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FAST FOURIER METHODS IN COMPUTATIONAL
COMPLEX ANALYSIS*

PETER HENRICI"

Abstract. In this paper we discuss the discrete Fourier transform and point out some computational
problems in (mainly) complex analysis where it can be fruitfully applied. We begin by describing the
elementary properties of the transform and its efficient implementation, both in the one-dimensional and in
themulti-dimensional case, bythe reduction formulasofCooley, Lewis, andWelch (IBMRes. paper, 1967). The
following applications are then discussed: Calculation ofFourier coefficients using attenuation factors; solution
of Symm’s integral equation in numerical conformal mapping; trigonometric interpolation; determination of
conjugate periodicfunctions andtheir application toTheodorsen’s integral equation for theconformalmapping
ofsimply and ofdoubly connected regions; determination ofLaurent coefficients with applications to numerical
differentiation, generating functions, and the numerical inversion of Laplace transforms; determination of the
"density" of the zeros of high degree polynomials. We then discuss convolution and its application to time series
analysis, to the multiplication of polynomials and of large integers, and to fast Poisson solvers. The paper
concludes with an account of some recent results of Brent and Kung (Carnegie-Mellon Univ., 1975, 1976)
concerning fast algorithms for manipulating power series.

Fourier analysis isone of the most pervasive tools in applied mathematics. Among
other places, it occurs

(i) in the modeling of time-dependent phenomena that are exactly or approxi-
mately periodic;

(ii) in the study of problems that involve a circular or rectangular geometry.
Examples for (i) include the theory of alternating currents in electrical engineering;

the digital processing of information such as speech, electrocardiagrams, and elec-
troencephalograms; the analysis of geophysical phenomena such as earthquakes and
tides. Examples for (ii) occur not only in classical mathematical physics, notably in the
study of vibrations of spherical, circular, or rectangular structures, but also in the
processing and cleaning up of pictures, such as those beautiful photographs transmitted
from remote planets.

It is one of the triumphs of mathematical abstraction, diminished only subjectively
because we have become so very much used to it, that periodic phenomena in time and
space can be dealt with by the same mathematical apparatus. Since the times of Fourier
this apparatus has been developed to a high degree of perfection. Frequently in the
modeling or analysis of real situations this theory cannot be applied directly, because
the functions to be sampled are known only on a discrete set of "sampling points". It
then becomes necessary to replace continuous Fourier analysis by a discretized version
of it. Rather surprisingly the mathematical theory of discrete Fourier analysis enjoys an
even greater symmetry than the continuous theory; moreover, it has interesting
applications to problems in computation that are not a priori periodic. Originally the
impact of discrete Fourier analysis was limited by the very large computational
demands made by the theory in its naive form. This was changed in 1965 by the
invention of a new family of algorithms, called Fast Fourier Transforms, by Cooley and
Tukey, which reduced the computational work required to carry out a discrete Fourier
transform by orders of magnitude.

It is my intention in this report to give an elementary introduction to these Fast
Fourier Transforms, and to describe some of their applications, potential as well as

* The John von Neumann Lecture delivered at the SIAM National Meeting, May, 1978. Received by the
editors May 25, 1978, and in revised form, December 1, 1978.

" Swiss Federal Institute of Technology, Ziirich, Switzerland.

481



482 PETER HENRICI

actual, to various computational problems in applied analysis, especially applied
complex analysis.

1. The discrete Fourier transform
1.1. The one-dimensional transform. Let n be a natural number. We denote by

IIn the space of bilaterally infinite sequences

x=(x___,

Xk C, that are periodic with period n, i.e. that satisfy

Xk +n Xk

for all k. Defining addition of two sequences x {Xk} and y {Yk} II. by

(x + y) := x + y, Vk,

and multiplication by a scalar c C by

(cx)k := cxk, Vk,

it is clear that 1-I becomes a linear space. The zero element of the space is the sequence
0 :- {0}, all elements of which are zero. Any sequence x II can be expressed as a
linear combination of the n sequences

e(’ {e(k’) }, m=0,1,...,n-l,

where
1, k=-m (modn)em) ::
O, km (modn).

Because the sequences e(") are linearly independent, the space I-[ has dimension n.

On II, we define a map , called the discrete Fourier operator, as follows. Let

w,, := exp (27ri/n).

For x H, we set x y {y,,}=_ where

1
(1.1) Y,, :=- Z W-’kXk

n k=O

It is clear that the map o is linear. Moreover in view of w 1 there holds for any
integer m

1
y,,,+,, 5’.

l k=O

n-1_--1 , W_,kxk Y,.
/’ k=0

The image sequence thus is periodic with period n, that is maps II into II.
It is easy to see that the mapping defined by IIn actually is onto. By a theorem of

linear algebra this will follow if the only sequence x II that is mapped on the zero
sequence is the zero sequence. Now x-0 means that

Y’. w-kmxk =0, m =0, 1,... ,n--1.
k=0

This represents a homogeneous system of n linear equations in the n unknowns
Xo, Xl,’", x,-l. The determinant of the system is the Vandermonde determinant
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-,+1
which are all distinct. The deter-formed with the numbers 1, W"1, Wn2, W

minant thus is -0, and the only solution is the trivial solution.
Because o%n is a bijective linear map of II, onto II,, the inverse map exists and is

linear. To find a formula for it, we use the fact that if r is an integer,

2r (n-1)r._ {n if r0 (mod n),
(1.2) l+w+w,+...+w,

0 ifr0 (modn).

Thus if

1
y.,=- w"x,

n k=O
m=O, 1,..., n-l,

and if r is any integer, we get by multiplying the ruth equation by w ," and adding

n--1 1 n--1 n--1
(r-k)m2 w.y=-Zx Z w. =x.

=0 n k =o =0

Hence the inverse map of (1.1) is

n--1

Xr Y’. W y,

and thus closely resembles n. Defining the conjugate discrete Fourier operator . by

1
(1.3) (.y) :=- wkyk

n k=0

we in fact have

(1.4) ,.- =no,.

Manipulations involving o%, can often be simplified by means of the reversion
operator R, defined for any x II,, by

(1.5) (Rx),, := x_,.

We have

hence

and consequently

(1.6)

(R,,x),.
1 -i k.w. x (.x),
/’/ k=O

1 n--1
-krn(,gx),=- ] x-kw,

n k=O

E xw. (.x)m,
/2 k=O

n,R nRn.
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In summary, we have proved"
THEOREM la. The discrete Fourier operator an is a bijective linear map from IIn to

The inverse map is

1 --tln nRn nnR,

where @n is the conjugate Fourier operator, and where R is the reversion operator defined
by (1.5).

1.2. Existence of Fast Fourier Transform algorithms. Here we consider the
algorithmic problem of computing the sequence y := @nx for a giver/x 1-In. Because y is
periodic, it suffices to calculate the elements of one full period of y, for instance the
elements y0, yl," ", yn-1. To compute one such element directly from the formula
(1.1), assuming that the required powers of wn have already been formed, clearly
requires n 1 complex multiplications (/.). To compute a full period of y by this method
thus requires n (n 1)/z. Modern applications of discrete Fourier analysis, for instance
in the analysis of time series (see 4.2) require values of n as large as 2 TM. Then
n (n 1) 2.68 10s, and the time required for forming even a single Fourier transform
would appear to prohibit large-scale applications of the Fourier method.

It is therefore a fundamental fact in practical Fourier analysis that for numbers n
that are highly composite the computational work required to form @nx can be
drastically reduced. The basis for this reduction is a reduction formula that can be traced
back to the precomputer age, but whose importance for large-scale applications of the
transform was recognized for the first time by Cooley and Tukey (1965). For n 21 the
formula results in an algorithm that permits the evaluation of nx in only 1/21n
1/2n Log2 n

Let n pq, and for a given x I-In let

xi) {x ki) {Xi+pk }, j O, 1," ", p 1.

(X i) is the subsequence of those elements of x whose index is --j mod p.) Evidently,
xi) FI, j 0, 1, , p 1. We assume that the sequences

y/i) := o%qxi), j =0, 1, ., p- 1,

are known, and try to express y := nx in terms of the elements of the sequences yi).
For all integers m

1 n--1

-mk 1 p--1 1 ,1 -m(j+ph)xjy=- Z w x=- Z- w. +,
n k=o P i=o q h=O

and in view of w p
n-’-Wq

1 p--1
--mj 1 q--1

q mhxj+ph"y=-Ew -E w-
p i=o q a=o

Considering

this yields

1 q-1

Z w;xi+. y’,
q h=O

lP-1
(1.7) y,, w iyti

p i=o

which already is a representation of the desired sort. To construct the sequence y from
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the sequences y.l by means of (1.7) evidently requires p-1 for each value of m,
thus a total of(p 1)n tz. We ignore the multiplications that could be saved for m O.

Let now the integer n be factored into factors

(1.8) n =/71/72" rtl;

it is not required that the n are prime factors. Formula (1.7) then may be used
recursively" To compute x we require nl transforms of period q nz’"nl, to
compute these we need nln2 transforms of period q n3 nt, etc., until we arrive at
n =nnz...n transforms xx which are identical with x. The total number of
multiplications will then be

n n
n(nl-1)+nl---(nz-1)+’’’+na".nt (nl-1)=n Y. (ni-1).

n na" nl i=

For instance if n 21 the required number of multiplications will be nl n Log2 n. The
number of additions is similar, and the divisions by n, which are mere powers of 2, may
be ignored. It thus is clear that an order-of-magnitude improvement has been achieved
over the naive method of evaluating (1.1).

There is a variant of (1.7) which sometimes leads to even greater economy. Let
m k +lq (k =0, 1, , q-l; l- 0, 1, ,p-l). We then have

--mj (k +lq)j -lJw-kJWn W- Wp

and because the sequences y(i) have period q there follows

lp-1
(1.9) y+q=- wiwyi) k=0,1 ...,q-l" l=0,1,...,p-1

p =0

The equations (1.9) are evaluated by

(A) evaluating the (p- 1)q products

zi) :=w-’iyi), /’=1,2,...,p-1; k=0,1,...,q-1;

(B) evaluating the (p- 1)2q products

-z), l,/’=1 2 ...-,p-l" k=0,1 ...,q-1Wp

We again have ignored the triviality of the multiplications for k 0. The step from the
y(i) to y now requires a total of

(p 1)q + (p 1)2q Pq (p 1)

Thus in general there is no saving in comparison to the use of (1.7). If, however, p 2,
then w, 1, and the multiplications of type (B) need not be counted. The step from
the y(i) to y then requires only q /z, and if n 21 and (1.9) is used recursively, then the
total number of tz to evaluate @nx is

(1.10) b(n) := 1/2n Log2 n.

THZORZM lb. If n is factored in the form (1.8), not more than

n E (ni-1)
i=1

complex multiplications are required to evaluate @nx for a given x 1-In. In the special case
n 2 the number of multiplications does not exceed (1.10).
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We do not discuss in detail the problem of how to implement the algorithm implied
by the recurrence relations (1.7) and (1.9). This may be arranged in such a manner that
at no stage of the computation must more than n numbers be stored. Most implemen-
tations require the bit inversion junction Pi which is defined as follows: If m is an integer,
0 -< m < 2i, whose binary representation is

m m0 + 2ml + 22m2 +" + 2i-lmi-,
then

pi(m) mi_l + 2mi_2 +. + 2i-mo.
For an implementation that does not require the bit inversion function see Kahaner
(1978).

