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Change-Point Detection for High-Dimensional
Time Series With Missing Data

Yao Xie, Jiaji Huang, and Rebecca Willett

Abstract—This paper describes a novel approach to change-
point detection when the observed high-dimensional data may
have missing elements. The performance of classical methods
for change-point detection typically scales poorly with the di-
mensionality of the data, so that a large number of observations
are collected after the true change-point before it can be reliably
detected. Furthermore, missing components in the observed
data handicap conventional approaches. The proposed method
addresses these challenges by modeling the dynamic distribution
underlying the data as lying close to a time-varying low-dimen-
sional submanifold embedded within the ambient observation
space. Specifically, streaming data is used to track a submanifold
approximation, measure deviations from this approximation, and
calculate a series of statistics of the deviations for detecting when
the underlying manifold has changed in a sharp or unexpected
manner. The approach described in this paper leverages several
recent results in the field of high-dimensional data analysis, in-
cluding subspace tracking with missing data, multiscale analysis
techniques for point clouds, online optimization, and change-point
detection performance analysis. Simulations and experiments
highlight the robustness and efficacy of the proposed approach
in detecting an abrupt change in an otherwise slowly varying
low-dimensional manifold.

Index Terms—Statistical learning, signal processing algorithms,
signal detection, change detection algorithms .

I. INTRODUCTION

C HANGE-POINT detection is a form of anomaly detec-
tion where the anomalies of interest are abrupt temporal

changes in a stochastic process [1], [2]. A “quickest” change-
point detection algorithm will accept a streaming sequence of
random variables whose distribution may change abruptly at
one time, detect such a change as soon as possible, and also
have long period between false detections. In many modern ap-
plications, the stochastic process is non-stationary away from
the change-points and very high dimensional, resulting in sig-
nificant statistical and computational challenges. For instance,
we may wish to quickly identify changes in network traffic pat-
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terns [3], social network interactions [4], surveillance video [5],
graph structures [6], or solar flare imagery [7], [8].
Traditional quickest change-point detection methods typi-

cally deal with a sequence of low-dimensional, often scalar,
random variables. Naïvely applying these approaches to
high-dimensional data is impractical because the underlying
high-dimensional distribution cannot be accurately estimated
and used for developing test statistics. This results in detec-
tion delays and false alarm rates that scale poorly with the
dimensionality of the problem. Thus the primary challenge
here is to develop a rigorous method for extracting meaningful
low-dimensional statistics from the high-dimensional data
stream without making restrictive modeling assumptions.
Our method addresses these challenges by using multiscale

online manifold learning to extract univariate change-point de-
tection test statistics from high-dimensional data. We model the
dynamic distribution underlying the data as lying close to a
time-varying, low-dimensional submanifold embedded within
the ambient observation space. This submanifold model, while
non-parametric, allows us to generate meaningful test statistics
for robust and reliable change-point detection, and the multi-
scale structure allows for fast, memory-efficient computations.
Furthermore, these statistics can be calculated even when ele-
ments are missing from the observation vectors.
While manifold learning has received significant attention in

the machine learning literature [9]–[16], online learning of a dy-
namic manifold remains a significant challenge, both algorith-
mically and statistically. Most existing methods are “batch”, in
that they are designed to process a collection of independent
observations all lying near the same static submanifold, and all
data is available for processing simultaneously.
In contrast, our interest lies with “online” algorithms, which

accept streaming data and sequentially update an estimate of the
underlying dynamic submanifold structure, and change-point
detection methods which identify significant changes in the sub-
manifold structure rapidly and reliably. Recent progress for a
very special case of submanifolds appears in the context of sub-
space tracking. For example, the Grassmannian Rank-One Up-
date Subspace Estimation (GROUSE) [17] and Parallel Esti-
mation and Tracking by REcursive Least Squares (PETRELS)
[18], [19] effectively track a single subspace using incomplete
data vectors. The subspace model used in these methods, how-
ever, provides a poor fit to data sampled from a manifold with
non-negligible curvature or a union of subsets.

A. Related Work

At its core, our method basically tracks a time-varying
probability distribution underlying the observed data, and uses

1932-4553/$31.00 © 2012 IEEE
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this distribution to generate statistics for effective change-point
detection. For sequential density estimation problems such as
this, it is natural to consider an online kernel density estimation
(KDE) method see, e.g., [20]. A naive variant of online KDEs
would be quite challenging in our setting, however, because if
we model the density using a kernel at each observed data point,
then the amount of memory and computation required increases
linearly with time and is poorly suited to large-scale streaming
data problems. Ad-hoc “compression” or “kernel herding”
methods for online kernel density estimation address this chal-
lenge [21], [22] but face computational hurdles. Furthermore,
choosing the kernel bandwidth, and particularly allowing it to
vary spatially and temporally, is a significant challenge. Recent
works consider variable bandwidth selection using expert
strategies which increase memory requirements [23], [24].
Some of these issues are addressed by the RODEO method
[25], but the sparse additive model assumed in that work limits
the applicability of the approach; our proposed method is
applicable to much broader classes of high-dimensional densi-
ties. Finally, in high-dimensional settings asymmetric kernels
which are not necessarily coordinate-aligned appear essential
for approximating densities on low-dimensional manifolds,
but learning time-varying, spatially-varying, and anisotropic
kernels remains an open problem. In a sense, our approach can
be considered a memory-efficient sparse online kernel density
estimation method, where we only track a small number of
kernels, and we allow the number of kernels, the center of each
kernel, and the shape of each kernel to adapt to new data over
time.
Our approach also has close connections with Gaussian Mix-

ture Models (GMMs) [26]–[29]. The basic idea here is to ap-
proximate a probability density with a mixture of Gaussian dis-
tributions, each with its own mean and covariance matrix. The
number of mixture components is typically fixed, limiting the
memory demands of the estimate, and online expectation-maxi-
mization algorithms can be used to track a time-varying density
[30]. In the fixed sample-size setting, there has been work re-
ducing the number of components in GMMs while preserving
the component structure of the original model [29]. However,
this approach faces several challenges in our setting. In partic-
ular, choosing the number of mixture components is challenging
even in batch settings, and the issue is aggravated in online set-
tings where the ideal number of mixture components may vary
over time. In the online setting, splitting and merging Gaussian
components of an already learned precise GMM has been con-
sidered in [31]. However, learning a precise GMM online is im-
practical when data are high-dimensional because, without addi-
tional modeling assumptions, tracking the covariance matrices
for each of the mixture components is very ill-posed in high-di-
mensional settings.
Our approach is also closely related to Geometric Multi-Res-

olution Analysis (GMRA) [15], which was developed for an-
alyzing intrinsically low-dimensional point clouds in high-di-
mensional spaces. The basic idea of GMRA is to first iteratively
partition a dataset to form a multiscale collection of subsets of
the data, then find a low-rank approximation for the data in each
subset, and finally efficiently encode the difference between the
low-rank approximations at different scales. This approach is

a batch method without a straightforward extension to online
settings.

B. Motivating Applications

The proposed method is applicable in a wide variety of set-
tings. Consider a video surveillance problem. Many modern
sensors collect massive video streams which cannot be analyzed
by human due to the sheer volume of data; for example, the
ARGUS system developed by BAE Systems is reported to col-
lect video-rate gigapixel imagery [32], [33], and the Solar Dy-
namics Observatory (SDO) collects huge quantities of solar mo-
tion imagery “in multiple wavelengths to [help solar physicists]
link changes in the surface to interior changes” [34]. Solar flares
have a close connection with geomagnetic storms, which can
potentially cause large-scale power-grid failures. In recent years
the sun has entered a phase of intense activity, which makes
monitoring of solar flare bursts an even more important task [8].
With these issues in mind, it is clear that somehow prioritizing
the available data for detailed expert or expert-system analysis
is an essential step in the timely analysis of such data. If we can
reliably detect statistically significant changes in the video, we
can focus analysts’ attention on salient aspects of the dynamic
scene. For example, we may wish to detect a solar flare in a se-
quence of solar images in real timewithout an explicit model for
flares, or detect anomalous behaviors in surveillance video [35].
Saliency detection has been tackled previously [36], [37], but
most methods do not track gradual changes in the scene com-
position and do not detect temporal change-points.
A second motivating example is credit history monitoring,

where we are interested in monitoring the spending pattern of a
user and raising an alarm if a user’s spending pattern is likely to
result a default [38]. Here normal spending patterns may evolve
over time, but we would expect a sharp change in the case of a
stolen identity.
An additional potential application arises in computer net-

work anomaly detection [39]. Malicious attacks or network
failure can significantly affect the characteristics of a network
[3], [40]. Recent work has shown that network traffic data is
well-characterized using submanifold structure [41], and using
such models may lead to more rapid detection of change-points
with fewer false alarms.

