
Chapter 2

LINEAR PROGRAMMING
PROBLEMS

2.1 Introduction

Linear Programming is the branch of applied mathematics that deals with solv-

ing optimization problems of a particular functional form. A linear programming

problem consists of a linear objective function (of decision variables) which is to

be minimized or maximized, subject to a certain set of linear constraints on de-

cision variables. The constraints are usually in the form of linear inequalities of

decision variables used in the objective function. Linear programming is a rel-

atively recent mathematical discipline. The Russian mathematician Leonid V.

Kantorovich formulated the first problem in linear programming in 1939. This

was what is now known as the transportation problem. The English economist

George Stigler (1945) described a problem of determining an optimal diet as a lin-

ear programming problem. The simplex algorithm was developed by the American

mathematician George B. Dantzig in 1947, and the theory of duality was developed

by John von Neumann the same year i.e. in 1947. It was also Dantzig who coined

the name ”‘Linear Programming”’ to this class of problems. In 1972, Klee and

Minty showed that the simplex method has exponential computational complex-
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ity. In 1979, Khachiyan showed that linear programming problems can be solved

by polynomial time algorithms. Karmarkar, in 1984, described his interior-point

algorithm and claimed that it is a polynomial-time algorithm and works better

than Khachiyan’s algorithm.

What is common among all the algorithms mentioned above is that they are

all iterative and therefore sequential. That is, every subsequent solution depends

on a preceding solution. On one side, this introduces uniqueness in each of these

algorithms. On the other hand, however, the same feature makes these algorithms

rather restrictive. This chapter aims at developing a method that is neither se-

quential not restricted to the surface of the polytope representing the set of feasible

solutions of the linear programming problem. This development is motivated by

the need for a speedy algorithm, since each of the classical techniques often requires

a vast amount of calculations [15].
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2.2 Linear Programming Problems in Canonical

Form

Linear programming problems can be expressed in the canonical form. The canon-

ical form of a linear programming problem is

Maximize C ′X (2.1)

subject to AX ≤ b, (2.2)

and X ≥ 0. (2.3)

Where C and X ∈ <n, b ∈ <m and A ∈ <m×n. Here (2.1) is called the

objective function, (2.2) is a system of linear inequation constraints and (2.3) is a

non-negativity constraint.

2.2.1 Features of linear programming problems

In this section we state some standard definitions and some of the important

characteristics of a solution to a linear programming problem formulated in the

canonical form.

• Feasible solution set. A set of values of the decision variables x1, x2, · · · , xn

which satisfy all the constraints and also the non-negativity condition is called

the feasible solution set of the linear programming problem.

• Feasible solution. Each element of the feasible solution set is called a

feasible solution. A feasible solution is a solution which satisfies all the con-

straints and also the non-negativity conditions of the linear programming

problem.
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• Optimal solution. An optimal solution X∗ is a feasible solution subject to

C ′X∗ = max {C ′X : AX ≤ b,X ≥ 0} . (2.4)

• A (LP ) is feasible if there exists at least one feasible solution. Otherwise,

it is said to be infeasible .

• Convex set. A set S is said to be convex set if, given any two points in

the set, the line joining those two points is completely contained in the set.

Mathematically, S is a convex set if for any two vectors X(1) and X(2) in S,

the vector X = λX(1) +(1−λ)X(2) is also in S for any real number λ ∈ [0, 1]

[55].

Figure 1 and 2 represent convex set, whereas Figure 3 is not a convex set.

Figure 1 Figure 2 Figure 3

• Extreme point. An extreme point of the convex set is a feasible point that

can not lie on a line segment joining any two distinct feasible points in the

set. Actually, extreme points are the same as corner points [61].

• The set of all feasible solutions of LPP is a convex set.

• The optimal solution of LPP can always be associated with a feasible extreme

point of feasible solution set.
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• Linearity of the objective function results in convexity of the objective func-

tion.

Linear Programming Problems are solved by some methods like the graphi-

cal method, the systematic trial and error method (enumeration method) and the

simplex method.

The graphical method is not applicable in more than two dimensional space.

The enumerate method is a native approach to solve a linear programming (which

has an optimal solution) would be to generate all possible extreme points and

determine which one of them gives the best objective function value. But, the

simplex method, Which is a well-known and widely used method for solving linear

programming problem, does this in a more efficient manner by examining only a

fraction of the total number of extreme points of feasible solution set.

2.2.2 Simplex method

The general steps of the simplex method are as follows.

1. Start with an initial extreme point of the feasible solution set.

2. Improve the initial solution if possible by finding another extreme point of

feasible solution set with a better objective function value. At this step the

simplex method implicitly eliminates from consideration all those extreme

points of the feasible solution set whose objective function values are worse

than the present one. This makes the procedure more efficient than the

enumeration method.

3. Continue to find better extreme point of feasible solution set, improving the

objective function value at every step.
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4. When a particular extreme point of feasible solution set cannot be improved

further, it becomes an optimal solution and the simplex method terminates.

2.2.3 Simplex method in tableau form

The various steps of the simplex method can be carried out in a more compact

manner by using a tableau form to represent the constraints and the objective

function. In addition by developing some simple formulas, the various calculations

can be made mechanical [55]. In this section the simplex method is presented by

illustrating the steps and using a tableau form for an example in canonical form.

