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ABSTRACT

In a social network, the trust among its members usually cannot be carried
over many hops. So it is important to find disjoint clusters with a small diameter
and with a decent size, formally called dense clubs in this thesis. We focus on
handling this NP-complete problem in this thesis. First, from the parameterized
computational complexity point of view, we show that this problem does not admit a
polynomial kernel (implying that it is unlikely to apply some reduction rules to obtain
a practically small problem size). Then, we focus on the dual version of the problem,
i.e., deleting d vertices to obtain some disjoint dense clubs. We show that this dual
problem admits a simple FPT algorithm using a bounded search tree method (the
running time is still too high for practical datasets). Finally, we combine a simple
reduction rule together with some heuristic methods to obtain a practical solution
(verified by extensive testing on practical datasets). Empirical results show that this
heuristic algorithm is very sensitive to all parameters. This algorithm is suitable on
graphs which have a mixture of dense and sparse regions. These graphs are very
common in the real world.
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INTRODUCTION

Background

For over a decade, software like Twitter, Facebook and WeChat have changed
people’s lives by creating social groups and networks easily. They give people a new
convenient “world” where we can share everything that happens around us, and social
networks have grown enormously in recent years. For example, at the beginning, the
Tencent company developed WeChat which is a mobile text and voice messaging
communication service in China. Nowadays, WeChat provides so many services, such
as mobile text messaging, voice messaging, video games, moments, money transfer and
so on. It has become an essential feature for smart phones in China. As of December
2015, WeChat has over a billion created accounts, 650 million active users (roughly
half of the population) in China, and has 70 million users outside of China [38]. In
essence, social networks are full of data and have become an indispensable part of
our life.

Trust is an important feature of the relationship between two users in a social
network. With the development of social networks, the trust among its members has
become a big issue. In a social network, the trust among its members usually cannot
be carried over many users. In the corresponding social network modeled as a graph,
a user is denoted by a vertex and an edge between two vertices means that these
two users communicate a lot above some threshold and they trust each other. An
online social community is usually corresponding to a dense region in such a graph.

A complex social network is usually composed of several groups/communities (the
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regions with a lot of edges), and this characterization of community structure means
the appearance of densely connected groups of vertices, with only sparse connections
between groups [27], see Fig. 1.1. For analyzing the structure of social networks and
the relationship between users, it is important to find disjoint groups/communities
with a small diameter and with a decent size, formally called dense clubs in this
thesis.

The disjoint clubs/groups, after successfully identified, have some potential
applications. For instance, some target marketing strategy can be applied based
on the groups. And, in some situation, the groups can even help to identify some

terrorist groups [23].

Figure 1.1: An example of the network structure. There are three groups denoted by
the circles with many edges and only a small number of edges between groups.

Locating the groups/communications is the traditional clustering problem in
computer science. Formally, the purpose of the clustering problem is to divide the
input data set into several clusters which satisfy some specific requirement. Clustering
is an important idea in data analysis. There is a huge amount of applications in data

mining, social network analysis, web searching, pattern recognition, computer vision
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and so on. For example, in the field of computer vision, object identification is a
common task. The clustering can be used to identify the potential object in the
image. In the bioinformatics field, clustering can be used to identify the potential
functional modules in protein-protein interaction networks, which can further help to
design new drugs. More details about clustering algorithms can be found in [21].
There are different ways to measure the quality of clustering based on the
application requirements. In paper [34], Sinclair et al. proposed the conductance
which is the ratio of the number of its outgoing edges to the sum of the degrees of its
nodes for measuring the cluster. For example, the conductance for an isolated cluster
which has no outgoing edge is 0, and the conductance for a cluster without any edge is
1. In paper [35], the authors developed a tool which contains two new local clustering
algorithms which are Nibble and PageRank-Nibble. These two algorithms focus on
quickly finding a good cluster which has the lowest conductance close to a fixed node.
In paper [37], the authors proposed a novel measurement for the global clustering
optimization which is LC'P? (low two-hop conductance sets). The authors proposed
a spectral approximation algorithm SLCP? and a greedy strategy algorithm G LCP?.
All operations of the algorithm are matrix computations. The LCP? measurement
can group the vertices which have similar connections in one cluster, so these two
algorithms can not only find the dense areas in the graph, but also locate the sparse
areas in the graph. In paper [36], the authors mapped the original graph to an image
graph. Then, they tried to minimize the error function which is used to compare the
similarity between the input graph and the image graph. They wanted to make sure
that the nodes in the same cluster have similar connection patterns. They designed
their algorithm based on simulated annealing with path relinking. Compared to the
traditional simulated annealing, their simulated annealing with path relinking method

reduced the computational running time significantly.
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In this thesis, we focus on diameter-based measurement of a cluster. Actually,
this is a more restrictive measurement. Given the diameter of a cluster, this
measurement potentially ensures that the nodes in the cluster have the same
connection pattern. A clique is commonly used to describe dense subgroup. In
fact, the maximum clique problem is one of the most widely studied NP-complete
problems [22]. The requirements of a clique are too restrictive in many situations,
thus various relaxed cohesive subgroup structures, based on the clique, have been
proposed, such as s-club, s-clique, and s-plex, etc [24].