C. Contributions and Paper Organization

The primary contributions of this work are two-fold: we
present (a) a fast method for online tracking of a dynamic
submanifold underlying very high-dimensional noisy data with
missing elements and (b) a principled change-point detection
method using easily computed residuals of our online sub-
manifold approximation based on a sequential generalized
likelihood ratio procedure [42]. These methods are supported
by both theoretical analyses and numerical experiments on
simulated and real data.
The paper is organized as follows. In Section II we formally

define our setting and problem. Section III describes our multi-
scale submanifold model and tracking algorithm, which is used
to generate the statistics used in the change-point detection com-
ponent described in Section IV. Several theoretical aspects of
the performance of our method are described in Section V, and
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the performance is illustrated in several numerical examples in
Section VI.

II. PROBLEM FORMULATION

Suppose we are given a sequence of data , for
, where denotes the ambient dimension.

The data are noisy measurements of points lying on a subman-
ifold :

(1)

The intrinsic dimension of the submanifold is . We assume
. The noise is a zero mean white Gaussian random

vector with covariance matrix . The underlying submanifold
may vary slowly with time. At each time , we only observe

a partial vector at locations . Let rep-
resent the matrix that selects the axes of indexed
by ; we observe , where is known.
Our goal is to design an online algorithm that generates a se-

quence of approximations which track when it varies
slowly, and allows us to compute residuals [1] from for de-
tecting change-points as soon as possible after the submanifold
changes abruptly. The premise is that the statistical properties
of the tracking residuals will be different when the submanifold
varies slowly versus when it changes abruptly.
Define the operator

(2)

as the projection of observation on to , where is the
Euclidean norm of a vector . If we had access to all the data si-
multaneously without any memory constraints, we might solve
the following batch optimization problem using all data up to
time for an approximation:

(3)

where denotes a regularization term which penalizes
the complexity of is a discounting factor on the
tracking residual at each time , and is a user-determined con-
stant that specifies the relative weights of the data fit and reg-
ularization terms. The cost function in (3) is chosen with the
following goals in mind: (a) to balance the tradeoff between
tracking residuals and the complexity of our estimator, thereby
preventing over-fitting to data; (b) to track the underlying man-
ifold when it is time-varying via discounting old samples in
the cost function; (c) to enable an easy decomposition of cost
functions that facilitates online estimation, as we demonstrate
in Section III.
Note that (3) cannot be solved without retaining all previous

data in memory, which is impractical for the applications of
interest. To address this, we instead consider an approximation
to the cost function in (3) of the form ,
where measures how well the data fits . In Section III,
we will show several forms of that lead to recursive
updates and efficient tracking algorithms, and present our
new algorithm: Multi-scale Online Union of SubSets Estimate

Fig. 1. Approximation of MOUSSE at (upper) and (lower)
of a 100-dimensional submanifold. In this figure we project everything into
three-dimensional space. The blue curve corresponds to true submanifold, the
plus signs are noisy samples from the submanifold (the lighter plus signs are
more dated than the darker plus signs), and the red line segments are the approx-
imation subsets computed with MOUSSE. As the curvature of the submanifold
increases, MOUSSE also adapts in the number of subsets.

(MOUSSE). Our method finds a sequence of approximations
, such that is computed by updating the

previous approximation using and the current
datum (but not older data). One example of a MOUSSE
approximation is illustrated in Fig. 1. In this figure, the dashed
line corresponds to the true submanifold, the red lines cor-
respond to the estimated union of subsets by MOUSSE, and
the signs correspond to the past 500 samples, with darker
colors corresponding to more recent observations. The context
is described in more detail in Section VI.C.
Given the sequence of submanifold estimates ,

we can compute the distance of each to , which we refer to
as residuals and denote using . We then apply change-point
detection methods to the sequence of tracking residuals . In
particular, we assume that when there is no change-point, the
are i.i.d. with distribution . When there is a change-point,

there exists an unknown time such that are
i.i.d. with distribution , and are i.i.d. with distribu-
tion . Our goals are to (a) detect as soon as possible when
such a exists before and (b) when no such exists, have
our method accept streaming data for as long as possible be-
fore falsely declaring a change-point. (Note that in this setting,
even if no change-point exists and all data are i.i.d., any method
will eventually incorrectly declare a change-point; that is, for
an infinite stream of data, we will have a false alarm at some
time with probability one. However, good change-point detec-
tion methods ensure that, with high probability, these false de-
tections only occur after a very long period, and thus exert some
measure of control over the false alarm rate over time.)

III. MULTISCALE ONLINE UNION OF SUBSETS
ESTIMATION (MOUSSE)

In this section, we describe the Multiscale Online Union of
SubSets Estimation (MOUSSE) method, including the under-
lying multiscale model and online update approaches.

A. Multiscale Union of Subsets Model

MOUSSE uses a union of low-dimensional subsets, , to
approximate , and organizes these subsets using a tree struc-
ture. The idea for a multiscale tree structure is drawn from the
multiscale harmonic analysis literature [43]. The leaves of the
tree are subsets that are used for the submanifold approximation.
Each node in the tree represents a local approximation to the
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submanifold at one scale. The parent nodes are subsets that con-
tain coarser approximations to the submanifold than their chil-
dren. The subset associated with a parent node roughly covers
the subsets associated with its two children.
More specifically, our approximation at each time consists

of a union of subsets that is organized using a tree struc-
ture. Here denotes the scale or level of the
subset in the tree, where is the tree depth at time , and

denotes the index of the subset for that level.
The approximation at time is given by:

(4)

where contains the indices of all leaf nodes used for approx-
imation at time . Also define to be the set of indices of all
nodes in the tree at time , with . Each of these subsets
lies on a low-dimensional hyperplane with dimension and is
parameterized as

(5)

where the notation denotes transpose of a matrix or vector.
The matrix is the subspace basis, and

is the offset of the hyperplane from the origin. The diagonal
matrix

with , contains eigenvalues of the
covariance matrix of the projected data onto each hyperplane.
This parameter specifies the shape of the ellipsoid by capturing
the spread of the data within the hyperplane. In summary, the
parameters for are

and these parameters will be updated online, as described in
Algorithm 2.
In our tree structure, the leaf nodes of the tree also have two

virtual children nodes that maintain estimates for corresponding
subsets at a finer scale than encapsulated by the leaf nodes of our
tree (and ); these subsets are not used for our instantaneous
submanifold approximation, but rather when further subdivision
with the tree is needed. We will explain more details about tree
subdivision and growth in Section III.E and Algorithms 3 and 4.
The complexity of the approximation, denoted , is defined to
be the total number of subsets used for approximation at time :

(6)

this is used as the complexity regularization term in (3):
. The tree structure is illustrated in Fig. 2.

