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Preface

Why we wrote this book

The writing of this book was prompted by two main developments in wireless
communication in the past decade. First is the huge surge of research activities
in physical-layer wireless communication theory. While this has been a subject
of study since the sixties, recent developments such as opportunistic and mul-
tiple input multiple output (MIMO) communication techniques have brought
completely new perspectives on how to communicate over wireless channels.
Second is the rapid evolution of wireless systems, particularly cellular net-
works, which embody communication concepts of increasing sophistication.
This evolution started with second-generation digital standards, particularly
the IS-95 Code Division Multiple Access standard, continuing to more recent
third-generation systems focusing on data applications. This book aims to
present modern wireless communication concepts in a coherent and unified
manner and to illustrate the concepts in the broader context of the wireless
systems on which they have been applied.

Structure of the book

This book is a web of interlocking concepts. The concepts can be structured
roughly into three levels:

1. channel characteristics and modeling;
2. communication concepts and techniques;
3. application of these concepts in a system context.

A wireless communication engineer should have an understanding of the
concepts at all three levels as well as the tight interplay between the levels.
We emphasize this interplay in the book by interlacing the chapters across
these levels rather than presenting the topics sequentially from one level to
the next.

xv



xvi Preface

• Chapter 2: basic properties of multipath wireless channels and their mod-
eling (level 1).

• Chapter 3: point-to-point communication techniques that increase reliability
by exploiting time, frequency and spatial diversity (2).

• Chapter 4: cellular system design via a case study of three systems, focusing
on multiple access and interference management issues (3).

• Chapter 5: point-to-point communication revisited from a more fundamental
capacity point of view, culminating in the modern concept of opportunistic
communication (2).

• Chapter 6: multiuser capacity and opportunistic communication, and its
application in a third-generation wireless data system (3).

• Chapter 7: MIMO channel modeling (1).
• Chapter 8: MIMO capacity and architectures (2).
• Chapter 9: diversity–multiplexing tradeoff and space-time code design (2).
• Chapter 10: MIMO in multiuser channels and cellular systems (3).

How to use this book

This book is written as a textbook for a first-year graduate course in wireless
communication. The expected background is solid undergraduate/beginning
graduate courses in signals and systems, probability and digital communica-
tion. This background is supplemented by the two appendices in the book.
Appendix A summarizes some basic facts in vector detection and estimation
in Gaussian noise which are used repeatedly throughout the book. Appendix B
covers the underlying information theory behind the channel capacity results
used in this book. Even though information theory has played a significant
role in many of the recent developments in wireless communication, in the
main text we only introduce capacity results in a heuristic manner and use
them mainly to motivate communication concepts and techniques. No back-
ground in information theory is assumed. The appendix is intended for the
reader who wants to have a more in-depth and unified understanding of the
capacity results.
At Berkeley and Urbana-Champaign, we have used earlier versions of this

book to teach one-semester (15 weeks) wireless communication courses. We
have been able to cover most of the materials in Chapters 1 through 8 and
parts of 9 and 10. Depending on the background of the students and the time
available, one can envision several other ways to structure a course around
this book. Examples:

• A senior level advanced undergraduate course in wireless communication:
Chapters 2, 3, 4.

• An advanced graduate course for students with background in wireless
channels and systems: Chapters 3, 5, 6, 7, 8, 9, 10.
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• A short (quarter) course focusing on MIMO and space-time coding: Chap-
ters 3, 5, 7, 8, 9.

The more than 230 exercises form an integral part of the book. Working on
at least some of them is essential in understanding the material. Most of them
elaborate on concepts discussed in the main text. The exercises range from
relatively straightforward derivations of results in the main text, to “back-
of-envelope” calculations for actual wireless systems, to “get-your-hands-
dirty” MATLAB types, and to reading exercises that point to current research
literature. The small bibliographical notes at the end of each chapter provide
pointers to literature that is very closely related to the material discussed in
the book; we do not aim to exhaust the immense research literature related to
the material covered here.
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W Bandwidth
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nr Number of receive antennas
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� ����2� Real Gaussian random variable with mean � and variance �2

�� �0��2� Circularly symmetric complex Gaussian random variable: the
real and imaginary parts are i.i.d. � �0��2/2�

N0 Power spectral density of white Gaussian noise
	w�m�
 Additive Gaussian noise process, i.i.d. �� �0�N0� with time m
z�m� Additive colored Gaussian noise, at time m
P Average power constraint measured in joules/symbol
P̄ Average power constraint measured in watts
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C H A P T E R

1 Introduction

1.1 Book objective

Wireless communication is one of the most vibrant areas in the commu-
nication field today. While it has been a topic of study since the 1960s,
the past decade has seen a surge of research activities in the area. This is
due to a confluence of several factors. First, there has been an explosive
increase in demand for tetherless connectivity, driven so far mainly by cellu-
lar telephony but expected to be soon eclipsed by wireless data applications.
Second, the dramatic progress in VLSI technology has enabled small-area
and low-power implementation of sophisticated signal processing algorithms
and coding techniques. Third, the success of second-generation (2G) digital
wireless standards, in particular, the IS-95 Code Division Multiple Access
(CDMA) standard, provides a concrete demonstration that good ideas from
communication theory can have a significant impact in practice. The research
thrust in the past decade has led to a much richer set of perspectives and tools
on how to communicate over wireless channels, and the picture is still very
much evolving.
There are two fundamental aspects of wireless communication that make

the problem challenging and interesting. These aspects are by and large not
as significant in wireline communication. First is the phenomenon of fading:
the time variation of the channel strengths due to the small-scale effect of
multipath fading, as well as larger-scale effects such as path loss via dis-
tance attenuation and shadowing by obstacles. Second, unlike in the wired
world where each transmitter–receiver pair can often be thought of as an
isolated point-to-point link, wireless users communicate over the air and there
is significant interference between them. The interference can be between
transmitters communicating with a common receiver (e.g., uplink of a cellu-
lar system), between signals from a single transmitter to multiple receivers
(e.g., downlink of a cellular system), or between different transmitter–receiver
pairs (e.g., interference between users in different cells). How to deal with fad-
ing and with interference is central to the design of wireless communication

1



2 Introduction

systems and will be the central theme of this book. Although this book takes
a physical-layer perspective, it will be seen that in fact the management of
fading and interference has ramifications across multiple layers.
Traditionally the design of wireless systems has focused on increasing the

reliability of the air interface; in this context, fading and interference are
viewed as nuisances that are to be countered. Recent focus has shifted more
towards increasing the spectral efficiency; associated with this shift is a new
point of view that fading can be viewed as an opportunity to be exploited.
The main objective of the book is to provide a unified treatment of wireless
communication from both these points of view. In addition to traditional
topics such as diversity and interference averaging, a substantial portion of
the book will be devoted to more modern topics such as opportunistic and
multiple input multiple output (MIMO) communication.
An important component of this book is the system view emphasis: the

successful implementation of a theoretical concept or a technique requires an
understanding of how it interacts with the wireless system as a whole. Unlike
the derivation of a concept or a technique, this system view is less malleable
to mathematical formulations and is primarily acquired through experience
with designing actual wireless systems. We try to help the reader develop
some of this intuition by giving numerous examples of how the concepts are
applied in actual wireless systems. Five examples of wireless systems are
used. The next section gives some sense of the scope of the wireless systems
considered in this book.

1.2 Wireless systems

Wireless communication, despite the hype of the popular press, is a field
that has been around for over a hundred years, starting around 1897 with
Marconi’s successful demonstrations of wireless telegraphy. By 1901, radio
reception across the Atlantic Ocean had been established; thus, rapid progress
in technology has also been around for quite a while. In the intervening
hundred years, many types of wireless systems have flourished, and often
later disappeared. For example, television transmission, in its early days, was
broadcast by wireless radio transmitters, which are increasingly being replaced
by cable transmission. Similarly, the point-to-point microwave circuits that
formed the backbone of the telephone network are being replaced by optical
fiber. In the first example, wireless technology became outdated when a wired
distribution network was installed; in the second, a new wired technology
(optical fiber) replaced the older technology. The opposite type of example is
occurring today in telephony, where wireless (cellular) technology is partially
replacing the use of the wired telephone network (particularly in parts of
the world where the wired network is not well developed). The point of
these examples is that there are many situations in which there is a choice



3 1.2 Wireless systems

between wireless and wire technologies, and the choice often changes when
new technologies become available.
In this book, we will concentrate on cellular networks, both because they are

of great current interest and also because the features of many other wireless
systems can be easily understood as special cases or simple generalizations
of the features of cellular networks. A cellular network consists of a large
number of wireless subscribers who have cellular telephones (users), that can
be used in cars, in buildings, on the street, or almost anywhere. There are
also a number of fixed base-stations, arranged to provide coverage of the
subscribers.
The area covered by a base-station, i.e., the area from which incoming

calls reach that base-station, is called a cell. One often pictures a cell as
a hexagonal region with the base-station in the middle. One then pictures
a city or region as being broken up into a hexagonal lattice of cells (see
Figure 1.1a). In reality, the base-stations are placed somewhat irregularly,
depending on the location of places such as building tops or hill tops that
have good communication coverage and that can be leased or bought (see
Figure 1.1b). Similarly, mobile users connected to a base-station are chosen
by good communication paths rather than geographic distance.
When a user makes a call, it is connected to the base-station to which it

appears to have the best path (often but not always the closest base-station).
The base-stations in a given area are then connected to a mobile telephone
switching office (MTSO, also called a mobile switching centerMSC) by high-
speed wire connections or microwave links. The MTSO is connected to the
public wired telephone network. Thus an incoming call from a mobile user
is first connected to a base-station and from there to the MTSO and then to
the wired network. From there the call goes to its destination, which might
be an ordinary wire line telephone, or might be another mobile subscriber.
Thus, we see that a cellular network is not an independent network, but rather
an appendage to the wired network. The MTSO also plays a major role in
coordinating which base-station will handle a call to or from a user and when
to handoff a user from one base-station to another.

When another user (either wired or wireless) places a call to a given user, the
reverse process takes place. First the MTSO for the called subscriber is found,

Figure 1.1 Cells and
base-stations for a cellular
network. (a) An oversimplified
view in which each cell is
hexagonal. (b) A more realistic
case where base-stations are
irregularly placed and cell
phones choose the best
base-station. (a) (b)
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then the closest base-station is found, and finally the call is set up through
the MTSO and the base-station. The wireless link from a base-station to the
mobile users is interchangeably called the downlink or the forward channel,
and the link from the users to a base-station is called the uplink or a reverse
channel. There are usually many users connected to a single base-station,
and thus, for the downlink channel, the base-station must multiplex together
the signals to the various connected users and then broadcast one waveform
from which each user can extract its own signal. For the uplink channel, each
user connected to a given base-station transmits its own waveform, and the
base-station receives the sum of the waveforms from the various users plus
noise. The base-station must then separate out the signals from each user and
forward these signals to the MTSO.

Older cellular systems, such as the AMPS (advanced mobile phone service)
system developed in the USA in the eighties, are analog. That is, a voice
waveform is modulated on a carrier and transmitted without being trans-
formed into a digital stream. Different users in the same cell are assigned
different modulation frequencies, and adjacent cells use different sets of fre-
quencies. Cells sufficiently far away from each other can reuse the same set
of frequencies with little danger of interference.

Second-generation cellular systems are digital. One is the GSM (global
system for mobile communication) system, which was standardized in Europe
but now used worldwide, another is the TDMA (time-division multiple access)
standard developed in the USA (IS-136), and a third is CDMA (code division
multiple access) (IS-95). Since these cellular systems, and their standards,
were originally developed for telephony, the current data rates and delays
in cellular systems are essentially determined by voice requirements. Third-
generation cellular systems are designed to handle data and/or voice. While
some of the third-generation systems are essentially evolution of second-
generation voice systems, others are designed from scratch to cater for the
specific characteristics of data. In addition to a requirement for higher rates,
data applications have two features that distinguish them from voice:

• Many data applications are extremely bursty; users may remain inactive
for long periods of time but have very high demands for short periods of
time. Voice applications, in contrast, have a fixed-rate demand over long
periods of time.

• Voice has a relatively tight latency requirement of the order of 100ms.
Data applications have a wide range of latency requirements; real-time
applications, such as gaming, may have even tighter delay requirements
than voice, while many others, such as http file transfers, have a much
laxer requirement.

