
5149377811059

ISBN 978-1-105-51493-7
90000

Open Advice

Lydia Pintscher (Editor)

Open Advice

FOSS: What We Wish We Had Known When We Started

The information in this book is distributed on an “As Is” basis,
without warranty. While every precaution has been taken in the
preparation of this work, neither the authors nor the editor or pub-
lishers shall have any liability to any person or entity with respect
to any loss or damage caused or alledged to be caused directly or
indirectly by the information contained in it.

Copyright © 2012 Georg Greve, Armijn Hemel, Evan Prodro-
mou, Markus Krötzsch, Felipe Ortega, Leslie Hawthorn, Kévin Ot-
tens, Lydia Pintscher, Jeff Mitchell, Austin Appel, Thiago Macieira,
Henri Bergius, Kai Blin, Ara Pulido, Andre Klapper, Jonathan
Leto, Atul Jha, Rich Bowen, Anne Gentle, Shaun McCance, Runa
Bhattacharjee, Guillaume Paumier, Federico Mena Quintero, Máiŕın
Duffy Strode, Eugene Trounev, Robert Kaye, Jono Bacon, Alexandra
Leisse, Jonathan Riddell, Thom May, Vincent Untz, Stuart Jarvis,
Jos Poortvliet, Sally Khudairi, Nóiŕın Plunkett, Dave Neary, Gareth
J. Greenaway, Selena Deckelmann, Till Adam, Frank Karlitschek,
Carlo Daffara, Dr. Till Jaeger, Shane Couglan

This work is licensed under a Creative Commons Attribution-
ShareAlike 3.0 License. To view a copy of this license visit:
http://creativecommons.org/licenses/by-sa/3.0/legalcode.

Visit http://www.open-advice.org to download this book as PDF
or eBook and receive additional information.

ISBN: 978-1-105-51493-7

http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://www.open-advice.org

for giants
and those who will stand on their shoulders

vii

Foreword

This is a book about community and technology. It is a book that
represents a collective effort, much like the technology we build to-
gether. And if this is in fact your first encounter with our community,
you may find it strange to think of a community as the driving force
behind technology. Isn’t technology built by large corporations? Ac-
tually, for us it is almost the other way around.

The authors in this book are all members of what you could la-
bel the software freedom community. A group of people sharing
the fundamental experience that software is more empowering, more
useful, more flexible, more controllable, more just, more encompass-
ing, more sustainable, more efficient, more secure and ultimately just
better when it comes with four fundamental freedoms: to use, study,
share and improve the software.

And while there is now an increasing number of communities that
have left behind the requirement for geographical proximity by means
of virtual communication, it was this community that pioneered that
new age.

In fact, the Internet and the Free Software Community1 were co-
dependent developments. As the Internet grew, our community could
grow with it, but without the values and technology of our commu-
nity, I have no doubts that the Internet would not have become
the all-encompassing network that we now see enabling people and
groups around the world.

Until today, our software runs most of the Internet, and you will
know at least some of it, such as Mozilla Firefox, OpenOffice.org,
Linux, and perhaps even GNOME or KDE. But our technology may
also be hidden inside your TV, your wireless router, your ATM, even
your radio, security system or battleships. It is literally everywhere.

1For me, Open Source is one aspect of that community. This particular aspect
articulated itself in 1998, so quite some time after the Internet came about.
But please feel free to replace Free Software by Open Source in your head if
that is your preferred terminology.

viii

It was essential in enabling some of the large corporations that
you know, such as Google, Facebook, Twitter and others. None of
these could have achieved so much in such a short time if it were not
for the power of software freedom that allowed them to stand on the
shoulders of those who came before.

But there are many smaller companies that live from, with, and for
Free Software, including my own, Kolab Systems. Active partaking
in the community in good faith and standing has become a critical
success factor for all of us. And this is true even for the large ones, as
Oracle has involuntarily demonstrated during and after its takeover
of Sun Microsystems.

But it is important to understand that our community is not anti-
commercial. We enjoy our work, and many of us have made it their
profession for their livelihood and mortgage. So when we say com-
munity, we mean students, entrepreneurs, developers, artists, doc-
umentation writers, teachers, tinkerers, businessmen, sales people,
volunteers and users.

Yes, users. Even if you did not realize it or “never signed up for
no community,” you in fact are already almost part of ours. The
question is whether you’ll choose to participate actively.

And this is what sets us apart from the monoculture behemoths,
the gated communities, the corporate owned walled gardens of com-
panies like Apple, Microsoft and others. Our doors are open. So is
our advice. And your potential. There is no limit as to what you
can become – it purely depends on your personal choice as it has
depended for each of us.

So if you are not yet part of our community, or simply curious,
this book provides a good starting point. And if you are already an
active participant, this book might provide you with insights into a
few facets and perspectives that are new to you.

Because this book contains important grains of that implicit knowl-
edge which we usually build and transfer inside our sub-communities
that work on different technologies. This knowledge typically trickles
down from experienced contributors to less experienced ones, which

ix

is why it seems very obvious and natural to those socialized in our
community.

This knowledge and culture of how to shape collaboration allows us
to build outstanding technology in small, distributed teams across
language, country and cultural barriers around the world, outper-
forming much larger development teams in some of the world’s largest
corporations.

All the people writing in this book are such experienced contrib-
utors in one, sometimes several areas. They have grown to become
teachers and mentors. Over the course of the past 15 years or so
I had the pleasure of getting to know most of them, working with
many, and the privilege to call some of them friends.

Because as Kévin Ottens rightly said during the Desktop Sum-
mit 2011 in Berlin: “Community building is family and friendship
building.”

So it is in fact with a profound sense of gratitude that I can say
there is no other community I would rather be part of, and I look
forward to hopefully seeing you at one or the other upcoming con-
ference.

— Georg Greve

Zürich, Switzerland; 20. August 2011

Georg Greve initiated the Free Software Foundation Europe in 2000
and was its founding president until 2009. During this time he was
responsible for building up and designing many of FSFE’s activities
such as the Fellowship, the policy or legal work, and has worked in-
tensively with many communities. Today he continues this work as
shareholder and CEO of Kolab Systems AG, a fully Free Software
company. For his accomplishments in Free Software and Open Stan-
dards Georg Greve was awarded the Federal Cross of Merit on ribbon
by the Federal Republic of Germany on 18 December 2009.

x

Thank You!

This book would not have been possible without the support of each
of the authors and the following people, who helped make it happen:

� Anne Gentle (editing)

� Bernhard Reiter (editing)

� Celeste Lyn Paul (editing)

� Daniel Molkentin (layout)

� Debajyoti Datta (website)

� Irina Rempt (editing)

� Jeff Mitchell (editing)

� Mans Rullgard (editing)

� Noirin Plunkett (editing)

� Oregon State University Open Source Lab (website hosting)

� Stuart Jarvis (editing)

� Supreet Pal Singh (website)

� Saransh Sinha (website)

� Vivek Prakash (editing)

� Will Kahn-Greene (editing)

Contents

I. Ideas and Innovation 1

1. Code First 3

2. Everyone Else Might Be Wrong, But Probably Not 5

II. Research 9

3. Out of the Lab, into the Wild 11

4. Prepare for the Future: Evolution of Teams in FLOSS 19

III. Mentoring and Recruiting 27

5. You’ll Eventually Know Everything They’ve Forgotten 29

6. University and Community 33

7. Being Allowed to Do Awesome 39

IV. Infrastructure 41

8. Love the Unknown 43

9. Backups to Maintain Sanity 49

xii Contents

V. Code 53

10. The Art of Problem Solving 55

11. Cross-Project Collaboration 63

12. Writing Patches 69

VI. Quality Assurance 75

13. Given Enough Eyeballs, Not All Bugs are Shallow 77

14. Kick, Push 83

15. Test-Driven Enlightenment 87

VII. Documentation and Support 93

16. Life-Changer Documentation for Novices 95

17. Good Manners Matter 99

18. Documentation and My Former Self 105

19. Stop Worrying and Love the Crowd 109

VIII. Translation 113

20. My Project Taught Me how to Grow Up 115

IX. Usability 119

21. Learn from Your Users 121

Contents xiii

22. Software that Has the Quality Without A Name 127

X. Artwork and Design 145

23. Don’t Be Shy 147

24. Use of Color and Images in Design Practices 153

XI. Community Management 159

25. How Not to Start a Community 161

26. Hindsight is Almost 20/20 165

27. Things I’m Happy I Didn’t Know 181

XII. Packaging 185

28. From Beginner to Professional 187

29. Packaging - Providing a Great Route into Free Software 191

30. Where Upstream and Downstream Meet 197

XIII. Promotion 203

31. Finding Your Feet in a Free Software Promotion Team 205

32. Big Plans Don’t Work 209

33. Who are You, What are You Selling, and Why Should I
Care? 215

xiv Contents

XIV. Conferences and Sprints 221

34. People are Everything 223

35. Getting People Together 227

36. We’re Not Crazy . . . We’re Conference Organizers! 239

37. How to Ask for Money 245

XV. Business 253

38. Free Software in Public Administrations 255

39. Underestimating the Value of a Free Software Business
Model 263

40. Free and Open Source-Based Business Models 271

XVI. Legal and Policy 283

41. On being a Lawyer in FOSS 285

42. Building Bridges 289

Part I.

Ideas and Innovation

1. Code First

Armijn Hemel

Armijn Hemel has been using free software since 1994, when his
brother came home with a stack of floppies with an early version
of FreeBSD. A year later the switch to Linux was made and he has
been using Unix(-like) systems ever since then, both at home, during
his studies at Utrecht University and at work. Since 2005, Armijn
has been part of the core team of gpl-violations.org and has his own
consultancy (Tjaldur Software Governance Solutions) specialized in
detection and resolution of GPL license violations.

Back in 1999 I was just getting started in FLOSS activism. I had
already been using Linux and FreeBSD for a number of years then,
but I was merely a user and I wanted to actually contribute some-
thing back. The best way I thought for contributing back was to
write code. I could not find any existing project I would be comfort-
able working on, so I decided to start my own project. In hindsight
the reason why I did that was probably a mixture of various things.
One factor was insecurity whether or not my code was actually good
enough to be accepted in an existing project (I was, and still am, no
brilliant programmer) and with your own project that is not much
of an issue. The second reason is probably youthful arrogance.

My idea was to make a presentation program, which would fancy
more of the advanced (or, annoying, if you wish) features of Power-
Point. Back in that time there was no OpenOffice.org and choices
were pretty limited to LaTeX and Magicpoint, which are more tai-
lored to delivering text content, than to showing whirly effects. I
wanted to make the program cross platform and back then I thought
Java would be the best choice for this. The idea was to make a pre-

4 Code First

sentation program, written in Java, which would have support for all
those whirly effects. I made up my mind and started the project.

Infrastructure-wise everything was there: there was a mailing list,
there was a website, there was source code control (CVS). But there
was no actual code for people to work on. The only things I had
were some ideas of what I wanted to do, an itch to scratch and the
right buzzwords. I actually wanted people to join in creating this
program and make it a truly collaborative project.

I started making designs (with some newly acquired UML knowl-
edge) and sent them around. Nothing happened. I tried to get people
involved, but collaboratively working on a design is very hard (be-
sides, it is probably not the best way to create software in the first
place). After a while I gave up and the project silently died, without
ever producing a single line of code. Every month I was reminded
by the mailing list software that the project once existed, so I asked
it to be taken offline.

I learned a very valuable, but somewhat painful, lesson: when you
announce something and when you want people to get involved in
your project, at least make sure there is some code available. It does
not have to be all finished, it is OK if it is rough (in the beginning
that is), but at least show that there is a basis for people to work with
and improve upon. Otherwise your project will go where many many
projects, including my own failed project, have gone: into oblivion.

I eventually found my niche to help advance FLOSS, by making
sure that the legal underpinnings of FLOSS are tight through the gpl-
violations.org project. In retrospect I have never used, nor missed,
the whirly effects in presentation programs and found them to be
increasingly irritating and distracting too much from the content. I
am happily using LaTeX beamer and occasionally (and less happily)
OpenOffice.org/LibreOffice to make presentations.

2. Everyone Else Might Be Wrong, But
Probably Not

Evan Prodromou

Evan Prodromou is the founder of Wikitravel, StatusNet and the
Open Source social network Identi.ca. He has participated in Open
Source software for 15 years as a developer, documentation writer,
and occasional bomb-throwing crank. He lives in Montreal, Quebec.

The most important characteristic of the Open Source project founder,
in the first weeks or months before releasing their software into the
world, is mule-headed persistence in the face of overwhelming factual
evidence. If your software is so important, why has someone else not
written it already? Maybe it is not even possible. Maybe nobody
else wants what you are making. Maybe you are not good enough
to make it. Maybe someone else already did, and you are just not
good enough at Googling to find it.

Keeping the faith through that long, dark night is hard; only
the most pig-headed, opinionated, stubborn people make it through.
And we get to exercise all our most strongly-held programmer’s opin-
ions. What is the best programming language to use? Application
architecture? Coding standards? Icon colors? Software license? Ver-
sion control system? If you are the only one who works on (or knows
about!) the project, you get to decide, unilaterally.

When you eventually launch, though, that essential characteristic
of stubborn determination and strong opinion becomes a detriment,
not a benefit. Once you have launched, you will need exactly the
opposite skill to make compromises to make your software more use-
ful to other people. And a lot of those compromises will feel really
wrong.

6 Everyone Else Might Be Wrong, But Probably Not

It is hard to take input from “outsiders” (e.g., people who are not
you). First, because they focus on such trivial, unimportant things –
your variable naming convention, say, or the placement of particular
buttons. And second, because they are invariably wrong – after all,
if what you have done is not the right way to do it, you would not
have done it that way in the first place. If your way was not the
right way, why would your code be popular?

But “wrong” is relative. If making a “wrong” choice makes your
software more accessible for end users, or for downstream developers,
or for administrators or packagers, is that not really right?

And the nature of these kind of comments and contributions is
usually negative. Community feedback is primarily reactive, which
means it is primarily critical. When was the last time you filed a
bug report to say, “I really like the organization of the hashtable.c
module.” or “Great job on laying out that sub-sub-sub-menu.”?
People give feedback because they do not like the way things work
right now with your software. They also might not be diplomatic in
delivering that news.

It is hard to respond to this kind of feedback positively. Some-
times, we flame posters on our development mailing lists, or close
bug reports with a sneer and a WONTFIX. Worse, we withdraw
into our cocoon, ignoring outside suggestions or feedback, cuddling
up with the comfortable code that fits our preconceptions and biases
perfectly.

If your software is just for you, you can keep the codebase and
surrounding infrastructure as a personal playground. But if you
want your software to be used, to mean something to other people,
to (maybe) change the world, then you are going to need to build up
a thriving, organic community of users, core committers, admins and
add-on developers. People need to feel like they own the software, in
the same way that you do.

It is hard to remember that each one of those dissenting voices is
the tiny corner of the wedge. Imagine all the people who hear about
your software and never bother to try it. Those who download it
but never install it. Those who install it, get stuck, and silently

Evan Prodromou 7

give up. And those who do want to give you feedback, but can not
find your bug-report system, developers mailing list, IRC channel
or personal email address. Given the barriers to getting a message
through, there are likely about 100 people who want to see change
for every one person to get the message through. So listening to
those voices, when they do reach you, is critical.

The project leader is responsible for maintaining the vision and
purpose of the software. We can not vacillate, swinging back and
forth based on this or that email from random users. And if there
is a core principle at stake, then, of course, it is important to hold
that core steady. No one else but the project leader can do that.

But we have to think: are there non-core issues that can make
your software more accessible or usable? Ultimately the measure of
our work is in how we reach people, how our software is used, and
what it is used for. How much does our personal idea about what
is “right” really matter to the project and to the community? How
much is just what the leader likes, personally? If those non-core
issues exist, reduce the friction, respond to the demand, and make
the changes. It is going to make the project better for everyone.

Part II.

Research

3. Out of the Lab, into the Wild: Growing
Open Source Communities around
Academic Projects

Markus Krötzsch

Markus Krötzsch is a post-doctoral researcher at the Department of
Computer Science of the University of Oxford. He obtained his Ph.D.
from the Institute of Applied Informatics and Formal Description
Methods (AIFB) of the Karlsruhe Institute of Technology (KIT) in
2010. His research interest is the intelligent automatic processing
of information, ranging from the foundations of formal knowledge
representation to application areas like the Semantic Web. He is the
lead developer of the successful Semantic Web application platform
Semantic MediaWiki, co-editor of the W3C OWL 2 specification,
chief maintainer of the semanticweb.org community portal, and co-
author of the textbook Foundations of Semantic Web Technologies.

Academic researchers develop large amounts of software, be it for
validating a hypothesis, for illustrating a new approach, or merely as
a tool to aid some study. In most cases, a small focused prototype
does the job, and it is disposed quickly after the focus of research
moves on. However, once in a while, a novel approach or upcoming
technology bears the potential to really change the way in which a
problem is solved. Doing so promises professional reputation, com-
mercial success, and the personal gratification of realizing the full
potential of a new idea. The researcher who made this discovery
then is tempted to go beyond a prototype towards a product that
is actually used – and is faced by a completely new set of practical
problems.

12 Out of the Lab, into the Wild

The Fear of the User

Frederick P. Brooks, Jr., in one of his famous essays on software
engineering, gives a good picture of the efforts related to maintaining
real software, and warns us of the user:

“The total cost of maintaining a widely used program is
typically 40 percent or more of the cost of developing it.
Surprisingly, this cost is strongly affected by the number
of users. More users find more bugs.”1

While this figure might well be different in today’s environment, the
basic observation is still true, and may even have been aggravated by
the use of instantaneous global communication. Even worse, more
users not only find more actual bugs, but also articulate more wishes
in general. Be it a genuine error, a feature request, or merely a fun-
damental misunderstanding of the software’s operation, the typical
user request is far from being a technically precise bug report. And
each request demands the attention of the developers, consuming
precious time that is not available to actually write code.

The analytical mind of the researcher foresees this issue, and, in
its natural struggle to prevent a gloomy future in customer care, may
develop an outright fear of the user. In the worst case, this may lead
to a decision against the whole project, in a weaker form it may still
lead researchers to practically hide brilliant software products from
potential users. More than once have I heard researchers saying: “We
don’t need more visibility, we are getting enough emails already!”
And indeed, there are cases where the communication effort related
to a software tool exceeds the effort that a researcher can invest
without abandoning her main job.

Often, however, this tragic outcome could easily have been pre-
vented. Brooks could hardly foresee this. When he wrote his essays,
users were indeed customers, and software maintenance was part of

1Frederick P. Brooks, Jr.: The Mythical Man-Month. Essays on Software En-
gineering. Anniversary Edition. Addison-Wesley, 1995.

Markus Krötzsch 13

the product they purchased. A balance had to be found between
development effort, market demand, and pricing. This is still the
case for many commercial software products today, but has little to
do with the reality of small-scale Open Source development. Typical
OSS users do not pay for the service they receive. Their attitude
accordingly is not that of a demanding customer, but more often
that of a grateful and enthusiastic supporter. No small part of the
art of successful OSS maintenance is turning this enthusiasm into
much needed support, balancing the increase in user interest with an
increase in user contribution.

Recognizing that Open Source users are not just “customers who
don’t pay” is an important insight. But it must not lead us to over-
estimate their potential. The optimistic counterpart of the irrational
fear of the user is the belief that active and supportive Open Source
communities grow naturally, based merely on the license that was
chosen for publishing code. This grave error of judgement is still
surprisingly common, and has sealed the doom of many attempts of
creating open communities.

Sowing and Reaping

The plural of “user” is not “community.” While the former may
grow in numbers, the latter does not grow by itself, or grows wildly
without yielding the hoped-for support for the project. The task
of the project maintainer who seeks to benefit from the users’ raw
energy therefore resembles that of a gardener who needs to prepare
a fertile ground, plant and water the seedlings, and possibly prune
undesired shoots before being able to reap the fruits. Compared to
the rewards the overall effort is little, but it is vital to do the right
things, at the right time.

Preparing the Technical Ground Building a community starts even
before the first user appears. Already the choice of the programming
language determines how many people will be able to deploy and

14 Out of the Lab, into the Wild

debug our code. Objective Caml might be a beautiful language, but
using Java instead will increase the amount of potential users and
contributors by orders of magnitude. Developers thus must compro-
mise, since the most widespread technology is rarely most efficient or
elegant. This can be a particularly hard step for researchers who of-
ten prefer superiority of language design. When working on Semantic
MediaWiki, I have often been asked why in the world we would use
PHP when server-side Java would be so much cleaner and more effi-
cient. Comparing the community size of Semantic MediaWiki with
similar Java-based efforts may answer this question. This example
also illustrates that the target audience determines the best choice
of base technology. The developer herself should have the necessary
insight to make a most opportunistic decision.

Thoroughly Working the Ground A related issue is the creation
of readable and well documented code from the very start. In an
academic environment, some software projects are touched by many
temporary contributors. Changing staff and student projects may
deteriorate code quality. I remember a small software project at TU
Dresden that had been maintained quite well by a student assistant.
After he had left it was found that his code was thoroughly docu-
mented – in Turkish. A researcher can only be a part-time program-
mer, so special discipline is needed to enforce the extra work needed
for accessible code. The reward will be a much greater chance of in-
formed bug reports, useful patches, or even external developers later
on.

Spreading the Seeds of Communities Inexperienced Open Source
developers often think it as a big step to publish their code openly.
In reality nobody else will notice. To attract users and contributors
alike one has to spread the word. The public communication of a
real project should at least involve announcements for every new
release. Mailing lists are probably the best channels for this. Some
social skill is needed to find the balance between annoying spam

Markus Krötzsch 15

and shy understatement. Projects that are motivated by the honest
conviction that they will help users to solve real problems should be
easy to advertise respectably. Users will quickly notice the difference
between shameless advertising and useful information. Obviously,
active announcements should wait until the project is ready. This
does not only include its actual code but also its homepage and basic
usage documentation.

Throughout its lifetime, the project should be mentioned in all
appropriate places, including web sites (start with your homepage!),
presentations, scientific papers, online discussions. One cannot ap-
preciate enough the power of the single link that leads a later main
contributor to his first visit of the project’s homepage. Researchers
should not forget to also publicize their software outside of their im-
mediate academic community. Other researchers are rarely the best
basis for an active community.

Providing Spaces to Grow Trivially easy, yet often neglected is
the duty of project maintainers to provide for the communication
spaces that communities can grow in. If a project has no dedicated
mailing list, then all support requests will be sent privately to the
maintainer. If there is no public bug tracker, bug reports will be
fewer and less helpful. Without a world-editable wiki for user doc-
umentation, the developer is left with extending and refining the
documentation continuously. If the development trunk of the source
code is not accessible, then users will not be able to check the latest
version before complaining about bugs. If the code repository is in-
herently closed, then it is impossible to admit external contributors.
All of this infrastructure is offered for free by a number of service
providers. Not all forms of interaction might be desired, e.g. there
are reasons to keep the group of developers closed. But it would be
foolish to expect support from a community without even preparing
the basic spaces for this.

16 Out of the Lab, into the Wild

Encouraging and Controlling Growth Inexperienced developers of-
ten are concerned that opening up mailing lists, forums, and wikis
for users will require a lot of additional maintenance. It rarely does,
but some basic activities are of course necessary. It starts with rig-
orously enforcing the use of public communication. Users need to be
educated to ask questions publicly, to look up the documentation be-
fore asking, and to report bugs in the tracker instead of via email. I
tend to reject all private support requests, or to forward the answers
to public lists. This also ensures that solutions are available on the
web for future users to find. In any case, users should be thanked
explicitly for all forms of contribution – many enthusiastic and well-
meaning people are needed for building a healthy community.

When a certain density of users is reached, support starts to hap-
pen from user to user. This is always a magical moment for a project,
and a sure sign that it is on a good path. Ideally, the core main-
tainers should still provide support for tricky questions, but at some
point certain users will take the lead in discussions, and it is impor-
tant to thank them (personally) and to involve them further in the
project. Conversely, unhealthy developments must be stopped where
possible, and in particular aggressive behavior can be a real danger
to community development. Likewise, not all well-meant enthusiasm
is productive, and it is often necessary to say no, friendly but clearly,
to prevent feature creep.

The Future is Open

Building an initial community around a project is an important part
of transforming a research prototype into a grown Open Source soft-
ware. If it succeeds, there are many options for further developing
the project, depending on the goals of the project maintainer and
community. Some general directions include:

� Continuing to grow and develop the project and its OSS com-
munity, enlarging the core team of developers and maintainers,
and eventually making it independent of its academic origin.

Markus Krötzsch 17

This may involve further community activities (e.g. dedicated
events) and maybe establishing organizational support.

� Founding a company for commercially exploiting the project
based on, e.g., a dual-license or consulting business model. Es-
tablished tools and vibrant communities are a major asset for
a start-up company, and can be beneficial to several business
strategies without abandoning the original OSS product.

� Withdrawing from the project. There are many reasons why
one may no longer be able to maintain the close affiliation to
the project. Having established a healthy open community
maximizes the chances that the project can continue indepen-
dently. In any case, it is much more respectable to make a clear
cut than to abandon the project silently, killing it by inactiv-
ity until its reach is diminished to the point where no future
maintainer can be found.

The shape of the community will be different when working toward
one of these principal options. But in each case, the role of the
researcher changes in the cause of the project. The initial scientist
and coder may turn into a manager or technical director. In this
sense, the main difference between an influential OSS project and
a perpetual research prototype is not so much the amount of work
but the type of work that is required to succeed. Understanding this
is part of the success – the only other thing that is needed is an
awesome piece of software.

4. Prepare for the Future: Evolution of
Teams in FLOSS

Felipe Ortega

Felipe Ortega is a researcher and project manager at Libresoft, a re-
search group at University Rey Juan Carlos (URJC), Spain. Felipe
develops novel methodologies to analyze open collaborative communi-
ties (like free software projects, Wikipedia and social networks). He
has done extensive research with the Wikipedia project and its com-
munity of authors. He actively participates in research, promotion
and education/training on libre software, especially in the Master on
Libre Software at URJC. He is a strong advocate of open educational
resources, open access in scientific publishing and open data in sci-
ence.

In his well-known essay The Cathedral and the Bazaar1, Eric S. Ray-
mond remarks one of the first important lessons that every program-
mer must learn: “Every good work of software starts by scratching
a developer’s personal itch”. You never realize how certain is this
statement unless you experience that situation by yourself. In fact,
the majority of FLOSS programmers (if not all) certainly underwent
this process as they got their hands dirty in a brand new project,
or they join an existing one, eager to help making it better. How-
ever, many developers and other participants in FLOSS communities
(documentation writers, translators, etc.) usually overlook another
important lesson stressed by Raymond a bit later in his essay: “When
you lose interest in a program, your last duty to it is to hand it off
to a competent successor”. This is the central topic I want to cover

1http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar

 http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar

20 Prepare for the Future: Evolution of Teams in FLOSS

here. You should think about the future of your project, and the
newcomers that one day will take over your work and continue to
improve it.

Generational relay

At some point in their lifetime, many FLOSS projects must face a
generational relay. Former developers in charge of code maintenance
and improvement eventually leave the project and its community, for
a wide variety of reasons. These include personal issues, a new job
that does not leave them enough free time, starting a new project,
switching to a different project that seems more appealing, . . . The
list can be pretty long.

The study of generational relay (or developer turnover) in FLOSS
projects is still an emerging area of study that needs further research
to improve our understanding of these situations. In spite of this,
some researchers have already collected objective evidence that sheds
some light on these processes. In OSS 2006, my colleagues Jesus G.
Barahona and Gregorio Robles presented a work entitled “Contribu-
tor Turnover in Libre Software Projects”. In this work, they show a
methodology to identify the most active developers (usually known
as core contributors) in different time intervals, over the whole his-
tory of a given project. Then, they apply this method to study 21
large projects, in particular GIMP, Mozilla (former instance of the
well-known browser) and Evolution. In a nutshell, what they found
is that we can identify three types of projects according to their rate
of developer turnover:

� Code gods projects: These projects heavily rely on the work
of their founders, and there is very little generational relay, or
none at all. GIMP falls into this category.

� Projects with multiple generations: Projects like Mozilla show
a clear pattern of developer turnover, with new groups of ac-

Felipe Ortega 21

tive developers taking over the lead of code development and
maintenance from the hands of the previous core contributors.

� Composite projects: Evolution belongs to a third category of
projects, showing some rate of turnover but not as evident
as in the previous case, mitigated by retention of some core
contributors over the project history.

This classification leads us to an obvious question: so, what is the
most common pattern found in real FLOSS projects out there? Well,
results for the whole set of 21 projects analyzed in this work render
a clear conclusion, which is that multiple generations and composite
projects are the most common cases found in the FLOSS ecosystem.
Only Gnumeric and Mono showed a distinctive pattern of strong
retention of former developers, indicating that people contributing
to these projects may have more appealing reasons to continue their
work for a long time.

Nevertheless, this is not the normal picture. On the contrary,
this study gives support for the advice we are considering here, that
we should prepare to transfer, at some point in the future, our role
and knowledge in the project to the future contributors joining our
community.

The knowledge gap

Any person experiencing a significant change in her life must deal
with adaption to new conditions. For example, when you quit your
job to get another one you prepare yourself for a certain period in
which you have to fit in a new place, and integrate yourself in a
different working group. Hopefully, after a while you have finally
settled down in your new job. But, sometimes, you keep good friends
from your old job, and you can meet them again after the move.
Maybe then, talking with your former workmates, you can learn what
happened with the person recruited to fill your previous position.
This seldom occurs in FLOSS projects.

22 Prepare for the Future: Evolution of Teams in FLOSS

The downside of generational relay in FLOSS projects may come
in a very concrete form, namely a knowledge gap. When a former
developer leaves the project, and especially if she had an extensive
experience in that community, she leaves behind both her tangible
and abstract knowledge that may or may not be passed on to sub-
sequent newcomers.

A clear example is source code. Like any product of fine intellec-
tual work (well, at least one should expect that, right?) developers
leave a personal imprint whenever they produce new code. Some-
times, you feel eternally in debt to that awesome programmer who
wrote neat, elegant code that virtually speaks by itself and is easily
maintainable. Other times, the situation is the opposite and you
struggle to understand very obscure, unclear code without any com-
ments or hints that can help you.

This is what we tried to measure in 2009, in a research work
presented at HICSS 2009. The title is “Using Software Archeology
to Measure Knowledge Loss in Software Projects Due to Developer
Turnover”. In case you were wondering, it has nothing to do with a
whip, treasures, temples or thrilling adventures, though it was really
entertaining. What we measured (among other things) was the per-
centage of orphaned code left behind by developers who quit FLOSS
projects, and not taken by any of the current developers, yet. In this
case, we choose four projects (Evolution, GIMP, Evince and Nau-
tilus) to test our research method. And we found quite interesting
results.

Evolution exhibited a somewhat worrying pattern, in the sense
that the percentage of orphaned code was growing over time. By
2006, nearly 80% of all source code lines had been abandoned by
former developers and remained untouched by the rest of the team.
On the contrary, GIMP showed a radically different pattern, with
a clear and sustained effort of the development team to reduce the
number of orphaned lines of code. By the way, remember that GIMP
had already been characterized as a code gods project, and thus
benefits from a much more stable development team to undertake
this daunting task.

Felipe Ortega 23

Does this mean that GIMP developers were having a much better
experience than Evolution folks? To be honest, we do not know.
Nevertheless, we can foresee a clear, predictable risk: the higher the
percentage of orphaned code, the larger the effort to maintain the
project. Whenever you need to fix a bug, develop a new feature or
extend an existing one, you bump into code you had never seen be-
fore. Of course you may be a fantastic programmer, but no matter
how wonderful you are, GIMP developers do have a clear advantage
in this case, since they have someone in the team with precise knowl-
edge about most of the code they need to maintain. In addition, they
also work to further reduce the portion of unknown source code over
time.

It feels like home

Interestingly, some projects manage to retain users for much longer
periods than one could expect. Again, we can find empirical evi-
dence supporting this claim. In OSS 2005, Michlmayr, Robles and
González-Barahona presented some relevant results pertaining this
aspect. They studied the persistence of participation of software
maintainers in Debian, calculating the so-called half-life ratio. This
is the time needed for a certain population of maintainers to fall to
half of its initial size. The result was that the estimated half-life of
Debian maintainers was approximately 7.5 years. In other words,
since the study was undertaken over a period of six and a half years
(between July 1998 to December 2004), comprising from Debian 2.0
to Debian 3.1 (only stable releases), more than 50% of maintainers
of Debian 2.0 were still contributing to Debian 3.1.

Debian has created quite a formal procedure to admit new software
maintainers (also known as Debian developers) including the accep-
tance of the Debian Social Contract and showing good knowledge of
Debian Policy. As a result, one would expect to have quite commit-
ted contributors. Actually this is the case, since these authors found
that packages left behind by former maintainers were usually taken

24 Prepare for the Future: Evolution of Teams in FLOSS

over by other developers staying in the community. Only in those
cases in which the package was not useful anymore it was simply
abandoned. I think we can learn some useful conclusions from these
research works:

1. Spend some time to develop the main guidelines of your project.
It may start as a single, short document, simply featuring some
recommendations and good practices. This should evolve as
the project grows, to serve as a learning pill for newcomers to
quickly grasp the core values of your team, as well as the main
traits of your working style.

2. Force yourself to follow well-known coding standards, good
practices and elegant style. Document your code. Include
comments to describe sections that might be especially hard
to understand. Do not feel that you are wasting your time. In
practice, you are being very pragmatic, investing time in the
future of your project.

3. If possible, when the time comes for you to quit the project try
to make others aware of your decision some time in advance.
Make sure they understand which critical parts will need a new
maintainer. Ideally, if you are a community, prepare at least a
very simple procedure to automate this process and make sure
that you do not forget any important point before that person
leaves the project (especially if she was a key developer).

4. Keep an eye on the size of orphaned code. If it rises too rapidly,
or it reaches a significant proportion of your project, it is a
clear indication that you will be running into trouble very soon,
especially if the number of bug reports grows or you plan to
revamp your code with a serious refactoring.

5. Always ensure that you leave enough tips and hints for a new-
comer to take over your work in the future.

Felipe Ortega 25

I wish I had known you were coming (before I quit)

I admit it is not very easy to think about your successors while you
are programming. Many times, you just do not realize that your
code may end up being taken over by another project, reused by
other people or you might eventually be replaced by another person,
willing to continue your work thereafter. However, the most remark-
able asset of FLOSS is precisely that one: the code will be reused,
adapted, integrated or extended by someone else. Maintainability is
a critical feature of software engineering. But it becomes paramount
in FLOSS. It is not only about source code. It is about people, so-
cial relationships and digital etiquette. It is something beyond mere
good taste. Quod severis metes (“as you sow, so shall you reap”).
Remember that, next time, you may be the newcomer filling the
knowledge gap left by a former developer.

Part III.

Mentoring and Recruiting

5. You’ll Eventually Know Everything
They’ve Forgotten

Leslie Hawthorn

An internationally known community manager, speaker and author,
Leslie Hawthorn has over 10 years experience in high tech project
management, marketing and public relations. Recently she joined
AppFog as their Community Manager, where she is responsible for
developer engagement. Prior to AppFog, she served as Outreach
Manager at Oregon State University’s Open Source Lab and as a
Program Manager for Google’s Open Source Team, where she man-
aged the Google Summer of Code Program, created the contest now
known as Google Code-in and launched the company’s Open Source
Developer Blog.

“The most important documentation for initial users
is the basics: how to quickly set up the software, an
overview of how it works, perhaps some guides to doing
common tasks. Yet these are exactly the things the writ-
ers of the documentation know all too well – so well that
it can be difficult for them to see things from the reader’s
point of view, and to laboriously spell out the steps that
(to the writers) seem so obvious as to be unworthy of
mention.” – Karl Fogel, Producing Open Source Soft-
ware

When you are first starting work on a FOSS project, the learning
curve is steep and the path daunting. You may find yourself sub-
scribed to mailing lists or in chat rooms with all kinds of “famous”

30 You’ll Eventually Know Everything They’ve Forgotten

people, like the creator of your favorite programming language or
the maintainer of your favorite package, wondering how you are ever
going to be skilled enough to contribute effectively. What you may
not realize is how much these wise folk have forgotten along their
path to success.

To use a simple simile, the process of learning how to use and
develop for any open source project is much like learning to ride a
bicycle. For those who are experienced cyclists, “it’s as easy as rid-
ing a bicycle.” You have probably ridden a bike a few times and
understand its architecture: saddle, wheels, brakes, pedals and han-
dlebars. Yet you climb aboard, head out on your ride and suddenly
discover that riding is not as simplistic as you had thought: at what
height should your saddle sit? What gear should you be in when
climbing a hill? When descending one? And do you really need that
helmet anyway? (Hint: Yes, you do.)

When you first start off cycling, you will not even know what
questions to ask and you will only find out by having sore knees,
aching lungs and a twinge in your back. Even then, your questions
will not always yield the answers you need; someone might know to
tell you to lower your saddle when you tell them your knees hurt,
but they might also just assume that you are new to this whole thing
and eventually you will just figure it out on your own. They have
forgotten fighting with gear changes, figuring out that they had the
wrong lights and reflectors, and which hand signal indicates a left
turn because they have been riding for so long that all these matters
are simply second nature to them.

The same scenario holds true when getting started in FOSS. As
you are building a package for the first time, you will inevitably run
into some obscure error message or other kind of fail. And when
you ask for help, some friendly soul will no doubt tell you that “it’s
easy, just do foo, bar and baz.” Except for you, it is not easy,
there may be no documentation for foo, bar is not doing what it is
supposed to be doing and what is this baz thing anyway with its eight
disambiguation entries on Wikipedia? You obviously do not want to
be a pest, but you will need help to actually get something done.

Leslie Hawthorn 31

Perhaps you keep retrying the same steps and keep failing, getting
more and more frustrated. Maybe you wander off, get a coffee and
figure you will come back to the problem later. What none of us in
the FOSS world want to happen is what happens to many: that cup
of coffee is infinitely better than feeling ignorant and intimidated, so
you do not try your hand at FOSS any further.

Realize now that you will eventually know those things that the
experts around you have forgotten or do not articulate because these
steps are obvious to them. Every person more knowledgeable than
you went through the same wanderings you are right now when learn-
ing how to do the things you are trying to do. Here are a few tips to
make your travels easier:

Don’t wait too long to ask for help No one wants to be a pest and
no one enjoys looking clueless. That being said, if you are unable
to fix your problem after trying to do so for 15 minutes, it is time
to ask for help. Make sure you check the project’s website for docu-
mentation so you use the right IRC channel, forum or mailing list for
help. Many projects have online communication channels specifically
for beginners, so keep an eye out for words like mentor, newbie, and
getting started.

Talk about your (thought) process It is not just a matter of ask-
ing questions, it is knowing the right questions to ask. When getting
started, you will not necessarily know what those questions are, so
when asking for help, be detailed about what you are trying to ac-
complish, the steps you have taken, and the problem you have en-
countered. Let your would-be mentors in the project IRC channel or
on the mailing list know that you have read the manual by including
links to the documentation you have read on the topic. If you have
not found any documentation, a polite mention of the fact is also
helpful.

32 You’ll Eventually Know Everything They’ve Forgotten

Know your own value As a new contributor to a project, you are
an invaluable asset not for your knowledge, but for your ignorance.
When first starting work in FOSS, nothing seems (to you) so obvious
as to be unworthy of mention. Take notes on the problems you
have encountered and how they were fixed, then use those notes to
update the project documentation or work with the community to
prepare screen casts or other training materials for particularly tough
problems. When you encounter something truly frustrating, realize
you are in the spectacular position of helping make sure the next
person who comes along does not encounter the same difficulties.

