Microsoft
(Graepel et al., 2010), Netflix, and Twitter.

The objective of this tutorial is to explain when, why, and how to
apply Thompson sampling. A range of examples are used to demon-
strate how the algorithm can be used to solve a variety of problems and
provide clear insight into why it works and when it offers substantial
benefit over naive alternatives. The tutorial also provides guidance on
approximations to Thompson sampling that can simplify computation

8 Introduction

as well as practical considerations like prior distribution specification,
safety constraints and nonstationarity. Accompanying this tutorial we
also release a Python package1 that reproduces all experiments and
figures presented. This resource is valuable not only for reproducible
research, but also as a reference implementation that may help prac-
tioners build intuition for how to practically implement some of the
ideas and algorithms we discuss in this tutorial. A concluding section
discusses theoretical results that aim to develop an understanding of
why Thompson sampling works, highlights settings where Thompson
sampling performs poorly, and discusses alternative approaches studied
in recent literature. As a baseline and backdrop for our discussion of
Thompson sampling, we begin with an alternative approach that does
not actively explore.

1Python code and documentation is available at https://github.com/iosband/
ts_tutorial.

https://github.com/iosband/ts_tutorial
https://github.com/iosband/ts_tutorial

2
Greedy Decisions

Greedy algorithms serve as perhaps the simplest and most common
approach to online decision problems. The following two steps are taken
to generate each action: (1) estimate a model from historical data and
(2) select the action that is optimal for the estimated model, breaking
ties in an arbitrary manner. Such an algorithm is greedy in the sense
that an action is chosen solely to maximize immediate reward. Figure 2.1
illustrates such a scheme. At each time t, a supervised learning algorithm
fits a model to historical data pairs Ht−1 = ((x1, y1), . . . , (xt−1, yt−1)),
generating an estimate θ̂ of model parameters. The resulting model
can then be used to predict the reward rt = r(yt) from applying action
xt. Here, yt is an observed outcome, while r is a known function that
represents the agent’s preferences. Given estimated model parameters
θ̂, an optimization algorithm selects the action xt that maximizes ex-
pected reward, assuming that θ = θ̂. This action is then applied to the
exogenous system and an outcome yt is observed.

A shortcoming of the greedy approach, which can severely curtail
performance, is that it does not actively explore. To understand this
issue, it is helpful to focus on the Bernoulli bandit setting of Example
1.1. In that context, the observations are rewards, so rt = r(yt) = yt.

9

10 Greedy Decisions

Figure 2.1: Online decision algorithm.

At each time t, a greedy algorithm would generate an estimate θ̂k of
the mean reward for each kth action, and select the action that attains
the maximum among these estimates.

Suppose there are three actions with mean rewards θ ∈ R3. In
particular, each time an action k is selected, a reward of 1 is generated
with probability θk. Otherwise, a reward of 0 is generated. The mean
rewards are not known to the agent. Instead, the agent’s beliefs in
any given time period about these mean rewards can be expressed
in terms of posterior distributions. Suppose that, conditioned on the
observed history Ht−1, posterior distributions are represented by the
probability density functions plotted in Figure 2.2. These distributions
represent beliefs after the agent tries actions 1 and 2 one thousand times
each, action 3 three times, receives cumulative rewards of 600, 400, and
1, respectively, and synthesizes these observations with uniform prior
distributions over mean rewards of each action. They indicate that the
agent is confident that mean rewards for actions 1 and 2 are close to
their expectations of approximately 0.6 and 0.4. On the other hand, the
agent is highly uncertain about the mean reward of action 3, though he
expects 0.4.

The greedy algorithm would select action 1, since that offers the
maximal expected mean reward. Since the uncertainty around this
expected mean reward is small, observations are unlikely to change the
expectation substantially, and therefore, action 1 is likely to be selected

11

Figure 2.2: Probability density functions over mean rewards.

ad infinitum. It seems reasonable to avoid action 2, since it is extremely
unlikely that θ2 > θ1. On the other hand, if the agent plans to operate
over many time periods, it should try action 3. This is because there is
some chance that θ3 > θ1, and if this turns out to be the case, the agent
will benefit from learning that and applying action 3. To learn whether
θ3 > θ1, the agent needs to try action 3, but the greedy algorithm will
unlikely ever do that. The algorithm fails to account for uncertainty in
the mean reward of action 3, which should entice the agent to explore
and learn about that action.

Dithering is a common approach to exploration that operates through
randomly perturbing actions that would be selected by a greedy algo-
rithm. One version of dithering, called ε-greedy exploration, applies the
greedy action with probability 1 − ε and otherwise selects an action
uniformly at random. Though this form of exploration can improve
behavior relative to a purely greedy approach, it wastes resources by
failing to “write off” actions regardless of how unlikely they are to be
optimal. To understand why, consider again the posterior distributions
of Figure 2.2. Action 2 has almost no chance of being optimal, and
therefore, does not deserve experimental trials, while the uncertainty
surrounding action 3 warrants exploration. However, ε-greedy explo-

12 Greedy Decisions

ration would allocate an equal number of experimental trials to each
action. Though only half of the exploratory actions are wasted in this
example, the issue is exacerbated as the number of possible actions
increases. Thompson sampling, introduced more than eight decades
ago (Thompson, 1933), provides an alternative to dithering that more
intelligently allocates exploration effort.

3
Thompson Sampling for the Bernoulli Bandit

To digest how Thompson sampling (TS) works, it is helpful to begin
with a simple context that builds on the Bernoulli bandit of Example
1.1 and incorporates a Bayesian model to represent uncertainty.

Example 3.1. (Beta-Bernoulli Bandit) Recall the Bernoulli bandit of
Example 1.1. There are K actions. When played, an action k produces a
reward of one with probability θk and a reward of zero with probability
1 − θk. Each θk can be interpreted as an action’s success probability
or mean reward. The mean rewards θ = (θ1, ..., θK) are unknown, but
fixed over time. In the first period, an action x1 is applied, and a reward
r1 ∈ {0, 1} is generated with success probability P(r1 = 1|x1, θ) = θx1 .
After observing r1, the agent applies another action x2, observes a
reward r2, and this process continues.

Let the agent begin with an independent prior belief over each
θk. Take these priors to be beta-distributed with parameters α =
(α1, . . . , αK) and β ∈ (β1, . . . , βK). In particular, for each action k, the
prior probability density function of θk is

p(θk) = Γ(αk + βk)
Γ(αk)Γ(βk)

θαk−1
k (1− θk)βk−1,

13

14 Thompson Sampling for the Bernoulli Bandit

where Γ denotes the gamma function. As observations are gathered,
the distribution is updated according to Bayes’ rule. It is particularly
convenient to work with beta distributions because of their conjugacy
properties. In particular, each action’s posterior distribution is also beta
with parameters that can be updated according to a simple rule:

(αk, βk)←

(αk, βk) if xt 6= k

(αk, βk) + (rt, 1− rt) if xt = k.

Note that for the special case of αk = βk = 1, the prior p(θk) is
uniform over [0, 1]. Note that only the parameters of a selected action
are updated. The parameters (αk, βk) are sometimes called pseudo-
counts, since αk or βk increases by one with each observed success or
failure, respectively. A beta distribution with parameters (αk, βk) has
mean αk/(αk + βk), and the distribution becomes more concentrated
as αk + βk grows. Figure 2.2 plots probability density functions of
beta distributions with parameters (α1, β1) = (601, 401), (α2, β2) =
(401, 601), and (α3, β3) = (2, 3).

Algorithm 1 presents a greedy algorithm for the beta-Bernoulli
bandit. In each time period t, the algorithm generates an estimate
θ̂k = αk/(αk + βk), equal to its current expectation of the success
probability θk. The action xt with the largest estimate θ̂k is then applied,
after which a reward rt is observed and the distribution parameters αxt
and βxt are updated.

TS, specialized to the case of a beta-Bernoulli bandit, proceeds
similarly, as presented in Algorithm 2. The only difference is that the
success probability estimate θ̂k is randomly sampled from the posterior
distribution, which is a beta distribution with parameters αk and βk,
rather than taken to be the expectation αk/(αk+βk). To avoid a common
misconception, it is worth emphasizing TS does not sample θ̂k from the
posterior distribution of the binary value yt that would be observed if
action k is selected. In particular, θ̂k represents a statistically plausible
success probability rather than a statistically plausible observation.

15

Algorithm 1 BernGreedy(K,α, β)
1: for t = 1, 2, . . . do
2: #estimate model:
3: for k = 1, . . . , K do
4: θ̂k ← αk/(αk + βk)
5: end for
6:
7: #select and apply action:
8: xt ← argmaxk θ̂k9: Apply xt and observe rt
10:
11: #update distribution:
12: (αxt , βxt)← (αxt + rt, βxt + 1− rt)
13: end for

Algorithm 2 BernTS(K,α, β)
1: for t = 1, 2, . . . do
2: #sample model:
3: for k = 1, . . . , K do
4: Sample θ̂k ∼ beta(αk, βk)
5: end for
6:
7: #select and apply action:
8: xt ← argmaxk θ̂k9: Apply xt and observe rt
10:
11: #update distribution:
12: (αxt , βxt)← (αxt + rt, βxt + 1− rt)
13: end for

To understand how TS improves on greedy actions with or without
dithering, recall the three armed Bernoulli bandit with posterior distri-
butions illustrated in Figure 2.2. In this context, a greedy action would
forgo the potentially valuable opportunity to learn about action 3. With
dithering, equal chances would be assigned to probing actions 2 and 3,
though probing action 2 is virtually futile since it is extremely unlikely
to be optimal. TS, on the other hand would sample actions 1, 2, or 3,
with probabilities approximately equal to 0.82, 0, and 0.18, respectively.
In each case, this is the probability that the random estimate drawn for
the action exceeds those drawn for other actions. Since these estimates
are drawn from posterior distributions, each of these probabilities is
also equal to the probability that the corresponding action is optimal,
conditioned on observed history. As such, TS explores to resolve un-
certainty where there is a chance that resolution will help the agent
identify the optimal action, but avoids probing where feedback would
not be helpful.

It is illuminating to compare simulated behavior of TS to that
of a greedy algorithm. Consider a three-armed beta-Bernoulli bandit
with mean rewards θ1 = 0.9, θ2 = 0.8, and θ3 = 0.7. Let the prior
distribution over each mean reward be uniform. Figure 3.1 plots results
based on ten thousand independent simulations of each algorithm. Each
simulation is over one thousand time periods. In each simulation, actions
are randomly rank-ordered for the purpose of tie-breaking so that the

16 Thompson Sampling for the Bernoulli Bandit

greedy algorithm is not biased toward selecting any particular action.
Each data point represents the fraction of simulations for which a
particular action is selected at a particular time.

(a) greedy algorithm (b) Thompson sampling

Figure 3.1: Probability that the greedy algorithm and Thompson sampling selects
an action.

From the plots, we see that the greedy algorithm does not always
converge on action 1, which is the optimal action. This is because the
algorithm can get stuck, repeatedly applying a poor action. For example,
suppose the algorithm applies action 3 over the first couple time periods
and receives a reward of 1 on both occasions. The algorithm would
then continue to select action 3, since the expected mean reward of
either alternative remains at 0.5. With repeated selection of action 3,
the expected mean reward converges to the true value of 0.7, which
reinforces the agent’s commitment to action 3. TS, on the other hand,
learns to select action 1 within the thousand periods. This is evident
from the fact that, in an overwhelmingly large fraction of simulations,
TS selects action 1 in the final period.

The performance of online decision algorithms is often studied and
compared through plots of regret. The per-period regret of an algorithm
over a time period t is the difference between the mean reward of
an optimal action and the action selected by the algorithm. For the
Bernoulli bandit problem, we can write this as regrett(θ) = maxk θk−θxt .
Figure 3.2a plots per-period regret realized by the greedy algorithm
and TS, again averaged over ten thousand simulations. The average

17

per-period regret of TS vanishes as time progresses. That is not the
case for the greedy algorithm.

Comparing algorithms with fixed mean rewards raises questions
about the extent to which the results depend on the particular choice
of θ. As such, it is often useful to also examine regret averaged over
plausible values of θ. A natural approach to this involves sampling many
instances of θ from the prior distributions and generating an independent
simulation for each. Figure 3.2b plots averages over ten thousand such
simulations, with each action reward sampled independently from a
uniform prior for each simulation. Qualitative features of these plots are
similar to those we inferred from Figure 3.2a, though regret in Figure
3.2a is generally smaller over early time periods and larger over later
time periods, relative to Figure 3.2b. The smaller regret in early time
periods is due to the fact that with θ = (0.9, 0.8, 0.7), mean rewards are
closer than for a typical randomly sampled θ, and therefore the regret
of randomly selected actions is smaller. The fact that per-period regret
of TS is larger in Figure 3.2a than Figure 3.2b over later time periods,
like period 1000, is also a consequence of proximity among rewards with
θ = (0.9, 0.8, 0.7). In this case, the difference is due to the fact that it
takes longer to differentiate actions than it would for a typical randomly
sampled θ.

(a) θ = (0.9, 0.8, 0.7) (b) average over random θ

Figure 3.2: Regret from applying greedy and Thompson sampling algorithms to
the three-armed Bernoulli bandit.

4
General Thompson Sampling

TS can be applied fruitfully to a broad array of online decision problems
beyond the Bernoulli bandit, and we now consider a more general
setting. Suppose the agent applies a sequence of actions x1, x2, x3, . . . to
a system, selecting each from a set X . This action set could be finite, as
in the case of the Bernoulli bandit, or infinite. After applying action xt,
the agent observes an outcome yt, which the system randomly generates
according to a conditional probability measure qθ(·|xt). The agent enjoys
a reward rt = r(yt), where r is a known function. The agent is initially
uncertain about the value of θ and represents his uncertainty using a
prior distribution p.

Algorithms 3 and 4 present greedy and TS approaches in an abstract
form that accommodates this very general problem. The two differ in
the way they generate model parameters θ̂. The greedy algorithm takes
θ̂ to be the expectation of θ with respect to the distribution p, while
TS draws a random sample from p. Both algorithms then apply actions
that maximize expected reward for their respective models. Note that,
if there are a finite set of possible observations yt, this expectation is
given by

(4.1) Eqθ̂ [r(yt)|xt = x] =
∑
o

qθ̂(o|x)r(o).

18

19

The distribution p is updated by conditioning on the realized obser-
vation ŷt. If θ is restricted to values from a finite set, this conditional
distribution can be written by Bayes rule as

(4.2) Pp,q(θ = u|xt, yt) = p(u)qu(yt|xt)∑
v p(v)qv(yt|xt)

.

Algorithm 3 Greedy(X , p, q, r)
1: for t = 1, 2, . . . do
2: #estimate model:
3: θ̂ ← Ep[θ]
4:
5: #select and apply action:
6: xt ← argmaxx∈X Eq

θ̂
[r(yt)|xt = x]

7: Apply xt and observe yt
8:
9: #update distribution:
10: p← Pp,q(θ ∈ ·|xt, yt)
11: end for

Algorithm 4 Thompson(X , p, q, r)
1: for t = 1, 2, . . . do
2: #sample model:
3: Sample θ̂ ∼ p
4:
5: #select and apply action:
6: xt ← argmaxx∈X Eq

θ̂
[r(yt)|xt = x]

7: Apply xt and observe yt
8:
9: #update distribution:
10: p← Pp,q(θ ∈ ·|xt, yt)
11: end for

The Bernoulli bandit with a beta prior serves as a special case of
this more general formulation. In this special case, the set of actions is
X = {1, . . . ,K} and only rewards are observed, so yt = rt. Observations
and rewards are modeled by conditional probabilities qθ(1|k) = θk and
qθ(0|k) = 1− θk. The prior distribution is encoded by vectors α and β,
with probability density function given by:

p(θ) =
K∏
k=1

Γ(α+ β)
Γ(αk)Γ(βk)

θαk−1
k (1− θk)βk−1,

where Γ denotes the gamma function. In other words, under the prior
distribution, components of θ are independent and beta-distributed,
with parameters α and β.

For this problem, the greedy algorithm (Algorithm 3) and TS (Al-
gorithm 4) begin each tth iteration with posterior parameters (αk, βk)
for k ∈ {1, . . . ,K}. The greedy algorithm sets θ̂k to the expected value
Ep[θk] = αk/(αk + βk), whereas TS randomly draws θ̂k from a beta
distribution with parameters (αk, βk). Each algorithm then selects the
action x that maximizes Eqθ̂ [r(yt)|xt = x] = θ̂x. After applying the
selected action, a reward rt = yt is observed, and belief distribution

20 General Thompson Sampling

parameters are updated according to

(α, β)← (α+ rt1xt , β + (1− rt)1xt),

where 1xt is a vector with component xt equal to 1 and all other
components equal to 0.

Algorithms 3 and 4 can also be applied to much more complex
problems. As an example, let us consider a version of the shortest path
problem presented in Example 1.2.

Example 4.1. (Independent Travel Times) Recall the shortest path
problem of Example 1.2. The model is defined with respect to a directed
graph G = (V,E), with vertices V = {1, . . . , N}, edges E, and mean
travel times θ ∈ RN . Vertex 1 is the source and vertex N is the
destination. An action is a sequence of distinct edges leading from
source to destination. After applying action xt, for each traversed edge
e ∈ xt, the agent observes a travel time yt,e that is independently
sampled from a distribution with mean θe. Further, the agent incurs a
cost of

∑
e∈xt yt,e, which can be thought of as a reward rt = −

∑
e∈xt yt,e.