In the book we will see the impact of these features on the appropriate
choice of communication techniques.
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As mentioned above, there are many kinds of wireless systems other than
cellular. First there are the broadcast systems such as AM radio, FM radio,
TV and paging systems. All of these are similar to the downlink part of
cellular networks, although the data rates, the sizes of the areas covered by
each broadcasting node and the frequency ranges are very different. Next,
there are wireless LANs (local area networks). These are designed for much
higher data rates than cellular systems, but otherwise are similar to a single
cell of a cellular system. These are designed to connect laptops and other
portable devices in the local area network within an office building or similar
environment. There is little mobility expected in such systems and their major
function is to allow portability. The major standards for wireless LANs are
the IEEE 802.11 family. There are smaller-scale standards like Bluetooth or
a more recent one based on ultra-wideband (UWB) communication whose
purpose is to reduce cabling in an office and simplify transfers between
office and hand-held devices. Finally, there is another type of LAN called
an ad hoc network. Here, instead of a central node (base-station) through
which all traffic flows, the nodes are all alike. The network organizes itself
into links between various pairs of nodes and develops routing tables using
these links. Here the network layer issues of routing, dissemination of control
information, etc. are important concerns, although problems of relaying and
distributed cooperation between nodes can be tackled from the physical-layer
as well and are active areas of current research.

1.3 Book outline

The central object of interest is the wireless fading channel. Chapter 2 intro-
duces the multipath fading channel model that we use for the rest of the book.
Starting from a continuous-time passband channel, we derive a discrete-time
complex baseband model more suitable for analysis and design. Key physical
parameters such as coherence time, coherence bandwidth, Doppler spread
and delay spread are explained and several statistical models for multipath
fading are surveyed. There have been many statistical models proposed in the
literature; we will be far from exhaustive here. The goal is to have a small
set of example models in our repertoire to evaluate the performance of basic
communication techniques we will study.
Chapter 3 introduces many of the issues of communicating over fading

channels in the simplest point-to-point context. As a baseline, we start by look-
ing at the problem of detection of uncoded transmission over a narrowband
fading channel. We find that the performance is very poor, much worse
than over the additive white Gaussian noise (AWGN) channel with the same
average signal-to-noise ratio (SNR). This is due to a significant probability
that the channel is in deep fade. Various diversity techniques to mitigate
this adverse effect of fading are then studied. Diversity techniques increase
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reliability by sending the same information through multiple independently
faded paths so that the probability of successful transmission is higher. Some
of the techniques studied include:

• interleaving of coded symbols over time to obtain time diversity;
• inter-symbol equalization, multipath combining in spread-spectrum systems
and coding over sub-carriers in orthogonal frequency division multiplexing
(OFDM) systems to obtain frequency diversity;

• use of multiple transmit and/or receive antennas, via space-time coding, to
obtain spatial diversity.

In some scenarios, there is an interesting interplay between channel uncer-
tainty and the diversity gain: as the number of diversity branches increases,
the performance of the system first improves due to the diversity gain but
then subsequently deteriorates as channel uncertainty makes it more difficult
to combine signals from the different branches.
In Chapter 4 the focus is shifted from point-to-point communication to

studying cellular systems as a whole. Multiple access and inter-cell interfer-
ence management are the key issues that come to the forefront. We explain
how existing digital wireless systems deal with these issues. The concepts
of frequency reuse and cell sectorization are discussed, and we contrast nar-
rowband systems such as GSM and IS-136, where users within the same
cell are kept orthogonal and frequency is reused only in cells far away, and
CDMA systems, such as IS-95, where the signals of users both within the
same cell and across different cells are spread across the same spectrum,
i.e., frequency reuse factor of 1. Due to the full reuse, CDMA systems have
to manage intra-cell and inter-cell interference more efficiently: in addition
to the diversity techniques of time-interleaving, multipath combining and soft
handoff, power control and interference averaging are the key interference
management mechanisms. All the five techniques strive toward the same sys-
tem goal: to maintain the channel quality of each user, as measured by the
signal-to-interference-and-noise ratio (SINR), as constant as possible. This
chapter is concluded with the discussion of a wideband OFDM system, which
combines the advantages of both the CDMA and the narrowband systems.

Chapter 5 studies the capacity of wireless channels. This provides a higher
level view of the tradeoffs involved in the earlier chapters and also lays the
foundation for understanding the more modern developments in the subse-
quent chapters. The performance over the (non-faded) AWGN channel, as a
baseline for comparison. We introduce the concept of channel capacity as
the basic performance measure. The capacity of a channel provides the fun-
damental limit of communication achievable by any scheme. For the fading
channel, there are several capacity measures, relevant for different scenarios.
Two distinct scenarios provide particular insight: (1) the slow fading channel,
where the channel stays the same (random value) over the entire time-scale
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of communication, and (2) the fast fading channel, where the channel varies
significantly over the time-scale of communication.

In the slow fading channel, the key event of interest is outage: this is
the situation when the channel is so poor that no scheme can communicate
reliably at a certain target data rate. The largest rate of reliable communication
at a certain outage probability is called the outage capacity. In the fast fading
channel, in contrast, outage can be avoided due to the ability to average over
the time variation of the channel, and one can define a positive capacity at
which arbitrarily reliable communication is possible. Using these capacity
measures, several resources associated with a fading channel are defined:
(1) diversity; (2) number of degrees of freedom; (3) received power. These
three resources form a basis for assessing the nature of performance gain by
the various communication schemes studied in the rest of the book.

Chapters 6 to 10 cover the more recent developments in the field. In
Chapter 6 we revisit the problem of multiple access over fading channels
from a more fundamental point of view. Information theory suggests that
if both the transmitters and the receiver can track the fading channel, the
optimal strategy to maximize the total system throughput is to allow only
the user with the best channel to transmit at any time. A similar strategy is
also optimal for the downlink. Opportunistic strategies of this type yield a
system-wide multiuser diversity gain: the more users in the system, the larger
the gain, as there is more likely to be a user with a very strong channel.
To implement this concept in a real system, three important considerations
are: fairness of the resource allocation across users; delay experienced by the
individual user waiting for its channel to become good; and measurement
inaccuracy and delay in feeding back the channel state to the transmitters.
We discuss how these issues are addressed in the context of IS-865 (also
called HDR or CDMA 2000 1× EV-DO), a third-generation wireless data
system.

A wireless system consists of multiple dimensions: time, frequency, space
and users. Opportunistic communication maximizes the spectral efficiency by
measuring when and where the channel is good and only transmits in those
degrees of freedom. In this context, channel fading is beneficial in the sense
that the fluctuation of the channel across the degrees of freedom ensures that
there will be some degrees of freedom in which the channel is very good.
This is in sharp contrast to the diversity-based approach in Chapter 3, where
channel fluctuation is always detrimental and the design goal is to average
out the fading to make the overall channel as constant as possible. Taking
this philosophy one step further, we discuss a technique, called opportunistic
beamforming, in which channel fluctuation can be induced in situations when
the natural fading has small dynamic range and/or is slow. From the cellular
system point of view, this technique also increases the fluctuations of the
interference imparted on adjacent cells, and presents an opposing philosophy
to the notion of interference averaging in CDMA systems.
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Chapters 7, 8, 9 and 10 discuss multiple input multiple output (MIMO)
communication. It has been known for a while that the uplink with multiple
receive antennas at the base-station allow several users to simultaneously
communicate to the receiver. The multiple antennas in effect increase the
number of degrees of freedom in the system and allow spatial separation of
the signals from the different users. It has recently been shown that a similar
effect occurs for point-to-point channels with multiple transmit and receive
antennas, i.e., even when the antennas of the multiple users are co-located.
This holds provided that the scattering environment is rich enough to allow
the receive antennas to separate out the signal from the different transmit
antennas, allowing the spatial multiplexing of information. This is yet another
example where channel fading is beneficial to communication. Chapter 7
studies the properties of the multipath environment that determine the amount
of spatial multiplexing possible and defines an angular domain in which such
properties are seen most explicitly. We conclude with a class of statistical
MIMO channel models, based in the angular domain, which will be used in
later chapters to analyze the performance of communication techniques.

Chapter 8 discusses the capacity and capacity-achieving transceiver archi-
tectures for MIMO channels, focusing on the fast fading scenario. It is demon-
strated that the fast fading capacity increases linearly with the minimum of
the number of transmit and receive antennas at all values of SNR. At high
SNR, the linear increase is due to the increase in degrees of freedom from
spatial multiplexing. At low SNR, the linear increase is due to a power gain
from receive beamforming. At intermediate SNR ranges, the linear increase
is due to a combination of both these gains. Next, we study the transceiver
architectures that achieve the capacity of the fast fading channel. The focus is
on the V-BLAST architecture, which multiplexes independent data streams,
one onto each of the transmit antennas. A variety of receiver structures are
considered: these include the decorrelator and the linear minimum mean
square-error (MMSE) receiver. The performance of these receivers can be
enhanced by successively canceling the streams as they are decoded; this
is known as successive interference cancellation (SIC). It is shown that the
MMSE–SIC receiver achieves the capacity of the fast fading MIMO channel.

The V-BLAST architecture is very suboptimal for the slow fading MIMO
channel: it does not code across the transmit antennas and thus the diversity
gain is limited by that obtained with the receive antenna array. A modifi-
cation, called D-BLAST, where the data streams are interleaved across the
transmit antenna array, achieves the outage capacity of the slow fading MIMO
channel. The boost of the outage capacity of a MIMO channel as compared
to a single antenna channel is due to a combination of both diversity and
spatial multiplexing gains. In Chapter 9, we study a fundamental tradeoff
between the diversity and multiplexing gains that can be simultaneously har-
nessed over a slow fading MIMO channel. This formulation is then used as a
unified framework to assess both the diversity and multiplexing performance
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of several schemes that have appeared earlier in the book. This framework
is also used to motivate the construction of new tradeoff-optimal space-time
codes. In particular, we discuss an approach to design universal space-time
codes that are tradeoff-optimal.

Finally, Chapter 10 studies the use of multiple transmit and receive antennas
in multiuser and cellular systems; this is also called space-division multi-
ple access (SDMA). Here, in addition to providing spatial multiplexing and
diversity, multiple antennas can also be used to mitigate interference between
different users. In the uplink, interference mitigation is done at the base-
station via the SIC receiver. In the downlink, interference mitigation is also
done at the base-station and this requires precoding: we study a precoding
scheme, called Costa or dirty-paper precoding, that is the natural analog of
the SIC receiver in the uplink. This study allows us to relate the performance
of an SIC receiver in the uplink with a corresponding precoding scheme in
a reciprocal downlink. The ArrayComm system is used as an example of an
SDMA cellular system.



C H A P T E R

2 The wireless channel

A good understanding of the wireless channel, its key physical parameters
and the modeling issues, lays the foundation for the rest of the book. This is
the goal of this chapter.
A defining characteristic of the mobile wireless channel is the variations

of the channel strength over time and over frequency. The variations can be
roughly divided into two types (Figure 2.1):

• Large-scale fading, due to path loss of signal as a function of distance
and shadowing by large objects such as buildings and hills. This occurs as
the mobile moves through a distance of the order of the cell size, and is
typically frequency independent.

• Small-scale fading, due to the constructive and destructive interference of the
multiple signal paths between the transmitter and receiver. This occurs at the
spatial scaleof theorderof thecarrierwavelength, and is frequencydependent.

We will talk about both types of fading in this chapter, but with more
emphasis on the latter. Large-scale fading is more relevant to issues such as
cell-site planning. Small-scale multipath fading is more relevant to the design
of reliable and efficient communication systems – the focus of this book.
We start with the physical modeling of the wireless channel in terms of elec-

tromagnetic waves. We then derive an input/output linear time-varying model
for the channel, and define some important physical parameters. Finally, we
introduce a few statistical models of the channel variation over time and over
frequency.

2.1 Physical modeling for wireless channels

Wireless channels operate through electromagnetic radiation from the trans-
mitter to the receiver. In principle, one could solve the electromagnetic
field equations, in conjunction with the transmitted signal, to find the

10
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Figure 2.1 Channel quality
varies over multiple
time-scales. At a slow scale,
channel varies due to
large-scale fading effects. At a
fast scale, channel varies due
to multipath effects.

