
Expert Systems with Applications 38 (2011) 9237–9247
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
A cellular learning automata-based algorithm for solving the vertex
coloring problem

Javad Akbari Torkestani a,⇑, Mohammad Reza Meybodi b,c

a Department of Computer Engineering, Islamic Azad University, Arak Branch, Arak, Iran
b Computer Engineering Department, Amirkabir University of Technology, Tehran, Iran
c Institute for Studies in Theoretical Physics and Mathematics (IPM), School of Computer Science, Tehran, Iran

a r t i c l e i n f o a b s t r a c t
Keywords:
Vertex coloring problem
Learning automata
Cellular learning automata
0957-4174/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.eswa.2011.01.098

⇑ Corresponding author.
E-mail addresses: j-akbari@iau-arak.ac.ir (J. Akbari

ac.ir (M.R. Meybodi).
Vertex coloring problem is a combinatorial optimization problem in which a color is assigned to each ver-
tex of the graph such that no two adjacent vertices have the same color. Cellular learning automata (CLA)
is an effective probabilistic learning model combining cellular automata and learning automata. Irregular
cellular learning automata (ICLA) is a generalization of cellular learning automata in which the restriction
of rectangular grid structure in traditional CLA is removed. In this paper, an ICLA-based algorithm is pro-
posed for finding a near optimal solution of the vertex coloring problem. The proposed coloring algorithm
is a fully distributed algorithm in which each vertex chooses its optimal color based solely on the colors
selected by its adjacent vertices. The time complexity of the proposed algorithm is computed for finding a

1
1�� optimal solution of the vertex coloring problem in an arbitrary graph. To show the superiority of our
proposed algorithm over the existing methods, simulation experiments have been conducted. The
obtained results show that the proposed algorithm outperforms the others in terms of the required num-
ber of colors and running time of algorithm.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Graph coloring problem is a classical combinatorial optimiza-
tion problem in graph theory. Graph coloring show up in an incred-
ible variety of forms, for example vertex coloring, multicoloring,
bandwidth coloring, list coloring, set coloring, T-coloring, lambda
coloring, alpha coloring, etc. Graph coloring is widely used in real
life applications such as computer register allocation (Chaitin
et al., 1981), air traffic flow management (Barnier & Brisset,
2002), timetabling (Carter, Laporte, & Lee, 1996; de Werra, 1985;
Lewis & Paechter, 2007; Thompson & Dowsland, 1998), scheduling
(Leighton, 1979), frequency assignment (Gamst, 1986), and light
wavelengths assignment in optical networks (Zymolka, Koster, &
Wessaly, 2003). Graph coloring is a promising approach for chan-
nel assignment in computer networks. The minimum coloring is
a well-known NP-hard problem for general graphs (Karp, 1972).

Vertex coloring problem is a well-known coloring problem in
which a color is assigned to each vertex of the graph. A legal vertex
coloring of graph G hV,Ei, where V(G) is the set of jVj = n vertices
and E(G) is the edge set including jEj = m edges, is to assign distinct
colors to each vertex of the graph in such a way that no two
ll rights reserved.

Torkestani), mmeybodi@aut.
endpoints of any edge are given the same colors. Vertex coloring
problem can be modeled by a quadruple hV, E, C, Fi, where V de-
notes the vertex-set of graph G, E denotes the edge-set of graph
G, C denotes the set of colors assigned to the vertices, and F:V ?
C is the coloring function that assigns a color to each vertex such
that F(vi) – F(vj) for every e(i, j) 2 E. Vertex coloring problem can
be either considered as an optimization problem or as a decision
problem. The optimization version of the vertex coloring problem
is intended to find the smallest number of colors by which the
graph can be legally colored, and the decision problem aims at
deciding for a given whether or not the graph is P-colorable, and
is called P-coloring problem. Graph G hV, Ei is P-colorable, if it
can be legally colored with at most P different colors. The chro-
matic number v(G) is the minimum number of colors required
for coloring the graph, and a graph is G said to be P-chromatic, if
vðGÞ ¼ P. A minimum coloring G of is a legal coloring in which
the smallest number of colors (i.e., chromatic number) to be as-
signed to the vertices. The minimum coloring problem is formally
an NP-hard problem for general graphs as determining the chro-
matic number is known to be NP-hard (Karp, 1972). It is shown
in Garey and Johnson (1979) that the decision problem of graph
P-colorability is an NP-complete problem for P P 3, and can be
solved in polynomial time otherwise.

In this paper, we propose an irregular cellular learning auto-
mata-based algorithm for solving the vertex coloring problem. In
this algorithm, the input graph is modeled by an ICLA in which

http://dx.doi.org/10.1016/j.eswa.2011.01.098
mailto:j-akbari@iau-arak.ac.ir
mailto:mmeybodi@aut. ac.ir
mailto:mmeybodi@aut. ac.ir
http://dx.doi.org/10.1016/j.eswa.2011.01.098
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

9238 J. Akbari Torkestani, M.R. Meybodi / Expert Systems with Applications 38 (2011) 9237–9247
the restriction of rectangular grid structure in traditional CLA is
removed. To do this, each vertex of the graph is associated with a
cell of cellular learning automata and then each cell is equipped
with a learning automaton. Learning automata are independently
activated and choose their colors. Due to the distribution of
computation in cellular learning automata, the proposed vertex
coloring algorithm is fully distributed and locally run at each cell
in dependent of the other cells. The proposed algorithm is com-
posed of a number of stages, and at each stage a coloring is locally
found for each cell and its neighbors. The selected coloring is
penalized, if the coloring is illegal or its number of colors is larger
than that of the best coloring found so far. Otherwise, the selected
coloring is rewarded. As the proposed algorithm proceeds, learning
automata learn how to select the colors so that the graph can be
thoroughly and legally colored with the minimum number of col-
ors. In this paper, we compute the running time of the proposed
algorithm for finding a 1

1�� optimal solution to the vertex coloring
problem in an arbitrary graph. We also compare the results of
the proposed algorithm with those of CHECKCOL (Caramia,
Dellolmo, & Italiano, 2006), GLS (Voudouris & Tsang, 2003), ILS
(Lourenco, Martin, & Stutzle, 2002), TPA (Caramia & Dell’Olmo,
2008) and AMACOL (Galinier, Hertz, & Zufferey, 2008) which are
the best-known existing vertex coloring methods. The obtained
results show the significant superiority of the proposed coloring
algorithm over the other methods in terms of the number of colors
and running time.

The structure of the rest of the paper is as follows. In the next
section, an overview of the vertex coloring algorithms is presented
in a nutshell. In Section 3, learning automata and cellular learning
automata are briefly reviewed. The proposed cellular learning
automata based algorithm is introduced in Section 4. Section 5 is
devoted to the analysis of the time complexity of the proposed
algorithm. The performance of the proposed vertex coloring algo-
rithm is studied through the computer simulation in Section 6. In
this section, the results of our proposed algorithm are also com-
pared with those of the well-known coloring methods. Section 7
represents the concluding remarks.
2. Related work

Due to the NP-hardness of the vertex coloring problem for gen-
eral graphs, the exact algorithms (Beigel & Eppstein, 2005; Byskov,
2004, 2005; Lawler, 1976) can only be applied on small graphs,
while very large graphs often arise in a variety of applications.
On the other hand, in realistic applications, it often suffices to find
a near optimal coloring of the graph. Hence, a host of polynomial
time approximation algorithms have been proposed for finding
the near optimal solutions to the coloring problem. The approxi-
mation approaches reported in the literature can be classified as lo-
cal search approaches (Blchliger & Zufferey, 2008; Caramia et al.,
2006; Caramia & Dellolmo, 2008; Galinier & Hertz, 2006; Mabrouk,
Hasni, & Mahjoub, 2008; Prestwich, 2008; Vredeveld & Lenstra,
2003; Hertz & Werra, 1987), genetic algorithms (Fleurent &
Ferland, 1996), fuzzy-based optimizations (Asmuni, Burke,
Garibaldi, McCollum, & Parkes, 2009; Munoz, Ortuno, Ramirez, &
Yanez, 2005), evolutionary algorithms (Dobrev, Schröder, Sykora,
& Vrto, 2000; Eiben, Vanderhauw, & Vanhemert, 1998; Galindier
& HAO, 1999; Malaguti & Toth, 2008), simulated annealing meth-
ods (Chams, Hertz, & de Werra, 1987; Thompson & Dowsland,
1998), ant colony-based approaches (Bui, Nguyen, Patel, & Phan,
2008; Dowsland & Thompson, 2008), Markov chain approaches
(Cooper, Dyer, & Frieze, 2001), neural network approaches (Talavan
& Yanez, 2008) and so on. In the remaining of this section, the exact
and approximation vertex coloring algorithms are briefly
described.
2.1. Exact algorithms