Consider a prior for which each θe is independent and log-Gaussian-
distributed with parameters µe and σ2

e . That is, ln(θe) ∼ N(µe, σ2
e) is

Gaussian-distributed. Hence, E[θe] = eµe+σ
2
e/2. Further, take yt,e|θ to

be independent across edges e ∈ E and log-Gaussian-distributed with
parameters ln(θe) − σ̃2/2 and σ̃2, so that E[yt,e|θe] = θe. Conjugacy
properties accommodate a simple rule for updating the distribution of
θe upon observation of yt,e:

(4.3) (µe, σ2
e)←

 1
σ2
e
µe + 1

σ̃2

(
ln(yt,e) + σ̃2

2

)
1
σ2
e

+ 1
σ̃2

,
1

1
σ2
e

+ 1
σ̃2

 .
To motivate this formulation, consider an agent who commutes from

home to work every morning. Suppose possible paths are represented
by a graph G = (V,E). Suppose the agent knows the travel distance
de associated with each edge e ∈ E but is uncertain about average
travel times. It would be natural for her to construct a prior for which
expectations are equal to travel distances. With the log-Gaussian prior,
this can be accomplished by setting µe = ln(de)− σ2

e/2. Note that the

21

parameters µe and σ2
e also express a degree of uncertainty; in particular,

the prior variance of mean travel time along an edge is (eσ2
e − 1)d2

e.
The greedy algorithm (Algorithm 3) and TS (Algorithm 4) can be

applied to Example 4.1 in a computationally efficient manner. Each
algorithm begins each tth iteration with posterior parameters (µe, σe)
for each e ∈ E. The greedy algorithm sets θ̂e to the expected value
Ep[θe] = eµe+σ

2
e/2, whereas TS randomly draws θ̂e from a log-Gaussian

distribution with parameters µe and σ2
e . Each algorithm then selects its

action x to maximize Eqθ̂ [r(yt)|xt = x] = −
∑
e∈xt θ̂e. This can be cast

as a deterministic shortest path problem, which can be solved efficiently,
for example, via Dijkstra’s algorithm. After applying the selected action,
an outcome yt is observed, and belief distribution parameters (µe, σ2

e),
for each e ∈ E, are updated according to (4.3).

Figure 4.1 presents results from applying greedy and TS algorithms
to Example 4.1, with the graph taking the form of a binomial bridge, as
shown in Figure 4.2, except with twenty rather than six stages, so there
are 184,756 paths from source to destination. Prior parameters are set
to µe = −1

2 and σ2
e = 1 so that E[θe] = 1, for each e ∈ E, and the

conditional distribution parameter is σ̃2 = 1. Each data point represents
an average over ten thousand independent simulations.

The plots of regret demonstrate that the performance of TS con-
verges quickly to optimal, while that is far from true for the greedy
algorithm. We also plot results generated by ε-greedy exploration, vary-
ing ε. For each trip, with probability 1− ε, this algorithm traverses a
path produced by a greedy algorithm. Otherwise, the algorithm samples
a path randomly. Though this form of exploration can be helpful, the
plots demonstrate that learning progresses at a far slower pace than
with TS. This is because ε-greedy exploration is not judicious in how
it selects paths to explore. TS, on the other hand, orients exploration
effort towards informative rather than entirely random paths.

Plots of cumulative travel time relative to optimal offer a sense for
the fraction of driving time wasted due to lack of information. Each
point plots an average of the ratio between the time incurred over some
number of days and the minimal expected travel time given θ. With
TS, this converges to one at a respectable rate. The same can not be
said for ε-greedy approaches.

22 General Thompson Sampling

(a) regret (b) cumulative travel time vs. optimal

Figure 4.1: Performance of Thompson sampling and ε-greedy algorithms in the
shortest path problem.

Figure 4.2: A binomial bridge with six stages.

Algorithm 4 can be applied to problems with complex information
structures, and there is often substantial value to careful modeling of
such structures. As an example, we consider a more complex variation
of the binomial bridge example.

Example 4.2. (Correlated Travel Times) As with Example 4.1, let each
θe be independent and log-Gaussian-distributed with parameters µe
and σ2

e . Let the observation distribution be characterized by

yt,e = ζt,eηtνt,`(e)θe,

23

where each ζt,e represents an idiosyncratic factor associated with edge
e, ηt represents a factor that is common to all edges, `(e) indicates
whether edge e resides in the lower half of the binomial bridge, and νt,0
and νt,1 represent factors that bear a common influence on edges in the
upper and lower halves, respectively. We take each ζt,e, ηt, νt,0, and νt,1
to be independent log-Gaussian-distributed with parameters −σ̃2/6 and
σ̃2/3. The distributions of the shocks ζt,e, ηt, νt,0 and νt,1 are known,
and only the parameters θe corresponding to each individual edge must
be learned through experimentation. Note that, given these parameters,
the marginal distribution of yt,e|θ is identical to that of Example 4.1,
though the joint distribution over yt|θ differs.

The common factors induce correlations among travel times in the
binomial bridge: ηt models the impact of random events that influence
traffic conditions everywhere, like the day’s weather, while νt,0 and
νt,1 each reflect events that bear influence only on traffic conditions
along edges in half of the binomial bridge. Though mean edge travel
times are independent under the prior, correlated observations induce
dependencies in posterior distributions.

Conjugacy properties again facilitate efficient updating of posterior
parameters. Let φ, zt ∈ RN be defined by

φe = ln(θe) and zt,e =
{

ln(yt,e) if e ∈ xt
0 otherwise.

Note that it is with some abuse of notation that we index vectors and
matrices using edge indices. Define a |xt| × |xt| covariance matrix Σ̃
with elements

Σ̃e,e′ =


σ̃2 for e = e′

2σ̃2/3 for e 6= e′, `(e) = `(e′)
σ̃2/3 otherwise,

for e, e′ ∈ xt, and a N ×N concentration matrix

C̃e,e′ =
{

Σ̃−1
e,e′ if e, e′ ∈ xt

0 otherwise,

for e, e′ ∈ E. Then, the posterior distribution of φ is Gaussian with a
mean vector µ and covariance matrix Σ that can be updated according

24 General Thompson Sampling

to

(4.4) (µ,Σ)←
((

Σ−1 + C̃
)−1 (

Σ−1µ+ C̃zt
)
,
(
Σ−1 + C̃

)−1
)
.

TS (Algorithm 4) can again be applied in a computationally efficient
manner. Each tth iteration begins with posterior parameters µ ∈ RN

and Σ ∈ RN×N . The sample θ̂ can be drawn by first sampling a
vector φ̂ from a Gaussian distribution with mean µ and covariance
matrix Σ, and then setting θ̂e = φ̂e for each e ∈ E. An action x is
selected to maximize Eqθ̂ [r(yt)|xt = x] = −

∑
e∈xt θ̂e, using Djikstra’s

algorithm or an alternative. After applying the selected action, an
outcome yt is observed, and belief distribution parameters (µ,Σ) are
updated according to (4.4).

(a) regret (b) cumulative travel time vs. optimal

Figure 4.3: Performance of two versions of Thompson sampling in the shortest
path problem with correlated travel times.

Figure 4.3 plots results from applying TS to Example 4.2, again
with the binomial bridge, µe = −1

2 , σ
2
e = 1, and σ̃2 = 1. Each data

point represents an average over ten thousand independent simulations.
Despite model differences, an agent can pretend that observations made
in this new context are generated by the model described in Example
4.1. In particular, the agent could maintain an independent log-Gaussian
posterior for each θe, updating parameters (µe, σ2

e) as though each yt,e|θ
is independently drawn from a log-Gaussian distribution. As a baseline
for comparison, Figure 4.3 additionally plots results from application
of this approach, which we will refer to here as misspecified TS. The
comparison demonstrates substantial improvement that results from

25

accounting for interdependencies among edge travel times, as is done
by what we refer to here as coherent TS. Note that we have assumed
here that the agent must select a path before initiating each trip. In
particular, while the agent may be able to reduce travel times in contexts
with correlated delays by adjusting the path during the trip based on
delays experienced so far, our model does not allow this behavior.

5
Approximations

Conjugacy properties in the Bernoulli bandit and shortest path examples
that we have considered so far facilitated simple and computationally
efficient Bayesian inference. Indeed, computational efficiency can be
an important consideration when formulating a model. However, many
practical contexts call for more complex models for which exact Bayesian
inference is computationally intractable. Fortunately, there are reason-
ably efficient and accurate methods that can be used to approximately
sample from posterior distributions.

In this section we discuss four approaches to approximate posterior
sampling: Gibbs sampling, Langevin Monte Carlo, sampling from a
Laplace approximation, and the bootstrap. Such methods are called for
when dealing with problems that are not amenable to efficient Bayesian
inference. As an example, we consider a variation of the online shortest
path problem.

Example 5.1. (Binary Feedback) Consider Example 4.2, except with
deterministic travel times and noisy binary observations. Let the graph
represent a binomial bridge with M stages. Let each θe be independent
and gamma-distributed with E[θe] = 1, E[θ2

e] = 1.5, and observations

26

27

be generated according to

yt|θ ∼


1 with probability 1

1+exp
(∑

e∈xt
θe−M

)
0 otherwise.

We take the reward to be the rating rt = yt. This information structure
could be used to model, for example, an Internet route recommendation
service. Each day, the system recommends a route xt and receives
feedback yt from the driver, expressing whether the route was desirable.
When the realized travel time

∑
e∈xt θe falls short of the prior expectation

M , the feedback tends to be positive, and vice versa.

This new model does not enjoy conjugacy properties leveraged
in Section 4 and is not amenable to efficient exact Bayesian inference.
However, the problem may be addressed via approximation methods. To
illustrate, Figure 5.1 plots results from application of three approximate
versions of TS to an online shortest path problem on a twenty-stage
binomial bridge with binary feedback. The algorithms leverage Langevin
Monte Carlo, the Laplace approximation, and the bootstrap, three
approaches we will discuss, and the results demonstrate effective learning,
in the sense that regret vanishes over time. Also plotted as a baseline
for comparison are results from application of the greedy algorithm.

In the remainder of this section, we will describe several approaches
to approximate TS. It is worth mentioning that we do not cover an
exhaustive list, and further, our descriptions do not serve as compre-
hensive or definitive treatments of each approach. Rather, our intent is
to offer simple descriptions that convey key ideas that may be extended
or combined to serve needs arising in any specific application.

Throughout this section, let ft−1 denote the posterior density of
θ conditioned on the history Ht−1 = ((x1, y1), . . . , (xt−1, yt−1)) of ob-
servations. TS generates an action xt by sampling a parameter vector
θ̂ from ft−1 and solving for the optimal path under θ̂. The methods
we describe generate a sample θ̂ whose distribution approximates the
posterior f̂t−1, which enables approximate implementations of TS when
exact posterior sampling is infeasible.

28 Approximations

Figure 5.1: Regret experienced by approximation methods applied to the path
recommendation problem with binary feedback.

5.1 Gibbs Sampling

Gibbs sampling is a general Markov chain Monte Carlo (MCMC) al-
gorithm for drawing approximate samples from multivariate proba-
bility distributions. It produces a sequence of sampled parameters
(θ̂n : n = 0, 1, 2, . . .) forming a Markov chain with stationary distribution
ft−1. Under reasonable technical conditions, the limiting distribution of
this Markov chain is its stationary distribution, and the distribution of
θ̂n converges to ft−1.

Gibbs sampling starts with an initial guess θ̂0. Iterating over sweeps
n = 1, . . . , N , for each nth sweep, the algorithm iterates over the
components k = 1, . . . ,K, for each k generating a one-dimensional
marginal distribution

fn,kt−1(θk) ∝ ft−1((θ̂n1 , . . . , θ̂nk−1, θk, θ̂
n−1
k+1 , . . . , θ̂

n−1
K)),

and sampling the kth component according to θ̂nk ∼ fn,kt−1. After N of
sweeps, the prevailing vector θ̂N is taken to be the approximate posterior
sample. We refer to (Casella and George, 1992) for a more thorough
introduction to the algorithm.

Gibbs sampling applies to a broad range of problems, and is often
computationally viable even when sampling from ft−1 is not. This is
because sampling from a one-dimensional distribution is simpler. That

5.2. Laplace Approximation 29

said, for complex problems, Gibbs sampling can still be computationally
demanding. This is the case, for example, with our path recommendation
problem with binary feedback. In this context, it is easy to implement
a version of Gibbs sampling that generates a close approximation to a
posterior sample within well under a minute. However, running thou-
sands of simulations each over hundreds of time periods can be quite
time-consuming. As such, we turn to more efficient approximation
methods.

5.2 Laplace Approximation

We now discuss an approach that approximates a potentially complicated
posterior distribution by a Gaussian distribution. Samples from this
simpler Gaussian distribution can then serve as approximate samples
from the posterior distribution of interest. Chapelle and Li (Chapelle
and Li, 2011) proposed this method to approximate TS in a display
advertising problem with a logistic regression model of ad-click-through
rates.

Let g denote a probability density function over RK from which
we wish to sample. If g is unimodal, and its log density ln(g(φ)) is
strictly concave around its mode φ, then g(φ) = eln(g(φ)) is sharply
peaked around φ. It is therefore natural to consider approximating g
locally around its mode. A second-order Taylor approximation to the
log-density gives

ln(g(φ)) ≈ ln(g(φ))− 1
2(φ− φ)>C(φ− φ),

where
C = −∇2 ln(g(φ)).

As an approximation to the density g, we can then use

g̃(φ) ∝ e−
1
2 (φ−φ)>C(φ−φ).

This is proportional to the density of a Gaussian distribution with mean
φ and covariance C−1, and hence

g̃(φ) =
√
|C/2π|e−

1
2 (φ−φ)>C(φ−φ).

30 Approximations

We refer to this as the Laplace approximation of g. Since there are
efficient algorithms for generating Gaussian-distributed samples, this
offers a viable means to approximately sampling from g.

As an example, let us consider application of the Laplace approxi-
mation to Example 5.1. Bayes rule implies that the posterior density
ft−1 of θ satisfies

ft−1(θ) ∝ f0(θ)
∏t−1
τ=1

(
1

1+exp
(∑

e∈xτ
θe−M

))yτ (exp
(∑

e∈xτ
θe−M

)
1+exp

(∑
e∈xτ

θe−M
))1−yτ

.

The mode θ can be efficiently computed via maximizing ft−1, which
is log-concave. An approximate posterior sample θ̂ is then drawn
from a Gaussian distribution with mean θ and covariance matrix
(−∇2 ln(ft−1(θ)))−1.

Laplace approximations are well suited for Example 5.1 because the
log-posterior density is strictly concave and its gradient and Hessian can
be computed efficiently. Indeed, more broadly, Laplace approximations
tend to be effective for posterior distributions with smooth densities that
are sharply peaked around their mode. They tend to be computationally
efficient when one can efficiently compute the posterior mode, and can
efficiently form the Hessian of the log-posterior density.

The behavior of the Laplace approximation is not invariant to a
substitution of variables, and it can sometimes be helpful to apply such
a substitution. To illustrate this point, let us revisit the online shortest
path problem of Example 4.2. For this problem, posterior distributions
components of θ are log-Gaussian. However, the distribution of φ, where
φe = ln(θe) for each edge e ∈ E, is Gaussian. As such, if the Laplace
approximation approach is applied to generate a sample φ̂ from the
posterior distribution of φ, the Gaussian approximation is no longer
an approximation, and, letting θ̂e = exp(φ̂e) for each e ∈ E, we obtain
a sample θ̂ exactly from the posterior distribution of θ. In this case,
through a variable substitution, we can sample in a manner that makes
the Laplace approximation exact. More broadly, for any given problem,
it may be possible to introduce variable substitutions that enhance the
efficacy of the Laplace approximation.

To produce the computational results reported in Figure 5.1, we
applied Newton’s method with a backtracking line search to maximize

5.3. Langevin Monte Carlo 31

ln(ft−1). Though regret decays and should eventually vanish, it is easy
to see from the figure that, for our example, the performance of the
Laplace approximation falls short of Langevin Monte Carlo, which
we will discuss in the next section. This is likely due to the fact that
the posterior distribution is not sufficiently close to Gaussian. It is
interesting that, despite serving as a popular approach in practical
applications of TS (Chapelle and Li, 2011; Gómez-Uribe, 2016), the
Laplace approximation can leave substantial value on the table.

5.3 Langevin Monte Carlo

We now describe an alternative Markov chain Monte Carlo method that
uses gradient information about the target distribution. Let g(φ) denote
a log-concave probability density function over RK from which we wish
to sample. Suppose that ln(g(φ)) is differentiable and its gradients are
efficiently computable. Arising first in physics, Langevin dynamics refer
to the diffusion process

(5.1) dφt = ∇ ln(g(φt))dt+
√

2dBt

where Bt is a standard Brownian motion process. This process has g
as its unique stationary distribution, and under reasonable technical
conditions, the distribution of φt converges rapidly to this stationary
distribution (Roberts and Tweedie, 1996; Mattingly et al., 2002). There-
fore simulating the process (5.1) provides a means of approximately
sampling from g.

Typically, one instead implements a Euler discretization of this
stochastic differential equation

(5.2) φn+1 = φn + ε∇ ln(g(φn)) +
√

2εWn n ∈ N,

where W1,W2, . . . are i.i.d. standard Gaussian random variables and
ε > 0 is a small step size. Like a gradient ascent method, under this
method φn tends to drift in directions of increasing density g(φn).
However, random Gaussian noise Wn is injected at each step so that,
for large n, the position of φn is random and captures the uncertainty
in the distribution g. A number of papers establish rigorous guarantees
for the rate at which this Markov chain converges to its stationary

32 Approximations

distribution (Roberts and Rosenthal, 1998; Bubeck et al., 2018; Durmus
and Moulines, 2016; Cheng and Bartlett, 2018). These papers typically
require ε is sufficiently small, or that a decaying sequence of step sizes
(ε1, ε2, . . .) is used.

We make two standard modifications to this method to improve
computational efficiency. First, following recent work (Welling and Teh,
2011), we implement stochastic gradient Langevin Monte Carlo, which
uses sampled minibatches of data to compute approximate rather than
exact gradients. Our implementation uses a mini-batch size of 100;
this choice seems to be effective but has not been carefully optimized.
When fewer than 100 observations are available, we follow the Markov
chain (5.2) with exact gradient computation. When more than 100
observations have been gathered, we follow (5.2) but use an estimated
gradient ∇ ln(ĝn(φn)) at each step based on a random subsample of
100 data points. Some work provides rigorous guarantees for stochastic
gradient Langevin Monte Carlo by arguing the cumulative impact of
the noise in gradient estimation is second order relative to the additive
Gaussian noise (Teh et al., 2016).