1.3. The multi-dimensional discrete Fourier transform. Let

X {X klk2...kdlki=-cx3
be a d-dimensional array of complex numbers which in each index is periodic with
period n. The space of all such arrays is denoted by II). The d-dimensional discrete
Fourier transform is defined by

where

1 n-1 n-1

(1.11) Y,-1,-2""md :=--7 W-k1"1 kdmdXklk2""kd"n kl =0 ka =0

It may be shown as in the one-dimensional case that ,(,a) is a bijective map from II (an
onto 1-I (an whose inverse is given by

(1 12) r)- d.(d)

The d-dimensional discrete Fourier transform has applications in crystallography
(d 3), in the solution of the Poisson differential equation in rectangular domains
(d 2, 3, see 4.4), in numerical conformal mapping (d 2, see 2.3), and in digital
picture processing (d 2, see Rosenfeld and Kak (1976)).

The evaluation of (1.11) may be reduced to the evaluation of one-dimensional
discrete transforms. This becomes evident if (1.11) is written as follows"

1 n- 1 - 1
(1.13) y,,lm2...,,d W2klml- Y W2k:’2 w2k"Xkk...k.n kl=O n k2=O n ka=O

d-1This necessitates the computation of d simple Fourier transforms, each for n
different combinations of the indices. Thus the total number of multiplications does not
exceed dna- times that required for a single .,, that is

dn a (ni-1)
i=1

for the general factorization (1.8), and

1/2dn a Log2 n

if n =2t.
An alternative approach to the multi-dimensional transform consists in directly

generalizing the reduction formulas (1.7) and (1.9) to the multi-dimensional case. As in
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the one-dimensional case this has the advantage that it is not necessary to specify n in
advance. For compact notation we introduce the index vectors

k (kl, k2," ", kd), m (rna, m2," ", rod)

and denote by Q, the period cube in the d-dimensional unit lattice, i.e., the set of all
index vectors k where ki {0, 1, , n 1}. Then (1.11) is the same as

1 -k’mxym=--- W,, kn k 0,,

where the dot signifies a scalar product.
Let again n pq, and consider the pa sequences

X :"- {X|+ph}, j Op.

These sequences are in IId). We assume that their Fourier transforms

q x’, Op,
are known. Because every vector k Q,, may be written in the form

k=j+ph, j Qp, h Qq,
in exactly one way, we have

1 -(j+ph)-m

n jOph6Oq

1 _. 1 .w
Because

by definition, we have

1 wh’mx+ph Ymq

1
(1.14) Ym "- Z -i.m.Wn Ym

P

which is the multi-dimensional analog of (1.7).
To obtain the analog of (1.9), we note that every m e Q, may be represented in

exactly one way also in the form

m= k+qi, kOq, lOp.

Because the sequerces yJ have period q,

Yk+ql Yk,Ym

and observing that

Wl-m
there results the desired representation

1
2(1.15) Yk+qi
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By use of (1.14) or (1.15), the transform y II(f may be constructed directly from pd
transforms in I/d, without iterating one-dimensional transforms. While no significant
savings appearto result in the caseofgeneral factorizations (1.8), a significantreduction of
the number of multiplications is possible if n 2 I. In this case, p 2 always and

14"2 =4-1.

Thus the only products to be formed when stepping from 1-Id) to II (d). are

w, ’y,, j O2, j0, k Oq.

There are (2a- 1)qa= (1-2-a)n d, such products..When stepping from 1 to n 2
through the powers of 2, this process is repeated times, and we have

THEOREM lC. If n 2 l, the number ofcomplex multiplications required to evaluate
)x does not exceed

(1--2-d)n d Log2 n.

Already if d 2 this compares favorably with the 1/2dn Log). n multiplications
required by iterating one-dimensional transforms, and the ratio becomes more favor-
able as d gets larger.

Notes on 1. 1.1. Discrete Fourier analysis is dealt with in many numerical
analysis texts; see for instance Runge and K6nig (1924), Hamming (1973), Dahlquist
and Bj6rck 1974).

1.2. The original publication of Cooley and Tukey (1965) simultaneously proves
the existence of a fast Fourier transform algorithm and provides an implementation for
it. The treatment based on reduction formulas given here is based on Cooley, Lewis,
and Welch (1967a). For the origins of the formulas see Cooley, Lewis, and Welch
(1967b). Other approaches to fast Fourier transforms are based on a factoring of the
matrix representing the Fourier operator (Theilheimer (1969), Kahaner (1970),
McClellan and Parks (1972)), or on determining remainders in the division of poly-
nomials (Fiduccia (1972), Aho, Hopcroft and Ullmann (1974), Kahaner (1978)). For
some European implementations of the transform see Gander and Mazzario (1972),
Iselin (1971). Winograd (1978) proposes a new algorithm for computing the discrete
Fourier transform which for suitable n requires only about 20% of the multiplications
of the Cooley-Tukey algorithm, while the number of additions remains about the same.

1.3. Multi-dimensional transforms are usually treated by iterating one-dimen-
sional transforms. We have found no reference-indicating that the direct application of
the reduction formulas may result in a saving of operations.

2. Harmonic analysis.
2.1. Fourier coefficients. The most obvious application of discrete Fourier analy-

sis consists in the numerical calculation of Fourier coefficients..Let II denote the class of
complex-valued functions defined on and having period 1. If x II is integrable, its
Fourier coefficients are defined by

:= J0 x(r) e
-)im dr,(.1) am

m -0, 4-1, 4-2,. .. With these coefficients the formal Fourier series of x,

am e 2"trim’r
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may be formed. Under certain conditions this series converges to x(r) for some or all
values of r.

In many applications the integrals (2.1) cannot be evaluated in closed form. This is
true, in particular, if the function x is known only empirically, or if it can be evaluated
only on a discrete set of values of r. The points r where x can be calculated or measured
are known as the sampling points. If the point r 0 plays no distinguished role, it is
reasonable to assume that the sampling points are equidistant, and that their distance is
commensurate with a period. We thus assume the sampling points to be

The values

1
r, kh, h := -, k ;.

n

x, := x(r,), k 2,

are called the sampling values of x. They form a sequence

which evidently belongs to IIn.
What kind of integration rule should be used to evaluate the integrals (2.1) under

these circumstances? For functions x that are not smooth a high-powered Newton-
Cotes rule (even if stable) obviously brings no advantage, and one might as well use a
trapezoid or midpoint rule. The same holds if x is smooth, for it may be shown by a
translation argument that the trapezoid or midpoint rule furnishes a result that is
accurate to the same order as the n-point Newton-Cotes formula. Thus, setting
w := exp (2"rri/n), we approximate am by

(2.2) dm := xkw -ink, m 7/,
n k=O

which of course is to say that the sequence h {din} is

the discrete Fourier transform of x.
Concerning the error committed in approximating am by din, the classical estimate

for the Newton-Cotes formula,

[d., a,l -< n+l max [(x(r) e-2"rrirm’)(n+l)[

with /,,/1 independent of x is of no great use, because even if estimates for the
derivatives of x were available, the factor exp (-27rimr) would cause the resulting
estimate to be unrealistically large for large Im]. Fortunately, a more explicit error
estimate is available under much weaker assumptions.

THEOREM 2a. If the Fourier series of x H is absolutely convergent, then for every
tn EZ

(2.3) dm-am am+kn.
k0

The proof is immediate if we substitute into (2.2) the values

x x(rg) E am e:zim’’ E amwk’m,

reverse summations, and use (1.2).
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If x can be extended to a function of the complex variable r + itr that is analytic
in the strip -r/<_-cr <-r, the relation

f(z) := x(2-/Log z)
defines a single-valued analytic function in the annulus A’ e-2n -<_ ]z[ _-< e2n. The a,
then are identical with the Laurent coefficients of f for that annulus, and by the Cauchy
estimate are bounded by

la,,,l< g e rn

where/x is the maximum modulus of f in A. By summing geometric series, (2.3) then
yields

la,,-a,l_-< 2g cosh (2rmr/) -2-rrn1-e
m] <n,

and we have:
THEOREM 2b. If m is fixed and n- oo, the error of the m-th discrete Fourier

coefficient of a function x II that is analytic in the strip [Im tl <= 7 tends to zero like
exp (-2zrnr/).

Thus, if a Fast Fourier Transform is used with n 21, the error will be squared with
each doubling of n.

Satisfactory as this convergence behavior may be, the d, suffer from a basic flaw
when n is fixed. From the Riemann-Lebesgue lemma it is known that

(2.4) lim a. 0.

The sequence h, on the other hand, is periodic with period n and thus cannot satisfy
(2.4) unless it is the zero sequence. Fortunately, this deficiency can be corrected by
making use of a simple device known as attenuation factors.

We continue to assume that the only values of the function x II which we know
are the sampling values x,. The idea now is to approximate the sequence x by a function
Px 6 H, and to compute the Fourier coefficients of Px exactly. This computation turns
out to be simple if the approximation operator P has the following properties which
seem very natural:

(i) P is linear;
(ii) P is translation invariant; i.e. if E denotes the shift operator defined in 1-In by

(EX)k := Xk+l and in II by (Ex)(r) := x(r + 1/n), then

PEx EPx

for all x IIn.
If x is the sequence to be approximated we wish to compute the exact Fourier

coefficients of the function Px, i.e., the numbers

(2.5) b,, := J0 (Px)(r)e -2*rim* dr.

Let 8 {,} denote the delta sequence defined by

n, m----0 (modn),
(2.6) 8,, :=

0, m0 (modn).
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Then

1 n--1

x=-- XkE-ks,
n k=O

and by (i) and (ii) we have

n-1 1
Px _1 y xkPE_k g XkE_kpg"

n k=O n k=O

If p := Pi e H, it follows that

b,,,
l n IOXk (E-kp)(r) e -2rimr dr
n k=O

1 Iol ( )ex p r- dr.
n k=0

Because p is periodic with period 1,

k --2rrimrp z- e dr p(z) e
"-k/

-mk
W

where w := exp (2 zri/n) and

-2rrim(r+k/n) dr

P" := Io p(r) e -2im dr

is the ruth Fourier coefficient of p P8. Hence we have the resulting expression

1 n--1

b,,=p,- Xkw-k"=p,&.
n k=0

THEOREM 2C. The Fourier coefficients ofPx are p,,3,,, where := .,x, andp,, is the
m-th Fourier coefficient of PS, where 8 is the delta sequence given by (2.6.).

The numbers p,, are the Fourier coefficients of an integrable function and thus
satisfy p,, - 0 for m - +/-c. They are known as the attentuation factors defined by the
process P.

Theorem 2c delegates the responsibility for the accuracy of the Fourier coefficients
entirely to the choice of the approximation operator P. This choice will be influenced by
what the user knows subjectively about the function x. We consider two examples.

1. Linear interpolation. Here the data {Xk} are interpolated by a piecewise linear
function. It is clear that this process of approximation is linear and translation invariant.
In particular, the delta sequence 8 is approximated by the function given in (-1/2, 1/2) by

n-n2lr],
p(r) :=

O, otherwise,

and repeated periodically. For its Fourier coefficients we easily find po 1,

p, sin m O,

confirming that p,. - 0 for m +/-cx3.
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2. Interpolation by periodic cubic splines. Here we interpolate the data x by a
function y Px H satisfying the following conditions:

(i) y(rk)= Xk;

(ii) in each interval [’k, rk/l], Y is represented by a cubic polynomial;
(iii) y’ is continuous;
(iv) the integral

f0 ly"()l= dr

is as small as possible.
It can be shown that y is defined uniquely by these postulates. The resulting

approximation operator P obviously is linear and translation invariant. Without going
into the details of the construction of y, we mention that the attentuation factors are
given by p0 1,

(m)4(T/’_)4 3
p,,, sin

2 + cos (2rrm/n )’
m 0.