B. Approximate Mahalanobis Distance

To update the submanifold approximation, we first determine
the affinity of to each subset. We might simply project

Fig. 2. Illustration of tree structure for subsets. The subsets used in our approx-
imation are .

onto each subset (i.e., ellipsoid), but computing this pro-
jection generally requires using numerical solver. Alternatively,
we could consider the Mahalanobis distance, which is com-
monly used for data classification and it measures the quadratic
distance of to a set of data with mean and covari-
ance . Specifically, the Mahalanobis
distance is defined as

(7)

However, this distance is only finite and well-defined for points
lying in one of the low dimensional subspaces in our approxima-
tion. Since our construction is a piecewise linear approximation
to a submanifold which may have some curvature, we anticipate
many observations which are near but not in our collection of
subsets, and we need a well-defined, finite distance measure for
such points.
To address these challenges, we introduce the approximate

Mahalanobis distance of a point to a subset , which is a hy-
brid of Euclidean distance and Mahalanobis distance. Assume
with support and the parameters for a set is given by

. Define

Define the pseudoinverse operator that computes the coeffi-
cients of a vector in the subspace spanned by as

(8)

Let denote , and similarly . When
is an orthogonal matrix, we have , but in general

. Let

(9)

(10)

In this definition, is the projection coefficient of a re-centered
on , and captures the projection residual. Assuming the
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covariance matrix has a low-rank structure with large eigen-
values and small eigenvalues, we can write the eigende-
composition of the covariance matrix as

where
. If

we further assume that the small eigenvalues are all
approximately equal to some , i.e., , then the
Mahalanobis distance (7) may be approximated as

(11)

Motivated by this, we define the approximate Mahalanobis
distance:

(12)

When the data is complete, is equal to the right-hand-
side of (11), since

then we can write the right-hand-side of (11) as
. With missing data, is an approximation to

.
In definition of the approximationMahalanobis distance (12),
is a small number and has to be estimated from noisy data. To
avoid the numerical instability caused when dividing by a small
number, we use the following scaled approximate Mahalanobis
distance as a measure of the distance between and a subset:

(13)

With this definition, we can find the subset within our approxi-
mation with minimum distance to the new datum :

(14)

We can further define the tracking residual of the submanifold
at time .

(15)

where and are calculated for relative to
using (9) and (10). We take the square root of the scaled ap-
proximate Mahalanobis distance to ensure that the s can be
well modeled as draws from a Gaussian distribution (as demon-
strated in Section IV.C).

C. MOUSSE Algorithm

When a new sample becomes available, MOUSSE up-
dates to obtain . The update steps are presented in Al-
gorithm 1; there are three main steps, detailed in the below sub-
sections: (a) find the subset in which is closest to , (b)
update a tracking estimate of that closest subset, its ancestors,

and its nearest virtual child, and (c) grow or prune the tree struc-
ture to preserve a balance between fit to data and complexity.
The parameters are calculated and
updated in Algorithm 2.We use to denote the -th element
of a vector .

Algorithm 1 MOUSSE

1: Input:
error tolerance , step size , relative weight

2: Initialize tree structure, set
3: for do
4: Given new data and its support
5: find the minimum distance set according to
(14)

6: let and denote (9) and (10) of for
7: calculate: using (15)
8: update all ancestor nodes and closest virtual child
node of using Algorithm 2

9: calculate:
10: denote parent node of as and

closest virtual child node as
11: if and

then
12: split using Algorithm 3
13: end if
14: if and

then
15: merge and its sibling using Algorithm 4
16: end if
17: update and
18: end for

Algorithm 2 Update node

1: Input: node index and subspace parameters
2: Calculate: and using (9) and (10)
3: Update:

4: Update:

5: Update:
6: Update basis using (modified) subspace tracking
algorithm

Algorithm 3 Split node

1: Turn two virtual children nodes and
of node into leaf nodes

2: Initialize virtual nodes and :
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Algorithm 4 Merge and its sibling

1: Make the parent node of into a leaf node
2: Make and its sibling into virtual children nodes
of the newly created leaf

3: Delete all four virtual children nodes of and its
sibling

D. Update Subset Parameters

When updating subsets, we can update all subsets in our mul-
tiscale representation and make the update step-size to be in-
versely proportional to the approximate Mahalanobis distance
between the new sample and each subset, which we refer to as
the “update-all” approach. Alternatively, we can just update the
subset closest to , its virtual children, and all its ancestor
nodes, which we refer to as the “update-nearest” approach. The
update-all approach is computationally more expensive, espe-
cially for high dimensional problems, so we focus our attention
on the greedy update-nearest approach. The below approaches
extend readily to the update-all setting, however.
In the update-nearest approach, we update the parameters of

the minimum distance subset defined in (14), all its ancestors
in the tree, and its two virtual children. The update algorithm
is summarized in Algorithm 2 which denotes the parameters
associated with as , and drops the , and
indices for simplicity of presentation. The update of the center
and are provided in the following, Sections A and B.

To decide whether to change the tree structure, we introduce
the average residual for a “forgetting factor” :

(16)

We will consider changing the tree structure when is greater
than our prescribed residual tolerance .
Next we will focus on three approaches to updating by

modifying existing subspace tracking methods. In the fol-
lowing, for tractability reasons, we hold fixed and update
with respect to alone at first. We then update the shape
parameters and for fixed .
1) GROUSE: To use GROUSE subspace tracking in this

context, we approximate the first term in (3) as

(17)

Note the first term is a constant with respect to , so we need
only to consider the second term in computing an update. To
focus on updating subspace without the shape parameters, we
replace in (17) by

(18)

(assuming is orthonormal and including the offset vector ).
The basic idea is now to take a step in the direction of the instan-
taneous gradient of this cost function (18). This task corresponds
to the basis update of GROUSE [17] with the cost function (18).
Following the same derivation as in [17], we have that

(19)

where is defined in (9), and

The gradient on the Grassmannian is given by

since .We obtain that the update of using the Grass-
mannian gradient is given by

where is the step-size, and . The step-size
is chosen to be , for a constant .
2) PETRELS: Let denote the indices of the closest

subset to , and let denote the set
of times corresponding to data which were closest to this subset
and used to estimate its parameters in previous rounds. Then we
can write

(20)

where, as before, the first sum is independent of and can
be ignored during minimization. When focusing on updating
for fixed , the minimization of with respect to the

subspace used for node in (20) can be accomplished
using the PETRELS algorithm [44], yielding a solution which
can be expressed recursively as follows. Denoting by the
-th row of , we have the update of given by

(21)

for , where is the indicator function for event
, and

The second-order information in can be computed re-
cursively as

(22)
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Note that PETRELS does not guarantee the orthogonality
of , which is important for quickly computing projections
onto our submanifold approximation. To obtain orthonormal

, we may apply Gram-Schmidt orthonormalization after
each update. We refer to this modification of PETRELS as PE-
TRELS-GS. This orthogonalization requires an extra computa-
tional cost on the order of and may compromise the
continuity of , i.e., the Frobenius norm after
the orthogonalization may not be small even when the corre-
sponding subsets are very close [45]. This lack of continuity
makes it impossible to effectively track the scale parameter .
A faster orthonormalization (FO) strategy with less computa-
tion which also preserves the continuity of is given in [45].
We refer to this FO strategy combined with PETRELS as PE-
TRELS-FO.
3) Computational Complexity: For each update with com-

plete data (which is more complex than an update with missing
data), the computational complexity of GROUSE is on the order
of , PETRELS-GS is , and PETRELS-FO is

. More details about the relative performance of these
three subspace update methods can be found in Section VI.

E. Tree Structure Update

When the curvature of the submanifold changes and cannot
be sufficiently characterized by the current subset approxima-
tions, we must perform adaptive model selection. This can be
accomplished within our framework by updating the tree struc-
ture—growing the tree or pruning the tree, which we refer to
as “splitting” and “merging” branches, respectively. Previous
work has derived finite sample bounds and convergence rates
of adaptive model selection in nonparametric time series pre-
diction [46].
Splitting tree branches increases the resolution of the approx-

imation at the cost of higher estimator complexity. Merging re-
duces resolution but lowers complexity. When making deci-
sions on splitting or merging, we take into consideration the
approximation residuals as well as the model complexity (the
number of subsets used in the approximation). This is re-
lated to complexity-regularized tree estimation methods [43],
[47], [48] and the notion of minimum description length (MDL)
in compression theory [49], [50]. In particular, we use the sum of
the average residuals and a penalty proportional to the number
of subsets used for approximation as the cost function when
deciding to split or merge. The splitting and merging opera-
tions are detailed in Algorithm 3 and Algorithm 4. The split-
ting process mimics the -means algorithm. In these algorithms,
note that for node the parent is node and
the sibling node is for even or for odd.

