
INTRODUCTION TO MATHEMATICA FOR PHYSICS 103 
 
 
The following introduction to Mathematica was written by Kirsten Nordstrom ’04, 
updated by Prof. Elizabeth McCormick, and then heavily modified for Physics 103 
this year.  The original document has been used in physics 214, physics 306, and 
physics 308, among other places. The writeup is meant to encourage you to play 
around and explore Mathematica, while giving only a very limited number of 
“cookbook” type instructions.  This is a fun way to learn, but the downside to this 
approach is that you may find yourself baffled from time to time when trying to 
figure out the precise syntax needed to get Mathematica to do something.  Make 
use of Mathematica’s help feature and make use of the web.  Finally, make use of 
other people (your colleagues in the class and your instructor) if you can’t figure 
something out.  If you find yourself bogged down for more than a few minutes on 
any particular point, stop and get help.   
 
If you are already familiar with Mathematica, you are free to completely ignore this 
writeup.   
 
For physics 103, you will need to know how to do plotting, i.e., read this writeup 
through the second paragraph of the second section.  Beyond that is strictly 
optional. 
 
There are numerous computers around Park that have Mathematica installed.  It 
should be available on the cluster of computers in the science library.  It is available 
on essentially any physics department computer you can get your hands on.  The 
math department computer lab (Park 352) also has it.  I will have office hours in 
Park 352 on Thursday from 9:40 to 11:30 and from 4:10 to 6:00.   
 
You will need to use Mathematica this week and next in Physics 103.  I am no yet 
sure whether or not we will use it more this semester.   
 
If you have your own computer, you can install Mathematica on it for free for use 
while on campus (or at Haverford or Swarthmore); see  
http://www.brynmawr.edu/computing/docs/StudentMathematica.shtml 
 
 

An Introduction to Mathematica 
 
Welcome to the world of computational physics! This lab will give you the tools you need to start 
exploring this discipline. Computational physics has developed into an effective method of doing 
physics. It can be compared and contrasted with experimental and theoretical physics. Essentially, it 
makes the claim that computer modeling and computer generated numerical solutions are as 
informative as closed form solutions. What does this mean? If I solve the differential equation y’(t) 
=y(t), most second-year physics students could rattle off the closed form solution, that is, y = cet. In 
constrast, most computerized ways of solving this equation would give numerical values of t and 
values of y, like so: 
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{(t,y)}={(0,1), (1, 2.718), (2, 7.389)…} 
 
While numerical solutions like this aren’t necessarily useful when we have a nice neat equation for 
the solution,(like y = cet), numerical solutions are very helpful when the equation is difficult or 
impossible to solve. Situations like this arise in complex and/or nonlinear systems, and in many 
problems of advanced theoretical physics. Numerical computations makes values of functions 
accessible, and the results can be plotted even when the underlying function is not known in analytic 
form.  This is very much “experimental” mathematics. 
 
Mathematica is a powerful tool for both analytic work (formulas) and for numerical work. 
You may have used previously in calculus or some other course.   If you decide to remain a 
scientist, you'll probably continue to use it throughout your career.  It's THAT good. You can do 
almost anything in Mathematica, you can make numerical calculations (as you would on a 
calculator), solve algebraic equations, solve differential equations, do matrix algebra, integrate, create 
graphs and animations...the list goes on and on. One wonderful thing about Mathematica, as 
opposed to simpler languages, is that it recognizes common functions (such as ex), and thus can 
give you closed form solutions in many, many cases. When it can't do that, it can generally give you 
a numerical solution. It even handles imaginary numbers with ease. The only thing is doesn't do for 
you is your homework (except when you are assigned to use it...).  This lab will walk you through 
the basics, helping you get comfortable with Mathematica as a tool you can use to help you do 
physics. 
 
