Chapter 9

Power and Refrigeration Gas Cycles

9.1 INTRODUCTION

Several cycles utilize a gas as the working substance, the most common being the Otto cycle and
the diesel cycle used in internal combustion engines. The word “cycle” used in reference to an
internal combustion engine is technically incorrect since the working fluid does not undergo a
thermodynamic cycle; air enters the engine, mixes with a fuel, undergoes combustion, and exits the
engine as exhaust gases. This is often referred to as an open cycle, but we should keep in mind that a
thermodynamic cycle does not really occur; the engine itself operates in what we could call a
mechanical cycle. We do, however, analyze an internal combustion engine as though the working fluid
operated on a cycle; it is an approximation that allows us to predict influences of engine design on
such quantities as efficiency and fuel consumption.

9.2 GAS COMPRESSORS

We have already utilized the gas compressor in the refrigeration cycles discussed earlier and have
noted that the control volume energy equation relates the power input to the enthalpy change as
follows:

Woomo = i(h, — h,) (9.1)

comp

where h, and A, are the exit and inlet enthalpies, respectively. In this form we model the compressor
as a fixed volume into which and from which a gas flows; we assume that negligible heat transfer
occurs from the compressor and ignore the difference between inlet and outlet kinetic and potential
energy changes.

There are three general types of compressors: reciprocating, centrifugal, and axial-flow. Recipro-
cating compressors are especially useful for producing high pressures, but are limited to relatively low
flow rates; upper limits of about 200 MPa with inlet flow rates of 160 m?/min are achievable with a
two-stage unit. For high flow rates with relatively low pressure rise, a centrifugal or axial-flow
compressor would be selected; a pressure rise of several MPa for an inlet flow rate of over 10000
m’/min is possible.

The Reciprocating Compressor

A sketch of the cylinder of a reciprocating compressor is shown in Fig. 9-1. The intake and
exhaust valves are closed when state 1 is reached, as shown on the P-v diagram of Fig. 9-2a4. An
isentropic compression follows as the piston travels inward until the maximum pressure at state 2 is
reached. The exhaust valve then opens and the piston continues its inward motion while the air is
exhausted until state 3 is reached at top dead center. The exhaust valve then closes and the piston
begins its outward motion with an isentropic expansion process until state 4 is reached. At this point
the intake value opens and the piston moves outward during the intake process until the cycle is
completed.

During actual operation the P-v diagram would more likely resemble that of Fig. 9-2b. Intake and
exhaust valves do not open and close instantaneously, the airflow around the valves results in pressure
gradients during the intake and exhaust strokes, losses occur due to the valves, and some heat transfer
may take place. The ideal cycle does, however, allow us to predict the influence of proposed design
changes on work requirements, maximum pressure, flow rate, and other quantities of interest.

The effectiveness of a compressor is partially measured by the volumetric efficiency, which is
defined as the volume of gas drawn into the cylinder divided by the displacement volume. That is,
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The higher the volumetric efficiency the greater the volume of air drawn in as a percentage of the
displacement volume. This can be increased if the clearance volume V; is decreased.

To improve the performance of the reciprocating compressor, we can remove heat from the
compressor during the compression process 1 — 2. The effect of this is displayed in Fig. 9-3, where a
polytropic process is shown. The temperature of state 2’ would be significantly lower than that of state

Isentropic: n = k

Q=0

\ Polytropic
\ 0<0

Fig. 9-3
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2 and the work requirement for the complete cycle would be less since the area under the P-v diagram
would decrease. To analyze this situation let us return to the control volume inlet-outlet description,
as used with (9.1). The required work is, for an adiabatic compressor,

woomp=h2—hl =cp(T2— Tl) (93)

assuming an ideal gas with constant specific heat. For an isentropic compression between inlet and
outlet we know that

P, (k—1)/k
T, =T, 9.4
.- 17 (9.4)
This allows the work to be expressed as, using ¢, given in (4.30),
[ - 1
kR p.\k=D/k
wcomp= m‘rl (7,%) - 1J (95)
For a polytropic process we simply replace & with n and obtain
nR [ p.\(n-D/n
Weomp = 57— I (P—f) -1 (9.6)

The heat transfer is then found from the first law.

By external cooling, with a water jacket surrounding the compressor, the value of n for air can be
reduced to about 1.35. This reduction from 1.4 is difficult since heat transfer must occur from the
rapidly moving air through the compressor casing to the cooling water, or from fins. This is an
ineffective process, and multistage compressors with interstage cooling are often a desirable alterna-
tive. With a single stage and with a high P, the outlet temperature 7, would be too high even if n
could be reduced to, say, 1.3.

Consider a two-stage compressor with a single intercooler, as shown in Fig. 9-4a. The compres-
sion processes are assumed to be isentropic and are shown in the 7-s and P-v diagrams of Fig. 9-45.
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Referring to (9.5), the work is written as

(fl)(k_])/k o

P, + ¢, T,

Weomp = cpT1

P4 (k—1)/k
(—P—J) -1 = CpTl

where we have used P, = P; and T, = T,, for an ideal intercooler. To determine the intercooler
pressure P, that minimizes the work, we let dw,,,,/dP, = 0. This gives
P, P

P, =(PP)?  or il % (9.8)

(k—1)/k (k- 1)/k
B ]
Py P,

(9.7)

That is, the pressure ratio is the same across each stage. If three stages were used, the same analysis
would lead to a low-pressure intercooler pressure of

1/3
P, = (P,2P6) (9.9)
and a high-pressure intercooler pressure of
P, = (P,P2)" (9.10)

where Py is the highest pressure. This is also equivalent to equal pressure ratios across each stage.
Additional stages may be necessary for extremely high outlet pressures; an equal pressure ratio across
each stage would yield the minimum work for the ideal compressor.

Centrifugal and Axial-Flow Compressors

A centrifugal compressor is sketched in Fig. 9-5. Air enters along the axis of the compressor and is
forced to move outward along the rotating impeller vanes due to the effects of centrifugal forces. This
results in an increased pressure from the axis to the edge of the rotating impeller. The diffuser section
results in a further increase in the pressure as the velocity is reduced due to the increasing area in
each subsection of the diffuser. Depending on the desired pressure-speed characteristics, the rotating
impeller can be fitted with radial impeller vanes, as shown; with backward-curved vanes; or with
forward-curved vanes.

—_— —— Outlet I

Rotating
impeller
Inlet =——————>
-
Stationary
diffuser l

Fig. 9-5
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An axial-flow compressor is illustrated in Fig. 9-6. It is similar in appearance to the steam turbine
used in the Rankine power cycle. Several stages of blades are needed to provide the desired pressure
rise, with a relatively small rise occurring over each stage. Each stage has a stator, a series of blades
that are attached to the stationary housing, and a rotor. All the rotors are attached to a common
rotating shaft which utilizes the power input to the compressor. The specially designed airfoil-type
blades require extreme precision in manufacturing and installation to yield the maximum possible
pressure rise while avoiding flow separation. The area through which the air passes decreases slightly
as the pressure rises due to the increased density in the higher-pressure air. In fluid mechanics the
velocity and pressure at each stage can be analyzed; in thermodynamics we are concerned only with
inlet and outlet conditions.

EXAMPLE 9.1 A reciprocating compressor is to deliver 20 kg/min of air at 1600 kPa. It receives atmospheric
air at 20 °C. Calculate the required power if the compressor is assumed to be 90 percent efficient. No cooling is
assumed.
The efficiency of the compressor is defined as
_ isentropicwork _ hy — A,
~ actwalwork A, — Ay

where state 2 identifies the actual state reached and state 2’ is the ideal state that could be reached with no
losses. Let us find the temperature T, first. It is

P, (k- D/k 1600 \(14 - D/14
Ty =T % = (293 (——-) = 647K
it (293)( 22
Using the efficiency, we have

eIz 1) T,=T,+ (T, - T —293+(—1—)(647—293)—686K
nEe -ty 2=T+ 2 (Ty - Ty = 09 =

The power required to drive the adiabatic compressor (no cooling) is then

Wiomp = mt(hy — hy) =t (Ty = T)) = (%%)(1.006)(686 ~293) = 131.9kW

comp



CHAP. 9] POWER AND REFRIGERATION GAS CYCLES 191

EXAMPLE 9.2 Suppose that, for the compressor of Example 9.1, it is decided that because T, is too high, two
stages with an intercooler are necessary. Determine the power requirement for the proposed two-stage adiabatic
compressor. Assume 90 percent efficiency for each stage.

The intercooler pressure for minimum power input is given by (9.8) as P, = P, P, = /(100)(1600) = 400
kPa. This results in a temperature entering the intercooler of

P 14-1/14 0.2857
2) 400) - 435K

T, = TI(ITI = 293(1Tﬁ

Since T, =7, and P,/P,=P,/P,, we also have T, = (293X400/100)*2%57 = 435 K. Considering the
efficiency of each stage allows us to find

T,=T, + %(TZ. ~T,) =293 + (0—19)(435 - 293) = 451K

This will also be the exiting temperature 7. Note the large reduction from the single-stage temperature of 686 K.
Assuming no heat transfer in the compressor stages, the power necessary to drive the compressor is

mp = MC,(Ty = T)) + thc (T, — T3) = (z_g) X (1.00)(451 — 293) + (%)(1.00)(451 - 293) = 105 kW

W, 6

€O

This is a 20 percent reduction in the power requirement.