Given an undirected graph G = (V, E), a clique is a subset of vertices such
that any pair of vertices in this subset form an edge in E. The maximum clique
problem is to compute a clique with the maximum size. Many algorithms for
this NP-complete problem are available in the literature [8,30,40]. Motivated by
practical applications in social and biological networks, s-club is a diameter-based
graph-theoretic generalization of clique, which was first introduced as an alternative
approach to model a cohesive subgroup in the social network area [2,26]. The s-club
is a subset of vertices V/ C V, such that the diameter of the induced subgraph G[V”]
is at most s.

An s-clique is a subset of vertices S C V if dg(u,v) < s for all u,v € S. Tt
is pretty obvious that an s-club is also an s-clique, but the converse is not true in
general [33]. And for s = 1, an s-club is simply a clique. The examples of these
two different structures are shown in Fig. 1.2. In this graph, a subset of vertices
{a,b,c,d} is a 2-clique but not a 2-club, since the distance between any 2 points is
2 but the point e is not in the subset. And the subset of vertices {a,b,c,d, e} is a
2-club and also it is a 2-clique. It is known that the maximum clique problem is a
classical NP-complete problem [8,30], which is also hard to approximate [20]. The

maximum s-club problem [5,10] is NP-complete for any fixed s, even when restricted
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to graphs of fixed diameter s+ 1 [5]. In fact, testing whether an s-club is maximal is

also NP-complete for any fixed integer s [29].

d
Figure 1.2: The difference between s-clique and s-club, {a,b,c,d} is a 2-clique but
not a 2-club.

The s-plex is a clique relaxation cohesive subgroup which is introduced in [32].
An s-plex is a subset of vertices S C V, such that, for Vv € G[S], the degree of
vertices v is at least |S| — k. And for k = 1, a k-plex is simply a clique. The examples
of k-plex structures for k& = 1,2,3 are in Fig 1.3. The subsets of vertices {a,b, c}
and {b,c,e} are 1-plex, and these are cliques. The subset of vertices {a,b,c,e} is a
2-plex. The subset of vertices {a,b,c,d, e} is a 3-plex. A maximal k-plex is one that
is not in any other k-plex. The maximum k-plex problem is to find the maximal
k-plex of maximum size in a given graph, which is NP-complete for any constant
positive integer k [4]. In paper [18], Guo et al. focused on the s-plex editing problem.
This problem is to delete minimum edges to transform the given graph into disjoint s-
plexes. They proposed some kernelization and search tree algorithms for this problem.

In this thesis, we focus on s-club structure and will not discuss k-plex further.
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e
Figure 1.3: k-plex for k = 1,2,3, {a,b,c,d, e} is a k-plex for k = 3.

Existing Methods

Heuristic Methods

In reference [9], Bourjolly et al. posed three heuristic methods which are
DROP, CONSTELLATION and s-CLIQUE-DROP for the maximum s-club problem.
A variant neighborhood search (VNS) meta-heuristic algorithm was proposed by
Shahinpour et al. [33]. In fact, they used the VNS heuristic method as the lower
bound to develop an exact algorithm for the maximum s-club problem [33]. Recently,
a new heuristic algorithm called IDROP for the largest s-club problem was given in

the paper [13].

Parameterized Methods

From the parameterized computational complexity point of view, two fixed-
parameter tractable (FPT) algorithms for the maximum s-club problem were
proposed [31]. The paper [19] extends the previous parameterized complexity study
for 2-club and provides polynomial-size kernels for 2-club parameterized by “cluster
editing set size of G” and “size of a cluster editing set of G”. For the 2-club-editing
problem, the paper [25] shows that the disjoint dense club problem is NP-complete
for any s < 2 and proposes an improved search tree algorithm with running time

0O*(3.31%) based on two new branching cases, improving the trivial O*(4*) bound.



Other Methods

From the viewpoint of approximation algorithms, the maximum k-club problem

1/2=9) for any

for any fixed k > 2 is NP-hard to approximate within a factor of n!
e > 0 in general graphs [3]. A simple polynomial-time algorithm which has an
approximation ratio of n'/? for even k > 2, and an approximation ratio of n??
for any odd k£ < 3 is also proposed in this paper. The integer linear programming
formulation is presented in [5,10]. In [39], two satisfiability-based formulations of the
maximum k-club problem and the exact method are proposed.