Time

Channel quality

electromagnetic field impinging on the receiver antenna. This would have to
be done taking into account the obstructions caused by ground, buildings,
vehicles, etc. in the vicinity of this electromagnetic wave.1

Cellular communication in the USA is limited by the Federal Commu-
nication Commission (FCC), and by similar authorities in other countries,
to one of three frequency bands, one around 0.9GHz, one around 1.9GHz,
and one around 5.8GHz. The wavelength � of electromagnetic radiation at
any given frequency f is given by � = c/f , where c = 3× 108 m/s is the
speed of light. The wavelength in these cellular bands is thus a fraction of a
meter, so to calculate the electromagnetic field at a receiver, the locations of
the receiver and the obstructions would have to be known within sub-meter
accuracies. The electromagnetic field equations are therefore too complex to
solve, especially on the fly for mobile users. Thus, we have to ask what we
really need to know about these channels, and what approximations might be
reasonable.
One of the important questions is where to choose to place the base-stations,

and what range of power levels are then necessary on the downlink and uplink
channels. To some extent this question must be answered experimentally, but
it certainly helps to have a sense of what types of phenomena to expect.
Another major question is what types of modulation and detection techniques
look promising. Here again, we need a sense of what types of phenomena to
expect. To address this, we will construct stochastic models of the channel,
assuming that different channel behaviors appear with different probabilities,
and change over time (with specific stochastic properties). We will return to
the question of why such stochastic models are appropriate, but for now we
simply want to explore the gross characteristics of these channels. Let us start
by looking at several over-idealized examples.

1 By obstructions, we mean not only objects in the line-of-sight between transmitter and
receiver, but also objects in locations that cause non-negligible changes in the electro-
magnetic field at the receiver; we shall see examples of such obstructions later.
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2.1.1 Free space, fixed transmit and receive antennas

First consider a fixed antenna radiating into free space. In the far field,2 the
electric field and magnetic field at any given location are perpendicular both
to each other and to the direction of propagation from the antenna. They
are also proportional to each other, so it is sufficient to know only one of
them ( just as in wired communication, where we view a signal as simply
a voltage waveform or a current waveform). In response to a transmitted
sinusoid cos 2�ft, we can express the electric far field at time t as

E�f� t� �r� �����= �s����� f� cos 2�f�t− r/c�

r
� (2.1)

Here, �r� ���� represents the point u in space at which the electric field is
being measured, where r is the distance from the transmit antenna to u and
where ����� represents the vertical and horizontal angles from the antenna
to u respectively. The constant c is the speed of light, and �s����� f� is the
radiation pattern of the sending antenna at frequency f in the direction �����;
it also contains a scaling factor to account for antenna losses. Note that the
phase of the field varies with fr/c, corresponding to the delay caused by the
radiation traveling at the speed of light.
We are not concerned here with actually finding the radiation pattern for

any given antenna, but only with recognizing that antennas have radiation
patterns, and that the free space far field behaves as above.
It is important to observe that, as the distance r increases, the electric field

decreases as r−1 and thus the power per square meter in the free space wave
decreases as r−2. This is expected, since if we look at concentric spheres of
increasing radius r around the antenna, the total power radiated through the
sphere remains constant, but the surface area increases as r2. Thus, the power
per unit area must decrease as r−2. We will see shortly that this r−2 reduction
of power with distance is often not valid when there are obstructions to free
space propagation.
Next, suppose there is a fixed receive antenna at the location u= �r� ����.

The received waveform (in the absence of noise) in response to the above
transmitted sinusoid is then

Er�f� t�u�=
������ f� cos 2�f�t− r/c�

r
� (2.2)

where ������ f� is the product of the antenna patterns of transmit and receive
antennas in the given direction. Our approach to (2.2) is a bit odd since we
started with the free space field at u in the absence of an antenna. Placing a

2 The far field is the field sufficiently far away from the antenna so that (2.1) is valid. For
cellular systems, it is a safe assumption that the receiver is in the far field.
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receive antenna there changes the electric field in the vicinity of u, but this
is taken into account by the antenna pattern of the receive antenna.
Now suppose, for the given u, that we define

H�f� �= ������ f�e−j2�fr/c

r
� (2.3)

We then have Er�f� t�u� = � [
H�f�e j2�ft

]
. We have not mentioned it yet,

but (2.1) and (2.2) are both linear in the input. That is, the received field
(waveform) at u in response to a weighted sum of transmitted waveforms is
simply the weighted sum of responses to those individual waveforms. Thus,
H�f� is the system function for an LTI (linear time-invariant) channel, and its
inverse Fourier transform is the impulse response. The need for understanding
electromagnetism is to determine what this system function is. We will find in
what follows that linearity is a good assumption for all the wireless channels
we consider, but that the time invariance does not hold when either the
antennas or obstructions are in relative motion.

2.1.2 Free space, moving antenna

Next consider the fixed antenna and free space model above with a receive
antenna that is moving with speed v in the direction of increasing distance
from the transmit antenna. That is, we assume that the receive antenna is at
a moving location described as u�t�= �r�t�� ���� with r�t�= r0 + vt. Using
(2.1) to describe the free space electric field at the moving point u�t� (for the
moment with no receive antenna), we have

E�f� t� �r0 +vt� �����= �s����� f� cos 2�f�t− r0/c−vt/c�

r0 +vt
� (2.4)

Note that we can rewrite f�t− r0/c− vt/c� as f�1− v/c�t− fr0/c. Thus,
the sinusoid at frequency f has been converted to a sinusoid of frequency
f�1− v/c�; there has been a Doppler shift of −fv/c due to the motion of
the observation point.3 Intuitively, each successive crest in the transmitted
sinusoid has to travel a little further before it gets observed at the moving
observation point. If the antenna is now placed at u�t�, and the change of
field due to the antenna presence is again represented by the receive antenna
pattern, the received waveform, in analogy to (2.2), is

Er�f� t� �r0 +vt� �����= ������ f� cos 2�f��1−v/c�t− r0/c�

r0 +vt
� (2.5)

3 The reader should be familiar with the Doppler shift associated with moving cars. When an
ambulance is rapidly moving toward us we hear a higher frequency siren. When it passes us
we hear a rapid shift toward a lower frequency.
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This channel cannot be represented as an LTI channel. If we ignore the time-
varying attenuation in the denominator of (2.5), however, we can represent the
channel in terms of a system function followed by translating the frequency f
by the Doppler shift −fv/c. It is important to observe that the amount of shift
depends on the frequency f . We will come back to discussing the importance
of this Doppler shift and of the time-varying attenuation after considering the
next example.
The above analysis does not depend on whether it is the transmitter or

the receiver (or both) that are moving. So long as r�t� is interpreted as the
distance between the antennas (and the relative orientations of the antennas
are constant), (2.4) and (2.5) are valid.

2.1.3 Reflecting wall, fixed antenna

Consider Figure 2.2 in which there is a fixed antenna transmitting the sinusoid
cos2�ft, a fixed receive antenna, and a single perfectly reflecting large fixed
wall. We assume that in the absence of the receive antenna, the electromag-
netic field at the point where the receive antenna will be placed is the sum of
the free space field coming from the transmit antenna plus a reflected wave
coming from the wall. As before, in the presence of the receive antenna, the
perturbation of the field due to the antenna is represented by the antenna pattern.
An additional assumption here is that the presence of the receive antenna does
not appreciably affect the plane wave impinging on the wall. In essence, what
we have done here is to approximate the solution of Maxwell’s equations by a
method called ray tracing. The assumption here is that the received waveform
can be approximated by the sum of the free spacewave from the transmitter plus
the reflected free space waves from each of the reflecting obstacles.
In the present situation, if we assume that the wall is very large, the reflected

wave at a given point is the same (except for a sign change4) as the free space
wave thatwould exist on the opposite side of thewall if thewall were not present
(seeFigure2.3).Thismeans that the reflectedwavefromthewallhas the intensity
of a free space wave at a distance equal to the distance to the wall and then

Figure 2.2 Illustration of a
direct path and a reflected
path.

Wall

Transmit
antenna

Receive antenna

r

d

4 By basic electromagnetics, this sign change is a consequence of the fact that the electric field is
parallel to the plane of the wall for this example.
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Figure 2.3 Relation of reflected
wave to wave without wall.

Transmit
antenna Wall

back to the receive antenna, i.e., 2d− r . Using (2.2) for both the direct and the
reflected wave, and assuming the same antenna gain � for both waves, we get

Er�f� t�=
� cos2�f�t− r/c�

r
− � cos2�f�t− �2d− r�/c�

2d− r
� (2.6)

The received signal is a superposition of two waves, both of frequency f .
The phase difference between the two waves is

�� =
(
2�f�2d− r�

c
+�

)
−
(
2�fr
c

)
= 4�f

c
�d− r�+�� (2.7)

When the phase difference is an integer multiple of 2�, the two waves add
constructively, and the received signal is strong. When the phase difference
is an odd integer multiple of �, the two waves add destructively, and the
received signal is weak. As a function of r , this translates into a spatial pattern
of constructive and destructive interference of the waves. The distance from
a peak to a valley is called the coherence distance:

�xc �=
�

4
� (2.8)

where � �= c/f is the wavelength of the transmitted sinusoid. At distances
much smaller than �xc, the received signal at a particular time does not
change appreciably.

The constructive and destructive interference pattern also depends on the
frequency f : for a fixed r , if f changes by

1
2

(
2d− r

c
− r

c

)−1

� (2.9)

we move from a peak to a valley. The quantity

Td �=
2d− r

c
− r

c
(2.10)

is called thedelay spreadof the channel: it is the difference between the propaga-
tion delays along the two signal paths. The constructive and destructive interfer-
ence pattern does not change appreciably if the frequency changes by an amount
much smaller than 1/Td. This parameter is called the coherence bandwidth.



16 The wireless channel

2.1.4 Reflecting wall, moving antenna

Suppose the receive antenna is now moving at a velocity v (Figure 2.4). As it
moves through the pattern of constructive and destructive interference created
by the two waves, the strength of the received signal increases and decreases.
This is the phenomenon of multipath fading. The time taken to travel from a
peak to a valley is c/�4fv�: this is the time-scale at which the fading occurs,
and it is called the coherence time of the channel.
An equivalent way of seeing this is in terms of the Doppler shifts of the

direct and the reflected waves. Suppose the receive antenna is at location r0
at time 0. Taking r = r

0
+vt in (2.6), we get

Er�f� t�=
� cos2�f��1−v/c�t− r0/c�

r0 +vt

− � cos2�f��1+v/c�t+ �r0 −2d�/c�
2d− r0 −vt

� (2.11)

The first term, the direct wave, is a sinusoid at frequency f�1−v/c�, expe-
riencing a Doppler shift D1 �=−fv/c. The second is a sinusoid at frequency
f�1+v/c�, with a Doppler shift D2 �= +fv/c. The parameter

Ds �=D2−D1 (2.12)

is called the Doppler spread. For example, if the mobile is moving at 60 km/h
and f = 900MHz, the Doppler spread is 100Hz. The role of the Doppler
spread can be visualized most easily when the mobile is much closer to the
wall than to the transmit antenna. In this case the attenuations are roughly the
same for both paths, and we can approximate the denominator of the second
term by r = r0 +vt. Then, combining the two sinusoids, we get

Er�f� t�≈
2� sin 2�f �vt/c+ �r0 −d�/c� sin 2�f�t−d/c�

r0 +vt
� (2.13)

This is the product of two sinusoids, one at the input frequency f , which is typ-
ically of the order of GHz, and the other one at fv/c=Ds/2, which might be of
the order of 50Hz. Thus, the response to a sinusoid at f is another sinusoid at
f with a time-varying envelope, with peaks going to zeros around every 5ms
(Figure 2.5). The envelope is at its widest when the mobile is at a peak of the

Figure 2.4 Illustration of a
direct path and a reflected
path.

Wall

Transmit
antenna

r(t)

d

υ
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Figure 2.5 The received
waveform oscillating at
frequency f with a slowly
varying envelope at frequency
Ds/2.

t

Er (t)

interference pattern and at its narrowest when the mobile is at a valley. Thus,
the Doppler spread determines the rate of traversal across the interference
pattern and is inversely proportional to the coherence time of the channel.
We now see why we have partially ignored the denominator terms in (2.11)

and (2.13). When the difference in the length between two paths changes by
a quarter wavelength, the phase difference between the responses on the two
paths changes by �/2, which causes a very significant change in the overall
received amplitude. Since the carrier wavelength is very small relative to
the path lengths, the time over which this phase effect causes a significant
change is far smaller than the time over which the denominator terms cause
a significant change. The effect of the phase changes is of the order of
milliseconds, whereas the effect of changes in the denominator is of the order
of seconds or minutes. In terms of modulation and detection, the time-scales
of interest are in the range of milliseconds and less, and the denominators are
effectively constant over these periods.
The reader might notice that we are constantly making approximations in

trying to understand wireless communication, much more so than for wired
communication. This is partly because wired channels are typically time-
invariant over a very long time-scale, while wireless channels are typically
time-varying, and appropriate models depend very much on the time-scales of
interest. For wireless systems, the most important issue is what approximations
to make. Thus, it is important to understand these modeling issues thoroughly.