Our second modification involves the use of a preconditioning matrix
to improve the mixing rate of the Markov chain (5.2). For the path
recommendation problem in Example 5.1, we have found that the log
posterior density becomes ill-conditioned in later time periods. For this
reason, gradient ascent converges very slowly to the posterior mode.
Effective optimization methods should leverage second order information.
Similarly, due to poor conditioning, we may need to choose an extremely
small step size ε, causing the Markov chain in 5.2 to mix slowly. We
have found that preconditioning substantially improves performance.
Langevin MCMC can be implemented with a symmetric positive definite
preconditioning matrix A by simulating the Markov chain

φn+1 = φn + εA∇ ln(g(φn)) +
√

2εA1/2Wn n ∈ N,

where A1/2 denotes the matrix square root of A. In our implemen-
tation, we take φ0 = argmaxφ ln(g(φ)), so the chain is initialized at
the posterior mode, computed via means discussed in Section 5.2, and
take the preconditioning matrix A = −(∇2 ln(g(φ))|φ=φ0)−1 to be the
negative inverse Hessian at that point. It may be possible to improve

5.4. Bootstrapping 33

computational efficiency by constructing an incremental approximation
to the Hessian, as we will discuss in Subsection 5.6, but we do not
explore that improvement here.

5.4 Bootstrapping

As an alternative, we discuss an approach based on the statistical
bootstrap, which accommodates even very complex densities. Use of
the bootstrap for TS was first considered in (Eckles and Kaptein,
2014), though the version studied there applies to Bernoulli bandits
and does not naturally generalize to more complex problems. There
are many other versions of the bootstrap approach that can be used to
approximately sample from a posterior distribution. For concreteness,
we introduce a specific one that is suitable for examples we cover in
this tutorial.

Like the Laplace approximation approach, our bootstrap method
assumes that θ is drawn from a Euclidean space RK . Consider first a
standard bootstrap method for evaluating the sampling distribution
of the maximum likelihood estimate of θ. The method generates a
hypothetical history Ĥt−1 = ((x̂1, ŷ1), . . . , (x̂t−1, ŷt−1)), which is made
up of t − 1 action-observation pairs, each sampled uniformly with
replacement from Ht−1. We then maximize the likelihood of θ under
the hypothetical history, which for our shortest path recommendation
problem is given by

L̂t−1(θ) =
∏t−1
τ=1

(
1

1+exp
(∑

e∈x̂τ
θe−M

))ŷτ (exp
(∑

e∈x̂τ
θe−M

)
1+exp

(∑
e∈x̂τ

θe−M
))1−ŷτ

.

The randomness in the maximizer of L̂t−1 reflects the randomness in
the sampling distribution of the maximum likelihood estimate. Unfor-
tunately, this method does not take the agent’s prior into account. A
more severe issue is that it grossly underestimates the agent’s real un-
certainty in initial periods. The modification described here is intended
to overcome these shortcomings in a simple way.

The method proceeds as follows. First, as before, we draw a hypo-
thetical history Ĥt−1 = ((x̂1, ŷ1), . . . , (x̂t−1, ŷt−1)), which is made up of
t−1 action-observation pairs, each sampled uniformly with replacement

34 Approximations

from Ht−1. Next, we draw a sample θ0 from the prior distribution f0.
Let Σ denote the covariance matrix of the prior f0. Finally, we solve
the maximization problem

θ̂ = argmax
θ∈Rk

e−(θ−θ0)>Σ(θ−θ0)L̂t−1(θ)

and treat θ̂ as an approximate posterior sample. This can be viewed as
maximizing a randomized approximation f̂t−1 to the posterior density,
where f̂t−1(θ) ∝ e−(θ−θ0)>Σ(θ−θ0)L̂t−1(θ) is what the posterior density
would be if the prior were Gaussian with mean θ0 and covariance matrix
Σ, and the history of observations were Ĥt−1. When very little data has
been gathered, the randomness in the samples mostly stems from the
randomness in the prior sample θ0. This random prior sample encourages
the agent to explore in early periods. When t is large, so a lot of a data
has been gathered, the likelihood typically overwhelms the prior sample
and randomness in the samples mostly stems from the random selection
of the history Ĥt−1.

In the context of the shortest path recommendation problem, f̂t−1(θ)
is log-concave and can therefore be efficiently maximized. Again, to
produce our computational results reported in Figure 5.1, we applied
Newton’s method with a backtracking line search to maximize ln(f̂t−1).
Even when it is not possible to efficiently maximize f̂t−1, however, the
bootstrap approach can be applied with heuristic optimization methods
that identify local or approximate maxima.

As can be seen from Figure 5.1, for our example, bootstrapping
performs about as well as the Laplace approximation. One advantage
of the bootstrap is that it is nonparametric, and may work reasonably
regardless of the functional form of the posterior distribution, whereas
the Laplace approximation relies on a Gaussian approximation and
Langevin Monte Carlo relies on log-concavity and other regularity
assumptions. That said, it is worth mentioning that there is a lack of
theoretical justification for bootstrap approaches or even understanding
of whether there are nontrivial problem classes for which they are
guaranteed to perform well.

5.5. Sanity Checks 35

5.5 Sanity Checks

Figure 5.1 demonstrates that Laplace approximation, Langevin Monte
Carlo, and bootstrap approaches, when applied to the path recommen-
dation problem, learn from binary feedback to improve performance
over time. This may leave one wondering, however, whether exact TS
would offer substantially better performance. Since we do not have
a tractable means of carrying out exact TS for this problem, in this
section, we apply our approximation methods to problems for which
exact TS is tractable. This enables comparisons between performance
of exact and approximate methods.

Recall the three-armed beta-Bernoulli bandit problem for which
results from application of greedy and TS algorithms were reported
in Figure 3.2(b). For this problem, components of θ are independent
under posterior distributions, and as such, Gibbs sampling yields exact
posterior samples. Hence, the performance of an approximate version
that uses Gibbs sampling would be identical to that of exact TS. Figure
5.2a plots results from applying Laplace approximation, Langevin Monte
Carlo, and bootstrap approaches. For this problem, our approximation
methods offer performance that is qualitatively similar to exact TS,
though the Laplace approximation performs marginally worse than
alternatives in this setting.

Next, consider the online shortest path problem with correlated edge
delays. Regret experienced by TS applied to such a problem were re-
ported in Figure 4.3a. As discussed in Section 5.2, applying the Laplace
approximation approach with an appropriate variable substitution leads
to the same results as exact TS. Figure 5.2b compares those results to
what is generated by Gibbs sampling, Langevin Monte Carlo, and boot-
strap approaches. Again, the approximation methods yield competitive
results, although bootstrapping is marginally less effective than others.

It is easy to verify that for the online shortest path problem and
specific choices of step size ε = 1/2 and conditioning matrix A = Σt, a
single Langevin Monte Carlo iteration offers an exact posterior sample.
However, our simulations do not use this step size and carry out multiple
iterations. The point here is not to optimize results for our specific
problem but rather to offer a sanity check for the approach.

36 Approximations

(a) Bernoulli bandit (b) online shortest path

Figure 5.2: Regret of approximation methods versus exact Thompson sampling.

5.6 Incremental Implementation

For each of the three approximation methods we have discussed, the
computation time required per time period grows as time progresses.
This is because each past observation must be accessed to generate the
next action. This differs from exact TS algorithms we discussed earlier,
which maintain parameters that encode a posterior distribution, and
update these parameters over each time period based only on the most
recent observation.

In order to keep the computational burden manageable, it can
be important to consider incremental variants of our approximation
methods. We refer to an algorithm as incremental if it operates with
fixed rather than growing per-period compute time. There are many
ways to design incremental variants of approximate posterior sampling
algorithms we have presented. As concrete examples, we consider here
particular incremental versions of Laplace approximation and bootstrap
approaches.

For each time t, let `t(θ) denote the likelihood of yt conditioned on
xt and θ. Hence, conditioned on Ht−1, the posterior density satisfies

ft−1(θ) ∝ f0(θ)
t−1∏
τ=1

`τ (θ).

Let g0(θ) = ln(f0(θ)) and gt(θ) = ln(`t(θ)) for t > 0. To identify the
mode of ft−1, it suffices to maximize

∑t−1
τ=0 gτ (θ).

5.6. Incremental Implementation 37

Consider an incremental version of the Laplace approximation.
The algorithm maintains statistics Ht, and θt, initialized with θ0 =
argmaxθ g0(θ), and H0 = ∇2g0(θ0), and updating according to

Ht = Ht−1 +∇2gt(θt−1),

θt = θt−1 −H−1
t ∇gt(θt−1).

This algorithm is a type of online newton method for computing the
posterior mode θt−1 that maximizes

∑t−1
τ=0 gτ (θ). Note that if each func-

tion gt−1 is strictly concave and quadratic, as would be the case if
the prior is Gaussian and observations are linear in θ and perturbed
only by Gaussian noise, each pair θt−1 and H−1

t−1 represents the mean
and covariance matrix of ft−1. More broadly, these iterates can be
viewed as the mean and covariance matrix of a Gaussian approxima-
tion to the posterior, and used to generate an approximate posterior
sample θ̂ ∼ N(θt−1, H

−1
t−1). It is worth noting that for linear and gener-

alized linear models, the matrix ∇2gt(θt−1) has rank one, and therefore
H−1
t = (Ht−1 +∇2gt(θt−1))−1 can be updated incrementally using the

Sherman-Woodbury-Morrison formula. This incremental version of the
Laplace approximation is closely related to the notion of an extended
Kalman filter, which has been explored in greater depth by Gómez-Uribe
(Gómez-Uribe, 2016) as a means for incremental approximate TS with
exponential families of distributions.

Another approach involves incrementally updating each of an ensem-
ble of models to behave like a sample from the posterior distribution.
The posterior can be interpreted as a distribution of “statistically plau-
sible” models, by which we mean models that are sufficiently consistent
with prior beliefs and the history of observations. With this interpreta-
tion in mind, TS can be thought of as randomly drawing from the range
of statistically plausible models. Ensemble sampling aims to maintain,
incrementally update, and sample from a finite set of such models. In the
spirit of particle filtering, this set of models approximates the posterior
distribution. The workings of ensemble sampling are in some ways more
intricate than conventional uses of particle filtering, however, because
interactions between the ensemble of models and selected actions can
skew the distribution. Ensemble sampling is presented in more depth

38 Approximations

in (Lu and Van Roy, 2017), which draws inspiration from work on
exploration in deep reinforcement learning (Osband et al., 2016a).

There are multiple ways of generating suitable model ensembles. One
builds on the aforementioned bootstrap method and involves fitting
each model to a different bootstrap sample. To elaborate, consider
maintaining N models with parameters (θnt , Hn

t : n = 1, . . . , N). Each
set is initialized with θ

n
0 ∼ g0, Hn

0 = ∇g0(θn0), dn0 = 0, and updated
according to

Hn
t = Hn

t−1 + znt ∇2gt(θ
n
t−1),

θ
n
t = θ

n
t−1 − znt (Hn

t)−1∇gt(θ
n
t−1),

where each znt is an independent Poisson-distributed sample with mean
one. Each θnt can be viewed as a random statistically plausible model,
with randomness stemming from the initialization of θn0 and the random
weight znt placed on each observation. The variable, znτ can loosely be
interpreted as a number of replicas of the data sample (xτ , yτ) placed in
a hypothetical history Ĥn

t . Indeed, in a data set of size t, the number of
replicas of a particular bootstrap data sample follows a Binomial(t, 1/t)
distribution, which is approximately Poisson(1) when t is large. With
this view, each θnt is effectively fit to a different data set Ĥn

t , distinguished
by the random number of replicas assigned to each data sample. To
generate an action xt, n is sampled uniformly from {1, . . . , N}, and the
action is chosen to maximize E[rt|θ = θ

n
t−1]. Here, θnt−1 serves as the

approximate posterior sample. Note that the per-period compute time
grows with N , which is an algorithm tuning parameter.

This bootstrap approach offers one mechanism for incrementally
updating an ensemble of models. In Section 7.4, we will discuss another,
which we apply to active learning with neural networks.

6
Practical Modeling Considerations

Our narrative over previous sections has centered around a somewhat
idealized view of TS, which ignored the process of prior specification
and assumed a simple model in which the system and set of feasible
actions is constant over time and there is no side information on decision
context. In this section, we provide greater perspective on the process
of prior specification and on extensions of TS that serve practical needs
arising in some applications.

6.1 Prior Distribution Specification

The algorithms we have presented require as input a prior distribution
over model parameters. The choice of prior can be important, so let
us now discuss its role and how it might be selected. In designing an
algorithm for an online decision problem, unless the value of θ were
known with certainty, it would not make sense to optimize performance
for a single value, because that could lead to poor performance for other
plausible values. Instead, one might design the algorithm to perform
well on average across a collection of possibilities. The prior can be
thought of as a distribution over plausible values, and its choice directs

39

40 Practical Modeling Considerations

the algorithm to perform well on average over random samples from
the prior.

For a practical example of prior selection, let us revisit the banner
ad placement problem introduced in Example 1.1. There are K banner
ads for a single product, with unknown click-through probabilities
(θ1, . . . , θK). Given a prior, TS can learn to select the most successful
ad. We could use a uniform or, equivalently, a beta(1, 1) distribution over
each θk. However, if some values of θk are more likely than others, using a
uniform prior sacrifices performance. In particular, this prior represents
no understanding of the context, ignoring any useful knowledge from
past experience. Taking knowledge into account reduces what must be
learned and therefore reduces the time it takes for TS to identify the
most effective ads.

Suppose we have a data set collected from experience with previous
products and their ads, each distinguished by stylistic features such as
language, font, and background, together with accurate estimates of
click-through probabilities. Let us consider an empirical approach to
prior selection that leverages this data. First, partition past ads into K
sets, with each kth partition consisting of those with stylistic features
most similar to the kth ad under current consideration. Figure 6.1
plots a hypothetical empirical cumulative distribution of click-through
probabilities for ads in the kth set. It is then natural to consider as a prior
a smoothed approximation of this distribution, such as the beta(1, 100)
distribution also plotted in Figure 6.1. Intuitively, this process assumes
that click-through probabilities of past ads in set k represent plausible
values of θk. The resulting prior is informative; among other things, it
virtually rules out click-through probabilities greater than 0.05.

A careful choice of prior can improve learning performance. Figure
6.2 presents results from simulations of a three-armed Bernoulli ban-
dit. Mean rewards of the three actions are sampled from beta(1, 50),
beta(1, 100), and beta(1, 200) distributions, respectively. TS is applied
with these as prior distributions and with a uniform prior distribution.
We refer to the latter as a misspecified prior because it is not consistent
with our understanding of the problem. A prior that is consistent in
this sense is termed coherent. Each plot represents an average over ten
thousand independent simulations, each with independently sampled

6.1. Prior Distribution Specification 41

Figure 6.1: An empirical cumulative distribution and an approximating beta
distribution.

mean rewards. Figure 6.2a plots expected regret, demonstrating that
the misspecified prior increases regret. Figure 6.2a plots the evolution of
the agent’s mean reward conditional expectations. For each algorithm,
there are three curves corresponding to the best, second-best, and worst
actions, and they illustrate how starting with a misspecified prior delays
learning.

(a) regret (b) expected mean rewards

Figure 6.2: Comparison of TS for the Bernoulli bandit problem with coherent
versus misspecified priors.

42 Practical Modeling Considerations

6.2 Constraints, Context, and Caution

Though Algorithm 4, as we have presented it, treats a very general
model, straightforward extensions accommodate even broader scope.
One involves imposing time-varying constraints on the actions. In
particular, there could be a sequence of admissible action sets Xt that
constrain actions xt. To motivate such an extension, consider our shortest
path example. Here, on any given day, the drive to work may be
constrained by announced road closures. If Xt does not depend on θ
except through possible dependence on the history of observations, TS
(Algorithm 4) remains an effective approach, with the only required
modification being to constrain the maximization problem in Line 6.

Another extension of practical import addresses contextual online
decision problems. In such problems, the response yt to action xt
also depends on an independent random variable zt that the agent
observes prior to making her decision. In such a setting, the conditional
distribution of yt takes the form pθ(·|xt, zt). To motivate this, consider
again the shortest path example, but with the agent observing a weather
report zt from a news channel before selecting a path xt. Weather may
affect delays along different edges differently, and the agent can take this
into account before initiating her trip. Contextual problems of this flavor
can be addressed through augmenting the action space and introducing
time-varying constraint sets. In particular, if we view x̃t = (xt, zt) as
the action and constrain its choice to Xt = {(x, zt) : x ∈ X}, where X
is the set from which xt must be chosen, then it is straightforward to
apply TS to select actions x̃1, x̃2, For the shortest path problem,
this can be interpreted as allowing the agent to dictate both the weather
report and the path to traverse, but constraining the agent to provide a
weather report identical to the one observed through the news channel.

In some applications, it may be important to ensure that expected
performance exceeds some prescribed baseline. This can be viewed as
a level of caution against poor performance. For example, we might
want each action applied to offer expected reward of at least some level
r. This can again be accomplished through constraining actions: in each
tth time period, let the action set be Xt = {x ∈ X : E[rt|xt = x] ≥ r}.
Using such an action set ensures that expected average reward exceeds

6.3. Nonstationary Systems 43

r. When actions are related, an actions that is initially omitted from
the set can later be included if what is learned through experiments
with similar actions increases the agent’s expectation of reward from
the initially omitted action.

6.3 Nonstationary Systems

Problems we have considered involve model parameters θ that are
constant over time. As TS hones in on an optimal action, the frequency
of exploratory actions converges to zero. In many practical applications,
the agent faces a nonstationary system, which is more appropriately
modeled by time-varying parameters θ1, θ2, . . ., such that the response
yt to action xt is generated according to pθt(·|xt). In such contexts, the
agent should never stop exploring, since it needs to track changes as
the system drifts. With minor modification, TS remains an effective
approach so long as model parameters change little over durations that
are sufficient to identify effective actions.

In principle, TS could be applied to a broad range of problems where
the parameters θ1, θ2, θ3, ... evolve according to a stochastic process by
using techniques from filtering and sequential Monte Carlo to gener-
ate posterior samples. Instead we describe below some much simpler
approaches to such problems.

One simple approach to addressing nonstationarity involves ignoring
historical observations made beyond some number τ of time periods
in the past. With such an approach, at each time t, the agent would
produce a posterior distribution based on the prior and conditioned only
on the most recent τ actions and observations. Model parameters are
sampled from this distribution, and an action is selected to optimize the
associated model. The agent never ceases to explore, since the degree
to which the posterior distribution can concentrate is limited by the
number of observations taken into account. Theory supporting such an
approach is developed in (Besbes et al., 2014).