6. University and Community

Kévin Ottens

Kévin Ottens is a long term hacker of the KDE community. He
contributed to the KDE Platform at large, with a strong emphasis
on API design and frameworks architecture. Graduating in 2007, he
holds a PhD in computer science which led him to work particularly
on ontologies engineering and multi-agent systems. Kévin’s job at
KDAB includes developing research projects around KDE technolo-
gies. He still lives in Toulouse where he serves as part time teacher
in his former university.

Introduction

Free Culture communities are mostly driven by volunteer efforts.
Also most of the people getting into such communities do so during
their time at the university. It is somewhat the right period of your
life to embark in such adventures: you are young, full of energy,
curious, and probably want to change the world to your image. That
is really all that is needed for most volunteer work.

But, at the same time, being a student does not necessarily leave
you plenty of time to engage with a Free Culture community. Indeed,
most of these communities are rather large, and it can be frightening
to contact them.

It obviously raises a scary question: do Free Culture communities,
because they don’t try to actively outreach to universities, fail to
attract the next generation of talented contributors? That is a valid
question we tried to explore in the context of a community producing
software, namely KDE. In this article, we focus on the aspects we

34 University and Community

did not foresee but had to deal with while looking for an answer to
this question.

Building relationship with a local university

Really, it all starts by reaching out to the students themselves, and
for that, the best way is still to get to their universities, trying to
show them how welcoming Free Culture communities can be. To
that effect, we built a relationship with the Paul Sabatier University
in Toulouse – more precisely one of its courses of study named IUP
ISI which focused on software engineering.

The IUP ISI was very oriented toward “hands on” knowledge, and
as such had a pre-existing program for student projects. A particu-
larly interesting point of that program is the fact that students work
in teams mixing students from different promotions. Third year and
fourth year students get to collaborate on a common goal, which
usually leads to teams of seven to ten students.

The first year of our experiment we hooked up with that program,
proposing new topics for the projects, focusing on software developed
within the KDE community. Henri Massié, director of the course
of study, has been very welcoming to the idea, and let us put the
experiment in place. For that first year, we were allocated two slots
for KDE related software projects.

To quickly build trust, we decided that year to provide a few guar-
antees regarding the work of the students:

� to help the teachers have confidence in the topics covered: the
chosen projects were close to the topics taught at the IUP ISI
(that is why we targeted a UML modeling tool and a project
management tool for that year);

� to give maximum visibility to the teachers: we provided them
a server on which the student production was regularly built
and remotely accessible for testing purpose;

Kévin Ottens 35

� to ease the engagement of the students with the community:
the maintainers of the projects were appointed to play a “cus-
tomer” role thus pushing requirements to the students and
helping them find their way in the ramifications of the com-
munity;

� finally, to get the students going, we introduced a short course
on how to develop with Qt and the frameworks produced by
KDE;

At the time of this writing, we have been through five years of such
projects. Small adjustments to the organization have been done here
and there, but most of the ideas behind it stayed the same. Most of
the changes made were the result of more and more interest from the
community willing to engage with students and of more and more
freedom given to us in the topics we could cover in our projects.

Moreover, throughout those years the director gave us continuous
support and encouragement, effectively allocating more slots for Free
Culture community projects, proving that our integration strategy
was right: building trust very quickly is key to a relationship between
a Free Culture community and a university.

Realizing teaching is a two-way process

During those years of building bridges between the KDE community
and the IUP ISI course of study, we ended up in teaching positions
to support the students in their project related tasks. When you
have never taught a classroom full of students, you might still have
this image of yourself sitting in a classroom a few years ago. Indeed,
most teachers were students once... sometimes not even the type of
very disciplined or attentive students. You were likely having this
feeling of drinking from a firehose: a teacher entering a room, getting
in front of the students and delivering knowledge to you.

36 University and Community

This stereotype is what most people keep in mind of their years as
students and the first time they get in a teaching situation they want
to reproduce that stereotype: coming with knowledge to deliver.

The good news is that nothing could be further from the truth than
this stereotype. The bad news is that if you try to reproduce it, you
are very likely to scare your students away and face nothing else than
lack of motivation on their side to engage with the community. The
image you give of yourself is the very first thing they will remember
of the community: the first time you get in the classroom, to them
you are the community!

Not falling into the trap of this stereotype requires you to step back
a bit and to realize what teaching is really about. It is not a one way
process where one delivers knowledge to students. We came to the
conclusion that it is instead a two-way process: you get to create a
symbiotic relationship with your student. Both the students and the
teacher have to leave the classroom with new knowledge. You get to
deliver your expertise of course – but to do so efficiently you have to
adapt to the students’ frame of reference all the time. It is a very
humbling work.

Realizing that fact generates quite a few changes in the way you
undertake your teaching:

� You will have to understand the culture of your students. They
probably have a fairly different background from you and you
will have to adapt your discourse to them; for instance, the
students we trained are all part of the so-called Y generation
which exhibits fairly different traits regarding leadership, loy-
alty and trust than previous generations.

� You will have to reassess your own expertise, since you will need
to adapt your discourse to their culture. You will approach
your own knowledge from very different angles than what you
are used to, which will inevitably lead you to discoveries in
fields you assumed you mastered.

Kévin Ottens 37

� Finally, you will have to build skills in presenting; a teaching
position is really about getting out of your comfort zone to
present your own knowledge while keeping it interesting and
entertaining to your audience. It will make you a better pre-
senter.

As such, you will become a better teacher. Also your goals of
getting well trained students, and having students engage with a
Free Culture community will be better fulfilled.

Conclusion

At the end of the day why would you go through all the effort to
build trust with a university and step outside of your comfort zone
by improving your teaching? Well, it really boils down to the initial
question we tried to answer:

Do Free Culture communities fail to attract new contributors out
of universities simply because of their inaction?

In our experience the answer is yes. Through those five years of
building up a relationship with the IUP ISI, we retained around two
students per year on average. Some of them disappeared after a
while, but some of them become very active contributors. The other
ones still keep some nostalgia of that period of their life and keep
advocating even though they do not contribute directly. And right
now we have a local KDE team which managed to efficiently organize
a two day conference for our latest release party.

Of those former students, not a single one would have engaged with
KDE without those university projects. We would have completely
missed those talents. Luckily, we have not been inactive.

7. Being Allowed to Do Awesome

Lydia Pintscher

Lydia Pintscher is a people geek and cat herder by nature. Among
other things, she manages KDE’s mentoring programs (Google Sum-
mer of Code, Google Code-in, Season of KDE), is a founding member
of KDE’s Community Working Group and is a board member of KDE
e.V.

Free Software has an enemy. It is not who most people on the Inter-
net think it is. No, it is a lack of active participation.

Every single day there are thousands of people out there looking
for a way to put meaning into their life, looking for ways to do some-
thing that truly matters. Every single day thousands of lines of code
for Free Software projects are waiting to be written and debugged,
programs are waiting to be promoted and translated, artwork is wait-
ing to be created and much more. Sadly, far too often the people
fail to connect with projects. There are several reasons for that. It
starts with people not knowing about Free Software at all and its
benefits and purpose. But we are getting there. People are starting
to use and maybe even understand Free Software on a large scale.
Free Software projects live by converting some of those users into
active contributors. This is where the problems begin.

I have managed hundreds of students in mentoring programs and
have been doing outreach in various forms for Free Software projects.
I’ve worked with enthusiastic people whose life was changed for the
better by their contributions to Free Software. But there is one theme
I see over and over again and it breaks my heart because I now know
what talent we are missing out on: not being allowed to do awesome.
It is best summarized by what a fellow Google Summer of Code

40 Being Allowed to Do Awesome

mentor said: “The insight that most people in Open Source didn’t
get allowed to work on stuff but just didn’t run fast enough at the
right moment seems to be rare”. Potential contributors often think
they are not allowed to contribute. The reasons for this are many
and they are all misconceptions. The most common misconceptions
in my experience are:

� “I can not write code. There can not possibly be a way for me
to contribute.”

� “I am not really good at this. My help is not needed.”

� “I would just be a burden. They have more important things
to worry about.”

� “I am not needed. They must already have enough much more
brilliant people than me.”

Those are almost always false and I wish I had known a long time
ago that they are so prevalent. I would have done a lot of my initial
outreach efforts differently.

The easiest way of getting someone out of this situation is to invite
them personally. “That workshop we are doing? Oh yes, you should
come.” “That bug in the bug tracker? I’m sure you’re the perfect
person to try to fix it.” “That press release we need to get done? It
would be great if you could read over it and make sure it is good.”
And if that is not possible, make sure that your outreach material
(you have some, right?) clearly states what kind of people you are
looking for and what you consider the basic requirements. Make
sure to especially reach out to people outside your usual contributor
base because for them this barrier is even bigger. And unless you
overcome that, you will only recruit who you are – meaning you will
get more contributors just like the ones you already have. People like
the people you already have are great, but think about all the other
great people you are missing out on, who could bring new ideas and
skills to your project.

Part IV.

Infrastructure

8. Love the Unknown

Jeff Mitchell

Jeff Mitchell spends his working days dabbling in all sorts of com-
puter and networking technologies, his off-time dabbling in all sorts
of FOSS projects and most enjoys a confluence of both. After serving
as a system administrator in a professional capacity between 1999-
2005, he has since kept his skills sharp by performing volunteer work
for various workplace and FOSS projects. These days, most of his
FOSS time is spent as a sysadmin for KDE and a core developer of
Tomahawk Player. Jeff currently lives in Boston, USA.

Recently I was part of a group interviewing a potential new sysadmin
at work. We had gone through a few dozen resumes and had finally
brought our first candidate in for an interview. The candidate –
let’s call him John – had experience with smaller, lab-style computer
clusters as well as larger data center operations. At first, things were
proceeding apace, except that he had an odd answer to a few of our
questions: “I’m a sysadmin.” The meaning of that statement was
not immediately clear to us, until the following exchange occurred:

Me: So you’ve said that you don’t have Cisco IOS expe-
rience, but what about networking in general?
John: Well, I’m a sysadmin.
Me: Right, but – how about networking concepts? Rout-
ing protocols like BGP or OSPF, VLANs, bridges . . .
John, exasperated: I’m a sysadmin.

That was when we understood what he was saying. John had not
been telling us that he knew of the various things we were asking
about because he was a sysadmin; he was telling us that because

44 Love the Unknown

he was a sysadmin he did not know about those things. John was
a systems administrator; claiming such was his hand-waving way
of indicating that those tasks belonged to network administrators.
Probably unsurprisingly, John did not get the job.

For many open source projects, specialization is a curse, not a
blessing. Whether a project falls into one category or the other of-
ten depends on the size of the development team; specialization to
the degree of single points of failure can mean serious disruption to a
project in the event of a developer leaving, whether on good, bad or
unfortunate terms. It is no different for open source project sysad-
mins, although the general scarcity of these seems to allow projects
to adopt sometimes dangerous tolerances.

The most egregious example I have seen involved one particular
project whose documentation site (including all of their installation
and configuration documentation) was down for over a month. The
reason: the server had crashed, and the only person with access to
that server was sailing around on a “pirate ship” with members of
Sweden’s Pirate Party. That really happened.

However, not all single points of failure are due to absentee sys-
tem administrators; some are artificial. One large project’s system
administration access rights decisions were handled by a single lead
administrator, who not only reserved some access rights solely for
himself (you guessed it: yes, he did disappear for a while and yes,
that did cause problems) but made decisions about how access rights
should be given out based on whether he himself trusted the candi-
date. “Trust” in this case was based on one thing; it was not based
on how many community members vouched for that person, how
long that person had been an active and trusted contributor to that
project, or even how long he had known that individual as a part of
that project. Rather, it was based on how well he personally knew
someone, by which he meant how well he knew that individual in
person. Imagine how well that scales to a distributed global team of
system administrators.

Jeff Mitchell 45

Of course, this example only goes to show that it is very difficult
for open source sysadmins to walk the line between security and ca-
pability. Large corporations can afford redundant staff, even when
those staff are segmented into different responsibilities or security
domains. Redundancy is important, but what if the only current
option for redundant system administration is taking the first guy
that randomly pops into your IRC channel and volunteers to help?
How can you reasonably trust that person, their skills, or their mo-
tives? Unfortunately, only the project’s contributors, or some subset
of them, can determine when the right person has come along, using
the same Web of Trust model that underpins much of the rest of
the open source world. The universe of open source projects, their
needs, and those willing to contribute to any particular project is
blissfully diverse; as a result, human dynamics, trust, intuition and
how to apply these concepts to any particular open source project
are broad topics that are far out of scope of this short essay.

One key thing has made walking that security/capability line far
easier, however: the rise of distributed version control systems, or
DVCSes. In the past, access control was paramount because the
heart of any open source project – its source code – was centralized.
I realize that many out there will now be thinking “Jeff, you should
know better than that; the heart of a project is its community, not
its code!” My response is simple: community members come and go,
but if someone accidentally runs “rm -rf” on the entire centralized
VCS tree of your project and you lack backups, how many of those
community members are going to be willing to stick around and help
recreate everything from scratch? (This is actually based on a real
example, where a drunk community member angry at some code he
was debugging ran an “rm -rf” on his entire checkout, intending to
destroy all code in the project. Fortunately, he was not a sysadmin
with access to the central repository, and too drunk to remember his
copy was simply a checkout.)

46 Love the Unknown

A project’s code is its heart; its community members are its
lifeblood. Without either, you are going to have a hard time keep-
ing a project alive. With a centralized VCS, if you did not have
the foresight to set up regular backups, maybe you could get lucky
and be able to cobble together the entire source tree from checkouts
that different people had of different parts of the tree, but for most
projects the history of the code is as important as the current code
itself, and you will still have lost all of it.

That is no longer the case. When every local clone has all of the
history for a project and nightly backups can be performed by having
a cron job run something as simple as “git pull”, the centralized
repository is now just a coordination tool. This takes its status
down a few notches. It still has to be protected against threats
both internal and external: unpatched systems are still vulnerable
to known exploits, a malicious sysadmin can still wreak havoc, an
ineffective authentication system can allow malicious code into your
codebase, and an accidental “rm -rf” of the centralized repository
can still cause loss of developer time. But these challenges can be
overcome, and in the day and age of cheap VPS and data center
hosting, absentee sysadmins can be overcome too. (Better make
sure you have redundant access to DNS, though! Oh, and, put your
websites in a DVCS repository too, and make branches for local
modifications. You will thank me later.) So, DVCSes give your
project redundant hearts nearly for free, which is a great way to
help open source sysadmins sleep at night and makes us all feel a
little bit more like Time Lords. It also means if you are not on a
DVCS, stop reading this very moment and go switch to one. It is
not just about workflows and tools. If you care about the safety of
your code and your project, you will switch.

Source code redundancy is a must, and in general the greater
amount of redundancy you can manage, the more robust your sys-
tems. It may also seem obvious that you want sysadmin redundancy;
what you may not find obvious is that redundant sysadmins are not

Jeff Mitchell 47

as important as redundant skillsets. John, the systems administra-
tor, worked in data centers and companies with redundant sysadmins
but rigid, defined skillsets. While that worked for large companies
that could pay to acquire new sysadmins with particular skillsets
on-demand, most open source projects do not have that luxury. You
have to make do with what you can get. This of course means that
an alternative (and sometimes the only alternative) to finding re-
dundant system administrators is spreading the load, having other
project members each pick up a skill or two until redundancy is
achieved.

It is really no different from the developer or artwork side of a pro-
ject; if half of your application is written in C++ and half is written
in Python, and only one developer knows Python, a departure from
the project by that developer will cause massive short-term problems
and could cause serious long-term problems as well. Encouraging
developers to branch out and become familiar with more languages,
paradigms, libraries, and so on means that each of your developers
becomes more valuable, which should not come as a shock; acquiring
new skillsets is a byproduct of further education, and more educated
personnel are more valuable. (This also makes their CV more valu-
able, which should provide a good driving force.)

Most open source developers that I know find it a challenge and a
pleasure to keep testing new waters, as that is the behavior that led
them to open source development in the first place. Similarly, open
source system administrators are in scarce supply, and can not afford
to get stuck in a rut. New technologies relevant to the sysadmin
are always emerging, and there are often ways to use existing or
older technologies in novel ways to enhance infrastructure or improve
efficiency.

John was not a good candidate because he brought little value;
he brought little value because he had never pushed outside of his
defined role. Open source sysadmins falling into that trap do not
just hurt the project they are currently involved with, they reduce
their value to other projects using different infrastructure technolo-
gies that could desperately use a hand; this decreases the overall

48 Love the Unknown

capability of the open source community. To the successful open
source administrator, there is no such thing as a comfort zone.

9. Backups to Maintain Sanity

Austin Appel

Austin “scorche” Appel is an information security professional who
spends his time breaking into things previously thought secure (with
permission, of course). He is often seen around security/hacker con-
ferences teaching people how to pick locks. In the open source world,
he does a host of things for the Rockbox project and previously vol-
unteered for the One Laptop Per Child project.

Backups are good. Backups are great. A competent admin always
keeps current backups. This much can be gathered from any manual
on server administration. The problem is that backups are only really
used when absolutely necessary. If something drastic happens to the
server or its data and one is forced to fall back on something, the
backups will come to the rescue in the moment of most dire need.
However, this should never happen, right? At any other time, what
does having backups do for you and your server environment?

Before going further, it is important to note that the advice es-
poused is for the smaller open source project server administrators
out there – the silent majority. If you maintain services that would
cause a large amount of frustration, and even perhaps harm if they
experienced any downtime, please take this with a very small grain
of salt.

For the rest of us who work with countless smaller projects with
limited resources, we rarely have a separate test and production
server. In fact, with all of the many services that an open source
project typically needs to maintain (version control, web services,
mailing lists, forums, build bots, databases, bug/feature trackers,
etc.), separate testing environments are often the stuff we can only

50 Backups to Maintain Sanity

dream about. Unfortunately, the typical approach to system admin-
istration is to tread lightly and only upgrade the systems when ab-
solutely necessary, to avoid risking dependency issues, broken code,
or any of the other million things that could go wrong. The rea-
son you are nervous is not because you may be inexperienced. It is
important to know that you are not alone in this. Whether or not
we admit it to others, many of us have been (and likely still are) in
this position. The sad fact is that this inaction – stemming from the
fear of breaking a “working” system – often leads to running services
which are often several versions behind the curve, and come with a
host of potentially serious security vulnerabilities. Rest assured that
this is not the only way to play the game though.

People tend to play a game differently when they have infinite lives
as compared to needing to start over from the start as soon as one
mistake is made. Why should server administration be any different?
Approaching the concept of backups with an offensive mindset can
change your whole view of administrating systems. Instead of living
in fear from a complete dist-upgrade (or equivalent command for
yum, pacman, etc.), when armed with backups, one is free to update
the packages on a server secure in the knowledge that the changes
can always be rolled back if things turn sour. The key to getting
over this is all about a state-of-mind. There is no reason to fear as
long as you have your safety net of backed-up files beneath you as
you jump. After all, system administration is constantly a learning
experience.

Of course, if you do not validate your backups, relying on backups
in this way becomes a very dangerous game. Fortunately, experi-
enced system administrators know that the commandment “keep cur-
rent backups” is always followed by “validate your backups.” Again,
this is another mantra that people like to recite. What does not fit
as elegantly into a catchy mantra is how quickly and easily validating
backups can be accomplished. The best way to tell that a backup
works is, of course, to restore it (preferably on an identical system
not currently active). But again, in the absence of such luxuries, a
bit more creativity is required. This is where (at least for files) check-

Austin Appel 51

sums can help you determine the integrity of your backed-up files.
In rsync, for example, the default method it uses to determine which
files have been modified is to check the time of last modification and
size of the file. However, by using the “-c” option, rsync will use a
128-bit MD4 checksum to determine whether files have changed or
not. While this may not always be the best idea to do every time in
all situations due to likely taking much longer than a normal rsync
and increased io usage, this ensures that the files are intact.

The role of system administrator can be a stressful one at times.
However, there is no need to make it more so than it needs to
be. With the proper frame of mind, some ostensibly single-purpose
defense-seeming tasks can be used as valuable tools to allow you to
nimbly move forward with your sanity intact with the speed appre-
ciated by all open source projects.

Part V.

Code

10. The Art of Problem Solving

Thiago Macieira

Thiago Macieira holds a double degree in Engineering and an MBA,
but his involvement in Open Source predates those, getting close to
15 years now. An active participant in the KDE, Qt and MeeGo
communities, he’s been a software engineer and product manager for
Qt, giving presentations and listening to people. These days, Thiago
lives in Oslo, Norway and when he’s not working on Qt, he tries
(with limited success) to improve his skills at StarCraft 2.

Problems are a routine we are faced with almost every day of our
lives and solving them is so recurrent we often do not realize we are
doing it. They may be situations as simple as figuring out the best
path to get to a destination or how to set the items in the fridge so
they fit. Only when we fail to solve them immediately do we take
notice, since we have to stop and think about them. The professional
life is no different and solving professional problems becomes part of
the job description.

Problem solving was the topic of my inaugural class when I started
my engineering degree. In that overcrowded amphitheatre last cen-
tury, our professor explained to roughly 700 freshmen how engineers
are problem solvers and our professional lives would be moving from
one problem to be solved to another. Some problems would be small
and we would solve them in no time; some others would be so big we
would need to have a project setting and a team to crack them - but
most would fall in-between. He then proceeded to give examples on
how the mentality of “problem solver” helped him in his professional
and personal life, including one unexpected live example when the
projector failed on us.

56 The Art of Problem Solving

The ability to solve problems is a skill we can hone with practice
and some ground work. Practice is something one must acquire only
through experience, by trial and failure, therefore it is not something
that a book could teach. Getting started in solving problems, how-
ever, is something one can learn. If experience is the toolbox we
carry when facing new issues, the techniques of problem solving are
the instructions on how to use the tools in the toolbox.

Phrasing the question correctly

The question we are trying to answer is the direction we are going
to go when trying to solve the problem. Ask the wrong question
and the answers may be irrelevant, invalid or just plainly wrong.
Consequently, asking the correct question is paramount. Moreover,
asking the correct question correctly is important, since it provides
clues as to what we are seeking.

The most useless problem statement that one can face is “it doesn’t
work”, yet we seem to get it far too often. It is a true statement,
as evidently something is off. Nevertheless, the phrasing does not
provide any clue as to where to start looking for answers.

Bug-tracking systems often request that the bug reporter describe
the actions taken that led up to the problem being seen, the descrip-
tion of what happened (that is, the symptom) and a description of
what was expected to happen. The comparison between the symp-
tom and the expected behavior is a good source for the question
to be asked: why did this happen, why did this other behavior not
happen? While this is not the only way for creating the question,
applying this technique to problems may certainly help.

Phrasing the problem and the question correctly, in all its details,
is also a way to further describe the problem statement. First, we
must realize that the problem very likely does not lie where we are
expecting it to be – if it did, we would have probably solved the
problem by now. Explaining all the details of the problem at hand
provides the help-givers with more information to work with. In

Thiago Macieira 57

addition, even if counter-intuitively, the act of describing the problem
in its entirety often leads to finding the solution, so much so that
many development groups require “stuck” developers to perform this
task, either by discussing it with a colleague or talking to a “näıve”
entity, like a rubber duck or Mr. Potato-Head.

In addition, one must return to the question every now and then, so
as to not lose sight of what the goal is. While executing activities to
solve the problem, care must be taken not to concentrate exclusively
on a particular piece of the problem, forgetting the overall objective.
For the same reason, it is necessary to re-examine the initial question
when a possible solution is found, to ensure it does solve the entire
problem. In turn, this also shows the necessity of asking the right
question, stating the complete problem: without the full question,
the solution may be equally incomplete.

Divide et conquera

Experience in helping others trying to solve their problems online
has shown me that in general people treat their issues as monolithic,
indivisible stumbling blocks that must be dealt with as a whole. As
such, a large problem poses a very difficult question to be answered
in its entirety.

In truth, the vast majority of those issues can be further broken
down into smaller problems, each of which are easier to deal with
and determine if they are the root cause of the problem, not to men-
tion the possibility of there being multiple sources for the symptom
experienced. Repeating this operation just a couple of times will
yield much smaller problems to tackle and, therefore, quicker solu-
tions. However, the more divisions we are forced to make, the more
we are required to know about the operating internals of the system
at hand. In reality, the problem solver will only break down as far as
his knowledge of the subject will permit and then work on the issue
from there.

58 The Art of Problem Solving

For software development, the subsystems being used are often
good hints at where to break up the problem. For example, if the
problem involves a TCP/IP transmission of data, two possible divi-
sions are the sender and the receiver: it is of no use to look for the
problem on the receiver’s end if the sender is not transmitting the
data properly. Similarly, a graphical application that is not showing
the data that it is fetching from a database has a clear division: it
would be a good idea to verify that the database access works be-
fore investigating why it is not displayed properly. Alternatively, one
could feed dummy data to the display functions and then verify that
said data does get displayed properly.

Even when the groupings are not clear, dividing the problem can
still help shed light on the issue. In fact, almost every division is
helpful, as it reduces the amount of code to be inspected, and with
it the complexity to be dealt with. At an extreme, simply dividing
the code in two and searching for the problem in one half may be of
use. This technique, called bisecting, is recommended if the divisions
created from the subsystems and interfaces have not yet revealed a
solution.

The end-product of a sequence of proper divisions is a small, self-
contained example showing the problem. At this stage, one of three
options is usually right: the problem can be identified and located;
the code is actually correct and the expectations were wrong; or
a bug was found on the lower layer of code. An advantage of the
process is that it also produces a test-case to be sent in a bug report,
should a bug turn out to be the cause.

Boundary conditions

An issue similar to dividing the problem is that of the boundary con-
ditions. In mathematics and physics, boundary conditions are the
set of values for the variables that determine the region of validity
of the equations being solved. For software, boundary conditions are
the set of conditions that must be met for the code to perform prop-

Thiago Macieira 59

erly. Usually, the boundary conditions are far from simple: unlike
mathematics and physics, the variables in software systems are far
too many, which means that the boundary conditions for them are
equally manyfold.

In software systems, the boundary conditions are often referred to
as “preconditions”, which are conditions that must be met before a
certain action is allowed. Verifying that the preconditions have been
met is a good exercise in the searching for an answer, for a violation
of the preconditions is definitely a problem that needs solving – even
if it is not the root cause of the original problem. Examples of
preconditions can be as simple as the fact that a pointer must be
valid before it can be dereferenced or that an object must not have
been disposed of before it can be used. Complex preconditions are
very likely to be documented for the software being used.

Another interesting group of boundary conditions is characterized,
interestingly, by what is not permitted: the undefined behavior. This
type of boundary conditions is very common when dealing with spec-
ifications, which try to be very explicit in how software should be-
have. A good example of this are the compilers and language defini-
tions. Strictly speaking, dereferencing a null pointer is an undefined
behavior: the most common consequence is a processor exception
being trapped and the program terminating, but other behaviors are
permitted too, including working perfectly.

The right tool for the right job

If engineers are problem-solvers, the engineer’s motto is “use the right
tool for the right job”. It may seem obvious, as no one is expected
to use a hammer to solve an electronic problem. Nonetheless, cases
of using the wrong tool are quite common, often due to ignorance of
the existence of a better tool.

Some of these tools are the bread-and-butter of software develop-
ment, like the compiler and the debugger. Inability to use these tools
is unforgivable: the professional who finds himself in an environment

60 The Art of Problem Solving

with new or unknown tools, such as when switching positions or
jobs, must dedicate some time to learning them, becoming familiar
with their functionalities and limitations. For example, if a program
crashes, being able to determine the location of the crash as well as
variables being accessed in that section of the code may help deter-
mine the root cause and thus point to the solution.

Some other tools are more advanced, belong to a niche, are not very
widely known, or are available only under cost or conditions which
cannot be met by the engineer. Yet they can be incredibly useful in
helping elucidate problems. Such tools may be static code checker
tools, thread checkers, memory debuggers, hardware event loggers,
etc. For instance, development hardware often contains a way to
control it via a special interface like JTAG or dump all instructions
executed and processor state, but this requires having special hard-
ware and tools, which are not readily available and usually cost more
than volume, consumer devices. A different example is the valgrind
suite of tools, which include thread checkers and memory debuggers
and is readily available for free, but are part of the advanced, niche
tools and are not taught at schools.

Knowing the contents of one’s toolbox is a powerful knowledge.
Using a specialized tool to search for a problem will likely yield a
result quicker, be it positive, confirming the problem, or negative,
which in turn leads the search elsewhere. Moreover, it is important
to know how to use these tools, which justifies spending time reading
the documentation, in training or simply experimenting with them
with known problems to understand how to proceed.

Conclusion

Solving problems is an art available to all. Like other arts, some
people may have such a skill that it may seem that they were born
with the ability. But in reality, with enough experience and practice,
solving problems becomes an unconscious activity.

Thiago Macieira 61

When faced with a problem that is not easy to solve, one should
sit back and take a clear look at the entirety of the problem. What
is the problem we have? Can we phrase the question that we need
an answer for? Once we know what we are looking for, we can start
searching for where it may be located. Can we break it down into
smaller, more manageable pieces? What are the best tools to be used
for each piece? Have we verified that we are using the functionalities
and services correctly?

After solving many problems, we start to see patterns. It will
become easier to detect subtle hints from the symptoms and direct
the searching towards the actual problem. An experienced problem-
solver may not even realize this action is taking place. That is an
indication that the experience and behavior has set in so well that
no conscious effort is required to access those skills.

Yet there are always some problems in life that will be hard to
solve, ranging from professional to existential, philosophical or even
those which are caused by pure curiosity. Then again, it is the chal-
lenge that drives us, the need to understand more. Life would be
pretty tedious otherwise.

11. Cross-Project Collaboration

Henri Bergius

Henri Bergius is the founder of Midgard, a free software content
repository. He has also been involved for a long time in making Linux
desktops location-aware, and in the Maemo and MeeGo communities.
He runs a small consultancy called Nemein, hacks in CoffeeScript
and PHP, and spends much of his free time motorcycling through
remote parts of the Eurasian continent. He lives in the cold Nordic
city of Helsinki, Finland.

There may be a whole new system where you’re defined
more and more by who you are and not by what you own,
by what you’ve created and shared, and what other peo-
ple have then built on” – Former Xerox PARC director
John Seely Brown in An Optimist’s Tour of the Future
(Mark Stevenson, 2010)

On projects and communities

Much of the free software world is split into tribes gathered around
something called projects. There are major projects like GNOME,
KDE or Drupal, and lots of smaller projects revolving around a single
application or a library.

Actually, calling them projects is kind of silly.
In my mind, a project is a plan of effort towards an achievable

aim, with a schedule that has start and end dates. So, for example
GNOME 3.1 would be a project, but GNOME as whole is not. It
is a community of individuals maintaining and creating a body of
software through various smaller efforts, or projects.

64 Cross-Project Collaboration

Enough with pedantry. The problem with the concept of projects
is that they end up keeping people apart, creating insular commu-
nities that often are reluctant or unable to collaborate with “the
competition”. But in the end, all of these communities consist of
individuals who write free software, and it is their choice whether
this software can be used in different environments or not.

In the end we all want the software we created to be used by others.
And even better, we want others to join in our efforts and build cool
stuff on what we have created. That is, after all, what is in the heart
of free software.

So why do we enact these walls around ourselves? Keeping an
insulated community just fosters an us-versus-them mentality. The
incompatibilities of different programming languages already do so
much to keep us apart, why add to that?

The Midgard lesson

What I wish I had known when I started, in those optimistic dot-com
days of the late 90s, is that in reality software efforts do not need to
be isolated. With a bit of care we can share our software and ideas
across communities, making both the communities and our software
stronger and better.

When I started my free software career, it was a time of big pro-
jects. Netscape was open-sourced, the Apache Software Foundation
was getting a form, and venture-funded efforts were going on every-
where. It felt like a norm to try and build your own community.
This was the sure path to fame, fortune and building cool stuff.

So what we did was build our own web framework. Back then
there were not that many of them, especially for the fledgling PHP
language. PHP was not even the first choice for us, only picked
after a long debate about using Scheme which our lead developer
preferred. But PHP was gaining popularity, becoming the program-
ming language of the web. And web was what we wanted to build.

Henri Bergius 65

At first, things looked very promising. Lots of developers flocked
into our community and started contributing. There were even com-
panies founded around Midgard. And the framework became more
featureful, and more tighly coupled.

In hindsight, this was the mistake we made. We positioned Midgard
to be something apart from PHP itself. Something that you would
install separately, and build whole websites on top of. It was either
our way or the highway.

With Midgard you would have to use our content repository inter-
faces for everything, as well as our user management and permissions
model. You would have to use our templating system, and store much
of your code into the repository instead of a file system.

This obviously did not sit too well with the wider PHP community.
Our ideas were strange to them, and Midgard at the time was even
distributed as a huge patch to the codebase, as PHP3 did not have
loadable modules.

Many years have passed, and PHP’s popularity has waxed and
waned. At the same time the Midgard community has been quite
constant – a small, tightly knit group making progress in the long
run, but apart from the wider PHP world.

We always wondered why we found it so hard to interact with the
PHP world. Even some communities doing something completely dif-
ferent, like the GNOME desktop, seemed easier to approach. Only
recently, after years of isolation, we realized the problem. In a nut-
shell: frameworks keep us apart, while libraries allow us to share our
code and experiences.

On libraries and frameworks

In the end, software is about automation, about building tools that
people can use for solving problems or connecting with each other.
With software, these tools have many layers in them. There are
low-level services like an operating system, then there are libraries,
frameworks and toolkits, and then there are actual applications.

66 Cross-Project Collaboration

Applications are always written for some particular usecase, and
so between them there are very few opportunities for sharing code.

The much more appealing opportunity is on the libraries and
frameworks level. A framework, if generic enough, can usually be
utilized for building different sorts of software. And a library can be
used to bring a particular piece of logic or connectivity anywhere. In
my view, this is the layer where most programming should happen,
with specific applications being just something that connects various
libraries into a framework that then runs the actual app.

What is a library and what is a framework? People often use these
terms interchangeably, but there is a useful rule of thumb to know
which is which: a library is something that your code calls, while a
framework is something that calls your code.

If you want your code to be used and improved upon, the best
way to go about it is to maximize the number of potential users and
contributors. With free software, this works by ensuring your code
can be adapted to multiple different situations and environments.

In the end, what you want to do is to build a library. Libraries
are cool.

How to make collaboration work

The hardest part is to get over the barrier of them-versus-us. The
developers of the other community are hackers building free software,
just like you. So just get over the question and start talking with
them.

After you have the discussion going, here are some points that I
have found important when actually implementing common ideas or
libraries across project boundaries:

� Use permissive licensing and try to avoid copyright assignments
or other requirements potential users would find onerous.

Henri Bergius 67

� Host the project on neutral ground. For web projects, Apache
is quite a good home. For desktop projects, Freedesktop is
probably the best option.

� Use technologies that do not impose too many constraints. Li-
braries should be quite low-level, or provide D-Bus APIs that
can be used with any system.

� Avoid framework-specific dependencies. For example, KDE
has found GeoClue hard to adopt because it uses GNOME-
specific settings interfaces.

� Meet the other guys. If you are from the GNOME project, go
to aKademy and give a talk, and if you are a KDE developer,
go and talk at GUADEC. After you have shared a beer or two
collaboration over IRC happens much more naturally.

� Finally, accept that not everybody will use your implemen-
tation. But if they at least implement the same ideas, then
collaboration is still possible.

Good luck with breaking down the project boundaries! In most
cases it works if your ideas are good and presented with an open
mind. But even if you do not find a common ground, as long as your
implementation solves the use case for you it has not been in vain.
After all, delivering software, and delivering great user experience is
what counts.

12. Writing Patches

Kai Blin

Kai Blin is a computational biologist searching for antibiotics in his
day job, both at the computer and in the lab. He feels very happy that
he gets to release the software developed at work under Open Source
licenses. Living in the lovely southern German town of Tübingen,
Kai spends some of his evenings at the computer, programming for
the Samba project. Most of his remaining spare time is spent at the
theatre, where Kai is active both on stage as well as building props,
stage and handling other techie things backstage.

Writing patches and submitting them often is the first real inter-
action you can have with an Open Source project. They are the
first impression you give to the developers there. Getting your first
patches “right”, however that is judged by the particular project you
are contributing to, will make your life much easier.

The exact rules on what the patch should look like, how you need
to send it to the project and all the other details will probably vary
with every project you want to contribute to. I have found that few
general rules hold pretty much all the time, and that is what this
essay is about.

How to get things wrong

This book is about “things we wish we had known when we got
started”, so let me get started with the story of my first patches.
I first got involved in real coding during the Google Summer of
Code� 2005. The Wine project had accepted me to implement

70 Writing Patches

NTLM crypto based on some Samba-related tool. Wine is a single-
committer project, meaning that only the lead developer, Alexandre
Julliard, has commit access to the main repository. Back in 2005,
Wine still was using CVS as its version control. When the project
started and I got the email that I was accepted, I got hold of my
mentor on IRC and got to work.

Coding away happily, I got the first features implemented. I pro-
duced a patch for my mentor to review. In the olden CVS days,
you had to provide all the diff options manually, but I had read up
on that part. cvs diff -N -u > ntlm.patch and I had the file I
could send to my mentor. Actually this is one thing I did get right,
and the first thing you should consider when you prepare a patch.
The normal output from the diff command might be easier to read
for a computer, but I never met a human who actually preferred the
normal output over the unified diff output. Switched on by the -u

flag, this makes diff use the + + + and −−− notation.
For example, the following diff is the result of teaching the Python

“Hello, world!” example program to greet the world in Swedish.

diff --git a/hello.py b/hello.py

index 59dbef8..6334aa2 100644

--- a/hello.py

+++ b/hello.py

@@ -1,4 +1,4 @@

#!/usr/bin/env python

vim: set fileencoding=utf-8

-print "Hello, world!"

+print "Hallå, världen!"

The line starting with - is the line being removed, the one starting
with + is the one being added. The other lines are helping the patch

tool to do its job.
My newly created unified diff was sent to my mentor, who gave me

a review and lots of things I could change. I fixed that stuff, and sent

Kai Blin 71

him a new diff shortly after. The code–review cycle continued for the
whole duration of GSoC, with my patch growing and growing. When
the pencils down date arrived, I had a huge monster patch with all
my changes in there. Naturally I had a really hard time getting that
patch reviewed, let alone committed. In the end, Alexandre refused
to look at the patch further before I split it up. Wine policy requires
that patches are small logical steps adding functionality. Each patch
needs to do something useful and compile.

Now, splitting an existing huge patch up in pieces that individually
make sense and compile is a lot of work. It was even more work
because the only way I knew this could be done was to write a small
patch, create the diff, get that committed, update my local checkout
and then write the next small patch. Shortly after I started sending
my first small patches, Wine went into a one month feature freeze
leading up to the 0.9.0 beta release. I was sitting on my next patch for
a month before I could continue, and I eventually got my last patch in
in November. I was totally frustrated with the whole experience and
decided I did not want to deal with the Wine community anymore.

My frustration held up until people who were actually using my
code were starting to ask questions about it in February 2006. My
code was actually useful! They wanted more features as well. When
Google went on to announce it would be doing GSoC again in 2006,
my plans for the summer were clear. Now that Wine had switched
to git in December 2005, I knew I would not be held up by possible
code freezes, as I finally could create all my small patches locally.
Life was good.

It wasn’t until I stumbled over a git frontend (called porcelain in
git-speak) that emulated the “quilt” behavior that I learned that
there were tools that could have made my life easier even in 2005.

How NOT to get things wrong

After my tale of how I managed to get things wrong with regard to
sending patches, let me continue with a few tips to avoid the pitfalls.

72 Writing Patches

Patch submission guidelines

The first tip I have is to read up on any patch submission guidelines
the project you want to contribute to might have. Those should
actually be consulted before you start coding, along with any coding
style guidelines the project has.