The exact vertex coloring algorithms aim at finding an exact
solution to legally and thoroughly color the graph. Since the min-
imum vertex coloring is an NP-hard problem, exact algorithms pro-
posed for vertex coloring are solely able to color the small
instances with up to 100 vertices for random graphs. In these algo-
rithms, finding an exact solution for coloring the hard-to-color
graphs in a reasonable time is impossible. All known exponen-
tial-time algorithms to compute the chromatic number of a graph
(and an optimal coloring) need exponential memory, more pre-
cisely O(2n) memory, and they all are based on a dynamic pro-
gramming approach and the use of maximal independent sets.
The first one had been published by Lawler (1976). The running
time of this algorithm Oð1þ

ffiffiffi
33
p
Þn ¼ Oð2:4423nÞ. This algorithm

had not been improved for 25 years. Then the combination of im-
proved upper bounds on the number of maximal independent sets
of size at most k and changes in the way to fill the table of subso-
lutions in the dynamic programming algorithm led to better algo-
rithms. Eppstein established an

O
4
3
þ 3

4
3

4

 !n

¼ Oð2:4151nÞ ð1Þ

time algorithm. Finally Byskov provided an O(2.40231n) algorithm
to compute the chromatic number of a graph. Faster algorithms ex-
ist when the number of colorings is fixed. For small fixed numbers
of colors, faster algorithms are known. The currently best known
bounds for c – coloring are: O(1.3289n) for c = 3 (Beigel & Eppstein
(2005)), O(1.7504n) for c = 4 (Byskov (2004)), O(2.1020n) for c = 5
(Byskov and Eppstein, see (Byskov, 2005)), and O(2.3289n) for
c = 6 (Byskov (2004)). Each of these algorithms uses polynomial
memory. Byskov (2005) also give an algorithm using O(2n) memory
and O(2.1809n) time for 6-coloring.

2.2. Approximation algorithms

For large graphs, the exact solutions cannot be obtained in a
reasonable time, so the exact algorithms can only be applied on
small graphs. Due to the fact that in many applications it often suf-
fices to find a near optimal coloring of the graph, the approxima-
tion algorithms seem to be feasible. Approximation algorithms
find a near optimal solution in a reasonable time (polynomial time)
for coloring the graph. Different approximation approaches have
been proposed for vertex coloring in the literature. In the rest of
this section, we briefly review some well-known approximation
vertex coloring methods.

2.2.1. Local search
Local search is a metaheuristic for solving computationally hard

optimization problems. Local search can be used on problems that
can be formulated as finding a solution maximizing (or minimiz-
ing) a criterion among a number of candidate solutions. Vertex col-
oring is a famous hard-to-computation problem that can be solved
by local searches. Caramia and Dell’Olmo (2008) also proposed a
two-phased local search for vertex coloring. The algorithm alter-
nately executes two closely interacting functionalities, namely, a
stochastic and a deterministic local search. The stochastic phase
is based on a biased random sampling in which the feasible color-
ings are iteratively constructed. In deterministic phase, each vertex
is assigned to the color which causes the lowest increase of the
solution penalty. In this algorithm, the objective function tries to
minimize the penalty function. Caramia et al. (2006) proposed a
priority-based local search algorithm, called CHECKCOL, in which
the running time of algorithm decreases by avoiding unnecessary
searches in large portions of the graph without making any

J. Akbari Torkestani, M.R. Meybodi / Expert Systems with Applications 38 (2011) 9237–9247 9239
progress in the solution. To do this, they introduced the notion of
checkpoint, and forced the algorithm to stop at certain steps, to re-
lease all of its memory, and to start a new local search. Further-
more, in this algorithm, each vertex of the graph is dynamically
assigned a priority. These priorities are used to define a new and
more effective long term memory scheme, which is integrated
with the short term memory scheme implied by the checkpoints.
The concept of checkpoint along with the priority has a significant
impact on the solution quality, cache consciousness, and running
time of algorithm. An iterated local search algorithm (ILS) was pro-
posed by Lourenco et al. (2002) to solve the graph coloring prob-
lem. The proposed algorithm is based on a randomized walk in
the space of the local optima. This walk is built by iteratively per-
turbing a locally optimal solution, next applying a local search
algorithm to obtain a new locally optimal solution, and finally
using an acceptance criterion for deciding from which of these
solutions to continue the search. Voudouris and Tsang (2003) pro-
posed a Guided Local Search (GLS), which is a meta-heuristic
search method, to solve the combinatorial optimization problems.
A GLS is a stochastic local search method in which the evaluation
function is modified so as to escape from the local optima and pla-
teaus. Chiarandin and Stutzle (2007) applied GLS to solve the graph
coloring problem. In this method, the objective function is modi-
fied using a specific scheme, when the local search algorithm
settles in a local optimum.

2.2.2. Tabu search
Tabu search is a mathematical search method by which the

combinatorial optimization problems can be solved. Tabu search
uses a neighborhood search procedure to iteratively move from a
solution to a neighbor solution, until some stopping criterion is sat-
isfied. Several tabu search algorithms have been proposed for
graph coloring in the literature. In Hertz and Werra (1987), Hertz
and Werra proposed a tabu search algorithm in which a partition
of the vertices of the graph is maintained at each iteration. In this
algorithm, a different color is assigned to each block of the parti-
tion, which is not always guaranteed to be an independent set.
Therefore, this algorithm works with the solutions which are not
necessarily feasible. At each iteration, a sample of neighbors of
each given configuration is generated. The set of neighbors gener-
ated for each vertex is restricted by a tabu list which prevents the
algorithm from getting stuck in local optima. Caramia and
Dell’Olmo (1999) proposed a local search algorithm, called HCD,
based on tabu search. The basic idea behind HCD was to make
use of tabu concepts without explicitly representing tabu lists.
Instead, a dynamic assignment of priorities to the vertices in the
graph performed the same task, avoiding repetitions in subsequent
moves of the algorithm. They showed in Caramia and Dell’Olmo
(1999) the experimental gain of HCD over tabu search.

2.2.3. Evolutionary algorithms
An evolutionary algorithm is a generic population-based meta-

heuristic optimization method. Evolutionary algorithms use the
mechanisms inspired by the biological evolution. In evolutionary
algorithms, the solutions with high fitness are selected to produce
the next generations. Galindier and HAO (1999) proposed a hybrid
evolutionary algorithm called HEA for graph coloring. HEA starts
with a population P of candidate solutions, which is initialized by
using the DSATUR (Brelaz, 1979) construction heuristic restricted
to k-colors, and then iteratively generates new candidate solutions
by first recombining two members of the current population that
are improved by local search. For the recombination, the greedy
partition crossover (GPX) (Galindier & HAO, 1999) is used. Starting
with two candidate partitionings (parents), GPX generates a candi-
date solution (offspring) by alternately selecting color classes of
each parent. The new candidate partitioning returned by GPX is
then improved by tabu search, and is inserted in the population
replacing the worse parent. The population is re-initialized if the
average distance between colorings in the population falls below
a threshold of 20. An adaptive algorithm, called AMACOL, was pro-
posed by Galinier et al. (2008) for the solution of the graph coloring
problem. The adaptive memory algorithm is a hybrid evolutionary
heuristic in which a central memory is used to store the stable sets
that originate from the colorings generated during the previous
stages of the search. On each generation, a randomized greedy
set covering heuristic is used to find a set of color classes that cov-
ers the set of vertices of the graph. This covering is transformed
into a coloring in a straightforward way. Then, an iterative neigh-
borhood technique is applied to the coloring. Eventually, the cen-
tral memory is updated by using the color classes of the new
obtained coloring.