We consider the following linear programming problem.

maximize z = 6x1 + 8x2

subject to
5x1 + 10x2 ≤ 60,
4x1 + 4x2 ≤ 40,
x1 , x2 ≥ 0.
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The standard form of the above LP problem is shown below.

maximize z = 6x1 + 8x2 + 0s1 + 0s2

subject to
5x1 + 10x2 + s1 ≤ 60,
4x1 + 4x2 + s2 ≤ 40,
x1 , x2 , s1 , s2 ≥ 0,

where s1 and s2 are slack variables, which are introduced to balance the constraints.

• Basic variable. A variable is said to be basic variable if it has unit coeffi-

cient in one of the constraints and zero coefficient in the remaining constraints

[53].

If all the constraints are “≤”, then the standard form is to be treated as the

canonical form. The canonical form is generally used to prepare the initial simplex

tableau [53]. The initial simplex table of the above problem is shown in Table 2.1.

Table 2.1: Initial Simplex tableau

cj 6 8 0 0
CBi Basic x1 x2 s1 s2 Solution Ratio

Variable

0 s1 5 10 1 0 60 60/10 = 6∗∗

0 s2 4 4 0 1 40 40/4=10

zj 0 0 0 0 0

cj − zj 6 8∗ 0 0

∗ key column ∗∗ key row

Here, cj is the coefficient of the jth term of the objective function and CBi is the

coefficient of the ith basic variable. The value at the intersection of the key column

and the key row is called key element. The value of zj is computed using the

following formula.

zj =
2∑
i=1

(CBi)(aij)
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Where aij is the coefficient for the ith row and jth column of the table. cj−zj is the

relative contribution (profit). In this term, cj is the objective function coefficient

for the jth variable. The value of zj against the solution column is the value of the

objective function and in this iteration, it is zero.

• Optimality condition: For maximization problem, if all cj − zj are less

than or equal to zero, then optimality is reached; otherwise select the variable

with the maximum cj − zj value as the entering variable (For minimization

problem, if all cj − zj are greater than or equal to zero, the optimality is

reached; otherwise select the value with the most negative value as the en-

tering variable).

In Table 2.1, all the values for cj−zj are either equal to or greater than zero.

Hence, the solution can be improved further. cj − zj is the maximum for the

variable x2. So, x2 enter the basis. this is known as intering variable, and

the corresponding column is called key column.

• Feasibility condition: To maintain the feasibility of the solution in each

iteration, the following steps need to be followed:

1. In each row, find the ratio between the solution column value and the

value in the key column.

2. Then, select the variable from the present set of basic variables with

respect to the minimum ratio (break tie randomly). Such variable is

the leaving variable and the corresponding row is called the key row.

The value at the intersection of the key row and the key column is

called key element or pivot element.
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In Table 2.1, the leaving variable is s1 and the row 1 is the key row. Key element

is 10. The next iteration is shown in Table 2.2. In this table, the basic variable s1

of the previous table is replaced by x2. The formula to compute the new values of

table 2.2 is as shown below:

Table 2.2: Iteration 1

cj 6 8 0 0
CBi Basic x1 x2 s1 s2 Solution Ratio

Variable
8 x2 1/2 1 1/10 0 6 6/(1/2)=12

0 s2 2 0 -2/5 1 16 16/2=8∗∗

zj 4 8 4/5 0 48

cj − zj 2∗ 0 -4/5 0

Here

New value = Old value− Key column value×Key row value

Key value

As a sample calculation, the computation of the new value of row and column

x1 is shown below.

New value = 4− 4× 5

10
= 4− 20

10
= 4− 2 = 2

Computation of te cell values of different tables using this formula is a boring

process. So, a different procedure can be used as explained below.

1. Key row:

New Key row value = Current Key row value÷Key element value

2. All other rows:

New row = Current row − (Its Key column value)× (New Key row)
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These computations are applied to the Table 2.1. in the following manner:

1. New Key row (x2 row) = Current Key row (s1 row)
Key element(10)

2. New s2 row = Current s2 row - (4) × New key row (x2 row)

The results are shown in Table 2.2. The solution in the Table 2.2 is not optimal.

The criterion row value for the variable x1 is the maximum positive value. Hence,

the variable x1 is selected as entering variable and after computing the ratio, s2 is

selected as leaving variable. The next iteration is shown in Table 2.3.

Table 2.3: Iteration 2

cj 6 8 0 0
CBi Basic x1 x2 s1 s2 Solution Ratio

Variable
8 x2 0 1 1/5 -1/4 2

6 x1 1 0 -1/5 1/2 8

zj 6 8 2/5 1 64

cj − zj 0 0 -2/5 -1

In Table 2.3, all the values for cj − zj are either 0 (corresponding to basic vari-

ables) or negative (corresponding to nonbasic variables). Hence, the optimality is

reached. The corresponding optimal solution is as follows:

x1 = 8 and x2 = 2

and the optimal objective function value, z is 64.
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2.2.4 Revised simplex method

The simplex method discussed in section 2.2 performs calculation on the entire

tableau during each iteration. However, updating all the elements in tableau dur-

ing a basis change is not really necessary for using the simplex method. The only

information needed in moving from one tableau (basic feasible solution) to another

tableau is as follows:

1. The relative profit coefficients (cj − zj row).

2. The column corresponding to the entering variable (Key column).

3. The current basic variables and their values (Solution column).

The information contained in other columns of the tableau plays no role in the

simplex process. Hence the solution of large linear programming problems on a

digital computer will become very inefficient and costly if the simplex method were

to be used in its full tableau form. However, revised simplex method is an improve-

ment over simplex method. The revised simplex method is computationally more

efficient and accurate. Its benefit is clearly comprehended in case of large LP

problems. The revised simplex method uses exactly the same steps as those in

simplex method but at each iteration the entire tableau is never calculated. The

relevant information it needs to move from one basic feasible solution to another

is directly generated from the original equations. The steps of the revised simplex

method (using matrix manipulations) can be summarized as follows:

Step 1. Obtain the initial feasible basis B. Determine the corresponding feasible

solution xB = B−1b.
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Step 2. Obtain the corresponding simplex multipliers π = cBB
−1. Check the

optimality of the current basic feasible solution (BFS). If the current basis

is optimal, then STOP.

Step 3. If the current BFS is not optimal, identify the entering variable xj (that

is, cj − zj = cj −
∑m

i=1 πjaij = cj − πPj < 0).

Step 4. Obtain the column P̄j = B−1Pj and perform the minimum ratio test to

determine the leaving variable xl.

Step 5. Update the basis B (or B−1) and go to Step 2.

For more information and details, refer to [55].
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2.3 Duality Theory and Its Applications

From both the theoretical and practical point of view, the theory of duality is one

of the most important and interesting concepts in linear programming. The basic

idea behind the duality theory is that every linear programming problem has an

associated linear programming called its dual such that a solution to the original

linear program also gives a solution to its dual. Thus, whenever a linear program

is solved by the simplex method, we are actually getting solutions for two linear

programming problems. The Dual can be considered as the “inverse” of the Primal

in every respect. The column coefficients in the Primal constrains become the

row co-efficients in the Dual constraints. The coefficients in the Primal objective

function become the right hand side constraints in the Dual constraints. The

column of constants on the right hand side of the Primal constraints becomes the

row of coefficients of the dual objective function. The direction of the inequalities

are reversed. If the primal objective function is a “Maximization” function then the

dual objective function is a “Minimization” function and vice-versa. The concept of

duality is very much in useful to obtain additional information about the variation

in the optimal solution when certain changes are effected in the constraint co-

efficient, resource availabilities and objective function co-efficients. This is termed

as “post optimality” or “sensitivity analysis”.
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The concept of a dual is introduced by the following programme.

Example 2.1

Maximze Z = x1 + 2x2 - 3x3 + 4x4

subject to
x1 + 2x2 + 2x3 - 3x4 ≤ 25,
2x1 + x2 - 3x3 + 2x4 ≤ 15,
x1 , x2 , x3 , x4 ≥ 0.

The above linear programme has two constraints and four variables. The dual

of this problem is written as

Minimize W = 25y1 + 15y2

subject to
y1 + 2y2 ≥ 1,
2y1 + y2 ≥ 2,
2y1 - 3y2 ≥ -3,
−3y1 + 2y2 ≥ 4,
y1 , y2 ≥ 0.

y1 and y2 are called the dual variables. The original problem is called the primal

problem. Comparing the primal and the dual problems, we observe the following

relationships:

1. The objective function coefficients of the primal objective function have be-

come the right-hand-side constants of dual. Similarly, the right-hand-side

constants of primal problem have become the objective function coefficients

of the dual.

2. The inequalities have been reversed in the constraints.

3. The objective is changed from maximization in primal to minimization in

dual.
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4. Each column in the primal corresponds to a constraint (row) in the dual.

Thus, the number of dual constraints is equal to the number of primal vari-

ables.

5. Each constraint(row) in the primal corresponds to a column in the dual.

Hence, there is one dual variable for every primal constraint.

6. The dual of the dual is the primal problem.

In both of the primal and the dual problems, the variables are nonnegative and

the constraints are inequalities. Such problems are called symmetric dual linear

programmes.

Definition. A linear programme is said to be in symmetric form, if all the

variables are restricted to be nonnegative, and all the constraints are inequalities

(in a maximization problem the inequalities must be in “less than or equal to”

form and in a minimization problem they must be in “greater than or equal to”).

In matrix notation the symmetric dual linear programmes are:

Primal:

Maximize Z = C ′X
subject to

AX ≤ b,
X ≥ 0.

Dual:

Minimize W = b′Y
subject to

A′Y ≥ C,
Y ≥ 0.
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Where A is an m×n matrix, b is an m× 1 column vector, C is a n× 1 column

vector, X is an n× 1 column vector and Y is an m× 1 column vector.

Te following table describes more general relations between the primal and dual

that can be easily derived from the symmetric form definition. They relate the

sense of constraint i in the primal with the sign restriction for yi in the dual, and

sign restriction of xj in the primal with the sense of constraint j in the dual. Note

that when these alternative definitions are allowed there are many ways to write

the primal and dual problems; however, they are all equivalent.