Unified diffs

Even if not covered in the patch submission guidelines explicitly, you
really, really want to send unified diff output. I have yet to meet
a project that prefers the non-unified output of diff. Unified diffs
make reviewing the patch so much easier. It is no accident that most
modern version control programs automatically use that format in
their diff command.

Use distributed version control

Speaking of modern version control, you will want to use a DVCS
to work on the code locally. Git or Mercurial are the most popular
choices there, Bazaar might be worth a look as well. Even if the
project you want to contribute to still uses a centralized version
control, being able to commit your changes iteratively is a great
thing. All of the mentioned distributed version control tools should
be able to import commits from SVN or CVS. You could go and learn
quilt, but seriously, the future is in the field of distributed version
control.

Small patches, doing one thing at a time

When I have to review patches, patches that are too big or that try
to do many things at once are really annoying to deal with. Patches
doing only one thing at a time are easier to review. Eventually, they
will make your life easier when you finally need to debug the mistakes
both the author and the reviewer of the patch missed.

Kai Blin 73

Track your patch

After you have submitted your patch, keep an eye on the communi-
cation channels of the project and on your patch. If you have not
gotten any feedback for a week, you should politely ask for feedback.
Depending how the project handles patch submissions, a patch might
get lost in the noise. Do not expect to get your patch committed in
the first iteration. It usually takes a couple of tries to get used to
the style of a new project. As a first-time contributor, nobody will
blame you for this, provided you get most of the things right. Just
make sure that you fix all of the things the developers indicated and
send a second version of the patch.

Conclusion

Writing good patches is not hard. There are a couple of things to
consider, but after writing a couple of them you should be on top
of those. A modern (distributed) version control system and the
workflow you get using it actually take care of most of the things I
mentioned.

If you remember nothing else, remember this. . .

� Use a distributed version control system to manage your patches

� Write patches changing code in small, self-contained steps

� Follow the existing coding conventions

� Respond to comments on your patch promptly

The above guidelines should help you to do most if not all things
right when submitting your first patches. Happy coding.

Part VI.

Quality Assurance

13. Given Enough Eyeballs, Not All Bugs
are Shallow

Ara Pulido

Ara Pulido is a testing engineer working for Canonical, first as part
of the Ubuntu QA team, and now as part of the Hardware Certi-
fication team. Although she started her career as a developer, she
quickly found out that what she really liked was testing the software.
She is very interested in new testing techniques and tries to apply
her knowledge to make Ubuntu better.

Dogfooding Is Not Enough

I have been involved with Free Software since my early days at uni-
versity in Granada. There, with some friends, we founded the local
Linux User Group and organized several activities to promote Free
Software. But, since I left university, and until I started working
at Canonical, my professional career had been in the proprietary
software industry, first as a developer and after that as a tester.

When working in a proprietary software project, testing resources
are very limited. A small testing team continues the work that de-
velopers started with unit testing, using their expertise to find as
many bugs as possible, to release the product in good shape for end
user consumption. In the Free Software world, however, everything
changes.

When I was hired at Canonical, apart from fulfilling the dream
of having a paid job in a Free Software project, I was amazed by
the possibilities that testing a Free Software project brought. The

78 Given Enough Eyeballs, Not All Bugs are Shallow

development of the product happens in the open, and users can access
the software in the early stages, test it and file bugs as they encounter
them. For a person passionate about testing, this is a new world with
lots of new possibilities. I wanted to make the most of it.

As many people do, I thought that dogfooding, or using the soft-
ware that you are aiming to release, was the most important testing
activity that we could do in Free Software. But, if “given enough
eyeballs all the bugs are shallow”, (one of the key lessons of Ray-
mond’s “The Cathedral & The Bazaar”), and Ubuntu had millions
of users, why were very important bugs still slipping into the release?

First thing that I found when I started working at Canonical was
that the organized testing activities were very few or nonexistent.
The only testing activities that were somehow organized were in the
form of emails sent to a particular mailing list calling for testing
a package in the development version of Ubuntu. I do not believe
that this can be considered a proper testing activity, but just another
form of dogfooding. This kind of testing generates a lot of duplicated
bugs, as a really easy to spot bug will be filed by hundreds of people.
Unfortunately, the really hard to spot but potentially critical bug,
if someone files it, is likely to remain unnoticed, due to the noise
created by the other hundreds of bugs.

Looking better

Is this situation improving? Are we getting better at testing in Free
Software projects? Yes, I really believe so.

During the latest Ubuntu development cycles we have started sev-
eral organized testing activities. The range of topics for these ac-
tivities is wide, including areas like new desktop features, regression
testing, X.org drivers testing or laptop hardware testing. The results
of these activities are always tracked, and they prove to be really
useful for developers, as they are able to know if the new features
are working correctly, instead of guessing that they work correctly
because of the absence of bugs.

Ara Pulido 79

Regarding tools that help testing, many improvements have been
made:

� Apport1 has contributed to increase the level of detail of the
bugs reported against Ubuntu: crashers include all the debug-
ging information and their duplicates are found and marked as
such; people can report bugs based on symptoms, etc.

� Launchpad2, with its upstream connections, has allowed hav-
ing a full view of the bugs, knowing that bugs happening in
Ubuntu are usually bugs in the upstream projects, and allow-
ing developers to know if the bugs are being solved there.

� Firefox, with its Test Pilot extension and program, drives the
testing without having to leave the browser3. This is, I believe,
a much better way to reach testers than a mailing list or an
IRC channel.

� The Ubuntu QA team is testing the desktop in an automated
fashion and reporting results every week4, allowing developers
to have a very quick way to check that there have not been any
major regressions during the development.

Although testing in Free Software projects is getting better, there
is still a lot to be done.

Looking ahead

Testing is a skilled activity that requires lots of expertise, but in the
Free Software community is still seen as an activity that does not
require much effort. One of the reasons could be that the way we
do testing is still very old-fashioned and does not reflect the increase

1http://wiki.ubuntu.com/Apport
2http://launchpad.net
3http://testpilot.mozillalabs.com
4http://reports.qa.ubuntu.com/reports/desktop-testing/natty

http://wiki.ubuntu.com/Apport
http://launchpad.net
http://testpilot.mozillalabs.com
http://reports.qa.ubuntu.com/reports/desktop-testing/natty

80 Given Enough Eyeballs, Not All Bugs are Shallow

of complexity in the Free Software world in the last decade. How
can it be possible that with the amount of innovation that we are
generating in Free Software communities, testing is still done like it
was in the 80s? Let’s face it, fixed testcases are boring and get easily
outdated. How are we going to grow a testing community, who is
supposed to find meaningful bugs if their main required activity is
updating testcases?

But, how do we improve testing? Of course, we cannot completely
get rid of testcases, but we need to change the way we create and
maintain them. Our testers and users are intelligent, so, why create
step-by-step scripts? Those could easily get replaced by an auto-
mated testing tool. Instead of that, let’s just have a list of activities
you perform with the application and some properties it should have,
for example, “Shortcuts in the launcher can be rearranged” or “Start-
ing up LibreOffice is fast”. Testers will figure out how to do it, and
will create their testcases as they test.

But this is not enough, we need better tools to help testers know
what to test, when and how. What about having an API to allow
developers to send messages to testers about updates or new features
that need testing? What about an application that tell us what part
of our system needs testing based on testing activity? In the case
of Ubuntu we have the data in Launchpad (we would need testing
data as well, but at least we have bug data). If I want to start a
testing session against a particular component I would love to have
the areas that have not been tested yet and a list of the five bugs
with more duplicates for that particular version, so I avoid filing those
again. I would love to have all this information without leaving the
same desktop that I am testing. This is something that Firefox has
started with Test Pilot, although they are currently mainly gathering
browser activity.

Communication between downstream and upstream and vice-versa
also needs to get better. During the development of a distribution,
many of the upstream versions are also under development, and they
already have a list of known bugs. If I am a tester of Firefox through
Ubuntu, I would love to have a list of known bugs as soon as the

Ara Pulido 81

new package gets to the archive. This could be done by having an
acknowledged syntax for release notes, that could then get easily
parsed and bugs automatically filed and connected to the upstream
bugs. Again, all of this information should be easily available to the
tester, without leaving the desktop.

Testing, if done this way, would allow the tester to concentrate on
the things that really matter and that make testing a skilled activity;
concentrate on the hidden bugs that have not been found yet, on the
special configurations and environments, on generating new ways to
break the software. And, ultimately, on having fun while testing.

Wrapping up

From what I have seen in the latest three years, testing has improved
a lot in Ubuntu and the rest of Free Software projects that I am
somehow involved with, but this is not enough. If we really want
to increase the quality Free Software we need to start investing in
testing and innovating the ways we do it, the same way we invest
in development. We cannot test 21st century software with 20th
century testing techniques. We need to react. Free Software is good
because it is open source is not enough anymore. Free Software will
be good because it is open source and has the best quality that we
can offer.

14. Kick, Push

Andre Klapper

In real life, Andre Klapper is a bugmaster. During lunch break or
while sleeping he works on random things in GNOME (bugsquad,
release team, translation, documentation, etc) or Maemo, or studies,
or eats ice cream.

At the very beginning I only had one question: How can I print a
part of the email which I received in Gnome’s email client Evolution?
I asked on the corresponding mailing list.

I had switched to Linux exactly one year ago, out of frustration
that I could not make my modem work after reinstalling a proprietary
operating system that was popular around that time.

The answer to my question was “not possible”. Cool kids would
have checked out the code, compiled it, hacked it to make it act as
wanted, and submitted a patch attached to a bug report by then.
Well, as you can guess I was not a cool kid. My programming skills
are rather limited, so I stuck to a cumbersome printing workaround
for the time being. The answer I received on the mailing list also
mentioned that the feature was in planning, and that a bug report
had been filed on my behalf (without mentioning where, but I did
not care about that – I was happy that there were plans to fix my
issue soon).

It may just have been my laziness to have stayed subscribed to
the mailing list. Some folks mentioned the bug tracker from time to
time, often as a direct response to feature requests, so I took a look at
it eventually. But bug trackers, especially Bugzilla, are strange tools
with lots of complex options. An area you normally prefer to avoid
unless you are a masochist. They contain many tickets describing

84 Kick, Push

bugs or feature requests by users and developers. It looked as if
those reports were partially also used for planning priorities. (Calling
this “Project Management” would be an euphemism - less than one
fourth of the issues that were planned to get fixed or implemented
for a specific release actually got fixed in the end.)

What I found beside an interesting look at the issues of the soft-
ware and the popularity of certain requests were inconsistencies and
some noise, like lots of duplicates or bug reports missing enough in-
formation to get processed properly. I felt like cleaning up a bit
by “triaging” the available bug reports. I do not know what this
tells you about my mindset though – add wrong buzzwords for ran-
dom characteristics here, like organized, persistent or knowledgeable.
Also nice irony considering that my father always used to complain
about my messy room.

So back in those dial-up modem times I usually collected my ques-
tions and went online to enter IRC once a day in order to shoot
my questions at Evolution’s bugmaster who was always welcoming,
patient and willing to share his experience. If there was a triaging
guide available at that time covering basic bug management knowl-
edge and explaining good practices and common pitfalls, I had not
heard about it.

The amount of open reports decreased by 20% within a few months
though that was of course not just because of one person starting
to triage some tickets. Obviously there was some work waiting to
get picked up by somebody – like decreasing the amount of open
tickets for the developers so that they could better focus, discussing
and setting some priorities with them, and responding to some users’
comments that had remained unanswered at that time. Open Source
is always welcoming to contributions once you have found your hook
to participate.

Way later I realized that there is some documentation around to
dive into. Luis Villa - who might have been the first bugmaster
ever – wrote an essay called “Why Everyone Needs A Bugmaster”1,

1http://tieguy.org/talks-files/LCA-2005-paper-html/index.html

 http://tieguy.org/talks-files/LCA-2005-paper-html/index.html

Andre Klapper 85

and most Bugsquad teams in Open Source projects were publishing
triaging guides in the meantime that helped newbies get involved in
the community. Many Open Source developers started their great
Open Source careers by triaging bugs and gained initial experience
in software project management.

Nowadays there are also tools which can save you a lot of time
when it comes to the repetitive grunt work part of triaging. On the
server side GNOME’s “stock answers” extension provides common
and frequently used comments to add to tickets via one click, and on
the client side you can run your own Greasemonkey scripts or Matěj
Cepl’s Jetpack extension called “bugzilla-triage-scripts”2.

If you are an average or poor musician but still love music more
than anything else, you can stick around in the business as a jour-
nalist. Software development also has such niches apart from the
default idea of writing code that can make you happy. You have to
spend some time to find them but it is worth the efforts, experience
and contacts, and with some luck and skills it might even earn you
a living in your personal field of interest and keep you from ending
up as a code monkey.

2https://fedorahosted.org/bugzilla-triage-scripts

 https://fedorahosted.org/bugzilla-triage-scripts

15. Test-Driven Enlightenment

Jonathan “Duke” Leto

Jonathan “Duke” Leto is a software developer, published mathemati-
cian, Git ninja and avid bicyclist living in Portland, Oregon. He is a
core developer of Parrot Virtual Machine and founder of Leto Labs
LLC.

When I first got involved in Free and Open Source Software, I had
no clue what tests were or why they were important. I had worked
on some personal programming projects before, but the first time I
actually worked on a project with others, i.e., got a commit bit, was
Yacas, Yet Another Computer Algebra System, a computer algebra
system similar to Mathematica.

At this stage in my journey, tests were an afterthought. My general
meta-algorithm was to hack on code → see if it works → write a
simple test to show it works (optional). If a test was challenging to
write, it most likely never got written.

This is the first step in the path to Test-Driven Enlightenment.
You know tests are probably a good idea, but you have not seen the
benefit of them clearly, so you only write tests occasionally.

If I could open up a wormhole and tell my younger self one piece
of wisdom about testing, it would be:

“Some tests, in the long-run, are more important than
the code they test.”

A few people right about now may be thinking that I put on my
tinfoil testing hat when I sit down to code. How can tests be more
important than the code they test? Tests are the proof that your code
actually works, and they guide you to writing correct code as well as

88 Test-Driven Enlightenment

providing the flexibility to change code and know that features still
work. The larger your codebase becomes, the more valuable your
tests are, because they allow you to change one part of your code
and still be sure that the rest of it works.

Another vital reason to write tests is because it indicates that
something is explicitly desirable, rather than an unintended side-
effect or oversight. If you have a specification, you can use tests to
verify that you meet it, which is very valuable, and in some industries,
necessary. A test is just like telling a story, where the story is how
you think code should work.

Code either changes and evolves or bitrots1.
Very often, you will write tests once, but then totally refactor your

implementation or even rewrite it from scratch. Tests often outlive
the code they originally tested, i.e., one set of tests can be used no
matter how many times your code is refactored. Tests are actually
the litmus test that allows you to throw away an old implementation
and say “this newer implementation has a much better design and
passes our test suite.” I have seen this happen many times in the
Perl and Parrot communities, where you can often find me.

Tests allow you to change things quickly and know if something is
broken. They are like jet packs for developers.

Carpenters have a bit of sage wisdom that goes like this:

“Measure twice, cut once.”

Coding is like cutting and tests are like measuring.
Test-Driven Enlightenment saves an enormous amount of time,

because instead of flailing around, fiddling with code, not having a
direction, tests hone your focus.

Tests also are very good positive feedback. Every time you make
a new test pass, you know that your code is better and it has one
more feature or one less bug.

1The term “bitrot” is coder slang for the almost universal fact that if a piece of
code does not change but everything it relies on does, it “rots” and usually has
very little chance of working unless modifications are made to accommodate
newer software and hardware.

Jonathan “Duke” Leto 89

It is easy to think “I want to add 50 features” and spend all day
fiddling with code, constantly switching between working on different
things. Most of the time, very little will be accomplished. Test-
Driven Enlightenment guides one to focus on making one test pass
at a time.

If you have a single failing test, you are on a mission to make it
pass. It focuses your brain on something very specific, which very
often has better results than switching between tasks constantly.

Most information about being test-driven is very specific to a lan-
guage or situation, but that does not need to be the case. Here is how
to approach adding a new feature or fixing a bug in any language:

1. Write a test that fails, which you think will pass when the
feature is implemented or bug is fixed. Advanced: As you
write the test, run it occasionally, even if it is not done yet,
and guess the actual error message that the test will give. The
more tests you write and run, the easier this will become.

2. Hack on the code.

3. Run the test. If it passes, go to #4, otherwise go to #2.

4. You are done! Do a happy dance :)

This method works for any kind of test and any language. If you
remember only one thing about testing from this essay, remember
the steps above.

Here are some more general test-driven guidelines that will serve
you well and apply in almost any situation:

1. Understand the difference between what is being tested and
what is being used as a tool to test something else.

2. Fragile tests. You could write a test that makes sure an error
message is exactly correct. But what happens when the error
message changes? What happens when someone international-
izes your code to Catalan? What happens when someone runs

90 Test-Driven Enlightenment

your code on an operating system you have never heard of?
The more resilient your test is, the more valuable it will be.

Think about these things when you write tests. You want them to
be resilient, i.e., tests, for the most part, should only have to change
when functionality changes. If you have to change your tests often,
but functionality is not changing, you are doing something wrong.

Kinds of tests

Many people start to get confused when people speak of integration
tests, unit tests, acceptance tests and many other flavors of tests.
One should not worry too much about these terms. The more tests
you write, the more nuances you will see and the differences between
tests will become more apparent. Everyone does not have the same
definition for what these tests are, but the terms are still useful to
describe kinds of tests.

Unit tests vs. integration tests

Unit tests and integration tests form a spectrum. Unit tests test
small bits of code, and integration tests verify how more than one
unit fits together. The test writer gets to decide what comprises
a unit, but most often it is at the level of a function or method,
although some languages call those things by different names.

To make this a little more concrete, we will give a basic analogy
using functions. Imagine that f(x) and g(x) are two functions which
represent two units of code. For concreteness, let’s assume they
represent two specific functions in your favorite Free/Open Source
project’s codebase.

An integration test asserts something like function composition,
i.e., f(g(a)) = b. An integration test is testing how multiple things
integrate or work together, instead of how a single part works in-
dividually. If algebra isn’t your thing, another way to look at it is

Jonathan “Duke” Leto 91

unit tests only test one part of the machine at a time, but integra-
tion tests very many parts work in unison. A great example of an
integration test is test-driving a car. You are not checking the air
pressure, or measuring voltage of the spark plugs. You are making
sure the vehicle works as a whole.

Most of the time it is good to have both. I often start with unit
tests and add integration tests as needed, since you will weed out
the most basic bugs first, then find more subtle bugs that are related
to how pieces do not quite fit together, as opposed to the individual
pieces not working. Many people write integration tests first and
then delve into unit tests. Which you write first is not nearly as
important as writing both kinds.

Enlightenment

Test-Driven Enlightment is a path, not a place. Enjoy the journey
and make sure to stop and smell the flowers if and when you get lost.

Part VII.

Documentation and Support

16. Life-Changer Documentation for
Novices

Atul Jha

Atul Jha has been using Free Software since 2002. He is working
as an Application Specialist at CSS Corp, Chennai, India. He loves
visiting colleges, meeting students and spreading the word about Free
Software.

In 2002, the cyber cafe was the place to surf Internet as dial up
connections were very costly. During that time, Yahoo chat was very
popular and I used to visit the #hackers channel there. There were
some crazy people there who said they would hack my password.
I was very eager to know more about hacking and become one of
them. The next day I went to the cyber cafe again and typed “how
to become a hacker” on Yahoo search. The very first URL was of
Eric S. Raymond. I was jumping with joy that I had the magic key.

I started reading the book and to my surprise the definition of
hacker was “someone who likes solving problems and overcoming
limits”. It also said “hackers build things, crackers break them.”
Alas I wanted to be a cracker, but this book brought me to the other
world of hacking. I kept reading the book and encountered various
new terms like GNU/Linux, mailing list, Linux user group, IRC,
Python and many more.

After searching further, I was able to find a Linux user group in
Delhi and got a chance to meet real hackers. I felt like I was in an
alien world as they were talking about Perl, RMS, the kernel, device
drivers, compilation and many other things which were going over
my head.

96 Life-Changer Documentation for Novices

I was in a different world. I preferred coming back home and
finding some Linux distribution from somewhere. I was too scared
to ask for one from them. I was nowhere near their level, a total
dumb newbie. I managed to get some distribution by paying 1000
Rs to a guy who used to have a business selling distribution media. I
tried many of them and was not able to get my sound working. This
time I decided to visit an IRC channel from the cyber cafe. I found
#linux-india and jumped over asking “my sound nt wrking”, then
came instructions like “no SMS speak” and “RTFM”. It scared me
more and took some time to figure out that RTFM meant “read the
f*** manual”.

I was terrified and preferred staying away from IRC for a few
weeks.

One fine day I got an email about a monthly Linux user group
meetup. I needed answers for my many questions. I met Karunakar
there and he asked me to bring my computer to his office as he had
the whole Debian repository available there. Debian was new for
me, but I was satisfied with the fact that finally I will be able to
play music on Linux. The next day I was in his office after carrying
my computer on the over-crowded bus – it was fun. In a few hours,
Debian was up and running on my system. He also gave me a few
books for beginners and a command reference.

The next day again in the cyber cafe, I read another of Eric S.
Raymond’s essays called How To Ask Questions The Smart Way. I
was still visiting the #hackers channel on Yahoo chat where I made
a very good friend, Krish, who suggested I buy a book called Linux
Command Reference. After spending some time with those books
and looking things up at tldp.org I was a newbie Linux user. I never
looked back. I also attended a Linux conference where I met a few
hackers from Yahoo and I was really inspired after attending their
talk. Later after a few years I had a chance to meet Richard Stallman
who is more like a god for many people in Free Software community.

I would admit that the documentation of Eric S. Raymond changed
my life and that of many others for sure. After all these years in the
Free Software community, I have realized documentation is the key

Atul Jha 97

for participation of newbies in this awesome Open Source community.
My 1$ advice to all developers would be: please document even the
smallest work you do as the world is full of newbies who would love
to understand it. My blog has a wide range of postings, from simple
ones like enabling the spell checker in OpenOffice and ones about
installing Django in a virtual environment.

17. Good Manners Matter

Rich Bowen

Rich Bowen has been working on Free/Open Source Software for
about 15 years. Most of this time has been spent on the Apache
HTTP Server, but he has also worked on Perl, PHP, and a vari-
ety of web applications. He is the author of Apache Cookbook, The
Definitive Guide to Apache mod rewrite, and a variety of other books,
and makes frequent appearances at various technology conferences.

I started working on the Apache HTTP Server documentation pro-
ject in September of 2000. At least, that is when I made my first
commit to the docs. Prior to that, I had submitted a few patches
via email, and someone else had committed them.

Since that time, I have made a little over a thousand changes to
the Apache HTTP Server docs, along with just a handful of changes
to the server code itself.

People get involved in Free/Open Source Software for a lot of dif-
ferent reasons. Some are trying to make a name for themselves. Most
are trying to “scratch an itch”, as the saying goes – trying to get the
software to do something that it does not currently do, or create a
new piece of software to fill a need that they have.

I got involved in software documentation because I had been roped
into helping write a book, and the existing documentation was pretty
awful. So, in order to make the book coherent, I had to talk with
various people on the project to help make sense of the documenta-
tion. In the process of writing the book, I made the documentation
better, purely to make my work easier.

Around that same time, Larry Wall, the creator of the Perl pro-
gramming language, was promoting the idea that the three primary

100 Good Manners Matter

virtues of a programmer were laziness, impatience and hubris. Larry
was making very valid points, and Larry has a sense of humor. A
significant portion of the programmer community, however, take his
words as license to be jerks.

What I have learned over my years in Open Source documentation
is that the three primary virtues of a documentation specialist, and,
more generally, of customer support, are laziness, patience, and hu-
mility. And that the over-arching virtue that ties these all together
is respect.

Laziness

We write documentation so that we do not have to answer the same
questions every day for the rest of our lives. If the documentation
is inadequate, people will have difficulty using the software. While
this may be a recipe for a lucrative consulting business, it is also
a recipe for a short-lived software project, as people will give up in
frustration and move on to something that they do not have to spend
hours figuring out.

Thus, laziness is the first virtue of a documentation writer.

When a customer asks a question, we should answer that question
thoroughly. Exhaustively, even. We should then record that answer
for posterity. We should illuminate it with examples, and, if possible,
diagrams and illustrations. We should make sure that the prose is
clear, grammatically correct, and eloquent. We should then add this
to the documentation in a place that is easy to find, and copiously
cross referenced from everywhere that someone might look for it.

The next time someone asks this same question, we can answer
them with a pointer to the answer. And questions that they may have
after reading what has already been written should be the source of
enhancements and annotations to what has already been written.

This is the true laziness. Laziness does not mean merely shirking
work. It means doing the work so well that it never has to be done
again.

Rich Bowen 101

Patience

There is a tendency in the technical documentation world to be impa-
tient and belligerent. The sources of this impatience are numerous.
Some people feel that, since they had to work hard to figure this
stuff out, you should too. Many of us in the technical world are self-
taught, and we have very little patience for people who come after
us and want a quick road to success.

I like to refer to this as the “get off my lawn” attitude. It is not
very helpful.

If you cannot be patient with the customer, then you should not
be involved in customer support. If you find yourself getting angry
when someone does not get it, you should perhaps let someone else
take the question.

Of course, that is very easy to say, and a lot harder to do. If you
find yourself in the position of being an expert on a particular sub-
ject, people are inevitably going to come to you with their questions.
You are obliged to be patient, but how do you go about achieving
this? That comes with humility.

Humility

I had been doing technical support, particularly on mailing lists, for
about two years, when I first started attending technical conferences.
Those first few years were a lot of fun. Idiots would come onto a
mailing list, and ask a stupid question that a thousand other losers
had asked before them. If they had taken even two minutes to just
look, they would have found all the places the question had been
answered before. But they were too lazy and dumb to do that.

Then I attended a conference, and discovered a few things.

First, I discovered that the people asking these questions were
people. They were not merely a block of monospaced black text on
a white background. They were individuals. They had kids. They
had hobbies. They knew so much more than I did about a whole

102 Good Manners Matter

range of things. I met brilliant people for whom technology was a
tool to accomplish something non-technical. They wanted to share
their recipes with other chefs. They wanted to help children in west
Africa learn how to read. They were passionate about wine, and
wanted to learn more. They were, in short, smarter than I am, and
my arrogance was the only thing between them and further success.

When I returned from that first conference, I saw the users mailing
list in an entirely different light. These were no longer idiots asking
stupid questions. These were people who needed just a little bit of
my help so that they could get a task done, but, for the most part,
their passions were not technology. Technology was just a tool. So if
they did not spend hours reading last year’s mailing list archives, and
chose instead to ask the question afresh, that was understandable.

And, surely, if on any given day it is irritating to have to help
them, the polite thing to do is to step back and let someone else
handle the question, rather than telling them what an imbecile they
are. And, too, to remember all of the times I have had to ask the
stupid questions.

Politeness and Respect

In the end, this all comes down to politeness and respect. Although I
have talked mainly here about technical support, the documentation
is simply a static form of technical support. It answers the questions
that you expect people to have, and it provides these answers in a
semi-permanent form for reference.

When writing this documentation, you should attempt to strike
the balance between assuming that your reader is an idiot, and as-
suming that they should already know everything. At the one end,
you are telling them to make sure their computer is plugged in. At
the other end you are using words like “simply” and “just” to make
it sound like every task is trivial, leaving the reader feeling that they
are probably not quite up to the task.

Rich Bowen 103

This involves having a great deal of respect and empathy for your
reader, and endeavoring to remember what it was like to be in the
beginner and intermediate stages of learning a new software package.
Examples of bad documentation are so prevalent, however, that this
should not be a terribly difficult memory to rekindle. Chances are
that you have felt that way within the last week.

I wish ...

I wish that when I started working on Open Source documentation
I had been less arrogant. I look back at some of the things that I
have said on publicly-archived mailing lists, forever enshrined on the
Internet, and am ashamed that I could be that rude.

The greatest human virtue is politeness. All other virtues flow
from it. If you cannot be polite, then all of the things that you
accomplish amount to little.

18. Documentation and My Former Self

Anne Gentle

Anne Gentle is the fanatical technical writer and community docu-
mentation coordinator at Rackspace for OpenStack, an open source
cloud computing project. Prior to joining OpenStack, Anne worked
as a community publishing consultant, providing strategic direction
for professional writers who want to produce online content with
wikis with user-generated pages and comments. Her enthusiasm
for community methods for documentation prompted her to write
a book about using social publishing techniques for technical docu-
mentation titled Conversation and Community: The Social Web for
Documentation. She also volunteers as a documentation maintainer
for FLOSS Manuals, which provides open source documentation for
open source projects.

An intriguing premise – spill my guts about what I wish I knew
about open source and documentation. Rather than tell you what
I wish you knew about open source and documentation, I must tell
you what I wish my former self knew. The request evokes a sense of
regret or remorse or even horrified notions of “What was I thinking?”

In my case, my former self was just five years younger than now,
a thirty-something established professional. In contrast, others may
recall their first experiences with open source as a teenager. Jono
Bacon in his book, Art of Community, recounts standing in front of
an apartment door with his heart pounding, about to meet someone
he had only talked to online through an open source community. I
have experienced that first in-person meeting with people I have only
met online, but my first serious foray into the world of open source
documentation came when I responded to an emailed request for

106 Documentation and My Former Self

help. The email was from a former coworker, asking for documenta-
tion help on the XO laptop, the charter project for One Laptop Per
Child. I pondered the perceived opportunity, talking to my friends
and spouse, wondering if it would be a good chance to experiment
with new doc techniques and try something I had never done before,
wiki-based documentation. Since that first experimentation, I have
joined OpenStack, an open source project for cloud computing soft-
ware, working full time on community documentation and support
efforts.

I immediately think of the many contradictions I have found along
the way. I have uncovered surprising points and counterpoints for
each observation. For example, documentation absolutely matters
for support, education, adoption, yet, an open source community
will march on despite a lack of documentation or completely flawed
docs. Another seeming juxtaposition of values is that documentation
should be a good onboarding task, a starting point for new volun-
teers, yet new community members know so little that they can not
possibly write or even edit effectively, nor are newbies familiar with
the various audiences served by doc. Word on the street lately is
that “developers should write developer docs” because they know
the audience well and can serve others like themselves best. In my
experience, new, fresh eyes are welcome to the project and some
people are able to write down and share with others those fresh, em-
pathetic eyes. You do not want to create a “newbies-only” culture
around docs, though, because it is important that the key techni-
cal community members support doc efforts with their contributions
and encourage others to do so.

A bit of a dirty little secret for documentation related to open
source projects is that the lines drawn between official docs and un-
official doc projects are blurred at best. I wish I had known that
documentation efforts get forked all the time, and new web sites can
sprout up where there were none. Sprawling docs do not offer the
most efficient way for people to learn about the project or software,
but a meandering walk through a large set of web documentation
might be more telling to those who want to read between the lines

Anne Gentle 107

and interpret what is going on in the community through the docu-
mentation. Lots of forking and multiple audiences served may mean
that the product is complex and serves many. It also can mean
that no strong core documentation ethos exists in the community, so
unorchestrated efforts are the norm.

I wish when I started that I had some ability to gather the “social
weather” of an online community. When you walk into a restaurant
with white tablecloths and couples dining and a low-level volume
of conversations, the visual and auditory information you receive
sets the ambiance and gives you certain clues about what to expect
from your dining experience. You can translate this concept of social
weather to online communities as well. An open source community
gives certain clues in their mailing lists, for example. A list land-
ing page prefixed with a lot of rules and policy around posting will
be heavy in governance. A mailing list that has multiple posts em-
phasizing that “there are no dumb questions” is more approachable
for new doc writers. I also wish I knew of a way to not only do a
content audit – a listing of the content available for the open source
project – but also to do a community audit – a listing of the influ-
ential members in the open source community, be they contributors
or otherwise.

Lastly, an observation about open source and doc that I have en-
joyed validating is the concept that documentation can occur in
“sprints” – in short bursts of energy with a focused audience and
outline and resulting in a known set of documentation. I was so
happy to hear at a talk at SXSW Interactive that sprints are per-
fectly acceptable for online collaboration and you could expect lags
in energy level, and that is okay. Software documentation is often
fast and furious in the winding-down-days of a release cycle, and that
is acceptable in open source, community-based documentation. You
can be strategic and coordinated and still offer a high-energy event
around documentation. These are exciting times in open source, and
my former self felt it! It is a good thing you can keep learning and
growing your former self into your current self with the collection of
advice to tote along with you.

19. Stop Worrying and Love the Crowd

Shaun McCance

Shaun McCance has been involved in GNOME documentation since
2003 as a writer, community leader, and tool developer. He has
spent most of that time wondering how to get more people to write
better documentation, with some success along the way. He offers
his experience in community documentation through his consulting
company, Syllogist.

Something big happened as I was preparing to write this: GNOME 3
was released. This was the first major GNOME release in nine years.
Everything was different, and all of the existing documentation had
to be rewritten. At the same time, we were changing the way we
write documentation. We had thrown away our old manuals and
started fresh with dynamic, topic-oriented help using Mallard.

A few weeks before the release, a group of us got together to work
on the documentation. We worked all day, planning, writing, and
revising. We wrote hundreds of pages against a moving target of
late-cycle software changes. We had people contributing remotely,
submitting new pages and correcting existing content. It was the
most productive I had ever seen our documentation team.

What did we finally get right? A lot of factors came together, and
I could write an entire book about all the nuances of Open Source
documentation. But the most important thing I did was get out of
the way and let others do the work. I learned to delegate, and to
delegate the right way.

Rewind eight years. I began to get involved with GNOME docu-
mentation in 2003. I did not have any real experience as a technical
writer at the time. My day job had me working on publications tools,

110 Stop Worrying and Love the Crowd

and I started working on the tools and help viewer used for GNOME
documentation. It was not long before I was pulled into writing.

In those days, much of our documentation was handled by profes-
sional tech writers inside Sun. They would take on a manual, write
it, review it, and commit it to our CVS repository. We could all
look at it after the fact, learn from it, and make corrections to it.
But there was no concerted effort to involve people in the writing
process.

It is not that the Sun writers were trying to be protective or hide
things behind closed doors. These were professional tech writers.
They knew how to do their job. They were good at it. Other people
could take on other manuals, but they would write their assignments
the way they knew how. Running each page by a group of untrained
contributors, however enthusiastic, is inviting the very worst kind of
bikeshedding1 imaginable. It is just not productive.

Inevitably, the winds shifted inside Sun and their tech writers were
assigned to other projects. That left us without our most prolific
and knowledgeable writers. Worse than that, we were left with no
community, nobody to pick up the pieces.

There are ideas and processes that are standard in the corporate
world. I have worked in the corporate world. I do not think anybody
questions these ideas. People do their job. They take assignments
and finish them. They ask others for reviews, but they do not farm
out their work to newcomers and less experienced writers. The best
writers will probably write the most.

These are all really obvious ideas, and they fail miserably in a
community-based project. You will never develop a community of
contributors if you do everything yourself. In a software project,
you might get contributors who are skilled and persistent enough to
contribute. In documentation, that almost never happens.

Most people who try to contribute to documentation do not do it
because they want to be tech writers, or even because they love to
write. They do it because they want to contribute, and documenta-

1https://secure.wikimedia.org/wiktionary/en/wiki/bikeshedding

https://secure.wikimedia.org/wiktionary/en/wiki/bikeshedding

Shaun McCance 111

tion is the only way they think they know how. They do not know
how to code. They are not good at graphic design. They are not
fluent enough in another language to translate. But they know how
to write.

This is where professional writers roll their eyes. The fact that
you are literate does not mean you can write effective user documen-
tation. It is not just about putting words on paper. You need to
understand your users, what they know, what they want, where they
are looking. You need to know how to present information in a way
they will understand, and where to put it so they will actually find
it.

Tech writers will tell you that tech writing is not something just
anybody can do. They are right. And that is exactly why the most
important thing professional writers can do for the community is not
write.

The key to building a successful documentation community is to
let others make the decisions, do the work, and own the results. It is
not enough to just give them busy work. The only way they will care
enough to stick around is if they are personally invested. A sense of
ownership is a powerful motivator.

But if you only get inexperienced writers, and you hand all the
work over to them, how can you ensure you create quality documen-
tation? Uncontrolled crowd-sourcing does not create good results.
The role of an experienced writer in a community is as a teacher and
mentor. You have to teach them to write.

Start by involving people early in the planning. Always plan from
the bottom up. Top-down planning is not conducive to collaboration.
It is hard to involve people in crafting a high-level overview when not
everybody has the same sense of what goes into that overview. But
people can think of the pieces. They can think about individual top-
ics to write, tasks people perform, problems people have, questions
people ask. They can look at forums and mailing lists to see what
users ask.

Write a few pages yourself. It gives people something to imitate.
Then dish out everything else. Let other people own topics, or en-

112 Stop Worrying and Love the Crowd

tire groups of topics. Make it clear what information they need to
provide, but let them write. People will learn by doing.

Be constantly available to help them out and answer questions.
At least half the time I spend on documentation is spent answering
questions so that other people can get work done. When people
submit drafts, review the drafts and discuss critiques and corrections
with them. Do not just make the corrections yourself.

This still leaves you handling the big picture. People are filling in
parts of the puzzle, but you are still putting it together. As people get
more experienced, they will naturally take bigger and bigger pieces.
Encourage people to get more involved. Give them more to do. Get
them to help you help more writers. The community will run itself.

Eight years later, GNOME has managed to create a documen-
tation team that runs itself, deals with problems, makes decisions,
produces great documentation, and constantly brings in new con-
tributors. Anybody can join in and make a difference, and that is
the key to a successful Open Source community.

Part VIII.

Translation

20. My Project Taught Me how to Grow Up

Runa Bhattacharjee

For the past 10 years, Runa Bhattacharjee has been translating and
working on localizing numerous Open Source projects - ranging from
Desktop interfaces to Operating System tools and lots of things in
between. She strongly believes that upstream repositories are the best
places to submit any form of changes. She also holds a professional
portfolio specializing in Localization, at Red Hat. Runa translates
and maintains translations for Bengali (Indian version), but is al-
ways happy to help anyone wanting to get started with localization.

Introduction

Burning the midnight oil has been a favorite form of rebellion by
young people all over the world. Whether to read a book with
a torchlight under the covers or to watch late night TV reruns or
(amongst other things) to hang around on an IRC channel and tin-
kering around with an itchy problem with a favorite open source
project.

How it all began

That is how it all began for me. Let me first write a bit about
myself. When I got introduced to the local Linux Users Group in my
city, I was in between jobs and studying for a masters degree. Very
soon I was a contributor to a few localization projects and started
translating (mostly) desktop interfaces. We used a few customized
editors with integrated writing methods and fonts. The rendering

116 My Project Taught Me how to Grow Up

engines had not matured well enough to display the script with zero
errors on the interfaces, nonetheless we kept on translating. My
focus was on the workflow that I had created for myself. I used to
get the translatable content from the folks who knew how things
work, translate it as best as I could, add in the comments to help
the reviewers understand how I comprehended the text, filled in the
necessary information for copyright and credits and sent them back
to the coordinators.

How it was done

It was mostly a simple way of doing things. But most importantly
it was my independent way of doing things. I took my own time to
schedule when I would work on the translations. These would then
be reviewed and returned to me for changes. Again, I would schedule
them for completion as per how I could squeeze out some time from
all the studying and other work that I was doing. When I did get
down to work, I would sit through 9-10 straight hours mostly into
the wee hours of the morning, feeling a high of accomplishment until
the next assignments came through.