Genetic algorithms are a particular class of evolutionary algo-
rithms in which the techniques inspired by the evolutionary biol-
ogy such as inheritance, mutation, selection, and crossover are
used. The fitness function is defined over the genetic representa-
tion and measures the quality of the represented solution. Genetic
algorithms randomly initialize a population of the solutions and
then improve it through repetitive application of biologic opera-
tors. Fleurent and Ferland (1996) were the first to experiment a ge-
netic local search algorithm for coloring the graphs. Like the other
genetic algorithms, the genetic coloring algorithm proposed by
Fleurent and Ferland uses a population of solutions and a crossover
operator, but the random mutation operator of the genetic algo-
rithm is replaced by a local search operator here. Indeed, they
hybridize a genetic algorithm with tabu search. They use a union
crossover where each vertex in the child inherits its color from
one of the parents, according to which causes the smallest increase
in nearby conflicting edges. Fleurent and Ferland improved their
solutions by identifying k-independent sets first and then using
their procedure on the remaining vertices. Dorne and Hao (1998)
presented a new genetic local search algorithm for graph coloring
problem. The proposed algorithm introduces an original crossover
called UIS crossover based on the notion of the union of indepen-
dent sets. The new crossover is combined with a powerful local
search operator (tabu search). The resulting hybrid algorithm al-
lows us to improve on the best known results for some large
benchmarks. Glass and Prügel-Bennett (2003) proposed a genetic
graph coloring algorithm based on an exponential permutation
neighborhood in which a subgraph of the graph vertices is selected
and the colors within the sub-graph are permuted in such a way as
to minimize the number of clashes. They improved the perfor-
mance of the graph coloring algorithm proposed by Galinier and
Hao’s algorithm (Galinier & Hao, 1997) using a steepest descent
method. In the proposed method, as the problem of finding the
optimal point in the neighborhood can be modeled as a linear
assignment problem, the neighborhood can be searched in polyno-
mial time.
3. Theory of automata

In this section, cellular automata (CA) and learning automata
(LA) are first introduced in brief. Then cellular learning automata
(CLA) is presented as a combination of cellular automata and learn-
ing automata. Finally, irregular cellular learning automata (ICLA) in
which the restriction of the rectangular grid structure in traditional
cellular learning automata is removed is presented.
3.1. Cellular automata

Cellular automata are mathematical models for systems con-
sisting of large number of simple identical components with local

α(n)

β(n)

Fig. 1. The relationship between the learning automaton and its random
environment.

9240 J. Akbari Torkestani, M.R. Meybodi / Expert Systems with Applications 38 (2011) 9237–9247
interactions. CA is a non-linear dynamical system in which space
and time are discrete. It is called cellular because it is made up
of cells like points in a lattice or like squares of checker boards,
and it is called automata because it follows a simple rule (Fredkin,
1990). The simple components act together to produce compli-
cated patterns of behavior. Cellular automata perform complex
computations with a high degree of efficiency and robustness. They
are especially suitable for modeling natural systems that can be de-
scribed as massive collections of simple objects interacting locally
with each other (Mitchell, 1996; Packard & Wolfram, 1985). Infor-
mally, a d-dimensional CA consists of an infinite d-dimensional lat-
tice of identical cells. Each cell can assume a state from a finite set
of states. The cells update their states synchronously on discrete
steps according to a local rule. The new state of each cell depends
on the previous states of a set of cells, including the cell itself, and
constitutes its neighborhood (Kari, 1990). The state of all cells in
the lattice is described by a configuration. A configuration can be
described as the state of the whole lattice. The rule and the initial
configuration of the CA specify the evolution of CA that tells how
each configuration is changed in one step.

3.2. Learning automata

A learning automaton (Narendra & Thathachar, 1989; Thathachar
& Sastry, 1997) is an adaptive decision-making unit that improves its
performance by learning how to choose the optimal action from a
finite set of allowed actions through repeated interactions with a
random environment. The action is chosen at random based on
a probability distribution kept over the action-set and at each instant
the given action is served as the input to the random environment.
The environment responds the taken action in turn with a reinforce-
ment signal. The action probability vector is updated based on the
reinforcement feedback from the environment. The objective of a
learning automaton is to find the optimal action from the action-
set so that the average penalty received from the environment is
minimized.

The environment can be described by a triple E � {a,b,c}, where
a � {a1,a2, . . ., ,ar} represents the finite set of the inputs
b � {b1,b2, . . . ,bm}, denotes the set of the values that can be taken
by the reinforcement signal c � {c1,c2, . . . ,cr}, and denotes the set
of the penalty probabilities, where the element is associated with
the given action ai. If the penalty probabilities are constant, the
random environment is said to be a stationary random environ-
ment, and if they vary with time, the environment is called a non
stationary environment. The environments depending on the nat-
ure of the reinforcement signal b can be classified into P -model,
Q-model and S-model. The environments in which the reinforce-
ment signal can only take two binary values 0 and 1 are referred
to as P-model environments. Another class of the environment al-
lows a finite number of the values in the interval [0,1] can be taken
by the reinforcement signal. Such an environment is referred to as
P-model environment. In S-model environments, the reinforce-
ment signal lies in the interval [0,1]. The relationship between
the learning automaton and its random environment has been
shown in Fig. 1.

Learning automaton has shown to perform well in systems
where incomplete information about the environment exists.
Learning automaton is also proved to be useful in complex, dynamic
and random environments with a large amount of uncertainties.
Learning automata have a wide variety of applications in combina-
torial optimization problems (Akbari Torkestani & Meybodi, in
press-b, 2010a, 2010c) and computer networks (Akbari Torkestani
& Meybodi, in press-a, in press-c, in press-d, 2010b, 2010d, 2010e,
2010f). Learning automata can be classified into two main families
(Narendra & Thathachar, 1989): fixed structure learning automata
and variable structure learning automata. Variable structure
learning automata are represented by a triple hba, Ti, where b is
the set of inputs, a is the set of actions, and T is learning algorithm.
The learning algorithm is a recurrence relation which is used to
modify the action probability vector. Let ai(k) 2 a and p(k) denote
the action selected by learning automaton and the probability vec-
tor defined over the action set at instant k, respectively. Let a and b
denote the reward and penalty parameters and determine the
amount of increases and decreases of the action probabilities,
respectively. Let r be the number of actions that can be taken by
learning automaton. At each instant, the action probability vector
p(k) is updated by the linear learning algorithm given in Eq. (2), if
the selected action ai(k) is rewarded by the random environment,
and it is updated as given in Eq. (3) if the taken action is penalized.

pjðkþ 1Þ ¼
pjðkÞ þ a½1� pjðkÞ� j ¼ i

ð1� aÞpjðkÞ 8j – i

(
ð2Þ
pjðkþ 1Þ ¼
ð1� bÞpjðkÞ j ¼ i

b
r�1

� �
þ ð1� bÞpjðkÞ 8j – i

(
ð3Þ

If a = b, the recurrence Eqs. (2) and (3) are called linear reward-
penalty (LR�P) algorithm, if a� b the given equations are called
linear reward-� penalty (LR��P), and finally if b = 0 they are called
linear reward-Inaction (LR�I). In the latter case, the action probabil-
ity vectors remain unchanged when the taken action is penalized
by the environment.

3.3. Cellular learning automata

Cellular learning automata, which is a combination of cellular
automata and learning automata, is a powerful mathematical mod-
el for many decentralized problems and phenomena. The basic idea
of CLA, which is a subclass of stochastic CA, is to use learning auto-
mata to adjust the state transition probability of stochastic CA. Cel-
lular learning automata is a mathematical model for dynamical
complex systems that consists of a large number of simple compo-
nents. These components, which have the learning capability,
cooperate to produce complicated behavioral patterns. A CLA is a
CA in which one or more learning automata are assigned to its
every cell. The learning automaton residing in a particular cell
determines its state (action) on the basis of its action probability
vector. Like CA, there is a rule that CLA operate under it. The rule
of CLA and the actions selected by the neighboring LAs of any par-
ticular LA determine the reinforcement signal to the LA residing in
that cell. In CLA, the neighboring learning automata of any partic-
ular learning automaton constitute its local environment. The ac-
tion probability vector of the neighboring learning automata
varies during the evolution of the CLA, and so the local environ-
ment is nonstationary. CLA has been found to perform well in
many applications such as image processing (Meybodi, Beigy, &
Taherkhani, 2000), rumor diffusion (Meybodi & Taherkhani,
2001), modeling of commerce networks (Meybodi & Khojasteh,
2001), channel assignment in cellular networks (Beigy & Meybodi,
2003), clustering the wireless sensor networks, VLSI Placement

J. Akbari Torkestani, M.R. Meybodi / Expert Systems with Applications 38 (2011) 9237–9247 9241
(Meybodi & Mehdipour, 2003), and solving NP-hard problems
(Enami Eraghi, Akbari Torkestani, & Meybodi, 2009a, 2009b), to
name just a few.

The operation of cellular learning automata could be described
as follows: At the first step, the internal state of every cell is spec-
ified. The state of every cell is determined on the basis of action
probability vectors of the learning automata residing in that cell.
The initial value of this state may be chosen on the basis of past
experience or at random. In the second step, the rule of cellular
automata determines the reinforcement signal to each learning
automaton residing in that cell. Finally, each learning automaton
updates its action probability vector on the basis of supplied rein-
forcement signal and the chosen action. This process continues un-
til the desired result is obtained. Formally a d-dimensional CLA is
given below.

CELLULAR LEARNING AUTOMATA A d-dimensional cellular learning auto-
mata is a structure A ¼ ðZd;U;A;N; f Þ, where.