F. Initialization

To initialize MOUSSE, we assume a small initial training set
of samples, and perform a nested bi-partition of the training data
set to form a tree structure, as shown in Fig. 2. The root of the
tree represents the entire data set, and the children of each node
represent a bipartition of the data in the parent node. The biparti-
tion of the data can be performed by the -means algorithm. We
start with the entire data, estimate the sample covariance matrix,
perform an eigendecomposition, extract the -largest eigenvec-

tors and eigenvalues and use them for and , respec-
tively. The average of the minor eigenvalues are used
for . If the approximation residual is greater than the pre-
scribed residual tolerance , we further partition the data into
two clusters using -means (for ) and repeat the above
process. We keep partitioning the data until is less than
for all leaf nodes. Then we further partition the data one level
down to form the virtual children nodes. This tree construction
is similar to that used in [15].
In principle, it is possible to bypass this training phase and

just initialize the tree with a single root node and two random
virtual children nodes. However, the training phase makes it
much easier to select algorithm parameters such as and pro-
vides more meaningful initial virtual nodes, thereby shortening
the “burn in” time of the algorithm.

G. Choice of Parameters

In general, should be close to 1, as in the Recursive Least
Squares (RLS) algorithm [51]. In the case when the submanifold
changes quickly, we would expect smaller weights for approxi-
mation based on historical data and thus a smaller . In contrast,
a slowly evolving submanifold requires a larger . In our exper-
iments, ranges from 0.8 to 0.95. controls residual tolerance,
which varies from problem to problem according to the smooth-
ness of the submanifold underlying the data and the noise vari-
ance. Since the tree’s complexity is controlled and in
(3) is roughly on the order of , we usually set close to .

IV. CHANGE-POINT DETECTION

We are interested in detecting changes to the submanifold
that arise abruptly and change the statistics of the data. When
the submanifold varies slowly in time, MOUSSE (described
in Section III) can track the submanifold and produce a se-
quence of stationary tracking residuals. Because MOUSSE uses
a bounded small step-size, and only allows merging or splitting
by one level in the tree structure update, when an abrupt change
occurs, MOUSSE will lose track of the manifold, resulting in an
abrupt increase in the magnitude of the tracking residuals. This
abrupt change in tracking residuals enables change-point de-
tection. In this section, we formulate the change-point problem
using MOUSSE residuals , show that the distribution of
is close to Gaussian, and adapt the generalized-likelihood ratio
(GLR) procedure [42] for change-point detection.

A. Generalized Likelihood Ratio (GLR) Procedure

We adopt the quickest change-point detection formulation to
detect an abrupt change in the distribution of the residuals. In
particular, we assume that is a normal distribution with mean
and variance , and is a normal distribution withmean

and the same variance . Then we can formulate the change-
point detection problem as the following hypothesis test:

(23)

In the case where the pre-change and post-change distribu-
tions are completely specified, two very good procedures
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are the CUSUM test [52], [53] and the quasi-Bayesian
Shiryayev-Roberts procedure [54], [55] (also see [2], [56] for
surveys). The CUSUM and Shiryayev-Roberts procedures
minimize asymptotically to first order the maximum expected
delay in detecting a change-point, under different conditions
(see [53] for CUSUM and [57], [58] for Shiryayev-Roberts
procedures).
In our problem, the post-change distribution is not completely

prescribed. We assume and are known since typically
there is enough normal data to estimate these parameters (when
the training phase is too short for this to be the case, these quanti-
ties can be estimated online, as described in [59]). However, we
assume is unknown since the magnitude of the change-point
can vary from one instance to another. With this assumption,
we instead use the generalized likelihood ratio (GLR) proce-
dure [42] (which is derived based on the CUSUM procedure),
by replacing with its maximum likelihood estimate (for each
fixed change-point time ):

where

We compute a GLR statistic at each time and stop (declare a
detected change-point) the first time the statistic hits a threshold
:

(24)

where is a time-window length such that we only consider
the most recent residuals for change-point detection, and the
threshold is chosen to control the false-alarm-rate, which is
characterized using average-run-length (ARL) in the change-
point detection literature [60]. Typically we would choose to
be several times (for example, 5 to 10 times) of the anticipated
detection delay, then the window length will almost have no ef-
fect on the detection delay [61]. This threshold choice is detailed
in Section IV.B.

B. Choice of Threshold for Change-Point Detection

In accordance with standard change-point detection notation,
denote by the expectation when there is no change, i.e.,

, and by the expectation when there is a change-point at
, i.e., . The performancemetric for a change-point

detection algorithm is typically characterized by the expected
detection delay and the average-run-
length (ARL) [60]. Typically we use as a per-
formance metric since it is an upper bound for

. Note that the GLR procedure (24) is equivalent to

(25)

where . Under , we have
i.i.d. Gaussian distributed with zero mean and unit vari-

Fig. 3. Q-Q plot of , for a submanifold.

ance. Using the results in [42], we have the following approxi-
mation. When ,

(26)

where
[61], and are the pdf and cdf of the normal random
variable with zero mean and unit variance. We will demonstrate
in Section VI.E that this asymptotic approximation is fairly ac-
curate even for finite and when ’s are not exactly Gaussian
distributed, which allows us to choose the change-point detec-
tion threshold to achieve a target ARLwithout parameter tuning.

C. Distribution of

In deriving the GLR statistics we have assumed that are
i.i.d. Gaussian distributed. A fair question to ask is whether
is truly Gaussian distributed, or even to ask whether is

a good statistic to use. We can verify that Gaussian distribu-
tion is a good approximation for the distribution of (15). The
QQ-plot of from one of our numerical examples in Section VI
when is shown in Fig. 3. We will also demonstrate in
Section VI.E that the theoretical approximation for ARL using
a Gaussian assumption on is quite accurate.

V. PERFORMANCE ANALYSIS

In this section, we first study the performance of MOUSSE,
and then study the choice for the threshold parameter of the
change-point detection algorithm and provide theoretical ap-
proximations. A complete proof of convergence of MOUSSE
(or GROUSE or PETRELS) is challenging since the space of
submanifold approximations we consider is non-convex. Never-
theless, we can still characterize several aspects of our approach.

A. MOUSSE Residuals

As mentioned earlier, our multiscale subset model is closely
related to geometric multiresolution analysis (GMRA) [15]. In
that work, the authors characterize the favorable approximation
capabilities of the proposed multiscale model. In particular, they
prove that the magnitudes of the geometric wavelet coefficients
associated with their algorithm decay asymptotically as a func-
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tion of scale, so a collection of data lying on a smooth sub-
manifold can be well-approximated with a small number (de-
pending on the submanifold curvature) of relatively large geo-
metric wavelets. These geometric wavelets are akin to the leaf
nodes in our approximation, so the approximation results of [15]
suggest that our model admits accurate approximations of data
on smooth submanifolds with a small number of leafs.

B. Optimality and Consistency

In Appendix A, we show that the estimate of is optimal
in the complete data setting. In Appendix B, we show that the
estimates of and are consistent in the complete data setting.