An alternative approach involves modeling evolution of a belief
distribution in a manner that discounts the relevance of past obser-
vations and tracks a time-varying parameters θt. We now consider
such a model and a suitable modification of TS. Let us start with

44 Practical Modeling Considerations

the simple context of a Bernoulli bandit. Take the prior for each
kth mean reward to be beta(α, β). Let the algorithm update parame-
ters to identify the belief distribution of θt conditioned on the history
Ht−1 = ((x1, y1), . . . , (xt−1, yt−1)) according to
(6.1)

(αk, βk)←
{ (

(1− γ)αk + γα, (1− γ)βk + γβ
)

xt 6= k(
(1− γ)αk + γα+ rt, (1− γ)βk + γβ + 1− rt

)
xt = k,

where γ ∈ [0, 1] and αk, βk > 0. This models a process for which the be-
lief distribution converges to beta(αk, βk) in the absence of observations.
Note that, in the absence of observations, if γ > 0 then (αk, βk) con-
verges to (αk, βk). Intuitively, the process can be thought of as randomly
perturbing model parameters in each time period, injecting uncertainty.
The parameter γ controls how quickly uncertainty is injected. At one
extreme, when γ = 0, no uncertainty is injected. At the other extreme,
γ = 1 and each θt,k is an independent beta(αk, βk)-distributed process.
A modified version of Algorithm 2 can be applied to this nonstation-
ary Bernoulli bandit problem, the differences being in the additional
arguments γ, α, and β , and the formula used to update distribution
parameters.

The more general form of TS presented in Algorithm 4 can be
modified in an analogous manner. For concreteness, let us focus on the
case where θ is restricted to a finite set; it is straightforward to extend
things to infinite sets. The conditional distribution update in Algorithm
4 can be written as

p(u)← p(u)qu(yt|xt)∑
v p(v)qv(yt|xt)

.

To model nonstationary model parameters, we can use the following
alternative:

p(u)← pγ(u)p1−γ(u)qu(yt|xt)∑
v p

γ(v)p1−γ(v)qv(yt|xt)
.

This generalizes the formula provided earlier for the Bernoulli bandit
case. Again, γ controls the rate at which uncertainty is injected. The
modified version of Algorithm 2, which we refer to as nonstationary
TS, takes γ and p as additional arguments and replaces the distribution
update formula.

6.4. Concurrence 45

Figure 6.3 illustrates potential benefits of nonstationary TS when
dealing with a nonstationairy Bernoulli bandit problem. In these sim-
ulations, belief distributions evolve according to Equation (6.1). The
prior and stationary distributions are specified by α = α = β = β = 1.
The decay rate is γ = 0.01. Each plotted point represents an aver-
age over 10,000 independent simulations. Regret here is defined by
regrett(θt) = maxk θt,k − θt,xt . While nonstationary TS updates its be-
lief distribution in a manner consistent with the underlying system, TS
pretends that the success probabilities are constant over time and up-
dates its beliefs accordingly. As the system drifts over time, TS becomes
less effective, while nonstationary TS retains reasonable performance.
Note, however, that due to nonstationarity, no algorithm can promise
regret that vanishes with time.

Figure 6.3: Comparison of TS versus nonstationary TS with a nonstationary
Bernoulli bandit problem.

6.4 Concurrence

In many applications, actions are applied concurrently. As an example,
consider a variation of the online shortest path problem of Example 4.1.
In the original version of this problem, over each period, an agent selects
and traverses a path from origin to destination, and upon completion,
updates a posterior distribution based on observed edge traversal times.

46 Practical Modeling Considerations

Now consider a case in which, over each period, multiple agents travel
between the same origin and destination, possibly along different paths,
with the travel time experienced by agents along each edge e to con-
ditionally independent, conditioned on θe. At the end of the period,
agents update a common posterior distribution based on their collective
experience. The paths represent concurrent actions, which should be
selected in a manner that diversifies experience.

TS naturally suits this concurrent mode of operation. Given the
posterior distribution available at the beginning of a time period, multi-
ple independent samples can be drawn to produce paths for multiple
agents. Figure 6.4 plots results from applying TS in this manner. Each
simulation was carried out with K agents navigating over each time
period through a twenty-stage binomial bridge. Figure 6.4(a) demon-
strates that the per-action regret experienced by each agent decays
more rapidly with time as the number of agents grows. This is due to
the fact that each agent’s learning is accelerated by shared observations.
On the other hand, Figure 6.4(b) shows that per-action regret decays
more slowly as a function of the number of actions taken so far by
the collective of agents. This loss is due to fact that the the posterior
distribution is updated only after K concurrent actions are completed,
so actions are not informed by observations generated by concurrent
ones as would be the case if the K actions were applied sequentially.

(a) per-action regret over time (b) per-action regret over actions

Figure 6.4: Performance of concurrent Thompson sampling.

As discussed in (Scott, 2010), concurrence plays an important role in
web services, where at any time, a system may experiment by providing

6.4. Concurrence 47

different versions of a service to different users. Concurrent TS offers
a natural approach for such contexts. The version discussed above
involves synchronous action selection and posterior updating. In some
applications, it is more appropriate to operate asynchronously, with
actions selected on demand and the posterior distribution updated as
data becomes available. The efficiency of synchronous and asynchronous
variations of concurrent TS is studied in (Kandasamy et al., 2018).
There are also situations where an agent can alter an action based on
recent experience of other agents, within a period before the action is
complete. For example, in the online shortest path problem, an agent
may decide to change course to avoid an edge if new observations made
by other agents indicate a long expected travel time. Producing a version
of TS that effectively adapts to such information while still exploring
in a reliably efficient manner requires careful design, as explained in
(Dimakopoulou and Van Roy, 2018).

7
Further Examples

As contexts for illustrating the workings of TS, we have presented the
Bernoulli bandit and variations of the online shortest path problem. To
more broadly illustrate the scope of TS and issues that arise in various
kinds of applications, we present several additional examples in this
section.

7.1 News Article Recommendation

Let us start with an online news article recommendation problem in
which a website needs to learn to recommend personalized and context-
sensitive news articles to its users, as has been discussed in (Li et al.,
2010) and (Chapelle and Li, 2011). The website interacts with a sequence
of users, indexed by t ∈ {1, 2, . . .}. In each round t, it observes a feature
vector zt ∈ Rd associated with the tth user, chooses a news article xt
to display from among a set of k articles X = {1, . . . , k}, and then
observes a binary reward rt ∈ {0, 1} indicating whether the user liked
this article.

The user’s feature vector might, for example, encode the following
information:

48

7.1. News Article Recommendation 49

• The visiting user’s recent activities, such as the news articles the
user has read recently.

• The visiting user’s demographic information, such as the user’s
gender and age.

• The visiting user’s contextual information, such as the user’s
location and the day of week.

Interested readers can refer to Section 5.2.2 of (Li et al., 2010) for an
example of feature construction in a practical context.

Following section 5 of (Chapelle and Li, 2011), we model the proba-
bility a user with features zt likes a given article xt through a logit model.
Specifically, each article x ∈ X is associated with a d–dimensional pa-
rameter vector θx ∈ Rd. Conditioned on xt, θxt and zt, a positive review
occurs with probability g(zTt θxt), where g is the logistic function, given
by g(a) = 1/(1 + e−a). The per-period regret of this problem is defined
by

regrett (θ1, . . . , θK) = max
x∈X

g(zTt θx)− g(zTt θxt) ∀t = 1, 2, . . .

and measures the gap in quality between the recommended article xt
and the best possible recommendation that could be made based on
the user’s features. This model allows for generalization across users,
enabling the website to learn to predict whether a user with given
features zt will like a news article based on experience recommending
that article to different users.

As in the path recommendation problem treated in Section 5, this
problem is not amenable to efficient exact Bayesian inference. Conse-
quently, we applied two approximate Thompson sampling methods: one
samples from a Laplace approximation of the posterior (see Section 5.2)
and the other uses Langevin Monte Carlo to generate an approximate
posterior sample (see Section 5.3). To offer a baseline, we also applied the
ε-greedy algorithm, and searched over values of ε for the best performer.

We present simulation results for a simplified synthetic setting
with K = |X | = 3 news articles and feature dimension d = 7. At
each time t ∈ {1, 2, · · · }, the feature vector zt has constant 1 as its
first component and each of its other components is independently

50 Further Examples

drawn from a Bernoulli distribution with success probability 1/6. Each
components of zt could, for example, indicate presence of a particular
feature, like whether the user is a woman or is accessing the site from
within the United States, in which the corresponding component of
θx would reflect whether users with this feature tend to enjoy article
x more than other users, while the first component of θx reflects the
article’s overall popularity.

Figure 7.1: Performance of different algorithms applied to the news article recom-
mendation problem.

Figure 7.1 presents results from applying Laplace and Langevin
Monte Carlo approximations of Thompson sampling as well as greedy
and ε-greedy algorithms. The plots in Figure 7.1 are generated by
averaging over 2, 000 random problem instances. In each instance, the
θx’s were independently sampled from N(0, I), where I is the 7 ×
7 identity matrix. Based on our simulations, the ε-greedy algorithm
incurred lowest regret with ε = 0.01. Even with this optimized value, it
is substantially outperformed by Thompson sampling.

We conclude this section by discussing some extensions to the
simplified model presented above. One major limitation is that the
current model does not allow for generalization across news articles.
The website needs to estimate θx separately for each article x ∈ X ,
and can’t leverage data on the appeal of other, related, articles when
doing so. Since today’s news websites have thousands or even millions

7.2. Product Assortment 51

of articles, this is a major limitation in practice. Thankfully, alternative
models allow for generalization across news articles as well as users.
One such model constructs a feature vector zt,x that encodes features
of the tth user, the article x, and possibly interactions between these.
Because the feature vector also depends on x, it is without loss of
generality to restrict to a parameter vector θx = θ that is common
across articles. The probability user t likes the article xt is given by
g(z>t,xtθ). Such generalization models enable us to do “transfer learning,”
i.e. to use information gained by recommending one article to reduce
the uncertainty about the weight vector of another article.

Another limitation of the considered model is that the news article
set X is time-invariant. In practice, the set of relevant articles will
change over time as fresh articles become available or some existing
articles become obsolete. Even with generalization across news articles,
a time-varying news article set, or both, the considered online news
article recommendation problem is still a contextual bandit problem. As
discussed in Section 6.2, all the algorithms discussed in this subsection
are also applicable to those cases, after some proper modifications.

7.2 Product Assortment

Let us start with an assortment planning problem. Consider an agent
who has an ample supply of each of n different products, indexed by
i = 1, 2, . . . , n. The seller collects a profit of pi per unit sold of product
type i. In each period, the agent has the option of offering a subset
of the products for sale. Products may be substitutes or complements,
and therefore the demand for a product may be influenced by the other
products offered for sale in the same period. In order to maximize her
profit, the agent needs to carefully select the optimal set of products to
offer in each period. We can represent the agent’s decision variable in
each period as a vector x ∈ {0, 1}n where xi = 1 indicates that product i
is offered and xi = 0 indicates that it is not. Upon offering an assortment
containing product i in some period, the agent observes a random
log-Gaussian-distributed demand di. The mean of this log-Gaussian
distribution depends on the entire assortment x and an uncertain matrix

52 Further Examples

θ ∈ Rk×k. In particular

log(di) | θ, x ∼ N
(
(θx)i, σ2

)
where σ2 is a known parameter that governs the level of idiosyncratic
randomness in realized demand across periods. For any product i con-
tained in the assortment x,

(θx)i = θii +
∑
j 6=i

xjθij ,

where θii captures the demand rate for item i if it were the sole product
offered and each θij captures the effect availability of product j has on
demand for product i. When an assortment x is offered, the agent earns
expected profit

(7.1) E
[
n∑
i=1

pixidi | θ, x
]

=
n∑
i=1

pixie
(θx)i+σ2

2 .

If θ were known, the agent would always select the assortment x that
maximizes her expected profit in (7.1). However, when θ is unknown,
the agent needs to learn to maximize profit by exploring different
assortments and observing the realized demands.

TS can be adopted as a computationally efficient solution to this
problem. We assume the agent begins with a multivariate Gaussian
prior over θ. Due to conjugacy properties of Gaussian and log-Gaussian
distributions, the posterior distribution of θ remains Gaussian after
any number of periods. At the beginning of each t’th period, the TS
algorithm draws a sample θ̂t from this Gaussian posterior distribution.
Then, the agent selects an assortment that would maximize her expected
profit in period t if the sampled θ̂t were indeed the true parameter.

As in Examples 4.1 and 4.2, the mean and covariance matrix of
the posterior distribution of θ can be updated in closed form. However,
because θ is a matrix rather than a vector, the explicit form of the update
is more complicated. To describe the update rule, we first introduce θ̄ as
the vectorized version of θ which is generated by stacking the columns
of θ on top of each other. Let x be the assortment selected in a period,
i1, i2, . . . , ik denote the the products included in this assortment (i.e.,

7.2. Product Assortment 53

supp(x) = {i1, i2, . . . , ik}) and z ∈ Rk be defined element-wise as

zj = ln(dij), j = 1, 2, . . . , k.

Let S be a k × n “selection matrix” where Sj,ij = 1 for j = 1, 2, . . . , k
and all its other elements are 0. Also, define

W = x> ⊗ S,

where ⊗ denotes the Kronecker product of matrices. At the end of
current period, the posterior mean µ and covariance matrix Σ of θ̄ are
updated according to the following rules:

µ ←
(

Σ−1 + 1
σ2W

>W

)−1 (
Σ−1µ+ 1

σ2W
>z

)
,

Σ ←
(

Σ−1 + 1
σ2W

>W

)−1
.

To investigate the performance of TS in this problem, we simulated a
scenario with n = 6 and σ2 = 0.04. We take the profit associated to each
product i to be pi = 1/6. As the prior distribution, we assumed that
each element of θ is independent and Gaussian-distributed with mean 0,
the diagonal elements have a variance of 1, and the off-diagonal elements
have a variance of 0.2. To understand this choice, recall the impact
of diagonal and off-diagonal elements of θ. The diagonal element θii
controls the mean demand when only product i is available, and reflects
the inherent quality or popularity of that item. The off-diagonal element
θij captures the influence availability of product j has on mean demand
for product i. Our choice of prior covariance encodes that the dominant
effect on demand of a product is likely its own characteristics, rather
than its interaction with any single other product. Figure 7.2 presents
the performance of different learning algorithms in this problem. In
addition to TS, we have simulated the greedy and ε-greedy algorithms
for various values of ε. We found that ε = 0.07 provides the best
performance for ε-greedy in this problem.

As illustrated by this figure, the greedy algorithm performs poorly
in this problem while ε-greedy presents a much better performance.
We found that the performance of ε-greedy can be improved by using
an annealing ε of m

m+t at each period t. Our simulations suggest using

54 Further Examples

m = 9 for the best performance in this problem. Figure 7.2 shows that
TS outperforms both variations of ε-greedy in this problem.

Figure 7.2: Regret experienced by different learning algorithms applied to product
assortment problem.

7.3 Cascading Recommendations

We consider an online recommendation problem in which an agent learns
to recommend a desirable list of items to a user. As a concrete example,
the agent could be a search engine and the items could be web pages.
We consider formulating this problem as a cascading bandit, in which
user selections are governed by a cascade model, as is commonly used
in the fields of information retrieval and online advertising (Craswell
et al., 2008).

A cascading bandit model is identified by a triple (K,J, θ), where K
is the number of items, J ≤ K is the number of items recommended in
each period, and θ ∈ [0, 1]K is a vector of attraction probabilities . At
the beginning of each tth period, the agent selects and presents to the
user an ordered list xt ∈ {1, . . . ,K}J . The user examines items in xt
sequentially, starting from xt,1. Upon examining item xt,j , the user finds
it attractive with probability θxt,j . In the event that the user finds the
item attractive, he selects the item and leaves the system. Otherwise,
he carries on to examine the next item in the list, unless j = J , in

7.3. Cascading Recommendations 55

which case he has already considered all recommendations and leaves
the system.

The agent observes yt = j if the user selects xt,j and yt =∞ if the
user does not click any item. The associated reward rt = r(yt) = 1{yt ≤
J} indicates whether any item was selected. For each list x = (x1, . . . , xJ)
and θ′ ∈ [0, 1]K , let

h(x, θ′) = 1−
∏J
j=1

[
1− θ′xj

]
.

Note that the expected reward at time t is E [rt|xt, θ] = h(xt, θ). The
optimal solution x∗ ∈ argmaxx: |x|=J h(x, θ) consists of the J items with
largest attraction probabilities. Per-period regret is given by regrett(θ) =
h(x∗, θ)− h(xt, θ).

Algorithm 5 CascadeUCB(K,J, α, β)
1: for t = 1, 2, . . . do
2: #compute itemwise UCBs:
3: for k = 1, . . . , K do
4: Compute UCB Ut(k)
5: end for
6:
7: #select and apply action:
8: xt ← argmaxx:|x|=J h(x,Ut)
9: Apply xt and observe yt and rt
10:
11: #update sufficient statistics:
12: for j = 1, . . . ,min{yt, J} do
13: αxt,j ← αxt,j + 1(j = yt)
14: βxt,j ← βxt,j + 1(j < yt)
15: end for
16: end for

Algorithm 6 CascadeTS(K,J, α, β)
1: for t = 1, 2, . . . do
2: #sample model:
3: for k = 1, . . . , K do
4: Sample θ̂k ∼ Beta(αk, βk)
5: end for
6:
7: #select and apply action:
8: xt ← argmaxx:|x|=J h(x, θ̂)
9: Apply xt and observe yt and rt
10:
11: #update posterior:
12: for j = 1, . . . ,min{yt, J} do
13: αxt,j ← αxt,j + 1(j = yt)
14: βxt,j ← βxt,j + 1(j < yt)
15: end for
16: end for

Kveton et al. (2015) proposed learning algorithms for cascading
bandits based on itemwise upper confidence bound (UCB) estimates.
CascadeUCB (Algorithm 5) is a practical variant that allows for spec-
ification of prior parameters (α, β) that guide the early behavior of
the algorithm. CascadeUCB computes a UCB Ut(k) for each item
k ∈ {1, . . . ,K} and then chooses a list that maximizes h(·,Ut), which
represents an upper confidence bound on the list attraction probabil-
ity. The list xt can be efficiently generated by choosing the J items
with highest UCBs. Upon observing the user’s response, the algorithm

56 Further Examples

updates the sufficient statistics (α, β), which count clicks and views
for all the examined items. CascadeTS (Algorithm 6) is a Thompson
sampling algorithm for cascading bandits. CascadeTS operates in a
manner similar to CascadeUCB except that xt is computed based on
the sampled attraction probabilities θ̂, rather than the itemwise UCBs
Ut.

