A Poincaré-Hopf type formula for a pair of vector fields

Xu Chen *

Abstract

We extend the reslut about Poincaré-Hopf type formula for the difference of the Chern character numbers (cf.[3]) to the non-isolated singularities, and establish a Poincaré-Hopf type formula for a pair of vector field with the function $h^{T_{\mathbb{C}}M}(\cdot,\cdot)$ has non-isolated zero points over a closed, oriented smooth manifold of dimension 2n.

Keyword Chern character; Signature \mathbb{Z}_2 -graded; Poincaré-Hopf type formula; non-isolated zero points

1 Introduction

Let M be a closed, oriented smooth manifold of dimension 2n. Let $T_{\mathbb{C}}M = TM \otimes \mathbb{C}$ be the complexification of TM. Let g^{TM} be a the Riemannian metric on M, it induces canonically a complex symmetric bilinear form on $T_{\mathbb{C}}M$, denoted by $h^{T_{\mathbb{C}}M}(\text{cf.}[2])$. Let any $K \in \Gamma(T_{\mathbb{C}}M)$ be the section of $T_{\mathbb{C}}M$, then $K = \xi + \sqrt{-1}\eta$, where ξ and η be vector field, we define

$$h^{T_{\mathbb{C}}M}(K,K) = |\xi|^2_{q^{TM}} - |\eta|^2_{q^{TM}} + 2\sqrt{-1}\langle \xi, \eta \rangle_{q^{TM}}$$

Surely, $h^{T_{\mathbb{C}}M}(K,K)$ is a smooth function on M, we denoted the set of zero pionts of this function by Zero(K). The Euler number of manifold M is denoted by $\chi(M)$. In [5], Jacobowitz established the following result: if $Zero(K) = \emptyset$, then $\chi(M) = 0$.

In the end of [5], Jacobowitz asked a question like that: Is there a counting formula for $\chi(M)$ of Poincaré-Hopf type, when $Zero(K) \neq \emptyset$?

In [3], Huitao Feng, Weiping Li and Weiping Zhang establish a Poincaré-Hopf formula for the difference of the Chern character numbers of two vector bundles with Zero(K) is isolated, and use the formula they get a Poincaré-Hopf type formula to the set of Zero(K) consists of a finite number of points on a spin manifold M. This result is an answers of the question asked by Jacobowitz in [5].

In [2], we establish a Poincaré-Hopf type formula for a pair of sections of an oriented real vector bundle of rank 2n over a closed, oriented manifold of dimension 2n, with isolated zero points, which generalized the corresponding result in [3].

In this article, we will extend the Poincaré-Hopf type formula for the difference of the Chern character numbers of two complex vector bundles to Zero(K) is non-isolated.

Theorem 1.

$$\langle \operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-}), [M] \rangle = \sum_{X} \langle \frac{\operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-})}{e(\mathcal{N}_{X})}, [X] \rangle$$

^{*}Email: xiaorenwu08@163.com. ChongQing, China

By use of the Poincaré-Hopf type formula for the difference of the Chern character numbers of two complex vector bundles with Zero(K) is non-isolated, we establish a Poincaré-Hopf type formula for a pair of vector field with the function $h^{T_{\mathbb{C}}M}(\cdot,\cdot)$ has non-isolated zero points over a closed, oriented smooth manifold of dimension 2n.

Theorem 2. Let M be a closed, oriented smooth manifold of dimension 2n and $n \geq 2$. Let $T_{\mathbb{C}}M = TM \otimes \mathbb{C}$ be the complexification of TM. Let g^{TM} be a the Riemannian metric on M, it induces canonically a complex symmetric bilinear form on $T_{\mathbb{C}}M$, denoted by $h^{T_{\mathbb{C}}M}$. Let $K = \xi + \sqrt{-1}\eta$, where ξ and η are vector fields, $K \in \Gamma(T_{\mathbb{C}}M)$ be the section of $T_{\mathbb{C}}M$. Let X is the connected component of Zero(K), and \mathcal{N}_X be the normal bundle of the connected component X, then

$$\chi(M) = \frac{1}{(-2)^n} \sum_{X} \langle \frac{\operatorname{ch}(\Lambda_+(T^*M \otimes \mathbb{C})) - \operatorname{ch}(\Lambda_-(T^*M \otimes \mathbb{C}))}{e(\mathcal{N}_X)}, [X] \rangle$$