1. Zd is a lattice of d-tuples of integer numbers.
2. U is a finite set of states.
3. A is the set of LAs each of which is assigned to each cell of the

CA.
4. N ¼ f�x1; �x2; . . . ; �x �mg is a finite subset of Zd called neighborhood

vector, where �xi 2 Zd.
5. f : U �m ! b is the local rule of the cellular learning automata,

where b is the set of values that the reinforcement signal can
take. It gives the reward (reinforcement) signal to each LA from
the current actions selected by its neighboring LAs.
Cellular learning automata can be classified into synchronous
and asynchronous models. In synchronous CLA, all cells are syn-
chronized with a global clock and executed at the same time. That
is, in synchronous CLA, all learning automata (in different cells) are
activated at the same time in parallel. In Meybodi and Beigy
(2004), a mathematical methodology is introduced to study the
behavior of the synchronous CLA and its convergence properties.
It is shown that the synchronous CLA converges to a globally stable
state for a class of rules called commutative rules. A CLA is called
asynchronous CLA (ACLA) if at a given time only some LAs are acti-
vated independently from each other, rather than all together in
parallel. In some applications such as dynamic channel assignment
in cellular networks (Beigy & Meybodi, 2003), a type of cellular
learning automata in which the action of each cell in next stage
of its evolution not only depends on the local environment (actions
of its neighbors) but it also depends on the external environments.
Such a cellular learning automata is referred to as open synchro-
nous CLA (Beigy & Meybodi, 2007).

3.4. Irregular cellular learning automata

An Irregular cellular learning automata (ICLA) (Enami Eraghi
et al., 2009a, Enami Eraghi, Akbari Torkestani, & Meybodi, 2009b;
Esnaashari & Meybodi, 2008) is a cellular learning automata
(CLA) in which the restriction of rectangular grid structure in tradi-
tional CLA is removed. This generalization is expected because
there are applications such as wireless sensor networks, immune
network systems, graph related applications, etc. that cannot be
adequately modeled with rectangular grids. An ICLA is defined as
an undirected graph in which, each vertex represents a cell which
is equipped with a learning automaton. The learning automaton
residing in a particular cell determines its state (action) on the ba-
sis of its action probability vector. Like CLA, there is a rule that the
ICLA operate under. The rule of the CLA and the actions selected by
the neighboring LAs of any particular LA determine the reinforce-
ment signal to the LA residing in a cell. The neighboring LAs of
any particular LA constitute the local environment of that cell.
The local environment of a cell is non-stationary because the action
probability vectors of the neighboring LAs vary during the evolu-
tion of the ICLA.
4. The proposed vertex coloring algorithm

In this section, we propose a cellular learning automat-based
approximation algorithm called CLAVCA for solving the minimum
vertex coloring problem. In the proposed algorithm, before the col-
oring process starts, an asynchronous irregular cellular learning
automata isomorphic to the input graph is created. To construct
such an irregular cellular learning automata, each graph node is
associated with a cell of cellular learning automata, and then a
learning automaton is assigned to each cell. Learning automata
are independently activated and choose their colors. The proposed
coloring algorithm is a fully distributed algorithm which is locally
and independently run at each cell of the cellular learning auto-
mata. In fact, each cell locally selects its color independent of the
other cells. Each cell Ci of the cellular learning automata (or each
vertex vi) is equipped with a learning automaton Ai whose actions
constitute the set of colors by which the cell Ci can be colored. The
resulting irregular cellular learning automata can be modeled by a

duple hA, ai, where A = {A1,A2, . . . ,An} denotes the set of learning

automata corresponding to the graph vertex-set, and a =

{a1,a2, . . . ,an} denotes the action-set in which ai ¼ fa1
i ; a

2
i ; . . . ; ari

i g
(for each ai 2 a) defines the set of actions that can be taken by
learning automaton Ai (or the set of colors by which vertex vi can
be colored).

Note that, since each cell Ci is associated with vertex vi, hereaf-
ter (in some cases) vertex vi may be referred to as cell Ci and vice
versa. It has been shown in reference (Galinier & Hertz, 2006) that
an arbitrary graph can be colored with at most D + 1 colors, where
D denotes the maximum vertex degree in the graph (or the graph
degree). Therefore, it can be concluded that cell Ci (vertex vi) and its
neighboring cells can be colored with at most Di + 1 colors in the
worst case, where Di is the degree of vertex vi. That is why, in
our proposed vertex coloring algorithm, the action-set of learning
automaton (corresponding to color set of cell Ci) is composed of
Di + 1 actions (or colors). In the proposed vertex coloring algo-
rithm, the color selected by each cell (or the action chosen by its
corresponding learning automaton) is rewarded or penalized based
solely on the colors chosen by its neighboring cells. That is, the pro-
posed algorithm can be fully localized at each cell.

The operation of the proposed vertex coloring algorithm can be
described as follows. The proposed algorithm is composed of a
number of stages and at each stage the learning automaton of each
cell randomly chooses one of its actions (colors) based on its action
probability vector. For each learning automaton Ai, all the actions
have the same initial choice probability each of 1

Diþ1. We call the
set of colors which are selected by the learning automaton of cell
Ci and its neighboring cells as the local color-set of cell Ci. The car-
dinality of the local color-set of a given cell is referred to as the col-
or-degree of the cell and denoted as Di. The local rule of the cellular
learning automata under which the automata update their state is
defined as follows. At each stage k of the proposed algorithm, the
color which is selected by the learning automaton of cell Ci is
penalized, if this color is also chosen by the automaton of at least
one of its neighboring cells or the color-degree of the cell in this
stage, i.e., Di, is greater than its own dynamic threshold, i.e., J i. Dy-
namic threshold J i retains the minimum color-degree (which be-
longs to the best local coloring) that has been seen so far (see Line
16). Dynamic threshold J i can be initially set to a value which is
greater than or equal to the maximum Di. For example, in our algo-
rithm J i is set to Di + 1 (see Line 6). Otherwise, the selected color is

9242 J. Akbari Torkestani, M.R. Meybodi / Expert Systems with Applications 38 (2011) 9237–9247
rewarded. In other words, the selected color is rewarded, if it is se-
lected by none of the neighboring cells and Di 6 J i.

The proposed algorithm can be locally executed at each cell
independent of the other cells. As the proposed algorithm pro-
ceeds, each learning automaton learns how to select a color based
solely on the colors selected by its adjacent automata (two learning
automata are adjacent, if they belongs to the neighboring cells) so
that the mentioned color is selected by none of its adjacent learn-
ing automata. Since the local color-set which is formed by each cell
and its neighboring cells must be compared with the best local col-
or-set which it has seen so far, the proposed algorithm guarantees
the optimality of the final color-set for each cell. This means that,
as the proposed algorithm approaches to the end the size of the se-
lected color-set converges to the optimal size. For each learning
automaton Ai, the learning process stops if the choice probability
of a color exceeds a pre-specified threshold, e.g., pi (see Line 23).
pi’s can be selected equal or different (discriminatory). Fig. 2 shows
the proposed vertex coloring algorithm which is run at cell Ci.

5. Complexity analysis

In this section, we analyze the time complexity of the proposed
cellular learning automata-based vertex coloring algorithm. To
compute the running time of algorithm, we first estimate an upper
bound (lemma 1) and a lower bound (lemma 2) on the number of
iterations of the proposed algorithm for finding a 1

1�� optimal local
coloring in the neighborhood of each vertex. Then, we show that
the time required for finding a 1

1�� optimal coloring (for each ver-
tex) is confined between these two estimated bounds, and the run-
ning time of the proposed algorithm is restricted to the required
number of iterations for coloring the vertex with the maximum
degree.

Theorem 1. Let joptij denotes the cardinality of the optimal local
color-set of vertex vi (say C�i), and the action probability vector of vertex
vi (i.e., pi) is updated according to the proposed vertex coloring
algorithm. The time required for finding a 1

1�� joptij size local color-set is

F� 1
Di þ 1

� �
6 TiðkÞ 6 F

1
Di þ 1

ð1� aÞMi�1
� �

ð4Þ
Fig. 2. Pseudo code of the propos
where

FðxÞ ¼ 2
1þ x� �

Di

log
�

Di ð1�xÞ
1�a ; ð5Þ

� 2 (0,1) is the error parameter of the proposed algorithm, a denotes
the learning rate of algorithm, Mi is the number of local colorings
which legally color vertex vi and its neighbors, and Di is the degree of
vertex vi.
Proof. Let C�i ¼ fC
1
i ;C

2
i ; . . . ; C

Mi
i g denotes the set of all possible

local color-sets (colorings) by which vertex vi and its neighbors
can be legally colored, where Mi is the number of local colorings
which legally color vertex vi and its neighbors. Let C�i ¼ fC

�
j j

ðv i;v jÞ 2 E or i ¼ jg denotes the optimal local color-set in the
neighborhood of vertex vi, where C�j is the optimal color with
which vertex vj can be colored. Before stating the proof of this the-
orem, we prove the following two lemmas. h
Lemma 1. If pi is updated according to the proposed vertex coloring
algorithm, the time required for finding a 1

1�� joptij size local color-
set in the worst case is

2
1þ x� �

Di

log
�

Di ð1�xÞ
1�a

where x P p�i � ð1� aÞMi�1.
Proof. Lemma 1 aims at computing the worst case running time of
the proposed algorithm. The worst case occurs if all the other
color-sets (color-sets with greater color-degree in the neighbor-
hood of vertex vi) are chosen before the optimal one (i.e., C�i). In
such a case, the learning process can be divided into two distinct
phases. In the first phase, called shrinking phase, it is assumed that
all the other local color-sets, from the largest one to the smallest
one, are chosen before C�i and so rewarded. Therefore, in the worst
case, the probability of coloring vertex vi with the optimal color
(i.e., color c�i) at the end of the shrinking phase is computed as

p�i ðMi � 1ÞP p�i ðMi � 2Þ � ð1� aÞ ð6Þ
ed vertex coloring algorithm.