9.3 THE AIR-STANDARD CYCLE

In this section we introduce engines that utilize a gas as the working fluid. Spark-ignition engines
that burn gasoline and compression-ignition (diesel) engines that burn fuel oil are the two most
common engines of this type.

The operation of a gas engine can be analyzed by assuming that the working fluid does indeed go
through a complete thermodynamic cycle. The cycle is often called an air-standard cycle. All the
air-standard cycles we will consider have certain features in common:

Air is the working fluid throughout the entire cycle. The mass of the small quantity of injected
fuel is negligible.

There is no inlet process or exhaust process.

The combustion process is replaced by a heat transfer process with energy transferred from an
external source.

The exhaust process, used to restore the air to its original state, is replaced with a constant-volume
process transferring heat to the surroundings; no work is accomplished with a constant-volume
process.

All processes are assumed to be in quasiequilibrium.
The air is assumed to be an ideal gas with constant specific heats.

A number of the engines we will consider make use of a closed system with a piston-cylinder
arrangement, as shown in Fig. 9-7. The cycle shown on the P-v and T-s diagrams in the figure is
representative. The diameter of the piston is called the bore, and the distance the piston travels in one
direction is the stroke. When the piston is at top dead center (TDC), the volume occupied by the air in
the cylinder is at a minimum,; this volume is the clearance volume. When the piston moves to bottom
dead center (BDC), the air occupies the maximum volume. The difference between the maximum
volume and the clearance volume is the displacement volume. The clearance volume is often implicitly
presented as the percent clearance c, the ratio of the clearance volume to the displacement volume.
The compression ratio r is defined to be the ratio of the volume occupied by the air at BDC to the
volume occupied by the air at TDC, that is, referring to Fig. 9-7,

Vi

r= 7; (9.11)
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The mean effective pressure (MEP) is another quantity that is often used when rating piston-
cylinder engines; it is the pressure that, if acting on the piston during the power stroke, would produce
an amount of work equal to that actually done during the entire cycle. Thus,

= (MEP)(Vgpe — Vinc) (9-12)

cycle

In Fig. 9-7 this means that the enclosed area of the actual cycle is equal to the area under the MEP
dotted line.

U =const.

MEP

b ——————

Fig. 9-7

EXAMPLE 9.3 An engine operates with air on the cycle shown in Fig. 9-7 with isentropic processes 1 — 2 and
3 — 4. If the compression ratio is 12, the minimum pressure is 200 kPa, and the maximum pressure is 10 MPa
determine (a) the percent clearance and (b) the MEP.

(a) The percent clearance is given by
Vs
c= 71—,72(100)

But the compression ratio is r = V,/V, = 12. Thus,

Vs 100
¢ = TZ—V—_V(IOO) -—-' = 9.09%

(b) To determine the MEP we must calculate the area under the P-V diagram,; this is equivalent to calculating
the work. The work from 3 — 4 is, using PV* = C,

PV, — PV
= 1-& I-k)y o 2474 "33
deV cf o ey 1 L/ R B
where C = P,V¥ = P,V{. But we know that V,/V, = 12, so

W3-4 =

=g (122, = Py)
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Likewise, the work from 1 — 2 is
V,
Wi,= ﬁ(l)z ~ 12P)
Since no work occurs in the two constant-volume processes, we find, using V, = V;,

W,

V.
cycle = 1*_??(121)4 — Py + P, — 12P))
The pressures P, and P, are found as follows:

1.4

1% k V. k
P, = P,(Vl) = (200)(12)'* = 1665kPa P, = P3(7:) - (10000)(11—2) = 308 kPa

whence

Weoe = %[(12)(308) - 10000 + 1665 — (12)(200)] = 20070V,

cycle

But W, = (MEPXV, — V,) = (MEPX12V, — V,); equating the two expressions yields

MEP = 2—0191—79 — 1824 kPa

9.4 THE CARNOT CYCLE

This ideal cycle was treated in detail in Chapter 5. Recall that the thermal efficiency of a Carnot
engine,
T,
Ty

exceeds that of any real engine operating between the given temperatures.

=1- (9.13)

ncamo(

9.5 THE OTTO CYCLE

The four processes that form the cycle are displayed in the 7-s and P-V diagrams of Fig. 9-8. The
piston starts at state 1 at BDC and compresses the air until it reaches TDC at state 2. Combustion
then occurs, resulting in a sudden jump in pressure to state 3 while the volume remains constant (this

® ®

Fig. 9-8
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combustion process is simulated with a quasiequilibrium heat addition process). The process that
follows is the power stroke as the air (simulating the combustion products) expands isentropically to
state 4. In the final process heat transfer to the surroundings occurs and the cycle is completed.

The thermal efficiency of the Otto cycle is found from
_ Wnel _ Qin - Qout

Oin Qin Oin

Noting that the two heat transfer processes occur during constant-volume processes, for which the
work is zero, there results

(9.14)

Qi = e (T = T)) Qou = e (T, — T) (9.15)
where we have assumed each quantity to be positive. Then
=1 T4 - TI ]
n=l- 57 (9.16)
This can be written as
T, T./T, - 1
=1 — LA - 9.17
n T, To/T, — 1 (9.17)
For the isentropic processes we have
T v\ T 7%
7 (7) md 7 (7) (9.18)
But, using V, = V, and V,; = V,, we see that
T, T3
T "7, (9.19)
Thus, (9.17) gives the thermal efficiency as
T, v, k-1 1
nei-ge- () -1-oh (9.20)

We see, then, that the thermal efficiency in this idealized cycle is dependent only on the compression
ratio r: the higher the compression ratio, the higher the thermal efficiency.

EXAMPLE 9.4 A spark-ignition engine is proposed to have a compression ratio of 10 while operating with a low
temperature of 200°C and a low pressure of 200 kPa. If the work output is to be 1000 kJ /kg, calculate the
maximum possible thermal efficiency and compare with that of a Carnot cycle. Also calculate the MEP.

The Otto cycle provides the model for this engine. The maximum possible thermal efficiency for the engine
would be

n=1- ! =1—;_4=0.602 or 60.2%

r (10)°

Since process 1 — 2 is isentropic, we find that
v\ 0.4
T, = T,(r) = (473)(10)"* = 1188 K
*2

The net work for the cycle is given by
0 0
Wiew = W12 + }6273 +wy gt )&4-1 =c (T, - T) +c(T; - Ty) or

1000 = (0.717)(473 — 1188 + T, — T,)
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But, for the isentropic process 3 — 4,
v V5! o
T, = T“(T) = (T)(10) " = 2.512T,
3

Solving the last two equations simultaneously, we find 7, = 3508 K and T, = 1397 K, so that

T, 473

T, =1~ 358 0.865 or86.5%

=1 -

T’camol

The Otto cycle efficiency is less than that of a Carnot cycle operating between the limiting temperatures because
the heat transfer processes in the Otto cycle are not isothermal.
The MEP is found by using the equation

Wee = (MEP) (v = ¢3)

We have
RT 0.287)(473 v
vy = P—ll = —(_—ED)OL——) = 0.6788 m3/kg and Ly = ﬁ
Thus
MEP = et 1000 — 1640 kPa

v, -0, (0.9)(0.6788)

9.6 THE DIESEL CYCLE

If the compression ratio is large enough, the temperature of the air in the cylinder when the
piston approaches TDC will exceed the ignition temperature of diesel fuel. This will occur if the
compression ratio is about 14 or greater. No external spark is needed; the diesel fuel is simply injected
into the cylinder and combustion occurs because of the high temperature of the compressed air. This
type of engine is referred to as a compression-ignition engine. The ideal cycle used to model the
compression-ignition engine is the diesel cycle, shown in Fig. 9-9. The difference between this cycle
and the Otto cycle is that, in the diesel cycle, the heat is added during a constant-pressure process.

Fig. 9-9
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The cycle begins with the piston at BDC, state 1; compression of the air occurs isentropically to
state 2 at TDC; heat addition takes place (this models the injection and combustion of fuel) at
constant pressure until state 3 is reached; expansion occurs isentropically to state 4 at BDC; constant
volume heat rejection completes the cycle and returns the air to the original state. Note that the
power stroke includes the heat addition process and the expansion process.

The thermal efficiency of the diesel cycle is expressed as

W .
n=—%=1- Qou (9.21)
Qin Qin
For the constant-volume process and the constant-pressure process
Qo = mic (T, — T)) Qi, = ric(T; — T,) (9.22)
The efficiency is then
(T, - T) -1
=]l-——7% =1 9.23
K (T3 — T3) k(T; - T;) ( )
This can be put in the form
B T, T,/T, - 1
T’_l_k_TZ—TJ/TZ—‘l (924)

This expression for the thermal efficiency is often written in terms of the compression ratio » and

the cutoff ratio r. which is defined as V,;/V,; there results
1 rk -1

1]—1 rk_lm (925)
From this expression we see that, for a given compression ratio r, the efficiency of the diesel cycle is
less than that of an Otto cycle. For example, if r = 10 and r. = 2, the Otto cycle efficiency is 60.2
percent and the diesel cycle efficiency is 53.4 percent. As r. increases, the diesel cycle efficiency
decreases. In practice, however, a compression ratio of 20 or so can be achieved in a diesel engine;
using r = 20 and r, = 2, we would find = 64.7 percent. Thus, because of the higher compression
ratios, a diesel engine typically operates at a higher efficiency than a gasoline engine.