In this thesis, we first study the disjoint dense club problem. Specifically, we
show that the problem does not have a polynomial kernel (unless the polynomial
hierarchy collapses to the third level). This implies that it is unlikely to obtain any
efficient FPT algorithm for the problem (and the related ones). Then we consider the
dual problem of editing a graph (by deleting vertices) into disjoint s-clubs. Since the
trivial bounded-degree search method takes O*((s+2)%) time, which is not efficient for

most real datasets, we propose three rules for building an efficient heuristic method.

We implement our algorithm and test this method on five real datasets.

Organization

The rest of this thesis is organized as follows.

1. In the Preliminaries chapter, we introduce some necessary definitions and

notations about our practical algorithm.

2. In the Parameterized Results chapter, We describe the definitions of FPT
algorithms, the kernelization concept, the bounded search tree algorithms, and
the polynomial parameter transformation. Then, the theoretical results are

reported.
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3. All computational results are shown in the Computational Results chapter. We
tested our algorithm on 5 graphs. The first two graphs are purely for testing

purpose. The rest of the graphs are real social networks.

4. We conclude the thesis in the Conclusion chapter. We also propose some

interesting open problems.
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PRELIMINARIES

In this section, we present the relevant definitions and review some useful notions.
FPT Algorithms and Kernels FPT (Fixed-Parameter-Tractable) algorithms
are used to study the computational complexity of NP-hard problems [16, 17, 28].
Beside the input size n, we also consider a parameter k (or several parameters).
An FPT algorithm is one which solves a parameterized problem L in O(f(k)n®) =
O*(f(k)) time (i.e., decide whether (x,k) € L, where n = |z|), where f(—) is any
computable function and ¢ is a constant not related to n and k.

A parameterized problem L admits a problem kernel if there is a polynomial-time
transformation of any instance (I, k) to an instance (I’, k") such that (1) (I,k) € L
iff (I',k") € L; (2) |I'| < g(k); and (3) k' < k. L has a polynomial kernel if g(k) is a
polynomial function. It is known that L admits an FPT algorithm iff it has a kernel
(not necessarily polynomial). But if L has a polynomial kernel then usually it means
L is relatively easier to solve [16,17,28].

The main idea of kernelization is to obtain the relatively smaller problem instance
which is equivalent to the original instance and the size of the instance is bounded by
the function of some parameter k. Sometimes, we can apply some simple reduction
rules on the input to dramatically reduce the size of the input. This is a very useful
technique for designing efficient FPT algorithms, because every problem in FPT has
a kernel [12]. The algorithm for the k-vertex cover problem which is described by
Buss is the best example [11]. This algorithm is based on the rule that a node whose
degree is bigger than k£ must be in the resulting solution set. This node must be in
the resulting solution set, otherwise all its neighbors cannot be covered with k nodes.
Then, we remove this node and update the graph and set &’ = k — 1. This process is

repeated until no such node can be found. Suppose this process is repeated p times,
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the remaining instance is (G', k') where k' = k — p and the maximum degree is £’ in
G'. For these k' vertices, they cover at most k- k' vertices. So the remaining graph G’
has at most &' - k < k? vertices, if G has a vertex cover of size at most k; moreover,
G has a vertex cover of size k iff G’ has a vertex cover of size k. The most recently
achievement obtains the linear kernel for the vertex cover problem [1]. In the paper,
they proposed two ways to obtain a linear kernel for the vertex cover problem. The
first result is that they use the linear programming method to obtain the 2k kernel
for the vertex cover problem. They also use the crown reduction method to obtain a
kernel bounded by 3k for the vertex cover problem.

Bounded Search Tree This is a basic and obvious technique which is used
to design FPT algorithms. The classical and simple Bounded Search Tree algorithm
was used to solve the vertex cover problem which is a classical NP-hard problem [22].
In the vertex cover problem, the input is a graph G = (V, E). We need to find a
minimum subset S C V such that at least one endpoint of each edge is in the set S.
The idea of bounded search tree algorithm is, for each (vy,vy) € E, one of these two
nodes must be in the resulting solution set. We set the parameter k as the size of
resulting solution set S. We pick an edge (vy,v9) € E arbitrarily, then put one of these
two points into the two branching set S and delete all edges connects to that point,
then update the graph and recurse this process until the size of resulting solution
set is k. After k steps, we have a binary tree with k levels. We can check whether
we get the desired vertex cover. This is an exhaustive search algorithm. The depth
of this search tree is k. Theoretically, the running time of this bounded search tree
algorithm is O*(2¥), so this is an FPT algorithm for vertex cover. In paper [15], Chen
et al. proposed the “advantageous” structure and designed an efficient branching

algorithm for the vertex cover problem. This algorithm runs in O(1.2738% + kn)
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time and polynomial space which also improved their previous O(1.286% + kn)-time
polynomial-space algorithm [14] for the vertex cover problem.
Polynomial Parameter Transformations A polynomial parameter reduction
is used to reduce a problem known to be without a polynomial kernel to another
problem B [6,7]. It is different from the traditional FPT-reductions.
Definition 1. Let P, Q) be parameterized problem. P is polynomial parameter
reducible to @, written as P <, @, if there exists a polynomial time computable
function f : ¥* x N — ¥* x N and a polynomial p, such that for all (z, k) € ¥* x N,
(1)(z,k) € P if and only if (2/, k') = f(x,k) € @, and (2) |2'| < p(k). The function
f is called a polynomial parameter transformation.