C. Missing Data

In this section, we show that and , when using a missing
data projection, are close to their counterparts when using a
complete data projection. Hence, when the fraction of missing
data is not large, the performance of MOUSSE with missing
data is also consistent. In this section, we omit the subscripts

and , and denote by to simplify notation. Define the
coherence of the basis as [62]

(27)

where denotes the -th row of an identity matrix.
Theorem 1: Let . Given , and is a white

Gaussian noise with zero mean and covariance matrix .
Let , and . If for some
constant ,

(28)

then with probability at least ,

(29)

where

and .
The proof of Theorem 1 combines techniques from [62] with

a new noise bound. Different from [62], instead of bounding
using , we need to bound

using . The proof of this theorem can be found in
Appendix C. The first term in the lower-bound (28) is a conse-
quence of Lemma 3 in [62]. This theorem shows that the number
of non-zero entries, , should be on the order of the maximum
of and for accurate estimation of . The first
term in the bound (29) is proportional to , which is related
to the distance of from , and the second term in (29) is due
to noise.

VI. NUMERICAL EXAMPLES

In this section, we present several numerical examples, first
based on simulated data, and then real data, to demonstrate the
performance of MOUSSE in tracking a submanifold and de-
tecting change-points. We also verify that the theoretical ap-
proximation to ARL in Section IV.B is quite accurate.

A. Comparison of Tracking Algorithms

We first compare the performance of different tracking algo-
rithms presented in Section III.D: GROUSE, PETRELS-GS and
PETRELS-FO in tracking a time varying manifold. The dimen-
sion of the submanifold is and the intrinsic dimension
is . Fixing , we define with its -th
element

(30)

where , corresponds to regu-
larly spaced points between and 2. Let be time-varying:

(31)

where parameter controls how fast the submanifold changes,
and . The observation is obtained from (1) with
noise variance . We compare the methods with
various settings of changing rate and percentage of missing
entries in .
In the following experiments, we use sample average approx-

imation error obtained from samples
as a metric for comparison:

(32)

We set the parameters for each tracking algorithm such that they
each having the best numerical performance. We use for
MOUSSE in all instances. The comparison results are displayed
in Fig. 4, where the horizontal axis is the submanifold changing
rate , the vertical axis is the percentage of missing data, and
the brightness of each block corresponds to our numerical es-
timate of . In Fig. 4, PETRELS-FO performs far better
then PETRELS-GS and slightly better than GROUSE, espe-
cially with a large fraction of missing data. For PETRELS-FO,
the best parameters are fairly stable for various combinations
of submanifold changing rates and factions of missing data:
with around 0.9, around 0.2, and around 0.1. Considering
its lower computational cost and ease of parameter tuning, we
adopt PETRELS-FO inMOUSSE for the remaining experiments
in this paper.

B. Tracking a Static Submanifold

We then study the performance of MOUSSE tracking a static
submanifold. The dimension of the submanifold is
and the intrinsic dimension is . Fixing , we
define according to (30) with for all
. The observation is obtained from (1) with noise variance

. We set (the assumed intrinsic dimension
is identical to the true ), , and
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Fig. 4. MOUSSE tracking a slowly varying submanifold using: (a) GROUSE,
(b) PETRELS-GS and (c) PETRELS-FO. Horizontal axis corresponds to rate of
change for submanifold and vertical axis corresponds to fraction of data missing.
Brightness corresponds to . (a) of MOUSSE using GROUSE,
(b) of MOUSSE using PETRELS-GS, (c) of MOUSSE using
PETRELS-FO.

Fig. 5. MOUSSE tracking a static submanifold with and .

use PETRELS-FO for subspace tracking. Fig. 5 demonstrates
that MOUSSE is able to track a static submanifold and reach
the steady state quickly from a coarse initialization.

C. Tracking a Slowly Time-Varying Submanifold

Next we look closely at MOUSSE tracking a slowly time-
varying submanifold. Consider the submanifold defined in (31),
with and . We set the assumed intrinsic di-
mension to be identical to the true , choose

for MOUSSE, and use

Fig. 6. MOUSSE tracking a slowly time-varying submanifold with
and . The dashed red line depicts the parameter used to control approx-
imation errors in the subset tracking.

PETRELS-FO for subspace tracking. Let 40% of the entries be
missing at random1.
Snapshots of this video at time and are

shown in Fig. 1. In this figure, the dashed line corresponds to
the true submanifold, the red lines correspond to the estimated
union of subsets by MOUSSE, and the signs correspond to
the past 500 samples, with darker colors corresponding to more
recent observations. From this video, it is clear that we are ef-
fectively tracking the dynamics of the submanifold, and keeping
the representation parsimonious so the number of subsets used
by our model is proportional to the curvature of the submani-
fold. As the curvature increases and decreases, the number of
subsets used in our approximation similarly increases and de-
creases. The number of subsets and residuals as a function
of time are shown in Fig. 6. The red line in Fig. 6 corresponds to
. Note that MOUSSE is able to track the submanifold, in that it
can maintain a stable number of leaf nodes in the approximation
and meet the target residual tolerance .

D. Choice of Intrinsic Dimension

In this section, we study the effect of the choice of the in-
trinsic dimension in MOUSSE. We generate a chirp-signal,
with ambient dimension and signal intrinsic dimen-
sion . Let the two-dimensional parameter be ,
with frequency , and phase . Define

with its -th element

(33)

where , corresponds to regu-
larly-spaced points between 0 and 0.01. The parameter con-
trols how fast the submanifold changes and is set according to

Let 40% of the entries be missing at random. For MOUSEE, we
use PETRELS-FO for tracking.We compare the performance of
MOUSSE when is set within the algorithm to be 1, 2, and 3,

1The result of the tracking can be found in an illustrative video at http://
nislab.ee.duke.edu/MOUSSE/.
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TABLE I
AVERAGE RUN LENGTH (ARL)

TABLE II
DETECTION DELAY WHEN JUMP OF IS

Fig. 7. Tracking of MOUSSE using and , respectively,
when the true intrinsic dimension is 2. Red line corresponds to . (a) , (b)

, (c) .

so there can be a mismatch between the true intrinsic dimension
and the assumed . The parameters of MOUSSE set in these
scenarios are: for : ; for

: ; for :
.

Fig. 7 demonstrates that MOUSSE can track the manifold
well when the intrinsic dimension is smaller or equal to the as-
sumed . However, if is chosen to be too small, the errors are
significantly larger and we are forced to use a larger error toler-
ance .

E. Change-Point Detection Using MOUSSE

1) Approximation to ARL: The ARL approximation in (26)
assumes is Gaussian distributed. We have shown that
is not exactly Gaussian distributed but close to a Gaussian.
Hence, we need to numerically verify the accuracy of (26) for
generated by MOUSSE. To simulate ARL of the GLR proce-

dure, we generate 10000 Monte Carlo (MC) trials, each being a
noisy realization of the same slowly time-varying submanifold
in (31). We then apply MOUSSE to track the submanifold,
obtain a sequence of residuals , apply the GLR change-point
detection procedure, and obtain an ARL numerically. We adopt
an exponential approximation in [61] to evaluate
efficiently. Table I shows the value of suggested by theory for
different ARLs and the value of ’s computed via Monte Carlo
are very close. For comparison, we also obtain thresholds for
change-point detection when a single subspace tracking using
PETRELS-FO is employed.
2) Comparison of Tracking Algorithms for MOUSSE: To es-

timate the expected detection delay of MOUSSE detecting a
change-point, we generate instances where the parameter in
(30) has an abrupt jump at time :

(34)

We apply the GLR procedures based on generated from
MOUSSE and single subspace tracking, respectively, and com-
pare the corresponding expected detection delay after .
We consider two change-point magnitudes: big
and small . The expected detection delays are
estimated using 10000 Monte Carlo trials, and are given in
Tables II, and III. For comparison, we also obtain thresholds
for change-point detection when a single subspace tracking
using PETRELS-FO is employed. The threshold ’s are chosen
according to the Monte Carlo thresholds given in Table I. For
example, for the cell corresponding to and 0%
missing data in Table II or III, should be set as 4.55 for
MOUSSE and 4.28 for the single subspace method. Tables II
and III demonstrate that change-point detection based on
MOUSSE has a much smaller expected detection delay than
that based on single subspace tracking.