Modifications in the primal-dual formulations

Primal model Dual model
Maximization Minimization

Constraint i is ≤ yi ≥ 0
Constraint i is = yi is unrestricted
Constraint i is ≥ yi ≤ 0

xj ≥ 0 Constraint j is ≥
xj is unrestricted Constraint j is =

xj ≤ 0 Constraint j is ≤

2.3.1 Economic interpretation of the dual problem

Primal:

Consider a manufacturer who makes n products out of m resources. To make

one unit of product j it takes aij units of resource i. The manufacturer has obtained

bi units of resources i in hand, and the unit price of product j is cj. Therefore, the

primal problem leads the manufacturer to find an optimal production plan that

maximizes the sales with available resources.
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Dual:

Lets assume the manufacturer gets the resources from a supplier. The man-

ufacturer wants to negotiate the unit purchasing price yi for resource i with the

supplier. Therefore, the manufacturers objective is to minimize the total purchas-

ing price b′Y in obtaining the resources bi. Since the market price cj and the

“product-resource” conversion ratio aij are open information on market, the man-

ufacturer knows that, at least, a “smart” supplier would like to charge him as much

as possible, so that

a1jy1 + a2jy2 + · · ·+ amjym ≥ cj.

In this way, the dual linear program leads the manufacturer to come up with

a least-cost plan in which the purchasing prices are acceptable to the “smart”

supplier.

An example is giving to get more understanding on above economic interpre-

tation. Let n = 3 (products are Desk, Table and Chair) and m = 3 (resources

are Lumber, Finishing hours(needed time) and Carpentry hours). The amount of

each resource which is needed to make one unit of certain type of furniture is as

follows:

XXXXXXXXXXXXResource
Product

Desk Table Chair

Lumber 4 lft 6 lft 1 lft
Finishing hours 4 hrs 2 hrs 1.5 hrs
Carpentry hours 2 hrs 1.5 hrs 0.5 hrs

48 lft of lumber, 20 hours of finishing hours and 4 carpentry hours are available.

A desk sells for $60, a table for $30 and a chair for $20. How many of each type

furniture should manufacturer produce?

Let x1, x2, and x3 respectively denote the number of desks, tables and chairs
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produced. This problem is solved with the following LP:

Maximize Z = 60x1 + 30x2 + 20x3

subject to
8x1 + 6x2 + x3 ≤ 48,
4x1 + 2x2 + 1.5x3 ≤ 20,
2x1 + 1.5x2 + 0.5x3 ≤ 8,
x1 , x2 , x3 ≥ 0.

Suppose that an investor wants to buy the resources. What are the fair prices,

y1, y2, y3, that the investor should pay for a lft of lumber, one hour of finishing

and one hour of carpentry?

The investor wants to minimize buying cost. Then, his objective can be written as

min W = 48y1 + 20y2 + 8y3

In exchange for the resources that could make one desk, the investor is offering

(8y1 + 4y2 + 3y3) dollars. This amount should be larger than what manufacturer

could make out of manufacturing one desk ($60). Therefore,

8y1 + 4y2 + 2y3 ≥ 60

Similarly, by considering the “fair” amounts that the investor should pay for the

combination of resources that are required to make one table and one chair, we

conclude

6y1 + 2y2 + 1.5y3 ≥ 30

y1 + 1.5y2 + 0.5y3 ≥ 20
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Consequently, the investor should pay the prices y1, y2, y3, solution to the

following LP:

Minimize W = 48y1 + 20y2 + 8y3

subject to
8y1 + 4y2 + 2y3 ≥ 60,
6y1 + 2y2 + 1.5y3 ≥ 30,
y1 + 1.5y2 + 0.5y3 ≥ 20,
y1 , y2 , y3 ≥ 0.

The above LP is the dual to the manufacturers LP. The dual variables are often

referred to as shadow prices, the fair market prices, or the dual prices.

Now, we shall turn our attention to some of the duality theorems that gives

important relationships between the primal and the dual solution.

Theorem 2.1: Weak Duality Theorem

Consider the symmetric primal-dual linear programmes,Max Z = C ′X, s. t. AX ≤

b, X ≥ 0, and Min W = b′Y, s. t. A′X ≥ C, Y ≥ 0. The value of the objective

function of the minimum problem (dual) for any feasible solution is always greater

than or equal to that of the maximum problem (primal).

From the weak duality theorem we can infer the following important results:

Corollary 2.1 The value of the objective function of the maximum (primal)

problem for any (primal) feasible solution is a lower bound to the minimum

value of the dual objective.

Corollary 2.2 Similarly the objective function value of the minimum problem

(dual) for any (dual) feasible solution is an upper bound to the maximum

value of the primal objective.
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Corollary 2.3 If the primal problem is feasible and its objective is unbounded

(i.e., max Z → +∞), then the dual problem is infeasible.

Corollary 2.4 Similarly, if the dual problem is feasible, and is unbounded (i.e.,minW →

−∞), then the primal problem is infeasible.

Theorem 2.2: Optimality Criterion Theorem

If there exist feasible solutions X0 and Y 0 for the symmetric dual linear pra-

grammes such that the corresponding values of their objective functions are equal,

then these feasible solution are in fact optimal solutions to their respective prob-

lems.

Theorem 2.3: Main Duality Theorem

If both the primal and dual problems are feasible, then they both have optimal

solutions such their optimal values of the objective functions are equal.