In [7], the following proposition was proved.
Proposition 1. Let P and () be the parameterized problems and P and @ be the
unparameterized versions of P and () respectively. Suppose that @ is NP-complete
and P is in NP. Furthermore, if there is a polynomial parameter transformation from
P to @, then if Q) has a polynomial kernel, then P also has a polynomial kernel.

The above proposition can be used to prove kernelization lower bounds.
Graphs, Clubs, and Neighborhoods We consider simple undirected graphs
in this thesis. Given a graph G = (V, E), the distance §(u,v) between two vertices
(u,v) € V is the length of the shortest path between u and v. The diameter of G
is the maximum of all minimum distances between pairs of nodes in V. The (open)
i-neighborhood N;(v) = {z|d(x,v) < i} of v is the set of vertices that has distance at
most ¢ to v. The closed i-neighborhood of v is the set N;[v] = N;(v) U {v}. The exact
i-neighborhood of v is the set Nf(v) = {z|d(z,v) = i}, which is the set of vertices
have distance exactly i to v. For a vertex set T, G[T'] denotes the subgraph of G

induced by T having edge set Er = {(u,v) € Elu,v € T}.
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A graph H is an s-club if the diameter of H is at most s. (A subset S C V
is an s-club if G[S] is an s-club.) And an s-club H is a (t, s)-club if the number of
vertices in V is at least ¢, i.e., V(H) > t. Notice that when s = 1, an s-club is a
clique. Throughout this thesis, we assume that s is a small constant with s > 2. We

next define the Maximum Club problem.

Problem (1): Maximum Club problem.
Input: An undirected graph G and constant integer s > 2, and integer t.

Question: Is there a (¢, s)-club in G?

The Maximum Club problem is NP-complete [10]; in fact, it is NP-complete even
in graphs of diameter s 4+ 1 [5]. The parameterized version of the problem (with ¢
being a parameter) is shown to be FPT but does not admit a polynomial kernel unless
the polynomial hierarchy collapses to its third level (i.e., NP C coNP/Poly) [31].

In a complex social network, finding a single club is probably not too interesting,
so we define the following problems. As they are both NP-complete, we focus on the

parameterized versions of the problems in this thesis.

Problem (2): Disjoint Dense Clubs (DDC) Problem.
Input: An undirected graph G and constant integer s > 2, and integers t, k.

Question: Are there £ disjoint (¢, s)-club in G?

Problem (3): Maximum Disjoint Dense Clubs (MDDC) problem.
Input: An undirected graph G and constant integer s > 2, and integer /.

Question: Is there a set of disjoint s-clubs whose total size is at least £ in G7
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PARAMETERIZED RESULTS

In this section, we first present some theoretical results on the parameterized
complexity for DDC and MDCC. Based on some of these results, we try to design a

practical algorithm for them.

Theorem 1. The disjoint dense clubs problem, parameterized by k and t, does not

admit a polynomial kernel unless NP C coNP/Poly.

Proof. We reduce the Maximum Club problem of finding a maximum s-club (with
parameter p being its size) to the parameterized version of the DDC problem
(parameterized by k and t), with a polynomial parameter reduction. Take the input
(G,s,p) , we construct p copies of G, i.e., Gy,...,G,, as the new graph G. For G
we set k = p and t = p. Then G has an s-club of size p iff G has k = p disjoint
(p, s)-clubs.

“—”: If G has an s-club of size p, then each G; has an s-club of size p (or, each
G, has a (p, s)-club). Obviously, G has p disjoint (p, s)-clubs.

“": If G has k = p disjoint (p, s)-club, then each G; must have a (p, s)-club.
As G is known to be isomorphic to G;, G must also have a (p, s)-club.

As deciding whether G has a (p, s)-club, parameterized by p, has no polynomial
kernel unless NP C coNP/Poly, the DDC problem (parameterized by k,t) also has

no polynomial kernel unless NP C coNP /Poly. [

Theorem 2. The mazimum disjoint dense clubs problem, parameterized by £, does

not admit a polynomial kernel unless NP C coNP/Poly.

Proof. The reduction is that same as before. Just set the parameter ¢ = p?. n
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The above two results, while simple, imply that it is unlikely to obtain efficient
FPT algorithms to solve the DCC and MDCC problems. Next we look at the dual

version of these problems.