PART I:  Getting Started 
 
1. The Basics 
 
The Mathematica icon looks like this: .  Click on it to get started. When you open the program 
you might be confronted with several windows. One might say “Welcome to Mathematica” and 
offer to give you a tour. Close it. You can show yourself around. You also might be confronted with 
a palette, a nice array of symbols so you don't have to enter the text commands. Close the palette. 
You should learn to do things for yourself. 
 
The big blank window is called the notebook. In this notebook, you will type in commands and then 
hit “Shift-Return” (hold the “Shift” key while pressing the “Return” key) or just “Enter” on 
the keyboard. Then Mathematica's kernel (essentially, its brain) will evaluate the cell (as it is called) 
you have just entered. The output will then be displayed in the notebook. Now you are ready to try 
a simple example.  Try entering “2+2 ”. Type this (without the quotation marks) and then press 
Shift-Return or Enter.  What happens? Can you guess what the commands are for subtraction, 
multiplication, and division? Exponents are handled by the ^ symbol. Try some things that are way 
too big for your calculator. How about 3 to the 200th power? How about things that are way too 
small? Divide 7 by 10 to the 100th power (1 followed by 100 zeros). You should note two things 
here. What do calculators give you as an answer? Is the Mathematica answer useful?  
 
The Mathematica answer might not be useful because in an effort to be as precise as possible it has 
kept the quotient of these two numbers as a fraction. To get the decimal solution is easy. Enter the 
operation "N[%]" on a new line. The “N ” command tells it to produce a numerical expression. 
“N ” operates on “% ”, which means the “last output”. Try it. That form of “N ” is called a 
“prefix” operation.  You can also use a “postfix” operation. It is the same operator “N ” but you 
can type in the operation at the end of the output line. The syntax is "...//N" where "..." is the output 
you had. Why are these operations called prefix and postfix? For every command there is at least a 
prefix and postfix form. There is another form, called "infix". What would that be? Try 
“Plus[2,5]”. (The prefix version of the infix operation "+".)  
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The N opertor can give you as many digits as you want.  Try N[1/3,500].  What about N[Pi,500]?  
(Try it!)   
 
Mathematica is perfectly happy when you write “Pi” for the Greek letter π, but other Greek letters 
have to be entered by hand, and there is a better way to enter π, too.  Here’s how to do it.  To enter a 
Greek letter, say, Delta (Δ), type “escDeltaesc" ”, where esc means to press the escape key.  In other 
words, press the escape key, type the name of the letter you want, and press the escape key again.  If 
you want the upper-case Greek letter, capitalize it when you type it in (like “Delta”); if you want 
lower the lower case greek letter, use lower case when you type it in: “escdeltaesc ” gives δ.  To get 
π, type “escpiesc ”.  Many other symbols can be entered in a similar way;for example, “escinfesc ” 
gives ∞.  (Train your fingers to type these codes!  Do not be tempted to use the palette!  In the long 
run, this will save you much time and effort.)  
 
A powerful aspect of Mathematica is that is can also do symbolic algebra, not just numerical 
evaluation. Try entering “x+x ”. Try “(x3 + 3x2 y + 3x y2 + y3)/(x+y) ”. Hmmm... what about 
“Simplify[%]”? Enter in the expression “x2+2x +1”.  Now try "Factor[%]". Can you guess the 
command to expand this output to its original form? Play around with some other symbolic 
examples. 
 
Okay, now we have to go through some more syntax and definitions before we can really get 
cranking. You might need to refer back to this section to reorient yourself later on, when error 
messages start popping up.  
 
1. Mathematica is case-sensitive. Try entering “sin[π]”. Did you get an error message? To 
Mathematica "sin" is just a string of letters, but "Sin" is a command. Now try “Sin[π] ”.That's 
more like it. The same idea applies all over: In general, commands are capitalized. 
 