What mattered

What I did not know was that I played a significant part in the larger
scheme of things. Namely, release schedules. So, when I completed
my 2 cents of the task and sent them over, I did not factor in a
situation where they could be rendered useless because they were
too late for the current release and too early for the next release
(which would invariably contain a lot of changes that would require
a rework). Besides these, I was oblivious to the fact how it all mat-
tered to the entire release process – integration, packaging, interface
testing, bug filing, resolution.

Runa Bhattacharjee 117

How it made me grow up

All these changed drastically when I moved into a more professional
role. So suddenly I was doing the same thing but in a more struc-
tured order. I learned that the cavalier road-rolling that I had been
used to, was not scalable when one had to juggle through 2-3 release
schedules. It had to be meticulously planned to map with the pro-
ject roadmaps. While working on translating a desktop interface,
one had to check what the translation schedule was for the main
project. The projected date to start working would be right after
when all the original interface messages had been frozen. Transla-
tors could then work unhindered until the translation deadline, after
which they would be marked as stable in the main repositories and
eventually packages would be built. Along with these schedules, a
couple of operating system distributions would align their schedules
as well. So the translators had the additional responsibility of mak-
ing sure that the pre-release versions of the operating system that
would be carrying the desktop, went through with some bits of test-
ing to ensure that the translations made sense on the interface and
did not contain errors.

What I should have known

The transition was not easy. Suddenly there was a flood of infor-
mation that I had to deal with and additional chores that I had to
perform. From being a hobby and more importantly a stress-buster,
suddenly it was serious business. Thinking in retrospect, I can say
that it probably helped me understand the entire process because I
had to learn it from the ground up. And armed with that knowledge
I can analyze situations with a better understanding of all the effec-
tive facets. At the time when I started working on the Open Source
project(s) of my interest, there were much fewer professionals who
worked full time in this domain. Most of the volunteer contributors
held day jobs elsewhere and saw these projects as a way to nurture

118 My Project Taught Me how to Grow Up

the creative juices that had dried up in their routine tasks. So a
number of newcomers were never mentored about how to plan out
their projects professionally. They grew to be wonderfully skilled in
what they were doing and eventually figured out how they would like
to balance their work with the rest of the things they were doing.

Conclusion

These days I mentor newcomers and one of the first things that I
let them know is how and in which part of the project they matter.
Crafting an individual style of work is essential as it allows a person a
comfortable space to work in, but an understanding of the organized
structure that is affected by their work imbibes the discipline that is
required to hold in check chances of arbitrary caprice.

Part IX.

Usability

21. Learn from Your Users

Guillaume Paumier

Guillaume Paumier is a photographer and physicist living in Toulouse,
France. A long-time Wikipedian, he currently works for the Wiki-
media Foundation, the non-profit that runs Wikipedia. As a prod-
uct manager for Multimedia Usability, he notably conducted user
research to design a new media upload system for Wikimedia Com-
mons, the free media library associated with Wikipedia.

You know Wikipedia, the freely reusable encyclopedia that anyone
can edit? It was created in 2001 and recently celebrated its tenth
anniversary. Despite being one of the ten most visited websites in
the world, its user interface still looks very “1.0’ compared to what
interactive web technologies allow. Some might say it is for the best:
Wikipedia is “serious stuff”, and the user should not be distracted by
“fireworks” in the interface. Yet, Wikipedia has had issues recruiting
new contributors in the last few years, in part because of its inter-
face that some may call archaic. This might explain why surveys of
Wikipedia participants have repeatedly shown a bias towards young,
technology-savvy men, many with a background in computers and
engineering. Besides the fact that free knowledge and free licenses
sprouted from the fertile land of Free and Open Source Software,
the complicated interface has discouraged many motivated potential
participants.

In 2011, while major online publishing and collaboration platforms
(like WordPress, Etherpad and Google Documents) offer a visual ed-
itor to some extent, Wikipedia still uses by default an old-fashioned
wikitext editor that uses quotes ('''') and brackets ([[]]) for format-
ting. Efforts are underway to transition to a default visual editor in
2012, but it is not an easy challenge to solve.

122 Learn from Your Users

But let us put the editor aside for a moment. The interface of
Wikipedia remains fairly complicated, and many useful features are
difficult to discover. Did you know Wikipedia has an integrated
version control system, and you can see all the previous versions of
a page? Did you know you can see the list of all the edits made
by a participant? Did you know you can link to a specific version
of a page? Did you know you can export a page to PDF, or create
custom hardcover books from Wikipedia content, to be sent to your
home?

The Implementation Model

Most Wikipedia readers arrive through search engines. Statistics
show they spend little time on Wikipedia once they find the infor-
mation they were looking for. Few stick around and explore what
tools the interface offers. For example, Wikipedia is routinely crit-
icized about its quality and reliability. Many of these unexplored,
almost hidden tools could prove useful to readers to help them as-
sess the reliability of information.

Wikipedia and its sister projects (like Wikisource and Wikime-
dia Commons) are powered by a wiki engine called MediaWiki (and
supported by the Wikimedia Foundation; all these confusing names
alone are a usability sin). For a long time, the development of Me-
diaWiki was primarily led by software developers. The MediaWiki
community has a strong developer base; actually, this community is
almost entirely composed of developers. Only recently did designers
join the community and they were hired by the Wikimedia Founda-
tion in this capacity. There are hardly any volunteer designers in
the community. This has caused the application to be built and “de-
signed” exclusively by developers. As a consequence, the interface
has naturally taken a shape that closely follows the “implementation
model”, i.e., the way the software is implemented in the code and
data structures. Only rarely does this implementation model match
the “user model”, i.e., the way the user imagines things to work.

Guillaume Paumier 123

It would be unfair to say that developers do not care about users.
The purpose of creating software (apart from the sheer pleasure of
learning stuff, writing code and solving problems) is to release it so
it can be used. This is particularly true in the world of Free and
Open Source Software, where most developers selflessly volunteer
their time and expertise. One might argue that many developers are,
in fact, users of their own products, especially in the world of Free and
Open Source software. After all, they created it or joined its team,
for a reason, and this reason was rarely money. As a consequence,
developers of this kind of software would be in an ideal position to
know what the user wants.

But let’s face it: if you are reading this, you are not your regular
user.

The Developer Point Of View

If you are a developer, it is particularly difficult for you to sit in the
user’s chair. For one thing, your familiarity with the code and the
software’s implementation makes you see its features and interface
from a very specific perspective. You know each and every feature of
the application you created. You know where to find everything. If
something with the interface feels a little odd, you may unconsciously
discard it because you know it is a side-effect of how you implemented
such or such a feature.

Let us say you are creating an application that stores data in
tabular form (possibly in a database). When the time comes to
show this data to the user, you will naturally think of the data as
tabular, because it is how you implemented it. It will make sense to
you to display it in a way that is consistent with how it is stored.
Similarly, any kind of array or other sequential structure is bound to
be remembered as such, and displayed in a sequential format in the
interface as well, perhaps as a list. However, another format may
make more sense for the regular user, for example a set of sentences,
a chart, or another visual representation.

124 Learn from Your Users

Another challenge is your level of expertise. Because you want
your application to be awesome, you are likely to do a lot of research
to build it. In the end, you may not only become an expert in your
application, but also an expert in your application’s topic. Many of
your users will not have (or need) that level of expertise, and they
may be lost with the level of detail of some features, or be unfamiliar
with some terms the layperson does not know.

So, what can you do to fix it?

Watch users. Seriously.

Watching people as they use your application is truly an eye-opening
experience.

Now, one way to watch people use your application is to hire a
usability firm, who will recruit testers with various profiles among a
pool of thousands, prepare an interview script, rent a room in a us-
ability lab with a screen-recording app, a video camera pointed at the
user, and you in a backroom behind a one-way glass, head-desking
and swearing every time the user does something you think does not
make any sense. If you can afford to do that, then by all means, do
so. What you will learn will really change your perspective. If you
can not afford professional testing, all is not lost; you are just going
to have to do it yourself. Just sit beside a user as they show you how
they perform their tasks and go through their workflow. Be a silent
observer: your goal is to observe, and note everything. Many things
will surprise you. Once the user is done, you can go through your
notes and ask questions to help you understand how they think.

To know more about do-it-yourself testing have a look at Don’t
Make Me Think: A Common Sense Approach to Web Usability by
Steve Krug, About Face 3: The Essentials of Interaction Design by
Alan Cooper, Robert Reimann and David Cronin, and the OpenUs-
ability project1. It can be a bit awkward for users to be watched, yet
I bet many of them will happily volunteer to help you improve your

1http://openusability.org

http://openusability.org

Guillaume Paumier 125

application. Users who cannot contribute code are usually happy to
find other ways to participate in Free Software, and showing you how
they use the software is a very easy way to do so. Users are generally
grateful for the time you have spent developing the application, and
they want to give back.

You will need to keep in mind, that not everything your users
request can or should be done. Listen carefully to their stories: it
is an opportunity for you to identify issues. But just because a
user requests a feature does not mean they really need that feature;
perhaps the best way to fix the issue underlying their feature request
is to implement a completely different feature. Take what your users
say with a grain of salt. But you probably knew that already.

Oh, and by the way, do not ask your family, either.

No offense intended, I am sure your mom, dad, sisters and brothers
are very nice people. But if you are creating an accounting appli-
cation, and your sister has never done any accounting, she is going
to be quite lost. You will spend more time explaining what double-
entry bookkeeping is than really testing your software. However,
your mom, who bought herself a digital camera last year, could be
an ideal tester if you are creating an application to manage digital
photos, or to upload them to a popular online sharing platform. For
your accounting application, you could ask one of your colleagues or
friends who already knows a thing or two about accounting.

Ask different people, too.

For some cosmological reason, people will find endless ways to use
and abuse your application, and break it in ways you would not
think of in your worst nightmares. Some will implement processes
and workflows with your application that make absolutely no sense
to you, and you will want to slam your head on your desk. Others will
use your application in ways so smart, they will make you feel stupid.
Try to listen to users with different profiles, who have different goals
when they use your application.

126 Learn from Your Users

Users are an unpredictable species. But they are on your side.
Learn from them.

If you remember nothing else, ...

... then remember this:

� You will be tempted to make the interface look and behave like
how it works in the back-end. Your users can help you prevent
that.

� Users are an unpredictable species. They will break, abuse and
optimize your application in ways you can not even imagine.

� Learn from your users. Improve your application based on
what you learned. Profit.

22. Software that Has the Quality Without
A Name

Federico Mena Quintero

Federico Mena Quintero is one of the founders of the GNOME pro-
ject, and was the maintainer of the GIMP some time before that.
He worked at Red Hat Advanced Development Labs during the early
days of GNOME, and later was one of the first hires at Ximian,
where he worked mainly on the Evolution Calendar. He still works
on GNOME in general, for Novell / Suse, and lives in Mexico.

When I was learning how to program, I noticed that I frequently hit
the same problem over and over again: I would often write a program
that worked reasonably well, and even had a good structure, but after
some time of modifying it and enhancing it, I could no longer tweak it
any further. Either its complexity would overwhelm me, or it would
be so tightly written that it allowed no room for expansion, like a
house where you cannot build up because it has a sloping roof, and
you cannot build to the sides because it has a wall all around it.

As I got better, I learned to deal with complexity. We all learn
how to do that with various tools and techniques: abstraction, en-
capsulation, object-orientation, functional techniques, etc. We learn
how various techniques let us write broader programs.

However, the problem of having a program that was too tight or
too intertwined to modify still persisted. Sometimes I had what I
thought was a beautiful design, but modifying it in any way would
“make it uglier” and I did not want that. Other times I had some-
thing with so many interconnected parts, that I just could not plug
anything else into it or the whole thing would fall down under its
own weight.

128 Software that Has the Quality Without A Name

Some years ago the whole Refactoring craze started, but I did not
pay much attention to it. I said, sure, it is a way to clean up your
code, but so what? I already know how to take a chunk of code and
turn it into a function; I already know how to take similar chunks
of code and turn them into derived classes. I already know how to
write mostly-clean code. What is the big deal?

I dismissed Refactoring as something suited to less experienced
programmers; as some nice recipes for cleaning up your code, but
nothing that you could not discover yourself.

The same thing happened to me with Design Patterns. I thought
they were just giving pompous names like Singleton and Strategy to
the everyday kinds of structures one would naturally put in a pro-
gram. Maybe my ego as a programmer was too inflated to consider
those works seriously. But then, something happened.

Christopher Alexander’s work

Some years ago, my wife and I bought a small, one-story house and
we wanted to expand it. We were thinking of having a child, so we
needed more space. I needed a real home-office, not just a leftover
alcove where my desk and bookcases barely fit. As avid cooks, we
both needed a kitchen that was larger and more comfortable than
the one the house had. My wife needed a Room Of Her Own.

We did not want to pay for an expensive architect, and neither
of us knew anything about construction. How would we design our
house?

At times, while browsing the web, I will sometimes remember that
I have seen the name of a certain author before, or the title of a
book, or something like that. I may have not really paid attention
to it in the past, but somehow, the more times I see the same thing
mentioned, the more likely it is that I will get interested enough in
it to actually see what it is about. “Oh, several people have already
mentioned this name or this book; maybe I should check it out.”

Federico Mena Quintero 129

That is just what happened with the name of Christopher Alexan-
der. I had read that he was a peculiar architect (of real-world
buildings, not software), somehow connected to the software world
through object-oriented techniques. As I started reading about his
work, I became tremendously interested in it.

In the 1970s, Christopher Alexander was a mathematician/architect
teaching at the University of California, Berkeley. He and a group
of like-minded architects went to various places around the world,
trying to see if there were reasons for why there are human-built
places in the world (cities, towns, parks, buildings, houses) where it
is very pleasant to be, those that are comfortable, livable, and nice,
and some places where this is not the case. The pleasant places were
present in all of the traditional architectures of the world – Euro-
pean, African, Asian, American – which pointed to the idea of being
able to extract common factors from all of them.

Alexander and his team distilled their findings into a list of good
architectural patterns, and published three books: The Timeless
Way of Building, where they describe the philosophy and method of
good architecture; A Pattern Language, which I will describe next;
and The Oregon Experiment, where they detail the design and con-
struction of a university campus with their method.

A Pattern Language

A pattern is a recurring problem when designing and building things,
with a discussion of the forces that shape the problem, and with
a solution that is in turn connected, almost recursively, to other
super- or sub-patterns. For example, let us consider the INTIMACY
GRADIENT, an important pattern in the book (patterns are spelled
in capital letters throughout the book for easy identification, so I will
do the same):

130 Software that Has the Quality Without A Name

INTIMACY GRADIENT

Super-patterns and preamble: ... if you know roughly where you
intend to place the building wings - WINGS OF LIGHT, and how
many stories they will have - NUMBER OF STORIES, and where the
MAIN ENTRANCE is, it is time to work out the rough disposition
of the major areas on every floor. In every building the relationship
between the public areas and private areas is most important.

Statement of problem: Unless the spaces in a building are ar-
ranged in a sequence which corresponds to their degrees of private-
ness, the visits made by strangers, friends, guests, clients, family, will
always be a little awkward.

Discussion: I will not quote all of it. But for example, consider an
apartment where you can only reach the bathroom by first crossing
the bedroom. Visits are always awkward because you feel like you
need to tidy up your room first, if you intend your visitors to be able
to use the WC! Or consider an office, where you do not want a quiet
work space to be right next to the reception, because then it will not
be quiet at all – you want it to be more private, towards the back.

Summary of the solution: Lay out the spaces of a building so that
they create a sequence which begins with the entrance and the most
public parts of the building, then leads into the slightly more private
areas, and finally to the most private domains.

Sub-patterns to consult: COMMON AREAS AT THE HEART.
ENTRANCE ROOM for houses; A ROOM OF ONE’S OWN for
individuals. RECEPTION WELCOMES YOU for offices, HALF-
PRIVATE OFFICE at the back.

The patterns get quite specific, but they never impose a style or
an actual shape for the result. For example, there is a pattern called
OPEN SHELVES. Deep cupboards make you put things behind other

Federico Mena Quintero 131

things, so you can not see them nor reach them. They also have a
big footprint. Cupboards that are one-item-deep automatically stay
tidy, and you always know at a glance where everything is. Things
that you use frequently should not be behind doors.

So you can see the essence of design patterns: good, tested recipes
that do not constrain your implementation in unnecessary ways. The
patterns do not mandate a particular style, nor include superfluous
decorations: the book does not tell you, “make this shape of flour-
ishes in the handrails”; instead it tells you, “a house should have its
rooms placed such that sunlight enters them according to the time
of the day in which they are most used – East for the bedrooms in
the morning, West for the living room in the afternoon”.

I had gotten a copy of A Pattern Language shortly before starting
the expansion of our house. The book was a revelation: this was
the way to approach the design of our house, and now we could do it
ourselves instead of paying a lot of money for an inadequate solution.
We were able to make up a rough plan for our house, and then figure
out smaller details as the construction went on. This is the kind of
book that, as you read it, manages to confirm intuitive ideas that
you half-knew you had – the kind of book where you find yourself
saying, “of course, this is completely how I thought it should be” all
the time.

Design Patterns, the well-known book by Gamma et al, took direct
inspiration from Alexander’s architectural patterns. They wanted to
do the same thing: to make a list of problems that appear frequently
when programming, and to present good solutions for them, that
would not constrain your implementation unnecessarily.

One thing that I realized while reading A Pattern Language (a
valuable thing from both lists of patterns, the architectural and the
software one) is that they give us a vocabulary to talk about how
things are constructed. It is much more convenient to say, “this
object has listeners for its properties”, than “this object lets you hook
callback functions that are called when its properties change”. What
I thought were only pompous names, are in fact ways to express
knowledge in a compact form.

132 Software that Has the Quality Without A Name

The Quality Without A Name

Much of Alexander’s discussion of patterns and their philosophy
refers something which he calls the “Quality Without A Name”. You
know places with the Quality Without A Name. It is present in the
coffee shop where you like to go to read, because the afternoon light
hits it at just the right intensity, and there are comfortable seats and
tables, and somehow it always is packed with people and yet you
do not feel overcrowded. It is present in the corner in a park where
a tree shades a bench, maybe there is some water running, and no
matter if it rains or if it is sunny, it always seems to be a pleasure
to be there. Think of a Hobbit House, where everything is at hand,
everything is comfortable, and everything is lovingly made.

A thing or place has the Quality Without A Name if it is com-
fortable, has evolved over time in its own terms, is free of inner
contradictions, does not try to draw attention to itself, and seems
to have archetypal qualities – like if it were the way that thing was
supposed to be built. Most importantly, Alexander asserted that
this is an objective quality, not a subjective one, and that it can
be measured and compared. Although this seems like a very vague
definition, that is as far as Alexander was able to take it during this
first phase of his work. The real revelation would come later.

As programmers, we have all seen beautiful programs at some
point. Maybe they are the examples in Programming Pearls, a beau-
tiful book which every hacker should read. Maybe you have seen
a beautifully implemented algorithm that exudes rightness. Maybe
you remember a very compact, very legible, very functional, very
correct piece of code. That software has the Quality Without A
Name.

It became clear to me that I had to learn to write software that
attained the Quality Without A Name, and Alexander’s frame of
mind was the right starting point for this.

Federico Mena Quintero 133

The ticket booth

Alexander’s PhD dissertation, which was the basis for his book Notes
on the Synthesis of Form from 1964, tried to mathematize design by
defining it as a progression from a series of requirements to a final
result, through an analysis of the forces that shaped the design.

Let me quote Richard Gabriel, of whom I will talk more later,
when he describes the time when Alexander was trying to design a
ticket booth based on his mathematical ideas:

Alexander says [about the Quality Without A Name]:

It is a subtle kind of freedom from inner con-
tradictions. (Alexander 1979)

This statement reflects the origins of his inquiry into the
quality. It started in 1964 when he was doing a study for
the [San Francisco] Bay Area Rapid Transit (BART) sys-
tem based on the work reported in Notes on the Synthesis
of Form (Alexander 1964), which in turn was based on his
Ph.D. dissertation. One of the key ideas in this book was
that in a good design there must be an underlying corre-
spondence between the structure of the problem and the
structure of the solution – good design proceeds by writ-
ing down the requirements, analyzing their interactions
on the basis of potential misfits, producing a hierarchi-
cal decomposition of the parts, and piecing together a
structure whose

structural hierarchy is the exact counterpart of
the functional hierarchy established during the
analysis of the program. (Alexander 1964)

Alexander was studying the system of forces surrounding
a ticket booth, and he and his group had written down
390 requirements for what ought to be happening near it.
Some of them pertained to such things as being there to
get tickets, being able to get change, being able to move

134 Software that Has the Quality Without A Name

past people waiting in line to get tickets, and not having
to wait too long for tickets. What he noticed, though,
was that certain parts of the system were not subject
to these requirements and that the system itself could
become bogged down because these other forces - forces
not subject to control by requirements – acted to come
to their own balance within the system. For example,
if one person stopped and another also stopped to talk
with the first, congestion could build up that would de-
feat the mechanisms designed to keep traffic flow smooth.
Of course there was a requirement that there not be con-
gestion, but there was nothing the designers could do to
prevent this by means of a designed mechanism.

As a programmer, does this sound familiar? You can make a beau-
tiful, thorough design, that crumbles down when you actually build
it because things emerge that you did not anticipate. This is not a
failure of your design, but of something else! Richard Gabriel goes
on:

Alexander said this:

So it became clear that the free functioning of
the system did not purely depend on meeting
a set of requirements. It had to do, rather,
with the system coming to terms with itself
and being in balance with the forces that were
generated internal to the system, not in accor-
dance with some arbitrary set of requirements
we stated. I was very puzzled by this because
the general prevailing idea at the time [in 1964]
was that essentially everything was based on
goals. My whole analysis of requirements was
certainly quite congruent with the operations
research point of view that goals had to be
stated and so on. What bothered me was that

Federico Mena Quintero 135

the correct analysis of the ticket booth could
not be based purely on one’s goals, that there
were realities emerging from the center of the
system itself and that whether you succeeded
or not had to do with whether you created a
configuration that was stable with respect to
these realities.

And that is the core of the problem: how do you create a configu-
ration that is stable with the realities that emerge from itself as you
build it?

The Nature of Order

Although Christopher Alexander knew that he had produced some-
thing valuable with his investigation and catalog of patterns, he was
not completely satisfied. Where had the patterns come from? Could
we make new patterns from scratch, or must we be content with what
traditional architecture has managed to evolve so far? Are patterns
necessary at all? How can we better define, and evaluate or measure,
the Quality Without A Name?

Alexander spent the next twenty years researching those questions.
By studying the actual process by which good built environments
had been created, he discovered that processes of a certain kind are
essential to creating good towns, or buildings, or any man-made thing
in fact. He arrived at the following conclusions:

� Nature creates things that all have about 15 properties in com-
mon (I will show you later). This happens solely through nat-
ural processes – standard physics and chemistry – although it
is not quite clear why very different processes produce similar
results.

� Traditional architectures, or towns which just evolved over
time, also have those properties. You can derive all the pat-

136 Software that Has the Quality Without A Name

terns in A Pattern Language by following a certain process
based on those properties.

� Each property can also describe a transformation to the exist-
ing space.

� The only way to achieve good design is by using those trans-
formations, one at a time.

This was published in 2003-2004 in four volumes titled The Nature
of Order.

The fifteen properties

The first book in The Nature of Order deals with fifteen proper-
ties that appear in all natural systems. I will summarize them very
briefly; see the references for pictures and more extensive explana-
tions.

� Levels of scale: There is a balanced range of sizes. You do not
have abrupt changes in the sizes of adjacent things. Elements
have fractal scale.

� Strong centers: You can clearly identify parts of the space
or structure.

� Thick boundaries: Lines delimit things. In living systems,
edges are the most productive environments (e.g., all the crit-
ters that live at the edge of the water).

� Alternating repetition: High/low, thick/thin, shape A and
shape B. Things oscillate and alternate to create a good bal-
ance.

� Positive space: Space is beautifully shaped, convex, enclosed.
It is not leftover space. Think of how a Voronoi diagram has
cells that grow outward from a bunch of points, or how a piece

Federico Mena Quintero 137

of corn has kernels that grow from tiny points until they touch
the adjacent kernels.

� Good shape: The sails of a ship, the shell of a snail, the beak
of a bird. They attain the optimal shape for their purpose,
which is beautiful.

� Local symmetries: The world is not symmetrical at large.
But small things tend to be symmetrical, because it is easier
that way. Your house is not symmetrical, but each window is.

� Deep interlock and ambiguity: The crooked streets of old
towns. Axons in neurons. It is hard to separate figure and
ground, or foreground and background. Two strong centers
are made stronger if a third center is placed between them, so
that it belongs to both.

� Contrast: You can distinguish where one thing ends and the
next one begins, because they do not fade into each other.

� Gradients: Things fade into each other where they need to.
Concentrations in solutions, snow or earth banks, the wires
that support a bridge. The way bandwidth decreases as you
move away from the backbone.

� Roughness: The world is not frictionless and smooth. Irreg-
ularities are good because they let each piece adapt perfectly
to its surroundings, rather than being an exact copy that may
not fit as well.

� Echoes: Things repeat and echo each other. Things are unique
in their exact shape, but the general shapes repeat over and
over.

� The void: Sometimes you get a big blank area for quietness
of form. A lake, a courtyard, a picture window.

138 Software that Has the Quality Without A Name

� Simplicity and inner calm: Things are as simple as possible,
but no simpler.

� Non-separateness: Everything depends on everything else.
You cannot separate a fish from the pond and the aquatic
plants. You cannot separate a column from the base of the
building.

Structure-preserving transformations

The second book in The Nature of Order describes how each of those
properties also defines a transformation. For example:

� Thick boundaries: You can sometimes transform something
beneficially by adding a boundary to it. You plant a hedge
around a garden, which then serves as beauty, as a wind-break
so that strong winds do not damage the garden, and as a pro-
ductive system on its own. In a graphical user interface, scrol-
lable boxes without a frame are hard to distinguish from the
window’s background (think of all white web pages with text
entry boxes that do not have a frame). You put a cornice at the
top of a building, so that you do not get an abrupt transition
between the building and the sky.

� Local symmetries: Small parts of built things are easier to
build symmetrically; because they are turned on a lathe, be-
cause they need access from both sides, because they fold like a
book. Making things asymmetrical just to be interesting takes
extra work and it is harder to make them work well.

� Positive space: Feeling too exposed when in your desk? Add
a waist-high bookshelf beside you to delimit your space, but
not to completely close you off. Does your user interface feel
like a lot of leftover space after you place the controls? Make
the controls surround the usable space instead.

Federico Mena Quintero 139

Each of these is a structure-preserving transformation. You make a
change in the existing structure not by tearing it down and remaking
it, but by tweaking one thing at a time according to those properties
as transformations.

In software terms, it turns out that this is what much of Refactor-
ing is about, when you translate the concepts to code. Refactoring
is just applying structure-preserving transformations, or as Martin
Fowler (the author of Refactoring) would put it, behavior-preserving
transformations. You do not change what the program does; you just
change how it is built internally, piece by piece.

By extracting a chunk of code and putting it in a function with
a name, you are essentially adding a thick boundary around that
code, and creating a strong center. By removing a global variable
and adding class variables, you are allowing for roughness, as every
instance can now have a different value in that variable, as needed.
By having a producer/consumer, or notifier/listener, you have local
symmetries, deep interlock and ambiguity, and good shape.

Richard Gabriel, one of the principal figures in Common Lisp,
studied how to apply Alexander’s theories to software (and also to
poetry, and is code not similar to poetry after all?). He gives the
following example:

1. Imagine that you write a PhoneCall class. This is a latent
center, not as strong as it could be.

2. Gerard Meszaros, in Pattern: Half Object + Protocol suggested
that you should split that into half calls tied by a protocol. We
attain a local symmetry, we make a strong center, and get levels
of scale.

3. Now make a diagram of that: You have local symmetry, levels

140 Software that Has the Quality Without A Name

of scale, boundaries, deep interlock and ambiguity – and this
is where Meszaros left things.

4. Richard Gabriel then suggests strengthening the centers that
exist by applying other structure-preserving transformations.
What about the latent center in the middle? You add an ex-

plicit boundary (Call) that ties the HalfCalls. This improves
the local symmetries, retains deep interlock and ambiguity, and
it is composable.

5. Yes, composable. Multi-way calls, conference calls, happen all

out of applying structure-preserving transformations.

Probably every programmer keeps a mental picture of the program
he is creating or modifying. The hard part of modifying code that

Federico Mena Quintero 141

you did not write is forming that mental picture in the first place.
When you work to make the code present a more beautiful picture,
your code becomes better – and Alexander gives us a good way to
do that.

The fundamental process

Over a long argument, Alexander explains why following this process
of applying structure-preserving transformations is the only way to
achieve a good, functional design. This is not just for buildings, but
for everything we construct. It does not matter if you start with
an existing program or building or city, or whether you are starting
from scratch. We mimic nature’s own evolutions and regenerative
processes, but we do it faster.

1. Start with what you have – an empty lot, or an already-built
building, or a program that looks ugly and is hard to use.

2. Identify the centers that exist in that space. Find the weakest
center or the least coherent.

3. See how to apply one or more of the fifteen structure-preserving
transformations to strengthen that weak center. Does it need
to be delimited? Does it need to be blended with its sur-
roundings? Does it need more detail? Does it need to be
de-cluttered?

4. Find the new centers that are born when you apply the trans-
formation to the old center. Does the new combination make
things stronger? Prettier? More functional?

5. Ensure that you did the simplest possible thing.

6. Go back to the beginning for the next step.

A super-simple summary would be: find the bad parts, make them
better in the simplest way possible, test the results, iterate.

142 Software that Has the Quality Without A Name

Alexander is not keen on destroying things just to rebuild them
in a different way. You should not demolish parts of a town to
rebuild it; you should improve it gradually. In software, it is well-
known that you should not rewrite things just because you do not
understand them anymore. Tearing things down makes you lose all
the knowledge you had embodied in the thing you are destroying,
even if it looks ugly in its current state.

Similarly, Alexander is against making detailed, up-front designs.
He gives a good argument of why pre-made designs can not work
well in the end: because you can not predict absolutely everything
that will come up during construction or implementation; because
you will miss details of the environment into which your creation will
live; because nature itself is not pre-ordained, and rather it grows or-
ganically and mercilessly evolves things until they manage to survive
by themselves.

In this fashion, you do not design the whole user interface, or the
whole structure, for a big program in a single step. You go from big to
small or small to big (levels of scale); you test each part individually
until it is good (strong centers); you make sure the parts are not too
disconnected from each other (non-separateness). You move a few
widgets where they are easier to reach, or where they are closer to the
data to which they refer. You remove some frames and separators to
reduce clutter. Above all, you continually evaluate what you created
against real users and real use cases, so that you empirically test
things against reality, not against castles in the sky.

A Name for the Quality

Over the course of The Nature of Order, Alexander manages to
show that environments or structures that are built according to
that method all end up having the Quality Without A Name. He
calls this living structure. It can be measured and compared. It
no longer has no name; we can now speak of environments with more
or less living structure than others, or of programs with more or less

Federico Mena Quintero 143

living structure than others – and we strive to make and have more
of that property.

I just called this essay, “Software that has the Quality Without A
Name” because it sounds more mysterious that way.

I can not claim to know the perfect way of designing and writing
software now, but at least I have a good method grounded on what
produces good things elsewhere. It worked for my house, and so far
I have seen it work very well for my software. I hope it works well
for you, too!

References

� Christopher Alexander, A Pattern Language. Online version
at http://bit.ly/8n6igg

� Christopher Alexander, The Nature of Order. Terrible web
page at http://www.natureoforder.com

� Photos and drawings of the fifteen properties of life - http:

//bit.ly/b82Dxu

� Richard Gabriel, Patterns of Software. A beautiful, wide-
ranging book on software development, Christopher Alexan-
der’s ideas, and the search for good techniques for writing soft-
ware. Online version at http://bit.ly/dqGUp4

� Richard Gabriel, Christopher Alexander: the search for beauty.
A very good presentation of Christopher Alexander’s ideas and
an exposition of patterns in the software world. http://bit.

ly/ztE6cp

� Richard Gabriel, The Nature of Order: the post-patterns world.
Another very good presentation, subsequent to the previous
one, that explains the Fifteen Properties of Life, the Fun-
damental Process, and how this relates to software. http:

//dreamsongs.com/Files/NatureOfOrder.pdf

http://bit.ly/8n6igg
http://www.natureoforder.com
http://bit.ly/b82Dxu
http://bit.ly/b82Dxu
http://bit.ly/dqGUp4
http://bit.ly/ztE6cp
http://bit.ly/ztE6cp
http://dreamsongs.com/Files/NatureOfOrder.pdf
http://dreamsongs.com/Files/NatureOfOrder.pdf

144 Software that Has the Quality Without A Name

� Federico Mena Quintero, Software that has the Quality Without
A Name. Presentation for the 2011 Desktop Summit in Berlin.
http://bit.ly/oYgJUf

http://bit.ly/oYgJUf

Part X.

Artwork and Design

23. Don’t Be Shy

Máiŕın Duffy Strode

Máiŕın Duffy Strode has been using Free and Open Source software
since she was in high school, and has been a contributor for the past 8
years. She is involved in both the Fedora and GNOME communities
and has worked on interaction design, branding, and/or iconography
for a number of prominent FOSS applications such as Spacewalk,
Anaconda, virt-manager, SELinux and SSSD. She has also been in-
volved in outreach efforts teaching children design skills using FOSS
tools such as GIMP and Inkscape and is a fierce advocate for said
tools. She is the team lead of the Fedora Design Team and a senior
interaction designer with Red Hat, Inc.

I knew about and used Free and Open Source software for a long time
before I became a contributor. This was not for lack of trying – there
were a couple of false starts, and I succumbed to them mostly out of
being too shy and afraid to push through them. From the aftermath
of those false starts and also from on-boarding other designers in
FOSS projects, I have five tips to offer to you as a designer trying to
ramp up as a FOSS contributor:

1. Know that you are needed and wanted (badly!)

My first false start happened when I was a first-year computer science
student at Rensselaer Polytechnic Institute. There was a particular
project I used a lot and I wanted to get involved with it. I did
not know anyone in the project (or anyone who was involved in free
software) so I was trying to get involved pretty cold. The project’s
website indicated that they wanted help and that they had an IRC

148 Don’t Be Shy

channel, so I lurked in there for a week or two. One day after a lull
in conversation, I spoke up: I said I was a computer science student
interested in usability and that I would love to get involved.

“Go away” was the response. Furthermore, I was told that my
help was not needed nor wanted.

This set me back a few years in getting involved – just a few harsh
words on IRC made me afraid to try again for almost 5 years. I did
not discover until much later that the person who had essentially
chased me out of that project’s IRC channel was on the fringes of
the project and had a long history of such behavior, and that I really
had not done anything wrong. If I had only kept trying and talked
to other people, I may have been able to get started back then.

If you would like to contribute to Free and Open Source software
I guarantee you there is a project out there that really needs your
help, especially if you are design-minded! Are you into web design?
Iconography? Usability? Skinning? UI mockups? I have spoken to
many FOSS developers who are not only desperate for this kind of
help, but who would also deeply appreciate it and love you to pieces
for providing it.

If you encounter some initial resistance when first trying to get
started with a project, learn from my experience and do not give up
right away. If that project turns out to not be right for you, though,
do not worry and move on. Chances are, you are going to find a
project you love that loves you back.

2. Help the project help you help them

Many Free and Open Source Software projects today are dominated
by programmers and engineers and while some are lucky enough to
have the involvement of a creative person or two, for most projects a
designer, artist, or other creative’s presence is an often-yearned-for-
yet-never-realized dream. In other words, even though they under-
stand they need your skills, they may not know what kinds of help

Máiŕın Duffy Strode 149

they can ask you for, what information they need to give you to be
productive, or even the basics of how to work with you effectively.

When I first started getting involved in various FOSS projects, I
encountered many developers who had never worked directly with a
designer before. At first, I felt pretty useless. I could not follow all
of their conversation on IRC because they involved technical details
about backend pieces I was not familiar with. When they bothered
to pay attention to me, they asked questions like, “What color should
I put here?” or “What font should I use?” What I really wanted
as an interaction designer was to be privy to decision-making about
how to approach the requirements for the project. If a user needed
a particular feature, I wanted to have a say in its design – but I did
not know when or where those decisions were happening and I felt
shut out.

Design contains a pretty wide range of skills (illustration, typog-
raphy, interaction design, visual design, icon design, graphic design,
wordsmithing, etc.) and any given designer likely does not possess
all of them. It is understandable, then, that a developer might not
be sure what to ask you for. It is not that they are trying to shut you
out – they just do not know how you need or want to be involved.

Help them help you. Make it clear to them the kind of work
you would like to offer by providing samples of other work you have
done. Let them know what you need so they can better understand
how to help you engage in their project. For example – when you
first get involved in a particular initiative for the project, take the
time to outline the design process for it, and post it on the main
development list so other contributors can follow along. If you need
input at particular points in the process, flag those points in your
outline. If you are not sure how particular things happen – such as
the process for developing a new feature – approach someone on the
side and ask them to walk you through it. If someone asks you to
do something beyond your technical ability – working with version-
control, for example – and you are not comfortable with that, say
so.

150 Don’t Be Shy

Communicating your process and needs will prevent the project
from having to make guesses and instead they will be able to make
the best use of your talents.

3. Ask questions. Lots of questions. There are no
stupid questions.

We have noticed sometimes in Fedora that when new designers come
on board, they are afraid to ask technical questions for fear they will
look stupid.

The secret is, developers can be so specialized that there are a lot
of technical details outside of their immediate expertise that they do
not understand either – this happens even within the same project.
The difference is that they are not afraid to ask – so you should not
be, either! In my interaction design work, for example, I have had
to approach multiple folks on the same project to understand how a
particular workflow in the software happens, because it is passed off
between a number of subsystems and not every person in the project
understands how every subsystem works.

If you are not sure what to work on, or you are not sure how to
get started, or you are not sure why that thing someone said in chat
is so funny – ask. It is a lot more likely someone is going to tell you
that they do not know either, than they are going to think that you
are stupid. In most cases, you will learn something new that will
help make you a better contributor.

It can be especially effective to seek out a mentor – some projects
even have mentoring programs – and ask them if they would not
mind being your go-to person when you have questions.

4. Share and share often. Even if it is not ready yet.
Especially if it is not ready yet.

We have also noticed new designers in Fedora and other Free and
Open Source projects are a little shy when it comes to showing their

Máiŕın Duffy Strode 151

work. I understand that you do not want to ruin your reputation by
putting something out there that is not your best or even finished,
but a big part of how Free and Open Source projects work is sharing
often and openly.

The further along you have come on a piece before you have shared
it, the harder others will find it to provide you actionable feedback
and to jump in and get involved. It is also harder for others to
collaborate on your piece themselves and feel a sense of ownership
for it, supporting and championing it through to implementation.
In some Free and Open Source projects, not being forthcoming with
your sketches, designs, and ideas is even seen as offensive!

Post your ideas, mockups, or designs on the web rather than in
email, so it is easy for others in the project to refer to your asset via
copying and pasting the URL – especially handy during discussions.
The easier it is to find your design assets, the more likely it is they
will be used.

Give this tip a try and keep an open mind. Share your work
early and often, and make your source files available. You might be
pleasantly surprised by what happens!

5. Be as visible as you can within the project
community.

One tool that – completely unintentionally – ended up helping me
immensely in getting started as a FOSS contributor was my blog. I
started keeping a blog, just for myself, as a sort of rough portfolio of
the things I had been working on. My blog is a huge asset for me,
because:

� As a historical record of project decisions, it is a convenient
way to look up old design decisions – figure out why we had
decided to drop that screen again, or why a particular approach
we had tried before did not work out, for example.

152 Don’t Be Shy

� As a communication device, it helps other contributors associ-
ated with your project and even users become aware of what
work is happening and aware of upcoming changes in the pro-
ject. Many times I have missed something essential in a design,
and these folks have been very quick to post a comment letting
me know!