Theorem 3. The disjoint dense clubs problem, parameterized by d = |V| — kt, does

admit and FPT algorithm running in O*((s + 2)¢) time.

Proof. If between all pair of vertices u, v we have §(u,v) < s, then the whole graph G
is an s-club. Then we are done. So to obtain disjoint s-club, we just need to branch
over a pair of vertices u,v with §(u,v) = s + 1. Between and inclusive of u and v,
there are s + 2 vertices. One of these s + 2 vertices must be deleted. Therefore, we
have s + 2 choices at level-1. Then we repeat the above process for d rounds. Among
the (< (s + 2)%) leaf nodes, if there are k (t,s)-clubs left, return YES; otherwise,

return NO. n

Theorem 4. The mazimum disjoint dense clubs problem, parameterized by d = |V |—

¢, does admit an FPT algorithm running in O*((s + 2)?) time.

Proof. The branching algorithm is the same as before. When we have a bound search
tree of depth d, there are at most < (s+2)% leaf nodes. We eliminate all those which
are not an s-club, then check whether the (remaining) leaf nodes have a total size

which is at least £. The running time is O*((s + 2)%). O

Notice that the running time for the bounded search tree algorithm is too high
for practical datasets. In fact, even if we could reduce the running time to roughly
0O*(39), similar to [25] for s = 2, it is still too high for practical datasets. So we need

some practical method. We first present the following reduction rule.

Lemma 1. (Reduction Rule I:) If |Ns(v)| < t—1, then v cannot be in any (t, s)-club.
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Proof. For any two nodes u,v in the same club, we must have |Ng[v] N Ng[u]| > t.
Hence we have Ng(v) > ¢t — 1. All the nodes in the club must satisfy this property,

otherwise this node cannot be in any (t, s)-club. O

Note that we can repeatedly run this reduction rule. And when it is not possible
to apply it, we have the following lemmas which do not necessarily help us reduce the

problem size, but could help us reduce the solution search space.

Lemma 2. (Branching Rule I1:) Let d(u,v) = 1. If for all w € Ns(u) N Ng(v) we

have |[Ns(w)| < t — 1, then u,v cannot be in the same (t,s)-club.

Proof. As d(u,v) = 1, if u,v are in the same (t,s)-club, then there must exist a
w € Ng(u) N Ng(v) which is in the same (¢, s)-club. However, by assumption, for all
w € Ng(u) N Ng(v) we have | Ng(w)| < t — 1, i.e., there is not such a club containing
u,v and w which is dense enough. Then we have a contradiction. Therefore, u,v

cannot be in the same (¢, s)-club. O

Lemma 3. (Branching Rule I11:) Let d(u,v) = 1. If for all w € Ng¢(u) N Ns(v), we

have |Ns[w] N Ns[u] N Ns[v]| < t, then u,v cannot in the same (t, s)-club.

Proof. As d(u,v) =1, if u,v are in the same (¢, s)-club, then there must exist a node
x € Ng(u) N Ng(v) which is in the same (t, s)-club. (Here, | Ng[z]|could be larger than
t.) By assumption, for all w € Ny(u) N Ng(v) we have | Ng[w] N Ng[u] N Ng[v]| < t,
i.e., there is no w connecting a club which contains both u and v, is completely in
Ni[u] N Ng[v] and is dense enough. (Intuitively, some nodes in N,[w] are more than s
edges away from u or v.) Hence, we have a contradiction. Therefore, u, v cannot be

in the same (¢, s)-club. O

Based on Lemmas 1-3, we design a new practical bounded search tree algorithm

for DCC. (The algorithm also works for the MDCC problem.) The first step is to
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apply Lemma 1 on the input graph G. Lemma 1 can delete all nodes unlikely to be
in any club. Then, we set d(u,v) = 1 to apply Lemma 2 and Lemma 3. If we can find
two nodes satisfying Lemma 2 or Lemma 3, one of these two nodes must be deleted.

The running time of this algorithm is O*(2%).

Algorithm 3.1 A new practical bounded search tree algorithm

procedure: Branching(G, s, t, k)
1: if k == 0 or the G is already a s-club cluster then

the algorithm is finished, exit

end if

while there is a vertex v, where |Ny(v)| < t do
delete all the nodes which satisfy the condition of Lemma 1
update the graph

end while

if there is an edge satisfying the Lemma 2 or Lemma 3 then
delete one vertex of this edge, form G’ and call Branching(G’, s,t,k — 1)
delete the other vertex of this edge and form G” and call
Branching(G”, s, t, k — 1)

[y
<

11: else
12: no edge can be found, exit
13: end if

We would not be able to claim any theoretical result on the algorithm yet,
as there are instances that the algorithm fails to handle (e.g., when we have two
intersecting (¢, s)-clubs). More investigation is needed to make the algorithm a true
FPT algorithm for the dual version of DCC and MDCC with a running time of O*(24).