The foregoing results obviously can be extended to multivariate numerical
harmonic analysis. Thus if x(r, tr) is a function of two real variables which is periodic in
each variable with period 1, then its Fourier coefficients

akm :-" fo Io X(r, o’) e-2"ri(k’+m’r) d’r dcr

are approximated by rig,,, where the doubly periodic sequence 8 {dk,,,} is the two-
dimensional discrete Fourier transform

a :=x
of x= {Xk,}, Xk,, := x(k/n, m/n), and it is fairly obvious how to extend the theory of
error estimates and of attenuation factors to the multivariate case.

2.2. Numerical solution ot Symm’s equation. Two-dimensional Fourier analysis
can be used in the numerical solution of an integral equation which arises in the
numerical construction of conformal maps. Let F: z z(r), 0 =< r =</3, be the boundary
curve of a Jordan region D containing the point z 0. We wish to determine the
function f mapping D onto the unit disk Iwl < 1 in such a manner that

(0)=0, f(0)>0.

To determine the mapping function, it is sufficient to know its values f(z(r)) on the
boundary of D. Because If(z(r))l 1, it in turn suffices to know a continuous argument

O(r) arg (f(z (r))), 0 _-< r =< ft.

Any such continuous argument is known as an (interior) boundary correspondence
function for the mapping f. The boundary correspondence function refers to a particular
parametric representation of the boundary F, and thus is not determined by f alone. If F
is analytic, then 0 is likewise analytic.

It was shown recently by Gaier that there exists an intimate connection between
the boundary correspondence function and the integral equation of the first kind

1/0 (2.7)
2rr

Log ]z (o’)- z(r)](r) dr Log [z (or)I, 0 < o" </3,
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for an unknown function c, which was first used for purposes of numerical conformal
mapping by Symm. If the capacity 3" of F satisfies 3’ # 1, then Symm’s equation (2.7) has
the unique solution c(r)= 0’(r). The condition 3" # 1 is satisfied, in particular, if the
boundary F lies either entirely within or entirely without the unit circle. In these cases it
is thus possible to determine 0’ as the unique solution of (2.7).

Because the kernel, the nonhomogeneous part and the solution of (2.7) all can be
extended as periodic functions with period fl, the idea does not seem far fetched to seek
the solution in the form of a Fourier series. Here the difficulty is at first encountered that
the Fourier series for the kernel Log Iz (o)- z (’)1 converges only very slowly due to the
logarithmic singularity at o- r. Assuming fl 27r, we thus transform the equation into
one with a smooth kernel by writing it in the form

(2.8) Log[ei’-ei’]o’(r) dr+--- Log z()-z(r)e, -e" O’(r) dr Log Iz(o-)l.

Assuming the solution to be

O’(r) Z tk e ik to 1, t_ t,

the second integral can be evaluated if the kernel is expanded in a double Fourier series,

Log iz(cr)_ z(r) iko’+im’r
io- ,9 Z Ik,, e

e e k.m=-oo

To deal with the first integral, we use the fact that if m is an integer and cr is any real
number,

l
i’r[ imr I 0’ m=0,

Log ]e i e e dr 1 imo-2rr
-2[ml e m #0.

Expanding

Log ]z(o’)[ Y’. z., e imr,

substituting into (2.8) and considering the mth Fourier component, we obtain the linear
system

1
-t,,+ Y’. lk,,t-k=Z,,, m=+l,+2,....(2.9)
21ml =-oo

No equation is obtained for to, but from

to O’(r) dr f-[0(2rr)- 0(0)] 1

to is known to have the value 1.
The structure of the system (2.9) suggests an iterative procedure for solving it.

Starting with a zeroth trial solution {t)}, one determines a sequence of approximate
solutions {t)} by

1 (i+1)t,, E l,,,t)-Zm(2.10)
2lml =-oo
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If

{ }1(2.11) 2 E Ikll /<1,
k,

the convergence in the space 12 follows from standard results in functional analysis.
Because all lk" 0 if F is a circle, (2.11) expresses a condition of "near-circularity" of
the boundary curve. On the basis of considerable numerical evidence, this condition
may be interpreted rather liberally; for instance, convergence to the exact solution to 9
decimal places takes place if F is a square.

It is of interest also to observe the workings of the iteration process (2.10) in a
situation where it can be carried through analytically. Let 0 < e < 1, and consider the
curve

F" z(r) e + e -i,
an ellipse with semi-axes 1 + e and 1- e. Here

Z (O’) Z (’r’) e-ir e -i’r
-i(o-+,r)

io" i’r 1 + e i,:r i’r 1--e e
e -e e -e

and consequently

Log ]Z(’)-z(r),: Re Log (1 e e -i(’+)

Furthermore

--Re Y’. e

n=l n
--in(cr+’r)

e +e
n=l

-in (cr+’r) }.

Log Iz (r)l Log le i + e e-i

Re Log (1 + e e -:zi)

Ey’, (--1)n-1 {eTM
n--1

+ e-2icr}.

Thus the system (2.9) in this case becomes

1 e (0, if m is odd,

2m
t t" e1)1---, if m is even, m 2l,

m

and t_" t". Thus the successive approximations are seen to form a geometric series
with ratio e, and we find

m odd,

t" (-1)le
2

1 + ’l, m even, rn 2l.

The boundary correspondence function for the ellipse thus turns out to be

(2.12) O(r) r + 2
(-1) e

2,. sin (2m’).
"= rn l+e
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2.3. Trigonometric interpolation. Suppose we wish to approximate a function
x II by a trigonometric polynomial of period 1, that is, by a function of the form

t(’r) Y. am e -’im’,

where only finitely many am are different from zero. Because the ideal representation of
a periodic function is its Fourier series, a crude way to proceed would be thus" For
sampled data, we first compute approximate values of the Fourier coefficients by (2.2),

,,:=- Y XkW
n

and then truncate the Fourier series formed with these approximate coefficients.
Because the sequence {/m } is periodic with period n, it makes no sense to use more
than n terms in the series. If n is odd, one thus would use the polynomial

(2.13a) .f(r) := Y’. tm e 2"rim,,
Iml<n/2

if n is even,

n/2

(2.13b) ?(r) :-- }-’.’ m e2wirer,
=-n/2

the prime indicating that the terms where m +n/2 are to be multiplied by 1/2.
(If x is real, then -m ,, for all m; hence -,/2 fin/2 is real. The prime convention
then has the effect that the real form of .f(z) has no term in sin (nrr’).)

It would seem that two errors are committed in the above approximation: (a) the
error committed in replacing the exact Fourier coefficients a,, by the approximate
Fourier coefficients /m (b) the error committed in truncating the Fourier series. Very
miraculously it turns out that, at least at the sampling points rk, these two errors just
cancel each other. That is, for r Zk the function .f(r) not only approximates, but
actually interpolates x.

THEOREM 2d. Let x Fl, X={Xk}={X(7"k)} (’l"k := k/n, k Z), and let be the
trigonometric polynomial (2.13) whose coefficients ,, are given by (2.2). Then for all
kZ,

(2.14) (rk)=X(Zk).

Proof. Far from being a deep result, this is a mere corollary of the inversion
formula for the discrete Fourier transform. We consider the case where n is even. In
view of exp (27rim-k)= w ink,

n/2

(r) Z’ &w.
=--n/2

Because g II,, this in view of w" 1 equals

n-1

m--O

am (n,h)k (.-1 fl)k Xk x(’rk).

What can be said about the goodness of fit of x(’) by .f(r) at points - that are not
sampling points? We assume that the Fourier series of x represents x and is absolutely
convergent,

x(r) am eim’, Y la.l <
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Using Theorem 2a we .have, assuming n to be odd,

.(’r) E fi,,., e
-n/2<m<n/2

2rim’r

l)E
--n/2<m<n/2 l=--c

2rim’r

y’, ame2im + y’,
-n/2<m<n/2 -n/2< <n/2

therefore

(’)-x(’)= E
-n/2<m<n/2

2-trim’r . ak e 2rikr
Ikl>n/2

and thus, if n is odd,

(2.15a) I(’r)-x(’r)l--<2 [akl.
[k[>n/2

If n is even, a similar calculation yields

(2.15b) 1(7")- x(’)[ _-< [a,,/2l + la-,/2l + 2 2 lakl.
Ikl>n/2

The result, due to Gaier, is summarized in
THEOREM 2e. Ifx II is represented by an absolutely convergentFourier series, then

the interpolating trigonometric polynomial defined by (2.13) approximates x at all real -with an error that is bounded as indicated in (2.15).
We conclude, for instance, that for each fixed such x II the interpolating

trigonometric polynomials tend to x uniformly as n - c. If x is analytic, it follows as in
the proof of Theorem 2b that the error tends to 0 at a geometric rate.

2.4. Conjugate periodic functions. If D C is a region and if u is a real harmonic
function in D, then any harmonic function v such that [ u + iv is analytic in D is called
a conjugate harmonic function of u. If D is simply connected, the conjugate function of
a given harmonic function u always exists and is determined (by the Cauchy-Riemann
equations) up to an additive constant.

We arrive at conjugate periodic functions by considering the special situation
where D is the unit disk. Let u be harmonic in the unit disk E: ]z[< 1, and assume that u
can be extended to a continuous function on the closure E" [z I=< 1. Then the boundary
values of u define the continuous 27r-periodic function

ce(0) := u(ei), 0 e [.

Let v be the conjugate harmonic function of u, normalized by the condition

v(O)=O.

If v likewise can be extended to a continuous function on E’, then its boundary function

fl(0) := l)(ei), 0 [

is called the confugate periodic function of c and is denoted by
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Given c, it is easy to compute/3 if we assume that c is represented by an absolutely
convergent Fourier series,

(2.16) a(O)= Z a., e
m--oo

imO

(a_,, a,, because c is real), where

Itis clear that

f(z) := ao+2 a.,z
m=l

is an analytic function whose real part has the boundary values (2.16), and since f(0) is
real, we have

/3(0) Im f(ri) _1 (a, e ira am e-i’).
m=ll

Hence the conjugate periodic function of c (0) is

(2.17) /3(0)-- bme ira,

where

ia, m>O,

(2.18) b,, 0, m 0,
ia,,, m < O.

By means of singular integrals the operator . can be extended to the space
Lz(0, 27r); for further details, see Gaier (1964) and Zygmund (1968).

In order to approximately determine the conjugate periodic function of a function
c whose values are known only at the sampling points 0k 2rk/n, one may proceed as
follows. One first determines the trigonometric polynomial

c(O)= E’ fie
Imln/2

which interpolates c(0) at the sampling points. This requires the computation of the
sequence h := ,a, and thus if n 2 can be done in O(n Log2 n) operations. One then
considers the trigonometric polynomial

/(0) := .(0)= 5".’ b e imO

Iml----n/2

whose coefficients are given by (2.18), as an approximation to/3 := .a. If the values of/
at the sampling points are desired, they may be calculated by a Fast Fourier Transform
in another O(n Logz n) operations.