2 The difference of the Chern character numbers

Let E_+ , E_- be two complex vector bundles over M, and $E = E_+ \oplus E_-$ be the Z_2 -graded complex vector bundle over M. Let $\nabla^{E_+}, \nabla^{E_-}$ be the connection about E_+ and E_- , and $\nabla^E = \begin{pmatrix} \nabla^{E_+} & 0 \\ 0 & \nabla^{E_-} \end{pmatrix}$ be the Z_2 -graded connection on E.

$$v \in \Gamma(\operatorname{Hom}(E_+, E_-))$$

be a homomorphism between E_+ and E_- . Let

$$v^* \in \Gamma(\operatorname{Hom}(E_-, E_+))$$

be the adjoint of v with respect to the Hermitian metrics on E_{\pm} respectively. And

$$V = \begin{pmatrix} 0 & v^* \\ v & 0 \end{pmatrix} \in \Gamma(\operatorname{Hom}(E, E))$$

Let Z(v) denote the set of the points at which v is noninvertible. We always assume that Z(v) is the compact submanifold of M, the connected components of Z(v) is denoted by X, and $Z(v) = \bigcup X$. Let U_X be the tubular neighborhood of the connected component X. Let \mathcal{N}_X be the normal bundle of the connected component X. By the tubular neighborhood theorem(cf.[7]), U_X is diffeomorphic to the total space of the normal bundle \mathcal{N}_X .

Lemma 1. The following identity holds,

$$\langle \operatorname{ch}(E_+) - \operatorname{ch}(E_-), [M] \rangle = \sum_X \langle \operatorname{ch}(E_+) - \operatorname{ch}(E_-), [U_X] \rangle$$

Proof.

$$\int_{M} (\operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-})) = \int_{M \setminus \bigcup U_{X}} (\operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-})) + \int_{\bigcup U_{X}} (\operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-}))$$

$$= \int_{M \setminus \bigcup U_{X}} (\operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-})) + \sum_{X} \int_{U_{X}} (\operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-}))$$

Because $\operatorname{ch} E = \operatorname{ch}(E_+) - \operatorname{ch}(E_-)$ is independent of the choice of the connection ∇^E , we need to construct a special connection on $E(\operatorname{cf.}[4])$. By

$$[\nabla^E, V] = \nabla^E \cdot V - V \cdot \nabla^E = \begin{pmatrix} 0 & \nabla^{E_+} v^* - v^* \nabla^{E_-} \\ \nabla^{E_-} v - v \nabla^{E_+} & 0 \end{pmatrix}$$

$$V[\nabla^{E}, V] = \begin{pmatrix} 0 & v^{*} \\ v & 0 \end{pmatrix} \begin{pmatrix} 0 & \nabla^{E_{+}} v^{*} - v^{*} \nabla^{E_{-}} \\ \nabla^{E_{-}} v - v \nabla^{E_{+}} & 0 \end{pmatrix}$$
$$= \begin{pmatrix} v^{*} (\nabla^{E_{-}} v - v \nabla^{E_{+}}) & 0 \\ 0 & v (\nabla^{E_{+}} v^{*} - v^{*} \nabla^{E_{-}}) \end{pmatrix}$$

then we can construct two connection on E.

$$\nabla_1^E = \begin{pmatrix} \nabla^{E_+} & 0 \\ 0 & \nabla^{E_-} \end{pmatrix} + \begin{pmatrix} v^*(\nabla^{E_-}v - v\nabla^{E_+}) & 0 \\ 0 & 0 \end{pmatrix},$$

$$\nabla_2^E = \begin{pmatrix} \nabla^{E_+} & 0 \\ 0 & \nabla^{E_-} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & v(\nabla^{E_+}v^* - v^*\nabla^{E_-}) \end{pmatrix}.$$