F. Real Data

1) Solar Flare Detection: We first consider a video from the
Solar Data Observatory, which demonstrates an abrupt emer-
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TABLE III
DETECTION DELAY WHEN JUMP OF IS

Fig. 8. Detection of solar flare at : (a) snapshot of original SDO data at ; (b) MOUSSE residual , which clearly identifies an outburst of solar
flare; (c) single subspace tracking residual , which gives a poor indication of the flare; (d) for MOUSSE which peaks near the flare around ; (e) the
GLR statistic for MOUSSE; (f) for single subspace tracking; (g) the GLR statistic for single subspace tracking. Using a single subspace gives much less reliable
estimates of significant changes in the statistics of the frames. (a) Snapshot of original SDO data at , (b) MOUSSE residual map at , (c) Single
subspace tracking residual map at , (d) from MOUSSE, (e) GLR stats from MOUSSE, (f) from single subspace tracking, (g) GLR stats from single
subspace tracking.

gence of a solar flare 2. We also display a residual map defined
as:

(35)

which is useful to localize the solar flare. Here de-
notes the index of the minimum distance subset. The frame is
of size 232 292 pixels, which result in dimen-
sional streaming data. In this video, the normal states are slowly
drifting solar flares, and the anomaly is a much brighter transient
solar flare. A frame from this dataset during a solar flare around

is shown in Fig. 8(a). In the original images, the back-
ground solar images have bright spots with slowly changing
shape, which makes detection based on simple background sub-
traction incapable of detecting small transient flares.
To ease parameter tuning, we scale the pixel intensities by a

factor of , so the range of data is consistent with our sim-
ulated data experiments. The parameters for this example are

, and . Fig. 8 demonstrates that
MOUSSE can not only detect the emergence of a solar flares,
but also localize the flare by presenting , and these tasks are
accomplished far more effectively with MOUSSE (even with

) than with a single subspace. Note that with single sub-
space tracking, is not a stationary time series prior to the flare

2The video can be found at http://nislab.ee.duke.edu/MOUSSE/. The Solar
Object Locator for the original data is SOL2011-04-30T21-45-49L061C108.

and thus poorly suited for change-point detection. In contrast,
with our approach, with around 10, the underlying mani-
fold structure is better tracked and thus yields more stable
before the change-point and significant change in when the
change-point occurs.
2) Identity Theft Detection: Our second real data example

is related to automatic identity theft detection. The basic idea
is that consumers have typical spending patterns which change
abruptly after identity theft. Banks would like to identify these
changes as quickly as possible without triggering numerous
false alarms. To test MOUSSE on this high-dimensional
change-point detection problem, we examined the E-commerce
transaction history of people in a dataset used for a 2008 UCSD
data mining competition3. For each person in this dataset,
there is a time series of transactions. For each transaction we
have a 31-dimensional real-valued feature vector and a label
of whether the transaction is “good” (0) or “bad” (1). The full
dataset was generated for a generic anomaly detection problem,
so it generally is not appropriate for our setting. However,
some of these transaction time series show a clear change-point
in the labels, and we applied MOUSSE to these time series.
In particular, we use MOUSSE to track the 31-dimensional
feature vector and detect a change-point, and compare this with

3Data available at http://www.cs.purdue.edu/commugrate/data_ac-
cess/all_data_sets_more.php?search_fd0=20.
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Fig. 9. Credit card user data experiments. (a) From top to bottom: number of
leaf nodes used by MOUSSE; ; GLR statistic (solid blue line) and theoretical
threshold corresponding to (dashed red line); ground truth
label. Note that the GLR statistic has a false alarm due to an outlier at ,
and it starts increasing at and frequently hits the threshold afterwards
due to the changepoint at . In this case GLR catches both the outlier
and the changepoint. (b) Demonstration of the time-varying (user attributes):
each column corresponds to the 31-dimensional attribute vector at a given time.
The white spots correspond to the outlier at time . (a) Obtained from
MOUSSE, (b) Visualization of time-varying attributes.

the “ground truth” change-point in the label time series. In
calculating the GLR statistic, we estimate the and of (24)
from . After , every time the GLR statistic ex-
ceeds the threshold and a change-point is detected, we “reset”
the GLR to only consider after the most recently detected
change-point. This allows us to detect multiple change-points
in a time series.
The effect of our procedure for one person’s transaction his-

tory is displayed in Fig. 9. We first see that MOUSSE accu-
rately detects a temporally isolated outlier transaction at ,
after which the GLR is reset. After this, while MOUSSE does
not generate particularly large spikes in , the associated GLR
statistic shows a marked increase near and hits the
threshold at (the threshold corresponds to the Monte
Carlo threshold for in Table I) when the la-
bels (not used by MOUSSE) change from 0 (good) to 1 (bad).
After this the GLR is repeatedly reset and repeatedly detects the
change in the statistics of from the initial stationary process.

VII. CONCLUSION

This paper describes a novel multiscale method for online
tracking of high-dimensional data on a low-dimensional sub-
manifold, and using the tracking residuals to perform fast and
robust change-point detection. Change-point detection is an im-
portant subset of anomaly detection problems due to the ever-in-
creasing volume of streaming data which must be efficiently
prioritized and analyzed. The multiscale structure at the heart
of our method is based on a geometric multiresolution anal-
ysis which facilitates low-complexity piecewise-linear approx-
imations to a manifold. The multiscale structure allows for fast
updates of the manifold estimate and flexible approximations
which can adapt to the changing curvature of a dynamic sub-
manifold. These ideas have the potential to play an important
role in analyzing large volumes of streaming data which arise in
remote sensing, credit monitoring, and network traffic analysis.
While the algorithm proposed in this paper has been focused

on unions of subsets, an important open question is whether
similar techniques could be efficiently adopted based on sparse
covariance matrix selection [63], [64]. The resulting approxi-
mation space may no longer correspond to a low-dimensional

submanifold, but such structures provide good representations
of high-dimensional data in many settings, and our future work
includes tracking the evolution of a mixture of such structures.
Issues related to non-Gaussian observation models, inverse
problem settings, dynamical models, and optimal selection of
the statistic used for change-point detection (i.e., alternatives
to , as considered in [65]) all pose additional interesting open
problems.

APPENDIX A
OPTIMALITY OF ESTIMATE FOR

We assume that there is complete data, and we restrict our
approximation to a single subspace so that . Assume
the mean and covariance matrix of the data are given by and
, respectively. Assume the covariance matrix has low-rank

structure: with for
.

When there is only one subspace and the data are complete,
the cost function (3) without the penalty term becomes

(36)

Recall that the online update for is given by
, with initialization . We can prove that this online

estimate for is optimal in the following sense:
Theorem 2: Assume minimizes (36) at time ,

and the initialization is bounded . Then as
in probability. Moreover, assume ’s are

i.i.d. with , then , i.e., the estimate is
asymptotically unbiased.

Proof: Recall that the online estimate for is given by
. Hence,

where the term is a bias introduced by initial condition .
Let

(37)

By expanding
, and using the fact that , we

can write the cost function of (36) as

(38)
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Since and are both independent of , the last term in (38)
can be re-written and is equal to zero by the choices of and
:

(39)

since . Using the fact that
for two matrix and , together with (39),

the cost function (38) becomes

(40)

where the first term does not depend on . Since the second term
in (40) is quadratic in , it is minimized by choosing .
Denote this optimal at time by .
Hence

(41)

Recall that denote the true mean: . As
in probability, the first term in

the upper bound (41) tends to 0 in probability. Given bounded
, the second term in (41) also tends to 0. Hence our online-

estimate is asymptotically optimal in that it minimizes (36).
Also, is asymptotically unbiased, since

.