J. Akbari Torkestani, M.R. Meybodi / Expert Systems with Applications 38 (2011) 9237–9247 9243
whereMi is the number of possible local colorings in the neighbor-
hood of vertex vi, adenotes the learning rate of CLAVCA, and
p�i ðMi � 1Þ denotes the probability with which vertex vi is colored
with optimal color c�i at the end of the shrinking phase. By repeat-
edly substituting recurrence function p�i ð�Þ on the right hand side
of inequality (6), we obtain

p�i ðMi � 1ÞP p�i � ð1� aÞMi�1

where p�i denotes the initial probability of coloring vertex vi with its
optimal color (i.e., color c�i). For the sake of simplicity in notation,
p�i ðMi � 1Þ is temporarily substituted by q�i .

The second phase called growing phase begins when the optimal
color-set, C�i , is chosen for the first time. According to the proposed
algorithm, during the growing phase, the probability of penalizing
the optimal color-set is zero (at vertex vi). Furthermore, since the
reinforcement scheme by which the proposed algorithm updates
the probability vectors is LR�1, the conditional expectation of q�i ðkÞ
(i.e., the probability of choosing color c�i at stage k of the growing
phase), remains unchanged when the other color-sets are selected,
and increases only when color-set C�i is chosen. That is, during the
growing phase, the changes in the conditional expectation of q�i ðkÞ
is always non-negative and calculated as
q�i ð1Þ ¼ q�i þ a � ð1� q�i Þ
q�i ð2Þ ¼ q�i ð1Þ þ a � ð1� q�i ð1ÞÞ ¼ q�i ð1Þ � ð1� aÞ þ a

..

.

q�i ðk� 1Þ ¼ q�i ðk� 2Þ þ a � ð1� q�i ðk� 2ÞÞ ¼ q�i ðk� 2Þ � ð1� aÞ þ a

q�i ðkÞ ¼ q�i ðk� 1Þ þ a � ð1� q�i ðk� 1ÞÞ ¼ q�i ðk� 1Þ � ð1� aÞ þ a

ð7Þ
where k denotes the number of times color c�i must be chosen until
the following condition is met.

q�i ðkÞ ¼ 1� �
Di

ð8Þ

where 1� �
Di
¼ pi. It should be noted that the growing phase contin-

ues until the probability of choosing color c�i approaches 1� �
Di

. By

substituting recurrence function q�i ðkÞ and after some simplifica-
tions we have

q�i ðkÞ ¼ q�i ðk� 1Þ � ð1� aÞ þ a

¼ ½q�i ðk� 2Þ � ð1� aÞ þ a� � ð1� aÞ þ a ¼ q�i ðk� 2Þ � ð1� aÞ2 þ a � ð1� aÞ þ a

¼ ½q�i ðk� 3Þ � ð1� aÞ þ a� � ð1� aÞ2 þ a � ð1� aÞ þ a ¼ q�i ðk� 2Þ � ð1� aÞ3

þa � ð1� aÞ2 þ a � ð1� aÞ þ a

..

.

¼ q�i ð1Þ � ð1� aÞk�1 þ a � ð1� aÞk�2 þ � � � þ 1 � ð1� aÞ þ a

¼ q�i � ð1� aÞk þ a � ð1� aÞk�1 þ � � � þ a:ð1� aÞ þ a

Hence, we have

q�i ðkÞ ¼ q�i � ð1� aÞk þ a � ð1� aÞk�1 þ � � � þ a � ð1� aÞ þ a ð9Þ

After some algebraic simplifications, we have

q�i ðkÞ ¼ q�i � ð1� aÞk þ a � ð1þ ð1� aÞ þ ð1� aÞ2 þ � � � þ ð1� aÞk�1Þ

and so

q�i ðkÞ ¼ q�i � ð1� aÞk þ a �
Xk�1

i¼0

ð1� aÞi ð10Þ

The second term on the right hand side of Eq. (10) is a geometric

series that sums up to a � 1�ð1�aÞk
1�ð1�aÞ

� �
, where j1 � aj < 1. Since the

learning rate a 2 (0,1), we have

q�i ðkÞ ¼ q�i � ð1� aÞk þ a � 1� ð1� aÞk

1� ð1� aÞ

 !
ð11Þ
and

q�i ðkÞ ¼ q�i � ð1� aÞk þ 1� ð1� aÞk ð12Þ

From Eqs. (8) and (12) we have

q�i ð1� aÞk þ 1� ð1� aÞk ¼ 1� �
Di

ð13Þ

and

ð1� aÞk ¼ �
Dið1� q�i Þ

ð14Þ

Taking log1�a of both sides of Eq. (14), we derive

k ¼ log
�

Di ð1�q�
i
Þ

1�a ð15Þ

Since during the growing phase, q�i remains unchanged when
the other colors are penalized, k does not reflect the number of
times the other colors are chosen and this should be separately cal-
culated based on k. For this purpose, let q�i be the probability of
choosing optimal color c�i at the beginning of the growing phase,
and reaches 1� �

Di
after k iterations. On the other hand, the proba-

bility of choosing all the other colors is initially 1� q�i , and reaches
�
Di

after the same number of iterations. Thus, the number of times
the other colors are chosen (before the condition given in Eq. (8)
is met) is obtained as

1� q�i þ �
Di

1þ q�i � �
Di

� k ð16Þ

Let K denotes the total number of iterations required to satisfy the
condition given in Eq. (8). From Eq. (16) we have

K ¼ 2
1þ q�i � �

Di

� k

By substituting from Eq. (15) we have

K ¼ 2
1þ q�i � �

Di

� log
�

Di ð1�q�
i
Þ

1�a ð17Þ

From inequality (7) and Eq. (17), we conclude that the time com-
plexity of CLAVCA for finding a 1

1�� joptij size local color-set is less
than

2
1þ q�i � �

Di

� log
�

Di ð1�q�
i
Þ

1�a ð18Þ

where q�i P p�i � ð1� aÞMi�1, and hence the proof of Lemma 1. h
Lemma 2. If pi is updated according to the proposed vertex coloring
algorithm, the running time of the proposed algorithm for finding a

1
1�� joptij size local color-set is greater than

2
1þ q�i � �

Di

� log
�

Di ð1�p�
i
Þ

1�a
Proof. Lemma 2 considers the running time of the proposed algo-
rithm in the best case. In CLAVCA, the best case occurs when the
optimal coloring C�i is chosen as the first coloring in the neighbor-
hood of vertex vi. In this case, the learning process does not
include the shrinking phase, and so at the beginning of the grow-
ing phase the probability of coloring vertex vi with optimal color
c�i is equal to the initial probability p�i . Therefore, similar to the
proof of Lemma 1, it can be easily proved that the minimum num-
ber of colorings required for satisfying the condition given in Eq.
(8) is

9244 J. Akbari Torkestani, M.R. Meybodi / Expert Systems with Applications 38 (2011) 9237–9247
2
1þ q�i � �

Di

� log
�

Dið1�q�
i
Þ

1�a ð19Þ

where q�i ¼ p�i , which completes the proof of Lemma 2. h

From inequalities (18) and (19), we conclude that

2
1þ q�i � �

Di

� log
�

Dið1�q�
i
Þ

1�a 6 TiðkÞ 6
2

1þ q�i � �
Di

� log
�

Dið1�q�
i
Þ

1�a

where q�i P p�i � ð1� aÞMi�1. As described in Section 3, the action-set
of learning automaton Ai (corresponding to vertex vi) comprises
Di + 1 actions (or colors) each of initial probability 1

Diþ1. Therefore,
the initial probability p�i ¼ 1

Diþ1, and so we have

F 1
Di þ 1

� �
6 TiðkÞ 6 F

1
Di þ 1

ð1� aÞMi�1
� �

where

FðxÞ ¼ 2
1þ x� �

Di

log
�

Di ð1�xÞ
1�a ;

which completes the proof of the theorem. h

Theorem 2. Time complexity of the proposed vertex coloring algo-
rithm for finding a 1

1�� optimal coloring for graph G hV, Ei is

F 1
Dþ 1

� �
6 TðkÞ 6 F 1

Dþ 1
ð1� aÞM�1

� �

where D is the graph degree (i.e., maximum vertex degree), M is the
number of local colorings of the vertex with maximum degree D, and
Table 1
The characteristics of DSJ benchmark graphs.