Concerning/3 -/3, the elementary technique used in proving Theorem 2e yields the
following estimate, again due to Gaier:

THZORZM 2f. Let c be a real 27r-periodic [unction whose complex Fourier series
(2.16) is absolutely convergent, and let [ be the approximation to := . determined
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above. Then for all real O,

21a,[+4 lag[, neven,

4 E lal, n odd.
k>n

2.5. Solution of Theodorsen’s integral equation. Conjugate periodic functions
play a role in a method for the construction of conformal maps based on an integral
equation due to Theodorsen. Contrary to the methods based on Symm’s equation and
equations related to it, Theodorsen’s method determines the mapping function from
the unit disk to the given domain. Furthermore, Theodorsen’s equation is nonlinear,
and iteration is the only practically available method for solving it.

Let the boundary curve F of the given region D be star-like with respect to 0, and
thus be representable in polar coordinates,

z()=p()e i4, 0=< b =< 2zr,

where p(b) is continuous and piecewise analytic. If g maps the unit disk E onto D such
that

g(O)=O, g’(O) > O,

we now call boundary correspondence function any continuous function b such that

b(0) arg g(ri), 0 <-_ 0 <= 2rr.

Theodorsen’s method aims at determining b.
It is clear that the function w-lg(w) is analytic in E and does not vanish. Hence it

possesses a single-valued analytic logarithm

(2.19) h(w) := log g(w__),
W

which we define uniquely by requiring that

h (0) log g’(0) is real.

Obviously h can be extended to a function that is continuous in ]wl_-< 1. Then

a(0) Re h(e i)
has the conjugate periodic function

fl(O)= Im h(ei).
But from (2.19),

g(e i)
fl(0) arg iO ""(/)(0)--0.

e

We thus have:
THEOREM 2g. Under the above hypotheses, the boundary correspondence function

4 (0) satisfies
(2.20) 4, 0 , Log.p(,b).
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If the operator , is represented by a principal value integral as mentioned earlier,
(2.20) becomes an integral equation which is generally referred to as the Theodorsen
integral equation. If p satisfies an e-condition, which is to say that there exists e < 1 such
that

(2.21)
0(4)

<= e

for all b for which p’ exists, then it can be shown that b(0) is the only solution of (2.20).
Under the same condition it may be shown that the analytical iteration

(2.22) b (t+l) -0=, Log p(b(t)), j =0, 1,. ,
converges to the true solution.

To implement the iteration (2.22) numerically, we replace the exact periodic
iterates b (t) 0 by trigonometric polynomials. For this we choose a fixed number n of
interpolating points which if a Fast Fourier Transform is used should be a power of 2.
The functions (t) approximating the b (t) are defined by

(2.23) 4(t+l) (0)= 0 + ,[Log p (4)(0)]^,

/" 0, 1,..., where denotes trigonometric interpolation as described above, and
where 4(0)(0) is usually chosen as 0. Each step of the iteration requires the evaluation of
p(b) at n points, plus two discrete Fourier transforms. The advantages of using a Fast
Fourier algorithm are obvious. It may be shown that if 0(4’) satisfies an e-condition
where e < 1, the sequence {t)} converges to a solution of

4;(01 0 + ,[Log p (4;(0))]^.
Both the iteration error Ib (t (0)-b(0)l and the discretization error ](0)-b(0)] may
be estimated. We refer to Gaier (1964) for analytical details. It should be mentioned
that according to results of Niethammer (1966) and Gutknecht (1977), the iteration
may still converge if e _>- 1 if a suitable form of under-relaxation is used.

2.6. Doubly connected regions. We begin by discussing a generalization of the
operator , introduced in 2.4. Let c0 and a be two real 2w-periodic functions given by
their Fourier series

ot(O) Z at,,, e
inO /’=0,1,

(at.-, at,,), which we assume to be absolutely convergent. Let 0 </. < 1, and let A be
the annulus/x <lw]< 1. We wish to carry out the following program’

(i) To solve the Dirichlet problem of finding a function u that is harmonic in A,
continuous in the closure A’ of A, and that satisfies the boundary conditions

u(ei)=ao(O),
(2.24)

u(tz ei) Ol(O)

for 0<= 0_<-27r;
(ii) To construct, if possible, a conjugate harmonic function v of u;
(iii) To extend v continuously to A’, if possible, and to express the boundary values

of v directly in terms of the functions a0 and ax or their Fourier constants.
Suppressing the details of the computation, we note that u can easily be expressed

by a Fourier series, and that the necessary and sufficient condition for the existence of v
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is

o
ao(O) dO o1(0 dO

or a 1,0 ao,o. If this condition is met, the boundary values

fl0(0) := v(e i) and /1(0) := v( e i)

are found to be

(2.25)

where the operators . and 63, are defined as follows: If

a(O)= an e inO

and if the Fourier series is absolutely convergent, then

ga(O)= E bn e in,

where bo 0,

and

2n

bn -i 2n an, n O,

Ju,Ol" O Z Cn e inO,

where Co 0,

cn -i 2n an, n 0.
1-tz

Let nowD be a doubly connected region bounded on the outside by a Jordan curve
F0 and on the inside by a Jordan curve FI. We assume that F is represented in polar
coordinates as

Z =pi(b) e i’t’, O<=<-_2"rr, i=O, 1,

Let the annulus A" tz <[w[< 1 be conformally equivalent to D, and let g be a map from
A to D. It is known that g possesses a continuous extension from A’ to D’, and thus that
continuous outer and inner boundary correspondence functions

bo(0) arg g(ei), 1(0) arg g( e i)

may be defined. The function

h(w) := log
g(w)

may be defined as an analytic function in A. Its boundary values are

h (e i) Log po(bo(O))+ i[bo(O)- O]
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and, if the undetermined additive multiple of 27r in 4,1 is chosen correctly,

h(/z e i) Log pl(tbl(O)) + i[bl(0)- 0].

Because the integral

1 f dw
2,rri Jro w

has the same value along all circles Fo" ]wl p, it follows that

2r
h(e i) dO h( e dO,

which on separating real and imaginary parts yields

(2.2) CogN= Log
0(1(0))

dO,
oo(o(0))

2w p2w

J0 Jo
By rotating the annulus it can be arranged that both integrals (2.27) are zero. With the
operators , and , defined previously the system of equations

(2.28)
bo- 0 S), Log po(bo)- 63, Log

4’,- 0 63, Log po(bo)-, Log DI(tI)

holds. As in the case of a simply connected region, these equations may be used to set up
an iteration for the approximate determination of the boundary correspondence
functions. There is the new difficulty that the number/z is not known a priori. This may
be overcome by using (2.26) to calculate an approximate value of/z at each step of the
iteration. For the numerical implementation, only the values b.(0k) (0k := 27rk/n) are
used, and the functions Log pj(b.(0)) are replaced by interpolating trigonometric
polynomials. Four discrete Fourier transforms are required at each step of the iteration.

Notes on 2. 2.1. On integrating periodic analytic functions see Davis (1959).
Attenuation factors are discussed in a fundamental paper by Gautschi (1972) with an
extensive list of references. For applications of multivariate harmonic analysis in picture
processing see Rosenfeld and Kak (1976).

2.2. On Symm’s equation see Symm (1966) and the considerably deeper treat-
ment by Gaier (1976). Inequalities for the capacity are found in P61ya and Szeg6 (1954,
problems IV 97-120). The Fourier method for solving Symm’s equation has been tested
in a large number of examples by J.-P. Berrut (Master’s thesis, Swiss Federal Institute of
Technology). Another method for solving Symm’s equation is discussed in Hayes,
Kahaner, and Keller (1972).

2.3. Trigonometric interpolation is treated in many numerical analysis texts, see
the notes on 1.1. For the error estimate (2.15) see Gaier (1974).

2.4. On conjugate periodic functions see Hardy and Rogosinski (1944), Zyg-
mund (1968), and, more in the present context, Gaier (1964). For Theorem 2f see Gaier
(1974). To compute conjugate periodic functions by Fast Fourier Transforms is a
proposal by Henrici (1976); for a more thorough treatment see Gutknecht (1978).

2.5. For Theodorsen’s integral equation see Gaier (1964). The existence of a
solution of the discretized equation was established by Gutknecht (1977).
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2.6. Theodorsen’s equation for doubly connected regions is again discussed by
Gaier (1964). The method of solution using Fourier series and explicit representations
of the operators, and 63, which we propose here is unpublished. It has been tested on
a large number of examples by C. Lundwall (Swiss Federal Institute of Technology).

3. Cauchy theory.
3.1. The Laurent series. Let f be analytic in the annulus A: pl < Izl <, where

0 <= pl < 1 < p2. (Any annulus may be reduced to an annulus of this special type by a
linear change of variables.) Then f is represented in A by its Laurent series,

(3.1) f(z)= a.,z m, z A,

where the a.. are the Laurent coefficients of f for A,

1 I z-m-’f(z) dz.(3.2) am
27ri

On setting z e i’r this becomes

1
(3.3) a, e- dr,

and we see that am also is the tnth Fourier coefficient of the 2r-periodic function
-f(ei). Thus for instance if n 2/, w := exp (2’i/n), fm := f(wm), and

the coefficients a,, with [ml sufficiently small will be approximated by those of the
sequence

a := {a.} .,
which by a Fast Fourier Transform can be calculated in O(n Log2 n) operations. The
error in this approximation by Theorem 2a is given by

(3.4) rn --am am+n "+" am+2n -1"" -b" am-n + am-2n "b

If pl < p </92 and

/x(p) := max If(z)],

then by Cauchy’s estimate

m+knp

Thus if *(p):= max ((p), (p-1)) and pl<p-l<p<p2, we obtain the following
estimate for the error committed in approximating Laurent coefficients by discrete
Fourier transforms:

1
(3.5) lain a.,I =< z*(p)(p + p-.,),

p -1
m6Z.

We point out some applications of the implied algorithm for numerically calculating
Laurent coefficients.
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(a) Numerical differentiation o] analytic functions. Let g be analytic in the disk
]z Zot < tr. Then the function

/(z) := g(Zo + pz)

satisfies the above hypotheses for every p such that 0 < p < tr, and

(3.6) am
P------g(m)(zo), m > O.
m!

Thus the coefficients d,, may be used to approximate the derivatives of g at z0. If g is a
polynomial of degree <n, (3.4) shows that ,, a,,, for 0 =< m < n, and the exact values
of the derivatives may be obtained from (3.6). For general analytic functions, an
adaptation of (3.5) shows that every fixed derivative is obtained with geometric
convergence as n c.

The algorithm in all its simplicity highlights some of the typical differences between
analytic and non analytic functions"

(i) The points where g is evaluated do not lie on a straight line, as in real
numerical differentiation, but on a circle. There is no preferred direction in the complex
plane. The derivative, if defined as limit of a difference quotient, is independent of the
manner in which the increment tends to zero.

(ii) Even if the derivatives at z0 are to be calculated to arbitrary precision, the
points where g is evaluated do not. tend to z0. The values of g on the circle [z- z0] =p
completely determine g.

(iii) A large number of derivatives (theoretically: all) are evaluated simul-
taneously. There is no question about the existence of derivatives. If the first derivative
exists in a neighborhood of z0, all derivatives exist.

Numerical analysts will also note that due to the stability of the Fast Fourier
Transforms (see 4.3) the foregoing algorithm for numerical differentiation is stable no
matter how high the accuracy of the formulas. This contrasts favorably with high-order
difference formulas for real numerical differentiation which tend to become unstable
due to cancellation of large terms of opposite signs.