In this section, we consider a specific form of UCB, which is defined
by

Ut(k) = αk
αk + βk

+ c

√
1.5 log(t)
αk + βk

,

for k ∈ {1, . . . ,K}, where αk/(αk + βk) represents the expected value
of the attraction probability θk, while the second term represents an
optimistic boost that encourages exploration. Notice that the parameter
c ≥ 0 controls the degree of optimism. When c = 1, the above-defined
UCB reduces to the standard UCB1, which is considered and analyzed
in the context of cascading bandits in (Kveton et al., 2015). In practice,
we can select c through simulations to optimize performance.

Figure 7.3 presents results from applying CascadeTS and Cas-
cadeUCB based on UCB1. These results are generated by randomly
sampling 1000 cascading bandit instances, K = 1000 and J = 100, in
each case sampling each attraction probability θk independently from
Beta(1, 40). For each instance, CascadeUCB and CascadeTS are applied
over 20000 time periods, initialized with (αk, βk) = (1, 40). The plots
are of per-period regrets averaged over the 1000 simulations.

The results demonstrate that TS far outperforms this version of
CascadeUCB. Why? An obvious reason is that h(x,Ut) is far too op-
timistic. In particular, h(x,Ut) represents the probability of a click if
every item in x simultaneously takes on the largest attraction probability
that is statistically plausible. However, due to the statistical indepen-
dence of item attractions, the agent is unlikely to have substantially
under-estimated the attraction probability of every item in x. As such,
h(x,Ut) tends to be far too optimistic. CascadeTS, on the other hand,
samples components θ̂k independently across items. While any sample
θ̂k might deviate substantially from its mean, it is unlikely that the
sampled attraction probability of every item in x greatly exceeds its

7.3. Cascading Recommendations 57

Figure 7.3: Comparison of CascadeTS and CascadeUCB with K = 1000 items and
J = 100 recommendations per period.

mean. As such, the variability in h(x, θ̂) provides a much more accurate
reflection of the magnitude of uncertainty.

The plot labeled “UCB-best” in Figure 7.3 illustrates performance
of CascadeUCB with c = 0.05, which approximately minimizes cumu-
lative regret over 20,000 time periods. It is interesting that even after
being tuned to the specific problem and horizon, the performance of
CascadeUCB falls short of Cascade TS. A likely source of loss stems
from the shape of confidence sets used by CascadeUCB. Note that
the algorithm uses hyper-rectangular confidence sets, since the set of
statistically plausible attraction probability vectors is characterized
by a Cartesian product item-level confidence intervals. However, the
Bayesian central limit theorem suggests that “ellipsoidal" confidence
sets offer a more suitable choice. Specifically, as data is gathered, the
posterior distribution over θ can be well approximated by a multivariate
Gaussian, for which level sets are ellipsoidal. Losses due to the use
of hyper-rectangular confidence sets have been studied through regret
analysis in (Dani et al., 2008) and through simple analytic examples in
(Osband and Van Roy, 2017a).

It is worth noting that tuned versions of CascadeUCB do sometimes
perform as well or better than CascadeTS. Figure 7.4 illustrates an

58 Further Examples

example of this. The setting is identical to that used to generate the
results of Figure 7.3, except that K = 50 and J = 10, and cumulative
regret is approximately optimized with c = 0.1. CascadeUCB with the
optimally tuned c outperforms CascadeTS. This qualitative difference
from the case of K = 1000 and J = 100 is likely due to the fact that
hyper-rectangular sets offer poorer approximations of ellipsoids as the
dimension increases. This phenomenon and its impact on regret aligns
with theoretical results of (Dani et al., 2008). That said, CascadeUCB is
somewhat advantaged in this comparison because it is tuned specifically
for the setting and time horizon.

Figure 7.4: Comparison of CascadeTS and CascadeUCB with K = 50 items and
J = 10 recommendations per period.

7.4 Active Learning with Neural Networks

Neural networks are widely used in supervised learning, where given an
existing set of predictor-response data pairs, the objective is to produce a
model that generalizes to accurately predict future responses conditioned
on associated predictors. They are also increasingly being used to guide
actions ranging from recommendations to robotic maneuvers. Active
learning is called for to close the loop by generating actions that do not
solely maximize immediate performance but also probe the environment

7.4. Active Learning with Neural Networks 59

to generate data that accelerates learning. TS offers a useful principle
upon which such active learning algorithms can be developed.

With neural networks or other complex model classes, computing the
posterior distribution over models becomes intractable. Approximations
are called for, and incremental updating is essential because fitting a
neural network is a computationally intensive task in its own right. In
such contexts, ensemble sampling offers a viable approach (Lu and Van
Roy, 2017). In Section 5.6, we introduced a particular mechanism for
ensemble sampling based on the bootstrap. In this section, we consider
an alternative version of ensemble sampling and present results from
(Lu and Van Roy, 2017) that demonstrate its application to active
learning with neural networks.

To motivate our algorithm, let us begin by discussing how it can be
applied to the linear bandit problem.

Example 7.1. (Linear Bandit) Let θ be drawn from RM and distributed
according to a N(µ0,Σ0) prior. There is a set of K actions X ⊆ RM .
At each time t = 1, . . . , T , an action xt ∈ X is selected, after which a
reward rt = yt = θ>xt + wt is observed, where wt ∼ N(0, σ2

w).

In this context, ensemble sampling is unwarranted, since exact
Bayesian inference can be carried out efficiently via Kalman filtering.
Nevertheless, the linear bandit offers a simple setting for explaining the
workings of an ensemble sampling algorithm.

Consider maintaining a covariance matrix updated according to

Σt+1 =
(
Σ−1
t + xtx

>
t /σ

2
w

)−1
,

and N models θ1
t , . . . , θ

N
t , initialized with θ1

1, . . . , θ
N
1 each drawn inde-

pendently from N(µ0,Σ0) and updated incrementally according to

θ
n
t+1 = Σt+1

(
Σ−1
t θ

n
t + xt(yt + w̃nt)/σ2

w

)
,

for n = 1, . . . , N , where (w̃nt : t = 1, . . . , T, n = 1, . . . , N) are indepen-
dent N(0, σ2

w) random samples drawn by the updating algorithm. It is
easy to show that the resulting parameter vectors satisfy

θ
n
t = arg min

ν

(
1
σ2
w

t−1∑
τ=1

(yτ + w̃nτ − x>τ ν)2 + (ν − θn1)>Σ−1
0 (ν − θn1)

)
.

60 Further Examples

Thich admits an intuitive interpretation: each θ
n
t is a model fit to

a randomly perturbed prior and randomly perturbed observations.
As established in (Lu and Van Roy, 2017), for any deterministic se-
quence x1, . . . , xt−1, conditioned on the history, the models θ1

t , . . . , θ
N
t

are independent and identically distributed according to the posterior
distribution of θ. In this sense, the ensemble approximates the posterior.

The ensemble sampling algorithm we have described for the linear
bandit problem motivates an analogous approach for the following
neural network model.

Example 7.2. (Neural Network) Let gθ : RM 7→ RK denote a mapping
induced by a neural network with weights θ. Suppose there areK actions
X ⊆ RM , which serve as inputs to the neural network, and the goal is
to select inputs that yield desirable outputs. At each time t = 1, . . . , T ,
an action xt ∈ X is selected, after which yt = gθ(xt) + wt is observed,
where wt ∼ N(0, σ2

wI). A reward rt = r(yt) is associated with each
observation. Let θ be distributed according to a N(µ0,Σ0) prior. The
idea here is that data pairs (xt, yt) can be used to fit a neural network
model, while actions are selected to trade off between generating data
pairs that reduce uncertainty in neural network weights and those that
offer desirable immediate outcomes.

Consider an ensemble sampling algorithm that once again begins
with N independent models with connection weights θ1

1, . . . , θ
N
1 sampled

from a N(µ0,Σ0) prior. It could be natural here to let µ0 = 0 and
Σ0 = σ2

0I for some variance σ2
0 chosen so that the range of probable

models spans plausible outcomes. To incrementally update parameters,
at each time t, each nth model applies some number of stochastic
gradient descent iterations to reduce a loss function of the form

Lt(ν) = 1
σ2
w

t−1∑
τ=1

(yτ + w̃nτ − gν(xτ))2 + (ν − θn1)>Σ−1
0 (ν − θn1).

Figure 7.5 present results from simulations involving a two-layer
neural network, with a set of K actions, X ⊆ RM . The weights of the
neural network, which we denote by w1 ∈ RD×N and w2 ∈ RD, are
each drawn from N(0, λ). Let θ ≡ (w1, w2). The mean reward of an

7.4. Active Learning with Neural Networks 61

action x ∈ X is given by gθ(x) = w>2 max(0, w1a). At each time step,
we select an action xt ∈ X and observe reward yt = gθ(xt) + zt, where
zt ∼ N(0, σ2

z). We used M = 100 for the input dimension, D = 50 for
the dimension of the hidden layer, number of actions K = 100, prior
variance λ = 1, and noise variance σ2

z = 100. Each component of each
action vector is sampled uniformly from [−1, 1], except for the last
component, which is set to 1 to model a constant offset. All results are
averaged over 100 realizations.

In our application of the ensemble sampling algorithm we have
described, to facilitate gradient flow, we use leaky rectified linear units
of the form max(0.01x, x) during training, though the target neural
network is made up of regular rectified linear units as indicated above. In
our simulations, each update was carried out with 5 stochastic gradient
steps, with a learning rate of 10−3 and a minibatch size of 64.

(a) Fixed ε-greedy. (b) Annealing ε-greedy. (c) Ensemble TS.

Figure 7.5: Bandit learning with an underlying neural network.

Figure 7.5 illustrates the performance of several learning algorithms
with an underlying neural network. Figure 7.5a demonstrates the per-
formance of an ε-greedy strategy across various levels of ε. We find
that we are able to improve performance with an annealing schedule
ε = k

k+t (Figure 7.5b). However, we find that an ensemble sampling
strategy outperforms even the best tuned ε-schedules (Figure 7.5c).

62 Further Examples

Further, we see that ensemble sampling strategy can perform well with
remarkably few members of this ensemble. Ensemble sampling with
fewer members leads to a greedier strategy, which can perform better for
shorter horizons, but is prone to premature and suboptimal convergence
compared to true TS (Lu and Van Roy, 2017). In this problem, using
an ensemble of as few as 30 members provides very good performance.

7.5 Reinforcement Learning in Markov Decision Processes

Reinforcement learning (RL) extends upon contextual online decision
problems to allow for delayed feedback and long term consequences
(Sutton and Barto, 1998; Littman, 2015). Concretely (using the notation
of Section 6.2) the response yt to the action xt depends on a context
zt; but we no longer assume that the evolution of the context zt+1 is
independent of yt. As such, the action xt may affect not only the reward
r(yt) but also, through the effect upon the context zt+1 the rewards of
future periods (r(yt′))t′>t. As a motivating example, consider a problem
of sequential product recommendations xt where the customer response
yt is influenced not only by the quality of the product, but also the
history of past recommendations. The evolution of the context zt+1
is then directly affected by the customer response yt; if a customer
watched ‘The Godfather’ and loved it, then chances are probably higher
they may enjoy ‘The Godfather 2.’

Maximizing cumulative rewards in a problem with long term con-
sequences can require planning with regards to future rewards, rather
than optimizing each period myopically. Similarly, efficient exploration
in these domains can require balancing not only the information gained
over a single period; but also the potential for future informative actions
over subsequent periods. This sophisticated form of temporally-extended
exploration, which can be absolutely critical for effective performance,
is sometimes called deep exploration (Osband et al., 2017). TS can be
applied successfully to reinforcement learning (Osband et al., 2013).
However, as we will discuss, special care must be taken with respect to
the notion of a time period within TS to preserve deep exploration.

Consider a finite horizon Markov decision process (MDP) M =
(S,A, RM, PM, H, ρ), where S is the state space, A is the action space,

7.5. Reinforcement Learning in Markov Decision Processes 63

and H is the horizon. The agent begins in a state s0, sampled from ρ,
and over each timestep h = 0, ..,H − 1 the agent selects action ah ∈ A,
receives a reward rh ∼ RMsh,ah , and transitions to a new state sh+1 ∼
PMsh,ah . Here, R

M
sh,ah

and PMsh,ah are probability distributions. A policy µ
is a function mapping each state s ∈ S and timestep h = 0, ..,H − 1 to
an action a ∈ A. The value function VM

µ,h(s) = E[
∑H−1
j=h rj(sj , µ(sj , j)) |

sh = s] encodes the expected reward accumulated under µ over the
remainder of the episode when starting from state s and timestep h.
Finite horizon MDPs model delayed consequences of actions through
the evolution of the state, but the scope of this influence is limited to
within an individual episode.

Let us consider an episodic RL problem, in which an agent learns
about RM and PM over episodes of interaction with an MDP. In each
episode, the agent begins in a random state, sampled from ρ, and follows
a trajectory, selecting actions and observing rewards and transitions
over H timesteps. Immediately we should note that we have already
studied a finite horizon MDP under different terminology in Example
1.2: the online shortest path problem. To see the connection, simply
view each vertex as a state and the choice of edge as an action within a
timestep. With this connection in mind we can express the problem of
maximizing the cumulative rewards

∑K
k=1

∑H−1
h=0 r(skh, akh) in a finite

horizon MDP equivalently as an online decision problem over periods
k = 1, 2, ..,K, each involving the selection of a policy µk for use over
an episode of interaction between the agent and the MDP. By contrast,
a naive application of TS to reinforcement learning that samples a new
policy for each timestep within an episode could be extremely inefficient
as it does not perform deep exploration.

Figure 7.6: MDPs where TS with sampling at every timestep within an episode
leads to inefficient exploration.

Consider the example in Figure 7.6 where the underlying MDP is
characterized by a long chain of states {s−N , .., sN} and only the one of

64 Further Examples

the far left or far right positions are rewarding with equal probability; all
other states produce zero reward and with known dynamics. Learning
about the true dynamics of the MDP requires a consistent policy over
N steps right or N steps left; a variant of TS that resamples after each
step would be exponentially unlikely to make it to either end within N
steps (Osband et al., 2017). By contrast, sampling only once prior to
each episode and holding the policy fixed for the duration of the episode
demonstrates deep exploration and results in learning the optimal policy
within a single episode.

In order to apply TS to policy selection we need a way of sampling
from the posterior distribution for the optimal policy. One efficient way
to do this, at least with tractable state and action spaces, is to maintain a
posterior distribution over the rewards RM and the transition dynamics
PM at each state-action pair (s, a). In order to generate a sample for the
optimal policy, simply take a single posterior sample for the reward and
transitions and then solve for the optimal policy for this sample. This
is equivalent sampling from the posterior distribution of the optimal
policy, but may be computationally more efficient than maintaining
that posterior distribution explicitly. Estimating a posterior distribution
over rewards is no different from the setting of bandit learning that
we have already discussed at length within this paper. The transition
function looks a little different, but for transitions over a finite state
space the Dirichlet distribution is a useful conjugate prior. It is a multi-
dimensional generalization of the Beta distribution from Example 3.1.
The Dirichlet prior over outcomes in S = {1, .., S} is specified by a
positive vector of pseudo-observations α ∈ RS+; updates to the Dirichlet
posterior can be performed simply by incrementing the appropriate
column of α (Strens, 2000).

In Figure 7.7 we present a computational comparison of TS with
sampling per timestep versus per episode, applied to the example of
Figure 7.6. Figure 7.7a compares the performance of sampling schemes
where the agent has an informative prior that matches the true un-
derlying system. As explained above, sampling once per episode TS is
guaranteed to learn the true MDP structure in a single episode. By
contrast, sampling per timestep leads to uniformly random actions

7.5. Reinforcement Learning in Markov Decision Processes 65

until either s−N or sN is visited. Therefore, it takes a minimum of 2N
episodes for the first expected reward.

(a) Using informed prior. (b) Using uninformed prior.

Figure 7.7: TS with sampling per timestep versus per episode.

The difference in performance demonstrated by Figure 7.7a is par-
ticularly extreme because the prior structure means that there is only
value to deep exploration, and none to ‘shallow’ exploration (Osband
et al., 2017). In Figure 7.7b we present results for TS on the same
environment but with a uniform Dirichlet prior over transitions and a
standard Gaussian prior over rewards for each state-action pair. With
this prior structure sampling per timestep is not as hopeless, but still
performs worse than sampling per episode. Once again, this difference
increases with MDP problem size. Overall, Figure 7.7 demonstrates
that the benefit of sampling per episode, rather than per timestep,
can become arbitrarily large. As an additional benefit this approach is
also more computationally efficient, since we only need to solve for the
optimal policy once every episode rather than at each timestep.

This more nuanced application of TS to RL is sometimes referred
to as posterior sampling for reinforcement learning (PSRL) (Strens,
2000). Recent work has developed a theoretical analyses of PSRL that
guarantee strong expected performance over a wide range of environ-
ments (Osband et al., 2013; Osband and Van Roy, 2014b; Osband and
Van Roy, 2014a; Osband and Van Roy, 2017b; Ouyang et al., 2017). This
work builds on and extends theoretical results that will be discussed

66 Further Examples

in Section 8.1.2. It is worth mentioning that PSRL fits in the broader
family of Bayesian approaches to efficient reinforcement learning; we
refer interested readers to the survey paper (Ghavamzadeh et al., 2015).

8
Why it Works, When it Fails, and Alternative

Approaches

Earlier sections demonstrate that TS approaches can be adapted to
address a number of problem classes of practical import. In this sec-
tion, we provide intuition for why TS explores efficiently, and briefly
review theoretical work that formalizes this intuition. We will then
highlight problem classes for which TS is poorly suited, and refer to
some alternative algorithms.

8.1 Why Thompson Sampling Works

To understand whether TS is well suited to a particular application,
it is useful to develop a high level understanding of why it works.
As information is gathered, beliefs about action rewards are carefully
tracked. By sampling actions according to the posterior probability that
they are optimal, the algorithm continues to sample all actions that
could plausibly be optimal, while shifting sampling away from those that
are unlikely to be optimal. Roughly speaking, the algorithm tries all
promising actions while gradually discarding those that are believed to
underperform.This intuition is formalized in recent theoretical analyses
of Thompson sampling, which we now review.