� It helped me to build my reputation as a FOSS designer, which
has helped me build others’ trust in my design decisions as time
has gone on.

Do you blog? Find out which blog aggregations the members of
the project you are working on read, and put in requests to have
your blog added to them (there is usually a link to do so in the
sidebar.) For example, the main blog aggregator you will want to join
to become a part of the Fedora community is called Planet Fedora1.
Write a first blog post once you have been added introducing yourself
and letting folks know what you like – all of the sort of information
advised in tip #1.

The project will surely have a mailing list or forum where dis-
cussion takes place. Join it, and send an intro there too. When
you create assets for the project – no matter how small, no mat-
ter how unfinished – blog about them, upload them to the project
wiki, tweet/dent about them, and send links to prominent commu-
nity members on IRC to get their feedback.

Make your work visible, and folks will start to associate you with
your work and approach you with cool projects and other opportu-
nities based solely on that.

This is everything I wish I had known when first trying to get
involved in Free and Open Source software as a designer. If there is
any one thing you should take away from this, it is that you should
not be shy – please speak up, please let your needs be known, please
let others know about your talents so they can help you apply them
to making Free Software rock.

1http://planet.fedoraproject.org

http://planet.fedoraproject.org

24. Use of Color and Images in Design
Practices

Eugene Trounev

An active member of Free Software and KDE for about 6 years, Eu-
gene Trounev started in KDEGames and followed through the entire
KDE3-to-KDE4 transition. Nowadays he is mostly taking care of
KDE’s web presence and main desktop appearance.

Since the most ancient times people have used the power of images
and color to pass information, draw attention, and distract attention.
The infamous saying goes “A picture is worth a thousand words”,
and it could not be more to the point. From the way we dress, to
flashy neon light of downtown stores across the globe – every color,
every shape and every curve has a purpose.

Knowing the purpose however is not that hard, since all of those
variations of hues and lines are put together to be read and felt by
every one of us. It is true therefore that a great design must come
straight from the heart, as it is supposed to speak to the heart in the
first place. Nonetheless, just the heart alone would not be able to
make a great design, if some rules are not set and followed at first.

Colors and textures

There are many different ways to classify the colors into categories,
but many of them focus on physical or chemical properties of light or
ink, and though they are important in the end, those will not help you
make an appealing design. The one way that I found works best is
to split colors into warm and cool. Simply speaking, warm colors are

154 Use of Color and Images in Design Practices

those closer to the shade of red. They are: red, orange and yellow.
Cool colors, on the other end, are the ones running towards blue.
They are: green, blue and to a lesser extend violet. It is important to
remember that cool is also calm and breathy, while warm is impulsive
and dangerous. So, depending on what feelings you wish to awaken
within your audience, you should use either warmer or cooler colors.
Draw attention with warm and inform with cool. Overuse of either
will result in either overheating – creating negative feelings in your
viewer, or freezing-over – causing indifference.

It is important to remember that black, white and grays are colors,
too. These, however, are neutral. They cause no feeling, but rather
set an atmosphere. The properties of these will be discussed later.

Every image is first and foremost a collection of colors, and as
such will abide by the rules of color management. Determining the
dominant color of your image is the key to success. Try to see the big
picture, and do not concentrate on details. A good way to do this
is by setting an image against some dark background, then taking a
few steps back and observing it from a distance. Which color do you
see the most of?

Not all images have a dominant color, however. Sometimes you
may come across color bloat, where no matter how hard you look you
can not determine which hue dominates. Try to avoid such pictures,
as they will inevitably confuse your viewer. When confronted with
imagery like that, people tend to look away quickly and it will not
give a good impression, no matter what it speaks of.

Beside color, pictures also have a texture, as ultimately they are
nothing but a collection of textured colors. Detecting the dominant
texture of an image is not as straight forward as its color, as textures
are seldom obvious, especially in photographs. There are however a
few pointers to help you. Human nature causes us to be drawn
to curved, so called “natural” shapes, while angular, sharp-looking
shapes are considered less attractive. That is why an image of a
curved, green leaf would appeal to more people then that of a metal
spike.

Eugene Trounev 155

To summarize: the key to a successful, appealing design is a good,
well balanced combination between color and texture in the images
used.

Texts and spaces

An equally important aspect of any good design is the use of text
and spaces around it. And just like it is with the image textures and
color, you should always remember that people like to breathe. This
means that there should be sufficient space in and around the text
to make it easier to spot, read and understand.

Consider an example of two pages – one coming from a romantic
novel, while the other is taken straight from a legal document. You
would most likely prefer the romantic novel over a legal document
any day, but do you know why? The answer is simply because you
like to breathe. A page from any romantic novel is likely to contain
three important elements: a) conversations; b) paragraphs; c) extra
wide margins, while most legal documents normally contain neither.
All of the aforementioned elements make the page feel alive and
dynamic, while the absence of those make it look like a solid wall
of text. Human eyes, being more accustomed to a certain degree
of variety of sights, feel more at ease when presented with spacious,
fluid layouts.

This does not however imply that every text must have all those
three elements in order to seem more attractive. Far from it. Any
text can be made easy and enjoyable by injecting enough air into the
flow.

Air, or space, can come through a variety of ways, such as: let-
ter, line and paragraph spacing; content, section, and page margins;
and finally letter size. Try to keep at least one character-tall space
between your paragraphs and lines, and two character-tall space be-
tween sections in your text. Allow generous spacing around the text
on a page by setting your margins wide enough. Try to never go be-

156 Use of Color and Images in Design Practices

low 10-points font size for your paragraph text, while keeping head-
ings large enough to stand out.

Attraction and information

Just like animals, human beings are often attracted by bright splotches
of color and unusual texture, and the more captivating the sight is,
the more oblivious people become towards other potential points of
interest. This simple rule of attraction has been used since the most
ancient times by females and males alike to drive the attention of
others away from certain things they did not want to be noticed. The
best example of such a trickery is the work of a street magician, who
often distracts viewers’ attention by use of smoke, flames or flashy
attire.

It is important to remember here that words are visual too, as
they produce specific associations and visions. The very same trick
that can be done with smoke and fires can also be achieved through
creative use of wording. By far the best example of a trickery done
with words is our every day price tags. Ever wondered why retailers
love those .99s and .95s so much? That is because $9.95, or even
$9.99 looks more attractive than $10.00, even though in reality they
have the same impact on your wallet. Trow an “old” $10.00 price
tag noticeably crossed through with a thick red line into the mix and
you got yourself a great customer magnet.

Conclusion

Great, attractive design is achieved by following these simple rules:
a) choose your imagery wisely; b) make good use of colors and tex-
tures to create an atmosphere; c) give your viewer some room to
breathe; d) draw the attention away from the parts that matter the
least, and towards those that matter the most.

Eugene Trounev 157

This short essay is not meant to cover the whole wide spectrum of
various design styles, techniques and rules, but rather to give you –
the reader – a starting point you could carry on building upon.

Part XI.

Community Management

25. How Not to Start a Community

Robert Kaye

Robert Kaye combines his love for music and open source into the
open music encyclopedia MusicBrainz. Robert founded and leads the
California-based non-profit MetaBrainz Foundation in a long term ef-
fort to improve the digital music experience. Beyond hacking on Mu-
sicBrainz, Robert seeks out interesting festivals like Burning Man and
interesting side projects like hacking on drink-mixing robots. Topped
with a colorful hair style at all times, you will never have a hard time
picking him out of a crowd.

In 1998, I was working at Xing Technology in San Luis Obispo,
working hard on our new AudioCatalyst project. It was one of the
first integrated MP3 ripping programs that made use of the CDDB
database. CDDB was the CD database that allows any player to
look up the title and tracklisting for any CD. If the CD was not
listed, you could enter the data so that the next person could make
use of the data. I loved this online collaborative project and typed
in several hundred CDs over the course of a few years.

One day we were notified that CDDB had been purchased by
Escient, a company that would later become GraceNote. The CDDB
database was taken private so that people could no longer download
the complete database! And on top of that Escient did not compen-
sate any of the contributors for their efforts; they were ripping off
the general public with this move. I was quite angry with this move
and still am to this day.

A few months later we were notified by Escient that we would be
required to play the Escient jingle and display the Escient logo when
making a CD lookup in our products. That was it! Now I was livid!

162 How Not to Start a Community

Later that week at a party with friends I was complaining about what
was happening and how unhappy I was. My friend Kevin Murphy
said to me: “Why don’t you start your own open source project to
compete with these bastards?”

A few weeks later I stopped working for Xing and had a couple
of weeks of spare time before I would start at EMusic. I decided to
teach myself Perl and web programming and set out to create the
CD Index, a non-compatible, non-infringing project to compete with
CDDB. I hacked on the project during the break, but then promptly
forgot it once I became a member of the FreeAmp project at EMusic.

Then in March of 1999 Slashdot asked what the open replacement
for CDDB was going to be. I spent the rest of that day and most
of the night finishing the CD Index and deploying it. I submitted
a Slashdot story about my project1 and it promptly posted. As ex-
pected, thousands of geeks showed up within minutes and my server
tipped over and died.

The masses of people who arrived immediately started shouting
for things to happen. There was not even a mailing list or a bug
tracker yet; they insisted on having one right now. Because I was
new to open source, I did not really know what all was needed to
launch an open source project, so I just did as people asked. The
shouting got louder and more people insisted that I shut the service
down because it was not perfect. Even amidst the mess, we received
over 3000 CD submissions during the first 24 hours.

Once things calmed down, there were still plenty of people shout-
ing. Greg Stein proclaimed that he would write a better version
immediately. Mike Oliphant, author of Grip, said he was going to
work on a new version as well. Alan Cox came and loudly proclaimed
that SQL databases would never scale and that I should use DNS to
create a better CD lookup service. Wait, what? I was very unhappy
with the community that grew out of the Slashdot posting. I did
not want a place were people could treat each other without respect

1http://slashdot.org/story/99/03/09/0923213/

OpenSource-Alternative-to-CDDB

 http://slashdot.org/story/99/03/09/0923213/OpenSource-Alternative-to-CDDB
 http://slashdot.org/story/99/03/09/0923213/OpenSource-Alternative-to-CDDB

Robert Kaye 163

and people who felt entitled could shout louder until they got what
they wanted. I quickly lost interest in the project and the CD Index
faltered. The other projects that people promised they would start
(not counting FreeDB) never materialized.

Then when the dot com bust started, I needed to think about what
I would do next. It was clear that my job at EMusic was not safe;
still I was driving a Honda S2000 roadster, my dot com trophy car.
With car payments double my rent, I had to decide: Work on my
own stuff and sell my dream car, or move to the Bay Area and work
on someone else’s dream, if I could even find a job there.

I decided that a comprehensive music encyclopedia that was user-
generated would be the most interesting thing to work on. I sold the
S2000 and hunkered down to start working on a new generation of
the CD Index. At yet another party, the name MusicBrainz came
to me and I registered the domain in the middle of the party. The
next day, motivated by the project’s new name, I started hacking in
earnest and in the Fall of 2000 I launched musicbrainz.org.

Launched is not the right term here – I set up the site quietly and
then wondered how I could avoid another Slashdot-based community
of loud screaming kids. I never imported data from the CD Index,
nor did I mention MusicBrainz on the CD Index mailing lists. I
simply walked away from the CD Index; I wanted nothing more to
do with it. In the end I decided to add one simple button to the
FreeAmp web page that mentioned MusicBrainz.

And a very strange thing happened: people came and checked
out the project. It was very few people at first, but when a person
mentioned something to me, I would start a conversation and gather
as much feedback as I could. I would improve the software based
on feedback. I also set a tone of respect on the mailing lists, and
every time someone was disrespectful, I would step in and speak up.
My efforts directed the focus of the project towards improving the
project. I did this for over 3 years before it became clear that this
approach was working. The database was growing steadily and the
data quality went from abhorrent to good over a number of years.
Volunteers come and go, but I am the constant for the project, always

164 How Not to Start a Community

setting the tone and direction for the project. Today we have a
501(c)3 non-profit with 3.25 employees in 4 countries, Google, the
BBC and Amazon as our customers and we are in the black. I doubt
that could have happened with the CD Index community.

I wish I would have known that communities need to grow over
time and be nurtured with a lot of care.

26. Hindsight is Almost 20/20

Jono Bacon

Jono Bacon is a community manager, engineering manager, con-
sultant and author. Currently he works as the Ubuntu Community
Manager at Canonical, leading a team to grow, inspire and enthuse
the global Ubuntu community. He is the author of Art of Commu-
nity, founder of the Community Leadership Summit and co-founder
of the popular podcast LugRadio.

I first learned of Linux and Open Source back in 1998. While the
technology was gnarly and the effort required to get a smooth run-
ning system was significant, the concept of this global collaborative
community transfixed me. Back then I had no knowledge, limited
technical skills, and zits.

As an angsty teenager complete with long hair and Iron Maiden
t-shirt, my path was really already mapped out for me in the most
traditional sense; I would go to school, then college, then university,
and then a job.

Fourteen years later, the path I actually took was by no means
traditional, and that intrinsic fascination with community has taken
me around the world and thrown me into some engrossing challenges.
It is interesting to sit back and reflect on this period of time. Well,
it might be interesting for me. . . you might want to skip to the next
chapter. . .
. . .
Still with me? OK, let’s roll.

166 Hindsight is Almost 20/20

Science vs. Art

I have always believed that community management is less of a sci-
ence and more of an art. I define science as exploring methods of
reproducing phenomena through clearly understood and definitive
steps. In the science world if you know the theory and recipe for an
outcome, you can often reproduce that outcome like anyone else.

Art is different. There is no recipe for producing an incredible
song, for creating an amazing painting, or sculpting a beautiful
statue. Similarly, there is not really any reproducible set of steps
for creating a thriving community. Sure, there are tricks and tech-
niques for achieving components of success, but the same happens for
other art-forms; we can all learn the notes and chords on a guitar, it
does not mean you are going to write the next Bohemian Rhapsody.
The formula that generates Bohemian Rhapsody is one part learned
skill and one part magic.

Now, I am not suggesting that community management is this
frustratingly hip and introverted artform that only the blessed few
with such talents can achieve. What I am instead lamenting is that
there is no playbook for how to create a wonderful and inspiring
community; it is still one part learned skill and one part magic, but
the magic part is not divinely anointed to you by the gods, but
instead obtained by trying new things, being receptive to feedback,
and getting a feel for what works and what does not.

Rather frustratingly, this means that there is no single recipe to
follow for the magic, but there is still an opportunity to share the
learned skills, as I have sought to do with The Art of Community1

and the annual Community Leadership Summit2.
Before I get started reflecting, and for those of you who have not

bored yourself into oblivion by following my career, I will summarize
the communities I have worked with so we can define the context.
In a nutshell, I started out in my hairier days by producing one of
the UK’s first Linux community websites called Linux UK and got

1http://artofcommunityonline.org
2http://communityleadershipsummit.com

http://artofcommunityonline.org
http://communityleadershipsummit.com

Jono Bacon 167

involved in the Linux User Group (LUG) community. I went on to
create my own LUG in Wolverhampton in the UK and founded the
Infopoint project to encourage LUGs to advocate Linux at computer
fairs across the UK. I then went on to contribute to the KDE commu-
nity, founded the KDE::Enterprise site, got the KDE Usability Study
going, and contributed to a few little apps here and there. I then
founded the PHP West Midlands user group and started also getting
interested in GNOME. I wrote a few apps (GNOME iRiver, XAMPP
Control Panel, Lernid, Acire) and also co-designed and wrote some
code for a new simplified audio app called Jokosher. Around this
time I co-founded the LugRadio podcast which would run for four
years with over two million downloads and spawning five live events
in the UK and USA. At this time I also started work as an Open
Source consultant at the government-funded OpenAdvantage where
I really got a chance to cut my teeth in community and working
with organizations across the West Midlands to help them to move
to Open Source. After a few years at OpenAdvantage I moved on to
join Canonical as the Ubuntu community manager and developed a
team of four and together we are involved in a wide variety of pro-
jects in Ubuntu and Canonical.
Still with me?
Wow, you are persistent. Or bored. Probably bored. There will be
an exam at the end; that’ll teach you. . .

Reflecting

So this brings me to the focus of this piece – the curious question
of if I knew what I did today, what would I tell myself? Over the
course of my career so far I believe that everything I have learned
can be boiled into two broad buckets:

� Practical – the tips and tricks of the trade; e.g. approaches to
communication mediums, using technology in different ways,
event planning techniques, project management approaches
etc.

168 Hindsight is Almost 20/20

� Personal – core life lessons and learnings that affect the ap-
proach you take to your world.

I am not going to talk much about the practical – you should read
my book for more on that topic (the book also covers a lot of the
personal too). Today I am instead going to focus on the personal life
lessons. Approaches and practices will always change, but the life
lessons do not so much change but grow and evolve as we get wiser.

The Importance Of Belief

Communities are fundamentally networks of people driven by belief.
Every community has an ethos and a focus. This could be something
as grandiose as documenting all human knowledge or changing the
world with Free Software, or it could be as humble as providing a
local group for people to get together to talk about their favorite
books. Whether life changing or just a bit of fun, each community
has a belief system; the humble book club still sees tremendous value
in providing a fun, safe and free environment to share reading pref-
erences and recommendations. It might not change the world, but it
is still a good thing and something people can get behind.

The underlying often unwritten rule of community is that every
contribution from a community member must benefit the wider com-
munity. This is why it is fun to write a patch that fixes a Free Soft-
ware bug, contribute documentation, run a free event or otherwise,
but it is rare that anyone is willing to contribute as a volunteer if
their contribution only benefits a single person or company.

Of course, I am sure all of you cynical bastards are now going to try
and find an exception, but remember that this decision is typically
deeply personal – the community member decides how comfortable
they are that their contribution will benefit everyone. As an example,
some would argue that any contribution to Mono would only benefit
Microsoft and the ubiquity of their .NET framework, but hundreds of
contributors participate in Mono because they do not see it this way
– they see their contributions as a valuable and fun way of making

Jono Bacon 169

it easy to empower Free Software developers to write Free Software
more easily.

If I was talking to the Jono of 1998 I would really emphasize the
importance of this belief. I had a hunch about it back then, but I
have since seen countless examples of belief truly inspiring people
to participate. I have often talked about the story of the kid from
Africa who emailed me to tell me how he would walk three hours
to and from his nearest Internet cafe to contribute to Ubuntu. He
did this because he believed in our mission to bring Free Software
to the masses. The same can be said for the tremendous growth in
Wikipedia, the incredible coming together of the GNOME commu-
nity around GNOME 3, the success of OpenStreetMap and many
other examples.

Belief though is not a PR stunt. It has to be real. While each of
us has different belief systems, some map their belief systems to soft-
ware, some to education, some to knowledge, some to transparency
or whatever else, you can not concoct a belief system unless it serves
a valid goal that a group are likely to care about. Sure, it can be
obscure, but it has to be real. With the success of Open Source, we
have seen some examples of some companies trying to use similar lan-
guage and approaches around belief, but applying it to self-serving
needs. I could invent a belief of “let’s all work together to help Jono
get rich” and concoct some nonsense of the benefits of this belief
(e.g. if I am rich I can focus on other work that would benefit other
communities, my future kids would get a wonderful education and
upbringing and this will benefit the world), but it would be rubbish.

As such, belief is a strong driver for collaboration and contribution,
but it must be met with respect and balance. While it can be a
trigger for incredible change, it can also be hugely destructive (e.g.
some television preachers who use religion as a means for you to give
them money, or fake psychics who use cold reading to latch onto your
belief to desperately try and re-connect with a lost loved one).

170 Hindsight is Almost 20/20

Your Role

Community managers play an interesting role these days. In the
past I have talked about there being two types of community man-
agers; those who go out and give presentations and wave their hands
around talking about a product or service, and those who work with
a community of volunteers to help them to have a fun, productive
and enjoyable collaborative experience. I am more interested in the
latter – I feel that is what a real community manager does. The
former is a fine and respectable position to have, but it is more in
the area of advocacy and public relations, and requires a different
set of skills. I have a few tips here I think are interesting enough to
share.

The first and probably most important lesson is having a willing-
ness to accept that you can and will be wrong sometimes. In my
career so far I have got some things right and some things wrong.
While I believe I am generally on the right path and most of my
work is successful, there have been a few turkeys here and there.
These screw-ups, mishaps and mis-steps have never been out of ma-
liciousness or carelessness, they have instead typically been from me
overshooting the target of what I was trying to do.

This seems like a pretty obvious point, but it gets less obvious when
you have a fairly public role. By and large, community managers are
often seen as representatives of a given community. As an example, I
know that I am personally seen as one of the public faces of Ubuntu,
and with that responsibility comes the public pressure of how people
perceive you.

For some community leaders, having the spotlight shone on them
causes a defensive mechanism to kick in; they cringe at the idea
of making mistakes in public, as if the chattering masses expect a
perfect record. This is risky, and what has been seen in the past
is that we get public leaders who essentially never accept that they
have made a mistake due to this fear of public ridicule. This is not
only a fallacy (we all make mistakes), but it also does not set a good
example to the community of a leader who is honest and transparent

Jono Bacon 171

in both the things they do well and the things they do less well. It is
important to remember that we often gain respect in people because
of their acceptance of mistakes – it shows a well-rounded and honest
individual.

I remember when I first became a manager at Canonical and at the
time Colin Watson and Scott James Remnant, two original gangstas
from the very beginning of Canonical and Ubuntu, were also man-
agers on the Ubuntu Engineering Team. We would have our weekly
calls with our manager, Matt Zimmerman, and on these calls I would
hear Colin and Scott openly accepting that they were not good at
this, or had made a mistake with that; they were stunningly humble
and accepting of their strengths and weaknesses. As a rookie man-
ager I was a little more tight-lipped, but it taught me that this kind
of openness and honesty is not only good as a manager but as a com-
munity leader and since then I feel no qualms in publicly admitting
to mistakes or apologizing if I screw up.

Listening

In a similar way, while openness to mistakes is important, another
lesson is the importance of being a good listener and learning from
our peers. In many cases our communities look to community man-
agers and leaders as people who should always be providing guid-
ance, direction and active navigation of the project and its goals.
This is definitely a responsibility, but in addition to the voicing of
this leadership, it is also important to be a passive listener, providing
guidance where appropriate and learning new lessons and insight.

Our community members are not just cold, hard, machines who
perform work; they are living, breathing, human beings with thoughts,
opinions, feelings and ideas. I have seen many examples, and I have
accidentally done this before myself, where someone is so used to
providing guidance and direction that they sometimes forget to just
sit down and listen and learn from someone else’s experience. Every
industry is filled with thought leaders and scholars ... famous people

172 Hindsight is Almost 20/20

who are known for their wisdom, but in my experience some of the
most revolutionary life lessons that I have learned have come entirely
from non-famous, day-to-day, meat-and-potatoes community mem-
bers. Being a great listener is not just important to help us learn
and be better at what we do, but it is critical in gaining respect and
having a great relationship with your community.

On vs. Off Time

While on the subject of how we engage with our community, I have
another take-away that I only truly processed in my own mind fairly
recently. Like many people, I have a number of different interests
that fill my days. Outside of being married and trying to be the
best husband I can be, and my day job as the Ubuntu Community
Manager, I also have projects such as Severed Fifth, the Community
Leadership Summit, and some other things. As you would naturally
expect, my days are committed to my day job – I do not spend time
at work working on these other projects. As such, as you would
naturally expect, when my work day ends I start working on these
other projects. The lesson here is that it is not always clear to your
community where the lines are drawn.

Over the years I have developed a series of online facilities that I
use for my work and viewpoints. My Twitter, identi.ca, Facebook
pages, my blog, and some other resources are where I talk about
what I do. The challenge is that if you take into account these public
resources, my public representation of the Ubuntu project, and the
wealth of timezones across the world, it does not take an Einstein to
confuse whether I am writing about something as a Jono thing or a
Canonical thing.

This has caused some confusion. As an example, despite my
repeated clarifications, OpenRespect is not and never has been a
Canonical initiative. Of course, some idiots choose to ignore my
clarification of this, but I can see how the confusion could arrive
nonetheless. The same thing has happened for other projects such

Jono Bacon 173

as Severed Fifth, The Art of Community and the Community Lead-
ership Summit, of which none are, or ever have been, part of my
work at Canonical.

The reason why I consider this a lesson is that I have seen, and at
one point shared, the view that “of course it is a spare time thing,
I posted that at 8pm at night” and shrug of concerns of the lines
blurring. When you have a job that puts you in a reasonably public
position, you can not have the luxury of just assuming that; you
have to instead assume that people are likely to blur the lines and
you have to work harder to clarify them.

Don’t Travel Too Much

On the topic of working for a company that employs you to be a
community leader, you should always be aware of the risks as well
as the benefits of travel. This is something I learned fairly early
on in my career at Canonical. I would see the same faces over and
over again at conferences, and it was clear that these folks had clearly
communicated the benefits of travel to their employer, as I had done,
but I also came to learn the risks.

I would travel and it would not only be tiring work and emotionally
exhausting, but I would also be away from my email more, on IRC
less, unable to attend many meetings, and have less time to work
on my work commitments. As such, my role would largely become
that of getting out and visiting events, and while fun, this did not
serve my community as well as it should have done. As such, I fairly
dramatically cut my travel – in fact, I went to the Linux Collab
Summit a few days ago, and outside of Ubuntu events that I needed
to attend, I had not made it to conference for nearly a year. Now I
feel the pendulum has swung a little too far in the other direction,
so it is all about balance, but I also feel I serve my community better
when I am able to take the time to be at the office and be online and
accessible.

174 Hindsight is Almost 20/20

Planning

For some folks, the role of a community leader or community manager
is one that is less about pre-disposed structure and instead more
interrupt-driven. When I started out, I used to think this too. While
there is absolutely no doubt that you do indeed need to be interrupt-
driven and able to respond to things that are going on, it is also
essential to sufficiently plan your work for a given period of time.

This planning should be done out in the open where possible and
serves a few functions:

� Shares plans – it helps the community to understand what you
are working on and often opens up the doors for the community
to help you.

� Offers assurances – it demonstrates that a community leader
is doing something. Your community can see your active work
happening. This is particularly important, as much of the work
of a community leader often happens out of the view of the
wider community (e.g. having a one-on-one conversation with
a community member), and this lack of visibility can sometimes
generate concerns that little is happening in key areas, when
instead a lot is going on behind the scenes.

� Communicates progress up and down the ladder – this is rel-
evant if you are working for a company. Having some solid
planning processes in place demonstrates your active work to
your management, and it also re-assures your team that they
will always know what to work on and create great value for
the community.

Over the years I have put more and more importance in planning,
while still retaining enough time and flexibility to be interrupt-
driven. When I started as the Ubuntu Community Manager my
planning was fairly personal and ad-hoc – I took the pulse of the
community, and I applied my time and resources to tend to those
areas as I saw fit.

Jono Bacon 175

Today I break goals into a set of projects that each span an Ubuntu
cycle, gather input from stakeholders, put together a roadmap, track
work in blueprints, and assess progress using a variety of tools and
processes such as my burndown chart, regular meetings, and more.
While the current approach requires more planning, it helps signifi-
cantly with the benefits covered in the above bullet points.

Perception and Conflict

One thing I often hear about in the world of community management
and leadership is the view that perception is everything. Typically
when I hear this it is in response to someone getting the wrong end
of the stick about something, often in a conflict period.

Of course, perception does indeed play an important part in our
lives, but what can fuel incorrect or misaligned perceptions is lack
of information, mis-information, and in some cases, heated tensions
and tempers. This can be some of the most complex work for a
community leader, and I have come away with a few lessons learned
in this area too.

Communities are groups of people, and in every group there are
often common roles that people fill. There is usually someone who
is seen as a rockstar and hero, someone who is sympathetic to con-
cerns and worries and a shoulder to cry on, someone who is overtly
outspoken, and often someone who is ... well ... deliberately diffi-
cult. Heroes, sympathetic ears and outspoken folks are not particu-
larly challenging, but deliberately difficult people can be complex; if
someone is being overtly difficult to deal with, it can cause tensions
to form with other members and bring conflict to an otherwise happy
community. We need to nip those issues in the bud early.

Part of the challenge here is that people are people, groups are
groups, and it is not uncommon for a single person or a few people
to become known and complained about behind closed doors as dif-
ficult to work with. In addition to this, most people do not want to
get involved in any conflict, and as such the person being complained

176 Hindsight is Almost 20/20

about can sometimes never actually know that people see them this
way, as no-one wants to confront them about it. This results in one
of the most dangerous situations for a community members – a repu-
tation is spread, without the knowledge of the person who it applies
to, and because they never know, they never have an opportunity to
fix it. That is a pretty sucky position to be in.

A common response to this conclusion is the view that “they are so
difficult to deal with that trying to reason with them will fall on deaf
ears anyway”. While this certainly does happen from time to time,
do not be so quick to assume this will be the outcome; there have
been a few times when I have had the uncomfortable experience of
feeling I need to share with someone the reputation that they have
developed, and in virtually all cases it has been a real surprise to
them, and they have almost all modified their behavior based on the
feedback.

On a related note, while often not a common part of the daily
routine of a community leader, conflict will often raise its head here
and there. I just wanted to share two brief elements about conflict.

The first is understanding how conflict forms. To introduce this,
let me tell you a little story. Last week a friend of mine flew out to
the Bay Area for a conference. He arrived in the evening, so I picked
him up from the airport and we went to the pub to catch up. While
there he started telling me how disappointed he was with Obama
and his administration. He cited examples of health care reform,
Wall Street reform, digital rights and more. His agitation was not
with the policies themselves, but with Obama not doing enough. My
perspective was a little different.

I am not a democrat or a republican; I make my decisions on each
issue, and I do not align myself with either party. Where I differ to
my friend though is that I am a little more sympathetic to Obama
and his daily work. This is because I believe that he, and anyone
else in a public position, whether as internationally recognized as
the president, or as obscure and specific as a community manager,
realizes that the story read and understood by the public is often
only a fragment of the full story. There have been cases in the past

Jono Bacon 177

where something controversial has kicked off in the communities that
I have been a part of, and many of the commentators and onlookers
have clearly not had a full knowledge of the facts either because they
have not picked up on the nuances and details of the topic or some
parts of the story have not been shared.

Now, I know what some of you are going to say – some parts not
shared?! Surely we should be transparent? Of course we should,
and we should always strive to be open and honest, but there are
some cases when it would be inappropriate to share some parts of
the story. This could be because of private conversations with people
who do not want their comments shared, and also just being classy
in your work and not throwing dirt around. As an example, I have
always had a very strong policy of not throwing cheap shots at com-
petitors, no matter what happens. In the past there has been some
questionable behavior from some competitors behind the scenes, but
I am not going to go out and throw dirt around as it would not serve
a particularly useful purpose, but with that I have to accept that
some community critique will only have part of the picture and not
be aware of some of the behind the scenes shenanigans.

Finally, on the topic of conflict, I believe a real life lesson I have
learned has been the approach in which critique and successful out-
comes should be approached. Although blogging has had a hugely
positive impact on how people can articulate and share opinions and
perspectives, there has been a dark side. Blogging has also become
a medium in which much overzealous opinion can sometimes be ex-
pressed a little too quickly. Unfortunately, I have a rather embar-
rassing example of someone who fell into this trap: yours truly.

First, a bit of background. There used to be a company called
Lindows that made a version of Linux that shared many visual and
operational similarities to Windows. Microsoft frowned at the name
“Lindows”, and a fight started to change the name. Lindows ini-
tially resisted, but after mounting pressure, changed their name to
Linspire.

Now to the issue. Let me take the liberty to explain in the words
of the article itself:

178 Hindsight is Almost 20/20

Recently a chap named Andrew Betts decided to take
the non-free elements out of Linspire and release the
free parts as another Linspire-derived distribution called
Freespire. This act of re-releasing distributions or code
is certainly nothing new and is fully within the ethos of
open source. In fact, many of the distributions we use
today were derived from existing tools.

Unfortunately, Linspire saw this as a problem and asked
for the Freespire name to be changed. Reading through
the notice of the change, the language and flow of the
words screams marketing to me. I am certainly not insin-
uating that Betts has been forced into writing the page,
or that the Linspire marketing drones have written it and
appended his name, but it certainly doesn’t sound quite
right to me. I would have expected something along the
lines of “Freespire has been changed to Squiggle to avoid
confusion with the Linspire product”, but this is not the
case. Instead we are treated to choice marketing cuts such
as “To help alleviate any confusion, I contacted Linspire
and they made an extremely generous offer to us all”.
Wow. What is this one-chance-in-a-lifetime-not-sold-in-
stores offer? Luckily, he continues, “they want everyone
who has been following my project to experience ‘the real’
Linspire, FOR FREE!!!”. Now, pray tell, how do we get
this ‘real‘ version of the software “FOR FREE!!!”?

“For a limited time, they are making available a coupon
code called ‘FREESPIRE’ that will give you a free digital
copy of Linspire! Please visit http://linspire.com/

freespire for details”. Oh . . . thanks.

I gave Linspire a pretty full-throated kick in the wedding vegeta-
bles in my blog entry. I told the story, objected to what I considered
hypocrisy given their own battle with similar-sounding trademarks,
and vented. I wish Guitar Hero had existed back then: it would have
been a better use of my time.

http://linspire.com/freespire
http://linspire.com/freespire

Jono Bacon 179

I was wrong. My article was never going to achieve anything.
Shortly after the article was published, then-CEO Kevin Carmony
emailed me. He was not a happy bunny. His objection, and it was
valid, was that I flew off the handle without checking in with him
first. My blog entry was my first reaction. The reality of the story
was far less dramatic, and Linspire were not the ogres that I painted
them to be. I apologized to Kevin and felt like an idiot.

Many conflict scenarios are resolved in private discussions where
people can be open and focus on solutions without the noise. Over
the years I have seen many examples of a furious public blogging war
going on while behind the scenes there is a calm exchange of opinions
and the focus on solutions.

Wrapping Up

When I started writing this it was much shorter, but I just kept
adding one more thing, and then one more thing and so on. It is
already long enough that I can probably count the number of people
reading this bit on one hand, so I am going to hang it up here. I
could go on forever with little tidbits and experiences that I have
been fortunate enough to be involved in and expand my horizons,
but then I would end up writing The Art of Community II: This
Time It’s Personal.

Life is a constant on-going experience, and I hope your investment
in reading this has added to it a little.

27. Things I’m Happy I Didn’t Know

Alexandra Leisse

Alexandra Leisse left one stage to enter another and turn her other
passion – software and the web – into a profession. After a transi-
tion period of 12 months of freelancing both in software and opera –
and sinking countless hours into KDE activities, she joined Nokia,
Qt Development Frameworks as Web Community Manager.
She is the woman behind the Qt Developer Network and Qt’s com-
munity activities on the web. Despite holding a degree in opera per-
formance, she mostly refuses to sing in public.

Introduction

When Lydia asked me to join her book project under the working
title of “things I wish I had known”, my mind went blank. Things I
wish I had known but didn’t? Nothing came to mind.

I am not saying that I didn’t need to learn anything, on the con-
trary. I had to learn a lot and I made countless mistakes. But
situations or mistakes I would have preferred to avoid? I can’t think
of any.

All of us have the annoying tendency to look at the things that
we could do better, the things we do not know, and perceive them
as weaknesses. But what about weaknesses that are our strengths?

Here is my personal story about ignorance, naivety and false per-
ception, and about how happy I am I had no clue.

182 Things I’m Happy I Didn’t Know

Names

I had no idea who this guy was I met during the first day of my
job. He entered the room, introduced himself, and started asking
tough questions that gave me the impression that all I thought I
would be doing was nonsense. He was apparently well informed
about my doings in KDE and the people I used to deal with. Still
we seemed to have different standpoints. At some point I grew tired
of his provocations and lost patience. I told him that things are not
always as easy with people as engineers wish they were.

It was only after he had left after about an hour of discussing that
I googled his name: Matthias Ettrich. What I read explained a lot
about why he asked the questions he did. If I had known before
that he is one of the founders of the KDE project I would have likely
argued in a very different way – if at all.

I had to look up quite some names during the last years, and I was
happy every single time that I did it after the first contact.

This is probably my most important point. When I met all these
FOSS people for the first time I had almost never heard their names
before. I did not know about their history, their merits, nor their
failures. I approached everyone in the same way: on eye-level.

By being ignorant (or naive, as some have called it), I did not feel
inferior to the people I met when I started my journey into FOSS
land. I knew I had a lot to learn but I never had the impression I
had a lower position than others as a person.

“High-Profile-Project”

I had not religiously followed dot.kde.org nor PlanetKDE, let alone
all those countless other FOSS related publications before I started
lurking on KDE mailing-lists. I perceived those channels first and
foremost as means of communication to a very select audience,
mainly users of and contributors to the project itself.

Alexandra Leisse 183

For quite some time, it did not even cross my mind that the articles
I published on The Dot might be picked up by journalists. I put an
effort into writing them because I wanted to do a good job rather
than because I was afraid of making a fool out of myself in the world’s
face. The press list was maintained by other people and what I wrote
did not appear that important to me either. I wanted to reach certain
people, and the official channels and my own blog seemed like the
most efficient way of doing it.

Being quoted on ReadWriteWeb after announcing on my blog that
I would start a new job almost came as a shock to me. It is not that
I did not know that people read what I write – I certainly hope they
do! – I simply did not expect it to be that much of a topic. It wasn’t
even summer break.

Good thing nobody told me; I would not have been able to publish
a single line.

The Outsider

Some time ago when I attended my first conference I did so with
the firm belief that I was different from the other attendees. I saw
myself as an outsider because I did not have much in common with
anybody else apart from a fuzzy interest in technology: I had been
freelancing for some years already after graduating from university,
I had no relevant education in the field, and I was mother of a 10
year-old child. On paper at least, it could not get much different
from the usual suspects one meets inside FOSS projects.

In 2008 I attended a KOffice sprint as part of the KDE marketing
and promotion team to prepare the 2.0 release. The initial idea was
to sketch out a series of promotional activities supporting the release
to grow both developer and user base, for which there were three of
us running a parallel track to the developer discussion.

We tried to understand how we could position KOffice and adapt
communication to the intended audience. Pretty soon in the pro-
cess, we discovered that we had to take a step back: at that point,

184 Things I’m Happy I Didn’t Know

the immaturity of the suite made it impossible to position it as an
option for unsuspecting users. We had to stick with developers and
early adopters. It was a tough sell to some of the developers but as
outsiders we had the chance to look at the software without thinking
of all the blood, sweat and tears that went into the code.

For a lot of projects, no matter of which kind they are, the core
contributors have a hard time taking an objective look at the state of
affairs. We tend to not see the great accomplishments while we are so
focused on the issues in detail, or the other way around. Sometimes
we miss a good opportunity because we think it has nothing to do
with what we are doing – or that no-one would want this in the first
place.

In all these cases, people outside the project have the potential
to inject some different viewpoints into the discussion, particularly
when it comes to prioritization. It is even more helpful if they are
not developers themselves: they will ask different questions, will not
feel pressured into knowing and understanding all technical details,
and they can help decisions and communication on a higher level.

Conclusion

Ignorance is bliss. It is not only true for the individuals who benefits
from the fearlessness that results from a lack of knowledge but also
for the projects these individuals join. They bring different views
and experiences.

And now, go and find yourself a project that interests you, regard-
less of what you think you know.

Part XII.

Packaging

28. From Beginner to Professional

Jonathan Riddell

Jonathan Riddell is a KDE and Kubuntu developer currently em-
ployed by Canonical. When not at a computer he canoes the rivers
of Scotland.

There was a bug in the code. A nasty one too: a crash without saving
data. That is the problem with looking at code, you find things to
fix. It is easy to get involved in Free Software; the difficult part is
getting out again. After the first bug fix there are more and more,
all within reach. Bug fixes lead to adding features, which leads to
project maintenance, which leads to running community.