We will use the properties of duality theory in proposed search algorithm, see

section 5.
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2.4 Computational Problems in Simplex Method

There are a number of computational problems that may arise during the actual

application of the simplex method for solving a linear programming problem. In

this section we discuss some complication that may occur.

1. Ties in the selection of the nonbasic variable:

In a maximization problem, the nonbasic variable with the largest positive

value in the cj−zj row is chosen. In case there exists more than one variable

with the same largest positive value in the cj− zj row, then we have a tie for

selecting the nonbasic variable.

2. Ties in the minimum ratio rule and degeneracy:

While applying the minimum ratio rule it is possible for two or more con-

straints to give the same least ratio value. This result in a tie for selecting

which basic variable should leave the basis. This complication causes degen-

eracy in basic feasible solution.

Degenerate basic feasible solution: A basic feasible solution is said to

be degenerate basic feasible solution if at least one basic variable in the so-

lution equals zero.

3. Cycling:

At a degenerate basic solution, there is a risk of getting trapped in a cycle.

When there exist degeneracy in feasible solution we can’t say that simplex

method will be terminated in a finite number of iterations, because this phe-

nomenon causes that we obtain a new basic feasible solution in the next

iteration which has no effect on the objective function value. It is then the-
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oretically possible to select a sequence of admissible bases that is repeatedly

selected without over satisfying the optimality criteria and, hence, never

reaches a optimal solution. A number of anticycling procedure have been

developed [17, 14, 66, 49, 10]. These anticycling method are not used in

practice partly because they would slow the computer program down and

partly because of the difficulty of recognizing a true zero numerically [7].

2.4.1 Complexity of the simplex method

The simplex method is not a good computational algorithm. It may lead to an

exponential number of iteration as the example which is provided by Klee and

Minty (1972). They showed that the simplex method as formulated by Dantzig

visit all 2n vertices before arriving at the optimal vertex, this shows that the worst

case complexity of the simplex algorithm is exponential time. Also, the number

of arithmetic operations in the algorithm grows exponentially with the number of

variables. The first polynomial time (interior point) algorithms, Ellipsoid method,

for linear programming were given by Khachian (1979), then Karmarkar (1984)

suggested the second polynomial time algorithm. Unlike the ellipsoid method

Karmarkar’s method solves the very larg linear programming problems faster than

does the simplex method [58]. Both the ellipsoid method and the karmarkar’s

method are mathematically iterative and they are not better than simplex algo-

rithm certainly for small linear programming problems and possibly for reasonably

large linear programming problems [58].

According this restrictions of simplex algorithm and interior point methods pro-

vided by Khachian (1979) and Karmarkar (1984) and their variants, we need a

new algorithm. We are going to give a stochastic search algorithm to obtain a

near-optimal solution. Stochastic search algorithm are useful for applications
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where stable and acceptable (i. e. near-optimal) answers are desired quickly [27].

In general, Stochastic search algorithms do not require knowledge of a derivative

(as in gradient search methods) and perform best with highly nonlinear or highly

combinatorial problems [12].
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2.5 Proposed Stochastic Search Algorithm

Consider the linear programming problem in the canonical form:

P: max z = c1x1 + c2x2 + . . . + cnxn
subject to

a11x1 + a12x2 + . . . + a1nxn ≤ b1,
a21x1 + a22x2 + . . . + a2nxn ≤ b2,

...
...

...
...

...
am1x1 + am2x2 + . . . + amnxn ≤ bm,
x1 , x2 , . . . , xn ≥ 0.

Consider the decision variable xj for some j = 1, 2, . . . , n. If all other decision

variables are set to zero, then xj must satisfy aijxj ≤ bi, i = 1, 2, . . . ,m. To satisfy

all of this condition for all i, we must have

0 ≤ xj ≤ min
{i: aij>0}

{
bi
aij

}
, 1 ≤ j ≤ n.

The bounding box B =
{
x| 0 ≤ xj ≤ min{i: aij>0}

{
bi
aij

}
, 1 ≤ j ≤ n

}
, B ⊂ En,

contains the simplex set of feasible solutions of P . All feasible solutions of P are

elements of B, though the converse may not hold. In this case all dual decision

variables have zero lower bound, in fact, the positive quadrant contains the simplex

representing the set of feasible solution of dual problem. We call it DB.

Now, generate a random element each from B and DB using a specified dis-

tribution, pr, on B and DB. If this element is primal feasible, then compute the

primal objective function at this solution. Ignore all infeasible elements. Compute

the largest value of the primal objective functions for these primal feasible solu-

tions. The same process is applied to the dual problem by computing the smallest

value of dual objective functions for the generated feasible dual solutions. In this

process, a feasible primal solution is declared inadmissible if the value of the primal

objective function does not exceed the highest value obtained till then. A feasible

38



dual solution is declared inadmissible if the value of the dual objective function is

not smaller than the smallest value obtained till then. We keep track of the num-

ber of generated elements, the number of feasible solutions among these and the

number of admissible points among the latter, in both problems. The procedure

can be terminated after generating a specified number of

1. random elements

2. feasible solutions, or

3. admissible solutions.

The best solution at termination of the procedure is declared as the near-

optimal solution. A second possible termination rule is obtained by considering the

gap between near optimal primal and near optimal dual solutions. The procedure

is terminated when this gap (or interval) is sufficiently small.