The decrease in diesel cycle efficiency with an increase in r. can also be observed by considering
the 7-s diagram shown in Fig. 9-10. If we increase r_, the end of the heat input process moves to state
3. The increased work output is then represented by area 3-3-4'-4-3. The heat input increases
considerably, as represented by area 3—-3'—a~b-3. The net effect is a decrease in cycle efficiency, caused

Fig. 9-10
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obviously by the convergence of the constant-pressure and constant-volume lines on the 7-s diagram.
For the Otto cycle note that two constant-volume lines diverge, thereby giving an increase in cycle
efficiency with increasing 7.

EXAMPLE 9.5 A diesel cycle, with a compression ratio of 18 operates on air with a low pressure of 200 kPa and
a low temperature 200 °C. If the work output is 1000 kJ / kg, determine the thermal efficiency and the MEP. Also,
compare with the efficiency of an Otto cycle operating with the same maximum pressure.

The cutoff ratio r, is found first. We have

_ RT, _ (0.287)(473)

vi=pr =T < 06788 m’°/kg and v, =r,/18 = 0.03771 m*/kg

Since process 1 — 2 is isentropic, we find

T, = T,(:—;)H = (473)(18)°* = 1503K and P, = P,(Z—;)k = (200)(18)"* = 11.44 MPa
The work for the cycle is given by
Woet = net =23+ qa1 = (T3 = Ty) + ¢ (T) — Ty)
1000 = (1.00)(T, — 1503) + (0.717)(473 — T,)

For the isentropic process 3 — 4 and the constant-pressure process 2 — 3, we have

L k-1 0.4
e eVt LT 1503
Ti= T3(u4) = 73(0.6788) 0, ~ 0, - o037~ 0860

The last three equations can be combined to yield
1000 = (1.00)(39860v, — 1503) + (0.717)(473 — 46 54003*)
This equation is solved by trial and error to give
vy = 0.0773 m3/ kg .. Ty = 3080 K T, =1290K
This gives the cutoff ratio as r. = v; /v, = 2.05. The thermal efficiency is now calculated as

1 1 k-1 ] 1 (205 -1
T Tk -y T 18”1905 - 1)

=0.629 or 62.9%

Also, MEP = w,_ /(v; ~ v,) = 1000/(0.6788 — 0.0377) = 641 kPa.
For the comparison Otto cycle,
0.6788 1

Toto = U1/ V3 = 0073 = 8.78 Moo = 1 — prEn = (0.581 or58.1%

9.7. THE DUAL CYCLE

An ideal cycle that better approximates the actual performance of a compression-ignition engine
is the dual cycle, in which the combustion process is modeled by two heat-addition processes: a
constant-volume process and a constant-pressure process, as shown in Fig. 9-11. The thermal
efficiency is found from

n=1- Zou (9.26)
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P ®
Qin
v = const. @
@
Qo
0]
A 5
Fig. 9-11
where
Qo = e (Ts = Ty) Qi = e (Ty = Ty) + e (T, = Ts) (9:27)
Hence, we have
- I - T, 9.28
"= T AR, - TY) (9.28)
If we define the pressure ratio r, = P, /P,, the thermal efficiency can be expressed as
1 rpr(k -1
n=1- (9.29)

rk-l krp(r[ - 1) +r, = 1

If we let r, = 1, the diesel cycle efficiency results; if we let r. = 1, the Otto cycle efficiency results. If
r, > 1, the thermal efficiency will be less than the Otto cycle efficiency but greater than the diesel
cycle efficiency.

EXAMPLE 9.6 A dual cycle, which operates on air with a compression ratio of 16, has a low pressure of
200 kPa and a low temperature of 200 °C. If the cutoff ratio is 2 and the pressure ratio is 1.3, calculate the
thermal efficiency, the heat input, the work output, and the MEP.

By (9.29),

1 1 (1.3)(2)"* -1
T T e (1A (12 -+ 13- 1
The heat input is found from gq;, = ¢ (T = T,) + ¢ (T, — T;), where

=0.622 or 62.2%

v V! P
T, = T,(U—‘) = (473)(16)"“ = 143K T, = TZT} = (1434)(1.3) = 1864K
2 2

b,
T, = Ta;)i = (1864)(2) = 3728K
3

Thus, g, = (0.717X1864 — 1434) + (1.00X3728 — 1864) = 2172 kJ / kg. The work output is found from

Woue = Nqin = (0.622)(2172) = 1350kJ /kg
Finally, since

RT,  (0.287)(473
vy = 7’.—' - (——T.)é——) = 0.6788 m*/ kg

we have

MEP Wout 1350

T (- el /e - (0.6788)(15/16) = 2120 kPa
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9.8 THE STIRLING AND ERICSSON CYCLES

The Stirling and Ericsson cycles, although not extensively used to model actual engines, are
presented to illustrate the effective use of a regenerator, a heat exchanger which utilizes waste heat. A
schematic diagram is shown in Fig. 9-12. Note that for both the constant-volume processes of the
Stirling cycle (Fig. 9-13) and the constant-pressure processes of the Ericsson cycle (Fig. 9-14) the heat
transfer g,_, required by the gas is equal in magnitude to the heat transfer g,_, discharged by the gas.

Regenerator
© MWW ®
¥
{ #——»w out
Isothermal . Isothermal
compressor Oout Qi turbine
ou
Fig. 9-12
® T

T = const.

v s

Fig. 9-13  Stirling cycle

v s

Fig. 9-14 Ericsson cycle
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This suggests the use of a regenerator that will, internally to the cycle, transfer the otherwise wasted
heat from the air during the process 4 — 1 to the air during the process 2 — 3. The net result of this
is that the thermal efficiency of each of the two ideal cycles shown equals that of a Carnot cycle
operating between the same two temperatures. This is obvious because the heat transfer in and out of
each cycle occurs at constant temperature. Thus, the thermal efficiency is
n=1- % (9.30)
H

Note that the heat transfer (the purchased energy) needed for the turbine can be supplied from
outside an actual engine, that is, external combustion. Such external combustion engines have lower
emissions but have not proved to be competitive with the Otto and diesel cycle engines because of
cis problems inherent in the regenerator design and the isothermal compressor and turbine.
mathcas EXAMPLE 9.7 A Stirling cycle operates on air with a compression ratio of 10. If the low pressure is 30 psia, the

low temperature is 200 °F, and the high temperature is 1000 °F, calculate the work output and the heat input.
For the Stirling cycle the work output is

Wou = W3_q + Wi_o = RT In Z—“ +RT, In % = (53.3)(14601n 10 + 6601n 0.1) = 98,180 ft-Ibf/lbm
3 1

where we have used (4.36) for the isothermal process. Consequently,

po1o T 600 e  Wew _ 98,180/778
Ty :

1460 9= = = —oseg - 230Btu/lbm

EXAMPLE 9.8 An Ericsson cycle operates on air with a compression ratio of 10. For a low pressure of 200 kPa,
a low 100°C, and a high temperature of 600 °C, calculate the work output and the heat input.
For the Ericsson cycle the work output is

W,

U, Uy
out = Wi + Wy s+ Wy, +w, ; =RT In o + Py(v3 — vy) + RTyln ; + Pi(vy — vy)

vy
We must calculate P,, vy, v,, and v,. We know

_RT,  (0.287)(373) _

Uy = Tl— = T = (.5353 m3/kg

For the constant-pressure process 4 — 1,

T, T, 873 373 _ 3
N 5. = 05353 vy = 1253 m°/kg
From the definition of the compression ratio, v, /v, = 10, giving v, = 0.1253 m3/kg. Using the ideal-gas law, we
have
_ ., _ RT, (0.287)(373) _
P,=P,= o, - o3 T 854.4 kPa

The final necessary property is vy = RT;/P; = (0.287X873)/854.4 = 0.2932 m3/kg. The expression for work
output gives

Woue = (0.287)(373)In Jmes + (854.4)(0.2932 — 0.1253)
1.253
+0.287 X 873In gy + (200)(0.5353 — 1.253) = 208 kI /kg
Finally,
I, _,_ 318 _ _ Wou 208
mel- gt o l- gy 0SB g T2 P~ 364k /ke
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9.9 THE BRAYTON CYCLE

The gas turbine is another mechanical system that produces power. It may operate on an open
cycle when used as a tank engine or truck engine, or on a closed cycle when used in a nuclear power
plant. In open cycle operation, air enters the compressor, passes through a constant-pressure
combustion chamber, passes through a turbine, and then exits as products of combustion to the
atmosphere, as shown in Fig. 9-15a. In closed cycle operation the combustion chamber is replaced
with a heat exchanger in which energy enters the cycle from some exterior source; an additional heat
exchanger transfers heat from the cycle so that the air is returned to its initial state, as shown in Fig.
9-15b.