It started with reading Slashdot, that mass of poorly filtered tech
and geek news with comments from anyone who can reload fast
enough to get at the top. Every news story was interesting and
exciting, a fresh insight into the tech world I was becoming fasci-
nated with. No more did I have to accept what was given to me
by large software companies, here in the Free Software community I
could see the code develop in front of me.

As a university student it was possible to complete the exercises
given by lecturers very quickly, but exercises are not finished pro-
grams. I wanted to know how to apply the simple skills they had
given me to the real world by writing programs which solve real prob-
lems for people. So I looked for the code, which was not hard to find,
just lying around on the Internet in fact. Looking closer at the code
for the programs I was running I saw beauty. Not because the code
was perfectly tidy or well-structured, but because I could understand
it with the concepts I had already learned. Those classes, methods
and variables fell into place, enabling me to solve the relevant prob-
lems. Free Software is the best way to make that step from knowing

188 From Beginner to Professional

how to finish exercises in a class to understanding how real programs
get written.

Every computing student should work on Free Software for their
dissertation. Otherwise you get to spend six months to a year on
a project only for it to sit in the basement of a library never to be
visited again. Only Free Software makes it possible to excel by doing
what comes naturally: wanting to learn how to solve interesting
problems. By the end of my project NASA programmers were using
my UML diagramming tool and it won awards with lavish receptions.
With Free Software you can solve real problems for real users.

The developer community is full of amazing people, with the pas-
sion and dedication to work without any more reward than a suc-
cessful computer program. The user community is also awesome. It
is satisfying to know you have helped someone solve a problem, and
I appreciate the thank you emails I receive.

Having written useful software, it needs to be made available to
the masses. Source code is not going to work for most people, it
needs to be packaged up. Before I was involved in it I looked down
on packaging as a lazy way to contribute to Free Software. You get
to take much of the credit without having to code anything. This
is somewhat unfair, much of the community management needed to
run any Free Software project can also be seen as taking the credit
without doing the code.

Users depend on packagers a lot. It needs to be both fast, to keep
those who want the latest and greatest, and it needs to be reliable, for
those who want stability (which is everyone). The tricky part is that
it involves working with other people’s software, and other people’s
software is always broken. Once software is out in the wild problems
start to emerge that were not visible on the author’s own computer.
Maybe the code does not compile with a different compiler version,
maybe the licensing is unclear so it can not be copied, maybe the
versioning is inconsistent so minor updates might be incompatible,
screen sizes might be different, desktop environments can affect it,
sometimes necessary third party libraries do not even have a release.
These days software needs to run on different architectures, 64-bit

Jonathan Riddell 189

processors caused problems when they became widely available, these
days it is ARM which is defeating coders’ assumptions. Packagers
need to deal with all of these issues, to give something to the users
which reliably works.

We have a policy in Ubuntu that packages with unit tests must
have those tests enabled as part of the package build process. Very
often they fail and we get told by the software author that the tests
are only for his or her own use. Unfortunately it is never reliable
enough in software to test it yourself, it needs others to test it too.
One test is rarely enough, it needs a multi-layered approach. The
unit tests from the original program should be the first place to
start, then the packager tests it on his or her own computer, then
it needs others to test it too. Automatic install and upgrade testing
can be scripted on cloud computing services quite nicely. Putting it
into the development distribution archive gets wider testing before
finally some months later it gets released to the masses. At each
stage problems can and will be found which need to be fixed, then
those fixes need testing. So there might not be much coding involved
but there is a lot of work to get the software from being 95% to being
100% ready, that 5% is the hardest part, a slow and delicate process
needing careful attention all the way.

You can not do packaging without good communication with your
upstream developers. When bugs happen it is vital to be able to find
the right person to talk to quickly. It is important to get to know
them well as friends and colleagues. Conferences are vital for this
as meeting someone gives much more context to a mailing list post
than a year of emails can.

One of the unspoken parts of the Free Software world is the secret
IRC channels used by core members of a project. All big projects
have them, somewhere out there Linus Torvalds has a way of chatting
to Andrew Morton et al about what is good and what is bad in Linux.
They are more social than technical and when overused can be very
anti-social for the community at large, but for those times when there
is a need for a quick communication channel without noise they work
well.

190 From Beginner to Professional

Blogging is another important method of communication in the
Free Software community. It is our main method of marketing and
promotion for both the software we produce and ourselves. Not to
be used for shameless self-publicity, there is no point claiming you
will save lives with your blog, but used to talk about your work on
Free Software it builds community. It can even get you a job or
recognized in the street.

Those Slashdot stories of new technology developments are not
about remote figures you never meet in the way newspaper stories
are. They are about people who found a problem and solved it
using the computer in front of them. For a few years I was editing
the KDE news site, finding the people who were solving problems,
creating novel ideas and doing the slow slog of getting the software
up to high enough quality, then telling the world about them. There
were never a shortage of people and stories to tell the world about.

My last piece of advise is to stay varied. There is such a wealth
of interesting projects out there to explore, learn from and grow,
but once in a position of responsibility it can be tempting to stay
there. Having helped create a community for Kubuntu I am moving
temporarily to work on Bazaar, a very different project with a focus
on developers rather than non-tech users. I can start again learning
how code turns into useful reality, how a community interacts, how
quality is maintained. It will be a fun challenge and I am looking
forward to it.

29. Packaging - Providing a Great Route
into Free Software

Thom May

Thom May is a Debian Developer, an emeritus Member of the Apache
Software Foundation and was one of the first hires for Canonical,
Ubuntu’s parent company. He currently lives in London and is Head
of DevOps for Macmillan Digital Science.

Introduction

I started out in Free Software over a decade ago. I had been using
Debian for some years through university, and decided that I wanted
to give something back. So I started the long journey through the
Debian New Maintainer’s process, never having really contributed to
Free Software before, and concerned that a lack of experience with
C would prove to be a major problem.

As it turned out, this concern was mostly unfounded. By start-
ing out working with packages that I used regularly I was able to
contribute effectively. As my experience with the myriad of tools
and systems that Debian provides to its maintainers grew, I became
more efficient with my time, and was able to take on a wider range
of packages.

Taking on more packages increased my exposure to a range of
build systems, programming languages and toolkits, and also helped
to bring me into the Debian community. Abrasive and opinionated
though it is, Debian’s community of skilled and experienced main-
tainers is one of the main reasons Debian has maintained its technical
excellence over such a long period.

192 Packaging - Providing a Great Route into Free Software

At about this time the Apache httpd project was finally closing in
on the first beta releases of httpd 2.0, which had been several years in
the making and was going to be a massive upgrade. Debian’s Apache
team had been fairly inactive for some time – the 1.3 packages were
stable and changed infrequently – and had no plans for packaging
2.0. I had a strong interest in ensuring that the httpd packages were
well maintained – I was working as a sysadmin in charge of numerous
Apache web servers – so it made a lot of sense to take on the challenge
of producing packages for the new release.

A friend and I started work on the packages and quickly discovered
that while the code was approaching an early beta quality, the tooling
around the build and customization of httpd was sadly lacking, which
is fairly typical for many complex software projects.

Over the course of the best part of a year – whilst upstream sta-
bilised their code and an increasing number of early adopters began
to test and deploy the new release – we worked hard to ensure that
the build system was sufficiently flexible and robust to cope with the
stringent requirements of Debian’s policy. As well as ensuring that
our packages were technically correct, we had to ensure that our re-
lationship with upstream allowed us to get patches back upstream
whenever possible, and to get a heads up whenever security issues
arose and for early testing of release candidates.

My interactions with Apache in the course of packaging and main-
taining httpd 2.0 led me to become an upstream committer on the
project, meaning I could contribute code directly. This is generally
the final step in moving from packaging software to actively devel-
oping it for a wider audience than your distribution. On a personal
level, this recognition gave me the confidence to contribute to far
more Free Software projects, since I knew that my code was of suf-
ficient quality to be welcomed.

Thom May 193

Evolution - from packager to developer

So how did this happen? Packaging in its simplest form ensures that
a given software project complies with the policy of the distribution;
in my case Debian. Generally, this means configuring the software at
build time so that files are placed in the correct directory locations
(specified by the File Hierarchy Standard, or FHS), that dependen-
cies on other packages are correctly specified, and that the software
runs successfully on the distribution.

More complex packaging can require splitting an upstream project
into multiple packages, for example libraries and the header files that
allow the user to compile software against that library are shipped
in separate packages, and platform dependent files can be shipped
separately from platform independent ones. Ensuring that the up-
stream software correctly deploys in these situations will often require
changes to the code. These changes are the first step into active work
on a project, rather than the sometimes passive act of packaging.

Once your package is available in the distribution it is exposed to
millions of potential users. These users are guaranteed to run your
software in ways that neither you, as packager, nor your upstream
expected. Unsurprisingly, with many eyes come many bug reports.
Debian, in common with most distributions, encourages its users to
submit bug reports directly to Debian, rather than to the individual
upstream projects. This allows maintainers to triage bug reports and
ensure that the changes made during the packaging process are not
the cause of the reported problem. Often there can be considerable
interaction between the reporter of the problem and the package
maintainer before the upstream developers become involved.

As the package maintainer increases their knowledge of the project,
they will be able to solve most problems directly. The maintainer
will often release bug fixes directly into Debian in parallel with feed-
ing them back upstream, allowing for swift problem resolution and
considerable testing of fixes. Once a fix is confirmed the maintainer
will then work with the upstream project to ensure that the required

194 Packaging - Providing a Great Route into Free Software

changes happen in the upstream, definitive project, so that they are
available to other users of the software.

Providing successful bug fixes on distributions such as Debian is
often a complex art form. Debian runs on many platforms, from
IBM mainframes to smart phones, and the range and breadth of
these platform swiftly reveals assumptions in the code. More often
than not the packager has easier access to a broader range of plat-
forms than upstream does, and so is the first port of call when a
knotty porting problem does come up. One quickly learns to recog-
nise the symptoms of pointer size assumptions, endianness problems,
and many other esoteric issues; this experience makes one a more
versatile and cautious programmer.

As a package collects bug fixes and improvements, it is essential
to feed those changes back upstream. Too often the delta between a
package and the definitive, upstream software can grow enormously,
with the effect that the two become almost entirely separate code
bases. Not only does this increase the maintenance burden on both
sides, but it can cause huge frustration and waste large amounts
of time for your upstream should a user of your package report a
bug related to one of the changes in the packaged version to the
upstream. To this end, a close working relationship with upstream
and an understanding of the best way for both parties to collaborate
is vital.

Collaboration between upstream and packager can take many
forms. Whether it be finding the correct way to communicate bug
reports, making sure you use the correct coding style, or ensuring
that you both use the same version control system in the same way,
making sure that your interactions are as friction-free as possible,
makes for a far better relationship with upstream and a greatly in-
creased likelihood that your upstream will take the time to help you
when you need it.

Once the working relationship between you and your upstream is
established, it becomes an easy step to contribute more directly to
upstream. This, too, can take many forms. Simple first steps can
involve synchronising any upstream bug reports with the ones from

Thom May 195

your distribution, making sure that duplicate effort is not expended
to root cause and fix bugs. More direct involvement entails feature
development and changes with a wider scope than would be palatable
when made in a packaged version.

Conclusion

I think the two core things I wish I had known when starting out
are the sense of community that Free Software engenders, and the
fantastic route that packaging of Free Software provides into the
wider Free Software world.

Community is critical to the success of Free Software. It comes in
many forms, from the legion of users willing to invest time in making
your software better, to one’s peers in a distribution or software
project who invest their time and energy into honing your skills and
ensuring that your contributions are as good as possible.

The route from packaging into development is one often traveled.
It provides a learning curve less steep than entering a development
community cold, and allows one to develop skills at a more gradual
rate than would otherwise be the case.

30. Where Upstream and Downstream
Meet

Vincent Untz

Vincent Untz is an active Free Software enthusiast, GNOME lover
and advocate, as well as an openSUSE booster. He held the position
of GNOME Release Manager between 2008 and 2011, until GNOME
3.0 went out, was an active GNOME Foundation director (2006-
2010) and is leading the GNOME team in openSUSE. However, he
finds it simpler to declare he is a “touche-à-tout”, working on various
(some say random) areas of the desktop and helping openSUSE stay
amazing. Vincent is still pushing French as the official language for
GNOME, and hopes to succeed really soon now. And he loves ice
cream.

A long time ago, in a room at night. . .

I took a last look at the list of bugs to see if I had not forgotten a
patch that should be merged. I made sure to write what I thought
was a descriptive NEWS entry about the new version. I typed make

distcheck to start the release process and looked at the terminal
displaying hundreds of lines. A tarball got created, and I double-
checked that the tarball was building fine. Again and again – I
was anxious and somehow did not fully trust the make distcheck

command. After checking everything several times, I uploaded the
tarball to the server and sent a mail announcement.

I had managed to do it: I had released my first tarball of a software
of which I had recently become co-maintainer. And I was certainly

198 Where Upstream and Downstream Meet

thinking: “now users can enjoy some goodness!” But mere seconds
after my tarball got uploaded, a few people downloaded it and made
my release really accessible to users.

This is something I took for granted, as I thought it was mostly a
trivial task. I thought wrong.

Upstream Versus Downstream

As users, we do not necessarily understand the different steps re-
quired to ship software to us. It is here, and we can simply enjoy
it.

Many people contribute to this process of shipping software, and
the effort is usually split between two groups of people, which are
central in how Free Software works today:

� upstream: This is the group creating the software. It ob-
viously includes coders, but depending on the project, other
categories of contributors also are key participants: designers,
translators, documenters, testers, bug triagers, etc. Upstream
generally only ships the source code in a compressed archive,
a tarball.

� downstream: This is the group responsible for distributing
the software to the users. In the very same way as for up-
stream, contributors have a wide range of profiles, as they work
on translations, documentation, testing, bug triage and more.
There is however a profile that is, as of now, unique to down-
stream: the packagers, who prepare the software to make it
available in a format suitable for easier use than just source
code, a package.

Interestingly, this is a rather intuitive split for users too, although
we are unaware of it: we often assume that the software develop-
ers are unreachable, and we send feedback and ask for help to the
distributors instead.

Vincent Untz 199

A concrete analogy to clarify this upstream–downstream split
could be the usual model for physical goods, with retail stores (≈
downstream) distributing products of manufacturers (≈ upstream),
and playing an important role for customers (≈ users).

A Closer Look at Downstream

If I had to summarize in one sentence the role of downstream, this
is how I would describe it:

Downstream is the bridge between users and upstream.

When I released my first upstream tarball, I was assuming that
for downstream, the work would mostly be compiling the source and
building a package out of it, and nothing else. Building a package
is indeed the first step, but this is only the beginning of the journey
for downstream: then come several different tasks, some of which
are purely technical while others are social. I will only very briefly
describe this journey here, in a non-exhaustive way, as this could be
a whole part of this book1.

The building of the package itself can be less trivial than expected:
it is not uncommon that the packager hits some issues that were
unknown to upstream, like when a new version of the compiler is
used (with new errors), or a specific library needs to be updated first
(because the tarball is using some new API), or the build system of
the tarball is tailored for a specific way of working (which does not
follow the guidelines of the targetted distribution). What is even
more ignored by many is that all those issues can also occur after
the tarball has already been packaged, like when migrating the whole
distribution to a new compiler or toolchain. None of those technical
issues are extremely difficult to handle per se, and upstream is often
happy to help solve them; but without downstream, those issues
could go unnoticed by upstream for a while.

1It is worth mentioning that I do not believe that downstream should signifi-
cantly modify the software released by upstream; some downstreams do that,
however, and this adds to their workload.

200 Where Upstream and Downstream Meet

What is more important to me than those technical challenges is
that downstream is generally in direct contact with more users than
upstream. This results in bug reports, support requests, requests to
change configuration defaults, and more. This is where the down-
stream crowd really shines: instead of simply forwarding all of this
upstream, downstream will work on this feedback from users to only
relay summarized bits that upstream will be able to use. Often, bug
reports come without enough information on the issue (in which case
downstream will ask for more details); often, the support requests
stem from a misunderstanding on the user side (which downstream
can then, sometimes, translate to a suggestion to change the software
to avoid such misunderstanding); often, new configuration defaults
are suggested without a good-enough rationale (and downstream will
work with the users to see if there is a valid rationale). Of this huge
amount of data, downstream will produce a smaller set of informa-
tion that upstream will be able to easily consume, which will lead to
improvements in the software.

There are generally two rewards for downstream contributors: the
indirect and direct contributions to the upstream project thanks to
the efforts done downstream are enough for many, but on top of
that, the direct contact with more users leads to being exposed to
the satisfaction of those users. And such exposure easily makes a
day for many people.

As a sidenote, when considering the amount of work involved
downstream, I would not be surprised if, at the end of the day, many
upstream contributors are glad to have downstream people act as
a buffer to them: this significantly lowers the amount of feedback,
while at the same time improving the quality of the feedback (by
avoiding duplicated comments, undetailed issues, etc.). This enables
upstream to stay focused on the development itself, instead of forcing
upstream to either triage feedback or ignore it.

Just looking at my own upstream experience, I cannot count the
number of patches I received from downstream to fix build issues.
I also remember countless discussions about the bugs that were af-
fecting users the most, that helped me organize my priorities. And

Vincent Untz 201

since I joined the downstream ranks, I started sending similar build-
related patches to upstream, and chatting with my downstream hat
to relay feedback from users. Such upstream–downstream collabora-
tion contributes to improving the overall quality of our Free Software
ecosystem, and I would consider it essential to our good health.

Pushing Downstream Upstream!

I am firmly believing that there must be a strong upstream–downstream
collaboration for a project to succeed. I doubt there is much dis-
agreement on this by anyone; however, by “downstream”, people
usually think of the work being done in distributions. But, espe-
cially, for applications, it is becoming more and more viable to push
that downstream work out of distributions and to get benefits from
such a move upstream.

Tools like the Open Build Service make it easy to have people
build and distribute packages of an application for several distribu-
tions. This has benefits for both the users (who can more easily and
more quickly enjoy updates of their favorite applications) and for
upstream (who can help build a stronger relationship with its user
base). The only challenge with such a move is that there still needs
to be someone doing the packaging work, but also to manage the
larger feedback from users. That is, there still needs to be someone
doing the downstream work; except that it would be done as part of
upstream.

To me, this sounds like an exciting perspective, and I would even
go as far as suggesting that we, the Free Software community, should
slowly migrate the downstream work being done in distributions to
be based on downstream work being done directly upstream when-
ever possible – and at least for applications, this is often possible.
This obviously requires a mind shift, but it would allow more sharing
of the efforts that are most of the time being duplicated in all the
different downstreams as of today.

202 Where Upstream and Downstream Meet

For people willing to start contributing nowadays to applications
they like, this packaging work upstream is a whole new approach
that could be really successful!

I tried it and I stayed, will you?

Downstream has always been essential to my life as a Free Software
user – after all, only a few people are manually building their whole
system from scratch and I am not one of them. But it also became an
asset to me as an upstream developer, as I started taking more time
to discuss with downstream people to get more feedback on bugs,
features, general quality and even future directions of the software I
was working on.

This is only when I started being a downstream myself that I
understood that this position is indeed a privileged one to help advise
upstream, because of the direct contact to users and because of the
different perspective we get from this different position.

Without downstream, we would not be where we are today. If
you want to make a difference, be sure that by joining a downstream
effort and talking to upstream, you will succeed.

And you will have fun.

Part XIII.

Promotion

31. Finding Your Feet in a Free Software
Promotion Team

Stuart Jarvis

Stuart Jarvis began working with the KDE Promotion Team in 2008
by writing articles for KDE’s news website, KDE.News. He learned
the hard way how to get things done in a free software community
and got more involved with promotion team activities such as writing
KDE’s release announcements and getting articles about KDE soft-
ware into the Linux press. He now sits on KDE’s Marketing Working
Group, helping to set the direction of KDE’s promotion and market-
ing activities and helping new contributors to find their feet. He is
also now part of the editorial team for KDE.News, where his involve-
ment with KDE first began.

“He who codes, decides” is the mantra of free software development.
But what if there is no code? Or the he is a she?

Joining the promotion and marketing team of your favorite free
software project presents some special challenges. For new coders,
most projects have code review systems, maintainers and pre-releases
of software that all help to spot errors in code, making contributing
your first patches less scary.

Promotion can require your work to be visible to the public, with
minimal review, almost immediately. The non-hierarchical nature of
free software communities means there often is not a single person
you can turn to who will tell you whether your ideas are right and
take some of the responsibility on your behalf.

206 Finding Your Feet in a Free Software Promotion Team

Getting consensus versus getting it done

I first started contributing to KDE by writing articles for the official
news site, KDE.News. I had written for news outlets before, but
always had a named person to whom I would send a draft, receive
feedback and then make changes as required. In the KDE promotion
team there was no single person or group of people “in charge”. I
had to try and gauge the responses I got to draft articles and decide
whether I had all the feedback I needed and the article was ready for
publication.

With guidance from more experienced contributors, I eventually
learned how to propose something and get it published within a few
days if there were no major objections. The approach can be used
by any contributor to a free Software Promotion team, new or old
alike.

First, work out how you would do something, whether it be writing
an article, changing a website text or giving a talk at your local
school. Make a plan or write the article or the new text. Send
your ideas for review on the promotion team mailing list of your
organization. Importantly, do not ask people what they think – you
can wait for days or weeks and not get definite answers. Instead,
state that you will publish or submit your text or execute your plan
by a set date in the future, pending any objections in the meantime.

When setting a deadline for comments, think about how long it
will take everyone active in the team to check email and consider
your proposal. Twenty-four hours is likely the absolute minimum
for a simple yes or no answer to a straightforward question. For
something that requires reading or research, you should allow several
days.

If there are no big objections within the time limit you set, you can
just go ahead. If there are big problems with your plan, someone will
tell you. Things actually get done, you do not get frustrated with
a lack of progress and you get a reputation for completing tasks
successfully.

Stuart Jarvis 207

Ultimately, it is your decision

Free software communities can easily become discussion groups. Ev-
eryone has an opinion. If you are not careful, discussions can become
large, fade away as people lose interest and finish without reaching
any strong conclusions. That can be hard enough to deal with when
you have been around the community for a while and have the ex-
perience to make your own decisions and your own views on whose
opinions you should listen to. When you are just starting out, it can
be very confusing.

If you want your own task to succeed, you may have to make
decisions between competing view points. You can wrap up the
discussion by providing a summary of the main points made and
stating your opinion on them. Try not to leave any open questions
unless you want further discussion – just state your conclusions and
what you are going to do. As long as you are reasonable, people are
likely to respect you even if they disagree.

Be proactive – do not wait to be asked

Your first contact with the promotion team you want to join may
well be by sending an email to their mailing list offering your skills.
I thought I could list things I was good at and expect people to
suggest things for me to do. Normally, it does not work quite like
that.

Most communities are short of volunteers and really do need your
skills. However, because they lack volunteers, they can also lack time
to provide good guidance and mentoring. If there is a specific short-
term project you would like to work on, say so. It is much easier
for someone in the project to simply say “go ahead” than to try and
come up with a project to match your skills.

Even when you have worked on a few projects and proven your
skills, you are unlikely to often be approached personally with tasks.
Those coordinating the marketing team will not know your personal

208 Finding Your Feet in a Free Software Promotion Team

circumstances and so might not feel comfortable asking you to do
something specific in your own time, for free. An ideal community
will regularly post – either on a mailing list or a web page – tasks that
volunteers can pick up. If that does not happen, find your own things
to do and tell the mailing list that you are doing them. People will
notice and it raises the chance that you will be directly approached
in the future.

If you are proactive then you can quickly find that you are one of
the experienced people in the community that new people look to
for advice and jobs to work on. Try and remember what it was like
when you started and make their lives as new contributors as easy
as possible.

32. Big Plans Don’t Work

Jos Poortvliet

Jos Poortvliet works as openSUSE community manager for SUSE
Linux. Before that he was active in the international KDE commu-
nity as team lead for the marketing team. In his “offline life” he
has had jobs at a variety of companies as Business Consultant. His
favorite pastime is experimenting in the kitchen, trying to come up
with something edible.

“It is better to take many small steps in the right direc-
tion than to make a great leap forward only to stumble
backward.” – Old Chinese proverb

A great idea. . .

Once upon a time in the marketing team of a Free Software project,
someone came up with a great idea to grow the project. A program
would be set up to get IT students to learn about the project and
join in. Universities would be contacted and someone would talk to
them to get them interested. Ambassadors would then go to those
universities and give a course there, coaching students in their first
step into the world of Free Software. Once they joined online, they
would be mentored on simple tasks and finally become full-fledged
contributors! Of course, universities would love the program, and
with some luck start to participate more actively, giving their stu-
dents assignments which result in code being written for the project,
and much more.

210 Big Plans Don’t Work

. . . which didn’t work. . .

I have seen the idea from the fictitious story above in many forms
in many different communities and projects. It is a great idea and
could be very powerful! We all know you have to start early – our
proprietary competition is pretty darn good at this. We also know
we have arguments enough to convince universities and students to
participate – FOSS is the future, it provides great skill development
opportunities, skills in Linux programming or administration are in
higher demand than another Java or .NET developer or Windows
sysadmin and most importantly: it is more fun. Somehow, however,
if you go to universities, you do not see many posters inviting you to
join Free Software projects. Most professors have never heard of it.
What went wrong? Let me continue the story.

. . . not because lack of effort. . .

The team had a long discussion about it. First brainstorm style –
many ideas on how to realize the idea came in. The team leader
collected the work and put it on the wiki. A plan was made with
a time line and the team leader appointed people responsible for
certain parts. Some started writing course materials, others looked
up university contact information and put it in a list. They asked
frequently for input and ideas on the mailing list and got plenty of
responses for further course material, which the leader added to the
list of things to write. It all had to be done in the free time of
the volunteers, but you could always count on the leader to remind
volunteers of the schedule.

After a few months a structure was visible and many pages in
the wiki were created. Meanwhile, however, the number of people
involved decreased from the initial discussion with over 30 to about
5 still soldiering on. The leader decided to revise the road map with
proposed deadlines and after a few calls on the mailing list 10 new
volunteers committed to a variety of tasks. The pace picked up a
bit again. Quite a bit of what had been done before had to be

Jos Poortvliet 211

updated and there were other adjustments needed. Unfortunately,
things kept slipping and the number of people doing things kept
decreasing. Monthly sprints were introduced which did indeed result
in some more work being finished. But there was simply too much
to do. After about a year, the last people gave up. A stale wiki page
and some outdated materials are all that is left. . .

. . . but because it was too ambitious.

So why did it not work? The team did everything according to
the best project management practices you will find on the web. . .
brainstorming, then creating a plan, time lines, clear goals and re-
sponsibilities. . . They did the right volunteer things: ask people,
engage them, give everyone an opportunity to voice his/her opinion.
It should have worked!

It did not, because of a simple reason: it was too ambitious. It is
a trend. Amazing ideas receive lots of comments, get written down
in great plans which result in incomplete wiki pages leading to too
little implementation finally fading into nothingness.

Leaders have to recognize that how a team works in FOSS is not
the same as in a structured, managed environment like a company.
People tend to be around when there is something exciting, like a big
release, and then disappear until the next exciting thing. Creating a
community team should never assume that the people will stay fully
committed the entire length of time. You have to factor in that they
will be in for a while and then disappear for longer periods and then
come back. The leaving and joining creates a lot of overhead so that
little gets done. Yes, we can lead people, but we cannot manage
people, and once you learn to give up the management aspect, you
can focus more on things you need to do in the immediate short
term.

So instead of planning big things, find something small, doable
and useful in itself. Not a wiki page with a plan, but the first step
of what you aim for. And then, lead by doing. Make a rough first
draft of an article. Make a first version of a folder. Copy-paste from

212 Big Plans Don’t Work

whatever exists, or improve something which was already available.
Then present the result, drafty as it is, to the team and ask if someone
wants to make it better. Do something small and it will work.

Don’t plan, just do. . .

So how do you do something as big as the university student plan?
You don’t! At least, not directly. Discussing this with the whole
team, planning – it will surely make for a fun discussion which can
last weeks. But it will not get you far. Instead, keep the plan to
yourself. Seriously.

I am not saying that you should not talk about it – you can.
Share the ambition with whoever is interested. And it is OK if they
give suggestions. But do not rely on it, do not make plans which
go much further than the first 1-2 steps. Instead, execute. Build
on what is there. Send a draft of a new or improved flyer to the
mailing list. Ask someone who gave a course on your project to share
the material and improve it a bit. Those whose work you build on
might help you out! The people you spoke with about the plan who
share your vision might help you too. This way, you will frequently
finish something – a flyer, an improved website, a presentation to be
used. And people can, slowly, start using it. Ambassadors can go
to their local universities, using a few of the things you have already
created. To do what they do, they surely have to create some missing
materials – which can go on the wiki as well. And you make progress.

. . . and get your pie in the sky!

In community marketing, strategy is not on the wiki. It is not in
a plan nor a time line. Neither is it discussed every week with the
whole team. It is part of a vision which has grown over time. It is
carried by a few central people and inspires the short-term plans and
objectives. And it is shared by the team. But it has no time line
and it can not fail. It is flexible and does not depend on anything or
anyone in particular. And it will always be a pie in the sky. . .

Jos Poortvliet 213

So if you want to lead in a Free Software community marketing
effort, keep that big picture a big picture. Do not plan too much,
but get things done!

33. Who are You, What are You Selling,
and Why Should I Care?

Sally Khudairi

Active in the Web since 1993, Sally Khudairi is the publicist behind
some of the industry’s most prominent standards and organizations.
The former deputy to Sir Tim Berners-Lee and long-time champion
of collaborative innovation, she helped launch The Apache Software
Foundation in 1999, and was elected its first female and non-technical
member. Sally is Vice President of Marketing and Publicity for The
Apache Software Foundation, and Chief Executive of luxury brand
communications consultancy HALO Worldwide.

Everyone is a marketer. From the CEO to the superstar salesperson
to the guy in the mailroom, everyone is a representative of your
company. Technologies and tactics have changed over the years but
good communications remain paramount. At the end of the day,
everyone is selling something, and it is an interesting balance in
publicity, as who and what you are and what you sell are often
enmeshed. When people tell me that they do not know who I am, I
ask if they have heard of W3C, Apache, or Creative Commons. The
typical reply is “of course”, which assures me that I am doing my job.
If you know who and what they are, things are good. It is about the
product, not the publicist, after all. I never set out to be in this space:
cutting my communications teeth during the nascent web years was
not easy, but I am grateful to have had the opportunity to observe
others and dodge quite a few bullets. A sharp ramp-up and some
very highly-visible projects later, what advice would I share with a
budding PR bunny, seasoned media flack, or technologist daring to
ride the promotions bucking bronco?

216 Who are You, What are You Selling, and Why Should I Care?

Never forget to declare yourself

In selling your story to the press, remember that the media, too, have
something to sell. Sure, at the top level the role of a journalist is to
tell a compelling story (truthfully or not, factually or not, ethically
or not, is another issue). From attracting readership to securing
subscriptions to promoting ad space, they too are selling something,
and your job is to help them do their job. The reality is that some
folks may not have heard of you, even if you have been around for
a long time. Or even if they have, they may not know who you are
exactly. Be clear with what it is that you have to offer. What is the
press hook – what is the news? Be sure that the news is really news.
Be direct and get to the point quickly. You have got to be prepared
to answer the questions: “So what?” “Why should I care?” “What
is in it for me?”, and that means having to ask questions of yourself
and your product. People buy ideas, not products, so promoting the
benefits of what you are pitching will help improve your chances of
securing coverage. Spin aside, what are you really selling?

Never on a Friday

The worst day to launch a new website, issue a press release, or
brief the media is on a Friday. The chance that something wrong
will happen with nobody available to deal with the fallout is greater
than you can imagine. A poignant reminder of this happened to me
early in my career when I launched the new W3C homepage on a
Friday evening, left the office and boarded a plane for Paris. Coming
from the world of commercial web publishing, using a proprietary tag
was not an issue whatsoever as long as it got the job done. Doing
so on the website of an interoperability-all-the-way organization on
the other hand was Not A Good Thing. Within minutes dozens
of messages were pouring in, wondering how the <now-deprecated-
markup>-tag got on our site. And no, it was not <blink>. . .

Sally Khudairi 217

Never think that it doesn’t matter

Credibility is everything. Despite being overworked, overcommitted
or overextended, you can not un-strike a bell. Try to deliver as much
as you can to the best of your ability and ask for help if you can. Some
deadlines have to be adjusted, and many editors can accommodate
shift in schedule but it likely will not matter (as much) once the
story/fire has gone out if you are unable to follow through. Like art,
standards development, and copywriting, the process can go on ad
nauseam. Whilst creativity can not be time-managed, hard deadlines
force a line to be drawn at some point. But you have got to care
about the details. Stop. Proof-read and check all links. Make sure
it maps properly to the overall campaign/brand strategy. Lather-
rinse-repeat is part of the greater communications gestalt, and the
work will keep piling up. Sort it out and protect your reputation.

Do go at it alone

It is important to trust your instincts, particularly when doing some-
thing separate from the norm. In the early days of that newfangled
web thaang, everyone was seemingly tacking on the usual brand-
ing/PR/marketing tactics to a brochure-ware Website. Then every-
one was “following the leader” (leader = “whoever did it first” in
many instances). Trends are one thing, industry expectations and
requirements are another: “that is how everybody does it” does not
mean that it is right for you, your project or community. My ca-
reer in communications began when I fired our retained agency and
brought everything in-house. We were one of the earliest organiza-
tions to use a URL in a corporate boilerplate, and were the first to
use a URL as the originating location on a press release dateline de-
spite news wire agencies telling it was non-conformant and against
policy. Stand confidently in your knowledge. Go against the grain
and challenge the rules responsibly. Individuate. It is OK to be a
dissenter as long as you can back your ideas up.

218 Who are You, What are You Selling, and Why Should I Care?

Do provide perspective

Many of the technologies I am involved with wind up in products 3-5
years down the road. This means that, in many instances, it is hard
to establish some sort of relationship to a comparable product. It
is critical that you explain your position clearly with as little jargon
as possible. Most non-developer journalists/analysts I deal with do
not follow the day-to-day activities of a certain community or know
the technical ins-and-outs of why one feature is better than another,
no matter how much of a no-brainer it is to you. The saying of “sell
the sizzle, not the steak” is more relevant today than ever. Sizzle.
Steak. There is always a split on this when I teach media training:
provide too much steak or too much sizzle and your campaign could
fail. Perception is key and the cause of a lot of conflict: All Sizzle
= “hype + hyperbole” = “oh, you PR types”. All Steak = “0s and
1s” = “oh you geek types”. You need to understand and be able
to clearly explain the painpoint that your product solves. Knowing
how to better present the problem allows you to better explain the
solution. Context, anecdotes, and success stories give the press a
way to make their readers care. You have got to know the answer to
the question “What is in it for me?”, because that is what incents
journalists to delve deeper into your story, which, in turn, gets read-
ers to learn more about you. Sizzle answers “What’s in it for me?”,
and is therefore the hook. Steak is how you get there.

Do queue up your spokespeople

Always have someone available to talk to the press. Yes, it can be
you, but know that there will be a time that although you have a
well-planned story to tell, you may not be available to tell it. Who
else do you work with? Who knows you? Who endorses you? Defin-
ing those individuals and making a message map that clarifies who
says what helps alleviate an awful lot of potential headaches. I usu-
ally act as the “backgrounder” spokesperson so I can spend time with

Sally Khudairi 219

a reporter to find out what specifically are they looking for and how
can we best provide them with relevant information. I explain how
things work, mostly process-oriented; this puts my “actual” spokes-
people in a better position to say what they need, and minimize the
risk of having their participation getting lost elsewhere. Getting the
right people ready is just as important as making them available.
In my media training classes, I include some “Yikes!” slides that
highlight particularly interesting lessons learned over the years. For
example, we experienced spokesperson mayhem in the early days of
the Apache Incubator, where 15 people responded to a press query in
48 hours . . . lots of opinions, but who was the “right” one to quote?
Do not leave it to the press to decide! Another oft-shared “Yikes!”
scenario involved a global launch party with hundreds of guests, press
everywhere, DJs spinning, music blaring, cocktails flowing, and the
event running very late into the night, with rumored spin-off after-
parties. Very early the following morning the press queries came in
(yes, of course I will accept a phone call from the Financial Times
at 4AM PT!). I pitched excitedly. However, it turned out that we
had no spokespeople available: Chairman on a plane to Japan; Direc-
tor’s mobile phone was off (with reason, apparently); Board members
unavailable; staff unprepared. Dozens of opportunities missed. Re-
member: when the press release goes out on the wire, the work has
just begun.

Don’t be surprised to take it from all sides

Everyone has an opinion. And they will likely give it to you.

Don’t overcomplicate things

If you think you have got too much to tell, you probably do. Atten-
tion spans are not what they were way back when; distraction/failure
is just a click away. Remember that you can always work in steps.
Break up your story if needed. Cut a lengthy press release and use

220 Who are You, What are You Selling, and Why Should I Care?

supporting documentation such as technical fact sheets and testimo-
nial pages instead. The chunking principle (“5 plus or minus two”)
is something I continue to utilize again and again. Create your own
message release cycle, and reinforce your presence regularly. Bring a
FAQ; if there is a question that needs to be asked and is not there,
find the opportunity to bridge your message. Repetition breeds fa-
miliarity. Progressively reinforcing your call to action is goodness.

Don’t touch it for 24 hours

Sometimes you need to walk away. From a project, from an argu-
ment, from work altogether. Give yourself a break and try to pace
yourself; allow a day for things to settle down and for you to get a
chance to breathe. Whilst that is usually not possible in a deadline-
driven industry, it is something to aim for. The mad rush, non-stop
emails, and continuous tweets often trigger reactions for emergencies
that do not exist. Put the project down, clear your head, and come
back with a fresh perspective. Step aside and regain your life.

Expect greatness

Keep your standards high and know your worth.

Part XIV.

Conferences and Sprints

34. People are Everything

Nóiŕın Plunkett

Nóiŕın Plunkett is a jack of all trades, and a master of several. A
technical writer by day, her Open Source work epitomizes the saying
“if you want something done, ask a busy person”. Nóiŕın got her
Open Source start at Apache, helping out with the httpd documenta-
tion project. Within a year, she had been recruited to the conference
planning team, which she now leads. She was involved in setting up
the Community Development project at Apache and has previously
acted as Org Admin for the Google Summer of Code. She sits on
the boards of both the Apache Software Foundation and the Open
Cloud Initiative. When she’s not online, Nóiŕın’s natural habitat is
the dance floor, although she’s also a keen harpist and singer, and
an excellent sous chef !

There is no such thing as a typical path, although mine was perhaps
less typical than most. I first got a commit bit in my twenties,
by which time I had already spent more than a year working at
Microsoft. But after Microsoft I had moved to a foreign country
to continue my studies, and it was nice to have a distraction, so I
started working on various docs and translations, and I got a commit
bit on the Apache httpd project.

As luck would have it, of course, ApacheCon EU was going to be
held in Dublin the summer I was studying in Munich. But luck is
kind to the Irish, and with only a little bit of wangling, I persuaded
Sun Microsystems to sponsor me to attend the conference.

I have a photo of the moment I realized that this Open Source
thing was for real, was going to change the world.

It was the evening before the conference. We still had not figured
out where the fibre was terminated, that was supposed to make up

224 People are Everything

our network backbone. We had checked every corner, cupboard and
skirting, to no avail. We had given up for the night, and were busy
trying to make sure that the rooms that would be hosting training
classes the next day had at least enough connectivity for the trainers
to demonstrate their material1.

And as evening turned into night, and routers slowly revealed their
Default Configuration secrets, half a dozen volunteers, people I had
only met that afternoon, became friends.