2. Mathematica is sensitive to poor syntax. The most important time to remember your syntax is 
when using brackets. Each bracket must have a partner of the same type facing the other way. Enter 
"N[4/3". Note the error message. Now close the brackets and run it again. Much better. There are 
three types of brackets. The first and most familiar are the parenthetical brackets, ( ). Use these as 
"separators" in algebraic expressions. So (3)(4)=12, just like in old times. (Check it out to make 
sure.) The next beasts are the square brackets, [ ]. These signify an operation is being done on the 
stuff inside the brackets. So f[x] means that the function f operates on the variable x. The curly 
brackets, { },  you may remember if you've done any set theory in math. They essentially do the 
same thing here, they act to group information together.  
 
3. Mathematica allows variable names to have as many characters as you want.  So you could write 
“x=1 ” but you could also write “xy=1”.  This would not mean x times equals 1.  It would mean 
that you have a variable called “xy” which you have set to 1.  If you want to multiply x and y, you 
need to leave a space between them: “x y”.  Otherwise Mathematica will think you are talking 
about a variable called xy.   
 
4. There are three “equals” commands. There are major differences between "=", "==" and ":=".  
You will see some examples of this further along in this writeup.  Or check out the entries for the 
Equals commands in the Master Index which you can search via the Help Browser. 
 
5. Each operation needs a specific number of arguments. An example of an operation needing only 
one argument is the “Expand” operation. Its form is simply “Expand[x]”. An example of an 
operation needing two is the “D ” operation for differentiation. You must specify the function and 
the variable you want to differentiate with respect to. So these are in the form D[f,x]. An operation 
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needing three arguments is “DSolve”. This command solves a differential equation (or system of 
them or a partial differential equation, if you are comfortable with curly brackets). The arguments 
for “DSolve” would be the differential equation itself, then the function to solve for, then the 
independent variable of the function. So the form is “DSolve[Eqn, f , x]” for a differential equation 
of just f[x]. (Things get a little more exciting when we add more variables to make it a partial 
differential equation or put in boundary conditions.)  
 
If you want to play with more examples before you get started on your own, a good place to go is 
under the “Help” heading and scroll down to the “Help Browser”. The help browser is wonderful 
as its pages are all Mathematica notebooks. You can change the input and reevaluate the cells. The 
help browser also has a search tool and connects to the Mathematica website. However, don't rely 
on it too much. It provides many examples but little non-technical explanation.  Sometimes it is 
helpful just go the the web for help.  For instance, enter “Mathematica plotting” into a search 
browser and you’re sure to find help on making plots.  Finally, if you know a Matheatica command 
but forget exactly how to use it, enter (using the cosine function as an example) “?Cosine” in the 
notebook, and You will be given a brief help message and a link to click for further information. 
 
2. Differentiation, Integration, Plotting 
 
Now that you have the tools to work Mathematica, let's use it to do some basic operations. In the 
previous section you were told what the differentiation operator was. So take the derivatives of some 
functions, and see what you get. Take derivatives of functions of several variables. Hmm...helps 
with multivariable homework. There is also an infix operation that is a little easier to deal with. First 
define a function f[x]. For function definitions you need to input “f[x_]:=” followed by what you 
want f to be. Notice the underline character after the x.  You need to make sure that is there.  Try 
making f[x] a polynomial in x. For example: f[x_]:=x^3+2x^2+2x+1.  When you type this in, the 
computer will write out the expression. Try writing it out again, “f[x] ”.  Try evaluating f at a few 
values, for example “f[1] ”. Here is where Mathematica is a great timesaver, as it can evaluate a 
function at arbitrary values, without having to reinput the function every time, as you would with a 
calculator.) Now enter "f'[x]". The " ' " tells it to take the derivative of f with respect to x. Now enter 
f''[x]. And you see where we are going.  You can also do derivatives with the D operator: 
“D[f[x],x]” takes the derivatife of f with respect to x.  “D[f[x],{x,3}]” takes the third derivative.  
 
You can define a function of more than one variable: “f[x_,t_]:=Sin[10 x – 5 t]”.  Then try 
“f[1,1]”, “f[x,t]”, “f[0,t]”, etc. 
 