The ideal cycle used to model the gas turbine is the Brayton cycle. It utilizes isentropic
compression and expansion, as indicated in Fig. 9-16. The efficiency of such a cycle is given by

n=1 %=1_M= _L /T, -1 (9.31)
0n LTy T LT/ |
Using the isentropic relations
P, (T, k/Ck—1) P T, k/tk=1)
7= (7) 7T (932)
Qin
/Fucl
@ Combustor @ Compressor

Compressor

Turbine

Heat exchanger

Products of
Combustion OQour

(a) Open Cycle (b) Closed Cycle

Air

Fig. 9-15

P = const.
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and observing that P, = P; and P, = P,, we see that
I, Ty

_ o L_TL 9.33
T, T, T, T, (9:33)
Hence, the thermal efficiency can be written as
T P, \k- D7k
-1 -t 1 _ (2L
n=1 T, 1 (Pz) (9.34)
In terms of the pressure ratio r, = P, /P, the thermal efficiency is
n=1- r;““’/" (9.35)

Of course, this expression for thermal efficiency was obtained using constant specific heats. For more
accurate calculations the gas tables should be used.

In an actual gas turbine the compressor and the turbine are not isentropic; some losses do occur.
These losses, usually in the neighborhood of 15 percent, significantly reduce the efficiency of the gas
turbine engine.

Another important feature of the gas turbine that seriously limits thermal efficiency is the high
work requirement of the compressor, measured by the back work ratio Wmmp /W, The compressor
may require up to 80 percent of the turbine’s output (a back work ratio of 0.8), leaving only 20 percent
for net work output. This relatively high limit is experienced when the efficiencies of the compressor
and turbine are too low. Solved problems illustrate this point.

EXAMPLE 9.9 Air enters the compressor of a gas turbine at 100 kPa and 25°C. For a pressure ratio of 5 and a
maximum temperature of 850°C determine the back work ratio and the thermal efficiency using the Brayton
cycle.

To find the back work ratio we observe that
Weomp - Cp(TZ -T) — ,-T,
Wiarh Cp(T3 - T4) T3 -7,

The temperatures are T, = 298 K, T, = 1123 K, and

P k=1)/k P (k=1)/k }.2857
7, =T,= = (298)(5)"*7 =4720K T, =T, — = (1123)] - = 709.1K
=T, (298)(5) : =T 5 (123)| 2 :
5

The back work ratio is then
Weomp 472.0 — 298

W =TI 709 ~ 0420 ord2.0%

The thermal efficiency is 7 = 1 — r =87k = 1 — (5)~02857 = 369 (36.9%).

EXAMPLE 9.10 Assume the compressor and the gas turbine in Example 9.9 both have an efficiency of 80
percent. Using the Brayton cycle determine the back work ratio and the thermal efficiency.
We can calculate the quantities asked for if we determine W o, Wy» and g;,. The compressor work is

Weomp, 5 Cp
W, = = = (T - T))
comp ncomp T’comp
where we,m,,  is the isentropic work. T, is the temperature of state 2 assuming an isentropic process; state 2 is

the actual state. We then have, using 7, = T, from Example 9.9,
1.00
Weomp = (W)(472 - 298) = 2175 k_]/kg

Likewise, there results wy,p = TumWium, s = T €T3 = Ty) = (0.8X1.00X1123 —~ 709.1) = 331.1kJ /kg, where
T, is T, as calculated in Example 9.9. State 4 is the actual state and state 4’ is the isentropic state. The back work
ratio is then

Weomp  217.5

Wiurh © 3311 = 0.657 or 65.7%
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The heat transfer input necessary in this cycle is g;, = h3 — by = ¢ {T; — T5), where T, is the actual tempera-
ture of the air leaving the compressor. It is found by returning to the compressor:

Weomp = (T — T}) 217.5 = (1.00)(T, — 298) ~T,=5155K
Thus, g;, = (1.00X1123 — 515.5) = 607.5 kJ /kg. The thermal efficiency of the cycle can then be written as

Whet _ Wiurb ~ Weomp _ 331.1 — 2175

Qin Qin = 6075 = 0.187 or18.7%

n =

9.10 THE REGENERATIVE GAS-TURBINE CYCLE

The heat transfer from the simple gas-turbine cycle of the previous section is simply lost to the
surroundings—either directly, with the products of combustion, or from a heat exchanger. Some of
this exit energy can be utilized since the temperature of the flow exiting the turbine is greater than the
temperature of the flow entering the compressor. A counterflow heat exchanger, a regenerator, is
used to transfer some of this energy to the air leaving the compressor, as shown in Fig. 9-17. For an
ideal regenerator the exit temperature 7, would equal the entering temperature 7; and, similarly, 7,
would equal T. Since less energy is rejected from the cycle, the thermal efficiency is expected to
increase. It is given by

wturb - W

_ comp
= g (9.36)

Using the first law, expressions for q,, and w,,,, are found to be

Qin = CP(T4 -T3) Wb = Cp( T, - T) (9.37)
Products of Regenerator
combustion «——— /W\MNVWWM\_

—WWWWWWWWWW- Combustor
. 4
® /Qm @

W,
j&% —_— o

Compressor [

qp

I=Ts
T,=T,
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Hence, for the ideal regenerator in which T, = T, q,, = w,,,, and the thermal efficiency can be
written as

W, T,-T T, T,/T, — 1
=1 oM -2 1tz C 9.38
" Pt T,- T T, T-T/T, (9:38)
Using the appropriate isentropic relation, this can be written in the form
T, (Py/P)* -1 T
n=1- = — =1-— mpk-/k 9.39
ot = (pyp)* s ¢

Note that this expression for thermal efficiency is quite different from that for the Brayton cycle. For a
given pressure ratio, the efficiency increases as the ratio of minimum to maximum temperature
decreases. But, perhaps more surprisingly, as the pressure ratio increases the efficiency decreases, an
effect opposite to that of the Brayton cycle. Hence it is not surprising that for a given regenerative
cycle temperature ratio, there is a particular pressure ratio for which the efficiency of the Brayton
cycle will equal the efficiency of the regenerative cycle. This is shown for a temperature ratio of 0.25 in
Fig. 9-18.

0.75 - .
Regenerative
cycle
T,/T,=0.25
n oSpFp—————————————_—— e ——_—— ——
Brayton
025+ cycle
1 L i ] 1 L. ST RS N D |
2 4 6 8 10 11.32
r
P
Fig. 9-18

In practice the temperature of the air leaving the regenerator at state 3 must be less than the
temperature of the air entering at state 5. Also, T, > T,. The effectiveness, or efficiency, of a
regenerator is measured by

ha - hz
nreg = hS — hZ (940)
This is equivalent to
I,-T,
Tee = T, =T, (9.41)

if we assume an ideal gas with constant specific heats. Obviously, for the ideal regenerator T, = T;
and 7, = 1. Regenerator efficiencies exceeding 80 percent are common.

EXAMPLE 9.11 Add an ideal regenerator to the gas-turbine cycle of Example 9.9 and calculate the thermal
efficiency and the back work ratio.
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The thermal efficiency is found using (9.39):
T, (P, |V 208

n=1- =2 =1- (__

T. | P, 1123

This represents a 57 percent increase in efficiency, a rather large effect. Note that, for the information given, the
back work ratio does not change; hence, Woomp/ Wiy = 0.420.

)(5)0 57— 0580 or 58.0%

9.11 THE INTERCOOLING, REHEAT, REGENERATIVE GAS-TURBINE CYCLE

In addition to the regenerator of the previous section there are two other common techniques for
increasing the thermal efficiency of the gas turbine cycle. First, an intercooler can be inserted into the
compression process; air is compressed to an intermediate pressure, cooled in an intercooler, and then
compressed to the final pressure. This reduces the work required for the compressor, as was discussed
in Sec. 9.2, and it reduces the maximum temperature reached in the cycle. The intermediate pressure
is determined by equating the pressure ratio for each stage of compression; that is, referring to Fig.
9.19 [see (9.8)],

by _ B 9.42
Pl - 1:.3 ( ‘ )
Products of Regenerator
combustion
4
SO p— ®
Compressor Compressor Qc <
W
Turbine -
. \
O
T

v
Fig. 9-19

The second technique for increasing thermal efficiency is to use a second combustor, called a
reheater. The intermediate pressure is determined as in the compressor; we again require that the
ratios be equal; that is,

P _ Py

P, " P, (9.43)
Since Py = P, and P, = P,, we see that the intermediate turbine pressure is equal to the intermediate
compressor pressure for our ideal-gas turbine.
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Finally, we should note that intercooling and reheating are never used without regeneration. In
fact, if regeneration is not employed, intercooling and reheating reduce the efficiency of a gas-turbine
cycle.

EXAMPLE 9.12 Add an ideal intercooler, reheater, and regenerator to the gas-turbine cycle of Example 9.9 and
calculate the thermal efficiency. Keep all given quantities the same.

The intermediate pressure is found to be P, = ‘/P, P, = y/(100)(500) = 223.6 kPa. Hence, for the ideal
isentropic process,

P (k- 1)k . 0.2857
T2=T,(-P—?) =(298)(%) = 3750K

The maximum temperature Ty = Ty = 1123 K. Using P, = P, and P, = P,, we have

P7 2236 )0.2857

(k- 1sk
T7=T6(E) =(“23)(‘5W =8923K

Now all the temperatures in the cycle are known and the thermal efficiency can be calculated as

Wour Wb ~ Weomp _ Cp(TIS - T?) + Cp(TS - T‘)) - Cp(TZ - Tl) - Cp(T4 - T3)

G 9c ¥ 4r (T —T5) + c,(Ty — Ty)

230.7 + 230.7 - 77.0 - 77.0
= 3307 + 2307 = 0.666 or 66.6%
This represents a 14.9 percent increase over the cycle of Example 9.11 with only a regenerator, and an 80.5
percent increasc over the simple gas-turbine cycle. Obviously, losses in the additional components must be
considered for any actual situation.