APPENDIX B
CONSISTENCY OF ESTIMATES OF AND

We assume that there is complete data, and we restrict our
approximation to a single subspace so that . In the fol-
lowing, we show that if we have correct , then for each
sample , its projection is an unbiased estimator for ,
and is an unbiased estimator for . First
note

(42)

for , where denotes the -th row of an identity
matrix. We also have that

(43)

Then from the MOUSSE update equations, as

(44)
for and

(45)

Hence our estimators for and are asymptotically
unbiased.

APPENDIX C
PROOF OF THEOREM 1

Proof: From (1) and (9) we have

(46)

Note that is zero-mean Gaussian random vector with co-
variance matrix .
Next we consider the missing data case. Recall

is a projection matrix. Define . From (9) we have

(47)

Suppose in (1) we write , with and
, where denotes the orthogonal subspace of . Hence,

and . Let
. Hence, . Note that

(48)

(49)

(50)

So

Hence

We will bound these two terms separately.
First, note that

(51)

where denotes the spectral norm of matrix . Using
[Lemma 2] in [62], we have that with probability , if

,
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where . Using
[Lemma 3] in [62] we have that provided that , with
probability at least ,

(52)

Combine these with (51), we have that with probability ,

(53)

Next we examine the noise term. Define

which is a zero-mean Gaussian random vector with covariance
matrix

where we have used the fact that . Hence we bound
the tail of the noise power using Markov inequality:

(54)

provided that is sufficiently large such that the maximum
eigenvalue is smaller than : , i.e.,

by noting that
. The last equality in (54) is because, under such

condition:

(55)

In the last inequality, we have used (52). Note that
, and the upper bound in (55) is smaller

than if or
. Now we set , if is suffi-

ciently small such that .
Hence we have when

with probability .
Finally, combining (53) and (55), we obtain the statement in
Theorem 1.

REFERENCES
[1] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes:

Theory and Applications. Englewood Cliffs: Prentice-Hall, Apr.
1993.

[2] H. V. Poor and O. Hadjiliadis, Quickest Detection. Cambridge, U.K.:
Cambridge Univ. Press, Dec. 2008.

[3] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide
traffic anomalies,” in Proc. SIGCOMM, 2004.

[4] M. Raginsky, R. Willett, C. Horn, J. Silva, and R. Marcia, “Sequential
anomaly detection in the presence of noise and limited feedback,” IEEE
Trans. Inf. Theory, vol. 58, no. 8, pp. 5544–5562, Aug. 2012.

[5] K.-C. Lee and D. Kriegman, “Online learning of probabilistic appear-
ance manifolds for video-based recognition and tracking,” in Proc.
CVPR, 2005, pp. 852–859.

[6] Y. Park, C. E. Priebe, and A. Youssef, Anomaly detection in time series
of graphs using fusion of graph Invariants, 2012, arXiv:1210.8429.

[7] M. Qu, F. Y. Shih, J. Jing, and H. Wang, “Automatic solar filament
detection using image processing techniques,” Solar Phys., no. 1–2,
pp. 119–135, 2005, DOI: 10.1007/s11207-005-5780-1.

[8] J. Kappenman, “A perfect storm of planetary proportions,” IEEE Spec-
trum, vol. 49, no. 2, pp. 26–31, Feb. 2012.

[9] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319–2323, 2000.

[10] S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally
linear embedding,” Science, vol. 22, no. 5500, pp. 2323–2326, 2000.

[11] M. Belkin, “Problems of learning on manifolds,” Ph.D. dissertation,
University of Chicago, Chicago, IL, 2003.

[12] J. A. Costa and A. O. Hero, “Geodesic entropic graphs for dimen-
sion and entropy estimation in manifold learning,” IEEE Trans. Signal
Process., vol. 25, no. 8, pp. 2210–2221, Aug. 2004.

[13] M. Belkin, P. Niyogi, and V. Singhwani, “Manifold regularization: A
geometric framework for learning from labeled and unlabeled exam-
ples,” J. Mach. Learn. Res., vol. 7, pp. 2399–2434, 2006.

[14] M. B. Wakin, “Manifold-based signal recovery and parameter estima-
tion from compressive measurements,” 2009, submitted for publica-
tion, arXiv:1002.1247.

[15] W. Allard, G. Chen, and M. Maggioni, “Multi-scale geometric
methods for data sets II: Geometric multi-resolution analysis,” App.
and Comput. Harmonic Anal., vol. 32, no. 3, pp. 435–462, May 2011.

[16] S. Karygianni and P. Frossard, “Tangent-based manifold approxima-
tion with locally linear models,” arXiv:1211.1893, 2012.

[17] L. Balzano, R. Nowak, and B. Recht, “Online identification and
tracking of subspaces from highly incomplete information,” in Proc.
Allerton Conf. Commun., Control Comput., Sep. 2010, pp. 704–711.

[18] Y. Chi, Y. C. Eldar, and R. Calderbank, “PETRELS: Subspace estima-
tion and tracking from partial observations,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), 2012, pp. 3301–3304.

[19] Y. Chi, Y. C. Eldar, and R. Calderbank, “Petrels: Parallel esti-
mation and tracking of subspace by recursive least squares from
partial observations,” IEEE Trans. Signal Process, arXived., 2012,
arXiv:1207:6353, submitted for publication.

[20] C. Priebe and D. Marchette, “Adaptive mixture density estimation,”
Pattern Recognit., vol. 26, no. 5, pp. 771–785, May 1993.

[21] M. Kristan, D. Skočaj, and A. Leonardis, “Online kernel density esti-
mation for interactive learning,” Image Vis. Comput., vol. 28, no. 7, pp.
1106–1116, 2010.

[22] M. Kristan, A. Leonardis, and D. Skočaj, “Multivariate online kernel
density estimation with gaussian kernels,” Pattern Recognit., vol. 44,
pp. 2630–2642, 2011.

[23] Ph. Rigollet and A. B. Tsybakov, “Linear and convex aggregation of
density estimators,” Math. Meth. Statist., vol. 16, no. 3, pp. 260–280,
2007.

[24] R. S. G. Mahapatruni and A. G. Gray, “Cake: Convex adaptive kernel
density estimation,” J. Mach. Learing Res.—Proc. Track, vol. 15, pp.
498–506, 2011.

[25] J. Lafferty and L. Wasserman, “Rodeo: Sparse, greedy nonparametric
regression,” Ann. Stat., vol. 36, pp. 28–63, Mar. 2008, no. arXiv:0803.
1709. IMS-AOS-AOS0318. 1.

[26] G.McLachlan and D. Peel, Finite Mixture Models. NewYork:Wiley,
2000.

[27] Q. Li, “Estimation of mixture models,” Ph.D. dissertation, Yale Univ.,
New Haven, CT, 1999.

[28] Q. Li and A. Barron, Advances in Neural Information Processing Sys-
tems 12. Cambridge, MA: MIT Press, 2000, ch. Mixture Density Es-
timation.

[29] J. Goldberger and S. Roweis, “Hierarchical clustering of a mixture
model,” Neural Inf. Process. Syst. (NIPS), 2005.

[30] G. McLachlan and T. Krishnan, The EM Algorithm and Extensions.
New York: Wiley, 1997.

[31] A. Declercq and J. H. Piater, “Online learning of Gaussian mixture
models: A two-level approach,” in Proc. 3rd Int. Conf. Comput. Vis.
Theory Applicat. (VISAPP), 2008.



XIE et al.: CHANGE-POINT DETECTION FOR HIGH-DIMENSIONAL TIME SERIES WITH MISSING DATA 27

[32] D. Bezier, “BAE to develop surveillance system,” The Washington
Post 2007 [Online]. Available: http://www.washingtonpost.com/wp-
dyn/content/article/2007/11/11/AR2007111101348.html, retrieved
3-20-2012

[33] D. Hambling, “Special forces’ gigapixel flying spy sees all,” 2009
[Online]. Available: http://www.wired.com/dangerroom/2009/02/gi-
gapixel-flyin/

[34] NASA, SDO Instruments [Online]. Available: http://sdo.gsfc.nasa.
gov/mission/instruments.php Retrieved 7-30-2012

[35] V. Mahadevan,W. Li, V. Bhalodia, and N. Vasconcelos, “Anomaly de-
tection in crowded scenes,” in Proc. IEEE. Conf. Comput. Vis. Pattern
Rec., San Francisco, CA, 2010, pp. 1975–1981.