2.1.5 Reflection from a ground plane

Consider a transmit and a receive antenna, both above a plane surface such
as a road (Figure 2.6). When the horizontal distance r between the antennas
becomes very large relative to their vertical displacements from the ground
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Figure 2.6 Illustration of a
direct path and a reflected
path off a ground plane.
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plane (i.e., height), a very surprising thing happens. In particular, the differ-
ence between the direct path length and the reflected path length goes to zero
as r−1 with increasing r (Exercise 2.5). When r is large enough, this difference
between the path lengths becomes small relative to the wavelength c/f . Since
the sign of the electric field is reversed on the reflected path5, these two waves
start to cancel each other out. The electric wave at the receiver is then attenu-
ated as r−2, and the received power decreases as r−4. This situation is partic-
ularly important in rural areas where base-stations tend to be placed on roads.

2.1.6 Power decay with distance and shadowing

The previous example with reflection from a ground plane suggests that the
received power can decrease with distance faster than r−2 in the presence of
disturbances to free space. In practice, there are several obstacles between
the transmitter and the receiver and, further, the obstacles might also absorb
some power while scattering the rest. Thus, one expects the power decay to
be considerably faster than r−2. Indeed, empirical evidence from experimental
field studies suggests that while power decay near the transmitter is like r−2,
at large distances the power can even decay exponentially with distance.

The ray tracing approach used so far provides a high degree of numerical
accuracy in determining the electric field at the receiver, but requires a precise
physical model including the location of the obstacles. But here, we are only
looking for the order of decay of power with distance and can consider an
alternative approach. So we look for a model of the physical environment with
the fewest parameters but one that still provides useful global information
about the field properties. A simple probabilistic model with two parameters
of the physical environment, the density of the obstacles and the fraction of
energy each object absorbs, is developed in Exercise 2.6. With each obstacle

5 This is clearly true if the electric field is parallel to the ground plane. It turns out that this is
also true for arbitrary orientations of the electric field, as long as the ground is not a perfect
conductor and the angle of incidence is small enough. The underlying electromagnetics is
analyzed in Chapter 2 of Jakes [62].
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absorbing the same fraction of the energy impinging on it, the model allows
us to show that the power decays exponentially in distance at a rate that is
proportional to the density of the obstacles.
With a limit on the transmit power (either at the base-station or at the

mobile), the largest distance between the base-station and a mobile at which
communication can reliably take place is called the coverage of the cell. For
reliable communication, a minimal received power level has to be met and
thus the fast decay of power with distance constrains cell coverage. On the
other hand, rapid signal attenuation with distance is also helpful; it reduces the
interference between adjacent cells. As cellular systems become more popular,
however, the major determinant of cell size is the number of mobiles in the
cell. In engineering jargon, the cell is said to be capacity limited instead of
coverage limited. The size of cells has been steadily decreasing, and one talks
of micro cells and pico cells as a response to this effect. With capacity limited
cells, the inter-cell interference may be intolerably high. To alleviate the
inter-cell interference, neighboring cells use different parts of the frequency
spectrum, and frequency is reused at cells that are far enough. Rapid signal
attenuation with distance allows frequencies to be reused at closer distances.
The density of obstacles between the transmit and receive antennas depends

very much on the physical environment. For example, outdoor plains have
very little by way of obstacles while indoor environments pose many obsta-
cles. This randomness in the environment is captured by modeling the density
of obstacles and their absorption behavior as random numbers; the overall
phenomenon is called shadowing.6 The effect of shadow fading differs from
multipath fading in an important way. The duration of a shadow fade lasts for
multiple seconds or minutes, and hence occurs at a much slower time-scale
compared to multipath fading.

2.1.7 Moving antenna, multiple reflectors

Dealingwithmultiple reflectors, using the techniqueof ray tracing, is inprinciple
simply a matter of modeling the received waveform as the sum of the responses
from the different paths rather than just two paths. We have seen enough exam-
ples, however, to understand that finding the magnitudes and phases of these
responses is no simple task. Even for the very simple large wall example in
Figure 2.2, the reflected field calculated in (2.6) is valid only at distances from
the wall that are small relative to the dimensions of the wall. At very large dis-
tances, the total power reflected from the wall is proportional to both d−2 and
to the area of the cross section of the wall. The power reaching the receiver is
proportional to �d− r�t��−2. Thus, the power attenuation from transmitter to
receiver (for the large distance case) is proportional to �d�d− r�t���−2 rather

6 This is called shadowing because it is similar to the effect of clouds partly blocking sunlight.



20 The wireless channel

than to �2d− r�t��−2. This shows that ray tracing must be used with some
caution. Fortunately, however, linearity still holds in thesemore complex cases.

Another type of reflection is known as scattering and can occur in the
atmosphere or in reflections from very rough objects. Here there are a very
large number of individual paths, and the received waveform is better modeled
as an integral over paths with infinitesimally small differences in their lengths,
rather than as a sum.

Knowing how to find the amplitude of the reflected field from each type
of reflector is helpful in determining the coverage of a base-station (although
ultimately experimentation is necessary). This is an important topic if our
objective is trying to determine where to place base-stations. Studying this in
more depth, however, would take us afield and too far into electromagnetic
theory. In addition, we are primarily interested in questions of modulation,
detection, multiple access, and network protocols rather than location of
base-stations. Thus, we turn our attention to understanding the nature of the
aggregate received waveform, given a representation for each reflected wave.
This leads to modeling the input/output behavior of a channel rather than the
detailed response on each path.

2.2 Input/output model of the wireless channel

We derive an input/output model in this section. We first show that the mul-
tipath effects can be modeled as a linear time-varying system. We then obtain
a baseband representation of this model. The continuous-time channel is then
sampled to obtain a discrete-time model. Finally we incorporate additive noise.

2.2.1 The wireless channel as a linear time-varying system

In the previous section we focused on the response to the sinusoidal input
��t�= cos2�ft. The receivedsignal canbewrittenas

∑
i ai�f� t���t−�i�f� t��,

where ai�f� t� and �i�f� t� are respectively the overall attenuation and prop-
agation delay at time t from the transmitter to the receiver on path i. The
overall attenuation is simply the product of the attenuation factors due to the
antenna pattern of the transmitter and the receiver, the nature of the reflector,
as well as a factor that is a function of the distance from the transmitting
antenna to the reflector and from the reflector to the receive antenna. We have
described the channel effect at a particular frequency f . If we further assume
that the ai�f� t� and the �i�f� t� do not depend on the frequency f , then we
can use the principle of superposition to generalize the above input/output
relation to an arbitrary input x�t� with non-zero bandwidth:

y�t�=∑
i

ai�t�x�t− �i�t��� (2.14)
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In practice the attenuations and the propagation delays are usually slowly
varying functions of frequency. These variations follow from the time-varying
path lengths and also from frequency-dependent antenna gains. However, we
are primarily interested in transmitting over bands that are narrow relative
to the carrier frequency, and over such ranges we can omit this frequency
dependence. It should however be noted that although the individual attenua-
tions and delays are assumed to be independent of the frequency, the overall
channel response can still vary with frequency due to the fact that different
paths have different delays.

For the example of a perfectly reflecting wall in Figure 2.4, then,

a1�t�=
���

r0 +vt
� a2�t�=

���
2d− r0 −vt

� (2.15)

�1�t�=
r0 +vt

c
− ∠�1

2�f
� �2�t�=

2d− r0 −vt

c
− ∠�2

2�f
� (2.16)

where the first expression is for the direct path and the second for the reflected
path. The term ∠�j here is to account for possible phase changes at the
transmitter, reflector, and receiver. For the example here, there is a phase
reversal at the reflector so we take �1 = 0 and �2 = �.

Since the channel (2.14) is linear, it can be described by the response
h��� t� at time t to an impulse transmitted at time t− �. In terms of h��� t�,
the input/output relationship is given by

y�t�=
∫ �

−�
h��� t�x�t− ��d�� (2.17)

Comparing (2.17) and (2.14), we see that the impulse response for the fading
multipath channel is

h��� t�=∑
i

ai�t����− �i�t��� (2.18)

This expression is really quite nice. It says that the effect of mobile users,
arbitrarily moving reflectors and absorbers, and all of the complexities of solv-
ing Maxwell’s equations, finally reduce to an input/output relation between
transmit and receive antennas which is simply represented as the impulse
response of a linear time-varying channel filter.
The effect of the Doppler shift is not immediately evident in this repre-

sentation. From (2.16) for the single reflecting wall example, � ′
i �t� = vi/c

where vi is the velocity with which the ith path length is increasing. Thus,
the Doppler shift on the ith path is −f� ′

i �t�.
In the special case when the transmitter, receiver and the environment

are all stationary, the attenuations ai�t� and propagation delays �i�t� do not
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depend on time t, and we have the usual linear time-invariant channel with
an impulse response

h���=∑
i

ai���− �i�� (2.19)

For the time-varying impulse response h��� t�, we can define a time-varying
frequency response

H�f� t� �=
∫ �

−�
h��� t�e−j2�f� d� =∑

i

ai�t�e
−j2�f�i�t�� (2.20)

In the special case when the channel is time-invariant, this reduces to the
usual frequency response. One way of interpreting H�f� t� is to think of the
system as a slowly varying function of t with a frequency response H�f� t�
at each fixed time t. Corresponding, h��� t� can be thought of as the impulse
response of the system at a fixed time t. This is a legitimate and useful
way of thinking about many multipath fading channels, as the time-scale
at which the channel varies is typically much longer than the delay spread
(i.e., the amount of memory) of the impulse response at a fixed time. In the
reflecting wall example in Section 2.1.4, the time taken for the channel to
change significantly is of the order of milliseconds while the delay spread is
of the order of microseconds. Fading channels which have this characteristic
are sometimes called underspread channels.

2.2.2 Baseband equivalent model

In typical wireless applications, communication occurs in a passband
�fc−W/2� fc+W/2� of bandwidth W around a center frequency fc, the
spectrum having been specified by regulatory authorities. However, most
of the processing, such as coding/decoding, modulation/demodulation,
synchronization, etc., is actually done at the baseband. At the transmitter, the
last stage of the operation is to “up-convert” the signal to the carrier frequency
and transmit it via the antenna. Similarly, the first step at the receiver is to
“down-convert” the RF (radio-frequency) signal to the baseband before further
processing. Therefore from a communication system design point of view, it
is most useful to have a baseband equivalent representation of the system.
We first start with defining the baseband equivalent representation of signals.
Consider a real signal s�t� with Fourier transform S�f�, band-limited in

�fc −W/2� fc +W/2� with W< 2fc. Define its complex baseband equivalent
sb�t� as the signal having Fourier transform:

Sb�f�=
{√

2S�f +fc� f +fc > 0�
0 f +fc ≤ 0�

(2.21)
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Figure 2.7 Illustration of the
relationship between a
passband spectrum S(f ) and
its baseband equivalent Sb(f ).

W
2

1

Sb ( f )

S( f )

f

f

–fc –
W
2

fc –
W
2

– fc
W
2

+ W
2

fc +

W
2

–

2√

Since s�t� is real, its Fourier transform satisfies S�f�= S∗�−f�, which means
that sb�t� contains exactly the same information as s�t�. The factor of

√
2 is

quite arbitrary but chosen to normalize the energies of sb�t� and s�t� to be
the same. Note that sb�t� is band-limited in �−W/2�W/2�. See Figure 2.7.
To reconstruct s�t� from sb�t�, we observe that

√
2S�f�= Sb�f −fc�+S∗

b�−f −fc�� (2.22)

Taking inverse Fourier transforms, we get

s�t�= 1√
2

[
sb�t�e

j2�fct + s∗b�t�e
−j2�fct

]= √
2� [

sb�t�e
j2�fct

]
� (2.23)

In terms of real signals, the relationship between s�t� and sb�t� is
shown in Figure 2.8. The passband signal s�t� is obtained by modulating
��sb�t�� by

√
2 cos2�fct and 	�sb�t�� by −√

2 sin 2�fct and summing, to
get

√
2� [

sb�t�e
j2�fct

]
(up-conversion). The baseband signal ��sb�t�� (respec-

tively 	�sb�t��) is obtained by modulating s�t� by
√
2 cos2�fct (respec-

tively −√
2 sin 2�fct) followed by ideal low-pass filtering at the baseband

�−W/2�W/2� (down-conversion).
Let us now go back to the multipath fading channel (2.14) with impulse

response given by (2.18). Let xb�t� and yb�t� be the complex baseband
equivalents of the transmitted signal x�t� and the received signal y�t�,
respectively. Figure 2.9 shows the system diagram from xb�t� to yb�t�. This
implementation of a passband communication system is known as quadrature
amplitude modulation (QAM). The signal ��xb�t�� is sometimes called the