Another powerful aspect of Mathematica is its visualization capabilities. Here’s how to graph f[x] 
vs. x using the "Plot" command. The Plot command requires two arguments: The function, and the 
independent variable. The range of the independent variable must be specified, too. Decide how far 
you want x to extend. The command ends up looking like: “Plot[f[x],{x, xmin ,xmax}]”. For 
example, “Plot[f[x],{x,0,10}]”.  Or “Plot[Cos[x],{x,0,2π}]”.  Run these and look at the picture. 
You can plot two functions on the same graph:  “Plot[{Sin[x],Cos[x]}, {x,0,2π}]”.  Want to make 
them two different colors?  Try “Plot[{Sin[x],Cos[x]}, {x,0,2π},PlotStyle->{Red,Blue}]”.  Oooo. 
Try plotting a more exciting function.  There are other ways to change the style of the plot. Check 
out section 1.9.3 of The Mathematica Book via the Help Browser window for these options and 
some examples. Check out the Help entry on “Graphics`Colors` ” for a full list of colors.  You  
need to enter “<<Graphics`Colors` ” before using the more exotic colors. 
 
The next step is integration. As you hopefully know, we can take derivatives of many continuous 
functions with our eyes closed, as long as we remember the chain rule. However, integrals are little 
harder to obtain and usually require a bunch of guesswork. Mathematica can help you a lot, at least 
in getting the answer. Another nice feature is that it will evaluate both definite and indefinite 
integrals. Let’s try indefinite integrals first. The command is “Integrate” and requires two 
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arguments, the function and the variable of integration. Integrate something boring as a check. Now 
integrate something exciting, that you could only attempt by parts, like x2Cos[x]. What about 
something you couldn’t even attempt, like Cos[x2]. Whoa. It can do it! Look up something in an 
integral table and evaluate it in Mathematica. Now try a favorite: Sin[x]/x. Hmm…it can’t do it. 
Never fear, there are ways to get around this. We’ll get there very soon. First, however, practice a 
few definite integrals. Instead of just specifying the independent variable, what else will you have to 
specify? Try it!  
 
Now let’s attempt to find a value for the elusive Sin[x]/x. First, plot the function. Why doesn’t it 
like it? It doesn’t seem too bad. The truth is, it’s not, except at one particular point. The graph 
doesn’t show it but it is apparent just looking at the equation. It is hopeless for us to get an 
indefinite integral out of this. But let’s try a definite integral. Definite integrals are easier to obtain 
as they can be obtained just by counting the pixels under a curve. Try evaluating it in the domain [-
1,1].  It still hates it, as the problem is still in there. However, we can push the limits of how close 
we go to zero and break the integral up into pieces. Devise a method for evaluating this integral. 
How accurate can you get it? How can you tell if it’s accurate?  
 
An interesting thing is that in this case, Mathematica likes the improper integral a whole lot more. 
Evaluate the integral of Sin[x]/x from -∞ to ∞. What is your answer? Does it surprise you that it 
can do the integral? As an aside, now take the integral of Sin[3x]/x over the same limits. Now 
replace 3 with a larger integer. Keep going. Plot some of these functions. What happens to the 
shape and the area under the curve as the integer gets larger? As the integer approaches infinity, you 
might recognize this as the delta function. What might a delta function describe in the real world? 
 
When you were checking the accuracy before you probably devised a “recursive” method of doing 
this (what does this mean?). The computer does the same thing when it performs the operation 
“NIntegrate”. This gives an approximation of the area under the curve. You can specify how 
precise you want it, but we won’t do that now. Integrate Sin[x]/x over [-5,5]. It still doesn’t like it. 
What about over [-10,5], or even [0,5]? -- interesting. Any ideas why the computer would do this? 
 
 
Prepared by Kerstin Nordstrom, 5/03 
Modified by E. McCormack & D. Nice 
 