Graph name Class Number of vertices Number of edges Density

DSJC125.1 DSJ 125 736 0.09
DSJC125.5 DSJ 125 3891 0.50
DSJC125.9 DSJ 125 6961 0.90
DSJC250.1 DSJ 250 3218 0.10
DSJC250.5 DSJ 250 15668 0.50
DSJC250.9 DSJ 250 27897 0.90
DSJC500.1 DSJ 500 12458 0.10
DSJC500.5 DSJ 500 62624 0.50
DSJC500.9 DSJ 500 112437 0.90
DSJR500.1 DSJ 500 3555 0.03
DSJR500.1c DSJ 500 121275 0.97
DSJR500.5 DSJ 500 58862 0.47
DSJC1000.1 DSJ 1000 49629 0.10
DSJC1000.5 DSJ 1000 249826 0.50
DSJC1000.9 DSJ 1000 449449 0.90

Table 2
A performance comparison of the coloring algorithms on hard-to-color DSJ benchmark gr

Graph Best TPA AMACOL ILS

CN RT CN RT CN

DSJC125.1 5 5 0 5 0 5
DSJC125.5 17 19 289 17 125 17
DSJC125.9 44 44 5 44 57 44
DSJC250.1 8 8 10 8 12 8
DSJC250.5 28 30 3282 28 64 28
DSJC250.9 72 72 155 72 2604 72
DSJC500.1 12 12 0 12 9 13
DSJC500.5 48 48 124 48 326 50
DSJC500.9 126 127 1268 126 1710 128
DSJC1000.1 20 21 28 20 969 21
DSJC1000.5 84 84 2386 84 9235 91
DSJC1000.9 224 226 3422 224 4937 228
FðxÞ ¼ 2
1þ x� �

D

log
�

Dð1�xÞ
1�a
Proof. As stated earlier in the proposed algorithm, each learning
automaton is randomly activated and colors its corresponding ver-
tex independent of the other vertices. Therefore, the maximum
number of iterations of the proposed algorithm is taken for finding
a 1

1�� optimal local coloring for vertex vj, where Dj ¼max8v i2VDi

(maximum degree Dj is referred to as graph degree and denoted
by D). That is, the maximum running time belongs to the vertex
with the maximum degree D. On the other hand, as calculated in
Lemmas 1 and 2, the running time of the proposed algorithm for
finding a 1

1�� optimal coloring of graph G hV, Ei is limited by the
upper bound and lower bound on the running time of algorithm
for the vertex with degree. Therefore, it is concluded that the time
taken by the proposed algorithm for f finding a optimal coloring of
graph is GhV, Ei

F 1
Dþ 1

� �
6 TðkÞ 6 F 1

Dþ 1
ð1� aÞM�1

� �

where FðxÞ ¼ 2
1þx��D

log
�

Dð1�xÞ
1�a , and the proof of Theorem 2 is

completed. h
6. Numerical results

To show the efficiency of the proposed vertex coloring algo-
rithm, we have conducted several computer simulations. In these
experiments, the proposed vertex coloring algorithm is tested on
a subset of hard-to-color benchmarks like Leighton (Leighton,
1979), DSJ (Johnson, Aragon, McGeoch, & Schevon, 1991) and
Wap (Caramia & Dell’Olmo, 2008). The performance of the
aphs.

CHECKCOL GLS CLAVCA

RT CN RT CN RT CN RT

0 5 0 5 0 5 0.0090
2 17 110 18 0 17 11.898
0 44 4 44 0 44 19.463
0 8 28 9 0 8 07.234

34 28 557 30 1 28 27.124
6 72 182 73 6 73 31.684
0 12 4 13 0 12 20.390

106 48 1789 52 81 48 42.298
82 126 2045 130 154 126 70.465

6 21 142 22 1 21 38.670
303 84 7025 93 546 84 87.731

2245 226 12545 234 1621 224 119.10

Table 3
The characteristics of Leighton benchmark graphs.

Graph name Class Number of vertices Number of edges Density

Le450_5a LEI 450 5714 0.06
Le450_5b LEI 450 5734 0.06
Le450_5c LEI 450 9803 0.10
Le450_5d LEI 450 9757 0.10
Le450_15a LEI 450 8168 0.08
Le450_15b LEI 450 8169 0.08
Le450_15c LEI 450 16680 0.17
Le450_15d LEI 450 16750 0.17
Le450_25a LEI 450 8260 0.08
Le450_25b LEI 450 8263 0.08
Le450_25c LEI 450 17343 0.17
Le450_25d LEI 450 17425 0.17

Table 4
A performance comparison of the coloring algorithms on hard-to-color Leighton benchmark graphs.

Graph Best TPA AMACOL ILS CHECKCOL GLS CLAVCA

CN RT CN RT CN RT CN RT CN RT CN RT

Le450_15a 15 15 1444 15 345 15 0 15 2145 15 2 15 22.785
Le450_15b 15 15 1655 15 345 15 0 15 2756 15 0 15 17.560
Le450_15c 15 15 82 15 2 15 19 15 4534 15 6 15 29.780
Le450_15d 15 15 34 15 4 15 20 15 4576 15 8 15 31.567
Le450_25c 25 26 44 26 93 26 2 25 3477 26 18 25 30.187
Le450_25d 25 26 22 26 10 26 1 25 4524 26 2 25 45.676

Table 5
The characteristics of Wap benchmark graphs.

Graph name Class Number of vertices Number of edges Density

Wap01a KOS 2368 110871 0.04
Wap02a KOS 2464 111742 0.04
Wap03a KOS 4730 286722 0.03
Wap04a KOS 5231 294902 0.02
Wap05a KOS 905 43081 0.11
Wap06a KOS 947 43571 0.10
Wap07a KOS 1809 103368 0.06
Wap08a KOS 1870 104176 0.06

J. Akbari Torkestani, M.R. Meybodi / Expert Systems with Applications 38 (2011) 9237–9247 9245
proposed algorithm is measured both in terms of the time and the
number of colors required for coloring the benchmarks, and com-
pared with those of CHECKCOL (Caramia et al., 2006), GLS
(Voudouris & Tsang, 2003), ILS (Lourenco et al., 2002), TPA
(Caramia & Dell’Olmo, 2008) and AMACOL (Galinier et al., 2008).
In these experiments, learning rate of the proposed algorithm is
set to 0.1, and algorithm is terminated (for all cells) when the
probability of the chosen color-set is 0.95 or greater. The obtained
results are summarized in Tables 2, 4, and 6. In these tables, the
first column includes the number of colors required for coloring
the graph (CN), and the second column includes the running time
of each algorithm in seconds (RT).

DSJ (Johnson et al., 1991) benchmark graphs are the first class
on which Algorithm 4 is tested. This class comprises a set of uni-
form (n,p) random graphs which are denoted as DSJCn.p, where
n = {125,250,500,1000} is the number of vertices, and p =
{0.1,0.5,0.9} denotes the probability of connecting every pair of
nodes in the graph. graphs are geometric graphs were introduced
by Johnson et al. (1991) to provide benchmarks for heuristics.
The number of nodes in these graphs changes from 125 to 1000,
and so, it is not easy to find good solutions, especially with a den-
sity of 0.5 and 0.9, and with a number of nodes greater than 125.
The characteristics (i.e., density and number of vertices and edges)
of DSJ benchmark graphs are given in Table 1.

Table 2 shows the results of the conducted experiments on
DSJ benchmark graphs. Comparing the results of the other algo-
rithms, we observe that, in most cases, GLS has the shortest run-
ning time, and CHECKCOL and AMACOL have the worst running
time. It also can be seen that, in almost all cases, AMACOL picks
Table 6
A performance comparison of the coloring algorithms on hard-to-color Wap benchmark g

Graph Best TPA AMACOL ILS

CN RT CN RT CN

Wap01a 42 42 245 45 345 44
Wap02a 41 41 1618 44 802 43
Wap03a 44 44 17 53 245 46
Wap04a 43 43 95 48 45 44
Wap06a 41 41 348 44 545 42
Wap07a 42 42 541 45 89 44
Wap08a 42 42 200 45 446 43
the smallest number of colors to color the graphs, and GLS uses
the most number of colors. Comparing the results of the CLAVCA
with AMACOL, we find that the color-sets chosen by the pro-
posed algorithm are as small as those of AMACOL, while the run-
ning time of the proposed algorithm is considerably shorter than
AMACOL. On the other hand, comparing the proposed algorithm
with GLS, it can be seen that the running time of the proposed
algorithm is as close to GLS as possible, while the size of the col-
or-set, in the proposed algorithm, is significantly smaller as com-
pared with GLS.