In the next chapter, we show some computational results based on this algorithm.
The motivation is to avoid the O*((s+2)¢) time FPT algorithm (Theorems 3-4), which

is too high even for s = 2, 3.
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COMPUTATIONAL RESULTS

We implemented the new bounded-search tree algorithm based on Lemmas 1-3.
We focused on s = 2,3 for all of our empirical results. The algorithm was run on a

laptop with Intel Core(TM) i7-3770 CPU, 3.40GHz, 16GB RAM.

Data Description

We tested our algorithm on five graphs. The first graph is the US Power
Grid with 4941 vertices and 6594 edges where a vertex is either a generator, a
transformator or a substation and an edge represents a power supply line. The
diameter of the US Power Grid graph is 46. We downloaded it from the website:
http://konect.uni-koblenz.de/networks/opsahl-powergrid. The density of
this graph is lowest among these five graphs. The second graph is “Autonomous Sys-
tem AS-733” with 6474 vertices and 12572 edges. The diameter of this graph is 9. We
downloaded the graph from the website: http://snap.stanford.edu/data/as.html.
It was shown on the webpage that the graph has 6474 vertices and 13895 edges where
a vertex is a user and an edge means that two users have some traffic flow. But
there are self-loop edges which are meaningless to us. We preprocessed the graph and
deleted all self-loop edges. These two graphs do not fall into the category of social
networks and they were used purely for testing purpose.

We next used three graphs from social networks. The third graph is the General
Relativity and Quantum Cosmology collaboration network with 5242 vertices and
14496 edges where a vertex is an author and an edge represents that the author co-
authored a paper with another author. Actually this is a directed graph, we treated
this graph as the undirected graph. We preprocessed the graph as follows. We

ignored the direction of all edges and deleted all self-loop edges. After preprocessing,
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this graph has 5242 vertices and 14484 edges. The diameter of this graph is 18. We
downloaded it from the website: http://snap.stanford.edu/data/ca-GrQc.html.
The forth graph is the trust network of Advogato. We ignored the direction of
all edges and deleted all self-loop edges of the Advogato dataset where a vertex
is a user and an edge represents the trust relationship between two users. After
preprocessing, the original Advogato dataset has 2913 vertices and 17807 edges. The
diameter of the trust network of Advogato is 9. We downloaded it from the website:
http://www.trustlet.org/datasets/. The last graph is the Erdos Collaborations
network which is similar as the third one. A vertex represents an author and an edge
means these two authors coauthored one paper. This graphs has 6927 vertices and
11850 edges. The diameter of this network is 5. We downloaded it from the website:

http://vlado.fmf.uni-1j.si/pub/networks/data/Erdos/Erdos02.net.

Empirical Result

As we are using a bounded-search tree algorithm, we cannot expect to delete too
many vertices from the graph (i.e., d should not be too large). The key contribution of
Lemma 1 is to delete nodes unlikely to be a member of any t-s-club, i.e., before running
the bounded-search step, we could already reduce the problem size by Lemma 1. We
tested Lemma 1 on the US Power Grid and the results are put in Table 4.1. From
Table 4.1, we could find that Lemma 1 can delete more nodes with the increase of the
size of clubs (e.g., t) when the diameter of clubs (e.g., s) is fixed. Moreover, Lemma 1
can delete more nodes with the decrease of the diameter of clubs (e.g., s) when the
size of clubs (e.g., t) is fixed. In general, Lemma 1 is very sensitive to s and t.

We reported the empirical results for the US Power Grid graph in Table 4.2. In

the last column, ‘No’ means a solution has not been found within d steps and ‘Yes’
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Table 4.1: The performance of Lemma 1 on the US Power Grid graph.

index | diameter (s) | size (t) | nodes deleted | time(ms)
1 2 10 4200 950
2 2 15 4857 935
3 2 20 4921 928
4 3 10 1236 595
) 3 15 3049 784
6 3 20 4240 936
7 3 25 4759 1011
8 3 30 4911 826

means a solution has been found. As the graph has a large diameter, there are in fact
many small clubs.

We reported the empirical results on the Autonomous System AS-733 graph in
Table 4.3, where ‘Yes/No’ carry the same meaning as in Table 4.2. As the graph has
a diameter smaller than that of the US Power Grid graph, it is reasonable to assume
that there are not many clubs.

We reported the empirical results on the General Relativity and Quantum
Cosmology collaboration network in Table 4.4, where ‘Yes/No' carry the same
meaning as in Table 4.2. As the graph has a diameter smaller than that of the
US power Grid graph, again, it is reasonable to assume that there are not many
clubs.