Here we only use ∇_1^E . Because v is invertible on $M \setminus Z(v)$, so we can choose $v^* = v^{-1}$ on $M \setminus Z(v)$. And use ∇_1^E to construct a new connection

$$\widetilde{\nabla}_1^E = \begin{pmatrix} \nabla^{E_+} & 0 \\ 0 & \nabla^{E_-} \end{pmatrix} + \begin{pmatrix} \rho v^{-1} (\nabla^{E_-} v - v \nabla^{E_+}) & 0 \\ 0 & 0 \end{pmatrix}$$

where ρ is a truncating function with $\rho(x) = 1, x \in M \setminus \bigcup U_X$ and $\rho(x) = 0, x \in X$. So on $M \setminus \bigcup U_X$,

$$\begin{split} \widetilde{\nabla}_1^E &= \left(\begin{array}{cc} v^{-1} \nabla^{E_-} v & 0 \\ 0 & \nabla^{E_-} \end{array} \right), \\ \widetilde{R}_1^E &= (\widetilde{\nabla}_1^E)^2 = \left(\begin{array}{cc} v^{-1} R^{E_-} v & 0 \\ 0 & R^{E_-} \end{array} \right). \end{split}$$

By the definition of Chern character form (cf.[8] or [1])

$$\operatorname{ch}(E,\widetilde{\nabla}_{1}^{E}) = \operatorname{tr}_{\mathbf{s}}\left[\exp\left(\frac{\sqrt{-1}}{2\pi}\widetilde{R}_{1}^{E}\right)\right] = \operatorname{tr}\left[\exp\left(\frac{\sqrt{-1}}{2\pi}v^{-1}R^{E_{-}}v\right)\right] - \operatorname{tr}\left[\exp\left(\frac{\sqrt{-1}}{2\pi}R^{E_{-}}\right)\right]$$

then

$$\int_{M\setminus \bigcup U_X} (\operatorname{ch}(E_+) - \operatorname{ch}(E_-)) = \int_{M\setminus \bigcup U_X} \operatorname{ch}(E, \widetilde{\nabla}_1^E) = 0.$$

So

$$\int_{M} (\operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-})) = \sum_{X} \int_{U_{X}} (\operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-})).$$

Lemma 2. The following identity holds,

$$\langle \operatorname{ch}(E_+) - \operatorname{ch}(E_-), [U_X] \rangle = \langle \frac{\operatorname{ch}(E_+) - \operatorname{ch}(E_-)}{e(\mathcal{N}_X)}, [X] \rangle$$

Proof. Let \mathcal{N}_X be the normal bundle over X, consider the maps $\pi : \mathcal{N}_X \to X$ and $i : X \to \mathcal{N}_X$ where π is the bundle projection and i denotes inclusion as the zero section. Let $\pi_!$ be the integration over the fibre, and $i_!$ be the Thom isomorphism of $\mathcal{N}_X(\text{cf.}[6],\text{chapter III.}\S12.)$. By assumption X is compact, then we know(cf.[6],chapter III. lemma 12.2.)

$$i^*i_!(u) = e(\mathcal{N}_X) \cdot u$$

for all $u \in H^*(X) = H^*_{cpt}(X)$, where $e(\mathcal{N}_X)$ is the Euler class of \mathcal{N}_X . If $u = \pi_![(\operatorname{ch}(E_+) - \operatorname{ch}(E_-))|_{\mathcal{N}_X}]$, then

$$i^*i_!(\pi_![(\operatorname{ch}(E_+) - \operatorname{ch}(E_-)) \mid_{\mathcal{N}_X}]) = e(\mathcal{N}_X) \cdot \pi_![(\operatorname{ch}(E_+) - \operatorname{ch}(E_-)) \mid_{\mathcal{N}_X}]$$

so

$$\pi_![(\operatorname{ch}(E_+) - \operatorname{ch}(E_-)) \mid_{\mathcal{N}_X}] = \frac{i^* i_!(\pi_![(\operatorname{ch}(E_+) - \operatorname{ch}(E_-)) \mid_{\mathcal{N}_X}])}{e(\mathcal{N}_X)},$$

because

$$i^*i_!(\pi_![(\operatorname{ch}(E_+) - \operatorname{ch}(E_-)) \mid_{\mathcal{N}_X}]) = i^*[\operatorname{ch}(E_+ - E_-) \mid_{\mathcal{N}_X}] = \operatorname{ch}i^*[(E_+ - E_-) \mid_{\mathcal{N}_X}] = \operatorname{ch}(E_+ - E_-) \mid_X.$$