24 The wireless channel

Figure 2.8 Illustration of
upconversion from sb(t) to
s(t), followed by
downconversion from s(t)
back to sb(t).
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Figure 2.9 System diagram
from the baseband transmitted
signal xb(t) to the baseband
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in-phase component I and 	�xb�t�� the quadrature component Q (rotated
by �/2). We now calculate the baseband equivalent channel. Substituting
x�t�= √

2��xb�t�e j2�fct� and y�t�= √
2��yb�t�e j2�fct� into (2.14) we get

��yb�t�e j2�fct� = ∑
i

ai�t���xb�t− �i�t��e
j2�fc�t−�i�t���

= �
[{∑

i

ai�t�xb�t− �i�t��e
−j2�fc�i�t�

}
e j2�fct

]
� (2.24)

Similarly, one can obtain (Exercise 2.13)

	�yb�t�e j2�fct�= 	
[{∑

i

ai�t�xb�t− �i�t��e
−j2�fc�i�t�

}
e j2�fct

]
� (2.25)

Hence, the baseband equivalent channel is

yb�t�=
∑
i

ab
i �t�xb�t− �i�t��� (2.26)
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where

ab
i �t� �= ai�t�e

−j2�fc�i�t�� (2.27)

The input/output relationship in (2.26) is also that of a linear time-varying
system, and the baseband equivalent impulse response is

hb��� t�=
∑
i

ab
i �t����− �i�t��� (2.28)

This representation is easy to interpret in the time domain, where the effect
of the carrier frequency can be seen explicitly. The baseband output is the
sum, over each path, of the delayed replicas of the baseband input. The
magnitude of the ith such term is the magnitude of the response on the given
path; this changes slowly, with significant changes occurring on the order of
seconds or more. The phase is changed by �/2 (i.e., is changed significantly)
when the delay on the path changes by 1/�4fc�, or equivalently, when the
path length changes by a quarter wavelength, i.e., by c/�4fc�. If the path
length is changing at velocity v, the time required for such a phase change
is c/�4fcv�. Recalling that the Doppler shift D at frequency f is fv/c, and
noting that f ≈ fc for narrowband communication, the time required for a
�/2 phase change is 1/�4D�. For the single reflecting wall example, this is
about 5ms (assuming fc = 900MHz and v = 60km/h). The phases of both
paths are rotating at this rate but in opposite directions.

Note that the Fourier transform Hb�f� t� of hb��� t� for a fixed t is simply
H�f +fc� t�, i.e., the frequency response of the original system (at a fixed t)
shifted by the carrier frequency. This provides another way of thinking about
the baseband equivalent channel.

2.2.3 A discrete-time baseband model

The next step in creating a useful channel model is to convert the continuous-
time channel to a discrete-time channel. We take the usual approach of the
sampling theorem. Assume that the input waveform is band-limited to W .
The baseband equivalent is then limited to W/2 and can be represented as

xb�t�=
∑
n

x�n�sinc�Wt−n�� (2.29)

where x�n� is given by xb�n/W� and sinc�t� is defined as

sinc�t� �= sin��t�
�t

� (2.30)

This representation follows from the sampling theorem, which says that any
waveform band-limited to W/2 can be expanded in terms of the orthogonal
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basis 	sinc�Wt−n�
n, with coefficients given by the samples (taken uniformly
at integer multiples of 1/W ).
Using (2.26), the baseband output is given by

yb�t�=
∑
n

x�n�
∑
i

ab
i �t�sinc�Wt−W�i�t�−n�� (2.31)

The sampled outputs at multiples of 1/W , y�m� �= yb�m/W�, are then
given by

y�m�=∑
n

x�n�
∑
i

ab
i �m/W�sinc�m−n− �i�m/W�W�� (2.32)

The sampled output y�m� can equivalently be thought of as the projection
of the waveform yb�t� onto the waveform W sinc�Wt−m�. Let � �= m−n.
Then

y�m�=∑
�

x�m−��
∑
i

ab
i �m/W�sinc��− �i�m/W�W�� (2.33)

By defining

h��m� �=
∑
i

ab
i �m/W�sinc��− �i�m/W�W�� (2.34)

(2.33) can be written in the simple form

y�m�=∑
�

h��m�x�m−��� (2.35)

We denote h��m� as the �th (complex) channel filter tap at time m. Its value
is a function of mainly the gains ab

i �t� of the paths, whose delays �i�t� are
close to �/W (Figure 2.10). In the special case where the gains ab

i �t� and the
delays �i�t� of the paths are time-invariant, (2.34) simplifies to

h� =
∑
i

ab
i sinc��− �iW�� (2.36)

and the channel is linear time-invariant. The �th tap can be interpreted as
the sample ��/W�th of the low-pass filtered baseband channel response hb���

(cf. (2.19)) convolved with sinc(W�).
We can interpret the sampling operation as modulation and demodulation in

a communication system. At time n, we are modulating the complex symbol
x�m� (in-phase plus quadrature components) by the sinc pulse before the
up-conversion. At the receiver, the received signal is sampled at times m/W
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Figure 2.10 Due to the decay
of the sinc function, the i th
path contributes most
significantly to the �th tap if
its delay falls in the window
��/W − 1/�2W�� �/W +
1/�2W��.
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at the output of the low-pass filter. Figure 2.11 shows the complete system.
In practice, other transmit pulses, such as the raised cosine pulse, are often
used in place of the sinc pulse, which has rather poor time-decay property
and tends to be more susceptible to timing errors. This necessitates sampling
at the Nyquist sampling rate, but does not alter the essential nature of the
model. Hence we will confine to Nyquist sampling.
Due to the Doppler spread, the bandwidth of the output yb�t� is generally

slightly larger than the bandwidth W/2 of the input xb�t�, and thus the output
samples 	y�m�
 do not fully represent the output waveform. This problem is
usually ignored in practice, since the Doppler spread is small (of the order
of tens to hundreds of Hz) compared to the bandwidth W . Also, it is very
convenient for the sampling rate of the input and output to be the same.
Alternatively, it would be possible to sample the output at twice the rate of
the input. This would recapture all the information in the received waveform.
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The number of taps would be almost doubled because of the reduced sampleFigure 2.11 System diagram
from the baseband transmitted
symbol x[m] to the baseband
sampled received signal y[m].

interval, but it would typically be somewhat less than doubled since the
representation would not spread the path delays so much.

Discussion 2.1 Degrees of freedom

The symbol x�m� is the mth sample of the transmitted signal; there are
W samples per second. Each symbol is a complex number; we say that it
represents one (complex) dimension or degree of freedom. The continuous-
time signal x�t� of duration one second corresponds toW discrete symbols;
thus we could say that the band-limited, continuous-time signal has W
degrees of freedom, per second.
The mathematical justification for this interpretation comes from the

following important result in communication theory: the signal space of
complex continuous-time signals of duration T which have most of their
energy within the frequency band �−W/2�W/2� has dimension approx-
imately WT . (A precise statement of this result is in standard com-
munication theory text/books; see Section 5.3 of [148] for example.)
This result reinforces our interpretation that a continuous-time signal
with bandwidth W can be represented by W complex dimensions per
second.
The received signal y�t� is also band-limited to approximately W (due

to the Doppler spread, the bandwidth is slightly larger than W ) and has W
complex dimensions per second. From the point of view of communication
over the channel, the received signal space is what matters because it
dictates the number of different signals which can be reliably distinguished
at the receiver. Thus, we define the degrees of freedom of the channel
to be the dimension of the received signal space, and whenever we refer
to the signal space, we implicitly mean the received signal space unless
stated otherwise.
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2.2.4 Additive white noise

As a last step, we include additive noise in our input/output model. We make
the standard assumption that w�t� is zero-mean additive white Gaussian noise
(AWGN) with power spectral density N0/2 (i.e., E�w�0�w�t��= �N0/2���t�.
The model (2.14) is now modified to be

y�t�=∑
i

ai�t�x�t− �i�t��+w�t�� (2.37)

See Figure 2.12. The discrete-time baseband-equivalent model (2.35) now
becomes

y�m�=∑
�

h��m�x�m−��+w�m�� (2.38)

where w�m� is the low-pass filtered noise at the sampling instant m/W .
Just like the signal, the white noise w�t� is down-converted, filtered at the
baseband and ideally sampled. Thus, it can be verified (Exercise 2.11) that

��w�m�� =
∫ �

−�
w�t��m�1�t�dt� (2.39)

	�w�m�� =
∫ �

−�
w�t��m�2�t�dt� (2.40)

where

�m�1�t� �=
√
2W cos�2�fct�sinc�Wt−m��

�m�2�t� �= −√
2W sin�2�fct�sinc�Wt−m�� (2.41)

It can further be shown that 	�m�1�t���m�2�t�
m forms an orthonormal set of
waveforms, i.e., the waveforms are orthogonal to each other (Exercise 2.12).
In Appendix A we review the definition and basic properties of white Gaus-
sian random vectors (i.e., vectors whose components are independent and
identically distributed (i.i.d.) Gaussian random variables). A key property is
that the projections of a white Gaussian random vector onto any orthonor-
mal vectors are independent and identically distributed Gaussian random
variables. Heuristically, one can think of continuous-time Gaussian white
noise as an infinite-dimensional white random vector and the above prop-
erty carries through: the projections onto orthogonal waveforms are uncorre-
lated and hence independent. Hence the discrete-time noise process 	w�m�

is white, i.e., independent over time; moreover, the real and imaginary
components are i.i.d. Gaussians with variances N0/2. A complex Gaussian
random variable X whose real and imaginary components are i.i.d. satis-
fies a circular symmetry property: e j�X has the same distribution as X for
any �. We shall call such a random variable circular symmetric complex
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Gaussian, denoted by �� �0��2�, where �2 = E��X�2�. The concept of cir-Figure 2.12 A complete system
diagram. cular symmetry is discussed further in Section A.1.3 of Appendix A.

The assumption of AWGN essentially means that we are assuming that the
primary source of the noise is at the receiver or is radiation impinging on
the receiver that is independent of the paths over which the signal is being
received. This is normally a very good assumption for most communication
situations.

2.3 Time and frequency coherence

2.3.1 Doppler spread and coherence time

An important channel parameter is the time-scale of the variation of the
channel. How fast do the taps h��m� vary as a function of time m? Recall that

h��m� = ∑
i

ab
i �m/W�sinc��− �i�m/W�W�

= ∑
i

ai�m/W�e−j2�fc�i�m/W�sinc��− �i�m/W�W�� (2.42)

Let us look at this expression term by term. From Section 2.2.2 we gather that
significant changes in ai occur over periods of seconds or more. Significant
changes in the phase of the ith path occur at intervals of 1/�4Di�, where
Di = fc�

′
i �t� is the Doppler shift for that path. When the different paths

contributing to the �th tap have different Doppler shifts, the magnitude of
h��m� changes significantly. This is happening at the time-scale inversely
proportional to the largest difference between the Doppler shifts, the Doppler
spread Ds:

Ds �=max
i� j

fc�� ′
i �t�− � ′

j�t��� (2.43)
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where the maximum is taken over all the paths that contribute significantly to
a tap.7 Typical intervals for such changes are on the order of 10ms. Finally,
changes in the sinc term of (2.42) due to the time variation of each �i�t� are
proportional to the bandwidth, whereas those in the phase are proportional
to the carrier frequency, which is typically much larger. Essentially, it takes
much longer for a path to move from one tap to the next than for its phase
to change significantly. Thus, the fastest changes in the filter taps occur
because of the phase changes, and these are significant over delay changes
of 1/�4Ds�.
The coherence time Tc of a wireless channel is defined (in an order of

magnitude sense) as the interval over which h��m� changes significantly as a
function of m. What we have found, then, is the important relation

Tc =
1

4Ds

� (2.44)

This is a somewhat imprecise relation, since the largest Doppler shifts may
belong to paths that are too weak to make a difference. We could also view a
phase change of �/4 to be significant, and thus replace the factor of 4 above
by 8. Many people instead replace the factor of 4 by 1. The important thing
is to recognize that the major effect in determining time coherence is the
Doppler spread, and that the relationship is reciprocal; the larger the Doppler
spread, the smaller the time coherence.
In the wireless communication literature, channels are often categorized as

fast fading and slow fading, but there is little consensus on what these terms
mean. In this book, we will call a channel fast fading if the coherence time Tc

is much shorter than the delay requirement of the application, and slow fading
if Tc is longer. The operational significance of this definition is that, in a
fast fading channel, one can transmit the coded symbols over multiple fades
of the channel, while in a slow fading channel, one cannot. Thus, whether a
channel is fast or slow fading depends not only on the environment but also
on the application; voice, for example, typically has a short delay requirement
of less than 100ms, while some types of data applications can have a laxer
delay requirement.