67

68 Why it Works, When it Fails, and Alternative Approaches

8.1.1 Regret Analysis for Classical Bandit Problems

Asymptotic Instance Dependent Regret Bounds. Consider the clas-
sical beta-Bernoulli bandit problem of Example 1.1. For this problem,
sharp results on the asymptotic scaling of regret are available. The
cumulative regret of an algorithm over T periods is

Regret(T) =
T∑
t=1

(
max

1≤k≤K
θk − θxt

)
,

where K is the number of actions, xt ∈ {1, . . . ,K} is the action selected
at time t, and θ = (θ1, . . . , θK) denotes action success probabilities. For
each time horizon T , E[Regret(T) | θ] measures the expected T -period
regret on the problem instance θ. The conditional expectation integrates
over the noisy realizations of rewards and the algorithm’s random
action selection, holding fixed the success probabilities θ = (θ1, . . . , θK).
Though this is difficult to evaluate, one can show that

(8.1) lim
T→∞

E[Regret(T) | θ]
log(T) =

∑
k 6=k∗

θk∗ − θk
dKL(θk∗ || θk)

,

assuming that there is a unique optimal action k∗. Here, dKL(θ || θ′) =
θ log

(
θ
θ′

)
+(1−θ) log

(
1−θ
1−θ′

)
is the Kullback-Leibler divergence between

Bernoulli distributions. The fundamental lower bound of (Lai and
Robbins, 1985) shows no algorithm can improve on the scaling in (8.1),
establishing a sense in which the algorithm is asymptotically optimal.
That the regret of TS exhibits this scaling was first observed empirically
by (Chapelle and Li, 2011). A series of papers provided proofs that
formalize this finding (Agrawal and Goyal, 2012; Agrawal and Goyal,
2013a; Kauffmann et al., 2012).

This result has been extended to cases where reward distributions are
Gaussian or, more generally, members of a canonical one-dimensional
exponential family (Honda and Takemura, 2014). It has also been
extended to the case of Gaussian distributions with unknown variance by
(Honda and Takemura, 2014), which further establishes that this result
can fail to hold for a particular improper prior distribution. Although,
intuitively, the effects of the prior distribution should wash out as
T →∞, all of these results apply to specific choices of uninformative

8.1. Why Thompson Sampling Works 69

prior distributions. Establishing asymptotic optimality of TS for broader
classes of prior distributions remains an interesting open issue.

Instance-Independent Regret bounds. While the results discussed
in the previous section establishes that the regret of TS is optimal in
some sense, it is important to understand that this result is asymptotic.
Focusing on this asymptotic scaling enables sharp results, but even for
problems with long time horizons, there are substantial performance
differences among algorithms known to be asymptotically optimal in
the sense of (8.1). The bound essentially focuses on a regime in which
the agent is highly confident of which action is best but continues
to occasionally explore in order to become even more confident. In
particular, the bound suggests that for sufficiently large T , regret scales
like

E[Regret(T) | θ] ≈
∑
k 6=k∗

θk∗ − θk
dKL(θk∗ || θk)

log(T).

This becomes easier to interpret if we specialize to the case in which
rewards, conditioned on θ, are Gaussian with unit variance, for which
dKL(θ||θ′) = (θ − θ′)2/2, and therefore,

(8.2) E[Regret(T) | θ] ≈
∑
k 6=k∗

2
θk∗ − θk

log(T).

The fact that the final expression is dominated by near-optimal actions
reflects that in the relevant asymptotic regime other actions can be
essentially ruled out using far fewer samples.

A more subtle issue is that O(log(T)) regret bounds like those
described above become vacuous for problems with nearly-optimal
actions, since the right-side of 8.2 can become arbitrarily large. This
issue is particularly limiting for complex structured online decision
problems, where there are often a large or even infinite number of
near-optimal actions.

For the Bernoulli bandit problem of Example 1.1, (Agrawal and
Goyal, 2013a) establishes that when TS is initialized with a uniform
prior,

(8.3) max
θ′

E[Regret(T) | θ = θ′] = O

(√
KT log(T)

)
.

70 Why it Works, When it Fails, and Alternative Approaches

This regret bounds holds uniformly over all problem instances, ensuring
that there are no instances of bandit problems with binary rewards
that will cause the regret of TS to explode. This bound is nearly order-
optimal, in the sense that there exists a distribution over problem
instances under which the expected regret of any algorithm is at least
Ω(
√
KT) (Bubeck and Cesa-Bianchi, 2012).

8.1.2 Regret Analysis for Complex Online Decision Problems

This tutorial has covered the use of TS to address an array of complex
online decision problems. In each case, we first modeled the problem
at hand, carefully encoding prior knowledge. We then applied TS,
trusting it could leverage this structure to accelerate learning. The
results described in the previous subsection are deep and interesting,
but do not justify using TS in this manner.

We will now describe alternative theoretical analyses of TS that
apply very broadly. These analyses point to TS’s ability to exploit
problem structure and prior knowledge, but also to settings where TS
performs poorly.

Problem Formulation

Consider the following general class of online decision problems. In each
period t ∈ N, the agent selects an action xt ∈ X , observes an outcome
yt, and associates this with a real-valued reward r(yt) that is a known
function of the outcome. In the shortest path problem of Examples 4.1
and 4.2, xt is a path, yt is a vector encoding the time taken to traverse
each edge in that path, and rt = r(yt) is the negative sum of these
travel times. More generally, for each t, yt = g (xt, θ, wt) where g is
some known function and (wt : t ∈ N) are i.i.d and independent of θ.
This can be thought of as a Bayesian model, where the random variable
θ represents the uncertain true characteristics of the system and wt
represents idiosyncratic randomness influencing the outcome in period
t. Let

µ(x, θ) = E[r (g(x, θ, wt)) | θ]

8.1. Why Thompson Sampling Works 71

denote the expected reward generated by the action x under the pa-
rameter θ, where this expectation is taken over the disturbance wt. The
agent’s uncertainty about θ induces uncertainty about the identity of
the optimal action x∗ ∈ argmaxx∈X µ(x, θ).

An algorithm is an adaptive, possibly randomized, rule for selecting
an action as a function of the history of actions and observed outcomes.
The expected cumulative regret of an algorithm over T periods is

E [Regret(T)] = E
[
T∑
t=1

(µ(x∗, θ)− µ(xt, θ))
]
.

This expectation is taken over draws of θ, the idiosyncratic noise terms
(wt, . . . , wT), and the algorithm’s internal randomization over actions.
This is sometimes called the algorithm’s Bayesian regret, since it is
integrated over the prior distribution.

It is worth briefly discussing the interpretation of this regret mea-
sure. No single algorithm can minimize conditional expected regret
E[Regret(T) | θ = θ′] for every problem instance θ′. As discussed in
Section 6.1, one algorithm may have lower regret than another for one
problem instance but have higher regret for a different problem instance.
In order to formulate a coherent optimization problem, we must some-
how scalarize this objective. We do this here by aiming to minimize
integrated regret E [Regret(T)] = E [E[Regret(T) | θ]]. Under this ob-
jective, the prior distribution over θ directs the algorithm to prioritize
strong performance in more likely scenarios. Bounds on expected regret
help certify that an algorithm has efficiently met this objective. An alter-
native choice is to bound worst-case regret maxθ′ E[Regret(T) | θ = θ′].
Certainly, bounds on worst-case regret imply bounds on expected regret,
but targeting this objective will rule out the use of flexible prior distri-
butions, discarding one of the TS’s most useful features. In particular,
designing an algorithm to minimize worst-case regret typically entails
substantial sacrifice of performance with likely values of θ.

Regret Bounds via UCB

One approach to bounding expected regret relies on the fact that TS
shares a property of UCB algorithms that underlies many of their

72 Why it Works, When it Fails, and Alternative Approaches

theoretical guarantees. Let us begin by discussing how regret bounds
are typically established for UCB algorithms.

A prototypical UCB algorithm generates a function Ut based on
the history Ht−1 such that, for each action x, Ut(x) is an optimistic
but statistically plausible estimate of the expected reward, referred to
as an upper-confidence bound. Then, the algorithm selects an action
xt that maximizes Ut. There are a variety of proposed approaches to
generating Ut for specific models. For example, (Kaufmann et al., 2012)
suggest taking Ut(x) to be the (1 − 1/t)th quantile of the posterior
distribution of µ(x, θ). A simpler heuristic, which is nearly identical
to the UCB1 algorithm presented and analyzed in (Auer et al., 2002),
selects actions to maximize Ut(x) = E[µ(x, θ)|Ht−1]+

√
2 ln(t)/tx, where

tx is the number of times action x is selected prior to period t. If tx = 0,√
2 ln(t)/tx =∞, so each action is selected at least once. As experience

with an action accumulates and ln(t)/tx vanishes, Ut(x) converges to
E[µ(x, θ)|Ht−1], reflecting increasing confidence.

With any choice of Ut, regret over the period decomposes according
to

µ(x∗, θ)− µ(xt, θ) = µ(x∗, θ)− Ut(xt) + Ut(xt)− µ(xt, θ)
≤ µ(x∗, θ)− Ut(x∗)︸ ︷︷ ︸

pessimism

+Ut(xt)− µ(xt, θ)︸ ︷︷ ︸
width

.

The inequality follows from the fact that x̄t is chosen to maximize Ut.
If Ut(x∗) ≥ µ(x∗, θ), which an upper-confidence bound should satisfy
with high probability, the pessimism term is negative. The width term,
penalizes for slack in the confidence interval at the selected action x̄t.
For reasonable proposals of Ut, the width vanishes over time for actions
that are selected repeatedly. Regret bounds for UCB algorithms are
obtained by characterizing the rate at which this slack diminishes as
actions are applied.

As established in (Russo and Van Roy, 2014b), expected regret
bounds for TS can be produced in a similar manner. To understand
why, first note that for any function Ut that is determined by the history
Ht−1,

(8.4) E[Ut(xt)] = E[E[Ut(xt)|Ht−1]] = E[E[Ut(x∗)|Ht−1]] = E[Ut(x∗)].

8.1. Why Thompson Sampling Works 73

The second equation holds because TS samples xt from the posterior
distribution of x∗. Note that for this result, it is important that Ut is
determined by Ht−1. For example, although xt and x∗ share the same
marginal distribution, in general E[µ(x∗, θ)] 6= E[µ(xt, θ)] since the joint
distribution of (x∗, θ) is not identical to that of (xt, θ).

From Equation (8.4), it follows that
E [µ(x∗, θ)− µ(xt, θ)] = E [µ(x∗, θ)− Ut(xt)] + E [Ut(xt)− µ(xt, θ)]

= E [µ(x∗, θ)− Ut(x∗)]︸ ︷︷ ︸
pessimism

+E [Ut(xt)− µ(xt, θ)]︸ ︷︷ ︸
width

.

If Ut is an upper-confidence bound, the pessimism term should be nega-
tive, while the width term can be bounded by arguments identical to
those that would apply to the corresponding UCB algorithm. Through
this relation, many regret bounds that apply to UCB algorithms trans-
late immediately to expected regret bounds for TS.

An important difference to take note of is that UCB regret bounds
depend on the specific choice of Ut used by the algorithm in question.
With TS, on the other hand, Ut plays no role in the algorithm and
appears only as a figment of regret analysis. This suggests that, while
the regret of a UCB algorithm depends critically on the specific choice
of upper-confidence bound, TS depends only on the best possible choice.
This is a crucial advantage when there are complicated dependencies
among actions, as designing and computing with appropriate upper-
confidence bounds present significant challenges.

Several examples provided in (Russo and Van Roy, 2014b) demon-
strate how UCB regret bounds translate to TS expected regret bounds.
These include a bound that applies to all problems with a finite number
of actions, as well as stronger bounds that apply when the reward func-
tion µ follows a linear model, a generalized linear model, or is sampled
from a Gaussian process prior. As an example, suppose mean rewards
follow the linear model µ(x, θ) = x>θ for x ∈ Rd and θ ∈ Rd and that
reward noise is sub-Gaussian. It follows from the above relation that
existing analyses (Dani et al., 2008; Rusmevichientong and Tsitsiklis,
2010; Abbasi-Yadkori et al., 2011) of UCB algorithms imply that under
TS
(8.5) E [Regret(T)] = O(d

√
T log(T)).

74 Why it Works, When it Fails, and Alternative Approaches

This bound applies for any prior distribution over a compact set of pa-
rameters θ. The big-O notation assumes several quantities are bounded
by constants: the magnitude of feasible actions, the magnitude of θ real-
izations, and the variance proxy of the sub-Gaussian noise distribution.
An important feature of this bound is that it depends on the complexity
of the parameterized model through the dimension d, and not on the
number of actions. Indeed, when there are a very large, or even infinite,
number of actions, bounds like (8.3) are vacuous, whereas (8.5) may
still provide a meaningful guarantee.

In addition to providing a means for translating UCB to TS bounds,
results of (Russo and Van Roy, 2014b; Russo and Van Roy, 2013) unify
many of these bounds. In particular, it is shown that across a very
broad class of online decision problems, both TS and well-designed
UCB algorithms satisfy
(8.6)

E [Regret(T)] = Õ


√√√√√dimE

(
F , T−2

)
︸ ︷︷ ︸

eluder dimension

log
(
N
(
F , T−2, ‖·‖∞

))
︸ ︷︷ ︸

log-covering number

T

 ,
where F = {µ(·, θ) : θ ∈ Θ} is the set of possible reward functions, Θ is
the set of possible parameter vectors θ, and Õ ignores logarithmic factors.
This expression depends on the class of reward functions F through two
measures of complexity. Each captures the approximate structure of
the class of functions at a scale T−2 that depends on the time horizon.
The first measures the growth rate of the covering numbers of F with
respect to the maximum norm, and is closely related to measures of
complexity that are common in the supervised learning literature. This
quantity roughly captures the sensitivity of F to statistical overfitting.
The second measure, the eluder dimension, captures how effectively the
value of unobserved actions can be inferred from observed samples. This
bound can be specialized to particular function classes. For example,
when specialized to the aforementioned linear model, dimE

(
F , T−2) =

O(d log(T)) and log
(
N
(
F , T−2, ‖·‖∞

))
= O(d log(T)), and it follows

that
E [Regret(T)] = Õ(d

√
T).

8.1. Why Thompson Sampling Works 75

It is worth noting that, as established in (Russo and Van Roy, 2014b;
Russo and Van Roy, 2013), notions of complexity common to the
supervised learning literature such as covering numbers and Kolmogorov
and Vapnik-Chervonenkis dimensions are insufficient for bounding regret
in online decision problems. As such, the new notion of eluder dimension
introduced in (Russo and Van Roy, 2014b; Russo and Van Roy, 2013)
plays an essential role in (8.6).

Regret Bounds via Information Theory

Another approach to bounding regret, developed in (Russo and Van Roy,
2016), leverages the tools of information theory. The resulting bounds
more clearly reflect the benefits of prior knowledge, and the analysis
points to shortcomings of TS and how they can addressed by alternative
algorithms. A focal point in this analysis is the notion of an information
ratio, which for any model and online decision algorithm is defined by

(8.7) Γt = (E [µ(x∗, θ)− µ(xt, θ)])2

I (x∗; (xt, yt)|Ht−1) .

The numerator is the square of expected single-period regret, while in
the denominator, the conditional mutual information I(x∗; (xt, yt)|Ht−1)
between the uncertain optimal action x∗ and the impending observation
(xt, yt) measures expected information gain.1

The information ratio depends on both the model and algorithm and
can be interpreted as an expected “cost” incurred per bit of information
acquired. If the information ratio is small, an algorithm can only incur
large regret when it is expected to gain a lot of information about
which action is optimal. This suggests that expected regret is bounded
in terms of the maximum amount of information any algorithm could

1An alternative definition of the information ratio – the expected re-
gret (E [µ(x∗, θ)− µ(xt, θ) | Ht−1 = ht−1])2 divided by the mutual information
I (x∗; (xt, yt) | Ht−1 = ht−1), both conditioned on a particular history ht−1 – was
used in the original paper on this topic (Russo and Van Roy, 2016). That paper
established bounds on the information ratio that hold uniformly over possible re-
alizations of ht−1. It was observed in (Russo and Van Roy, 2018b) that the same
bounds apply with the information ratio defined as in (8.7), which integrates over ht.
The presentation here mirrors the more elegant treatment of these ideas in (Russo
and Van Roy, 2018b).

76 Why it Works, When it Fails, and Alternative Approaches

expect to acquire, which is at most the entropy of the prior distribution
of the optimal action. The following regret bound from (Russo and
Van Roy, 2016), which applies to any model and algorithm, formalizes
this observation:

(8.8) E [Regret(T)] ≤
√

ΓH(x∗)T ,

where Γ = maxt∈{1,...,T} Γt. An important feature of this bound is
its dependence on initial uncertainty about the optimal action x∗,
measured in terms of the entropy H(x∗). This captures the benefits of
prior information in a way that is missing from previous regret bounds.

A simple argument establishes bound (8.8):

E [Regret(T)] =
T∑
t=1

E [µ(x∗, θ)− µ(xt, θ)]

=
T∑
t=1

√
ΓtI (x∗; (xt, yt)|Ht−1)

≤

√√√√ΓT
T∑
t=1

I (x∗; (xt, yt)|Ht−1),

where the inequality follows from Jensen’s inequality and the fact
that Γt ≤ Γ. Intuitively, I(x∗, (xt, yt)|Ht−1) represents the expected
information gained about x∗, and the sum over periods cannot exceed
the entropy H(x∗). Applying this relation, which is formally established
in (Russo and Van Roy, 2016) via the chain rule of mutual information,
we obtain (8.8).

It may be illuminating to interpret the bound in the case of TS
applied to a shortest path problem. Here, rt is the negative travel
time of the path selected in period t and we assume the problem has
been appropriately normalized so that rt ∈ [−1, 0] almost surely. For a
problem with d edges, θ ∈ Rd encodes the mean travel time along each
edge, and x∗ = x∗(θ) denotes the shortest path under θ. As established in
(Russo and Van Roy, 2016), the information ratio can be bounded above
by d/2, and therefore, (8.8) specializes to E[Regret(T)] ≤

√
dH(x∗)T/2.