The second class of the benchmark graphs on which Algorithm
4 is tested is Leighton (Akbari Torkestani & Meybodi, in press-a)
which is a set of large random graphs, with 450 nodes, and denoted
as Le450_xy, where x = {5,15,25} is the chromatic number of the
graph and equal to the maximum clique size, and extension
y = {a,b,c,d} denotes the edge density of the graph. Finding a solu-
tion to the graphs with extensions c and d is, in general, more dif-
ficult than that with extensions c and b. The characteristics (i.e.,
density and number of vertices and edges) of Leighton benchmark
graphs are given in Table 3.

Table 4 shows the results of the simulation experiments con-
ducted on Leighton benchmark graphs. Comparing the results re-
ported in Table 4, we find that, in almost all cases, ILS
outperforms the others in terms of running time. It can be seen
that CHECKCOL always selects the smallest color-sets for coloring
the graphs, while its running time is the worst. Comparing the re-
sults of the proposed algorithm with the chromatic number of the
benchmarks, we observe that the size of the color-sets constructed
by the proposed algorithm is equal to the chromatic number. It can
be seen that, CHECKCOL is also capable of finding the optimal solu-
tion (Best results). However, comparing the running time of our
proposed algorithm with that of CHECKCOL, we find that the pro-
posed algorithm significantly outperforms CHECKCOL in terms of
the running time.

The third class of the benchmarks we consider includes Wap
graphs which arise in the design of transparent optical networks
and are denoted by Wap0ma, where m = {1,2, . . . ,8}. In this class,
the graphs have a large number of vertices between 905 and
5231, and all instances have a clique of size 40. The characteristics
(i.e., density and the number of vertices and edges) of Wap bench-
mark graphs are given in Table 5.
raphs.

CHECKCOL GLS CLAVCA

RT CN RT CN RT CN RT

2 44 568 42 55 42 15.785
251 43 486 41 160 41 27.902
365 46 689 44 782 43 50.563
484 44 23 43 834 43 46.576
1 42 25 41 8 40 2.6150
1 44 182 42 215 40 14.398
56 44 22 42 41 42 26.471

9246 J. Akbari Torkestani, M.R. Meybodi / Expert Systems with Applications 38 (2011) 9237–9247
Table 6 shows the results of the simulation experiments con-
ducted on Wap benchmark graphs. Comparing the results reported
in Table 6, we observe that, GLS and TPA outperform the others in
terms of the required number of colors, and ILS in terms of the time
required for coloring the Wap benchmark graphs. The obtained re-
sults given in Table 6 show that not only the size of the color-sets
constructed by our proposed algorithm is smaller than that of the
best reported results, but also the running time of the proposed
algorithm is considerably shorter as compared with the other col-
oring methods.
7. Conclusion

In this paper, an irregular cellular learning automata-based
algorithm was proposed for finding a near optimal solution to
the vertex coloring problem. Irregular cellular learning automata
is a generalization of cellular learning automata in which the
restriction of rectangular grid structure in traditional CLA is re-
moved. The proposed coloring algorithm is a fully distributed algo-
rithm in which each vertex chooses its optimal color based solely
on the colors selected by its adjacent vertices. We computed the
time complexity of the proposed algorithm for finding a near opti-
mal solution of the vertex coloring problem in an arbitrary graph.
Several computer simulations were conducted on hard-to-color
benchmark graphs to show the efficiency of the proposed algo-
rithm. The obtained results showed that our proposed algorithm
outperforms the existing methods both in terms of the running
time of algorithm and the required number of colors.
References

Akbari Torkestani, J., & Meybodi, M. R. (in press-a). A learning automata-based
cognitive radio for clustered wireless ad-hoc networks. Journal of Network and
Systems Management.

Akbari Torkestani, J., & Meybodi, M. R. (in press-b). A learning automata-based
heuristic algorithm for solving the minimum spanning tree problem in
stochastic graphs. Journal of Supercomputing.

Akbari Torkestani, J., & Meybodi, M. R. (in press-c). Weighted steiner connected
dominating set and its application to multicast routing in wireless MANETs.
Wireless Personal Communications.

Akbari Torkestani, J., & Meybodi, M. R. (in press-d). A mobility-based cluster
formation algorithm for wireless mobile ad Hoc networks. Journal of Cluster
Computing.

Akbari Torkestani, J., & Meybodi, M. R. (2010a). Learning automata-based
algorithms for finding minimum weakly connected dominating set in
stochastic graphs. International Journal of Uncertainty, Fuzziness and
Knowledge-based Systems, 18(6), 721–758.

Akbari Torkestani, J., & Meybodi, M. R. (2010b). Mobility-based multicast routing
algorithm in wireless mobile ad hoc networks: A learning automata approach.
Journal of Computer Communications, 33, 721–735.

Akbari Torkestani, J., & Meybodi, M. R. (2010c). A new vertex coloring algorithm
based on variable action-set learning automata. Journal of Computing and
Informatics, 29(3), 1001–1020.

Akbari Torkestani, J., & Meybodi, M. R. (2010d). An efficient cluster-based CDMA/
TDMA scheme for wireless mobile ad-hoc networks: A learning automata
approach. Journal of Network and Computer applications, 33, 477–490.

Akbari Torkestani, J., & Meybodi, M. R. (2010e). Clustering the wireless ad-hoc
networks: A distributed learning automata approach. Journal of Parallel and
Distributed Computing, 70, 394–405.

Akbari Torkestani, J., & Meybodi, M. R. (2010f). An intelligent backbone formation
algorithm in wireless ad hoc networks based on distributed learning automata.
Journal of Computer Networks, 54, 826–843.

Asmuni, H., Burke, E. K., Garibaldi, J. M., McCollum, B., & Parkes, A. J. (2009). An
investigation of fuzzy multiple heuristic orderings in the construction of university
examination timetables. Computers & Operations Research, 36, 981–1001.

Barnier, N., & Brisset, P., (2002). Graph coloring for air traffic flow management. In
Proceedings of the fourth international workshop on integration of AI and OR
techniques (pp. 133–147). France: Le Croisic.

Beigel, R., & Eppstein, D. (2005). 3-coloring in time. Journal of Algorithms, 54,
168–204.

Beigy, H., & Meybodi, M. R. (2003). A self-organizing channel assignment algorithm:
A cellular learning automata approach. Springer-verlag lecture notes in computer
science (Vol. 2690, pp. 119–126). Springer-Verlag.

Beigy, H., & Meybodi, M. R. (2007). Open synchronous cellular learning automata.
Advances in Complex Systems, 10(4), 527–556.
Blchliger, I., & Zufferey, N. (2008). A graph coloring heuristic using partial solutions
and a reactive tabu scheme. Computers & Operations Research, 35, 960–975.

Brelaz, D. (1979). New methods to color the vertices of a graph. Communications of
the ACM, 22(4), 252–256.

Bui, T. N., Nguyen, T. H., Patel, C. M., & Phan, K. T. (2008). An ant-based algorithm for
coloring graph. Discrete Applied Mathematics, 156, 190–200.

Byskov, J. M. (2004). Enumerating maximal independent sets with applications to
graph coloring. Operations Research Letters, 32, 547–556.

Byskov, J. M., (2005). Exact algorithms for graph coloring and exact satisfiability,
PhD thesis, University of Aarhus, Aarhus, Denmark.

Caramia, M., & Dell’Olmo, P. (1999). A fast and simple local search for graph
coloring. Lecture Notes in Computer Science, Algorithm Engineering, 1618,
319–333.

Caramia, M., & Dell’Olmo, P. (2008). Embedding a novel objective function in a two-
phased local search for robust vertex coloring. European Journal of Operational
Research, 189, 1358–1380.

Caramia, M., & Dellolmo, P. (2008). Coloring graphs by iterated local search
traversing feasible and infeasible solutions. Discrete Applied Mathematics, 156,
201–217.

Caramia, M., Dellolmo, P., & Italiano, G. F. (2006). CHECKCOL: Improved local search
for graph coloring. Journal of Discrete Algorithms, 4, 277–298.

Carter, M., Laporte, G., & Lee, S. (1996). Examination timetabling: Algorithmic
strategies and applications. Journal of the Operational Research Society, 47,
373–383.