2.3.2 Delay spread and coherence bandwidth

Another important general parameter of a wireless system is the multipath
delay spread, Td, defined as the difference in propagation time between the

7 The Doppler spread can in principle be different for different taps. Exercise 2.10 explores
this possibility.
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longest and shortest path, counting only the paths with significant energy.
Thus,

Td �=max
i� j

��i�t�− �j�t��� (2.45)

This is defined as a function of t, but we regard it as an order of magnitude
quantity, like the time coherence and Doppler spread. If a cell or LAN has
a linear extent of a few kilometers or less, it is very unlikely to have path
lengths that differ by more than 300 to 600 meters. This corresponds to path
delays of one or two microseconds. As cells become smaller due to increased
cellular usage, Td also shrinks. As was already mentioned, typical wireless
channels are underspread, which means that the delay spread Td is much
smaller than the coherence time Tc.
The bandwidths of cellular systems range between several hundred kilohertz

and several megahertz, and thus, for the above multipath delay spread values,
all the path delays in (2.34) lie within the peaks of two or three sinc functions;
more often, they lie within a single peak. Adding a few extra taps to each
channel filter because of the slow decay of the sinc function, we see that
cellular channels can be represented with at most four or five channel filter
taps. On the other hand, there is a recent interest in ultra-wideband (UWB)
communication, operating from 3.1 to 10.6GHz. These channels can have up
to a few hundred taps.

When we study modulation and detection for cellular systems, we shall see
that the receiver must estimate the values of these channel filter taps. The taps
are estimated via transmitted and received waveforms, and thus the receiver
makes no explicit use of (and usually does not have) any information about
individual path delays and path strengths. This is why we have not studied the
details of propagation over multiple paths with complicated types of reflection
mechanisms. All we really need is the aggregate values of gross physical
mechanisms such as Doppler spread, coherence time, and multipath spread.

The delay spread of the channel dictates its frequency coherence. Wireless
channels change both in time and frequency. The time coherence shows
us how quickly the channel changes in time, and similarly, the frequency
coherence shows how quickly it changes in frequency. We first understood
about channels changing in time, and correspondingly about the duration of
fades, by studying the simple example of a direct path and a single reflected
path. That same example also showed us how channels change with frequency.
We can see this in terms of the frequency response as well.
Recall that the frequency response at time t is

H�f� t�=∑
i

ai�t�e
−j2�f�i�t�� (2.46)

The contribution due to a particular path has a phase linear in f . For mul-
tiple paths, there is a differential phase, 2�f��i�t�− �k�t��. This differential
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phase causes selective fading in frequency. This says that Er�f� t� changesFigure 2.13 (a) A channel over
200MHz is frequency-selective,
and the impulse response has
many taps. (b) The spectral
content of the same channel.
(c) The same channel over
40MHz is flatter, and has for
fewer taps. (d) The spectral
contents of the same channel,
limited to 40MHz bandwidth.
At larger bandwidths, the same
physical paths are resolved into
a finer resolution.

significantly, not only when t changes by 1/�4Ds�, but also when f changes
by 1/�2Td�. This argument extends to an arbitrary number of paths, so the
coherence bandwidth, Wc, is given by

Wc =
1
2Td

� (2.47)

This relationship, like (2.44), is intended as an order of magnitude relation,
essentially pointing out that the coherence bandwidth is reciprocal to the
multipath spread. When the bandwidth of the input is considerably less than
Wc, the channel is usually referred to as flat fading. In this case, the delay
spread Td is much less than the symbol time 1/W , and a single channel
filter tap is sufficient to represent the channel. When the bandwidth is much
larger than Wc, the channel is said to be frequency-selective, and it has to
be represented by multiple taps. Note that flat or frequency-selective fading
is not a property of the channel alone, but of the relationship between the
bandwidth W and the coherence bandwidth Td (Figure 2.13).
The physical parameters and the time-scale of change of key parameters of

the discrete-time baseband channel model are summarized in Table 2.1. The
different types of channels are summarized in Table 2.2.
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Table 2.1 A summary of the physical parameters of the channel and the
time-scale of change of the key parameters in its discrete-time baseband
model.

Key channel parameters and time-scales Symbol Representative values

Carrier frequency fc 1GHz
Communication bandwidth W 1MHz
Distance between transmitter and receiver d 1 km
Velocity of mobile v 64 km/h
Doppler shift for a path D = fcv/c 50Hz
Doppler spread of paths corresponding to

a tap Ds 100Hz
Time-scale for change of path amplitude d/v 1 minute
Time-scale for change of path phase 1/�4D� 5ms
Time-scale for a path to move over a tap c/�vW� 20 s
Coherence time Tc = 1/�4Ds� 2.5ms
Delay spread Td 1�s
Coherence bandwidth Wc = 1/�2Td� 500 kHz

Table 2.2 A summary of the types of wireless
channels and their defining characteristics.

Types of channel Defining characteristic

Fast fading Tc 
 delay requirement
Slow fading Tc � delay requirement
Flat fading W 
Wc

Frequency-selective fading W �Wc

Underspread Td 
 Tc

2.4 Statistical channel models

2.4.1 Modeling philosophy

We defined Doppler spread and multipath spread in the previous section as
quantities associated with a given receiver at a given location, velocity, and
time. However, we are interested in a characterization that is valid over some
range of conditions. That is, we recognize that the channel filter taps {h��m�}
must be measured, but we want a statistical characterization of how many
taps are necessary, how quickly they change and how much they vary.

Such a characterization requires a probabilistic model of the channel tap
values, perhaps gathered by statistical measurements of the channel. We are
familiar with describing additive noise by such a probabilistic model (as
a Gaussian random variable). We are also familiar with evaluating error
probability while communicating over a channel using such models. These
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error probability evaluations, however, depend critically on the independence
and Gaussian distribution of the noise variables.
It should be clear from the description of the physical mechanisms gener-

ating Doppler spread and multipath spread that probabilistic models for the
channel filter taps are going to be far less believable than the models for
additive noise. On the other hand, we need such models, even if they are
quite inaccurate. Without models, systems are designed using experience and
experimentation, and creativity becomes somewhat stifled. Even with highly
over-simplified models, we can compare different system approaches and get
a sense of what types of approaches are worth pursuing.
To a certain extent, all analytical work is done with simplified models. For

example, white Gaussian noise (WGN) is often assumed in communication
models, although we know the model is valid only over sufficiently small
frequency bands. With WGN, however, we expect the model to be quite good
when used properly. For wireless channel models, however, probabilistic
models are quite poor and only provide order-of-magnitude guides to system
design and performance. We will see that we can define Doppler spread, multi-
path spread, etc. much more cleanly with probabilistic models, but the underly-
ing problem remains that these channels are very different from each other and
cannot really be characterized by probabilistic models. At the same time, there
is a large literature based on probabilistic models for wireless channels, and it
has been highly useful for providing insight into wireless systems. However,
it is important to understand the robustness of results based on these models.
There is another question in deciding what to model. Recall the continuous-

time multipath fading channel

y�t�=∑
i

ai�t�x�t− �i�t��+w�t�� (2.48)

This contains an exact specification of the delay and magnitude of each path.
From this, we derived a discrete-time baseband model in terms of channel
filter taps as

y�m�=∑
�

h��m�x�m−��+w�m�� (2.49)

where

h��m�=
∑
i

ai�m/W�e−j2�fc�i�m/W�sinc��− �i�m/W�W�� (2.50)

We used the sampling theorem expansion in which x�m� = xb�m/W� and
y�m� = yb�m/W�. Each channel tap h��m� contains an aggregate of paths,
with the delays smoothed out by the baseband signal bandwidth.

Fortunately, it is the filter taps that must be modeled for input/output
descriptions, and also fortunately, the filter taps often contain a sufficient path
aggregation so that a statistical model might have a chance of success.
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2.4.2 Rayleigh and Rician fading

The simplest probabilistic model for the channel filter taps is based on
the assumption that there are a large number of statistically independent
reflected and scattered paths with random amplitudes in the delay window cor-
responding to a single tap. The phase of the ith path is 2�fc�i modulo 2�. Now,
fc�i = di/�, where di is the distance travelled by the ith path and � is the carrier
wavelength. Since the reflectors and scatterers are far away relative to the car-
rier wavelength, i.e., di � �, it is reasonable to assume that the phase for each
path is uniformly distributed between 0 and 2� and that the phases of different
paths are independent. The contribution of each path in the tap gain h��m� is

ai�m/W�e−j2�fc�i�m/W�sinc��− �i�m/W�W� (2.51)

and this can be modeled as a circular symmetric complex random variable.8

Each tap h��m� is the sum of a large number of such small independent
circular symmetric random variables. It follows that ��h��m�� is the sum of
many small independent real random variables, and so by the Central Limit
Theorem, it can reasonably be modeled as a zero-mean Gaussian random
variable. Similarly, because of the uniform phase, ��h��m�e j�� is Gaussian
with the same variance for any fixed �. This assures us that h��m� is in
fact circular symmetric �� �0��2

� � (see Section A.1.3 in Appendix A for an
elaboration). It is assumed here that the variance of h��m� is a function of the
tap �, but independent of time m (there is little point in creating a probabilistic
model that depends on time). With this assumed Gaussian probability density,
we know that the magnitude �h��m�� of the �th tap is a Rayleigh random
variable with density (cf. (A.20) in Appendix A and Exercise 2.14)

x

�2
�

exp
{−x2
2�2

�

}
� x ≥ 0� (2.52)

and the squared magnitude �h��m��2 is exponentially distributed with density

1

�2
�

exp
{−x
�2
�

}
� x ≥ 0� (2.53)

This model, which is called Rayleigh fading, is quite reasonable for scat-
tering mechanisms where there are many small reflectors, but is adopted
primarily for its simplicity in typical cellular situations with a relatively small
number of reflectors. The word Rayleigh is almost universally used for this

8 See Section A.1.3 in Appendix A for a more in-depth discussion of circular symmetric
random variables and vectors.
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model, but the assumption is that the tap gains are circularly symmetric
complex Gaussian random variables.
There is a frequently used alternative model in which the line-of-sight path

(often called a specular path) is large and has a known magnitude, and that
there are also a large number of independent paths. In this case, h��m�, at
least for one value of �, can be modeled as

h��m�=
√

�

�+1
��e

j�+
√

1
�+1

��
(
0��2

�

)
(2.54)

with the first term corresponding to the specular path arriving with uniform
phase � and the second term corresponding to the aggregation of the large
number of reflected and scattered paths, independent of �. The parameter
� (so-called K-factor) is the ratio of the energy in the specular path to the
energy in the scattered paths; the larger � is, the more deterministic is the
channel. The magnitude of such a random variable is said to have a Rician
distribution. Its density has quite a complicated form; it is often a better model
of fading than the Rayleigh model.

2.4.3 Tap gain auto-correlation function

Modeling each h��m� as a complex random variable provides part of the statis-
tical description that we need, but this is not the most important part. The more
important issue is how these quantities vary with time. As we will see in the rest
of thebook, the rateof channelvariationhas significant impacton several aspects
of the communication problem. A statistical quantity that models this relation-
ship is known as the tap gain auto-correlation function,R��n�. It is defined as

R��n� �= � 	h∗
��m�h��m+n�
 � (2.55)

For each tap �, this gives the auto-correlation function of the sequence of
random variables modeling that tap as it evolves in time. We are tacitly
assuming that this is not a function of time m. Since the sequence of random
variables 	h��m�
 for any given � has both a mean and covariance function
that does not depend on m, this sequence is wide-sense stationary. We also
assume that, as a random variable, h��m� is independent of h�′ �m

′� for all
� 
= �′ and all m�m′. This final assumption is intuitively plausible since paths
in different ranges of delay contribute to h��m� for different values of �.

9

The coefficient R��0� is proportional to the energy received in the �th
tap. The multipath spread Td can be defined as the product of 1/W times
the range of � which contains most of the total energy

∑�
�=0R��0�. This is

9 One could argue that a moving reflector would gradually travel from the range of one tap to
another, but as we have seen, this typically happens over a very large time-scale.
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somewhat preferable to our previous “definition” in that the statistical nature
of Td becomes explicit and the reliance on some sort of stationarity becomes
explicit. Now, we can also define the coherence time Tc more explicitly as
the smallest value of n > 0 for which R��n� is significantly different from
R��0�. With both of these definitions, we still have the ambiguity of what
“significant” means, but we are now facing the reality that these quantities
must be viewed as statistics rather than as instantaneous values.