Note that the number of actions in the problem is the number of paths,
which can be exponential in the number of edges. This bound reflects

8.1. Why Thompson Sampling Works 77

two ways in which TS is able to exploit the problem’s structure to
nevertheless learn efficiently. First, it depends on the number of edges
d rather than the number of paths. Second, it depends on the entropy
H(x∗) of the decision-maker’s prior over which path is shortest. Entropy
is never larger than the logarithm of the number of paths, but can be
much smaller if the agent has informed prior over which path is shortest.
Consider for instance the discussion following Example 4.1, where the
agent had knowledge of the distance of each edge and believed a priori
that longer edges were likely to require greater travel time; this prior
knowledge reduces the entropy of the agent’s prior, and the bound
formalizes that this prior knowledge improves performance. Stronger
bounds apply when the agent receives richer feedback in each time period.
At one extreme, the agent observes the realized travel time along every
edge in that period, including those she did not traverse. In that case,
(Russo and Van Roy, 2016) establishes that the information ratio is
bounded by 1/2, and therefore, E[Regret(T)] ≤

√
H(x∗)T/2. The paper

also defines a class of problems where the agent observes the time to
traverse each individual edge along the chosen path and establishes
that the information ratio is bounded by d/2m and E[Regret(T)] ≤√
dH(x∗)T/2m, where m is the maximal number of edges in a path.
The three aforementioned bounds of d/2, 1/2 and d/2m on informa-

tion ratios reflect the impact of each problem’s information structure
on the regret-per-bit of information acquired by TS about the optimum.
Subsequent work has established bounds on the information ratio for
problems with convex reward functions (Bubeck and Eldan, 2016) and
for problems with graph structured feedback (Liu et al., 2017).

The bound of (8.8) can become vacuous as the number of actions
increases due to the dependence on entropy. In the extreme, the entropy
H(x∗) can become infinite when there are an infinite number of actions.
It may be possible to derive alternative information-theoretic bounds
that depend instead on a rate-distortion function. In this context, a rate-
distortion function should capture the amount of information required to
deliver near-optimal performance. Connections between rate-distortion
theory and online decision problems have been established in (Russo
and Van Roy, 2018b), which studies a variation of TS that aims to

78 Why it Works, When it Fails, and Alternative Approaches

learn satisficing actions. Use of rate-distortion concepts to analyze the
standard version of TS remains an interesting direction for further work.

Further Regret Analyses

Let us now discuss some alternatives to the regret bounds described
above. For linear bandit problems, (Agrawal and Goyal, 2013b) provides
an analysis of TS with an uninformative Gaussian prior. Their results
yield a bound on worst-case expected regret of minθ′:‖θ′‖2≤1 E[Regret(T) |
θ = θ′] = Õ

(
d3/2√T

)
. Due to technical challenges in the proof, this

bound does not actually apply to TS with proper posterior updating,
but instead to a variant that inflates the variance of posterior samples.
This leads to an additional d1/2 factor in this bound relative to that
in (8.5). It is an open question whether a worst-case regret bound can
be established for standard TS in this context, without requiring any
modification to the posterior samples. Recent work has revisited this
analysis and provided improved proof techniques (Abeille and Lazaric,
2017). Furthering this line of work, (Agrawal et al., 2017) study an
assortment optimization problem and provide worst-case regret bounds
for an algorithm that is similar to TS but samples from a modified pos-
terior distribution. Following a different approach, (Gopalan et al., 2014)
provides an asymptotic analysis of Thomson sampling for parametric
problems with finite parameter spaces. Another recent line of theoretical
work treats extensions of TS to reinforcement learning (Osband et al.,
2013; Gopalan and Mannor, 2015; Osband et al., 2016b; Kim, 2017).

8.1.3 Why Randomize Actions

TS is a stationary randomized strategy: randomized in that each action
is randomly sampled from a distribution and stationary in that this
action distribution is determined by the posterior distribution of θ
and otherwise independent of the time period. It is natural to wonder
whether randomization plays a fundamental role or if a stationary
deterministic strategy can offer similar behavior. The following example
from (Russo and Van Roy, 2018a) sheds light on this matter.

8.2. Limitations of Thompson Sampling 79

Example 8.1. (A Known Standard) Consider a problem with two
actions X = {1, 2} and a binary parameter θ that is distributed
Bernoulli(p0). Rewards from action 1 are known to be distributed
Bernoulli(1/2). The distribution of rewards from action 2 is Bernoulli(3/4)
if θ = 1 and Bernoulli(1/4) if θ = 0.

Consider a stationary deterministic strategy for this problem. With
such a strategy, each action xt is a deterministic function of pt−1, the
probability that θ = 1 conditioned Ht−1. Suppose that for some p0 > 0,
the strategy selects x1 = 1. Since the resulting reward is uninformative,
pt = p0 and xt = 1 for all t, and thus, expected cumulative regret grows
linearly with time. If, on the other hand, x1 = 2 for all p0 > 0, then
xt = 2 for all t, which again results in expected cumulative regret that
grows linearly with time. It follows that, for any deterministic stationary
strategy, there exists a prior probability p0 such that expected cumula-
tive regret grows linearly with time. As such, for expected cumulative
regret to exhibit a sublinear horizon dependence, as is the case with
the bounds we have discussed, a stationary strategy must randomize
actions. Alternatively, one can satisfy such bounds via a strategy that
is deterministic but nonstationary, as is the case with typical UCB
algorithms.

8.2 Limitations of Thompson Sampling

TS is effective across a broad range of problems, but there are contexts
in which TS leaves a lot of value on the table. We now highlight four
problem features that are not adequately addressed by TS.

8.2.1 Problems that do not Require Exploration

We start with the simple observation that TS is a poor choice for prob-
lems where learning does not require active exploration. In such contexts,
TS is usually outperformed by greedier algorithms that do not invest in
costly exploration. As an example, consider the problem of selecting a
portfolio made up of publicly traded financial securities. This can be
cast as an online decision problem. However, since historical returns

80 Why it Works, When it Fails, and Alternative Approaches

are publicly available, it is possible to backtest trading strategies, elimi-
nating the need to engage in costly real-world experimentation. Active
information gathering may become important, though, for traders who
trade large volumes of securities over short time periods, substantially
influencing market prices, or when information is more opaque, such as
in dark pools.

In contextual bandit problems, even when actions influence observa-
tions, randomness of context can give rise to sufficient exploration so
that additional active exploration incurs unnecessary cost. Results of
(Bastani et al., 2018) formalize conditions under which greedy behavior
is effective because of passive exploration induced by contextual random-
ness. The following example captures the essence of this phenomenon.

Example 8.2. (Contextual Linear Bandit) Consider two actions X =
{1, 2} and parameters θ1 and θ2 that are independent and standard-
Gaussian-distributed. A context zt is associated with each time period
t and is drawn independently from a standard Gaussian. In period t,
the agent selects an action xt based on prevailing context zt, as well as
observed history, and then observes a reward rt = ztθxt + wt, where wt
is i.i.d. zero-mean noise.

Consider selecting a greedy action xt for this problem. Given point
estimates θ̂1 and θ̂2, assuming ties are broken randomly, each action
is selected with equal probability, with the choice determined by the
random context. This probing of both actions alleviates the need for
active exploration, which would decrease immediate reward. It is worth
noting, though, that active exploration can again become essential if
the context variables are binary-valued with zt ∈ {0, 1}. In particular,
if the agent converges on a point estimate θ̂1 = θ1 > 0, and action 2 is
optimal but with an erroneous negative point estimate θ̂2 < 0 < θ2, a
greedy strategy may repeatedly select action 1 and never improve its
estimate for action 2. The greedy strategy faces similar difficulties with a
reward function of the form rt = zt,xtθxt +θxt +wt, that entails learning
offset parameters θ1 and θ2, even if context variables are standard-
Gaussian-distributed. For example, if θ1 < θ2 and θ2 is sufficiently
underestimated, as the distributions of θ1 and θ2 concentrate around
0, a greedy strategy takes increasingly long to recover. In the extreme

8.2. Limitations of Thompson Sampling 81

case where θ1 = θ2 = 0 with probability 1, the problem reduces to one
with independent actions and Gaussian noise, and the greedy policy
may never recover. It is worth noting that the news recommendation
problem of Section 7.1 involves a contextual bandit that embodies both
binary context variables and offset parameters.

8.2.2 Problems that do not Require Exploitation

At the other extreme, TS may also be a poor choice for problems that
do not require exploitation. For example, consider a classic simulation
optimization problem. Given a realistic simulator of some stochastic
system, we may like to identify, among a finite set of actions, the best
according to a given objective function. Simulation can be expensive,
so we would like to intelligently and adaptively allocate simulation
effort so the best choice can be rapidly identified. Though this problem
requires intelligent exploration, this does not need to be balanced with
a desire to accrue high rewards while experimenting. This problem is
called ranking and selection in the simulation optimization community
and either best arm identification or a pure-exploration problem in the
multi-armed bandit literature. It can be possible to perform much better
than TS for such problems. The issue is that once TS is fairly confident
of which action is best, it exploits this knowledge and plays that action
in nearly all periods. As a result, it is very slow to refine its knowledge
of alternative actions. Thankfully, as shown by (Russo, 2016), there is a
simple modification to TS that addresses this issue. The resulting pure
exploration variant of TS dramatically outperforms standard TS, and
is in some sense asymptotically optimal for this best-arm identification
problem. It is worth highlighting that although TS is often applied to
A/B testing problems, this pure exploration variant of the algorithm
may be a more appropriate choice.

8.2.3 Time Sensitivity

TS is effective at minimizing the exploration costs required to converge
on an optimal action. It may perform poorly, however, in time-sensitive
learning problems where it is better to exploit a high performing subop-
timal action than to invest resources exploring actions that might offer

82 Why it Works, When it Fails, and Alternative Approaches

slightly improved performance. The following example from (Russo and
Van Roy, 2018b) illustrates the issue.

Example 8.3. (Many-Armed Deterministic Bandit) Consider an action
set X = {1, . . . ,K} and a K-dimensional parameter vector θ with
independent components, each distributed uniformly over [0, 1]. Each
action x results in reward θx, which is deterministic conditioned on
θ. As K grows, it takes longer to identify the optimal action x∗ =
argmaxx∈X θx. Indeed, for any algorithm, P(x∗ ∈ {x1, . . . xt}) ≤ t/K.
Therefore, no algorithm can expect to select x∗ within time t � K.
On the other hand, by simply selecting actions in order, with x1 =
1, x2 = 2, x3 = 3, . . ., the agent can expect to identify an ε-optimal
action within t = 1/ε time periods, independent of K.

Applied to this example, TS is likely to sample a new action in
each time period so long as t � K. The problem with this is most
pronounced in the asymptotic regime of K →∞, for which TS never
repeats any action because, at any point in time, there will be actions
better than those previously selected. It is disconcerting that TS can
be so dramatically outperformed by a simple variation: settle for the
first action x for which θx ≥ 1− ε.

While stylized, the above example captures the essence of a basic
dilemma faced in all decision problems and not adequately addressed by
TS. The underlying issue is time preference. In particular, if an agent
is only concerned about performance over an asymptotically long time
horizon, it is reasonable to aim at learning x∗, while this can be a bad
idea if shorter term performance matters and a satisficing action can
be learned more quickly.

Related issues also arise in the nonstationary learning problems
described in Section 6.3. As a nonstationary system evolves, past ob-
servations become irrelevant to optimizing future performance. In such
cases, it may be impossible to converge on the current optimal action
before the system changes substantially, and the algorithms presented
in Section 6.3 might perform better if they are modified to explore less
aggressively.

Interestingly, the information theoretic regret bounds described in
the previous subsection also point to this potential shortcoming of TS.

8.2. Limitations of Thompson Sampling 83

Indeed, the regret bounds there depend on the entropy of the optimal
actionH(A∗), which may tend to infinity as the number of actions grows,
reflecting the enormous quantity of information needed to identify the
exact optimum. This issue is discussed further in (Russo and Van Roy,
2018b). That paper proposes and analyzes satisficing TS, a variant of
TS that is designed to minimize exploration costs required to identify
an action that is sufficiently close to optimal.

8.2.4 Problems Requiring Careful Assessment of Information Gain

TS is well suited to problems where the best way to learn which action is
optimal is to test the most promising actions. However, there are natural
problems where such a strategy is far from optimal, and efficient learning
requires a more careful assessment of the information actions provide.
The following example from (Russo and Van Roy, 2018a) highlights this
point.

Example 8.4. (A Revealing Action) Suppose there are k + 1 actions
{0, 1, ..., k}, and θ is an unknown parameter drawn uniformly at random
from Θ = {1, .., k}. Rewards are deterministic conditioned on θ, and
when played action i ∈ {1, ..., k} always yields reward 1 if θ = i and 0
otherwise. Action 0 is a special “revealing” action that yields reward
1/2θ when played.

Note that action 0 is known to never yield the maximal reward, and
is therefore never selected by TS. Instead, TS will select among actions
{1, ..., k}, ruling out only a single action at a time until a reward 1 is
earned and the optimal action is identified. A more intelligent algorithm
for this problem would recognize that although action 0 cannot yield
the maximal reward, sampling it is valuable because of the information
it provides about other actions. Indeed, by sampling action 0 in the
first period, the decision maker immediately learns the value of θ, and
can exploit that knowledge to play the optimal action in all subsequent
periods.

The shortcoming of TS in the above example can be interpreted
through the lens of the information ratio (8.7). For this problem, the
information ratio when actions are sampled by TS is far from the

84 Why it Works, When it Fails, and Alternative Approaches

minimum possible, reflecting that it is possible to a acquire information
at a much lower cost per bit. The following two examples, also from
(Russo and Van Roy, 2018a), illustrate a broader range of problems for
which TS suffers in this manner. The first illustrates issues that arise
with sparse linear models.

Example 8.5. (Sparse Linear Model) Consider a linear bandit problem
where X ⊂ Rd and the reward from an action x ∈ X is xT θ, which
is deterministic conditioned on θ. The true parameter θ is known
to be drawn uniformly at random from the set of one-hot vectors
Θ = {θ′ ∈ {0, 1}d : ‖θ′‖0 = 1}. For simplicity, assume d is an integer
power of two. The action set is taken to be the set of nonzero vectors
in {0, 1}d, normalized so that components of each vector sum to one:
X =

{
x
‖x‖1

: x ∈ {0, 1}d, x 6= 0
}
.

Let i∗ be the index for which θi∗ = 1. This bandit problem amounts
to a search for i∗. When an action xt is selected the observed reward
rt = xTt θ is positive if i∗ is in the support of xt or 0 otherwise. Given
that actions in X can support any subset of indices, i∗ can be found via
a bisection search, which requires log(d) periods in expectation. On the
other hand, TS selects exclusively from the set of actions that could be
optimal. This includes only one-hot vectors. Each such action results in
either ruling out one index or identifying i∗. As such, the search carried
out by TS requires d/2 periods in expectation.

Our final example involves an assortment optimization problem.

Example 8.6. (Assortment Optimization) Consider the problem of
repeatedly recommending an assortment of products to a customer. The
customer has unknown type θ ∈ Θ where |Θ| = n. Each product is geared
toward customers of a particular type, and the assortment ofm products
offered is characterized by the vector of product types x ∈ X = Θm.
We model customer responses through a random utility model in which
customers are more likely to derive high value from a product geared
toward their type. When offered an assortment of products x, the
customer associates with the ith product utility uθit(x) = β1θ(xi) +wit,
where 1θ indicates whether its argument is θ, wit follows a standard
Gumbel distribution, and β ∈ R is a known constant. This is a standard

8.2. Limitations of Thompson Sampling 85

multinomial logit discrete choice model. The probability a customer of
type θ chooses product i is given by

exp (β1θ(xi))∑m
j=1 exp (β1θ(xj))

.

When an assortment xt is offered at time t, the customer makes a
choice it = arg maxi uθit(x) and leaves a review uθitt(x) indicating the
utility derived from the product, both of which are observed by the
recommendation system. The reward to the recommendation system is
the normalized utility uθitt(x)/β.

If the type θ of the customer were known, then the optimal recom-
mendation would be x∗ = (θ, θ, . . . , θ), which consists only of products
targeted at the customer’s type. Therefore, TS would only ever offer
assortments consisting of a single type of product. Because of this, TS
requires n samples in expectation to learn the customer’s true type.
However, as discussed in (Russo and Van Roy, 2018a), learning can
be dramatically accelerated through offering diverse assortments. To
see why, suppose that θ is drawn uniformly at random from Θ and
consider the limiting case where β →∞. In this regime, the probability
a customer chooses a product of type θ if it is available tends to 1,
and the normalized review β−1uθitt(x) tends to 1θ(xit), an indicator for
whether the chosen product is of type θ. While the customer type re-
mains unknown, offering a diverse assortment, consisting of m different
and previously untested product types, will maximize both immediate
expected reward and information gain, since this attains the highest
probability of containing a product of type θ. The customer’s response
almost perfectly indicates whether one of those items is of type θ. By
continuing to offer such assortments until identifying the customer type,
with extremely high probability, an algorithm can learn the type within
dn/me periods. As such, diversification can accelerate learning by a
factor of m relative to TS.

In each of the three examples of this section, TS fails to explore
in any reasonably intelligent manner. Russo and Van Roy (2018a)
propose an alternative algorithm – information-directed sampling – that
samples actions in a manner that minimizes the information ratio, and
this addresses the shortcomings of TS in these examples. It is worth

86 Why it Works, When it Fails, and Alternative Approaches

mentioning, however, that despite possible advantages, information-
directed sampling requires more complex computations and may not be
practical across the range of applications for which TS is well-suited.

8.3 Alternative Approaches

Much of the the work on multi-armed bandit problems has focused on
problems with a finite number of independent actions, like the beta-
Bernoulli bandit of Example 3.1. For such problems, for the objective
of maximizing expected discounted reward, the Gittins index theorem
(Gittins and Jones, 1979) characterizes an optimal strategy. This strategy
can be implemented via solving a dynamic program for action in each
period, as explained in (Katehakis and Veinott, 1987), but this is
computationally onerous relative to TS. For more complicated problems,
the Gittins index theorem fails to hold, and computing optimal actions is
typically infeasible. A thorough treatment of Gittins indices is provided
in (Gittins et al., 2011).