(b) Generating functions. If a {a,,}=_ is a sequence of complex numbers (not
assumed to be periodic), and if the series

f(t)= E a,t

converges in a suitable annulus, then f is called the generatingfunction of the sequence
a. (Frequently in applications, the ak, and hence f, depend on additional parameters.)
The discrete Fourier transform may be used to generate the elements of a by evalua-
tions of its generating function. We have experimented with the well-known example

f(t, x)= e x/2)t-’-l) Z J,,(x)t

(J,, Bessel function of order m) and have found that even in this simple case the
method is competitive with the well-known trick of using the three-term recurrence
relation backwards. In an example like

f(t, x) ._7..__= y,e xt B,,(x)
e-1 ,,=o m!
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(B,,(x) Bernoulli polynomial) the usual recurrence relation requires O(n 2) opera-
tions to generate Bo,’",Bn, whereas a Fast Fourier Transform requires only
O(n Log n) operations to generate approximations to the same numbers.

(c) Numerical inversion ofLaplace transforms. The problem of numerically invert-
ing the Laplace transform, i.e., of computing values of an original function F(r) from its
image function

f(s) := F(r) e dr,

is much discussed in the engineering literature. Fast Fourier Transforms are essential
for the numerical implementation of a technique which makes use of the following
function-theoretic facts satisfied by any Laplace transform f:

(i) f is analytic in a half-plane Re s > YF, where YF is the growth indicator of F.
(ii) f(s) 0 if s-* oo in the half-plane just described.
By considering e-VF’F(r) in place of F, we may assume that YF 0. Everyf analytic

in Re s > 0 can be represented as a series of powers of

S--O
Z .’-

where a > 0, because for any such choice of a, [z[ < 1 precisely if Re s > 0. It thus seems
natural to expand f omo F in powers of z and thus to obtain an expansion of F in terms
of the original functions of z". However, there are no such original functions, because
z" does not satisfy (ii). On the other hand, the functions

z (s-)., (s)
S "1" O (S q- O)m+l

are image functions, and their original functions are readily expressed in terms of the
Laguerre polynomials

1 dL,,(z) := e ---(e-z").
The precise correspondence is

Ira(s) --o e-Lm(2az).

Thus the problem is reduced to determining the coefficients a,, in the expansion

(s
f(s)= 2 a,,,

m=0 (S

which also may be written

(3.7) g(z)=

where

(3.8)
2a /a l +z)g(z) := (s+a)f(s)=_zf i-

If the a, have been determined, then at least formally

(3.9) F(z)=e Y a,,L,,(2ar);
m=0
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for conditions of validity of this .expansion see Doetsch (1950, p. 301). The values of
L,,(2az) required for the numerical evaluation of the series (3.9) may be generated
rapidly by the forward recurrence relation satisfied by the Laguerre polynomials which
turns out to be stable.

What makes this method numerically feasible is the fact that the Taylor coefficients
a,,, can be evaluated efficiently by the technique which we have discussed at the outset of
this section. Let n 2 be a (large) integer, w := exp (2zri/n), select p, 0 < p < 1, and
define f {f,} where

2a ( l+pw"f.,:=

The sequence

b {b,} .f

can then be evaluated in O(n Log n) operations, and the desired coefficients a, are
approximated by p-robin with an error that tends to zero geometrically as n c.

3.2. Incomplete factoring of polynomials. Here we consider the following prob-
lem" We are given a polynomial p, a complex number z0, and a real number p > 0.
Assuming that p has no zeros on the circle [z-z0[ O, we wish to construct the
polynomial pl whose zeros are precisely the zeros of p satisfying ]z- z0[ < p.

If this problem could be solved efficiently, a new approach to the problem of
determining the zeros of high degree polynomials might be feasible. Instead of
determining the zeros one by one and deflating, as in the conventional approach, or
instead of trying to isolate the zeros by a Weyl type exclusion algorithm, one would, by
covering the plane by disks and determining the polynomial corresponding to the zeros
in each disk, immediately break down the problem into smaller subproblems. If
necessary, the process could be iterated, much like the well-known Lehmer method; on
the other hand, even if not carried to its conclusion where each disk contains at most one
zero, the algorithm would still permit conclusions about the distribution or "density" of
zeros.

By a shift of variable, it suffices to consider our problem in the special case where
Zo 0, p 1. Thus let p be our polynomial, and let the annulus A: y < [zl < 7

-1 be free
of zeros of p. By the algorithm described in 3.1, a Fast Fourier Transform may be used
to generate approximate values , of the coefficients a, of the Laurent series of the
function

f(z) ._p’(z)
p(z)

in A,

f(z)= a.z", z e A.

On the other hand, these coefficients may be calculated explicitly. If the zeros of p are
Zl,. ", za, we have, as is well known,

f(z)=p’(z)_ 1
p(Z) i=l Z--Zi
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-1and if[zi[<=y,i=l,2,...,k, and[zily ,i>k, then

a 1 k 1 a 1

i=1Z--Zi i=1Z--Zi i=k+X Zi--Z

k 1 1 a 1 1

i=1 Z 1-(zi/z) /=k+l Zi 1-(z/zi)
k d

m-1 -m-1E z-’Ezi -E z E zi
m=l i=1 m=0 i=k+l

Thus if we define, for arbitrary intdgers m, interior power sums s and exterior power
sums t by

k d

s:= zi, t:= zg,
i=1 i=k+l

we see that

a-m Sin-l, rn 1, 2,
(3.10)

a,, -t-,,-1, rn O, 1, 2, .,
In particular,

a-1 So k,

the number of zeros of p inside Iz] 1; furthermore, if there is only one such zero,

a-2 s1 Zl.

In general, if the interior power sums are known to sufficient accuracy, the
polynomial

k

pl(Z) I-I (z zi) =: z k -t- blz ’-1 +. + bk
i=1

having the zeros zl, , Zk may be constructed as follows: We consider the reciprocal
polynomial

k

ql(Z) := zkp(z-1) II (1-zzi)
i=1

1 + bxz +. + bkZ ,
which satisfies

qi (z)
E s.z

ql(Z) m=l

m-1

If the s, are known, the b. may be determined by comparing coefficients in

k k

2 fb.iZi-1--- 2 SmZm-1 2 bjZi
/=1 m=l j=0

(b0 := 1), which yields the recurrence relations

1
(3.11) b.

m
---(sbo + Sm-lbl +" + Slbm-1),
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The accuracy of the approximations 8-m to Sin-1 may be assessed by Theorem 2a.
In view of (3.10) we have for 1 -<_ m -<_ n

hence
-m Sin-1 Sin+n-1 -[- Sm+2n-1 -[- + tin-n-1 "b tm-2n-1 q-

/ -1 re+l}[-m--Sm-l[ " x__Tn{kTm +(d-k)’y-

In addition, the correct choice of n is facilitated by the following considerations:
(i) Because s0-k, the approximate value d-1 should be, within the permitted

tolerance, an integer.
(ii) For the integer k approximately determined by d-l, the coefficients b. deter-

mined by (3.11) should automatically become zero for/’> k.
The computation of the Laurent coefficients by a discrete Fourier transform

requires the evaluation of the function f=p’/p at the points z=w ", m--
O, 1,. , n- 1. By separately evaluating numerator and denominator, this task itself
may be carried out by Fast Fourier Transforms.

To determine bl,..., bk from (3.11) requires O(k2) operations which may be
unpleasant if k is large. In 5.4 we discuss an algorithm for accomplishing the same
purpose which requires only O(k Log k) operations.

Notes on 3. 3.1. The idea of using Cauchy’s formula for numerical differen-
tiation seems to have been first suggested by Lyness and Moler (1967). Experiments on
generating sequences from generating functions by Fast Fourier Transforms have been
performed by P. Geiger (unpublished). For the theoretical background of the method of
inverting the Laplace transform see Henrici (1977, 10.5). For an implementation see
Wing (1967).

3.2. The algorithm described here has been implemented successfully by P. Geiger
(to be published).

4. Convolution. In this section we discuss two kinds of multiplication in IIn,
called Hadamard multiplication and convolution. We study their behavior under
discrete Fourier transformation and describe some of their applications.

4.1. Multiplication in H.. Let x {Xk} and y {Yk} be sequences in 7rn. We have
already agreed to define scalar multiplication in IIn by

cx := {cx}

for any c C. We next define a product of two sequences called Hadamard product by

(4.1) x.y := {xky}.

(We always write the dot for clarity.) It is clear that the Hadamard product is
commutative, associative, and (with respect to the addition defined earlier) distributive.
Under addition and Hadamard multiplication the space II, becomes a commutative
ring. Forn > 1 this ring has divisors of zero.

We discover a second, mathematically more interesting kind of multiplication by
relating the Fourier transform of x. y to the transforms of x and of y. Let x, y IIn, and

By definition,
u := ’,,x, v := ,y.

(. (x y)),.
1 "-E XkYkWn k=0



Replacing yk by (-:1 v)k this in view of the discrete inversion formula becomes

Xk =0 vlWlk W-kin Vl 2 XkW-(m-l)kn k=0 /=0 k=0

The inner sum equals (o%,x),,_t u,,-l, and we thus ha,ee

n-1

(4.2) (n (x" y)),, E VlUm-l"
/=0

For any two sequences u {u,} and v {vk} in Hn, the sequence c {c,,} defined by
n--1 n--1

(4.3) c,.
k =0 k =0

is denoted by

C’U * V

and is called the convolution of u and v. All sums in (4.3) have the same number of
terms. (In order to distinguish u * v from other kinds of convolution, this is also called
wrapped-around convolution or convolution on the circle.) In terms of the convolution
product,

(4.4) n (x. y) nx *

Any sequence x 1-In is the image under n of some sequence in I-In. Thus, writing
x, y for nx and o%,y, we also have, using properties of the reversion operator R
established earlier,

x * y= o,(: x ly)

n2.(Rff.x Ro,,y)

n.R (ff.x.

nRn(’nx

hence in view of o.R (1/n)

n(x * y)= no%.x.
These results are summarized in the convolution theorem"

TrmoM 4a. For arbitrary sequences x, y.(x. y)= o%.x * -.y,
(4.5)

0%, (x y)=

The convolution of periodic sequences is important not only in connection with
Fourier analysis, but will be shown to also have many other significant applications. If
performed in a straightforward way by direct evaluations of the sums (4.3), the
convolution of two sequences in I-I, evidently requires n 2/x and a similar number of
additions (a). If n is large, this is prohibitively expensive. We thus call particular
attention to the relation

(4.6) x * y nZRn(,x. ,,y)

established in the course of the proof of the convolution theorem. It shows that the
convolution can be computed by taking three discrete Fourier transforms and forming



FAST FOURIER METHODS IN COMPUTATIONAL COMPLEX ANALYSIS 509

one Hadamard product. Using Fast Fourier Transforms, this can reduce the time
required by orders of magnitude. In view of Theorem lb we have, for instance,

THEOREM 4b. If n 21, the convolution of two sequences in IIn, if performed via
(4.6) using the Fast Fourier Transform, requires no more than

n Log2 (2n)

complex multiplications.
We next present several applications of the convolution operation, and of the fact

that it can be computed cheaply.

4.2. Time series analysis. Historically, one of the moving forces in the develop-
ment of Fast Fourier Transform methods was the need to economize numerical
operations in time series analysis. Although they are not directly connected with
complex analysis, time series are of such paramount importance in all of applied
mathematics that it would be a serious omission not to discuss them at least briefly in this
survey article.