9.12 THE TURBOJET ENGINE

The turbojet engines of modern commercial aircraft utilize gas-turbine cycles as the basis for their
operation. Rather than producing power, however, the turbine is sized to provide just enough power
to drive the compressor. The energy that remains is used to increase the kinetic energy of the exiting
exhaust gases by passing the gases through an exhaust nozzle thereby providing thrust to the aircraft.
Assuming that all of the air entering the engine passes through the turbine and out the exhaust
nozzle, as shown in Fig. 9-20, the net thrust on the aircraft due to one engine is

thrust = m(Vs ~ V) (9.44)

Burner T

Compressor Turbine

Exhaust
gases

Nozzle

Fig. 9-20
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where rm is the mass flux of air.passing through the engine. The mass flux of fuel is assumed to be
negligibly small. In our ideal engine we assume that the pressures at section 1 and section S are equal
to atmospheric pressure and that the velocity at section 1 is equal to the aircraft speed. A solved
problem will illustrate the calculations for this application.

EXAMPLE 9.13 A turbojet engine inlets 100 Ibm /sec of air at 5 psia and — 50 °F with a velocity of 600 ft /sec.
The compressor discharge pressure is 50 psia and the turbine inlet temperature is 2000 °F. Calculate the thrust
and the horsepower developed by the engine.

To calculate the thrust we must first calculate the exit velocity. To do this we must know the temperatures T,
and T exiting the turbine and the nozzle, respectively. Then the energy equation can be applied across the nozzle
as

neglect

1% V2
4'+h4= —25— ths or  ViI=2,T,—Ty)

Let us find the temperatures T, and T;. The temperature T, is found to be (using 7, = 410°R)

P (k—-1)/k 0.2857
T, = TI()TT) = (410)(5—50) = 791.6°R

Since the work from the turbine equals the work required by the compressor, we have h, — h; = hy — h, or
T,-T,=T,— T, Thus, T, = 2460 — (791.6 — 410) = 2078 °R. The isentropic expansion through the turbine
yields

2078\~

T4 k/Ck~1) 35 )
) = (50)(m) = 27.70 psia

P4=P3(T‘3'

The temperature T; at the nozzle exit where P = 5 psia is found, assuming isentropic nozzle expansion, to be
k-1 /k

P
5) = 1274 °R

5 0.2857
Ts = T“(E )

- (2078)( o~

The energy equation then gives
Vs = [2¢,(T, = T5)] " = [(2)(0.24)(778)(32.2)(2078 ~ 1274)]"/* = 3109 ft/sec

[Note: We use ¢, = (0.24 Btu/Ibm-°R) X (778 ft-lbf/Btu) x (32.2 Ibm-ft /Ibf-sec?). This provides the appropri-
ate units for cp.]
The thrust is: thrust = (Vs — Vy) = (100/32.2X3109 — 600) = 7790 Ibf. The horsepower is

_ (thrust)(velocity)  (7790)(600)
B 550 - 550

hp = 8500 hp

where we have used the conversion 550 ft-Ibf/sec = 1 hp.

9.13 THE COMBINED BRAYTON-RANKINE CYCLE

The Brayton cycle efficiency is quite low primarily because a substantial amount of the energy
input is exhausted to the surroundings. This exhausted energy is usually at a relatively high
temperature and thus it can be used effectively to produce power. One possible application is the
combined Brayton-Rankine cycle in which the high-temperature exhaust gases exiting the gas turbine
are used to supply energy to the boiler of the Rankine cycle, as illustrated in Fig. 9-21. Note that the
temperature Ty of the Brayton cycle gases exiting the boiler is less than the temperature T, of the
Rankine cycle steam exiting the boiler; this is possible in the counterflow heat exchanger, the boiler.
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To relate the air mass flux 1, of the Brayton cycle to the steam mass flux 2, of the Rankine
cycle, we use an energy balance in the boiler; it gives (see Fig. 9-21),

my(hg = hg) = m(h; — hy) (9.45)
assuming no additional energy addition in the boiler, which would be possible with an oil burner, for
example. '

The cycle efficiency would be found by considering the purchased energy as Q,,, the energy input
in the combustor. The output is the sum of the net output W from the gas turbine and the output
Wt from the steam turbine. The combined cycle efficiency is thus given by

_ Wor+ War
Qin

An example will illustrate the increase in efficiency of such a combined cycle.

(9.46)

EXAMPLE 9.14 A simple steam power plant operates between pressures of 10 kPa and 4 MPa with a maximum
temperature of 400 °C. The power output from the steam turbine is 100 MW. A gas turbine provides the energy
to the boiler; it accepts air at 100 kPa and 25 °C, has a pressure ratio of §, and a maximum temperature of 850 °C.
The exhaust gases exit the boiler at 350 K. Determine the thermal efficiency of the combined Brayton-Rankine
cycle.

1f we neglect the work of the pump, the enthalpy remains unchanged across the pump. Hence, A, = h; = 192
kJ/kg. At 400°C and 4 MPa we have h; = 3214 kJ /kg and s, = 6.7698 kJ /kg - K. State 4 is located by noting
that s, = s, so that the quality is

S¢ 7 5r  6.798 — 0.6491

¥o= 5= =~ 7m0 - 0819




CHAP. 9] POWER AND REFRIGERATION GAS CYCLES 209

Thus, hy = hy + x4hg, = 192 + (0.8159X2393) = 2144 kJ/kg. The steam mass flux is found using the turbine
output as follows:

Wer = (hy — hy) 100000 = ri1, (3214 — 2144) r, = 93.46 kg/s

Considering the gas-turbine cycle,

P (k-1)/k 0.2857
T, = TS(FZ—) = (298)(5)"*" = 472.0K
Also,
P, (k-1)/k 1 0.2857
TB—T7(F8) =(1123)(3) =709.1K
Thus we have, for the boiler,
i (hy = hy) = ritge (T — To) (93.46)(3214 — 192) = (rin,)(1.00)(709.1 — 350)

m, = 7865 kg/s

The output of the gas turbine is (note that this is not wgr)

Wi = 111,¢,(T; — Tg) = (786.5)(1.00)(1123 — 709.1) = 325.5 MW
The energy needed by the compressor is

Weom

o= i (T, — Ts) = (786.5)(1.00) (472 — 298) = 136.9 MW

Hence, the net gas turbine output is Wgr = W, — W,

omp = 325.5 — 136.9 = 188.6 MW. The energy input by
the combustor is

Oin = M,y (T; ~ Tg) = (786.5)(1.00)(1123 — 472) = 512 MW

The above calculations allow us to determine the combined cycle efficiency as

_ W+ Wor 100 + 188.6

0 513 = 0.564 or 56.4%

Note that this efficiency is 59.3 percent higher than the Rankine cycle (see Example 8.2) and 52.8 percent higher
than the Brayton cycle (see Example 9.9). Cycle efficiency could be increased even more by using steam reheaters,
steam regenerators, gas intercoolers, and gas reheaters.

9.14. THE GAS REFRIGERATION CYCLE

If the flow of the gas is reversed in the Brayton cycle of Sec. 9.9, the gas undergoes an isentropic
expansion process as it flows through the turbine, resulting in a substantial reduction in temperature,
as shown in Fig. 9-22. The gas with low turbine exit temperature can be used to refrigerate a space to
temperature 7, by extracting heat at rate Q,, from the refrigerated space.

Figure 9-22 illustrates a closed refrigeration cycle. (An open cycle system is used in aircraft; air is
extracted from the atmosphere at state 2 and inserted into the passenger compartment at state 1. This
provides both fresh air and cooling.) An additional heat exchanger may be used, like the regenerator
of the Brayton power cycle, to provide an even lower turbine exit temperature, as illustrated in Fig.
9-23. The gas does not enter the expansion process (the turbine) at state 5; rather, it passes through an
internal heat exchanger (it does not exchange heat with the surroundings). This allows the tempera-
ture of the gas entering the turbine to be much lower than that of Fig. 9-22. The temperature 7T after
the expansion is so low that gas liquefication is possible. It should be noted, however, that the
coefficient of performance is actually reduced by the inclusion of an internal heat exchanger.
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A reminder: when the purpose of a thermodynamic cycle is to cool a space, we do not define a
cycle’s efficiency; rather, we define its coefficient of performance:

desired effect Qin
energy that costs 7

mn

COP = (9.47)

- where W, = (W, — Win)-

mathcad EXAMPLE 9.15 Air enters the compressor of a simple gas refrigeration cycle at —10°C and 100 kPa. For a
compression ratio of 10 and a turbine inlet temperature of 30°C calculate the minimum cycle temperature and
the coefficient of performance.