2.5.1 Multiple starts

The simulation approach obtains a near-optimal solution for every starting value.

Near-optimality of the final solution does not depend on the initial value and hence

the rate of convergence can not be determined. Therefore, it may be convenient

to begin with more than one initial value, generating an independent sequence of

solutions for every initial value. This will give us several end-points and the best

of these will be better than the solution obtained from any one of them.

The maximum of the primal objective function and the minimum of the dual

objective function obtained through the above procedure are both near-optimal.

This method is not iterative in the sense that consecutive solutions may not im-

prove the objective function. Also, it is simple from the mathematical point of

view and there are no complicated computations.
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Algorithmically, the method is described as follows.

• Initialization in primal problem (PP):

Set i = 1, zn−o = 0, xn−o = 0, io = 100 (number of feasible points).

1. Generation in PP:

Step 1.1. Generate xi ∈ B using uniform distribution on the bounding

box B.

Step 1. 2. Test feasibility of xi.

Step 1.3. If xi is feasible, go to step 1.4. Otherwise, go to step 1.1.

2. Computation in PP:

Step 1.4. Compute zi = c′xi, i = 1, 2, · · · , io.

Step 1.5. zn−o = maxi(zi), i = 1, 2, · · · , io and xn−o = associated xi

with zn−o.

3. Termination in PP:

Step 1.6. Keep the values of xn−o, zn−o and stop.

• Initialization in dual problem (DP):

Set j = 1, gn−o is infinity, y
n−o is infinity, jo = 100 (number of feasible

points).

1. Generation in DP:

Step 2.1. Generate y
j
∈ DB using uniform distribution on the bound-

ing box DB.

Step 2.2. Test feasibility of y
j
.

Step 2.3. If y
j

is feasible, go to step 2.4. Otherwise, go to step 2.1.
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2. Computation in DP:

Step 2.4. Compute gj = b′y
j
, j = 1, 2, · · · , jo.

Step 2.5. gn−o = minj(gj), j = 1, 2, · · · , jo and gn−o = associated y
j

with gn−o.

3. Termination in DP:

Step 2.6. Keep the values of y
n−o, gn−o and stop.

• Termination in restarting: if (gn−o − zn−o) ≤ ε, small positive value, or

the number of restarting get equal to its initial value, then output the values

of zn−o, xn−o, gn−o, yn−o and stop restart.

2.5.2 Choice of probability distribution (pr)

For the probability distribution, we have two choices.

1. Uniform distribution.

In this case, every element is generated from B and DB with equal prob-

ability of selection. A significant limitation of uniform distribution is the

progressively increasing rejection rate (rejection can occur for one of the two

reasons: infeasibility and inadmissibility). This happens because points are

generated with equal probability and rejection depends on the position of

the current solution.

2. Non-Uniform distributions.

Due to the limitation of Uniform distribution, we propose to use a non-

uniform distribution. As a pilot study, we use the normal distribution with

mean µj = upper bound of xj, j = 1, · · · , n in PP and νi = lower bound of
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yi, i = 1, · · · ,m in DP and unit variances. The results of pilot study show

that the normal distribution is more suitable than uniform distribution.

A major limitation of the normal distribution is that half of the generated

points are expected to exceed the mean. This implies a rejection rate ex-

ceeding 1/2. This can be overcome by modifying the mean as follows.

We take a fraction f ∈ (0, 1) and use the mean

f · µj, 1 ≤ j ≤ n or f · νi, 1 ≤ i ≤ m.

We tried some fractions to identify a good value for the fraction.

Another feature of the normal distribution is its unbounded support. Since

the set of feasible primal solutions is bounded, we considered a distribution on

a bounded support. In particular, we tried the multivariate Beta distribution,

with the marginal distribution of xj on
[
0, min{i: aij>0}

{
bi
aij

: 1 ≤ j ≤ n
}]

with parameters α, β > 0 so that α > β or α = k · β with k > 1.

The gamma distribution is reasonable for the dual problem because its fea-

sible solution set is unbounded.

For a problem having integer optimal solution, a discrete probability distri-

bution is found to be very efficient. This is more so if the coordinates of

bounding points are small multiples of optimal xj or y
i
.
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2.6 Results of Simulation Studies

We consider some examples and implement the proposed simulation algorithm

under some non-uniform distributions, namely normal, beta, Weibull and gamma,

with different parameters and two discrete distributions, namely geometric and

Poisson.

The following symbols are used in the tables.

• Zn−o and gn−o are the primal and dual near-optimal objective functions,respectively.

• gap is the length of interval between primal and dual near-optimal values

(gap).

• CPU time/Sec. is the average of running time of stochastic algorithm in

terms of second per restart.

1. Beale’s Example

The following example is called Beale’s example and falls into cycling when

the simplex algorithm is used. The optimum value of objective function is

0.05.

max z = 0.75x1 − 150x2 + 0.02x3 − 6x4

s.t.

0.25x1 − 60x2 − 0.04x3 + 9x4 ≤ 0,

0.5x1 − 90x2 − 0.02x3 + 3x4 ≤ 0,

x3 ≤ 1,

x1, x2, x3, x4 ≥ 0.
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In this example based on algorithm steps the following steps are carried out

in both problems, Primal and Dual:

(a) The points are generated randomly from different distribution with dif-

ferent parameters.