I could not tell you where the half dozen girls I lived with that
summer in Munich are now. But I am still in contact with each
of the people you see in that picture. One of them has moved to
a different country, another to a different continent. Most of them
have changed jobs in the meantime, and I have graduated, taking up
the grand Irish tradition of emigration to find employment.

You see, Open Source is all about the people. Really, on almost
any project you would want to be a part of, the code comes second.
People are what distinguish a project that is a joy to work on from
one that is a chore; people are what make the difference between a
project that is flourishing and one that languishes in the bitbucket.
Sure, you will only stay up all night coding on a project if it is solving
a problem you think is important; but unless you have people with
whom you can collaborate, discuss, design, and develop, you are
probably going to lose interest or get stuck before too long.

The true value of conferences, sprints, hackathons, retreats, or
whatever your community calls their face-to-face moments, is exactly
that. Coming face-to-face with the people you have been working
with. Human beings are social animals; babies recognize faces even
before they begin babbling, and no matter how good people are about
being friendly and polite in email, there is something lost in those
communications.

Meeting people face to face gives us an opportunity to recognize
the humanity in those we might have struggled to get along with;

1The next morning, we checked up in the roof space, to try and find the fibre;
still no joy. In the end, we found it in the comms cupboard of the nightclub
in the basement next door.

Nóiŕın Plunkett 225

to share the joy of a job well done with those we love to work with.
Therefore, if I could have chosen one piece of advice, to hear when
I was starting out, it would be to get out there, to meet people, to
put faces to names at every opportunity2.

And if you find the opportunities are few and far between, do not
be afraid to ask. Look for people who are traveling near you, or who
live where you are traveling; seek sponsorship to attend the larger
community events; organize an event of your own!

It is the richness of our communities that makes Open Source what
it is, and the shared striving towards common goals. And of course,
the music sessions, the meals, the pints, and the parties! These are
the things that bring us together, and you will find that once you
have met people in person, even your email interactions will be much
richer, much more fulfilling, and much more fruitful, than they had
previously been.

2Sadly, I do say this with a caveat; as with any large gathering of people,
there are risks to attending an Open Source conference. Some are worse
than others, but in my own experience, assault in particular seems to be
more prevalent in technical communities than in the non-technical. Seek out
events that have a published code-of-conduct or anti-harassment policy, and
ask for backup if you feel unsafe. The vast majority of the people you will
find at an Open Source event are wonderful, caring human beings; I hope
that in time, changing attitudes will stop the minority from thinking that
they can get away with unreasonable behavior in these venues.

35. Getting People Together

Dave Neary

Dave Neary has been working on Free and Open Source projects since
he discovered Linux in 1996. A long-time contributor to GNOME
and the GIMP, he has worked full time helping companies come
to terms with community-developed software since 2007. In that
time, he has worked with projects including OpenWengo, Maemo
and MeeGo on projects including event organization, community pro-
cesses, product management and community metrics. As a volunteer,
he has been involved in the organisation of GUADEC, the Desktop
Summit, the Libre Graphics Meeting, the GIMP Conference, Ignite
Lyon, the Open World Forum, and the MeeGo Conference.

One of the most important things you can do in a Free Software
project, besides writing code, is to get your key contributors together
as often as possible.

I have been fortunate to be able to organize a number of events
in the past 10 years, and also to observe others and learn from them
over that time. Here are some of the lessons I have learned over the
years from that experience:

1. Venue

The starting point for most meetings or conferences is the venue. If
you are getting a small group (under 10 people) together, then it is
usually OK just to pick a city, and ask a friend who runs a business
or is a college professor to book a room for you. Once you get bigger,
you may need to go through a more formal process.

228 Getting People Together

If you are not careful, the venue will be a huge expense, and you
will have to find that money somewhere. But if you are smart, you
can manage a free venue quite easily.

Here are a few strategies you might want to try:

� Piggy-back on another event – the Linux Foundation Collab-
oration Summit, OSCON, LinuxTag, GUADEC and many
other conferences are happy to host workshops or meet-ups
for smaller groups. The GIMP Developers Conference in 2004
was the first meet-up that I organized, and to avoid the hassle
of dealing with a venue, finding a time that suited everyone,
and so on, I asked the GNOME Foundation if they would not
mind setting aside some space for us at GUADEC – and they
said yes. Take advantage of the bigger conference’s organiza-
tion, and you get the added benefit of attending the bigger
conference at the same time!

� Ask local universities for free rooms - This will not work once
you go over a certain size, but especially for universities which
have academics who are members of the local Linux User Group
(LUG), they can talk their department head into booking a
lecture theatre and a few classrooms for a weekend. Many
universities will ask to do a press release and get credit on the
conference website, and this is a completely fair deal. The first
Libre Graphics Meeting was hosted free in CPE Lyon, and the
GNOME Boston Summit has been hosted free for a number of
years at MIT.

� If the venue can not be free, see if you can get someone else
to pay for it. Once your conference is bigger than about 200
people, most venues will require payment. Hosting a confer-
ence will cost them a lot, and it is a big part of the business
model of universities to host conferences when the students are
gone. But just because the university or conference center will
not host you for free that does not mean that you have to be
the one paying. Local regional governments like to be involved

Dave Neary 229

with big events in their region. GUADEC in Stuttgart, the
Gran Canaria Desktop Summit, and this year’s Desktop Sum-
mit in Berlin have all had the cost of the venue covered by
the host region. An additional benefit of partnering with the
region is that they will often have links to local industry and
press – resources you can use to get publicity and perhaps even
sponsorship for your conference.

� Run a bidding process – by encouraging groups wishing to host
the conference to put in bids, you are also encouraging them
to source a venue and talk to local partners before you decide
where to go. You are also putting cities in competition with
each other, and like Olympic bids, cities do not like to lose
competitions they are in!

2. Budget

Conferences cost money. Major costs for a small meet-up might be
covering the travel costs of attendees. For a larger conference, the
major costs will be equipment, staff and venue.

Every time I have been raising the budget for a conference, my
rule of thumb has been simple:

1. Decide how much money you need to put on the event

2. Fundraise until you reach that amount

3. Stop fundraising, and move on to other things

Raising money is a tricky thing to do. You can literally spend all
of your time doing it. At the end of the day, you have a conference
to put on, and the amount of money in the budget is not the major
concern of your attendees.

Remember, your primary goal is to get project participants to-
gether to advance the project. So getting the word out to prospective
attendees, organizing accommodation, venue, talks, food and drinks,

230 Getting People Together

social activities and everything else people expect at an event is more
important than raising money.

Of course, you need money to be able to do all the rest of that
stuff, so finding sponsors, fixing sponsorship levels, and selling your
conference is a necessary evil. But once you have reached the amount
of money you need for the conference, you really do have better things
to do with your time.

There are a few potential sources of funds to put on a conference
– I recommend a mix of all of these as the best way to raise your
budget.

� Attendees – While this is a controversial topic among many
communities, I think it is completely valid to ask attendees to
contribute something to the costs of the conference. Attendees
benefit from the facilities, the social events, and gain value from
the conference. Some communities consider attendance at their
annual event as a kind of reward for services rendered, or an
incentive to do good work in the coming year, but I do not
think that’s a healthy way to look at it. There are a few ways
for conference attendees to fund the running of the conference:

1. Registration fees – This is the most common way to get
money from conference attendees. Most community con-
ferences ask for a token amount of fees. I have seen con-
ferences ask for an entrance fee of 20 to 50 Euro, and most
people have not had a problem paying this. A pre-paid
fee also has an additional benefit of massively reducing
no-shows among locals. People place more value on at-
tending an event that costs them 10 Euro than one where
they can get in for free, even if the content is the same.

2. Donations – This is very successfully employed by FOS-
DEM. Attendees are offered an array of goodies, provided
by sponsors (books, magazine subscriptions, t-shirts) in
return for a donation. But those who want can attend for
free.

Dave Neary 231

3. Selling merchandising – Perhaps your community would
be happier hosting a free conference, and selling plush
toys, t-shirts, hoodies, mugs and other merchandising to
make some money. Beware: in my experience you can
expect less from profits from merchandising sales than
you would get giving a free t-shirt to each attendee with
a registration fee.

� Sponsors – Media publications will typically agree to “press
sponsorship” – providing free ads for your conference in their
print magazine or website. If your conference is a registered
non-profit which can accept tax-deductible donations, offer
press sponsors the chance to invoice you for the services and
then make a separate sponsorship grant to cover the bill. The
end result for you is identical, but it will allow the publication
to write off the space they donate to you for tax. What you
really want, though, are cash sponsorships. As the number of
Free Software projects and conferences has multiplied in recent
years, the competition for sponsorship dollars has really heated
up in recent years. To maximize your chances of making your
budget target, there are a few things you can do.

1. Conference brochure – Think of your conference as a prod-
uct you are selling. What does it stand for, how much
attention does it get, how important is it to you, to your
members, to the industry and beyond? What is the value
proposition for the sponsor? You can sell a sponsorship
package on three or four different grounds: perhaps con-
ference attendees are a high-value target audience for the
sponsor, perhaps (especially for smaller conferences) the
attendees are not what is important, it is the attention
that the conference will get in the international press, or
perhaps you are pitching to the company that the confer-
ence is improving a piece of software that they depend on.
Depending on the positioning of the conference, you can
then make a list of potential sponsors. You should have a

232 Getting People Together

sponsorship brochure that you can send them, which will
contain a description of the conference, a sales pitch ex-
plaining why it is interesting for the company to sponsor
it, potentially press clippings or quotes from past atten-
dees saying how great the conference is, and finally the
amount of money you are looking for.

2. Sponsorship levels – These should be fixed based on the
amount of money you want to raise. You should figure on
your biggest sponsor providing somewhere between 30%
and 40% of your total conference budget for a smaller
conference. If you are lucky, and your conference gets
a lot of sponsors, that might be as low as 20%. Figure
on a third as a ball-park figure. That means if you have
decided that you need 60,000 Euro then you should set
your cornerstone sponsor level at 20,000 Euro, and all
the other levels in consequence (say, 12,000 Euro for the
second level and 6,000 Euro for third level). For smaller
conferences and meet-ups, the fundraising process might
be slightly more informal, but you should still think of the
entire process as a sales pitch.

3. Calendar – Most companies have either a yearly or half-
yearly budget cycle. If you get your submission to the
right person at the right time, then you could potentially
have a much easier conversation. The best time to submit
proposals for sponsorship of a conference in the Summer
is around October or November of the year before, when
companies are finalizing their annual budget. If you miss
this window, all is not lost, but any sponsorship you get
will be coming out of discretionary budgets, which tend
to get spread quite thin, and are guarded preciously by
their owners. Alternatively, you might get a commitment
to sponsor your July conference in May, at the end of the
first half budget process - which is quite late in the day.

Dave Neary 233

4. Approaching the right people – I am not going to teach
anyone sales, but my personal secret to dealing with big
organizations is to make friends with people inside the
organizations, and try to get a feel for where the budget
might come from for my event. Your friend will proba-
bly not be the person controlling the budget, but getting
him or her on board is your opportunity to have an advo-
cate inside the organization, working to put your proposal
in front of the eyes of the person who owns the budget.
Big organizations can be a hard nut to crack, but Free
Software projects often have friends in high places. If you
have seen the CTO or CEO of a Fortune 500 company talk
about your project in a news article, do not hesitate to
drop him or her a line mentioning that, and when the time
comes to fund that conference, a personal note asking who
the best person to talk to will work wonders. Remember,
your goal is not to sell to your personal contact, it is to
turn her into an advocate to your cause inside the organi-
zation, and create the opportunity to sell the conference
to the budget owner later.

� Also, remember when you are selling sponsorship packages that
everything which costs you money could potentially be part of
a sponsorship package. Some companies will offer lanyards for
attendees, or offer to pay for a coffee break, or ice cream in
the afternoon, or a social event. These are potentially valu-
able sponsorship opportunities and you should be clear in your
brochure about everything that is happening, and specify a pro-
visional budget for each of these events when you are drafting
your budget.

3. Content

Conference content is the most important thing about a conference.
Different events handle content differently – some events invite a

234 Getting People Together

large proportion of their speakers, while others like GUADEC and
OSCON invite proposals and choose talks to fill the spots.

The strategy you choose will depend largely on the nature of the
event. If it is an event in its 10th year with an ever-increasing number
of attendees, then a call for papers is great. If you are in your first
year, and people really do not know what to make of the event, then
setting the tone by inviting a number of speakers will do a great job
of helping people know what you are aiming for.

For Ignite Lyon last year, I invited about 40% of the speakers for
the first night (and often had to hassle them to put in a submission,
and the remaining 60% came through a submission form. For the
first Libre Graphics Meeting, apart from lightning talks, I think that
I contacted every speaker first, except two people. Now that the
event is in its 6th year, there is a call for proposals process which
works quite well.

4. Schedule

It is hard to avoid putting talks in parallel which will appeal to the
same people. Every single conference, you hear from people who
wanted to attend talks which were on at the same time on similar
topics.

My solution to conference scheduling is very low-tech, but works
for me. Colored Post-it notes, with a different color for each theme,
and an empty grid do the job fine. Write the talk titles one per
Post-it, add any constraints you have for the speaker, and then fill
in the grid.

Taking scheduling off the computer and into real objects makes it
really easy to see when you have clashes, to swap talks as often as
you like, and then to commit it to a web page when you are happy
with it.

Dave Neary 235

I used this technique successfully for GUADEC 20061 and Ross
Burton re-used it successfully in 20072.

5. Parties

Parties are a trade-off. You want everyone to have fun, and hanging
out is a huge part of attending a conference. But morning attendance
suffers after a party. Pity the poor community member who has to
drag himself out of bed after three hours sleep to go and talk to four
people at 9am after the party.

Some conferences have too many parties. It is great to have the
opportunity to get drunk with friends every night. But it is not great
to actually get drunk with friends every night. Remember the goal
of the conference: you want to encourage the advancement of your
project.

I encourage one biggish party, and one other smallish party, over
the course of the week. Outside of that, people will still get together,
and have a good time, but it will be on their dime, and that will keep
everyone reasonable.

With a little imagination, you can come up with events that do
not involve loud music and alcohol. Other types of social events can
work just as well, and be even more fun.

At GUADEC we have had a football tournament for the last num-
ber of years. During the OpenWengo Summit in 2007, we brought
people on a boat ride on the Seine and we went on a classic 19th
century merry-go-round afterwards. Getting people eating together
is another great way to create closer ties. I have very fond memories
of group dinners at a number of conferences. At the annual KDE
conference Akademy, there is typically a Big Day Out, where people
get together for a picnic, some light outdoors activity, a boat ride,
some sightseeing or something similar.

1http://blogs.gnome.org/bolsh/2006/05/09/initial-schedule-ready
2http://www.flickr.com/photos/rossburton/467140094

 http://blogs.gnome.org/bolsh/2006/05/09/initial-schedule-ready
http://www.flickr.com/photos/rossburton/467140094

236 Getting People Together

6. Extra costs

Watch out for those unforeseen costs! One conference I was involved
in, where the venue was “100% sponsored” left us with a 20,000
Euro bill for labor and equipment costs. Yes, the venue had been
sponsored, but setting up tables and chairs, and equipment rental
of whiteboards, overhead projectors and so on, had not. At the end
of the day, I estimate that we used about 60% of the equipment we
paid for.

Conference venues are hugely expensive for everything they pro-
vide. Coffee breaks can cost up to 10 US Dollars per person for
a coffee and a few biscuits, bottled water for speakers costs 5 US
Dollars per bottle, and so on. Rental of an overhead projector and
microphones for one room for one day can cost 300 Euro or more,
depending on whether the venue insists that equipment be operated
by their A/V guy or not.

When you are dealing with a commercial venue, be clear up-front
about what you are paying for.

7. On-site details

I like conferences that take care of the little details. As a speaker,
I like it when someone contacts me before the conference and says
they will be presenting me, what would I like them to say? It is
reassuring to know that when I arrive there will be a hands-free mic
and someone who can help fit it.

Taking care of all of these details needs a gaggle of volunteers,
and it needs someone organizing them beforehand and during the
event. Spend a lot of time talking to the local staff, especially the
audio/visual engineers.

In one conference, the A/V guy would switch manually to a screen-
saver at the end of a presentation. We had a comical situation during
a lightning talk session where after the first speaker, I switched pre-
sentations, and while the next presentation showed up on my laptop,

Dave Neary 237

we still had the screensaver on the big screen. No-one had talked to
the A/V engineer to explain to him the format of the presentation!
So we ended up with 4 Linux engineers looking at the laptop, check-
ing connections and running various Xrandr incantations, trying to
get the overhead projector working again! We eventually changed
laptops, and the A/V engineer realized what the session was, and all
went well after that – most of the people involved ended up blaming
my laptop.

Running a conference, or even a smaller meet-up, is time-consuming,
and consists of a lot of detail work, much of which will never be no-
ticed by attendees. I have not even dealt with things like banners
and posters, graphic design, dealing with the press, or any of the
other joys that come from organizing a conference.

The end result is massively rewarding, though. A study I did
last year of the GNOME project showed that there is a massive
project-wide boost in productivity just after our annual conference,
and many of our community members cite the conference as the high
point of their year.

36. We’re Not Crazy . . . We’re Conference
Organizers!

Gareth J. Greenaway

Gareth J. Greenaway has been actively involved in the Free & Open
Source community since 1997 after discovering Linux. A majority of
this involvement has been gathering like-minded people to learn and
experience new elements of Free & Open Source software. This in-
volvement began with a small Linux Users Group and has expanded
into organizing the Southern California Linux Expo, also known as
SCALE. As one of the founding members of the event, Gareth cur-
rent holds two key positions with the organization. The first role is
Conference Operations and the second is Community Relations.

I started writing this section with what I saw as the requirements
and steps for organizing a Free & Open Source conference, however,
most of what I found myself saying had been covered by community
management expert Dave Neary. So rather than repeat and overlap
what Dave had to say, I decided to share various stories from orga-
nizing SCALE along with lessons that were learned over the years.

Too much power!

SCALE was started 9 years ago by members of three local Linux
Users Group, growing out of a small regional event organized by
one of these LUGs. The first time around was definitely a learning
experience. Many lessons were learned, there was quite a bit of
running around and the event seemed to fly by very quickly. Because
none of us had planned an event where we had to be concerned about

240 We’re Not Crazy . . . We’re Conference Organizers!

the load on electrical circuits or power usage, we had not considered
it and because of that we ended up tripping the electrical breakers
for the venue several times throughout the event.

It’ll work . . . it’s wireless!

The second SCALE included many of the lessons learned from the
previous year but a new venue would result in new lessons. The
Los Angeles Convention Center served as the location for SCALE
2, providing much more space to spread out for the event. The
new location also served as our first lesson in contracts with a large
organization for things such as A/V equipment, Internet access and
exhibitor furniture.

Because of the placement for the event within the convention cen-
ter, we were forced to locate the show’s registration counters in an
area that while visible to arriving attendees would be some distance
away from the rest of the show. Our options for providing network
access to the registration area were limited as fire regulations pre-
vented running wire, so wireless was the only option. Everything was
set up early the day for the show and was working great until mysteri-
ously it was not. The wireless connection providing the much needed
network access to the registration counter would simply disappear.
There was much troubleshooting, much relocation of equipment and
antennas and much frustration. “It should be working” was the only
conclusion that everyone could come to, with little insight into why
it simply was not working. Suddenly one of the team members, who
had been standing some distance from the troubleshooting session,
called everyone over to where he had been standing. In front of a
large window which overlooked a large convention hall on the lower
level, suddenly we all saw what it was he wanted us to see. Below
us where dozens of flashing, spinning, pulsating lights staring up at
us. Hundreds of electronic devices with flashing lights, sirens, blink-
ing LED signs mockingly interfering with the wireless signals of our
poor access points. We suddenly realized that our hours of working,

Gareth J. Greenaway 241

attempting to solve this wireless issue had been futile. In the end we
ran an Ethernet cable, taped it down securely as best we could and
said a small prayer that the fire marshal would not make a surprise
inspection.

Awards shows, snipers and the case of the missing
IBM case

Perhaps one of the well-known stories from the history of SCALE
is the mishaps and adventures that took place at SCALE 3. The
adventures are well-known because as a SCALE attendee that year
you could not help but experience them.

The third SCALE was set to take place once again at the L.A.
Convention Center, the many months of planning and prep work
had been done and everything was shaping up nicely. About 3 weeks
prior to the event we received some information about various road
closures around the convention center because of an upcoming awards
show. The road closures resulted in there being one way in and out of
the convention center, definitely not the ideal situation. Fortunately
we had the time to alert everyone coming out for the show about the
road closures and alternative routes. This was also the first year that
SCALE would be a 2-day show, the hope being that things would be
spread out a bit and not feel as rushed and hectic.

One of the long standing sponsors and exhibitors that SCALE has
had over the years is IBM. They have always remained a welcome
addition to the show, unfortunately their attendance is also usually
met with some difficulty. The day before the event has typically been
reserved as a setup day, an opportunity for the SCALE staff to set
up and exhibitors to prepare their booths. It is also the day that any
packages that exhibitors have delivered arrive. IBM had planned to
showcase a new server line at the show and had had one of these
servers shipped to the convention center, unfortunately it had not
been delivered to their booth and no one at the convention center
knew the whereabouts of the package. Many hours of searching all

242 We’re Not Crazy . . . We’re Conference Organizers!

the possible locations within the convention center had not turned
up any clues.

As it turned out, the awards show that would be taking place in a
few days had rented a number of rooms for office space and storage
needs. On a whim, the event coordinator who was assisting in the
search suggested perhaps we search one of their storage rooms in
hopes that the IBM case had been delivered there accidentally. The
room in question was a small storage closet, inside we found boxes
and boxes from the floor to the ceiling of tickets for the upcoming
awards show. Behind these boxes, off in a corner was a large blue
case with the IBM logo printed across it. Crisis averted!

The rest of the event ran smoothly and was relatively incident-
free. As the event wound down a small crowd began to form near
some large windows overlooking the street outside, as I walked past
I realized what it was everyone was looking at. Several figures, all
dressed in black, were moving around on the rooftops of the buildings
across the street. All of these figures were carrying sniper rifles and
were members of the Los Angeles Police Department’s SWAT team,
there in preparation for the awards show that would be starting a
few hours from then. This definitely made for an exciting departure
from the convention center.

No room at the inn

The fourth SCALE resulted in another venue change, this time the
switch was to a hotel instead of a convention center. As the years
went by, more and more people were traveling to attend SCALE
and staying at local hotels, we decided to explore the possibility
of holding SCALE in a hotel. We scouted the area and ended up
working with an event coordinator on finding the right venue for the
event. Settling on a hotel near the Los Angeles airport, the planning
began. Holding an event at the hotel quickly became a source for
new lessons on dealing with factors unique to a hotel. One of the

Gareth J. Greenaway 243

most important lessons that we came to learn was making sure that
all contracts had an agreed-upon cancellation policy.

Roughly five weeks prior to the event we received a call from the
venue telling us that their corporate entity was canceling our event
and giving our space to another event. Obviously this came as quite
a shock and left us scrambling. The contract with the hotel did not
include any sort of agreement for relocation, but simply stated that
they could cancel the event without cause.

After many phone calls and negotiations with the original venue,
eventually they were willing to provide some funds to help relocate
to another venue. The new venue was also willing to honor the
same terms regarding electrical, Internet access and A/V equipment.
Everything worked out and the SCALE team had learned a valuable
lesson when negotiating future contracts.

Curtain Call

All in all, organizing a conference is a rewarding endeavor and a great
way to give back to the community. Conferences are an important
element, they allow in person interaction in a world that commonly
relies on virtual means of communication.

Advice I would give to future conference organizers would be:

� Start small, do not cram too much into an event the first year.

� Take chances, make mistakes, do not be afraid to fail.

� Communication is key!

37. How to Ask for Money

Selena Deckelmann

Selena Deckelmann is a major contributor to PostgreSQL. She speaks
internationally about free software, developer communities and trolling.
Her interests include opening up government data with the City of
Portland, urban chickens and finding ways to make databases run
faster.
She founded Postgres Open, a conference dedicated to the business
of PostgreSQL and disruption of the database industry. She founded
and co-chaired Open Source Bridge, a developer conference for open
source citizens. She founded the PostgreSQL Conference, a success-
ful series of east coast/west coast conferences in the US for Post-
greSQL. She is currently on the program committees of PgCon and
MySQL Users Conference, and OSCON data. She’s a contributing
writer for the Google Summer of Code Mentor Manual, and Student
Guide. She is an advisor to the Ada Initiative and board member of
Technocation, Inc.

Looking back since the first time I booted a PC into Linux in 1994,
one thing stands out in my experience with open source: I wish I
had known how to ask for money. Asking for money is hard. I
have written grant proposals, asked for raises, negotiated salaries and
consulting hourly rates, and raised funds for non-profit conferences.
Through much trial and error, I have developed a process that works!
What follows is a distillation of the tricks and techniques I have used
over the last five years to raise money for unconferences, day-long
code sprints and multi-day conferences about open source software
and culture.

The process of getting money for a conference is really about six
steps:

246 How to Ask for Money

1. Identify a need.

2. Tell someone.

3. Ask for money.

4. Get the money.

5. Spend the money.

6. Say thank you.

Identify a need

Your first task as a conference organizer is to explain why you are
putting on yet another conference, why that conference will be useful
to attendees and why a sponsor should give you money to do it. This
is called “writing a prospectus.” The main elements of a prospectus
are:

� Purpose: In a paragraph, explain why you are having the con-
ference. What inspired you to bring people together? And
who are the attendees? What will they talk about once they
are there?

If you have got a theme, or a specific goal in mind, mention
that. Also, explain why you picked the location for the event.
Is there some tie to the theme of the conference? Are the right
people in that location? Was it sponsored by someone?

Finally, share any interesting numbers from previous events,
like number of attendees, interesting facts about speakers or
details about your chosen location.

� Sponsorship opportunities and benefits: This section of the
prospectus will outline what sponsors can expect from your
conference. Typically, this is organized by dollar amount, but
could also describe benefits for in-kind or volunteer work.

Selena Deckelmann 247

Start simple. Typically, sponsorships for events with cash are
arranged by HR departments looking to hire, or marketing de-
partments looking to advertise products or services.

The types of benefits sponsors ask for include: recognition on
a website, mention of sponsorship in email or tweets out to
attendees, access to email addresses and/or demographic in-
formation about attendees, logo and labels on conference tote-
bags, lanyards or other swag, coffee breaks and lunch, parties,
conference booth space and advertising space in a conference
program.

Also, consider creative things that are unique to you, the con-
ference and the location. For example, Portland has a very
popular doughnut shop with a truck delivery service. We got a
sponsor and then acquired permission to drive the truck right
onto the grounds of our venue and served free doughnuts for
breakfast.

Links to example prospectuses are below. They are all for big
conferences, so YMMV. I have made a prospectus before that
only had one option for sponsorship, and the benefits were:
send one attendee from your company, and the organizers will
publicly recognize your company and thank you for your spon-
sorship.

– OSCON: http://bit.ly/zd62Q6

– Open Source Bridge: http://bit.ly/dKWvYJ

– MeeGo San Francisco: http://bit.ly/zLUKEN

� Contract: Always include a contract with your prospectus.
This establishes basic expectations and timelines, and can save
you a lot of trouble down the road.

I am not a lawyer, and so what follows is my experience rather
than legal advice. For smaller events, I write a very simple
contract that outlines my expectations: sponsors promise to

http://bit.ly/zd62Q6
http://bit.ly/dKWvYJ
http://bit.ly/zLUKEN

248 How to Ask for Money

pay by a certain date, and I promise to hold the event on a
certain date.

Copying an existing contract is a tricky business, as laws change
and vary across states and countries. I consulted a lawyer
that was recommended to me by an experienced open source
community manager. The law firm was nice enough to create
contracts and review contracts with hotels with us on a pro-
bono basis. The Software Freedom Law Center may be able to
refer you to an appropriate lawyer if you do not have one.

Now that you have created the prospectus, you need to talk to
some people.

Tell someone

The most difficult step for me personally is getting the word out
about my events!

Practice explaining your event in 1-2 sentences. Distill out what
excites you, and what should excite other people.

Over the years, I have learned that I need to start talking RIGHT
NOW to the people that I know, rather than worrying a whole lot
about exactly the right people to tell. Make a list of people to talk
to that you know already, and start checking them off.

The best way to start talking about what you are doing is in
person or on the phone. This way, you are not spamming people,
you have their attention, and you can get immediate feedback about
your pitch. Do people get excited? Do they ask questions? Or do
they get bored? Who else do they think you should talk to? Ask
for feedback, and how you can make your pitch more appealing,
interesting and worth their money!

Once you have your verbal pitch down, write it up and send a few
emails. Ask for feedback on your email and always close the email
with a call to action and a timeline for response. Keep track of who
responds, how they respond and when you should follow up with
each person.

Selena Deckelmann 249

Ask for money

Armed with your prospectus, and your finely tuned pitch, start ap-
proaching companies to fund your event. Whenever I start a new
conference, I make a list of questions about my conference and an-
swer each with a list of people and companies:

� Which people do I know who will think this is an amazing idea
and will advocate for my event? (Cheerleaders)

� Who would be really fun to have around at the conference?
(Mavens)

� Which companies have products that they want to pitch at my
event? (Marketing)

� Who would want to hire the people who attend? (Recruiters)

� Which free and open source projects would like to recruit de-
velopers? (Open Source Recruiters)

Using these lists, send your prospectus out into the world! Here is
an overview of how I organize the asking process: I start by sending
prospectuses to my Cheerleaders. I also drop a copy of the prospectus
with the Mavens, and invite them to attend the conference or speak.
I then contact Marketing companies, Recruiters and Open Source
Recruiters (sometimes there is overlap!). Meanwhile, I typically have
opened registration for the conference and announced a few keynotes
or special events. Hopefully this drives registrations a bit, and helps
make sponsors feel like the conference is definitely going to happen,
and that things are going well.

Get the money

If everything goes according to plan, companies and people start
offering you money. When this happens you need two very important
things:

250 How to Ask for Money

� An invoice template

� A bank account to hold the money

Invoice templates are simple. I have a Google Spreadsheet that
I just update for each invoice. You could easily use Open Office
or even TeX (please, someone send me a LaTeX invoice template!)
Examples of what invoices look like are available at http://www.

freetemplatesdepot.com.
The most important elements of invoices are: the word INVOICE,

a number for the invoice that is unique, the name and contact infor-
mation of the sponsor, what the sponsor is expected to pay, terms of
the invoice (when the sponsor should pay by, and what the penalty
is for non-payment) and the total amount due. Then you need to
send a copy of this form to the company. Keep a copy for yourself!

Some companies may require simple or complicated forms to be
filled out and signed to identify you or your organization as a vendor.
Paperwork. Ugh! Payment cycles for large companies can be up to
two months. Also, budget cycles for companies are typically yearly.
Find out whether a company even has available budget for your
event, and whether you can get into their budget the following year
if you missed the current year’s window.

The bank account can be your personal bank account, but this
puts you at risk. For a many-thousand-dollar event, you may wish
to find an NGO or non-profit organization that can hold and dispense
funds for you. If your conference is for-profit, you should consult an
accountant about how to organize the funds. Finding a non-profit
to work with may be as simple as contacting a foundation associated
with an open source project.

Now on to what makes this whole process worthwhile - spending
your hard-earned sponsorships!

Spend money

Now that your sponsors have paid, you can spend the money.

http://www.freetemplatesdepot.com
http://www.freetemplatesdepot.com

Selena Deckelmann 251

Create a budget that details what you want to spend money on,
and when you will need to spend it. I recommend getting 3 quotes
for products and services you are unfamiliar with, just so you can
get a sense of what a fair price is. Let companies you are contacting
know that you are going through a competitive bid process.

Once I establish a relationship with a company, I tend to do busi-
ness with them year after year. I like having relationships with ven-
dors, and find that even if I pay slightly more than if I aggressively
bid things out every year, I end up saving time and getting better
service from a vendor that knows me well.

For small events, you can keep track of expenses in a fairly sim-
ple spreadsheet. For larger projects, asking an accountant, or using
dedicated accounting software can help. Here is a list of Quicken al-
ternatives that are free (to varying degrees and in varying aspects!):
http://bit.ly/9RRgu0

What is most important is to keep track of all your expenses, and
to not spend money that you do not have! If you are working with
a non-profit to manage the event’s money, ask them for help and
advice before getting started.

Say thank you

There are many ways to say thank you to the people and compa-
nies that supported your event. Most importantly, follow up on all
the promises you made in the prospectus. Communicate as each
commitment is met!

During the event, find ways of connecting with the sponsors, by
designating a volunteer to check in with them and checking in with
them yourself.

After the event, be sure to individually thank sponsors and volun-
teers for their contributions. A non-profit I work with sends thank-
you notes individually to each sponsor at the start of the new year.

Generally speaking, communication is the compost of fundraising!
Giving attention and building genuine relationships with sponsors

http://bit.ly/9RRgu0

252 How to Ask for Money

helps find more sponsors, and build your reputation as a great event
organizer.

Lessons learned

After creating and running dozens of events, the two most important
aspects of it all have been finding mentors and learning to commu-
nicate well.

Mentors helped me turn rants into essays, messes into prospec-
tuses, and difficult conversations into opportunities. I found mentors
at companies that sponsored my conferences and gave detailed, some-
times painful, feedback. And I found mentors among volunteers who
dedicated hundreds of hours to write software for my events, recruit
speakers, document what we were doing, and carry the conference
on after me.

Learning to communicate well takes time, and the opportunity to
make a lot of mistakes. I learned the hard way that not developing
a relationship with the best sponsors means no sponsorship the fol-
lowing year! I also found that people are incredibly forgiving when
mistakes happen, as long as you communicate early and often.

Good luck with your fundraising, and please let me know if you
find this helpful.

Part XV.

Business

38. Free Software in Public Administrations

Till Adam

Originally from a liberal arts and music background, Till Adam has
spent the last decade or so in software. He works at KDAB where
he directs services, including the company’s Free Software activities.
Till also serves on the board of directors of Kolab Systems AG, a
company with a pure Free Software business model. He lives with his
wife and daughter in Berlin.

Introduction

Like, I imagine, many of the other authors in this collection of essays
I started contributing to Free Software when I was a student. I had
decided relatively late in life to pursue a degree in Computer Science
(having failed to become rich and famous as a musician) and was ex-
pecting to be quite a bit older than my peers when I graduated. So I
thought it would be good to teach myself programming, which I was
not getting much of at school, to become more attractive to future
employers, despite my age. After some forays into various smaller
communities I eventually found my way into KDE and started work-
ing on the email application. Thanks to the extremely helpful and
technically brilliant group of people I met there I was able to learn
quickly and contribute meaningfully to the code base, getting sucked
more and more into both the social circle and the fascinating tech-
nical problem space of personal information management.

When KDAB, a company full of KDE people, asked me whether
I wanted to help out with some commercial work that was being

256 Free Software in Public Administrations

done, as a student job, I was of course thrilled to be able to com-
bine making a living with my hobby of hacking on KDE software.
Over the years I then witnessed the adoption of KDE’s personal in-
formation management frameworks and applications by the public
sector, particularly in Germany, first hand and saw KDAB’s busi-
ness in this area grow. As I transitioned into more coordinative roles
it eventually became part of my job to effectively sell and deliver
services based on Free Software including KDE’s products to large
organizations, particularly in the public sector.

It should be noted that much of the project work this text reflects
upon was done in cooperation with other Free Software businesses,
namely g10code, the maintainers of GNUPG and cryptography spe-
cialists, and Intevation, a consultancy focused entirely on Free Soft-
ware and its strategic challenges and opportunities. Especially Bern-
hard Reiter, one of Intevation’s founders, was instrumental to the
selling and running of many of these projects and whatever morsels
of wisdom this text might contain are likely products of his analysis
and my many conversations with him over the years.

So if Bernhard and I could travel back in time and share insights
with our younger, more näıve selves, what would those insights be?
Well, it turns out they all start with the letter ’P’.

People

As things stand today it is still harder for IT operations people and
decision makers to use Free Software than it is to use proprietary
alternatives. Even in Germany, where Free Software has relatively
strong political backing, it is easier and safer to suggest the use of
something that is perceived as “industry standard” or “what ev-
eryone else does”; proprietary solutions, in other words. Someone
who proposes a Free Software solution will likely face opposition by
less adventurous (or more short-sighted) colleagues, close scrutiny
by superiors, higher expectations with respect to the results and un-
realistic budget pressure. It thus requires a special breed of person

Till Adam 257

willing to take personal risks, go out on a limb, potentially jeopardize
career progress and fight an uphill battle. This is of course true in
any organization, but in a public administration special persistence
is required because things move generally more slowly and an inflex-
ible organizational hierarchy and limited career options amplify the
issue.

Without an ally on the inside it can be prohibitively difficult to
get Free Software options seriously considered. If there is such a
person, it is important to support them in their internal struggles
as much as possible. This means providing them with timely, reli-
able and verifiable information about what goes on in the community
the organization intends to interface with, including enough detail
to provide a full picture but reducing the complexity of the commu-
nication and planing chaos that is part of the Free Software way of
working, at times, such that it becomes more manageable and less
threatening. Honesty and reliability help to build strong relation-
ships with these key people, the basis of longer term success. As
their interface to the wondrous and somewhat frightening world of
Free Software communities they rely on you to find the paths that
will carry them and their organization to their goals and they make
decisions largely based on personal trusts. That trust has to be
earned and maintained.

In order to achieve this, it is important to focus not only on achiev-
ing the technical results of projects, but also keep in mind the broader
personal and organizational goals of those one is dealing with. Suc-
cess or failure of the current project might not depend on whether
an agency’s project manager can show off only marginally related
functionality to superiors at seemingly random points in the sched-
ule, but whether the next project happens or not might. When you
have few friends, helping them be successful is a good investment.

258 Free Software in Public Administrations

Priorities

As technologists, Free Software people tend to focus on the things
that are new, exciting and seemingly important at a technology level.
Consequently we put less emphasis on things that are more important
in the context of an (often large) public administration. But consider
someone wanting to roll out a set of technologies in an organization
that intends to stick with it for a long time. Since disruptive change
is difficult and expensive, it is far more important to have docu-
mentation of the things that will not work, so they can be avoided
or worked around, than it is to know that some future version will
behave much better. It is unlikely that that new version will ever
be practically available to the users currently under consideration,
and it is far easier to deal with known issues pro-actively than to be
forced to react to surprises. Today’s documented bug is, ironically,
often preferable to tomorrow’s fix with unforeseeable side effects.

In a large organization that uses software for a long time, the cost
of acquiring the software, be it via licenses or as part of contracted
custom development of Free Software, pales in comparison to the
cost of maintaining and supporting it. This leads to the thinking
that fewer, more stable features, which cause less load on the support
organization and are more reliable and less maintenance intensive are
better than new, complex and likely less mature bells and whistles.

While both of these sentiments run counter to the instincts of
Free Software developers, it is these same aspects that make it very
attractive for the public sector to contract the development of Free
Software, rather than spending the money on licenses for off-the-shelf
products. Starting from a large pool of freely available software,
the organization can invest the budgets it has into maturing exactly
those parts that are relevant for its own operations. It thus does
not have to pay (via license costs) for the development of market
driven, fancy features it will not need. By submitting all of that work
back upstream into the community, the longer term maintenance
of these improvements and of the base software is shared amongst
many. Additionally, because all of the improvements become publicly

Till Adam 259

available, other organizations with similar needs can benefit from
them with no additional cost, thus maximizing the impact of tax
payer money, something any public administration is (or should be)
keen to do.