[36] X. Hou and L. Zhang, “Saliency detection: A spectral residual
approach,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR07). IEEE Comput. Soc., 2007, pp. 1–8.

[37] H. J. Seo and P. Milanfar, “Static and space-time visual saliency detec-
tion by self-resemblance,” J. Vis., vol. 9, no. 12, pp. 1–27, Nov. 2009.

[38] K. Kennedy, B. M. Namee, and S. J. Delany, Using Semi-Su-
pervised Classifiers for Credit Scoring, 2012, [Online]. Avail-
able: http://www.palgrave-journals.com/jors/journal/vaop/ncur-
rent/abs/jors201130a.html

[39] T. Ahmed and M. Coates, “Multivariate online anomaly detection
using kernel recursive least squares,” in Proc. IEEE Infocom, 2007,
pp. 625–633.

[40] A. S. Polunchenko, A. G. Tartakovsky, andN.Mukhopadhyay, “Nearly
optimal change-point detection with an application to cybersecurity,”
Sequential Anal.: Design Meth. Applicat., vol. 31, no. 3, pp. 409–435,
Jul. 2012.

[41] N. Patwari, A. O. Hero, III, and A. Pacholski, “Manifold learning visu-
alization of network traffic data,” in Proc. ACM SIGCOMMWorkshop
Mining Network Data (MineNet), 2005, pp. 191–196.

[42] D. Siegmund and E. S. Venkatraman, “Using the generalized likelihood
ratio statistic for sequential detection of a change-point,” Ann. Statist.,
vol. 23, no. 1, pp. 255–271, 1995.

[43] D. Donoho, “Cart and best-ortho-basis selection: A connection,” Ann.
Statist., vol. 25, pp. 1870–1911, 1997.

[44] Y. Chi, Y. C. Eldar, and R. Calderbank, “PETReLS: Subspace estima-
tion and tracking from partial observations,” inProc. Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), Mar. 2012, pp. 3301–3304.

[45] K. Abed-Meraim, A. Chkeif, Y. Hua, and S. Attallah, “On a class of
orthonormal algorithms for principal and minor subspace tracking,” J.
VLSI Signal Process., vol. 31, pp. 57–70, 2002.

[46] R.Meir, “Nonparametric time series prediction through adaptivemodel
selection,” Mach. Learn., vol. 39, pp. 5–34, 2000.

[47] L. Breiman, J. Friedman, R. Olshen, and C. J. Stone, Classification and
Regression Trees. Belmont, CA: Wadsworth, 1983.

[48] R. Willett and R. Nowak, “Multiscale Poisson intensity and density
estimation,” IEEE Trans. Inf. Theory, vol. 53, no. 9, pp. 3171–3187,
Sep. 2007.

[49] A. Barron, J. Rissanen, and B. Yu, “Minimum description length prin-
ciple in coding and modeling,” IEEE Trans. Inf. Theory, vol. 44, no. 6,
pp. 2743–2760, Oct. 1998.

[50] N. Merhav and M. Feder, “Universal prediction,” IEEE Trans. Inf.
Theory, vol. 44, no. 6, pp. 2124–2147, Oct. 1998.

[51] S. Haykin, Adaptive Filter Theory, 4th ed. Upper Saddle River, NJ:
Prentice-Hall, 2001.

[52] E. S. Page, “Continuous inspection scheme,” Biometrika, vol. 41, no.
1/2, pp. 100–115, Jun. 1954.

[53] G. Lorden, “Procedure for reacting to a change in distribution,” Ann.
Math. Statist., vol. 42, pp. 1897–1908, 1971.

[54] A. N. Shiryayev, “On optimal method in earliest detection problems,”
Theory Probab. Appl., vol. 8, pp. 26–51, 1963.

[55] S.W. Roberts, “A comparison of some control chart procedures,” Tech-
nometrics, vol. 8, pp. 411–430, 1966.

[56] A. Polunchenko and A. G. Tartakovsky, “State-of-the-art in sequential
change-point detection,” Methodol. Comput. Appl. Probab., vol. 14,
no. 3, pp. 649–684, 2012.

[57] M. Pollak, “Optimal detection of a change in distribution,” Ann.
Statist., vol. 13, pp. 206–227, 1985.

[58] M. Pollak and A. G. Tartakovsky, “Optimality of the Shiryaev-Roberts
procedure,” Statistica Sinica, vol. 19, no. 4, pp. 1729–1739, 2009.

[59] M. Pollak and D. Siegmund, “Sequential detection of a change in a
normal mean when the initial value is unknown,” Ann. Statist., vol. 19,
no. 1, pp. 394–416, 1991.

[60] D. Siegmund, Sequential Analysis: Test and Confidence Intervals.
New York: Springer, Aug. 1985.

[61] Y. Xie and D. Siegmund, “Sequential multi-sensor change-point detec-
tion,” Ann. Statist., Jun. 2012, submitted for publication.

[62] L. Balzano, B. Recht, and R. Nowak, “High-dimensional matched sub-
space detection when data are missing,” in Proc. IEEE Int. Symp. Inf.
Theory, Jun. 2010, pp. 1638–1642.

[63] A. d’Aspremont, O. Banerjee, and L. El Ghaoui, “First-order methods
for sparse covariance selection,” SIAM. J. Matrix Anal. Applicat., vol.
30, no. 56, pp. 56–66, 2008.

[64] S. M. Kakade, O. Shamir, K. Sridharan, and A. Tewari, “Learning ex-
ponential families in high-dimensionals: Strong convenxity and spar-
sity,” in Proc. Int. Conf. Artif. Intel. Statist., 2010, pp. 381–388.

[65] Y. Xie and D. Siegmund, “Parallel sequential multisensor changepoint
detection,” in Proc. Joint Stats. Meeting (JSM), San Diego, CA, 2012.

Yao Xie is a research scientist in the Electrical
and Computer Engineering Department at Duke
University, Durham, NC. She received the Ph.D.
degree in electrical engineering (minor in Mathe-
matics) from Stanford University, Stanford, CA, in
January 2012. She received the best paper award at
the Asilomar conference on Signals, Systems, and
Computers, in 2005. Her research interests include
sequential statistical inference, change-point detec-
tion, big data analysis, with applications in wireless
communications, (sensor and social) networks,

medical and astronomical imaging.

Jiaji Huang received the B.S. degree in electrical
engineering from the University of Science and
Technology of China (USTC), Hefei, China, in 2011,
and is now a Ph.D. candidate in the Electrical and
Computer Engineering department at Duke Uni-
versity, Durham, NC. His research interests include
statistical signal processing and high-dimensional
data analysis.

Rebecca Willett is an associate professor in the
Electrical and Computer Engineering Department at
Duke University. She completed her Ph.D. in elec-
trical and computer engineering at Rice University
in 2005. Prof. Willett received the National Science
Foundation CAREER Award in 2007, is a member
of the DARPA Computer Science Study Group, and
received an Air Force Office of Scientific Research
Young Investigator Program award in 2010. Prof.
Willett has also held visiting researcher positions at
the Institute for Pure and Applied Mathematics at

UCLA in 2004, the University of Wisconsin-Madison 2003–2005, the French
National Institute for Research in Computer Science and Control (INRIA) in
2003, and the Applied Science Research and Development Laboratory at GE
Healthcare in 2002. Her research interests include network and imaging science
with applications in medical imaging, wireless sensor networks, astronomy, and
social networks. Additional information, including publications and software,
are available online at http://www.ee.duke.edu/~willett/.