Upper-confidence-bound algorithms, as discussed in Section 8.1.2,
offer another approach to efficient exploration. At a high level, these
algorithms are similar to TS, in that they continue sampling all promis-
ing actions while gradually discarding those that underperform. Section
8.1.2 also discusses a more formal relation between the two approaches,
as originally established in (Russo and Van Roy, 2014b). UCB algo-
rithms have been proposed for a variety of problems, including bandit
problems with independent actions (Lai and Robbins, 1985; Auer et al.,
2002; Cappé et al., 2013; Kaufmann et al., 2012), linear bandit problems
(Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010), bandits with
continuous action spaces and smooth reward functions (Kleinberg et al.,
2008; Bubeck et al., 2011; Srinivas et al., 2012), and exploration in
reinforcement learning (Jaksch et al., 2010). As discussed, for example,
in (Russo and Van Roy, 2014b; Osband and Van Roy, 2017a; Osband
and Van Roy, 2017b), the design of upper-confidence bounds that simul-
taneously accommodate both statistical and computational efficiency
often poses a challenge, leading to use of UCB algorithms that sacrifice
statistical efficiency relative to TS.

8.3. Alternative Approaches 87

Information-directed sampling (Russo and Van Roy, 2014a) aims to
better manage the trade-off between immediate reward and information
acquired by sampling an action through minimizing the information
ratio. The knowledge gradient algorithm (Frazier et al., 2008; Frazier et
al., 2009) and several other heuristics presented in (Francetich and Kreps,
2017a; Francetich and Kreps, 2017b) similarly aim to more carefully
assess the value of information and also address time-sensitivity. Finally,
there is a large literature on online decision problems in adversarial
environments, which we will not review here; see (Bubeck and Cesa-
Bianchi, 2012) for thorough coverage.

Acknowledgements

This work was generously supported by a research grant from Boeing, a
Marketing Research Award from Adobe, and Stanford Graduate Fellow-
ships courtesy of Burt and Deedee McMurty, PACCAR, and Sequoia
Capital. We thank Stephen Boyd, Michael Jordan, Susan Murphy, David
Tse, and the anonymous reviewers for helpful suggestions, and Roland
Heller, Xiuyuan Lu, Luis Neumann, Vincent Tan, and Carrie Wu for
pointing out typos.

88

References

Abbasi-Yadkori, Y., D. Pál, and C. Szepesvári. 2011. “Improved al-
gorithms for linear stochastic bandits”. In: Advances in Neural
Information Processing Systems 24. 2312–2320.

Abeille, M. and A. Lazaric. 2017. “Linear Thompson sampling revisited”.
In: Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics. 176–184.

Agarwal, D. 2013. “Computational advertising: the LinkedIn way”. In:
Proceedings of the 22nd ACM International Conference on Informa-
tion & Knowledge Management. ACM. 1585–1586.

Agarwal, D., B. Long, J. Traupman, D. Xin, and L. Zhang. 2014. “Laser:
a scalable response prediction platform for online advertising”. In:
Proceedings of the 7th ACM international conference on Web search
and data mining. ACM. 173–182.

Agrawal, S., V. Avadhanula, V. Goyal, and A. Zeevi. 2017. “Thompson
sampling for the MNL-bandit”. In: Proceedings of the 30th Annual
Conference on Learning Theory. 76–78.

Agrawal, S. and N. Goyal. 2012. “Analysis of Thompson sampling for
the multi-armed bandit problem”. In: Proceedings of the 25th Annual
Conference on Learning Theory. 39.1–39.26.

Agrawal, S. and N. Goyal. 2013a. “Further optimal regret bounds for
Thompson sampling”. In: Proceedings of the 16th International
Conference on Artificial Intelligence and Statistics. 99–107.

89

90 References

Agrawal, S. and N. Goyal. 2013b. “Thompson sampling for contextual
bandits with linear payoffs”. In: Proceedings of The 30th Interna-
tional Conference on Machine Learning. 127–135.

Auer, P., N. Cesa-Bianchi, and P. Fischer. 2002. “Finite-time analysis of
the multiarmed bandit problem”. Machine Learning. 47(2): 235–256.

Bai, A., F. Wu, and X. Chen. 2013. “Bayesian mixture modelling and
inference based Thompson sampling in Monte-Carlo tree search”. In:
Advances in Neural Information Processing Systems 26. 1646–1654.

Bastani, H., M. Bayati, and K. Khosravi. 2018. “Exploiting the natural
exploration in contextual bandits”. arXiv preprint arXiv:1704.09011.

Besbes, O., Y. Gur, and A. Zeevi. 2014. “Stochastic Multi-Armed-
Bandit Problem with Non-stationary Rewards”. In: Advances in
Neural Information Processing Systems 27. 199–207.

Bubeck, S., R. Munos, G. Stoltz, and C. Szepesvári. 2011. “X-armed
bandits”. Journal of Machine Learning Research. 12: 1655–1695.

Bubeck, S. and N. Cesa-Bianchi. 2012. “Regret analysis of stochastic
and nonstochastic multi-armed bandit problems”. Foundations and
Trends in Machine Learning. 5(1): 1–122.

Bubeck, S. and R. Eldan. 2016. “Multi-scale exploration of convex
functions and bandit convex optimization”. In: Proccedings of 29th
Annual Conference on Learning Theory. 583–589.

Bubeck, S., R. Eldan, and J. Lehec. 2018. “Sampling from a log-concave
distribution with projected Langevin Monte Carlo”. Discrete &
Computational Geometry.

Cappé, O., A. Garivier, O.-A. Maillard, R. Munos, and G. Stoltz. 2013.
“Kullback-Leibler upper confidence bounds for optimal sequential
allocation”. Annals of Statistics. 41(3): 1516–1541.

Casella, G. and E. I. George. 1992. “Explaining the Gibbs sampler”.
The American Statistician. 46(3): 167–174.

Chapelle, O. and L. Li. 2011. “An empirical evaluation of Thompson
sampling”. In: Advances in Neural Information Processing Systems
24. 2249–2257.

Cheng, X. and P. Bartlett. 2018. “Convergence of Langevin MCMC in
KL-divergence”. In: Proceedings of the 29th International Conference
on Algorithmic Learning Theory. 186–211.

References 91

Craswell, N., O. Zoeter, M. Taylor, and B. Ramsey. 2008. “An experi-
mental comparison of click position-bias models”. In: Proceedings of
the 2008 International Conference on Web Search and Data Mining.
ACM. 87–94.

Dani, V., T. Hayes, and S. Kakade. 2008. “Stochastic linear optimiza-
tion under bandit feedback”. In: Proceedings of the 21st Annual
Conference on Learning Theory. 355–366.

Dimakopoulou, M. and B. Van Roy. 2018. “Coordinated exploration in
concurrent reinforcement learning”. arXiv preprint arXiv:1802.01282.

Durmus, A. and E. Moulines. 2016. “Sampling from strongly log-concave
distributions with the Unadjusted Langevin Algorithm”. arXiv
preprint arXiv:1605.01559.

Eckles, D. and M. Kaptein. 2014. “Thompson sampling with the online
bootstrap”. arXiv preprint arXiv:1410.4009.

Ferreira, K. J., D. Simchi-Levi, and H. Wang. 2015. “Online network
revenue management using Thompson sampling”. Working Paper.

Francetich, A. and D. M. Kreps. 2017a. “Choosing a Good Toolkit:
Bayes-Rule Based Heuristics”. preprint.

Francetich, A. and D. M. Kreps. 2017b. “Choosing a Good Toolkit:
Reinforcement Learning”. preprint.

Frazier, P., W. Powell, and S. Dayanik. 2009. “The knowledge-gradient
policy for correlated normal beliefs”. INFORMS Journal on Com-
puting. 21(4): 599–613.

Frazier, P., W. Powell, and S. Dayanik. 2008. “A knowledge-gradient pol-
icy for sequential information collection”. SIAM Journal on Control
and Optimization. 47(5): 2410–2439.

Ghavamzadeh, M., S. Mannor, J. Pineau, and A. Tamar. 2015. “Bayesian
reinforcement learning: A survey”. Foundations and Trends in Ma-
chine Learning. 8(5-6): 359–483.

Gittins, J. and D. Jones. 1979. “A dynamic allocation index for the
discounted multiarmed bandit problem”. Biometrika. 66(3): 561–
565.

Gittins, J., K. Glazebrook, and R. Weber. 2011. Multi-armed bandit
allocation indices. John Wiley & Sons.

92 References

Gómez-Uribe, C. A. 2016. “Online algorithms for parameter mean
and variance estimation in dynamic regression”. arXiv preprint
arXiv:1605.05697v1.

Gopalan, A., S. Mannor, and Y. Mansour. 2014. “Thompson sampling for
complex online problems”. In: Proceedings of the 31st International
Conference on Machine Learning. 100–108.

Gopalan, A. and S. Mannor. 2015. “Thompson sampling for learning
parameterized Markov decision processes”. In: Proceedings of the
24th Annual Conference on Learning Theory. 861–898.

Graepel, T., J. Candela, T. Borchert, and R. Herbrich. 2010. “Web-
scale Bayesian click-through rate prediction for sponsored search
advertising in Microsoft’s Bing search engine”. In: Proceedings of
the 27th International Conference on Machine Learning. 13–20.

Hill, D. N., H. Nassif, Y. Liu, A. Iyer, and S. V. N. Vishwanathan. 2017.
“An efficient bandit algorithm for realtime multivariate optimization”.
In: Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. 1813–1821.

Honda, J. and A. Takemura. 2014. “Optimality of Thompson sampling
for Gaussian bandits depends on priors”. In: Proceedings of the 17th
International Conference on Artificial Intelligence and Statistics.
375–383.

Jaksch, T., R. Ortner, and P. Auer. 2010. “Near-optimal regret bounds
for reinforcement learning”. Journal of Machine Learning Research.
11: 1563–1600.

Kandasamy, K., A. Krishnamurthy, J. Schneider, and B. Poczos. 2018.
“Parallelised Bayesian optimisation via Thompson sampling”. In:
To appear in proceedings of the 22nd International Conference on
Artificial Intelligence and Statistics.

Katehakis, M. N. and A. F. Veinott Jr. 1987. “The multi-armed bandit
problem: decomposition and computation”. Mathematics of Opera-
tions Research. 12(2): 262–268.

Kauffmann, E., N. Korda, and R. Munos. 2012. “Thompson sampling:
an asymptotically optimal finite time analysis”. In: Proceedings of
the 24th International Conference on Algorithmic Learning Theory.
199–213.

References 93

Kaufmann, E., O. Cappé, and A. Garivier. 2012. “On Bayesian upper
confidence bounds for bandit problems”. In: Proceedings of the 15th
International Conference on Artificial Intelligence and Statistics.
592–600.

Kawale, J., H. H. Bui, B. Kveton, L. Tran-Thanh, and S. Chawla.
2015. “Efficient Thompson sampling for online matrix-factorization
recommendation”. In: Advances in Neural Information Processing
Systems 28. 1297–1305.

Kim, M. J. 2017. “Thompson sampling for stochastic control: the finite
parameter case”. IEEE Transactions on Automatic Control. 62(12):
6415–6422.

Kleinberg, R., A. Slivkins, and E. Upfal. 2008. “Multi-armed bandits
in metric spaces”. In: Proceedings of the 40th ACM Symposium on
Theory of Computing. 681–690.

Kveton, B., C. Szepesvari, Z. Wen, and A. Ashkan. 2015. “Cascading
bandits: learning to rank in the cascade model”. In: Proceedings of
the 32nd International Conference on Machine Learning. 767–776.

Lai, T. and H. Robbins. 1985. “Asymptotically efficient adaptive alloca-
tion rules”. Advances in applied mathematics. 6(1): 4–22.

Li, L., W. Chu, J. Langford, and R. E. Schapire. 2010. “A Contextual-
bandit approach to personalized news article recommendation”. In:
Proceedings of the 19th International Conference on World Wide
Web. 661–670.

Littman, M. L. 2015. “Reinforcement learning improves behaviour from
evaluative feedback”. Nature. 521(7553): 445–451.

Liu, F., S. Buccapatnam, and N. Shroff. 2017. “Information directed
sampling for stochastic bandits with graph feedback”. arXiv preprint
arXiv:1711.03198.

Lu, X. and B. Van Roy. 2017. “Ensemble Sampling”. Advances in Neural
Information Processing Systems 30 : 3258–3266.

Mattingly, J. C., A. M. Stuart, and D. J. Higham. 2002. “Ergodicity
for SDEs and approximations: locally Lipschitz vector fields and
degenerate noise”. Stochastic processes and their applications. 101(2):
185–232.

94 References

Osband, I., D. Russo, and B. Van Roy. 2013. “(More) Efficient rein-
forcement learning via posterior sampling”. In: Advances in Neural
Information Processing Systems 26. 3003–3011.

Osband, I., C. Blundell, A. Pritzel, and B. Van Roy. 2016a. “Deep explo-
ration via bootstrapped DQN”. In: Advances in Neural Information
Processing Systems 29. 4026–4034.

Osband, I., D. Russo, Z. Wen, and B. Van Roy. 2017. “Deep exploration
via randomized value functions”. arXiv preprint arXiv:1703.07608.

Osband, I. and B. Van Roy. 2014a. “Model-based reinforcement learning
and the eluder dimension”. In: Advances in Neural Information
Processing Systems 27. 1466–1474.

Osband, I. and B. Van Roy. 2014b. “Near-optimal reinforcement learning
in factored MDPs”. In: Advances in Neural Information Processing
Systems 27. 604–612.

Osband, I. and B. Van Roy. 2017a. “On optimistic versus randomized
exploration in reinforcement learning”. In: Proceedings of The Multi-
disciplinary Conference on Reinforcement Learning and Decision
Making.

Osband, I. and B. Van Roy. 2017b. “Why is posterior sampling better
than optimism for reinforcement learning?” In: Proceedings of the
34th International Conference on Machine Learning. 2701–2710.

Osband, I., B. Van Roy, and Z. Wen. 2016b. “Generalization and
exploration via randomized value functions”. In: Proceedings of The
33rd International Conference on Machine Learning. 2377–2386.

Ouyang, Y., M. Gagrani, A. Nayyar, and R. Jain. 2017. “Learning un-
known Markov decision processes: A Thompson sampling approach”.
In: Advances in Neural Information Processing Systems 30. 1333–
1342.

Roberts, G. O. and J. S. Rosenthal. 1998. “Optimal scaling of dis-
crete approximations to Langevin diffusions”. Journal of the Royal
Statistical Society: Series B (Statistical Methodology). 60(1): 255–
268.

Roberts, G. O. and R. L. Tweedie. 1996. “Exponential convergence of
Langevin distributions and their discrete approximations”. Bernoulli:
341–363.

References 95

Rusmevichientong, P. and J. Tsitsiklis. 2010. “Linearly parameterized
bandits”. Mathematics of Operations Research. 35(2): 395–411.

Russo, D. and B. Van Roy. 2013. “Eluder Dimension and the Sample
Complexity of Optimistic Exploration”. In: Advances in Neural
Information Processing Systems 26. 2256–2264.

Russo, D. and B. Van Roy. 2014a. “Learning to optimize via information-
directed sampling”. In: Advances in Neural Information Processing
Systems 27. 1583–1591.

Russo, D. and B. Van Roy. 2014b. “Learning to optimize via posterior
sampling”. Mathematics of Operations Research. 39(4): 1221–1243.

Russo, D. and B. Van Roy. 2016. “An Information-Theoretic analysis
of Thompson sampling”. Journal of Machine Learning Research.
17(68): 1–30.

Russo, D. 2016. “Simple bayesian algorithms for best arm identification”.
In: Conference on Learning Theory. 1417–1418.

Russo, D. and B. Van Roy. 2018a. “Learning to optimize via information-
directed sampling”. Operations Research. 66(1): 230–252.

Russo, D. and B. Van Roy. 2018b. “Satisficing in time-sensitive bandit
learning”. arXiv preprint arXiv:1803.02855.

Schwartz, E. M., E. T. Bradlow, and P. S. Fader. 2017. “Customer acqui-
sition via display advertising using multi-armed bandit experiments”.
Marketing Science. 36(4): 500–522.

Scott, S. 2010. “A modern Bayesian look at the multi-armed bandit”.
Applied Stochastic Models in Business and Industry. 26(6): 639–658.

Scott, S. L. 2015. “Multi-armed bandit experiments in the online service
economy”. Applied Stochastic Models in Business and Industry. 31(1):
37–45.

Srinivas, N., A. Krause, S. Kakade, and M. Seeger. 2012. “Information-
Theoretic regret bounds for Gaussian process optimization in the
bandit setting”. IEEE Transactions on Information Theory. 58(5):
3250–3265.

Strens, M. 2000. “A Bayesian framework for reinforcement learning”.
In: Proceedings of the 17th International Conference on Machine
Learning. 943–950.

Sutton, R. S. and A. G. Barto. 1998. Reinforcement learning: An intro-
duction. Vol. 1. MIT press Cambridge.

96 References

Teh, Y. W., A. H. Thiery, and S. J. Vollmer. 2016. “Consistency and
fluctuations for stochastic gradient Langevin dynamics”. Journal of
Machine Learning Research. 17(7): 1–33.

Thompson, W. R. 1935. “On the theory of apportionment”. American
Journal of Mathematics. 57(2): 450–456.

Thompson, W. 1933. “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples”. Biometrika.
25(3/4): 285–294.

Welling, M. and Y. W. Teh. 2011. “Bayesian learning via stochastic gra-
dient Langevin dynamics”. In: Proceedings of the 28th International
Conference on Machine Learning. 681–688.

Wyatt, J. 1997. “Exploration and inference in learning from reinforce-
ment”. PhD thesis. University of Edinburgh. College of Science and
Engineering. School of Informatics.

	Introduction
	Greedy Decisions
	Thompson Sampling for the Bernoulli Bandit
	General Thompson Sampling
	Approximations
	Gibbs Sampling
	Laplace Approximation
	Langevin Monte Carlo
	Bootstrapping
	Sanity Checks
	Incremental Implementation

	Practical Modeling Considerations
	Prior Distribution Specification
	Constraints, Context, and Caution
	Nonstationary Systems
	Concurrence

	Further Examples
	News Article Recommendation
	Product Assortment
	Cascading Recommendations
	Active Learning with Neural Networks
	Reinforcement Learning in Markov Decision Processes

	Why it Works, When it Fails, and Alternative Approaches
	Why Thompson Sampling Works
	Limitations of Thompson Sampling
	Alternative Approaches

	Acknowledgements
	References