Assuming isentropic compression and expansion processes we find

P‘i =k 0.2857
Ty = TZ(}T;) = (263)(10)"%7 = 508 K
P (k=1)/k 1 0.2857
T, =T4(71) =(303)(ﬁ) = 157K = -116°C

The COP is now calculated as follows:
gin = ¢,(T, — T}) = (1.00)(263 — 157) = 106 kJ /kg
Weomp = €p(T3 — Ty) = (1.00)(508 — 263) = 245 kJ /kg
W = C,(Ty — T;) = (1.00)(303 — 157) = 146 kJ /kg

in 106
= 245 — 146

. COP = =1.07

Weomp ™ Wiurb
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This cocfficient of performance is quite low when compared with that of a vapor refrigeration cycle. Thus gas
refrigeration cycles are usual only for special applications.

EXAMPLE 9.16 Use the given information for the compressor of the refrigeration cycle of Example 9.15 but
add an ideal internal heat exchanger, a regenerator, as illustrated in Fig. 9-23, so that the air temperature
entering the turbine is —40°C. Calculate the minimum cycle temperature and the coeflicient of performance.

Internal .
heat Cout

@ exchanger @
MWW 1®

Turbine

W
Lo P

Fig. 9-23

Assuming isentropic compression we again have T, = T3(P, /P 1% = (263X10)**"7 = 508 K. For an
ideal internal hcat exchanger we would have T =T, =263 K and T, = T, = 233 K. The minimum cycle
temperature is

P] {k-1)/k 0.2857
T, = Tﬁ(F) = (233)(E) = 121K = —152°C

For the COP:
Gin = (T — T)) = (1.00)(233 - 121) = 112kJ /kg

Weomp = Cp(Ts = T3) = (1.00)(508 — 263) = 245kJ /kg

Waar = €,(Ty = Ty) = (1.00)(233 — 121) = 112kJ /kg

4in 112

= 335 — 11z - 0842

.. COP

Weomp — Wiurb

Obviously, the COP is lower than that of the cycle with no internal heat exchanger. The objective is not to
increasc the COP but to provide extremely low refrigeration temperatures.
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Solved Problems

An adiabatic compressor receives 20 m*/min of air from the atmosphere at 20°C and
compresses it to 10 MPa. Calculate the minimum power requirement.

An isentropic compression requires the minimum power input for an adiabatic compressor. The
outlet temperature for such a process is

(k—1)/k .2857
T, = T,(?T) = (293)(%) = 1092K

To find the mass flux, we must know the density. It is p = P/RT = 100/(0.287X293) = 1.189 kg/m>.
The mass flux is then (the flow rate is given) m = p(AV) = (1.189X20/60) = 0.3963 kg/s. The
minimum power requirement is now calculated to be

Wiomp = m(hy — hy) = tic (T, ~ T,) = (0.3963)(1.00)(1092 ~ 293) = 317 kW

comp

A compressor receives 4 kg /s of 20 °C air from the atmosphere and delivers it at a pressure of
18 MPa. If the compression process can be approximated by a polytropic process with
= 1.3, calculate the power requirement and the rate of heat transfer.

The power requirement is [see (9.6)]

(n—1)/n /13
(ﬁ) ’ } (4)M(293)[ 18000 " —1]=3374kW

. . nR
Weomp = 1t P, 100

comp n — 1

T,

The first law for the control volume [see (4.66)] surrounding the compressor provides us with

] ) P (n—1)/n
Q mAh + W, comp — mcp(TZ Tl) + W comp mcpTl (Fj) -1 comp
03/13
= (#)(1. 00)(293)[ 1?830 - 1] 3374 = —661 kW

In the above, we have used the compressor power as negative since it is a power input. The expression of
(9.6) is the magnitude of the power with the minus sign suppressed, but when the first law is used we
must be careful with the signs. The ncgative sign on the heat transfcr means that heat is leaving the
control volume.

An adiabatic compressor is supplied with 2 kg /s of atmospheric air at 15°C and delivers it at
5 MPa. Calculate the efficiency and power input if the exiting temperature is 700 °C.

Assuming an isentropic process and an inlet temperature of 15°C, the exit temperature, would be

P (k—1)/k 0.2857
Ty = T,(PT) = (288)(%) = 880.6 K

The efficiency is then

w, (T2 = Ty)  880.6 — 288

N = W = (T~ T) = 973 —9%8 — 0.865 or 86.5%

The power input is Wmmp me (T, — T,) = (2X1.00X973 — 288) = 1370 kW.
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An ideal compressor is to compress 20 Ibm/min of atmospheric air at 70°F at 1500 psia.
Calculate the power requirement for (a) one stage, (b) two stages, and (c) three stages.

(a)

(b)

(c)

For a single stage, the exit temperature is

P (k-1)/k 0.2857
—Tl( 2) —(530)(%) = 1987°R

The required power is
W,

comp

=rmc (T~ T)) = (%)[(0.24)(778)](1987 — 530) = 90,680 ft-Ibf/sec or 164.9 hp

With two stages, the intercooler pressure is P, = (P,P,)"/? = [(14.7X1500)}'/2 = 148.5 psia. The
intercooler inlet and exit temperatures are (see Fig. 9-4)

P (k~1)/k 0.2857
T, —T( 2) 530( 1485) = 1026°R
]

147
P k—D/k 0.2857
T, = Tg(P“) 530( ll‘fg%) = 1026°R

The power required for this two-stage compressor is
Weomp = 1c,(T, = Ty) + ric, (T, — T3)
= (%)[(0.24)(778)](1026 — 530 + 1026 — 530) = 61,740 ft-1bf /sec

or 112.3 hp. This represents a 31.9 percent reduction compared to the single-stage compressor.
For three stages, we have, using (2.9) and (9.10),

P, = (P3p)" = [(14.7) (1500)] = 68.69 psia
P, = (P,P2)" = [(14.7)(1500)7] " = 321.0 psia

The high temperature and power requirement are then

Pz )(k~l)/k 68.69 )0.2857

P, = (530) ( ST%A = 8233°R

T2=T4=T6=T,(

Womp = 3mc (T, — T)) = (3)( )[(0 24)(778)](823.3 — 530) = 54,770 ft-Ibf /scc

or 99.6 hp. This represents a 39.6 percent reduction compared to the single-stage compressor.

The calculations in Prob. 9.4 were made assuming constant specific heats. Recalculate the
power requirements for (a) and (&) using the more accurate air tables (Appendix F).

(a)

(b)

For one stage, the exit temperature is found using P,. At stage T, = 530°R: A, = 126.7 Btu/lbm,
(P,), = 1.300. Then,

1500
(P); = (P).p =( 300)( 147) = 1327
This provides us with 7, = 1870°R and h, = 469.0 Btu/Ibm. The power requirement is

Wi = (ks — hy) = (%)(469 — 126.7)(778) = 88,760 ft-Ibf /sec or 161.4 hp
With two stages, the intercooler pressure remains at 148.5 psia. The intercooler inlet condition is
found as follows:

(P), = (P),P —(1300)(1144875)=13.13
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whence T, = 1018 °R and &, = 245.5 Btu/lbm. These also represent the compressor exit (see Fig.
9-4), so that

Wcomp = m(hZ - hl) + m(h4 - h3)
= (;—?)(245.5 ~ 126.7 + 245.5 — 126.7)(778) = 61,620 ft-Ibf /sec

or 112.0 hp. Obviously, the assumption of constant specific heats is quite acceptable. The
single-stage calculation represents an error of only 2 percent.

A Carmnot engine operates on air between high and low pressures of 3 MPa and 100 kPa with a
low temperature of 20 °C. For a compression ratio of 15, calculate the thermal efficiency, the
MEP, and the work output.

The specific volume at TDC (see Fig. 6-1) is v, = RT,/P, = (0.287X293)/100 = 0.8409 m*/kg. For
a compression ratio of 15 (we imagine the Carnot engine to have a piston-cylinder arrangement), the
specific volume at BDC is

vy = Tk = Sz = 0.05606 m®/kg

The high temperature is then T = Pyv;/R = (3000X0.05606) /0.287 = 586.0 K.

The cycle efficiency is caiculated tobe n =1 - T, /T, = 1 — 293 /586 = 0.500. To find the work
output, we must calculate the specific volume of state 2 as follows:

P,u, = P, = (100)(0.8409) = 84.09 Pl = Pywl* = (3000)(0.05606)'* = 53.12
50y =03171 m?/kg

The entropy change (s, — 5,) is then

_ vy _ 03171 _ .
As=c,In1 +RIn 7, = 0+ 0.287In 08300 = 0.2799 kJ /kg - K
The work output is now found to be w,, = AT [As| = (586 ~ 293X0.2799) = 82.0 kJ /kg. Finally,
W, = (MEP) (1, — v,) 82.0 = (MEP)(0.8409 — 0.3171) MEP = 156.5 kPa

An inventor proposes a reciprocating engine with a compression ratio of 10, operating on
1.6 kg /s of atmospheric air at 20 °C, that produces 50 hp. After combustion the temperature
is 400 °C. Is the proposed engine feasible?

We will consider a Carnot engine operating between the same pressure and temperature limits; this
will establish the ideal situation without reference to the details of the proposed engine. The specific
volume at state 1 (see Fig. 6-1) is

RT,  (0.287)(293
v = —Pl—‘ = L# = 0.8409 m*/kg

For a compression ratio of 10, the minimum specific volume must be v5 = v, /10 = 0.8409/10 = 0.08409.
The specific heat at state 2 is now found by considering the isothermal process from 1 to 2 and the
isentropic process from 2 to 3:

Py, = Py = 100 X 0.8409 = 84.09 Pt = %3—)(0.08409)1'4 =71.75

ooy = 0.6725 m?/kg
The change in entropy is

0.6725
0.8409

As=Rln%z=O.287ln = —0.0641 kJ/kg - K
1
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The work output is then w,, = AT |As| = (400 — 20X0.0641) = 24.4 kJ /kg. The power output is

W = rmw,, = (1.6)(24.4) = 39.0kW or52.2 hp

The maximum possible power output is 52.2 hp; the inventor’s claims of 50 hp is highly unlikely, though
not impossible.