(b) Test the feasibility of generated points.

(c) Evaluate the primal and dual objective function values,zi and gj for

feasible points.

(d) Compute zn−o = maxi(zi) and gn−o = minj(gj)

(e) if (gn−o − zn−o) ≤ ε, small positive value, or the number of restarting

get equal to its initial value, then the algorithm is stopped and outputs

the values of zn−o, xn−o, gn−o, yn−o and stop restart.

The summary of results are shown in the following table.

Table 2.4: Near-Optimal values of Primal and Dual objective functions in LPP

by using stochastic search algorithm with different distributions in primal and

dual problem.

Distribution zn−o gn−o # infeasible points gap CPU time/
Primal Dual Total sec.

Uniform(0, µj) 0.0486 0.0537 109 4722 4831 0.0051 2.9
N(µj, µ

2
j) 0.049 0.0502 1690 4271 5961 0.0012 0.3

N(1/2µj, µ
2
j) 0.0496 0.0505 1133 7835 8968 0.0009 0.4

N(0.75µj, µ
2
j) 0.0492 0.051 1414 5583 6997 0.0018 0.32

Beta(0.5, 0.75) 0.0493 0.0513 136 983 1119 0.002 0.85
Beta(0.75, 0.5) 0.05 0.0512 100 5270 5370 0.0012 3
Beta(0.05, 0.05) 0.05 0.05 101 503 604 0 0.84
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• As we mentioned before, the performance of non-uniform statistical dis-

tributions is better than uniform distribution. This can be understood

from running time of proposed algorithm and gap (distance between

primal and dual near-optimal objective function values).

• When normal distribution with the mean at the half of upper (lower)

bound for primal (dual) decision variable is considered the length of

gap is smaller than other cases of mean, this means the primal and dual

near-optimal value are nearer to each other than other cases of mean.

• The results which have obtained from Beta distribution with parameters

0 < α, β < 1 are better than other cases of α, β.

2. Kuhn’s Example

This example faces to cycling by using simplex algorithm. The optimum

value of objective function is 2.

max z = 2x1 + 3x2 − x3 − 12x4

s.t.

−2x1 − 9x2 + x3 + 9x4 ≤ 0,

1

3
x1 + x2 −

1

3
x3 − 2x4 ≤ 0,

2x1 + 3x2 − x3 − 12x4 ≤ 2,

x1, x2, x3, x4 ≥ 0.

In this example based on algorithm steps the following steps are carried out

in both problems, Primal and Dual:

(a) The points are generated randomly from different distribution with dif-

ferent parameters.
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(b) Test the feasibility of generated points.

(c) Evaluate the primal and dual objective function values,zi and gj for

feasible points.

(d) Compute zn−o = maxi(zi) and gn−o = minj(gj)

(e) if (gn−o − zn−o) ≤ ε, small positive value, or the number of restarting

get equal to its initial value, then the algorithm is stopped and outputs

the values of zn−o, xn−o, gn−o, yn−o and stop restart.

The summary of results are shown in the following table.

Table 2.5: Near-Optimal values of Primal and Dual objective functions in LPP

by using stochastic search algorithm with different distributions in primal and

dual problem.

Distribution zn−o gn−o # infeasible points gap CPU time/
Primal Dual Total sec.

Uniform(0, µj) 1.9993 2 290 1491 1781 0.000071 0.29
N(µj, 1) 1.9988 2 413 1595 2008 0.0012 0.124
N(µj, µ

2
j) 1.9989 2 709 1536 2245 0.0011 0.117

N(1/2µj, µ
2
j) 1.9988 2 1620 1573 3193 0.0012 0.125

Beta(0.5, 0.75) 1.9984 2 354 1510 1861 0.0016 0.238
Beta(0.5, 0.5) 1.9954 2 269 1310 1519 0.0046 0.223
Gamma(1, 1) 1.9947 2 385 1794 2179 0.0053 0.161
Gamma(1, 2) 1.9995 2 426 1426 1852 0.00005 0.1605
Geo(0.5) 2 2 431 1676 2107 0 0.221

• For this example uniform and non-uniform distributions with consider-

ing a discrete distribution (Geometric(p = 0.5)) for dual problem have

good and almost same performance.

• The problem has an integer optimal solution then, a discrete distribution

(Geometric(p = 0.5))without considering the upper bounds of decision
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variables in primal problem was applied and the exact optimal solution

for both problems obtained.

3. Klee and Minty’s Example:

In this example, simplex method as formulated by Dantzig, visits all 2n

vertices before arriving at the optimal vertex. The optimal objective function

value is 625.

max z = 8x1 + 4x2 + 2x3 + x4

s.t.

16x1 + 8x2 + 4x3 + x4 ≤ 625,

8x1 + 4x2 + x3 ≤ 125,

4x1 + x2 ≤ 25,

x1 ≤ 5,

x1, x2, x3, x4 ≥ 0.

In this example based on algorithm steps the following steps are carried out

in both problems, Primal and Dual:

(a) The points are generated randomly from different distribution with dif-

ferent parameters.

(b) Test the feasibility of generated points.

(c) Evaluate the primal and dual objective function values,zi and gj for

feasible points.