Let x0, Xl, , xn-1 be a finite sequence of real numbers. In applications, Xk may
be the result of sampling a physical quantity x at time ’k To + k A-. The quantity x may
be a brain current (as recorded in an electroencephalogram), the displacement of a
seismograph during an earthquake, or the evaluation of an oceanic tide. In elec-
troencephalograms, Ar is of the order of 10 of a second. Any such sequence {Xk}
obtained by sampling at (equidistant) time intervals is called a time series. The length n
of a time series in electroencephalic applications can be of the order of 211 or 212.

By analyzing a time series, important conclusions on the nature of the underlying
physical process can often be drawn. For instance in electroencephalography, epilepsy
may be discovered. The analysis of time series usually requires the calculation of the
following new sequences from the given time series {Xk}:

(a) the covariance function, i.e., the sequence r with tth element

n--t--1

(4.7) rt- 2 XkXk+t, t=0,1,".;
k=0

(b) the power spectrum, i.e., the sequence f with qth element

1 nil rte_(2i/(2n))tq q O, 1,...(4.8) /cq := n ,=o

(c) the smoothed power spectrum g defined by

h

(4.9) gq Y’, c]q_, q O, 1,...,

where h is a (small) positive integer, and the c are constants satisfying

h

(4.10) ci0, lYlh; 2 c= 1.
j=-h

It was recognized independently by Tukey and Bartlett in 1944/45 that smoothing of
the power spectrum was indispensible in order to obtain meaningful physical inter-
pretations. It soon became clear that discrete Fourier analysis provides a common basis
for the numerical analysis of noisy data.

First of all, discrete Fourier analysis permits us to express the above operations
concisely. Let the given time series be followed by n zeros, and let x denote the
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sequence in I/2n obtained by repeating these 2n elements periodically. The other
sequences r, f, g defined above will likewise be embedded in II2n.

(a) For < 0, =-s we extend the definition (4.7) by setting

Then evidently

n-l+s

F-s :"- XkXk-s.
k=0

n-1 n-l-s

r-s , XkXk-s , X,/X, r,
k =0

and the sequence r becomes symmetric, r R r. Setting y := Rx we have
n-1 n-1

r,=r_,= E xkxk_,= E xyt-=(x*y),,
k =0 k =0

and we see that

(4.11) r=x Rx.

(b) If -:= ’2,, then the power spectrum is

(4.12) f r (x Rx).

(c) The smoothing operation can likewise be expressed by a convolution. De-
noting by e the sequence with elements cj in the positions j (mod 2n) and with zeros
elsewhere, we have

(4.13) g=c*f.

It was observed already before the advent of Fast Fourier Transforms that the
calculation of g could be simplified by performing the smoothing in the time domain.
Let

(4.14) s := -c.
Because f r we have in view of the convolution theorem (Theorem 4a)

c f o(-c. o- f) o(s. r).

Thus (4.13) may be replaced by

(4.15) g (s. r).

The sequence s is called the time window of the smoothing process defined by the
constants cj. If the smoothing process is simple enough, its time window may be
calculated analytically. By performing the smoothing operation in the time domain, it
requires n multiplications only compared to the (2h + 1)2n multiplications that are
required by smoothing in the frequency domain.

However, there still remain the roughly 2
2n multiplications required for forming r.

Here much greater savings are achieved by Fast Fourier Transforms. Let a := -lx.
Then y Rx -Ra, and the determination of r requires forming

x.y=a. Ra.
By the convolution theorem,

x y (a. R a).
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Because the sequence x is real, Ra , hence

(4.16) r x y -(a. h).

In view of -2 RR= (1/(2n))R, it further follows that

1 1
(4.17) f R (a. h) n-na a.

Thus in order to find r and f, it is best to first compute a --x by one application of
FFT; f is then obtained trivially from (4.17), and r from (4.16) by one further application
of FFT. The smoothed power spectrum can now be obtained from (4.9) (if h is small
enough) or, if the time window is known, from (4.15).

4.3. Multiplication of polynomials and of large integers. Convolution performed
via FFT yields a fast algorithm for the multiplication of two polynomials. Let

p(x) Po + plX +" + p,,-lx ’-1,
q(x) qo + qlx +" + q,,-x

be two polynomials of degree n 1. We define two sequences in 1-I2n,

where each line has n zeros, and where the symbol I]’" :ll indicates periodic repetition. If

r= {rk} := p’q,

then clearly

2n-2

(4.18) r(x) := p(x)q(x)= E rkx k.
k=0

In view of Theorem 4b this implies
THEOREM 4C. If n 2, the multiplication of two polynomials ofdegree <n requires

no more than

(4.19) O(n) := 3n Log2 (4n)

complex multiplications.
The function &(n)occurring here will be used repeatedly.
The foregoing result has an immediate application in the multiplication of large

integers. Let b > 0 be a (small) integer, and let p and q be (large) integers, represented in
the number system with base b as

n-1 n-1

p= pib j, q= . qib,
=o i=o

where the p. and qi are integers, 0-< Pi, qi < b. Then clearly

2n-2

(4.20) r := pq , rb,
j=O

where the r are defined by (4.18). Although the definition implies that the ri are
integers, they are not necessarily the correct digits in the representation of r in the base
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b, because they need not satisfy the inequality 0 <- r. < b. However, they do satisfy

O <= rj < nb2

and thus possess representations in the base b,

(4.21) rj E rj.lb l,
/=0

where

m := [LOgb n + 2

is, in general, much smaller than n. The correct representation of r in the base b is then
easily obtained from (4.21).

It is evident that by calculating the convoluted sequence r by the Fast Fourier
Transform, the product pq can be computed much faster than by the conventional
method, which requires n z multiplications of integers <b. However, to conclude from
Theorem 4c that pq can be computed in b(n)/.t would be incorrect, because the
multiplications required to form the convolution by FFT are not multiplications by
integers, but multiplications of complex numbers whose real and imaginary parts are
arbitrary real numbers. In that sense, forming the product pq requires only 1

For a correct appraisal of the FFT method we note that the ri are known to be
integers. Thus there is no need to compute them with high precision. Rather, it is
sufficient to compute them with errors <= 1/4, say. To achieve this accuracy, we apply (4.6)
in the form

(4.22) r -2n (2n2nll 2n’2ntl).

The following facts on the operation @n are easily established.
(i) If the elements of a sequence x I-In satisfy ]xi] -< a, then the elements of the

sequence y := -nx satisfy lY/] -< a, and those of the sequence z := nofnx satisfy Iz, I-< n.
(ii) Let n 2 l, and let the operation @n be implemented by a Fast Fourier

Transform using the factorization n 2.2 2. If the elements of x have errors
<-rt, and if at each step of the algorithm a local error -<e is tolerated, then the elements
of the sequence -nx are in error by at most le +

(iii) Let again n 2/, and let the operation n-n be implemented by a Fast Fourier
Transform where the factor 1/2 is omitted at each step. If the elements of x have errors <=
and if at the jth step of the algorithm a local error <=2i+ae is tolerated (the natural
assumption for floating point arithmetic in view of the growth of the intermediate
arrays), then the elements of the sequence n-nx are in error by at most n Log2 n e +

To apply these results, we assume that the machine works in floating point
arithmetic, representing the mantissa as a k-digit number in the base b. The elements of
1 and tl are then bounded by b, and are known exactly. Thus (iii) may be applied with

b -k+le r/ 0. We find that the elements of 2nznp and 2n2ntl are bounded by 2nb
and are in error by at most 2n Log2 (2n). b -k/l. The elements of the product
z := 2n-2nl 2n2ntl are bounded by (2nb)2, and will be in error by no more than

r/:= 4nb 2n Logz (2n). b -k/l= 8n 2 Log2 (2n)b -k+2.
The errors in the calculation of r 2nz may be appraised by (ii). The local errors being
bounded by 4n2b2b-k, the errors in r will not exceed

8n 2 Log2 (2n)b -k/2 +4n2bZb-k Log2 (2n)= 12n Logz (2n)b -k+2.
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For this to be _-< 1/4, we must have

1
(4.23) b2-k <_-

48n 2 Log2 (2n)"

If b 10, n 21--- 103, this will be satisfied if k => 11, which is a wholly manageable
requirement.

4.4. Fast Poisson solvers. The convolution theorem also holds for multidimen-
sional sequences, If

x={x}l-I y {y_} I-Id

where k (kl, k2, ka) is the index vector, we again define the Hadamard product
by

and the convolution product by

where

x.y := {x,, Yk},

x*y := {Zk},

Zk :-- XmYk-m,

Q,, being the d-dimensional lattice cube defined in 1.3. Exactly as in the one-
dimensional case one may prove

THEOREM 4d. For arbitrary sequences x, y 1-I),

@) (x" y) -)x * )y,
(4.24)

-) (x * y)= nd--) X --f) y.

These results have an interesting algorithmic application to the problem of solving
Poisson’s differential equation in rectangular domains. Although our approach applies
to any number of dimensions, we consider only the two-dimensional case and assume,
furthermore, that the domain S where the equation is to be solved is the unit square,

S: 0<_-:<_- 1, O=<r/<_1,

in the (:, r/)-plane. ,For a given function/ defined on S, we wish to determine the
solution u of

(4.25) -Au f(:,

that continuously assumes the values 0 on the boundary of $. This problem arises, for
instance, in the determination of the motion of electrostatically interacting particles in
two dimensions (plasma flows). If the charge distribution " at time rk is known, the
resulting potential u can be found by solving Poisson’s equation as given above. The
potential then determines the forces acting on the charges, and thus the acceleration
and the position of the charges at time rk+l rk -[" AT. Since Poisson’s equation must be
solved at each time step, it is essential to find the solution as economically as possible.

To solve the problem by discretization, we choose a grid constant h l/n, let

i ih, rl/ jh,

(i, j 0, 1, , n), and obtain approximate values ui] of U(i, TI]) by solving the linear
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system

(4.26) 4uij- ui/l,i- uid+l- ui-,- ui,- h2.fi
(f0 := f(:i, r/t), u0 un Uio ui, 0) obtained by discretizing the Laplacian -A in the
simplest possible manner.

The solution of (4.26) may be accomplished most readily by discrete Fourier
transforms. To this end we continue both ui and f0 as odd periodic sequences of period
2n. (This requires that ui f0 0 for or/" 0 (mod n).) For u this condition is satisfied
because of the boundary condition; for ’i it can be satisfied because the values of f on
the boundary of S are irrelevant. The relations (4.26) are still satisfied for the continued
sequences and may be regarded as a relation between two elements u and f of the space
19I (222 of odd sequences in 1-I (22,. The crucial fact now is that (4.26) is a convolution. Indeed
if we define the sequence d II(222 to have zero elements except

doo =4, d,o do, d-,o do,-1 -1,
then (4.26) is nothing but

(4.27) d * u h

Applying 222 to either side of this equation and using the symbol ." to denote
transforms, we obtain in view of the convolution theorem

(4.28) 4n2 fi h2.
It is readily verified that {dkm} where

( k m_) 2(4.29) dk,, 1 cos 1/2 cos h

This is #0 for all (k, m) (0, 0). Thus (4.28) may be solved for

h 2

(the inverse to be taken in the sense of Hadamard multiplication), and we find

h 2

.(222-1 (h-1 .)(4.30) U=n2

The desired solution thus may be found in the following steps:
(i) calculate := (222 t;

(ii) using the explicit values of k, given by (4.29), calculate -1.
(iii) obtain u from (4.30). In view of

1
4n2 (22n)-1 (22n),

(4.30) may be replaced by
-1(4.31) u h 2 2)

The entire process requires only taking two transforms -(2) 2
2, and n. scalar multi-

plications. Thus by Theorem lc, if n 2 t, it may be accomplished in n216 Log2 n + 7]
By taking advantage of the fact that the sequences involved are real and odd, this
number may be reduced even further.