The empirical results on the trust network of Advogato were shown in Table
4.5, where ‘Yes/No’ carry the same meaning as in Table 4.2. As the graph has a
diameter smaller than that of the US power Grid graph, again, it is reasonable to
assume that there are not many clubs. In the table, the running time for the instance
with diameter 2 is the average over 5 tries.

The empirical results on the Erdos Collaborations network were shown in Table

4.6, where ‘Yes/No’ carry the same meaning as in Table 4.2. As the graph has a
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diameter smaller than that of the US power Grid graph, again, it is reasonable to
assume that there are not many clubs. In the table, the running time for the instance

with diameter 2 is the average over 5 tries.

node a node b

99 nodes
are overlapped

Figure 4.1: 2 s-clubs overlap almost completely.

As this bounded search tree algorithm is a heuristic algorithm, sometimes this
algorithm cannot find any result. This situation is shown in Fig. 4.1. This algorithm
focuses on finding the edges which satisfy Lemma 2 or Lemma 3. In Fig. 4.1, the
distance of node a and node b is s + 1 and each circle is an s-club. When we set
t = 100, the node a and node b can not satisfy Lemma 2 or Lemma 3. But one of
these two nodes must be deleted to obtain the result. Our algorithm cannot delete
node a or node b. In this situation, this club cannot be found.

For some cases, the running time of the algorithm does not necessarily
exponentially increase with the number of steps. As the example in Table 4.3, the
running time of the sixth result should be larger than the running time of the fifth
result, because the number of steps is large. But when the algorithm can not find
the edge which satisfy the Lemma 2 or Lemma 3, the algorithm will stop this branch.
The density of the US Power Grid graph is lower than the density of the other two
graphs, and the diameter of the US Power Grid is much larger than that of the other

two graphs. So the size of the clubs in the US Power Grid graph are smaller than
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Table 4.2: Empirical results for the US Power Grid graph.

index | diameter (s) | size (t) | steps (d) | running time(ms) | result
1 2 10 10 24258 No
2 2 10 11 37874 No
3 2 10 12 65843 No
4 2 10 13 121148 No
) 2 10 14 232313 No
6 2 11 15 420401 No
7 2 14 15 521941 Yes
8 2 15 15 18543 Yes
9 3 11 10 81634 No
10 3 11 11 158064 No
11 3 12 11 142547 No
12 3 13 11 129704 No
13 3 14 11 119538 No
14 3 15 11 107597 No
15 3 16 12 179937 No
16 3 17 12 169046 No
17 3 18 12 178398 No
18 3 19 12 183689 No
19 3 20 12 140499 No
20 3 21 12 120817 No
21 3 22 13 235501 No
22 3 23 13 221456 No
23 3 24 13 157454 No
24 3 25 13 149456 No
25 3 26 14 266087 No
26 3 27 14 87690 Yes
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Table 4.3: Empirical results for the Autonomous System AS-733 graph.

index | diameter (s) | size (t) | steps (d) | running time(ms) | result
1 2 1300 1 67848 Yes
2 2 700 5 30197324 No
3 2 750 4 10993184 No
4 2 760 5 1188221 No
) 2 770 5 1183132 No
6 2 770 8 1129920 No
7 2 780 8 1161247 No
8 2 790 8 114362 Yes
9 2 750 8 193337876 No
10 3 2800 1 8640385 No
11 3 2850 3 37265 Yes

those of the clubs in the other two graphs. The running time of algorithm is faster
when the input is the US Power Grid graph. For the same instance, the running time
of this algorithm grows with the diameter of clubs and the size of clubs — which is

reasonable.
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Table 4.4: Empirical results for the General Relativity and Quantum Cosmology
collaboration network.

index | diameter (s) | size (t) | steps (d) | running time(ms) | result
1 2 70 5 69149 No
2 2 70 10 1657369 No
3 2 70 13 15282446 No
4 2 75 10 1339576 No
) 2 75 11 2281832 No
6 2 75 12 4347167 No
7 2 75 15 27037095 No
8 2 78 15 27147968 No
9 2 80 10 630728 No
10 2 80 15 12453691 No
11 2 81 15 11549 No
12 2 83 15 11386 No
13 2 85 10 11485 No
14 3 180 5 179324 No
15 3 180 10 7531381 No
16 3 185 10 6723176 No
17 3 190 5 117225 No
18 3 190 10 619036 No
19 3 195 5 32239 No
20 3 200 5 112119 No
21 3 201 5 112119 No
22 3 205 5 91121 Yes
23 3 210 5 14938 Yes
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Table 4.5: Empirical results for the trust network of Advogato. The running time for
the instance with diameter 2 is the average over 5 tries.