The tap gain auto-correlation function is useful as a way of expressing the
statistics for how tap gains change given a particular bandwidth W , but gives
little insight into questions related to choice of a bandwidth for communication.
If we visualize increasing the bandwidth, we can see several things happening.
First, the ranges of delay that are separated into different taps � becomenarrower
(1/W seconds), so there are fewer paths corresponding to each tap, and thus the
Rayleigh approximation becomes poorer. Second, the sinc functions of (2.50)
becomenarrower, andR��0� gives a finer grained picture of the amount of power
being received in the �th delay window of width 1/W . In summary, as we try
to apply this model to larger W , we get more detailed information about delay
and correlation at that delay, but the information becomes more questionable.

Example 2.2 Clarke’s model
This is a popular statistical model for flat fading. The transmitter is fixed,
the mobile receiver is moving at speed v, and the transmitted signal is
scattered by stationary objects around the mobile. There are K paths, the
ith path arriving at an angle �i �= 2�i/K, i = 0� � � � �K−1, with respect
to the direction of motion. K is assumed to be large. The scattered path
arriving at the mobile at the angle � has a delay of ���t� and a time-
invariant gain a�, and the input/output relationship is given by

y�t�=
K−1∑
i=0

a�ix�t− ��i �t�� (2.56)

The most general version of the model allows the received power distri-
bution p��� and the antenna gain pattern ���� to be arbitrary functions of
the angle �, but the most common scenario assumes uniform power distri-
bution and isotropic antenna gain pattern, i.e., the amplitudes a� = a/

√
K

for all angles �. This models the situation when the scatterers are located
in a ring around the mobile (Figure 2.14). We scale the amplitude of each
path by

√
K so that the total received energy along all paths is a2; for large

K, the received energy along each path is a small fraction of the total energy.
Suppose the communication bandwidth W is much smaller than the

reciprocal of the delay spread. The complex baseband channel can be
represented by a single tap at each time:

y�m�= h0�m�x�m�+w�m�� (2.57)
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Rx

Figure 2.14 The one-ring model.

The phase of the signal arriving at time 0 from an angle � is 2�fc���0�
mod 2�, where fc is the carrier frequency. Making the assumption that
this phase is uniformly distributed in �0�2�� and independently distributed
across all angles �, the tap gain process 	h0�m�
 is a sum of many small
independent contributions, one from each angle. By the Central Limit
Theorem, it is reasonable to model the process as Gaussian. Exercise 2.17
shows further that the process is in fact stationary with an autocorrelation
function R0�n� given by:

R0�n�= 2a2�J0 �n�Ds/W� (2.58)

where J0�·� is the zeroth-order Bessel function of the first kind:

J0�x� �=
1
�

∫ �

0
ejx cos�d�� (2.59)

and Ds = 2fcv/c is the Doppler spread. The power spectral density S�f�,
defined on �−1/2�+1/2�, is given by

S�f�=
{

4a2W

Ds

√
1−�2fW/Ds�

2
−Ds/�2W�� f �+Ds/�2W�

0 else�
(2.60)

This can be verified by computing the inverse Fourier transform of (2.60)
to be (2.58). Plots of the autocorrelation function and the spectrum for are
shown in Figure 2.15. If we define the coherence time Tc to be the value
of n/W such that R0�n�= 0�05R0�0�, then

Tc =
J−1
0 �0�05�
�Ds

� (2.61)

i.e., the coherence time is inversely proportional to Ds.
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Figure 2.15 Plots of the auto-correlation function and Doppler spectrum in Clarke’s model.

In Exercise 2.17, you will also verify that S�f�df has the physical
interpretation of the received power along paths that have Doppler shifts
in the range �f� f + df�. Thus, S�f� is also called the Doppler spectrum.
Note that S�f� is zero beyond the maximum Doppler shift.

Chapter 2 The main plot

Large-scale fading
Variation of signal strength over distances of the order of cell sizes.
Received power decreases with distance r like:

1
r2

(free space)

1
r4

(reflection from ground plane)�

Decay can be even faster due to shadowing and scattering effects.
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Small-scale fading
Variation of signal strength over distances of the order of the carrier
wavelength, due to constructive and destructive interference of multipaths.
Key parameters:

Doppler spread Ds ←→ coherence time Tc ∼ 1/Ds

Doppler spread is proportional to the velocity of the mobile and to the
angular spread of the arriving paths.

delay spread Td ←→ coherence bandwidth Wc ∼ 1/Td

Delay spread is proportional to the difference between the lengths of the
shortest and the longest paths.

Input/output channel models

• Continuous-time passband (2.14):

y�t�=∑
i

ai�t�x�t− �i�t���

• Continuous-time complex baseband (2.26):

yb�t�=
∑
i

ai�t�e
−j2�fc�i�t�xb�t− �i�t���

• Discrete-time complex baseband with AWGN (2.38):

y�m�=∑
�

h��m�x�m−��+w�m��

The �th tap is the aggregation of the physical paths with delays in
��/W −1/�2W���/W +1/�2W��.

Statistical channel models

• 	h��m�
m is modeled as circular symmetric processes independent across
the taps.

• If for all taps,

h��m�∼ �� �0��2
� ��

the model is called Rayleigh.
• If for one tap,

h��m�=
√

�

�+1
��e

j�+
√

1
�+1

�� �0��2
� ��

the model is called Rician with K-factor �.
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• The tap gain auto-correlation function R��n� �= E�h∗
��0�h��n�� models

the dependency over time.
• The delay spread is 1/W times the range of taps � which contains most

of the total gain
∑�

�=0R��0�. The coherence time is 1/W times the range
of n for which R��n� is significantly different from R��0�.

2.5 Bibliographical notes

This chapter was modified from R. G. Gallager’s MIT 6.450 course notes on digital
communication. The focus is on small-scale multipath fading. Large-scale fading
models are discussed in many texts; see for example Rappaport [98]. Clarke’s model
was introduced in [22] and elaborated further in [62]. Our derivation here of the Clarke
power spectrum follows the approach of [111].

2.6 Exercises

Exercise 2.1 (Gallager) Consider the electric field in (2.4).
1. It has been derived under the assumption that the motion is in the direction of

the line-of-sight from sending antenna to receive antenna. Find the electric field
assuming that � is the angle between the line-of-sight and the direction of motion
of the receiver. Assume that the range of time of interest is small enough so that
changes in ����� can be ignored.

2. Explain why, and under what conditions, it is a reasonable approximation to ignore
the change in ����� over small intervals of time.

Exercise 2.2 (Gallager) Equation (2.13) was derived under the assumption that
r�t�≈ d. Derive an expression for the received waveform for general r�t�. Break the
first term in (2.11) into two terms, one with the same numerator but the denominator
2d− r0 −vt and the other with the remainder. Interpret your result.

Exercise 2.3 In the two-path example in Sections 2.1.3 and 2.1.4, the wall is on the
right side of the receiver so that the reflected wave and the direct wave travel in opposite
directions. Suppose now that the reflectingwall is on the left side of transmitter. Redo the
analysis. What is the nature of the multipath fading, both over time and over frequency?
Explain any similarity or difference with the case considered in Sections 2.1.3 and 2.1.4.

Exercise 2.4 A mobile receiver is moving at a speed v and is receiving signals arriving
along two reflected paths which make angles �1 and �2 with the direction of motion.
The transmitted signal is a sinusoid at frequency f .
1. Is the above information enough for estimating (i) the coherence time Tc; (ii) the

coherence bandwidth Wc? If so, express them in terms of the given parameters. If
not, specify what additional information would be needed.

2. Consider an environment in which there are reflectors and scatterers in all directions
from the receiver and an environment in which they are clustered within a small
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angular range. Using part (1), explain how the channel would differ in these two
environments.

Exercise 2.5 Consider the propagation model in Section 2.1.5 where there is a reflected
path from the ground plane.
1. Let r1 be the length of the direct path in Figure 2.6. Let r2 be the length of the

reflected path (summing the path length from the transmitter to the ground plane
and the path length from the ground plane to the receiver). Show that r2 − r1 is
asymptotically equal to b/r and find the value of the constant b. Hint: Recall that
for x small,

√
1+x ≈ 1+x/2 in the sense that �

√
1+x−1�/x→ 1/2 as x→ 0.

2. Assume that the received waveform at the receive antenna is given by

Er�f� t�=
� cos2��ft−fr1/c�

r1
− � cos2��ft−fr2/c�

r2
� (2.62)

Approximate the denominator r2 by r1 in (2.62) and show that Er ≈ �/r2 for r−1

much smaller than c/f . Find the value of �.
3. Explain why this asymptotic expression remains valid without first approximating

the denominator r2 in (2.62) by r1.

Exercise 2.6 Consider the following simple physical model in just a single dimension.
The source is at the origin and transmits an isotropic wave of angular frequency �.
The physical environment is filled with uniformly randomly located obstacles. We
will model the inter-obstacle distance as an exponential random variable, i.e., it has
the density10

�e−�r � r ≥ 0� (2.63)

Here 1/� is the mean distance between obstacles and captures the density of the obsta-
cles. Viewing the source as a stream of photons, suppose each obstacle independently
(from one photon to the other and independent of the behavior of the other obstacles)
either absorbs the photon with probability  or scatters it either to the left or to the
right (both with equal probability �1− �/2).

Now consider the path of a photon transmitted either to the left or to the right with
equal probability from some fixed point on the line. The probability density function
of the distance (denoted by r) to the first obstacle (the distance can be on either side
of the starting point, so r takes values on the entire line) is equal to

q�r� �= �e−��r�

2
� r ∈�� (2.64)

So the probability density function of the distance at which the photon is absorbed
upon hitting the first obstacle is equal to

f1�r� �=  q�r�� r ∈�� (2.65)

10 This random arrangement of points on a line is called a Poisson point process.
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1. Show that the probability density function of the distance from the origin at which
the second obstacle is met is

f2�r� �=
∫ �

−�
�1− �q�x�f1�r−x�dx� r ∈�� (2.66)

2. Denote by fk�r� the probability density function of the distance from the origin
at which the photon is absorbed by exactly the kth obstacle it hits and show the
recursive relation

fk+1�r�=
∫ �

−�
�1− �q�x�fk�r−x�dx� r ∈�� (2.67)

3. Conclude from the previous step that the probability density function of the distance
from the source at which the photon is absorbed (by some obstacle), denoted by
f�r�, satisfies the recursive relation

f�r�=  q�r�+ �1− �
∫ �

−�
q�x�f�r−x�dx� r ∈�� (2.68)

Hint: Observe that f�r�=∑�
k=1 fk�r�.

4. Show that

f�r�=
√
 �

2
e−�

√
 �r� (2.69)

is a solution to the recursive relation in (2.68). Hint: Observe that the convolution
between the probability densities q�·� and f�·� in (2.68) is more easily represented
using Fourier transforms.

5. Now consider the photons that are absorbed at a distance of more than r from the
source. This is the radiated power density at a distance r and is found by integrating
f�x� over the range �r��� if r > 0 and �−�� r� if r < 0. Calculate the radiated
power density to be

e− 
√
��r�

2
� (2.70)

and conclude that the power decreases exponentially with distance r. Also observe
that with very low absorption � → 0� or very few obstacles ��→ 0�, the power
density converges to 0.5; this is expected since the power splits equally on either
side of the line.

Exercise 2.7 In Exercise 2.6, we considered a single-dimensional physical model of a
scattering and absorption environment and concluded that power decays exponentially
with distance. A reading exercise is to study [42], which considers a natural extension
of this simple model to two- and three-dimensional spaces. Further, it extends the
analysis to two- and three-dimensional physical models. While the analysis is more
complicated, we arrive at the same conclusion: the radiated power decays exponentially
with distance.
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Exercise 2.8 (Gallager) Assume that a communication channel first filters the trans-
mitted passband signal before adding WGN. Suppose the channel is known and the
channel filter has an impulse response h�t�. Suppose that a QAM scheme with symbol
duration T is developed without knowledge of the channel filtering. A baseband filter
��t� is developed satisfying the Nyquist property that 	��t−kT�
k is an orthonormal
set. The matched filter ��−t� is used at the receiver before sampling and detection.

If one is aware of the channel filter h�t�, one may want to redesign either the
baseband filter at the transmitter or the baseband filter at the receiver so that there
is no intersymbol interference between receiver samples and so that the noise on the
samples is i.i.d.
1. Which filter should one redesign?
2. Give an expression for the impulse response of the redesigned filter (assume a

carrier frequency fc).
3. Draw a figure of the various filters at passband to show why your solution is

correct. (We suggest you do this before answering the first two parts.)

Exercise 2.9 Consider the two-path example in Section 2.1.4 with d = 2km and the
receiver at 1.5 km from the transmitter moving at velocity 60 km/h away from the
transmitter. The carrier frequency is 900MHz.
1. Plot in MATLAB the magnitudes of the taps of the discrete-time baseband channel

at a fixed time t. Give a few plots for several bandwidths W so as to exhibit both
flat and frequency-selective fading.