9.8 A six-cylinder engine with a compression ratio of 8 and a total volume at TDC of 600 mL
i intakes atmospheric air at 20°C. The maximum temperature during a cycle is 1500 °C.
Assuming an Otto cycle, calculate (a) the heat supplied per cycle, (b) the thermal efficiency,
and (c) the power output for 4000 rpm.

(a) The compression ratio of 8 allows us to calculate T, (see Fig. 9-8):
V] ko 04
T,=T, v = (293)(8) " =673.1K
2
The heat supplied is then g;, = ¢ (T3 — T,) = (0.717X1773 — 673.1) = 788.6 kJ /kg. The mass of

air in the six cylinders is

_ PV (100)(600 X 10~°)
RT, ~  (0.287)(293)
The heat supplied per cycle is Q;, = mq,;, = (0.004281X788.6) = 3.376 kJ.
() n=1-r1"k=1-8"9%=05647 or 56.5%.
(c) W, =70, = (0.5647X3.376) = 1.906 kJ.

For the idealized Otto cycle, we assume that one cycle occurs each revolution. Consequently,

= 0.004281 kg

W, = (W) (cycles per second) = (1.906)(4000,/60) = 127kW or 170 hp

9.9 A diesel engine intakes atmospheric air at 60°F and adds 800 Btu/Ibm of energy. If the
i+  maximum pressure is 1200 psia calculate (a) the cutoff ratio, (b) the thermal efficiency, and
(¢) the power output for an airflow of 0.2 Ibm /sec.

(a) The compression process is isentropic. The temperature at state 2 (see Fig. 9-9) is calculated to be

P, (k—1)/k 1200 102857
T,=T| % = (520 (—) = 1829°R
2 1( P, ) (20\ 127
The temperature at state 3 is found from the first law as follows:
i, = ¢c,(T; — Ty) 800 = (0.24)(T5 — 1829) o T, =5162°R

The specific volumes of the three states are
_ RT,  (53.3)(520)
TP (14.7)(144)

RT;  (53.3)(5162)
Py (1200)(144)

_RT,  (53.3)(1829)

= 3 In = "B T A T = 3
vy 13.09 ft3/lbm v2= Pt = a0y (iaa) = 05642 f°/1bm

vy = =1.592 ft*/Ibm

The cutoff ratio is then r, = v3 /v, = 1.592 /0.5642 = 2.822.
(b) The compression ratio is r = v, /v, = 13.09/0.5642 = 23.20. The thermal efficiency can now be
calculated, using (9.25):
PR St SR (282)" -1
M TR k(. - 1) (232" (192822 - 1)

= 0.6351 or63.51%

(€) Wy = 10;, = nrig;, = [(0.6351X0.2X800)[(778) = 79,060 ft-Ibf/sec or 143.7 hp.
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A dual cycle is used to mode! a piston engine. The engine intakes atmospheric air at 20 °C,
compresses it to 10 MPa, and then combustion increases the pressure to 20 MPa. For a cutoff
ratio of 2, calculate the cycle efficiency and the power output for an airflow of 0.1 kg /s.

The pressure ratio (refer to Fig. 9-11) is r, = P;/P, = 20/10 = 2. The temperature after the
isentropic compression is

(k—1)/k
) = 1092 K

10000 0.2857
T, =T,| & = (293 (—)
2 1( P, (293) 100
The specific volumes are

_ RT, _ (0.287)(293) _ _ 3
UI_TI_T LZ—T—W—OO3134m/kg

The compression ratio is then r = v, /v, = 0.8409,/0.03134 = 26.83. This allows us to calculate the
thermal efficiency:
_ ! pre -1l 1 @@ -1
K rkVkr(r.—1) +r,— 1 (26.83)"° (1.4)(2)(2 - 1) +2 -

To find the heat input, the temperatures of states 3 and 4 must be known. For the constant-volume heat
addition,

= 0.8409 m3/kg

= 0.8843

g—z = 1T>_z A T5 = Tz% = (1092)(2) = 2184 K
For the constant-pressure heat addition,
% - % AT, = 733—: = (2184)(2) = 4368 K
The heat input is then
qin =¢,(T3 — Ty) + c,(T, — T5) = (0.717)(2184 — 1092) + (1.00)(4368 — 2184) = 2967 kJ /kg
so that
Wout = Ndin = (0.8843)(2967) = 2624 kJ /kg

The power output is W, = riw,,, = (0.1X2624) = 262.4 kKW.

out

Air at 90 kPa and 15°C is supplied to an ideal cycle at intake. If the compression ratio is 10
and the heat supplied is 300 kJ /kg, calculate the efficiency and the maximum temperature for
(a) a Stirling cycle, and (b) an Ericsson cycle.

(a) For the constant-temperature process, the heat transfer equals the work. Referring to Fig. 9-13, the
first law gives

Gow =Wy, = RT, In % = (0.287)(288)In 10 = 190.3 kJ /kg
2

The work output for the cycle is then w,,, = g;, — g, = 300 — 190.3 = 109.7 kJ /kg. The effi-

ciency is
Wout 109.7
= — = ——— = (0.366
K Qin 3
The high temperature is found from
T, T, 288
n—l—T—H “TH=1—17_1—0.366_454K

(b) For the Ericsson cycle of Fig. 9-14, the compression ratio is v,/v,. The constant-temperature heat
addition 3 — 4 provides

o= Wiy = RT, In -2 +300 = (0.287)T, In =%
Uy Uy
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The constant-pressure process 2 — 3 allows

L, T, 288
vy Uy ug/10

7, T, P, 9% _
7.7, TR - omy s

Recognizing that T, = T}, the above can be combined to give

300 = (0.287)(313.62,)In :—‘; vy = 0.108903

The above two equations are solved simultaneously by trial and error to give
vy =394 m’/kg vy = 1.69m®/kg
Thus, from the compression ratio, v, = v,/10 = 0.394 m>/kg. The specific volume of state 1 is

RT _ (0.287)(288
o= 5L - (_%_l ~ 0.9184 m’/kg

The heat rejected is then

0.9184

12
Gou = RT; In U—; = (0.287)(288)In 0395

= 70.0 kJ /kg
The net work for the cycle is W, = @, — Gour = 300 — 70.0 = 230 kJ /kg. The efficiency is then
N = Wou/din = 230/300 = 0.767. This allows us to calculate the high temperature:

288

T,
n=1- - 0.767 = 1 — > o Ty =1240K
H H

9.12 A gas-turbine power plant is to produce 800 kW of power by compressing atmospheric air at
I+ 20°C to 800 kPa. If the maximum temperature is 800 °C, calculate the minimum mass flux of

the air.
Mathcad

The cycle is modeled as an ideal Brayton cycle. The cycle efficiency is given by (9.35):

-04/1.4
=1 r0hk (800)

100

The energy added in the combustor is (see Fig. 9-15) Q;, = W,,,/n = 800/0.4479 = 1786 kW. The
temperature into the combustor is

= 0.4479

Py )(HW =530.7K

800 0.2857
neT(7 )

= (293) ( 100
With a combustor outlet temperature of 1073 K, the mass flux follows from a combustor energy balance:
Q'in =rnic, (T, — T;) 1786 = (rm)(1.00)(1073 - 530.7) somo=3293kg/s

This represents a minimum, since losses have not been included.

9.13 If the efficiency of the turbine of Prob. 9.12 is 85 percent and that of the compressor is 80
Lix percent, calculate the mass flux of air needed, keeping the other quantities unchanged. Also

calculate the cycle efficiency.
Mathcad

The compressor work, using 7,y = 530.7 from Prob. 9.12, is

Weomp, s 1

Weomp = o = c(Ty = T)) = (%)(1.00)(530.7 — 293) = 297.1 kJ /kg

mn comp MNcomp




218 POWER AND REFRIGERATION GAS CYCLES [CHAP. 9

The temperature of state 4', assuming an isentropic process, is

P4 100 )0.2857

(k—1)/k
T, = TJ(E) = (1073)(@ =5924K

The turbine work is then
Waars = TurtWiurb.s = MurvC€p( Ty — T3) = (0.85)(1.00)(592.4 — 1073) = 408.5kJ /ke

The work output is then wy, = wy, — W, = 408.5 — 297.1 = 111.4 kJ /kg. This allows us to deter-

comp
mine the mass flux:
Wou = MWy,

800 = (r)(111.4) <o =T.18ke/s

To calculate the cycle efficiency, we find the actual temperature 7,. It follows from an energy
balance on the actual compressor:

Weomp = € (T2 — T) 297.1 = (1.00)(T, — 293) = T,=3590.1K
The combustor rate of heat input is thus O, = m(T; — T;) = (7.18X1073 — 590.1) = 3467 kW. The
efficiency follows as

_ Wou _ 800 _
n= Q.in = §6—7 = 0.2307

Note the sensitivity of the mass flux and the cycle efficiency to the compressor and turbine efficiency.