The method is not restricted to the simplest finite difference formula (4.26). For
instance, in the more accurate nine-point formula

{20ui,- 4(ui+l.j + ui.,+ + Ui-l,i -Jr- Ui,/’-I)
(4.32)

--(U/+ld+l q- Ui-l,]+l q- Ui-l.j-1 q" U/+I,]-I)} h2fij
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the expression on the left is the convolution of u with the sequence d {dk,} where all
elements are zero except

20 2d00- 6 dl,0 d0,1 d-l,0 d0,-i -3,
(4.33)

d1,1 d-l,1 dl,-1 d-l,-1

It is easily verified that

where

(4.34) __m 5 2 cos 2 cos -cos cos
n t/ n

With this definition of d, the formulas (4.30) and (4.31) yield the solution u for the
nine-point operator.

We can also treat the Mehrstellenverfahren of Collatz which furnishes solutions
with smaller discretization errors. For instance if the term h zfij in (4.32) is replaced by

h 2--{8fij q- fi + ld q- fi,]+1 + fi- 1,j "It- fi,j-1},

then for sufficiently smooth f the solution ui] of (4.32) has a global error of only O(h4).
Now the foregoing expression clearly is the convolution of f with a smoothing sequence
e {c,} with all elements zero except

8
C00 12 el,0 C0,i C-l,0 C0,-1 12.

Hence the equation (4.32) becomes

d,u=hZc,f

and on taking Fourier transforms

(4.35) a. fi h 2:. ,.
where is defined by (4.34) and : {d} is readily calculated to be

4.36) 4 + cos + cos
n

Because rig,, # 0 for all (k, m) # (0, 0), (4.35) may be solved for- hZ-I . ,
and on transforming back we obtain

(4.37) u h2-22-1 (-1. :. ).
We emphasize that the foregoing method applies to any difference approximation

or Mehrstellenverfahren for solving Poisson’s equation in rectangular domains, and
indeed to any difference equation that can be expressed as a convolution. In applying
the method to a Mehrstellenverfahren for solving -Au f, it is not necessary to know or
work out the actual form of the difference equations in the physical domain, which often
are rather complicated. All that is needed is a sequence

r {rk} II2
where rkm is a nonvanishing rational function of cos (kTr/n) and cos (mr/n) such that
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2n rk. approximates the eigenvalues of -A,

Akin (/’r/’)2 q- (mr)2,

as well as possible for n - c. If

2n rk, a, O(n-)

and if f is sufficiently smooth, then

tl := h222)n (r-1. )

defines an approximate solution of -Au =f which is in error by O(hEp). For the
standard five-point operator,

rkm 4- 2 cos 2 cos,
for the Mehrstellenverfahren involving the nine point operator,

20 8 cos (krr/n 8 cos (mzr/n 4 cos (mrr/n
Fk 4 + cos (kzr/n + cos (mrr/n

Better functions rkm can be obtained systematically as certain two-dimensional Pad6
approximants to Akin.

Notes on 4. 4.1. On convolution of sequences see Cooley, Lewis and Welch
(1967), Aho, Hopcroft and Ullmann (1974). We have coined the name "Hadamard
multiplication" in analogy to a similar product in the theory of power series, because a
name seemed to be required.

4.2. Koopmans (1974) and Bloomfield (1976) are standard references on time
series. These books discuss geophysical applications, as does Claerbout (1976).
Blackman and Tukey (1959) is of historical interest. Anderson and Bloomfield (1974a,
b) are some key references on the analysis of noisy data.

4.3. A pre-FFT treatment of the multiplication of large numbers is given by
Karatsuba and Ofman (1962). Sch6nhage and Strassen (1971) have more sophisticated
algorithms than those given here and count operations precisely. Ramos (1971) treats
the stability of Fast Fourier Transforms.

4.4. Hockney (1965) first considered the solution of Poisson’s equation by Fast
Fourier Methods and later described numerous applications (Hockney (1970), (1972),
(1972a), Hockney, Warriner and Reiser (1974), Hockney and Brownrigg (1974),
Hockney and Brown (1975), Hockney and Goel (1975)). For further developments on
Fast Poisson Solvers see Bunemann (1969), Buzbee, Golub and Nielson (1970), Dorr
(1970), Buzbee, Dorr, George and Golub (1971), Concus and Golub (1973), Fischer,
Golub, Hald, Leiva and Widlund (1974), Proskurowski and Widlund (1976). Most of
these papers are concerned only with the standard five-point operator. Pickering (1977)
extends Hockney’s original method to the nine-point operator. On the Mehrstellen-
verfahren see Collatz (1955, p. 360). The observation that the convolution theorem
provides an easy access to fast Poisson solvers for difference operators of arbitrarily
high order, and also to the Mehrstellenverfahren, is possibly new.

5. Fast algorithms for power series. In this section we consider formal power
series (fps) in one indeterminate with complex coefficients. The reader will recall the
various, algebraic operations that can be carried out with fps without regard to
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convergence. Here we review some of these operations from the point of view of
economizing arithmetic operations.

If P ao + alx + a2x
2 +" is a fps, we denote, for n 1, 2, , by

n-1Pn(x) := ao + aix +" "’+an-IX

its partial sum of degree n-1, consisting of the first n terms. (This notation is at
variance with that ordinarily used.) We call Pn a polynomial of length n. If P is any fps
such that Pn 0, we write

P=O(x).
5.1. Multiplication. While nothing needs to be said about addition or subtraction,

the Fast Fourier Transform immediately furnishes an important result on the multi-
plication of two fps. For any fps P and O,

(PO)n (PnOn)n.

By Theorem 4c, if n 2, the multiplication of the two polynomials on the right can be
accomplished in

b(n) := 3n Log2 (4n)

multiplications. We restate the result for reference.
THEOREM 5a. !f n 21 and P, Q are fps, the computation of (PQ)n by FFTrequires

no more than c(n) complex multiplications.
If performed in the conventional manner, the evaluation of (PQ)n would require

21-n 2 multiplications. The smallest power of 2 for which b(n) < 1/2n 2 is n 64.

5.2. Newton’s method tor formal power series. Many fast algorithms for formal
power series can be based on an extension of Newton’s method to nonlinear equations
in formal power series. We shall see that in this formal context Newton’s method always
produces the exact solution in a finite number of steps.

Let be the integral domain of formal power series, let P=
ao + a ix + a2x +" , and let O blX + b2x +. be a nonunit in . We recall that
the composition of P with (2 is defined by substituting (2 for x in P,

(5.1) p O ao + alO + a2O2 +" ,
and collecting coefficients of equal powers. Because Q has constant coefficient zero,
only finitely many terms can arise for each power, and the operation of composition is
algebraically well defined. We further recall that the almost units in , (i.e., the series
P aix + a2x

2 +" where al # 0) form a group under composition, the unit element
being X lx + 0x 2 +. . The inverse pt-i of an almost unit P is called the reversion
of P.

Here we consider the equation

(5.2) Q W-R =0,

where Q and R are given almost units, and where W is sought. The solution is clearly
given by the formula

W Ot-1]’o R,

but the question remains how to construct W.
Suppose W is an approximate solution to (5.2) in the sense that

(.3) w w + O(x),
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where k > 0. This implies that Wk is a nonunit. Applying, in a purely formal sense,
Newton’s method to (5.2) we would expect to improve the approximation by forming

Q’oW

Here the quotient is well defined, for because Q is an almost unit, Q’ is a unit, and so is
Q’o Wk. That W/

is a better approximation to W than Wk is easily confirmed as
follows. By (5.3) there exists W* such that

Wk W+ x’W*.

Thus by the formal analog of Taylor’s formula,

and also

0 W, 0 (W +x’W*)

0 W -+- (0’ W)xkW* + O(x2k)

O’ W, O’ W + O(x’).

Because O W R, we get

W+= W+x,W, (0’ W)x’W* + O(x’)
O’ W+ O(x)

and because Q’ W is a unit this simplifies to

W+= W+xW*-xW*(1 +O(x))
W+ O(x).

Thus in passing from W to W+, the number of correct coefficients in the solution has
been doubled.

We thus may construct a sequence of approximations {Wm)} to W by the following
algorithm" Let

W) := 0(5.4a)

and for m =0, 1,...

Wm) R
(5.4b) W,+1 w,m,_(0 o;__) )

2n

where n := 2. Because W) satisfies (5.3) for k 1, we obtain the following lemma"
LEMMA 5b. For m 0, 1, 2,. .,

wm)= (O[-1] R)2.

If w(n) denotes the numberof multiplications required to compute W. and v(n)
the number of multiplications required to compute the Newton correction

then clearly for n 2"

oo(2n)<=w(n)+ v(n);
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hence we have
COROLLARY 5C. For 1, 2,. .,

(5.5) tO(2/) P (21-1) + P(21-2) +" + ,(2) + u(1).

The Newton algorithm will now be applied to the solution of several basic problems
in power series manipulation.

5.3. Division. To begin with, we discuss the determination of

p-1 Co + ClX + c2X2 --where

P ao + ax + aEx +.

is a unit in (ao 0). The conventional algorithm for determining the ci is based on
comparing coefficients in the identity P-P 1, i.e.

(Co "t- C1X d- CEX 2_.. ")(ao + alx + aEx
2 -t-. .) 1,

which yields the recurrence relation

Co ao c,, -ao (alCn-1 + a2cn-2 -t-" -t- a,co).

To compute the first n coefficients ci by this method, n and 1 + 2 +. + (n 1)
1/2(n 1)n /x are required.

To compute p-1 by Newton’s method, we recall that in elementary numerical
analysis the reciprocal of a real number c 0 may be found by applying Newton’s
method to the equation

1

Y

This leads to an algorithm that does not require divisions. Proceeding by analogy, we
seek Y := p-1 as the solution of

(5.6) Y-I-P=O
This is of the form (5.2) if we set

P=ao+R, Y=a- + W

and

1 aZoxQ= _--zi--ao
ao +x 1 +aox

We thus could apply Newton’s method to the resulting equation

aoW+R=0;
l+aoW

however, simpler formulas are obtained by expressing the Newton iteration (5.2)
directly in terms of

y(’) := a + W(").

One readily finds

(5.7a)

(5.7b)

y(O) := a-l,
y(m/) := [y(m)(2_py)]2n
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m 0, 1, 2,. . As a special case of Lemma 5b we have
THEOREM 5d. For m =0, 1, 2,...,

(5.8) Y(r)=(P-1)2...
Thus Y(’) is a polynomial of length 2 whose coefficients agree with the first 2

coefficients of P-1. Each step of the iteration doubles the number ofcorrect coefficients.
To appraise the cost of division by Corollary 5c, we count the number of

multiplications required to carry out one step of the recurrence (5.7b). Because the final
result is truncated to length 2n, all intermediate results may be truncated likewise. Thus
in actual calculation (5.7b) is replaced by

ym+l) { Y’)[2 (Pz,

(n := 2). This can be evaluated by forming two products of polynomials of length 2n,
which requires 25(2n) . (This crude operations count could be somewhat refined by
taking advantage of coefficients that are a priori known to be zero.) In the notation of
Corollary 5c we thus have v(n) 25(2n) 12n Log2 (8n). Using the formula

I--1

Z 2k 2 (l 2) + 2,
k=l

the sum (5.5) is easily evaluated and yields

w(n) 12n Log2 (2n) 45(n).