(d) Compute zn−o = maxi(zi) and gn−o = minj(gj)
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(e) if (gn−o − zn−o) ≤ ε, small positive value, or the number of restarting

get equal to its initial value, then the algorithm is stopped and outputs

the values of zn−o, xn−o, gn−o, yn−o and stop restart.

The summary of results are shown in the following table.

Table 2.6: Near-Optimal values of Primal and Dual objective functions in LPP

by using stochastic search algorithm with different distributions in primal and

dual problem.

Distribution zn−o gn−o # infeasible points gap time/
Primal Dual Total sec.

Uniform(0, µj) 588.05 634.05 20254 0 20254 46 14.19
N(µj, µ

2
j) na na na na na na na

N(1/2µj, µ
2
j) 570.3 625.1 64880 237 65117 54.8 1.35

Beta(0.5, 0.75) 614.03 627.69 1920 0 1920 13.66 1.64
Beta(0.5, 1) 618.08 626.22 1179 0 1179 8.14 1.04
Beta(0.25, 1) 623.31 625.01 171 0 171 1.7 0.47
Beta(0.25, 0.75) 624.35 625.03 322 0 322 0.68 0.55
Beta(0.05, 0.05) 625 625 1121 0 1121 0 1.33
Geo(0.5) 625 625 833 0 833 0 0.55

• Also in this example, the efficiency of most of non-uniform statistical dis-

tributions is better than uniform distribution. This can be understood

from running time of proposed algorithm and gap (distance between

primal and dual near-optimal objective function values).

• The normal distribution with the mean at upper (lower) bound for pri-

mal (dual) decision variable is not applicable. But normal distribution

with mean at the half of the upper (lower) bound for primal (dual)

decision variable has better performance than uniform distribution.

• The results which are obtained from Beta distribution with parameters

0 < α < 1 and β = 1 are better than other cases of α, β.
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• The coordinates of bounding points of this example are multiples of

optimal solution xopt, yopt then a discreet distribution is very efficient

and here the Geometric distribution with parameter p = 0.5 reaches to

the exact optimal solution which is integer.

4. Further example

This example has integer optimal solution in both problems and the optimal

objective function value is 2200.

max z = 45x1 + 80x2

s.t.

5x1 + 20x2 ≤ 400,

10x1 + 15x2 ≤ 450,

x1, x2 ≥ 0.

In this example based on algorithm steps the following steps are carried out

in both problems, Primal and Dual:

(a) The points are generated randomly from different distribution with dif-

ferent parameters.

(b) Test the feasibility of generated points.

(c) Evaluate the primal and dual objective function values,zi and gj for

feasible points.

(d) Compute zn−o = maxi(zi) and gn−o = minj(gj)

(e) if (gn−o − zn−o) ≤ ε, small positive value, or the number of restarting

get equal to its initial value, then the algorithm is stopped and outputs

the values of zn−o, xn−o, gn−o, yn−o and stop restart.

49



The summary of results are shown in the following table.

Table 2.7: Near-Optimal values of Primal and Dual objective functions in LPP

by using stochastic search algorithm with different distributions in primal and

dual problem.

Distribution zn−o gn−o # infeasible points gap CPU time/
Primal Dual Total sec.

N(µj, µ
2
j) 2189.8 2208.32 1335 350 1685 18.472 0.076

N(1/2µj, µ
2
j) 2191.6 2207.2 1082 346 1428 15.536 0.071

Weibull(µj, 3.5) 2198.7 2206.9 1454 550 2004 8.25 0.136
Poisson(µj) 2200 2200 50000 2070 52070 0 18.2
Poisson(1/2µj) 2200 2200 17 1675 1692 0 0.191

The Uniform distribution has no efficiency for this example. Then, we applied

Non-uniform distribution for both primal and dual problems. Normal and Weibull

distributions for primal and Gamma distribution for dual problem. As it can be

seen when a fraction of mean parameter of Normal distribution is considered the

efficiency of algorithm is increased. It is clear that the Weibull distribution for scale

parameters bigger than 3.4 leads to Normal distribution and we see the behavior of

this distribution. Because of existence an integer solution for the problem, discrete

distributions are best for this problem.

All this work has been published in the Pakistan Journal of Statistics, Vol. 27,

No. 1, pp. 65-74.
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2.7 Conclusions

1. Since stochastic search technique uses pseudo-random numbers, there is no

learning in the simulation based algorithm. As a result, more work does not

necessarily imply improvement in the solution. On the other hand, the result

is not necessarily bad if we have not worked much. Hence, an early solution

can be a near-optimal solution and may not significantly improve with more

work.

2. Generating feasible solutions is the major work in this algorithm. The bound-

ing box is either a hyper-cube or cuboid and then there is a high rejection

rate, or the complete Euclidean space with the same consequence. Attempts

are being made to improve the performance of random solution generator.

3. Stochastic search algorithm is not an iterative procedure.

4. Stochastic search algorithm is simple from mathematical point of view and

there are no complicated computations.

5. Stopping rule can be based on number feasible points in generation, num-

ber restarts the algorithm, length of interval of optimal objective function

value (the length of gap between primal near-optimal and dual near-optimal

values).

6. Discrete distributions like Geometric and Poisson are very efficient in certain

special cases.
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