So

$$\pi_{!}[(\operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-})) \mid_{\mathcal{N}_{X}}] = \frac{\operatorname{ch}(E_{+} - E_{-}) \mid_{X}}{e(\mathcal{N}_{X})} = \frac{(\operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-})) \mid_{X}}{e(\mathcal{N}_{X})},$$
$$\langle \pi_{!}[(\operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-})) \mid_{\mathcal{N}_{X}}], [X] \rangle = \langle \frac{\operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-})}{e(\mathcal{N}_{Y})}, [X] \rangle$$

then

$$\langle \operatorname{ch}(E_+) - \operatorname{ch}(E_-), [U_X] \rangle = \langle \operatorname{ch}(E_+) - \operatorname{ch}(E_-), [\mathcal{N}_X] \rangle = \langle \frac{\operatorname{ch}(E_+) - \operatorname{ch}(E_-)}{e(\mathcal{N}_X)}, [X] \rangle$$

3 The proof of Theorem 1.

By Lemma 1. and Lemma 2. we get the result in Theorem 1.,

$$\langle \operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-}), [M] \rangle = \sum_{X} \langle \frac{\operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-})}{e(\mathcal{N}_{X})}, [X] \rangle$$

Corollery 1 (Huitao Feng, Weiping Li and Weiping Zhang).

$$\langle \operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-}), [M] \rangle = (-1)^{n-1} \sum_{p} \operatorname{deg}(v_{p})$$

Proof. By Theorem 1., if X = p is the isolated zero points, then $\frac{\operatorname{ch}(E_+) - \operatorname{ch}(E_-)}{e(\mathcal{N}_p)} = \frac{0}{0}$. By Lemma 2.

$$\frac{\operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-})}{e(\mathcal{N}_{p})} = \langle \operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-}), [U_{p}] \rangle.$$

Let $\nabla_t^E = (1-t)\nabla^E + t\widetilde{\nabla}_1^E$, by transgression formula

$$\langle \operatorname{ch}(E_{+}) - \operatorname{ch}(E_{-}), [U_{p}] \rangle = -\frac{\sqrt{-1}}{2\pi} \int_{U_{p}} d \int_{0}^{1} \operatorname{tr}_{s} \left[\frac{d\nabla_{t}^{E}}{dt} \exp(\frac{\sqrt{-1}}{2\pi} R_{t}^{E}) \right] dt$$
$$= -\frac{\sqrt{-1}}{2\pi} \int_{\partial U_{p}} \int_{0}^{1} \operatorname{tr}_{s} \left[\frac{d\nabla_{t}^{E}}{dt} \exp(\frac{\sqrt{-1}}{2\pi} R_{t}^{E}) \right] dt$$

because we can choose $\nabla^E = \begin{pmatrix} d & 0 \\ 0 & d \end{pmatrix}$, then

$$\nabla_t^E = (1 - t) \left(\begin{array}{cc} d & 0 \\ 0 & d \end{array} \right) + t \left[\left(\begin{array}{cc} d & 0 \\ 0 & d \end{array} \right) + \left(\begin{array}{cc} v^{-1}(dv) & 0 \\ 0 & 0 \end{array} \right) \right]$$

SO

$$\frac{\sqrt{-1}}{2\pi} \int_{\partial U_p} \int_0^1 \operatorname{tr}_s \left[\frac{d\nabla_t^E}{dt} \exp(\frac{\sqrt{-1}}{2\pi} R_t^E) \right] dt$$

$$= \frac{\sqrt{-1}}{2\pi} \int_{\partial U_p} \int_0^1 \operatorname{tr} \left[v^{-1} (dv) \frac{1}{(n-1)!} \left(\frac{\sqrt{-1}}{2\pi} t (1-t) (v^{-1} (dv))^2 \right)^{n-1} \right] dt$$

$$= (\frac{\sqrt{-1}}{2\pi})^n \int_0^1 \frac{t^{n-1} (1-t)^{n-1}}{(n-1)!} dt \int_{\partial U_p} \operatorname{tr} \left((v^{-1} (dv))^{2n-1} \right)$$

$$= (\frac{\sqrt{-1}}{2\pi})^n \frac{(n-1)!}{(2n-1)!} \int_{\partial U_p} \operatorname{tr} \left((v^{-1} (dv))^{2n-1} \right)$$