Chaitin, G. J., Auslander, M. A., Chandra, A. K., Cocke, J., Hopkins, M. E., & Markstein,
P. W. (1981). Register allocation via coloring. Computer Languages, 6, 47–57.

Chams, M., Hertz, A., & de Werra, D. (1987). Some experiments with simulated
annealing for coloring graphs. European Journal of Operational Research, 32,
260–266.

Chiarandin, M., & Stutzle, T. (2007). Stochastic local search algorithms for graph set
T-coloring and frequency assignment. Constraints, 12(3), 371–403.

Cooper, C., Dyer, M., & Frieze, A. (2001). On Markov chains for randomly H-coloring
a graph. Journal of Algorithms, 39, 117–134.

de Werra, D. (1985). An introduction to timetabling. European Journal of Operational
Research, 19, 151–162.

Dobrev, S., Schröder, H., Sykora, O., & Vrto, I. (2000). Evolutionary graph coloring.
Information Processing Letters, 76, 91–94.

Dorne, R., & Hao, J. K., (1998). A new genetic local search algorithm for graph
coloring. Lecture Notes in Computer Science (Vol. 1498). Germany, pp. 745–754.

Dowsland, K. A., & Thompson, J. M. (2008). An improved ant colony optimization
heuristic for graph coloring. Discrete Applied Mathematics, 156, 313–324.

Eiben, A. E., Vanderhauw, J. K., & Vanhemert, J. I. (1998). Graph coloring with
adaptive evolutionary algorithms. Journal of Heuristics, 4, 25–46.

Enami Eraghi, A., Akbari Torkestani, J., & Meybodi, M. R., (2009). Solving the
bandwidth multicoloring problem: A cellular learning automata approach. In
International IACSIT conference on machine learning and computing (IACSIT ICMLC
2009). Perth, Australia.

Enami Eraghi, A., Akbari Torkestani, J., & Meybodi, M. R., (2009). Cellular learning
automata-based graph coloring problem. In International IACSIT conference on
machine learning and computing (IACSIT ICMLC 2009). Perth, Australia.

Esnaashari, M., & Meybodi, M. R. (2008). A cellular learning automata based
clustering algorithm for wireless sensor networks. Sensor Letters, 6(5), 723–735.

Fleurent, C., & Ferland, J. A. (1996). Genetic and hybrid algorithms for graph
coloring. Annals of Operations Research, 63, 437–461.

Fredkin, E. (1990). Digital machine: A informational process based on reversible
cellular automata. Physica, D45, 245–270.

Galindier, P., & HAO, J. K. (1999). Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization, 3, 379–397.

Galinier, P., & Hao, J. K., (1997). Tabu search for maximal constraint satisfaction
problems. In Proceedings of the third international conference on principles and
practice of constraint programming (CP’97) (pp. 196–208). Lecture Notes in
Computer Science, Vol. 1330. Germany.

Galinier, P., & Hertz, A. (2006). A survey of local search methods for graph coloring.
Computers & Operations Research, 33, 2547–2562.

Galinier, P., Hertz, A., & Zufferey, N. (2008). An adaptive memory algorithm for the
K-coloring problem. Discrete Applied Mathematics, 156, 267–279.

Gamst, A. (1986). Some lower bounds for a class of frequency assignment problems.
IEEE Transactions of Vehicular Technology, 35(1), 8–14.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the
theory of NP-completeness. San Francisco, CA: W.H. Freeman and Co..

Glass, C., & Prügel-Bennett, A. (2003). Genetic algorithm for graph coloring:
Exploration of Galinier and Hao’s Algorithm. Journal of Combinatorial
Optimization, 7, 229–236.

Hertz, A., & Werra, D. (1987). Using tabu search techniques for graph coloring.
Computing, 39, 345–351.

Johnson, D. R., Aragon, C. R., McGeoch, L. A., & Schevon, C. (1991). Optimization by
simulated annealing: An experimental evaluation, part II, graph coloring and
number partitioning. Operations Research, 39, 378–406.

Kari, J. (1990). Reversibility of 2D cellular automata is undecidable. Physica, D45,
379–385.

Karp, R. M. (1972). Reducibility among combinatorial problems complexity of computer
computations. USA: Plenum Press. pp. 85–103.

Lawler, E. (1976). A note on the complexity of the chromatic number problem.
Information Processing Letters, 5, 66–67.

Leighton, F. T. (1979). A graph coloring algorithm for large scheduling problems.
Journal of Research of the National Bureau of Standards, 84(6), 489–506.

J. Akbari Torkestani, M.R. Meybodi / Expert Systems with Applications 38 (2011) 9237–9247 9247
Lewis, R., & Paechter, B. (2007). Finding feasible timetables using group based
operators. IEEE Transactions on Evolutionary Computation, 11(3), 397–413.

Lourenco, H. R., Martin, O., & Stutzle, T. (2002). Iterated local search. In F. Glover & G.
Kochenberger (Eds.), Handbook of metaheuristics (pp. 321–353). USA: Kluwer
Academic Publishers.

Mabrouk, B. B., Hasni, H., & Mahjoub, Z. (2008). On a parallel genetic–tabu search
based algorithm for solving the graph coloring problem. European Journal of
Operational Research. doi:10.1016/j.ejor.2008.03.050.

Malaguti, E., & Toth, P. (2008). An evolutionary approach for bandwidth multi
coloring problems. European Journal of Operational Research, 189, 638–651.

Meybodi, M. R., & Khojasteh, M. R., (2001). Application of cellular learning automata
in modelling of commerce networks. In Proceedings of 6th annual international
computer society of iran computer conference CSICC-2001 (pp. 284–295). Isfehan,
Iran.

Meybodi, M. R., & Mehdipour, F., (2003). VLSI placement using cellular learning
automata. In Proceedings of 8th annual international computer society of iran
computer conference CSICC-2001 (pp. 195–203). Mashad, Iran.

Meybodi, M. R., & Taherkhani, M., (2001). Application of cellular learning
automata in modeling of rumor diffusion. In Proceedings of 9th conference on
electrical engineering, power and water institute of technology (pp. 102–110),
Tehran, Iran.

Meybodi, M. R., & Beigy, H. (2004). A mathematical framework for cellular learning
automata. Journal of Advances in Complex Systems, 7(3-4), 295–320.

Meybodi, M. R., Beigy, H., & Taherkhani, M., (2000). Application of cellular learning
automata to image processing. In Proceedings of first conference in mathematics
and communication, iranian telecommunication research center (pp. 23.1–23.10).
Tehran, Iran.
Mitchell, M., (1996). Computation in cellular automata: A selected review, Technical
report, Santa Fe Institute, Santa Fe, NM, USA.

Munoz, S., Ortuno, M. T., Ramirez, J., & Yanez, J. (2005). Coloring fuzzy graphs.
Omega, 33, 211–221.

Narendra, K. S., & Thathachar, K. S. (1989). Learning automata: An introduction. New
York: Printice-Hall.

Packard, N. H., & Wolfram, S. (1985). Two dimensional cellular automata. Journal of
Statistical Physics, 38, 901–946.

Prestwich, S. (2008). Generalized graph coloring by a hybrid of local search and
constraint programming. Discrete Applied Mathematics, 156, 148–158.

Talavan, P. M., & Yanez, J. (2008). The graph coloring problem: A neuronal network
approach. European Journal of Operational Research, 191, 100–111.

Thathachar, M. A. L., & Sastry, P. S. (1997). A hierarchical system of learning
automata that can learn the globally optimal path. Information Science, 42,
743–766.

Thompson, J., & Dowsland, K. (1998). A robust simulated annealing based
examination timetabling system. Computers & Operations Research, 25, 637–648.

Voudouris, C., & Tsang, E. P. K. (2003). Guided local search. In F. Glover (Ed.),
Handbook of metaheuristics (pp. 185–218). USA: Kluwer Academic Publishers.

Vredeveld, T., & Lenstra, J. K. (2003). On local search for the generalized graph
coloring problem. Operations Research Letters, 31, 28–34.

Zymolka, A. M. C. A., Koster, & Wessaly, R., (2003). Transparent optical network
design with sparse wavelength conversion. In Proceedings of the 7th IFIP working
conference on optical network design and modelling (pp. 61–80). Budapest,
Hungary.

http://dx.doi.org/10.1016/j.ejor.2008.03.050

	A cellular learning automata-based algorithm for solving the vertex coloring problem
	Introduction
	Related work
	Exact algorithms
	Approximation algorithms
	Local search
	Tabu search
	Evolutionary algorithms

	Theory of automata
	Cellular automata
	Learning automata
	Cellular learning automata
	Irregular cellular learning automata

	The proposed vertex coloring algorithm
	Complexity analysis
	Numerical results
	Conclusion
	References