index | diameter (s) | size (t) | steps (d) | running time(ms) | result
1 2 390 10 9391143 No
2 2 400 10 2334312 No
3 2 400 7 319544 No
4 2 400 5 85190 No
) 2 410 5 672516 Yes
6 2 420 5 202362 No
7 2 430 5 202651 No
8 2 440 5) 8125 Yes
9 2 450 5 8070 Yes
10 2 450 5 7915 Yes
11 3 1300 1 951300 No
12 3 1380 1 770100 No
13 3 1380 5 44858616 No
14 3 1382 5 48658598 No

Table 4.6: Empirical results for the Erdos Collaborations network . The running time
for the instance with diameter 2 is the average over 5 tries.

index | diameter (s) | size (t) | steps (d) | running time(ms) | result
1 2 280 5 469571 No
2 2 280 7 4264802 No
3 2 290 5 472412 No
4 2 290 7 4278567 No
) 2 295 5 474666 No
6 2 295 7 3945094 No
7 2 298 7 3805685 No
8 2 298 10 36987526 Yes
9 2 299 7 22339 Yes
10 2 300 5 22410 Yes
11 3 1000 1 1190032 No
12 3 1050 1 1389788 No
13 3 1050 5 14933664 No
14 3 1120 1 2346727 No
15 3 1130 5 24811 Yes
16 3 1150 5 27883 Yes
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CONCLUSION

In this thesis, we considered the Disjoint Dense Clubs problem which originates
from social networks. A social network is usually composed of dense areas and sparse
areas. The club is a natural way to define the cohesive substructures. This structure
is very important for analyzing social networks.

We proved some theoretical results in this thesis, which are summarized as

follows.

1. The disjoint dense clubs problem is theoretically hard, i.e., this problem
parameterized by k and ¢ (where k is the number of dense clubs, and ¢ is
the minimum size of the club), does not admit a polynomial kernel unless NP C
coNP/Poly. This means it is unlikely that there is an efficient FPT algorithm

for this problem.

2. The maximum disjoint dense clubs problem parameterized by [ (where [ is
the total size of all clubs), does not admit a polynomial kernel unless NP C

coNP /Poly.

3. The disjoint dense club problem and the maximum disjoint dense clubs problem
have a trivial bounded-degree search algorithm which takes O*((s + 2)¢) time,

where d is the number of nodes deleted from the graph.

4. We designed a heuristic bounded-degree search tree algorithm for the dual
version of the disjoint dense club problem based on three lemmas. This heuristic

algorithm takes O*(2%) time.

5. The limitation of our practical bounded-degree search tree algorithm was

discussed, i.e., there are cases that our algorithm cannot deal with.
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We implemented our practical bounded-degree search tree algorithm for its
dual version (based on three rules) and presented the empirical results in the
Computational Results chapter. The first part of our algorithm is Lemma 1 which
can delete some vertices that cannot be in any (s,t)-club. The second part of our
algorithm is to find some edges that satisfy either Lemma 2 or Lemma 3. One of the
two endpoints of these edges must be deleted, because these two endpoints cannot be
in the same (s, t)-club. Some empirical results, which are shown in the Computational

Results chapter, are summarized as follows.

1. We tested our algorithm on five real graphs of 4941, 6474, 5242, 2913 and 6927
vertices, respectively. The last three graphs are real social networks. The first

two graphs were used purely for testing purpose.

2. Lemma 1 is very sensitive to the parameters, such as ¢t and s (where ¢ is the

minimum size of the club, and s is the diameter of the club).

3. Our algorithm worked very well on the US Power Grid graph, but for the rest of
the graphs with relatively shorter diameters, the algorithm sometimes cannot

find a desired solution due to the scenario described in Fig. 4.1.

When we were testing this algorithm, we expected it would work well on graphs
containing many clubs. The US Power Grid graph has the lowest density and the
longest diameter among these five graphs. This graph has more small dense clubs
compared to the other three graphs. Our algorithm worked very well when we tested
our algorithm on this graph. The diameters of all the social networks we used are
relatively small, and the density is very high, so the running time of our practical

algorithm is relatively high.
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The disjoint dense club problem is an interesting problem although it is a hard
problem. Aside from the progress we made in this thesis, there are still some problems

left and we pose some relevant open problems as follows.

1. It would be interesting to add some extra rules to obtain an FPT algorithm,
roughly running in O*(2¢) time, for the dual version of the disjoint dense club

problem.

2. There is a similar version of the problem, i.e., the edge deletion version of disjoint
dense clubs problem. The question is to delete edges to obtain the disjoint dense
clubs. This is also an interesting problem. It also has the trivial bounded-
degree search method which runs in O*((s + 1)¥), where k is the number of
edges deleted. And an improved bounded search tree algorithm for s = 2 which
runs in O*(2.74%) is known [25], which is not efficient for most real datasets. It

would be interesting to design a practical algorithm for this problem.

3. It would be interesting to discuss how to apply the s-club idea to directed
graphs. In many social network applications, the potential graphs could be

directed.
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