Procurement

So, if it is so clearly better use of IT budgets for government agen-
cies to invest into the improvement of Free Software and into the
tailoring of it to its needs, why is it so rarely done? Feature par-
ity for many of the most important kinds of software has long been
reached, usability is comparable, robustness and total cost of owner-
ship as well. Mindshare and knowledge are of course still problems,
but the key practical obstacle for procurement of Free Software ser-
vices lies in the legal and administrative conditions under which it
must happen. Changing these conditions requires work on a political
and lobby level. In the context of an individual project it is rarely
possible. Thankfully organizations like the Free Software Founda-
tion Europe and its sister organization in the US are lobbying on
our behalf and slowly effecting change. Let’s look at two central,
structural problems.

Licenses, not Services Many IT budgets are structured such that
part of the money is set aside for the purchase of new software or
the continued payment for the use of software in the form of licenses.
Since it was unimaginable to those who structured these budgets that
software could ever be anything but a purchasable good, represented
by a proprietary license, it is often difficult or impossible for the IT
decision makers to spend that same money on services. Managerial
accounting will simply not hear of it. This can lead to the unhappy
situation that an organization has the will and the money to improve
a piece of Free Software to exactly suit its needs, deploy and run it
for years and contribute the changes back to community, yet the plan
can not go forward unless the whole affair is wrapped in an artificial

260 Free Software in Public Administrations

and unnecessary sale and purchase of an imaginary product based
on the Free Software license.

Legal Traps Contractual frameworks for software providers often
assume that whoever signs up to provide the software fully controls
all of the involved copyrights, trademarks and patents. The buying
organization expects to be indemnified against various risks by the
provider. In the case of a company or an individual providing a solu-
tion or service based on Free Software that is often impossible since
there are other rights holders that can not reasonably be involved in
the contractual arrangement. This problem appears most pointedly
in the context of software patents. It is practically impossible for a
service provider to insure against patent litigation risks which makes
it very risky to take on the full responsibility.

Price

Historically, the key selling point of Free Software that has been com-
municated to the wider public has been its potential to save money.
Free Software has indeed made large scale cost saving possible in
many organizations and for many years now. The GNU/Linux op-
erating system has spearheaded this development. Because of its
free availability for download was perceived in stark contrast to the
expensive licenses of its main competitor, Microsoft Windows. For
something as widely used and useful as an operating system, the
structural cost benefit of development cost put onto many shoulders
is undeniable. Unfortunately the expectation that this holds true for
all Free Software products has led to the unrealistic view that using
it will always, immediately and greatly reduce cost. In our experi-
ence, this is not true. As we have seen in earlier sections it does make
a lot of sense to get more out of the money spent using Free Soft-
ware and it is likely that over time and across multiple organizations
money can be saved, but for the individual agency looking to deploy
a piece of Free Software there will be an upfront investment and cost

Till Adam 261

associated with getting it to the point of maturity and robustness
required.

While this seems entirely reasonable to IT operations professionals
it is often harder to convince their superiors with budget power of
this truth. Especially when potential cost saving has been used as an
argument to get Free Software in the door initially it can prove very
challenging to effectively manage expectations down the road. The
earlier the true cost and nature of the investment is made transparent
to decision makers, the more likely they are to commit to it for the
long haul. High value for money is still attractive and a software
services provider that will not continue to be available because the
high price pressure does not yield sufficient economic success is as
unattractive in Free Software as it is in proprietary license based
business models. It is thus also in the interest of the customers that
cost estimations are realistic and the economic conditions of the work
being done are sustainable.

Conclusion

Our experience shows that it is possible to convince organizations
in the public sector to spend money on Free Software based ser-
vices. It is an attractive proposition that provides good value and
makes political sense. Unfortunately structural barriers still exist,
but with the help of pioneers in the public sector they can be worked
around. Given sufficient support by us all, those working for Free
Software on a political level will eventually overcome them. Honest
and clear communication of the technical and economic realities can
foster effective partnerships that yield benefits for the Free Software
community, the public administrations using the software and those
providing them with the necessary services in an economically viable,
sustainable way.

39. Underestimating the Value of a Free
Software Business Model

Frank Karlitschek

Frank Karlitschek was born in 1973 in Reutlingen, Germany and
started to write software at the age of 11. He studied Computer
Science at the University of Tübingen and became involved in free
software and Internet technologies in the mid-1990s. In 2001, he
started to contribute to KDE by launching KDE-Look.org, an art-
work community site which later became the openDesktop.org net-
work. Frank started several Open Source projects and initiatives like
the Social Desktop, the Open Collaboration Services, the Open-PC
and ownCloud. In 2007 he started a company called hive01 which
offers services and products around Open Source and Internet tech-
nologies. Today Frank is a board member and Vice President of the
KDE e.V. and a regular speaker at international conferences.

Introduction

Ten years ago, I underestimated the value of a business model. Free
software and a business model? They do not belong together. At
least, that is what I thought when I started contributing to KDE
in 2001. Free Software is about fun and not money. Right? Free
software people want a world where everybody can write software and
huge companies, like Microsoft or Google, are superfluous. Software
should be free and anyone who wants to develop software should be
able to do so – even hobby developers. So earning money is not
important. Right? Today, I hold a different opinion. Sometimes
developers should be remunerated for their efforts.

264 Underestimating the Value of a Free Software Business Model

The Free Software motivation

Most Free Software developers have two basic motivations to work
on Free Software. The first motivation is the fun factor. It is a
fantastic experience to work together with very talented people from
all over the world and create great technology. KDE, for example, is
one of the most welcoming communities I know. It is so much fun
to work with thousands of contributors from all over the world to
create software which will be used by millions. Basically, everyone is
an expert in one or more areas and we collaborate to create a shared
vision. For me it is always a blast to meet other KDE contributors,
exchange ideas or work on our software whether we meet online or
in real life at one of the many conferences or events. And it is also
about friendship. Over the years I have made many good friends in
KDE.

But KDE contributors are not motivated only by fun to join KDE.
It is also the idea that all of us can make the world a better place
with our contributions. Free Software is essential if you care about
access to technology and IT for developing countries. It enables poor
people to participate in the information age without buying expen-
sive licenses for proprietary software. It is essential for people who
care about privacy and security, because Free Software is the only
way to see exactly what your computer is doing with your private
data. Free Software is important for a healthy IT eco-system, be-
cause it enables everybody to build on the work of others and really
innovate. Without Free Software it would not have been possible for
Google or Facebook to start their businesses. It is not possible to
innovate and create the next disruptive technology if you depend on
proprietary software and do not have full access to all parts of the
software.

Free Software is also essential for education, because everybody
can see all the internals of the software and study how it works.
That is how Free Software helps to make the world a better place
and why I contribute to Free Software projects such as KDE.

Frank Karlitschek 265

The need for an ecosystem

These are the main reasons why I want to see Free Software, and es-
pecially the free desktop, become mainstream. To make this happen,
we need a lot more contributors than we have today. By contribu-
tors I mean people who write the core frameworks, the desktop, the
great applications. We need people who work on usability, artwork,
promotion and many other important areas. KDE is already a re-
ally big community with thousands of members. But we need more
people to help to compete with proprietary software in a big way.
The Free Software community is tiny compared to the proprietary
software world. On the one hand this is not a problem, because the
distributed software development model of the Free Software world
is much more efficient than the closed source way of writing software.
One big advantage is, for example, the ability to re-use code better.
But even with these advantages we need many more contributors
than we have today, if we really want to conquer the desktop and
mobile markets.

We also need companies to help us bring our work to the mass
market. In a nutshell, we need a big and healthy ecosystem that
enables people to work on Free Software for a living.

The current situation

I started contributing to KDE over 10 years ago and since then I have
seen countless highly motivated and talented people join KDE. This
is really cool. The problem is that I also saw a lot of experienced
contributors dropping out of KDE. That is really sad. Sometimes
it is just the normal way of the world. Priorities shift and people
concentrate on other stuff. The problem is that many also drop out
because of money. At some point people graduate and want to move
out of their dorm rooms. Later some people want to get married and
have kids. At this point people have to find jobs. There are some
companies in the KDE ecosystem that offer KDE-related jobs. But

266 Underestimating the Value of a Free Software Business Model

these are only a fraction of the available IT jobs. So, a lot of senior
KDE contributors have to work for companies where they work on
proprietary software, unrelated to KDE and Free Software. Sooner or
later most of these developers drop out of KDE. I underestimated this
factor 10 years ago, but I think it is a problem for KDE in the long
term, because we lose our most experienced people to proprietary
software companies.

My dream world

In my dream world people can pay their rent by working on Free
Software and they can do it in a way which does not conflict with
our values. KDE contributors should have all the time they need to
contribute to KDE and Free Software in general. They should earn
money by helping KDE. Their hobbies should become their jobs.
This would make KDE grow in a big way, because it would be fun
to contribute and also provide good long-term job prospects.

What are the options?

So what are the options? What can we do to make this happen?
Are there ways for developers to pay their rent while working on
Free Software? I want to list a few ideas here that I collected during
several discussions with Free Software contributors. Some of them
are probably controversial, because they introduce completely new
ideas into the Free Software world. But I think it is essential for us
to think beyond our current world if we want to be successful with
our mission.

Sponsored development Today, more and more companies appre-
ciate the importance of Free Software and contribute to Free Soft-
ware projects, or even release their own completely Free Software
projects. This is an opportunity for Free Software developers. We

Frank Karlitschek 267

should talk to more companies and convince them to work with the
Free Software world.

End-user donations There should be an easy way for end-users to
donate money directly to developers. If a user of a popular applica-
tion wants to support the developer and promote the further devel-
opment of the application, donating money should be just one mouse
click away. The donation system can be built into the application to
make it as easy as possible to send money.

Bounties The idea behind bounties is that one or more users of
an application can pay for the development of a specific feature. A
user can list his feature request on a website and say how much he
is willing to pay for the feature. Other users who also like the same
feature may add some money to the feature request. At some point
the developer starts to develop the feature and collects the money
from the users. This bounty feature is not easy to implement. People
already tried to set up a system like this and failed. But I think it
can work if we do it right.

Support The idea is that the developer of an application sells direct
support to the users of the application. For example, the users of an
application buy support for, let us say, $5 a month and get the right
to call the developer directly at specified times of the day, users may
post questions to a specific email address, or the developer can even
help the users via a remote desktop. I realize many developers will
not like the idea that users call them and ask strange questions, but
if this means that they earn enough with the support system to work
full-time on their applications, then it must be a good thing.

Supporters This is the idea that end-users can become supporters
of an application. The “Become a Supporter” button would be di-
rectly built into the application. The user then becomes a supporter
for a monthly payment of, for example $5, which goes directly to the

268 Underestimating the Value of a Free Software Business Model

developer. All the supporters are listed in the About Dialog of the
application together with their photos and real names. Once a year
all supporters are also invited to a special supporter party together
with the developers. It is possible that a developer may be able to
work full-time on an application, if enough users become supporters.

Affiliate programs Some applications have integrated web services
and some of these web services run affiliate programs. For example,
a media player can be integrated in the Amazon mp3 MusicStore or
a PDF reader can be integrated in an ebook store. Every time a user
buys content via the application, the developer gets some money.

App store for application binaries Many people do not know that
it is possible to sell binaries of Free Software. The GPL only requires
that you also provide the source code. So, it is perfectly legal and
OK to sell nicely packaged binaries of our software. In fact, compa-
nies such as Red Hat and Novell already sell our software in their
commercial distributions but the developers do not benefit from it
directly. All the revenue goes to the companies and nothing to the
developers. So we could enable the Free Software developers to sell
nicely packaged, optimized and tested applications to the end-user.
This might work especially well on Mac or Windows. I am sure a lot
of users would pay $3 for an Amarok Windows binary, or digiKam
for Mac, if all the money went directly to the developer.

Conclusion

Most of these ideas are not easy to implement. They require changes
to our software, changes to our ways of working and changes among
our users who must be encouraged to show they value the software
we create by helping to fund its development.

However, the potential benefits are huge. If we can secure revenue
streams for our software we can retain our best contributors and
maybe attract new ones. Our users will get a better experience

Frank Karlitschek 269

with faster software development, the ability to directly influence
development through bounties and better support.

Free Software is no longer just a hobby to be done in your spare
time. It is time to make it a business.

40. Free and Open Source-Based Business
Models

Carlo Daffara

Carlo Daffara is a researcher in the field of Open Source-based busi-
ness models, collaborative development of digital artifacts, and Open
Source software employment in companies. He is part of the edito-
rial review board of the International Journal of Open Source Soft-
ware & Processes (IJOSSP) and member of the technical board of
two regional Open Source competence centers, as well as member
of the FSFE European Legal Network. He has been part of SC34
and JTC1 committees in the Italian branch of ISO, UNINFO; and
participated in the Internet Society Public Software working group,
and many other standardization-related initiatives. Previous to that,
Carlo Daffara was the Italian representative at the European Work-
ing Group on Libre Software, the first EU initiative in support of
Open Source and Free Software. He chaired the SME working group
of the EU Task Force on Competitiveness, and the IEEE open source
middleware working group of the Technical Committee on Scalable
Computing. He worked as project reviewer for the EC in the field
of international collaboration, software engineering, open source and
distributed systems and was Principal Investigator in several EU re-
search projects.

Introduction

“How do you make money with Free Software?” was a very common
question just a few years ago. Today, that question has evolved into

272 Free and Open Source-Based Business Models

“What are successful business strategies that can be implemented on
top of FLOSS?” The question is not as gratuitous as it may seem, as
many academic researchers still write this kind of text: “Open-source
software is deliberately developed outside of market mechanisms . . .
fails to contribute to the creation of value in development, as opposed
to the commercial software market . . . does not generate profit, in-
come, jobs or taxes . . . The open-source licenses on the software aim
to suppress any ownership claims to the software and prevent prices
from being established for it. In the end, the developed software
cannot be used to generate profit.” [Koot 03] or [Eng 10] claims
that “economists showed that real world open source collaborations
rely on many different incentives such as education, signaling, and
reputation.” (without any mention of economic incentives). This
purely “social” view of FLOSS is biased and wrong, and we will
demonstrate that there are economical reasons behind the success
of Free/Open Source businesses that go beyond the purely pro-bono
collaborations.

FLOSS and Economic Realities

In most areas, the use of FLOSS brings a substantial economic ad-
vantage, thanks to the shared development and maintenance costs,
already described by researchers like Gosh, that estimated an av-
erage R&D cost reduction of 36%. The large share of “internal”
FLOSS deployments explains why some of the economic benefits are
not perceived directly in the business service market.

The FLOSSIMPACT study found in 2006 that companies con-
tributing code to FLOSS projects have in total at least 570 thou-
sand employees and an annual revenue of 263B Euro [Gosh 06], thus
making Open Source and Free Software among the most important
ICT-based economic phenomenons. It is also important to recognize
that a substantial percentage of this economic value is not immedi-
ately visible in the marketplace, as the majority of software is not
developed with the intent of selling it (the so-called “shrinkwrap”

Carlo Daffara 273

software) but is developed for internal use only. As identified by the
FISTERA EU thematic network in fact the majority of software is
developed for internal use only:

Region Proprietary
software
licenses

Software ser-
vices (devel-
opment/cus-
tomization)

Internal
development

EU-15 19% 52% 29%
US 16% 41% 43%
Japan N/A N/A 32%

It is clear that what we call “the software market” is in reality
much smaller than the real market for software and services, and
that 80% of it is invisible. We will see that FLOSS has a major part
of the economic market directly through this “internal” development
model.

Business Models and Value Proposition

The basic idea behind business models is quite simple: I have some-
thing or can do something – the “value proposition” – and it is more
economical to pay me to do or get this “something” instead of doing
it yourself (sometimes it may even be impossible to find alternatives,
as in natural or man-made monopolies, so the idea of doing it my-
self may not be applicable). There are two possible sources for the
value: a property (something that can be transferred) and efficiency
(something that is inherent in what the company does, and how they
do it). With Open Source, usually “property” is non-exclusive (with
the exception of what is called “Open Core”, where some part of the
code is not open at all, and that will be covered later in the arti-
cle). Other examples of property are trademarks, patents, licenses
. . . anything that may be transferred to another entity through a
contract or legal transaction. Efficiency is the ability to perform
an action with a lower cost (both tangible and intangible), and is
something that follows the specialization in a work area or appears

274 Free and Open Source-Based Business Models

thanks to a new technology. Examples of the first are simply the
decrease in time necessary to perform an action when you increase
your expertise in it; the first time you install a complex system it
may require a lot of effort, and this effort is reduced the more expe-
rience you have with the tasks necessary to perform the installation
itself; examples of the second may be the introduction of a tool that
simplifies the process (for example, through image cloning) and it
introduces a huge discontinuity, a “jump” in the graph of efficiency
versus time.

These two aspects are the basis of all the business models that we
have analyzed in the past; it is possible to show that all of them fall
in a continuum between properties and efficiency.

Among the results of our past research project, one thing that
we found is that property-based projects tend to have lower contri-
butions from the outside, because it requires a legal transaction to
become part of the company’s properties; think for example about
dual licensing: for his code to become part of the product source
code, an external contributor needs to sign off his rights to the code,
to allow the company to sell the enterprise version alongside the open
one.

On the other hand, right-handed models based purely on efficiency
tends to have higher contributions and visibility, but lower monetiza-
tion rates. As I wrote many times, there is no ideal business model,
but a spectrum of possible models, and companies should adapt
themselves to changing market conditions and adapt their model as
well. Some companies start as pure efficiency based, and build an in-
ternal property with time; some others may start as property based,
and move to the other side to increase contributions and reduce the
engineering effort (or enlarge the user base, to create alternative ways
of monetizing users).

Carlo Daffara 275

A Business Models Taxonomy

The EU FLOSSMETRICS study on Free Software-based business
models created, after an analysis of more than 200 companies, a tax-
onomy of the main business models used by Open Source companies;
the main models identified in the market are:

� Dual licensing: the same software code distributed under the
GPL and a proprietary license. This model is mainly used by
producers of developer-oriented tools and software, and works
thanks to the strong coupling clause of the GPL, that requires
derivative works or software directly linked to be covered under
the same license. Companies not willing to release their own
software under the GPL can obtain a proprietary license that
provides an exemption from the distribution conditions of the
GPL, which seems desirable to some parties. The downside
of dual licensing is that external contributors must accept the
same licensing regime, and this has been shown to reduce the
volume of external contributions, which are limited mainly to
bug fixes and small additions.

� Open Core (previously called “proprietary value-add” or “split
Free Software/proprietary”): this model distinguishes between
a basic Free Software and a proprietary version, based on the
Free Software one but with the addition of proprietary plug-
ins. Most companies following such a model adopt the Mozilla
Public License, as it allows explicitly this form of intermixing,
and allows for much greater participation from external con-
tributions without the same requirements for copyright con-
solidation as in dual licensing. The model has the intrinsic
downside that the Free Software product must be valuable to
be attractive for the users, i.e. it should not be reduced to
“crippleware”, yet at the same time should not cannibalize the
proprietary product. This balance is difficult to achieve and
maintain over time; also, if the software is of large interest,
developers may try to complete the missing functionality in

276 Free and Open Source-Based Business Models

Free Software, thus reducing the attractiveness of the propri-
etary version and potentially giving rise to a full Free Software
competitor that will not be limited in the same way.

� Product specialists: companies that created or maintain a spe-
cific software project and use a Free Software license to dis-
tribute it. The main revenues are provided from services like
training and consulting and follow the original “best code here”
and “best knowledge here” of the original EUWG classification
[DB 00]. It leverages the assumption, commonly held, that the
most knowledgeable experts on a software are those who have
developed it, and this way can provide services with a limited
marketing effort, by leveraging the free redistribution of the
code. The downside of the model is that there is a limited
barrier of entry for potential competitors, as the only invest-
ment that is needed is in the acquisition of specific skills and
expertise on the software itself.

� Platform providers: companies that provide selection, sup-
port, integration and services on a set of projects, collectively
forming a tested and verified platform. In this sense, even
GNU/Linux distributions were classified as platforms; the in-
teresting observation is that those distributions are licensed
for a significant part under Free Software licenses to maxi-
mize external contributions, and leverage copyright protection
to prevent outright copying but not “cloning” (the removal of
copyrighted material like logos and trademark to create a new
product)1. The main value proposition comes in the form of
guaranteed quality, stability and reliability, and the certainty
of support for business critical applications.

� Selection/consulting companies: companies in this class are
not strictly developers, but provide consulting and selection/
evaluation services on a wide range of projects, in a way that

1Examples of Red Hat clones are CentOS and Oracle Linux.

Carlo Daffara 277

is close to the analyst role. These companies tend to have very
limited impact on the communities, as the evaluation results
and the evaluation process are usually a proprietary asset.

� Aggregate support providers: companies that provide a one-
stop support on several separate Free Software products, usu-
ally by directly employing developers or forwarding support
requests to second-stage product specialists.

� Legal certification and consulting: these companies do not pro-
vide any specific code activity, but provide support in check-
ing license compliance, sometimes also providing coverage and
insurance for legal attacks; some companies employ tools for
verifying that code is not improperly reused across company
boundaries or in an improper way.

� Training and documentation: companies that offer courses, on-
line and physical training, additional documentation or manu-
als. This is usually offered as part of a support contract, but
recently several large scale training center networks started of-
fering Free Software-specific courses.

� R&D cost sharing: A company or organization may need a
new or improved version of a software package, and fund some
consultant or software manufacturer to do the work. Later on,
the resulting software is redistributed as Open Source to take
advantage of the large pool of skilled developers who can de-
bug and improve it. A good example is the Maemo platform,
used by Nokia on its Mobile Internet Devices (like the N810);
within Maemo, only 7.5% of the code is proprietary, with a
reduction in costs estimated around 228M$ (and a reduction
in time-to-market of one year). Another example is the Eclipse
ecosystem, an integrated development environment (IDE) orig-
inally released as Free Software by IBM and later managed by
the Eclipse Foundation. Many companies adopted Eclipse as
a basis for their own product, and this way reduced the over-
all cost of creating a software product that provides in some

278 Free and Open Source-Based Business Models

way developer-oriented functionality. There is a large number
of companies, universities and individuals that participate in
the Eclipse ecosystem. As recently measured, IBM contributes
around 46% of the project, with individuals accounting for
25%, and a large number of companies like Oracle, Borland,
Actuate and many others with percentages that go from 1 to
7%. This is similar to the results obtained from analysis of
the Linux kernel, and show that when there is a healthy and
large ecosystem the shared work reduces engineering cost sig-
nificantly; in [Gosh 06] it is estimated that it is possible to
obtain savings in terms of software research and development
of 36% through the use of Free Software; this is, in itself, the
largest actual “market” for Free Software, as demonstrated by
the fact that the majority of developers are using at least some
Free Software within their own code (56.2%, as reported in
[ED 05]). Another excellent example of “coopetition” among
companies is the WebKit project, the HTML rendering engine
that is at the basis of the Google Chrome browser, Apple Safari
and is used in the majority of mobile devices. In the project,
after an initial 1 year delay, the number of outside contribu-
tions start to become significant, and after a little more than
1 and a half years they surpass those performed by Apple by a
substantial margin - thus reducing the maintenance costs and
the engineering effort, thanks to the division of work among
co-developers.

� Indirect revenues: A company may decide to fund Free Soft-
ware projects if those projects can create a significant revenue
source for related products, not directly connected with source
code or software. One of the most common cases is the writ-
ing of software needed to run hardware, for instance, operating
system drivers for specific hardware. In fact, many hardware
manufacturers are already distributing gratis software drivers.
Some of them are already distributing some of their drivers
(specially those for the Linux kernel) as Free Software. The

Carlo Daffara 279

loss-leader is a traditional commercial model, common also out-
side of the world of software; in this model, effort is invested
in a FLOSS project to create or extend another market un-
der different conditions. For example, hardware vendors invest
in the development of software drivers for Free Software oper-
ating systems (like GNU/Linux) to extend the market of the
hardware itself. Other ancillary models are for example those
of the Mozilla foundation, which obtains a non-trivial amount
of money from a search engine partnership with Google (an
estimated 72M$ in 2006), while SourceForge/OSTG receives
the majority of revenues from e-commerce sales of the affiliate
ThinkGeek site.

Some companies have more than one principal model, and thus
are counted twice; in particular, most dual licensing companies are
also selling support services, and thus are marked as both. Also,
product specialists are counted only when there is a demonstrable
participation of the company in the project as “main committer”;
otherwise, the number of specialists would be much greater, as some
projects are the center of commercial support for many companies
(good examples include OpenBravo or Zope).

Another relevant consideration is the fact that platform providers,
while limited in number, tend to have a much larger revenue rate
than both specialists or open core companies. Many researchers are
trying to identify whether there is a more “efficient” model among
all those surveyed; what we found is that the most probable future
outcome will be a continuous shift across models, with a long-term
consolidation of development consortia (like the Eclipse or Apache
consortium) that provide strong legal infrastructure and development
advantages, and product specialists that provide vertical offerings for
specific markets.

280 Free and Open Source-Based Business Models

Conclusions

FLOSS not only allows for sustainable, and even very large market
presence (Red Hat is already quite close to 1B$ in annual revenues)
but also many different models that are totally impossible with pro-
prietary software. The fact that FLOSS is a non-rival good also
facilitates cooperation between companies, both to increase the geo-
graphic base and to be able to engage large scale contracts that may
require multiple competencies, both geographical (same product or
service, different geographical areas); “vertical” (among products) or
“horizontal” (among activities). This facilitation of new ecosystems
is one of the reasons why FLOSS is now present in nearly all the
IT infrastructures in the world, increasing value and helping compa-
nies and Public Administrations in reducing costs and collaborating
together for better software.

References

� [DB00] Daffara, C. Barahona, J.B. Free Software/Open Source:
Information Society Opportunities for Europe? working paper,
http://eu.conecta.it paper, OSSEMP workshop, Third in-
ternational conference on open source. Limerick 2007

� [ED05] Evans Data, Open Source Vision report, 2005

� [Eng10] Engelhardt S. Maurer S. The New (Commercial) Open
Source: Does it Really Improve Social Welfare? Goldman
School of Public Policy Working Paper No. GSPP10-001, 2010

� [Gar06] Gartner Group, Open source going mainstream. Gart-
ner report, 2006

� [Gosh06] Gosh, et al. Economic impact of FLOSS on in-
novation and competitiveness of the EU ICT sector. http:

//bit.ly/cNwUz0

http://eu.conecta.it
http://bit.ly/cNwUz0
http://bit.ly/cNwUz0

Carlo Daffara 281

� [Koot03] Kooths, S. Langenfurth, M. Kalwey, N. Open-Source
Software: An Economic Assessment Technical report, Muen-
ster Institute for Computational Economics (MICE), Univer-
sity of Muenster

Part XVI.

Legal and Policy

41. On being a Lawyer in FOSS

Till Jaeger

Dr. Till Jaeger has been a partner at JBB Rechtsanwaelte since 2001.
He is a Certified Copyright and Media Law Attorney and advises
large and medium-sized IT businesses as well as government author-
ities and software developers on matters involving contracts, licensing
and online use. One particular focus of his work is on the legal issues
created by Free and Open Source Software. He is co-founder of the
Institute for Legal Aspects of Free & Open Source Software (ifrOSS).
He provides advice on compliance with open source licenses and on
compatibility issues, and helps developers and software companies to
enforce licenses. Till represented the gpl-violations.org project in sev-
eral lawsuits to enforce the GPL and has published several articles
and books related to legal questions of Free and Open Source Soft-
ware. He was a member of the Committee C in the GPLv3 drafting
process.

One thing upfront: I am not a geek. I never have been one, and have
no intention of becoming one in the future.

Instead, I am a lawyer. Most people who read this book probably
tend to sympathize more with geeks than with lawyers. Nevertheless,
I do not want to hide this fact. That the FOSS community is not
necessarily fond of lawyers but busy developing software is something
I did know about FOSS in early 1999 when our ways first crossed.
But there were also quite a few things I did not know.

In 1999, while completing my doctoral thesis that focused on a
classical copyright topic, I was assessing the scope of moral rights.
In this context I spent a while pondering about the question of how
moral rights of programmers are safeguarded by the GPL, which

286 On being a Lawyer in FOSS

allows others to modify their programs. This is how I first got in
contact with FOSS. At the time, “free” and “open” certainly had
different meanings, but the difference was not worth arguing about
in the world I was living in. However, since I was free to do what I
was interested in and open to investigate new copyright questions, I
soon found out that the two words do have something in common,
that they are different and yet they are best used together...

There are three things I wish I had known back then:

First, my technical knowledge, particularly in the field of software,
was insufficient. Second, I did not really know the community and
what mattered to the people who were part of it. Last but not least,
I did not know much about foreign jurisdictions back then. It would
have been useful to know all that from the beginning.

Since that time, I have learned a fair bit, and just as the community
is happy to share its achievements I am happy to share my lessons1:

Technical knowledge How is software architecture shaped? What
is the technical structure of software like? Which licenses are com-
patible with each other and which are not, and how and why? How
is the Linux kernel structured?

To name one example, the important question of what consti-
tutes a “derivative work” according to the GPL determines how the
software may be licensed. Everything that counts as derived from
GPL-licensed software must be distributed under the GPL. To as-
sess whether a certain software is a “derivative work” or not requires
profound technical understanding. The interaction of program mod-
ules, linking, IPC, plugins, framework technology, header files and
so on determines, among other criteria, whether a program is for-
mally inseparable, which helps to determine whether it is derived
from another program or not.

1The “Institut für Rechtsfragen der Freien und Open Source Software” (Insti-
tute for Legal Questions on Free and Open Source Software) offers, inter alia,
a collection of FOSS related literature and court decisions; see www.ifross.org
for details.

Till Jaeger 287

Knowledge of the industry and the community Besides these
functionality issues I had no profound understanding of the idea be-
hind FOSS and the motivation of the developers and the companies
that use FOSS. Neither did I really know about its philosophical
background, nor was I familiar with practical issues such as “who is
a maintainer?” or “how do version control systems work?” In order
to serve your clients best, these matters are no less important than
your proficiency in technical aspects. Our clients ask us about le-
gal aspects of forming business models such as dual licensing, “open
core”, support and services contracts, code development and code
contribution agreements. We consult clients concerning what FOSS
might have in store for their companies or institutions. We also
advise developers on what they can do about infringement of their
copyrights, and draft and negotiate contracts for them. In order to
serve such clients comprehensively, it is important to be familiar with
the different points of view.

Comparative law knowledge The third thing a FOSS lawyer needs
is knowledge about foreign jurisdictions, at least a few, and the more
the better. In order to construe the different licenses, it is essential
to be familiar with the perspective of the people who have drafted it.
In most cases the U.S. legal system is of key importance. For exam-
ple, the GPL was drafted with U.S. legal concepts in mind. In the
United States, “distribution” includes online distribution, whereas
under the German Copyright system there is a distinction between
offline and online distribution. Licenses that have been drafted by
lawyers from the United States may thus be construed as includ-
ing online distribution, which might be relevant and helpful in court
proceedings2.

2http://www.ifross.org/Fremdartikel/LGMuenchenUrteil.pdf, Cf. Welte v.
Skype, 2007

http://www.ifross.org/Fremdartikel/LGMuenchenUrteil.pdf

288 On being a Lawyer in FOSS

Always Learning

So, all this is useful to know. And as software keeps on being devel-
oped and modified to provide solutions for the needs of the day, so
my mind will hopefully keep on finding answers to the challenges the
vibrant FOSS community poses to a lawyer’s mind.

42. Building Bridges

Shane Coughlan

Shane Coughlan is an expert in communication methods and business
development. He is best known for building bridges between commer-
cial and non-commercial stakeholders in the technology sector. His
professional accomplishments include establishing a legal department
for the FSFE, the main NGO promoting Free Software in Europe,
building a professional network of over 270 legal and technical ex-
perts across 27 countries, co-founding a binary code compliance tool
project and aligning corporate and community interests to launch the
first law review dedicated to Free/Open Source Software. Shane has
extensive knowledge of Internet technologies, management best prac-
tice, community building and Free/Open Source Software.

When I started to work in Free Software I was struck by the perceived
difference between the “community” and the “business” stakeholders
in this field. The informal assertion often aired at the time essen-
tially proposed that there were developers interested in hacking and
there were commercial parties who would use their output in objec-
tionable ways if not closely monitored. It was a generally baseless
assumption, and almost entirely limited to parties who identified
themselves as the community rather than those more aligned with
business interests, but it was prevalent.

Despite being primarily associated with the community side of
things, I resisted the concept that there were two inherently hos-
tile parties facing each other down over the future of Free Software.
It sounded too simple to frame the dynamics of contribution, use
and support as the interplay between noble creators and devious
freeloaders. Indeed, it sounded more like a situation where complex-
ity, change and uncertainty had lead to the creation of simplistic

290 Building Bridges

narratives to provide comfort for parties moving out of their comfort
zone. I could feel the tension in the air, I could hear the arguments
at booths and in meetings, and I could observe the sharp comments
or blowing off of steam at conferences. But what did it all mean?

Whether we were talking about Free Software project contribu-
tion, project management or license compliance, the relationships
between stakeholders were often accompanied by assumptions, lack
of communication and negative emotion. This in turn lead to greater
complexity and a corresponding increase in the difficulty of mak-
ing unified decisions or resolving issues. I was aware that one of
the biggest challenges was how to build bridges between individuals,
projects and businesses, a necessary step to ensure common under-
standing and cross-communication of the rules, norms and reasons
behind the licenses and other formal measures to govern this field,
but that in itself does not translate into knowing how to engage with
the issue effectively.

This was at the tipping point when GPLv3 was being drafted,
Linux-based technology was beginning to appear in all sorts of con-
sumer electronics, and Free Software was at the brink of becoming
mainstream. Change was in the air and business investment around
major Free Software projects was spiking. Suddenly there were ma-
jor corporation employees actually doing a lot of the difficult work,
there was significant funding available for events, and a lot of the soft-
ware stopped being about fun, and started to be about milestones,
deliverables, quality assurance and usability.

This was probably a system shock to parties who had been doing
Free Software for a long time. For much of its evolution Free Soft-
ware was not just about technical exploration and perfection, but also
social interaction. It provided a way for intelligent though occasion-
ally awkward people to share a common interest, to challenge each
other, and to cooperate inside carefully delineated and predictable
lines. Like stamp collecting, train spotting or Star Trek, it was a
place where detail-orientated people could converge, and it had the
additional benefit of providing broader feel-good social benefits as an
output. It was not where the original contributors had expected to

Shane Coughlan 291

encounter middle-management and output-orientated development
focus. No wonder a few noses were out of joint.

And yet. . . Everything worked out fine. Free Software is ev-
erywhere, and appears to be in an almost unassailable position as
a mainstream component of the Information Technology industry.
Projects like the Linux kernel or the Apache server have continued
to grow, to innovate and to attract new stakeholders, both com-
mercial and non-commercial. The balance of power between indi-
viduals, projects and businesses changed, occasionally with conflict
and disruption, but never at the cost of long-term cooperation or of
undermining the core value of Free Software.

From my perspective in the legal field – which after all is merely a
formal language that provides a context for interaction through mu-
tually understood and enforceable rules – the tension in Free Soft-
ware did not lie in the introduction of increased commercial activity,
in the increased participation of company employees in projects, or
in change itself. The real problem lay in the gap between a dis-
placed previous elite and their newer, occasionally very different,
fellow stakeholders.

The challenge was to create a level playing field where the dif-
ferent interests could co-exist with mutual respect. Free Software
needed to become a place where information like the proper remit
and obligations of a license or requirements for code submissions to
a project could be obtained by any party at any time. Subjectivity
and vagueness needed to take a backseat to allow the formation of
more formalized transactions, which in turn act as an essential pre-
cursor for any large economic activity, especially in the context of an
international or global community.

What had worked in the early days – be it the trust of a few
parties or the common understanding reached by a similar group
with similar interests – could no longer act as social or economic
drivers for the future of the field. At times this seemed like an
insurmountable barrier and that the tensions between the previous
contributors to Free Software and new stakeholders must lead to a
collapse of cooperation and perhaps of the progress made. But such

292 Building Bridges

a grim outcome would presuppose conditions that simply did not
exist.

Free Software provided a lot of value to different people and or-
ganizations based on some very simple concepts like the freedom
to use, modify, improve and share technology. These concepts al-
lowed a great deal of flexibility, and as long as people recognized
their value and continued to respect them, challenges over secondary
items like project governance or license gray areas were – in the long
run – pretty much irrelevant. The rest was mainly noise, the normal
communication spike with all its trappings of drama that inevitably
occurs when one social group is joined by another. The same applies
whether we are talking about a fishing spot, a country welcoming
immigrants (or not), or two businesses merging.

The changes in Free Software all looked a little confusing at the
time, but essentially break down into three useful lessons that will be
familiar to students of history or political science. Firstly, whenever
there is an elite, it will seek to preserve its status and it will com-
municate the perceived challenge as a negative development in an
attempt to undermine it. Secondly, despite the inherent tendency of
any power base to be conservative, static engagement with a chang-
ing field will only result in moving the opportunity for improvement
from existing parties to third parties. Finally, if something has value,
then challenges in governance are unlikely to undermine that value,
but instead will provide a method of refining both the governance
mechanisms and the people in a position to apply them.

The development of Free Software as a mainstream technology
saw increased professionalization in both the approach of developers
and in the management of projects. It also saw greater respect for
licenses on the part of individuals, projects and companies. This
was no bad thing, and despite a few rocky moments along the way
– you can take your pick from inter-community fighting, companies
disregarding license terms or the upset caused by a move away from
beer and t-shirt culture – we are left with a stronger, more coherent
and more valuable field.

And Now it is Your Turn!

I hope you enjoyed our little roadtrip through Free Software. Now
it is your turn to do two things:

1. Pass this book on. Share it with someone who would benefit
from it.

2. If you are not already contributing to a project start now. To-
day is the right day. OpenHatch1 is a great place to start.

— Lydia Pintscher

Karlsruhe, Germany; 4. January 2012

1http://openhatch.org

http://openhatch.org

	I Ideas and Innovation
	1 Code First
	2 Everyone Else Might Be Wrong, But Probably Not

	II Research
	3 Out of the Lab, into the Wild
	4 Prepare for the Future: Evolution of Teams in FLOSS

	III Mentoring and Recruiting
	5 You’ll Eventually Know Everything They’ve Forgotten
	6 University and Community
	7 Being Allowed to Do Awesome

	IV Infrastructure
	8 Love the Unknown
	9 Backups to Maintain Sanity

	V Code
	10 The Art of Problem Solving
	11 Cross-Project Collaboration
	12 Writing Patches

	VI Quality Assurance
	13 Given Enough Eyeballs, Not All Bugs are Shallow
	14 Kick, Push
	15 Test-Driven Enlightenment

	VII Documentation and Support
	16 Life-Changer Documentation for Novices
	17 Good Manners Matter
	18 Documentation and My Former Self
	19 Stop Worrying and Love the Crowd

	VIII Translation
	20 My Project Taught Me how to Grow Up

	IX Usability
	21 Learn from Your Users
	22 Software that Has the Quality Without A Name

	X Artwork and Design
	23 Don't Be Shy
	24 Use of Color and Images in Design Practices

	XI Community Management
	25 How Not to Start a Community
	26 Hindsight is Almost 20/20
	27 Things I'm Happy I Didn't Know

	XII Packaging
	28 From Beginner to Professional
	29 Packaging - Providing a Great Route into Free Software
	30 Where Upstream and Downstream Meet

	XIII Promotion
	31 Finding Your Feet in a Free Software Promotion Team
	32 Big Plans Don't Work
	33 Who are You, What are You Selling, and Why Should I Care?

	XIV Conferences and Sprints
	34 People are Everything
	35 Getting People Together
	36 We're Not Crazy … We're Conference Organizers!
	37 How to Ask for Money

	XV Business
	38 Free Software in Public Administrations
	39 Underestimating the Value of a Free Software Business Model
	40 Free and Open Source-Based Business Models

	XVI Legal and Policy
	41 On being a Lawyer in FOSS
	42 Building Bridges