Then we get

$$\langle \operatorname{ch}(E_+) - \operatorname{ch}(E_-), [U_p] \rangle = -\left(\frac{\sqrt{-1}}{2\pi}\right)^n \frac{(n-1)!}{(2n-1)!} \int_{\partial U_p} \operatorname{tr}\left((v^{-1}(dv))^{2n-1}\right) = (-1)^{n-1} \operatorname{deg}(v_p)$$

4 The proof of Theorem 2.

Let M be a closed, oriented smooth manifold of dimension 2n, E be a oriented real vector bundle on M with rank 2n. Let $E_{\mathbb{C}} = E \otimes \mathbb{C}$ denote the complexification of the vector bundle E. Let any $K \in \Gamma(E_{\mathbb{C}})$ be the section of $E_{\mathbb{C}}$, then $K = \xi + \sqrt{-1}\eta$, where ξ and η be smooth section of E. Let g^E be a Euclidian inner product on E, then it induces canonically a complex symmetric bilinear form $h^{E_{\mathbb{C}}}$ on $E_{\mathbb{C}}$, such that

$$h^{E_{\mathbb{C}}}(K, K) = |\xi|_{q^E}^2 - |\eta|_{q^E}^2 + 2\sqrt{-1}\langle \xi, \eta \rangle_{g^E}.$$

The zero points of the smooth function $h^{E_{\mathbb{C}}}(K,K)$ is denoted by Zero(K).

Let E^* be the dual bundle of E, set $\Lambda(E^* \otimes \mathbb{C})$ be the exterior algebra bundle with complex valued. For any $e \in \Gamma(E)$, Clifford element c(e) acting on $\Lambda(E^* \otimes \mathbb{C})$ is defined by $c(e) = e^* \wedge -i_e$, where e^* corresponds to e via g^E , $e^* \wedge$ and i_e are the standard notation for exterior and interior multiplications.

Let e_1, e_2, \dots, e_{2n} be the local orthonormal basis of E, set

$$\tau = (\sqrt{-1})^n c(e_1) c(e_2) \cdots c(e_{2n})$$

we known that $\tau^2 = 1$ and τ does not depend on the choice of the orthonormal basis. Then τ is a bundle homomorphism on $\Lambda(E^* \otimes \mathbb{C})$, it give the \mathbb{Z}_2 -grading on $\Lambda(E^* \otimes \mathbb{C})$,

$$\Lambda(E^* \otimes \mathbb{C}) = \Lambda_+(E^* \otimes \mathbb{C}) \oplus \Lambda_-(E^* \otimes \mathbb{C})$$

where $\Lambda_{\pm}(E^* \otimes \mathbb{C})$ is corresponds to the characteristic subbundle with characteristic value \pm of the operator τ . So $\Lambda(E^* \otimes \mathbb{C})$ is a super vector bundle. The \mathbb{Z}_2 -grading is called Signature \mathbb{Z}_2 -graded.

For any $e \in \Gamma(E)$, we have $c(e)\tau = -\tau c(e)$, so c(e) is a bundle homomorphism from $\Lambda_{\pm}(E^* \otimes \mathbb{C})$ to $\Lambda_{\mp}(E^* \otimes \mathbb{C})$. Then for any $\xi, \eta \in \Gamma(E)$, we can construct a bundle homomorphism

$$v_K = \tau c(\xi) + \sqrt{-1}c(\eta) : \Lambda_+(E^* \otimes \mathbb{C}) \to \Lambda_-(E^* \otimes \mathbb{C}).$$

Let v_K extend to an endomorphism of $\Lambda(E^* \otimes \mathbb{C})$ by acting as zero on $\Lambda_-(E^* \otimes \mathbb{C})$, with the notation unchanged. Let v_K^* be the adjoint of v_K with respect to the metrics on $\Lambda_{\pm}(E^* \otimes \mathbb{C})$ respectively. Set $V = v_K + v_K^*$. Then V is an odd endomorphism of $\Lambda(E^* \otimes \mathbb{C})$. We use $Z(v_K)$ to denoted the noninvertible points of v_K . V^2 is fiberwise positive over $M \setminus Z(v_K)$ (cf. [3]).