If O is any fps and (O/P), is required, this may be computed as (O,P ), which
requires another $(n) multiplications. Thus in toto we have

THEOREM 5e." To compute (O/P), where P is a unit in and O is arbitrary requires
for n 2 no morn than 55(n) multiplications.

5.4. Composition: Some special cases. Before discussing the composition prob-
lem for general fps, we consider some special cases that can be treated by exploiting
special functional relationships.

Consider, for example, the logarithmic series,

L Log (1 + x)
2

X --X +X3

If Q is any nonunit, then Y := L Q satisfies

Q’
I+Q

and therefore, if n is any integer > 1,

(5.8) Y’)n-1
1 + [’]n-l"

To compute (O’),-x for a given O requires n 2 . By Theorem 5e the computation of
the quotient in (5.9) requires less than 5$(n) if n =2k Y, can be recovered
unambiguously from (Y’),_ because the zeroth coefficient of Y is known to be zero.
This requires another n- 2 multiplications. Taking into account the margin by which
55(n) overestimates the actual number of multiplications as given in Corollary 5c, we
find

THEOREM 5f. I[n 2, to compute (L O),for any nonunit O requires no more than
5$(n) multiplications.
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(5.9)

We next turn to the problem of computing the exponential of a given nonunit O,

1 1 2o O +]-[.O +.O +....

(5.10) L W- O 0

which is an equation of the form (5.2) to which Newton’s method can be applied. The
algorithm (5.7) inthis case yields

W) := 0,
(5.11)

W(re+l) := W(")_{(1 + W(’))(L w(m)-()}2n
n := 2’, m 0, 1, 2, . One step of the algorithm requires computing a logarithm to
precision O(x2"), and of a product to the same precision. By the Theorems 5f and 5a we
thus have

v(n) 6b(2n).

Evaluating the sum (5.5) we get
THZORM 5g. If n 2 l, if O is any nonunit and if E is the exponential series, the

evaluation of (E O), by the algorithm (5.11) requires no more than 12b(n) multi-
plications.

As an immediate application, we consider the computation of (1 + O) for a given
nonunit Q, where a is an arbitrary complex number. In view of

(1 + O) E (aL Q)

this is reduced to forming L Q, scalar multiplication, and exponentiation. By the
foregoing results we have

THEOREM 5h. To compute [(1 + Q)’],, where n 2l, requires no more than 17b(n)
multiplications.

This result is asymptotically much better than the 1/2n 2 /z that are required by
Euler’s already ingenious algorithm (called "J. C. P. Miller algorithm" by Henrici
(1974)). Even if a is a large integer the result is more favorable than what would be
obtained, say, by successive squaring and using the binary decomposition of a.

However, for special values of a such as c + 1/2 direct application of Newton’s method
will produce a yet more favorable O(n Log2n) result.

As a second application, we return to the problem (see 3.2) of determining the
coetiicients of the polynomial

p(z) z + alz- + azz n-2 +. + an-aZ + an

(Z
i=1

from the power sums of its zeros,

sk:= z/, k=l,2,...,n,
i=1

where we do not assume that all zi O. The polynomial

q(z) := z"p(l’] l +alz + azzZ+ + a,,z
\Z/

If W := E O- 1, then
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-1has the zeros z Hence

and

q’(z)_ 1
-1q(z) i=1 Z--Zi

qt(z)___ , Zi

q(Z) /=1 1 zzi

, SkZ
k=l

k-1

Thus we have (analytically if Izlis sufficiently small, and in any.case formally)

Sk k-Log q(z)= E -z,k=l

hence

q(z)=exp(- sg )
k=l --Z

In exact computation, the last series will terminate automatically after n terms; in
numerical computation we may use this fact as a check. To solve the problem stated for
n 2 thus requires only forming the n tocomputesk/k plusthe 12&(n) /z tocarry
out the exponentiation (5.12).

5.5. Composition: The general case. Let P a0+ a lx +’’’ I, and let Q
blx + b2x2 +.’. be a nonunit in . To compute, for a given integer n 2, (P Q),
directly from the definition of composition would require, first of all, building up the
powers

n-1

(ok),= ., bx", k =2, 3, n.
m=k

If done by fast multiplication, this requires (n-1)(n)=O(n2 Log2 n) tz. To this
number there are to be added the multiplications by the coefficients ak, which requires
another 1/2n 2 . The grand total for this method thus is O(rt 2 Log2 n).

Another possibility for computing the composition is to use Horner’s scheme.
Although more elegant, the resulting algorithm still requires O(n2 Log2 n)

Here we present an algorithm due to Brent and Kung (1975) which achieves the
same result in only O((n Log2 n)3/2) /. Some preliminary results are required. For
simplicity of presentation, it will be assumed that Q is an almost unit in , that is, bl 0.

LEMMA 5i. ForP and Q as above, let C := P Q, D := P’ Q. Ifn 21, and if C, is
known, the computation ofDn-1 requires no more than 6&(n) multiplications.

Proof. By the chain rule for formal power series,

Because Q’ is a unit,

C’=(P’ oO)O’=DO’.

The computation of C’,_1 and Qn-1 each requires n- 1 ix. (Strictly speaking, since
the multipliers are integers, these multiplications could be reduced to additions and thus
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would not have to be counted.) The division in view of Theorem 5e requires another
5b(n) Ix. The conclusion follows since b(n)> 3n.

LEMMA 5j. Let n 2, and let

P po + plx +" + pi-lxi-1,

Q qlx +. + qm-lX m-l,

where , m <= n. Then the computation of

C := (p Q),

requires no more than 18m/’{Log2 (4n)}2 multiplications.
Proof. To begin with, let/’ and m be powers of 2, ] => 2. We reduce the composition

of a polynomial of length ] with Q to two compositions of polynomials of length/’/2 with
O by using the decomposition

P= Pi/z + x

where P* is a suitable polynomial of length/’/2. This yields

(5.13) P (2 Pi/z Q + Qi/2(p, Q)

where in all operations terms of degree ->n are truncated. If, for fixed m and n _-> m, z(j)
denotes the number of multiplications required to compute the composition of a
polynomial of length/’ with a polynomial of length m to n terms, the forming of each
series (Pi/2 Q)n and (P* Q)n requires z(j/2) Ix. Assuming inductively that Oi/4 is
known, the computation of Qi/2 costs c(lm) Ix, and the remaining multiplication in

1.(5.13) costs another c(Im) Ix. Thus

z(j) <= 2z(/’/2)+ 24 (1/2/’m),

and in view of z(1)= 0 it follows that

-(2h) -<_ 2(2h-Xm) + 4b (2h-Zm) + 8b (2h-3m) +"
<--_3m2h{h Logz m +(.h + 1)(h +2)}.

Hence if/" 2h <-- n we get

z(/’) --< 3m. {Log (4n)}2.
If m and j are not powers of 2, we may replace them by the next higher power of 2 by
filling up P and O with zero coefficients. This yields the estimate of the lemma.

After these preparations, the Brent-Kung algorithm for constructing (P O), (O
an almost unit) may be described as follows.

For the n given, let

m := [ /Logn4n).]
We set (2 O" + x’O*. By the formal analog of Taylor’s theorem,

PoO=Po(O,+xO*)

1
"(2

1
(p,, Om)x2"O,2 %-...Po Q +(P’ Q,)x * +-.
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If/’ > k := In/m], then x "i= O(x"), and so
1 1 (p(k) Q,)xk,Q.k +O(xn).(5.14) p O p Q,, +i-[. (p’ Q,,,)x’Q* +...+--[.

This formula is implemented in the following five steps:
Step 1. Compute Rn, where R := P Q,,, By Lemma 5j, this requires no more than

18ran {Log2 (4n)}2 18{n Log2 (4n)}3/z
multiplications.

Step 2. For f 1, 2,..., k, compute

(p(i) O, ),, _..
By Lemma 5i, this takes at most 54(n)= 15n Log2 (4n)
step thus takes no more than

for each series. The whole

2

15kn Log2 (4n) -< 15
n

Log2 (4n)-< 30{n Log2 (4n)}3/2
m

multiplications. Here we have assumed that x/_> 2x/og2 (4n), that is, n _->64.

Step 3. For j 2, 3,. , k, compute

((x O*);).

By Theorem 5a, this takes no more than

(k- 1)cb(n)<-_nqb(n)<-6{n Log2 (4n)}3/2
m

multiplications. Again we have assumed that n_->64 in order, to ensure
2x/Log2 (4n).

Step 4. For ] 1, 2,. ., k, compute

1 [(p(i) mQO)(x *)].

This requires forming k products of length n, and thus again at most

6{n Logz (4n)}3/z

/z. To this there must be added the multiplication of k series of length n by the
appropriate factorials, which yields another kn<=2n3/2{Log2 (4n)}1/2 tz, plus k-<

2{n Log2 (4n)}1/2/x for building up the factorials. Altogether Step 4 may be performed
in

8{n Log2 (4n)}3/2
multiplications.

Step 5. Sum the series obtained in Step 4. This requires no multiplications.
Altogether we have obtained:
THEOREM 5k. I[ n 21 _-->64, if P and if Q is an almost unit in , the

composition (P Q), can be computed using no more than 50{n Log2 (4n)}3/ multi-
plications.

5.6. Reversion: The .general ease. The problem of computing W := Q-a for a
given almost unit Q can, in the general case, again be solved by Newton’s algorithm,
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because W by definition satisfies the equation

(5.15) O w-x o
which is the special case R X x of (5.2). Newton’s algorithm (5.6) here takes the
form

W() := 0,

(5.16) W,,,+) wm) (0 W( X,:tr-(’ ] 2h’

where h := 2", m 0, 1,. . One Newton step.requires
(a) forming (O wm))2h (cost by Theorem 5k if h > 32" 50{2h Logz (8h
(b) forming (O’o W’))h (cost by Lemma 5i" 6(h)
(c) forming the quotient to precision O(x2h). Because the numerator is O(xh), the

quotient after factoring out x h must be formed only to precision O(xh), which by
Theorem 5e costs 5(h) multiplications.

The total number of multiplications to compute W, where n 2 is given by the
sum of the foregoing for h 2-1, 2-2, , 1. Values of (a) where h -< 32 are replaced
by the values for h 32. Crude estimates yield

THEOREM 51. If n is a sufficiently high power of 2 and O is an almost unit, the
computation of (0[-1]),, by the algorithm (5.16) requires no more than
150{n Logz (8n)}3/2 multiplications.

Notes on 5. 5.2. The fundamental role of Newton’s method in power series
manipulation is implicit in Brent (1976).

5.3. Algorithm (5.7) (in a different notation) is due to Sieveking (1972). Kung
(1974) showed that this is just Newton’s method, and studied other rootfinding methods
to construct reciprocals.

5.4. See Brent (1976).
5.5 and 5.6. See Brent and Kung (1975), (1976). The latter paper also proposes

O(n2) algorithms for reversion and composition that should be attractive for moderate
n. Multivariate extensions of these results are reported in Brent and Kung (1977).
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