9.14  Assuming the ideal-gas turbine and regenerator shown in Fig. 9-24, find Q'in and the back
i work ratio.

Mathcad
W_,=800hp
14.7 psia 75 psi
ir CP S psia AV Combustor
80°F
Regenerator

Fig. 9-24
The cycle efficiency is (see Fig. 9-17)

Tl 540 75 0.2857
=1 — Lpk=-O/k 1 _ | || L
=17 ! ( 1660 )( )

The rate of energy input to the combustor is

W _ (800)(550,/778)
n 0.4818

O, = = 1174 Btu/sec

The compressor outlet temperature is

= 860.2°R

P (k—1)/k
=

75 0.2857
n )

- (540)( 117

The turbine outlet temperature is

P (k-1 /k 0.2857
T, = n(i) - (1660)(1;—57) = 1042°R
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Mathcad

The turbine and compressor work are then

w, ¢, (T, — T,) = (1.00)(860.2 — 540) = 320.2 Btu/lbm

comp =
Wers = €p(T3 — T,) = (1.00)(1660 — 1042) = 618 Btu/Ibm
The back work ratio is then Weypp/ W = 320.2/618 = 0.518.

To Prob. 9.14 add an intercooler and a reheater. Calculate the ideal cycle efficiency and the
back work ratio.

The intercooler pressure is (see Fig. 9-19), P, = /PP, = V(14.7)(75) = 33.2 psia. The tempera-
tures T, and T, are

0.2857
33'2) = 681.5°R

(k-1 /k
T,=T, = Tl(—l) = (540)(14—7

Py

Using P, = P, and P, = P,, there results

P (k-1 /k . 0.2857
Ty=T, = T,,(?Z) = (1660)(%) = 1315°R

The work output of the turbine and input to the compressor are
W = €(Tg — To) + ¢,(Tg — T;) = (0.24)(778)(1660 — 1315)(2) = 128,800 ft-lbf /Ibm
Weomp = Co(Ta = T3) + ¢ (T, — Ty) = (0.24)(778)(681.5 — 540)(2) = 52,840 ft-1bf /Ibm
The heat inputs to the combustor and the reheater are
eomy = <,(Ty — Ts) = (0.24)(1660 — 1315) = 82.8 Btu/lbm
Greheater = Cp(Ts - T,) = (0.24)(1660 — 1315) = 82.8 Btu/Ibm
The cycle efhiciency is now calculated to be

Wour _ Wiub ~ Weomp (128,800 — 52,840) /778
Gin h Gcomb + Qreheater B 82.8 + 82.8

n = = 0.590

The back work ratio is w0 /Wy = 52,840,/128,800 = 0.410

A turbojet aircraft flies at a speed of 300 m /s at an elevation of 10000 m. If the compression
ratio is 10, the turbine inlet temperature is 1000 °C, and the mass flux of air is 30 kg/s,
calculate the maximum thrust possible from this engine. Also, calculate the rate of fuel
consumption if the heating value of the fuel is 8400 kJ /kg.

The inlet temperature and pressure are found from Table B-1 to be (see Fig. 9-20)
T, =2233K P, =0.2615 P, = 26.15kPa

The temperature exiting the compressor is

T,=T Py )T 223.3)(10)"%7 = 431.1 K
2= Tl p; = (223.3)(10) = 431.

Since the turbine drives the compressor, the two works are equal so that
(T = T) =c (T3 - T,) S~y =Ty=T,-T

Since T; = 1273, we can find 7, as T, =T, + T, — T, = 1273 + 2233 — 431.1 = 1065.2 K. We can
now calculate the pressure at the turbine exit to be, using P, = P, = 261.5 kPa,

1065.2

T4 k/Ck—1) 35

P4 = P;(T}
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The temperature at the nozzle exit, assuming an isentropic expansion, is

P (k—1)/k
=]

The energy equation provides us with the exit velocity Vs = [2¢,(T, ~ Ty]'/? = [(2X1000)
(1065.2 ~ 659.4))'/2 = 901 m/s, where ¢, = 1000 J /kg - K must be used in the expression. The thrust
can now be calculated as

thrust = m(V; ~ V,) = (30)(901 — 300) = 18030 N

This represents a maximum since a cycle composed of ideal processes was used.

26.15 )042857

- (1065.2)(m

= 659.4 K

The heat transfer rate in the burner is Q = rc (Ty ~ T,) = (30X1.00X1273 — 431.1) = 25.26 MW.
This requires that the mass flux of fuel 71, be

8400r,= 25260 .., =3.01kg/s

A gas-turbine cycle inlets 20 kg /s of atmospheric air at 15°C, compresses it to 1200 kPa, and
heats it to 1200 °C in a combustor. The gases leaving the turbine heat the steam of a Rankine
cycle to 350 °C and exit the heat exchanger (boiler) at 100 °C. The pump of the Rankine cycle
operates between 10 kPa and 6 MPa. Calculate the maximum power output of the combined
cycle and the combined cycle efficiency.

The temperature of gases leaving the gas turbine is (see Fig. 9-21)

Pg )(k— D/k 100 0.2857
Ty =T, 5 = (1473 (—) =T7242K
=n(z) =0
This temperature of the air exiting the compressor is
P (k-1D/k 0.2857
T, = TS(-,#) = (288)(%) = 585.8 K
]

The net power output of the gas turbine is then
WGT = qurh - Wcomp = e, (T, — Ty) — rc (T, — Ts)
= (20)(1.00)(1473 — 724.2 — 585.8 + 288) = 9018 kW
The temperature exiting the condenser of the Rankine cycle is 45.8°C. An energy balance on the
boiler heat exchanger allows us to find the mass flux ri, of the steam:
e (Tg — Tg) = m(hy — hy) (20)(1.00)(724.2 — 100) = m (3043 — 191.8)
m, = 3379kg/s
The isentropic process 3 — 4 allows h, to be found:
5, =53 = 6.3342 = 0.6491 + 7.5019x, oox, = 0.7578
sohy =191.8 + (0.7578)(2392.8) = 2005 kJ /kg

The steam turbine output is Wy = m(hy — A,) = (3.379X3043 — 2005) = 3507kW. The maximum
power output (we have assumed ideal processes in the cycles) is, finally,

Wy = Wor + Wep = 9018 + 3507 = 12525kW  or 12.5 MW

The energy input to this combined cycle is Q,, = m,c (T, — Tg) = (20X1.00X1473 — 585.8) = 17.74
MW. The cycle efficiency is then
W, 12.5

out
n=-— === =070
O 17.74
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A simple gas cycle produces 10 tons of refrigeration by compressing air from 200 kPa to 2
MPa. If the maximum and minimum temperatures are 300 °C and —90°C, respectively, find
the compressor power and the cycle COP. The compressor is 82 percent efficient and the
turbine is 87 percent efficient.

The ideal compressor inlet temperature (see Fig. 9-22) is T, = To(P,/P)y*-V/k =

(573X200/2000)°%%7 = 296.8 K. Because the compressor is 82 percent efficient, the actual inlet
temperature T, is found as follows:

oW (T3 — Ty) . _ 1 _
Neomp = w C,,(Tz——Tz) T, = (0_.87)[(0’82)(573) - 573 + 296.8] = 236.2K

The low-temperature heat exchanger produces 10 tons = 35.2 kW of refrigeration:
O, = me (T, — T,) 35.2 = m(1.00)(236.2 — 183) o= 0.662kg/s

The compressor power is then W, = mc(T; — T,) = (0.662X1.00X573 — 236.2) = 223 kW. The
turbine produces power to help drive the compressor. The ideal turbine inlet temperature is

0.2857
2000) - 3533K

- (183)(W

The turbine power output is W, = mn,qc,(Ty — T)) = (0.662X0.87X1.00X353.3 ~ 183) = 98.1 kW.
The cycle COP is now calculated to be

P (k—1)/k
el

P

COP = 5— - Q963D _ 5

Air enters the compressor of a gas refrigeration cycle at —10°C and is compressed from 200
kPa to 800 kPa. The high-pressure air is then cooled to 0°C by transferring energy to the
surroundings and then to — 30 °C with an internal heat exchanger before it enters the turbine.
Calculate the minimum possible temperature of the air leaving the turbine, the coefficient of
performance, and the mass flux for 8 tons of refrigeration. Assume ideal components.

Refer to Fig. 9-23 for designation of states. The temperature at the compressor outlet is

P (k—V/k 0.2857
T, = 73(7%) - (283)(%) - 4205K

The minimum temperaturc at the turbine outlet follows from an isentropic process:

(k- Dk
) =163.5K

200 )0.2857

T, = T,,(—‘ = (2“3)(§0‘6

Fe
The coefficient of performance is calculated as follows:
gin = ¢,(T, — T)) = (1.00)(243 — 163.5) = 79.5kl /kg
Weomp = Cp(Ty — T3) = (1.00)(420.5 — 283) = 137.5 kI /kg
Wi = C,(Tg — Ty) = (1.00)(243 ~ 163.5) = 79.5kJ /kg

Gin 79.5

- COP = wom 1375 -793

=137

We find the mass flux as follows:

0. = rig,, (8)(3.52) = (1)(79.5) i = 0.354 kg /s