Lemma 3. Let M be a closed, oriented smooth manifold of dimension 2n,

- 1) If $n \geq 2$, then $Z(v_K) = Zero(K)$.
- 2) If n = 1, then $Z(v_K) = Zero(K) \setminus Z_+$ where $Z_+ = \{ p \in Zero(K) | \xi(p), \eta(p) \text{ form a oriented frame on } E_p \}$.

Proof. Please see [2] or [3].

We always assume that $Z(v_K)$ is the compact submanifold of M, the connected components of $Z(v_K)$ is denoted by X.

Lemma 4. The following identity holds,

$$\langle \operatorname{ch}(\Lambda_{+}(E^* \otimes \mathbb{C})) - \operatorname{ch}(\Lambda_{-}(E^* \otimes \mathbb{C})), [M] \rangle = (-2)^n \chi(E)$$

Proof. This is a well known result(cf.[6]), Please see [2] for a proof from differential geometry.

Corollery 2.

$$\langle \operatorname{ch}(\Lambda_+(T^*M\otimes\mathbb{C})) - \operatorname{ch}(\Lambda_-(T^*M\otimes\mathbb{C})), [M] \rangle = (-2)^n \chi(M)$$

Proof. By Lemma 4., if E = TM so we get the result.

Now we can give the proof of the Theorem 2. By Theorem 1. and Corollery 2., we have

$$(-2)^{n}\chi(M) = \langle \operatorname{ch}(\Lambda_{+}(T^{*}M \otimes \mathbb{C})) - \operatorname{ch}(\Lambda_{-}(T^{*}M \otimes \mathbb{C})), [M] \rangle$$
$$= \sum_{X} \langle \frac{\operatorname{ch}(\Lambda_{+}(T^{*}M \otimes \mathbb{C})) - \operatorname{ch}(\Lambda_{-}(T^{*}M \otimes \mathbb{C}))}{e(\mathcal{N}_{X})}, [X] \rangle$$

So

$$\chi(M) = \frac{1}{(-2)^n} \sum_{X} \langle \frac{\operatorname{ch}(\Lambda_+(T^*M \otimes \mathbb{C})) - \operatorname{ch}(\Lambda_-(T^*M \otimes \mathbb{C}))}{e(\mathcal{N}_X)}, [X] \rangle.$$

References

- [1] N. Berline, E. Getzler and M. Vergne, *Heat Kernels and Dirac Operators*. Germany: Springer-Verlag, 1992.
- [2] Xu Chen and Huitao Feng, A Poincaré-Hopf type formula for a pair of sections of a real vector bundle. Journal of Southwest University (Natural Science Edition), vol34(4):113-117, 2012. (in Chinese)
- [3] Huitao Feng, Weiping Li and Weiping Zhang, A Poincaré-Hopf type formula for Chern character numbers. Mathematische Zeitschrift, 269 (1-2): 401-410, 2011.
- [4] B.V.Fedosov, Index Theorems in *Partial differential equations VIII*, Encyclopaedia of Mathematical Sciences vol65, Springer, 1997.
- [5] H. Jacobowitz, Non-vanishing complex vector fields and the Euler characteristic. Proc. Amer. Math. Soc., 137: 3163-3165, 2009.
- [6] H.B.Lawson and M.-L.Michelsohn, Spin Geometry. Princeton University Press, 1989.
- [7] J.W.Milnor and J.D.Stasheff, *Characteristic Classes*. Princeton University Press, 1974.
- [8] Weiping Zhang, Lectures on Chern-Weil theory and Witten deformations. World Scientific Publishing Co Pte Ltd, 2001.