2. Plot the time variation of the phase and magnitude of a typical tap of the discrete-
time baseband channel for a bandwidth where the channel is (approximately)
flat and for a bandwidth where the channel is frequency-selective. How do the
time-variations depend on the bandwidth? Explain.

Exercise 2.10 For each tap of the discrete-time channel response, the Doppler spread
is the range of Doppler shifts of the paths contributing to that tap. Give an example
of an environment (i.e. location of reflectors/scatterers with respect to the location of
the transmitter and the receiver) in which the Doppler spread is the same for different
taps and an environment in which they are different.

Exercise 2.11 Verify (2.39) and (2.40).

Exercise 2.12 In this problem we consider generating passband orthogonal waveforms
from baseband ones.
1. Show that if the waveforms 	��t − nT�
n form an orthogonal set, then the

waveforms 	�n�1��n�2
n also form an orthogonal set, provided that ��t� is band-
limited to �−fc� fc�. Here,

�n�1�t� = ��t−nT� cos2�fct�

�n�2�t� = ��t−nT� sin 2�fct�

How should we normalize the energy of ��t� to make the ��t� orthonormal?
2. For a given fc, find an example where the result in part (1) is false when the

condition that ��t� is band-limited to �−fc� fc� is violated.
Exercise 2.13 Verify (2.25). Does this equation contain any more information about
the communication system in Figure 2.9 beyond what is in (2.24)? Explain.
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Exercise 2.14 Compute the probability density function of the magnitude �X� of a
complex circular symmetric Gaussian random variable X with variance �2.

Exercise 2.15 In the text we have discussed the various reasons why the channel tap
gains, h��m�, vary in time (as a function of m) and how the various dynamics operate
at different time-scales. The analysis is based on the assumption that communication
takes place on a bandwidth W around a carrier frequency fc with fc � W . This
assumption is not valid for ultra-wideband (UWB) communication systems, where the
transmission bandwidth is from 3.1GHz to 10.6GHz, as regulated by the FCC. Redo
the analysis for this system. What is the main mechanism that causes the tap gains to
vary at the fastest time-scale, and what is this fastest time-scale determined by?

Exercise 2.16 In Section 2.4.2, we argue that the channel gain h��m� at a particular
time m can be assumed to be circular symmetric. Extend the argument to show that it
is also reasonable to assume that the complex random vector

h �=

⎛⎜⎜⎜⎜⎝
h��m�

h��m+1�
���

h��m+n�

⎞⎟⎟⎟⎟⎠
is circular symmetric for any n.

Exercise 2.17 In this question, we will analyze in detail Clarke’s one-ring model
discussed at the end of the chapter. Recall that the scatterers are assumed to be located
in a ring around the receiver moving at speed v. There are K paths coming in at angles
�i = 2�i/K with respect to the direction of motion of the mobile, i = 0� � � � �K−1�
The path coming at angle � has a delay of ���t� and a time-invariant gain a/

√
K (not

dependent on the angle), and the input/output relationship is given by

y�t�= a√
K

K−1∑
i=0

x�t− ��i �t��� (2.71)

1. Give an expression for the impulse response h��� t� for this channel, and give an
expression for ���t� in terms of ���0�. (You can assume that the distance the mobile
travelled in �0� t� is small compared to the radius of the ring.)

2. Suppose communication takes place at carrier frequency fc and over a narrowband
of bandwidth W such that the delay spread of the channel Td satisfies Td 
 1/W .
Argue that the discrete-time baseband model can be approximately represented by
a single tap

y�m�= h0�m�x�m�+w�m�� (2.72)

and give an approximate expression for that tap in terms of the a�’s and ���t�’s.
Hint: Your answer should contain no sinc functions.

3. Argue that it is reasonable to assume that the phase of the path from an angle � at
time 0,

2�fc���0� mod 2�

is uniformly distributed in �0�2�� and that it is i.i.d. across �.
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4. Based on the assumptions in part (3), for large K one can use the Central Limit
Theorem to approximate 	h0�m�
 as a Gaussian process. Verify that the limiting
process is stationary and the autocorrelation function R0�n� is given by (2.58).

5. Verify that the Doppler spectrum S�f� is given by (2.60). Hint: It is easier to show
that the inverse Fourier transform of (2.60) is (2.58).

6. Verify that S�f�df is indeed the received power from the paths that have Doppler
shifts in �f� f +df�. Is this surprising?

Exercise 2.18 Consider a one-ring model where there are K scatterers located at
angles �i = 2�i/K, i = 0� � � � �K−1, on a circle of radius 1 km around the receiver
and the transmitter is 2 km away. (The angles are with respect to the line joining the
transmitter and the receiver.) The transmit power is P. The power attenuation along a
path from the transmitter to a scatterer to the receiver is

G

K
· 1
s2

· 1
r2
� (2.73)

where G is a constant and r and s are the distance from the transmitter to the scatterer
and the distance from the scatterer to the receiver respectively. Communication takes
place at a carrier frequency fc = 1�9 GHz and the bandwidth isW Hz. You can assume
that, at any time, the phases of each arriving path in the baseband representation of
the channel are independent and uniformly distributed between 0 and 2�.
1. What are the key differences and the similarities between this model and the

Clarke’s model in the text?
2. Find approximate conditions on the bandwidth W for which one gets a flat fading

channel.
3. Suppose the bandwidth is such that the channel is frequency selective. For large

K, find approximately the amount of power in tap � of the discrete-time baseband
impulse response of the channel (i.e., compute the power-delay profile.). Make any
simplifying assumptions but state them. (You can leave your answers in terms of
integrals if you cannot evaluate them.)

4. Compute and sketch the power-delay profile as the bandwidth becomes very large
(and K is large).

5. Suppose now the receiver is moving at speed v towards the (fixed) transmitter. What
is the Doppler spread of tap �? Argue heuristically from physical considerations
what the Doppler spectrum (i.e., power spectral density) of tap � is, for large K.

6. We have made the assumptions that the scatterers are all on a circle of radius 1km
around the receiver and the paths arrive with independent and uniform distributed
phases at the receiver. Mathematically, are the two assumptions consistent? If not,
do you think it matters, in terms of the validity of your answers to the earlier parts
of this question?

Exercise 2.19 Often in modeling multiple input multiple output (MIMO) fading
channels the fading coefficients between different transmit and receive antennas are
assumed to be independent random variables. This problem explores whether this is
a reasonable assumption based on Clarke’s one-ring scattering model and the antenna
separation.
1. (Antenna separation at the mobile) Assume a mobile with velocity v moving away

from the base-station, with uniform scattering from the ring around it.
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(a) Compute the Doppler spread Ds for a carrier frequency fc, and the correspond-
ing coherence time Tc.

(b) Assuming that fading states separated by Tc are approximately uncorrelated, at
what distance should we place a second antenna at the mobile to get an inde-
pendently faded signal? Hint: How much distance does the mobile travel in Tc?

2. (Antenna separation at the base-station) Assume that the scattering ring has radius
R and that the distance between the base-station and the mobile is d. Further
assume for the time being that the base-station is moving away from the mobile
with velocity v′. Repeat the previous part to find the minimum antenna spacing at
the base-station for uncorrelated fading. Hint: Is the scattering still uniform around
the base-station?

3. Typically, the scatterers are local around the mobile (near the ground) and far away
from the base-station (high on a tower). What is the implication of your result in
part (2) for this scenario?
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3 Point-to-point communication:
detection, diversity, and channel
uncertainty

In this chapter we look at various basic issues that arise in communication over
fading channels. We start by analyzing uncoded transmission in a narrowband
fading channel. We study both coherent and non-coherent detection. In both
cases the error probability is much higher than in a non-faded AWGN channel.
The reason is that there is a significant probability that the channel is in
a deep fade. This motivates us to investigate various diversity techniques
that improve the performance. The diversity techniques operate over time,
frequency or space, but the basic idea is the same. By sending signals that carry
the same information through different paths, multiple independently faded
replicas of data symbols are obtained at the receiver end and more reliable
detection can be achieved. The simplest diversity schemes use repetition
coding. More sophisticated schemes exploit channel diversity and, at the same
time, efficiently use the degrees of freedom in the channel. Compared to
repetition coding, they provide coding gains in addition to diversity gains. In
space diversity, we look at both transmit and receive diversity schemes. In
frequency diversity, we look at three approaches:

• single-carrier with inter-symbol interference equalization,
• direct-sequence spread-spectrum,
• orthogonal frequency division multiplexing.

Finally, we study the impact of channel uncertainty on the performance of
diversity combining schemes. We will see that, in some cases, having too
many diversity paths can have an adverse effect due to channel uncertainty.

To familiarize ourselves with the basic issues, the emphasis of this chapter is
on concrete techniques for communication over fading channels. In Chapter 5
we take a more fundamental and systematic look and use information theory
to derive the best performance one can achieve. At that fundamental level,
we will see many of the issues discussed here recur.

The derivations in this chapter make repeated use of a few key results in
vector detection under Gaussian noise. We develop and summarize the basic
results in Appendix A, emphasizing the underlying geometry. The reader is
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encouraged to take a look at the appendix before proceeding with this chapter
and to refer back to it often. In particular, a thorough understanding of the
canonical detection problem in Summary A.2 will be very useful.

3.1 Detection in a Rayleigh fading channel

3.1.1 Non-coherent detection

We start with a very simple detection problem in a fading channel. For sim-
plicity, let us assume a flat fading model where the channel can be represented
by a single discrete-time complex filter taph0�m�, whichwe abbreviate ash�m�:

y�m�= h�m�x�m�+w�m�� (3.1)

wherew�m�∼�� �0�N0�. We suppose Rayleigh fading, i.e., h�m�∼�� �0�1�,
where we normalize the variance to be 1. For the time being, however, we do
not specify the dependence between the fading coefficients h�m� at different
times m nor do we make any assumption on the prior knowledge the receiver
might have of h�m�. (This latter assumption is sometimes called non-coherent
communication.)

First consider uncoded binary antipodal signaling (or binary phase-shift-
keying, BPSK) with amplitude a, i.e., x�m�=±a, and the symbols x�m� are
independent over time. This signaling scheme fails completely, even in the
absence of noise, since the phase of the received signal y�m� is uniformly
distributed between 0 and 2� regardless of whether x�m�= a or x�m�= −a
is transmitted. Further, the received amplitude is independent of the trans-
mitted symbol. Binary antipodal signaling is binary phase modulation and
it is easy to see that phase modulation in general is similarly flawed. Thus,
signal structures are required in which either different signals have different
magnitudes, or coding between symbols is used. Next we look at orthogonal
signaling, a special type of coding between symbols.

Consider the following simple orthogonal modulation scheme: a form of
binary pulse-position modulation. For a pair of time samples, transmit either

xA �=
(
x�0�
x�1�

)
=
(
a

0

)
� (3.2)

or

xB �=
(
0
a

)
� (3.3)

We would like to perform detection based on

y �=
(
y�0�
y�1�

)
� (3.4)
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This is a simple hypothesis testing problem, and it is straightforward to
derive the maximum likelihood (ML) rule:

��y�
≥
<

XA

XB

0� (3.5)

where ��y� is the log-likelihood ratio

��y� �= ln
{
f�y�xA�
f�y�xB�

}
� (3.6)

It can be seen that, if xA is transmitted, y�0� ∼ �� �0� a2 +N0� and y�1� ∼
�� �0�N0� and y�0�� y�1� are independent. Similarly, if xB is transmitted,
y�0� ∼ �� �0�N0� and y�1� ∼ �� �0� a2 +N0�. Further, y�0� and y�1� are
independent. Hence the log-likelihood ratio can be computed to be

��y�=
{�y�0��2−�y�1��2}a2

�a2+N0�N0

� (3.7)

The optimal rule is simply to decide xA is transmitted if �y�0��2 > �y�1��2 and
decide xB otherwise. Note that the rule does not make use of the phases of
the received signal, since the random unknown phases of the channel gains
h�0�� h�1� render them useless for detection. Geometrically, we can interpret
the detector as projecting the received vector y onto each of the two possible
transmit vectors xA and xB and comparing the energies of the projections
(Figure 3.1). Thus, this detector is also called an energy or a square-law
detector. It is somewhat surprising that the optimal detector does not depend
on how h�0� and h�1� are correlated.

We can analyze the error probability of this detector. By symmetry, we
can assume that xA is transmitted. Under this hypothesis, y�0� and y�1� are

Figure 3.1 The non-coherent
detector projects the received
vector y onto each of the two
orthogonal transmitted vectors
xA and xB and compares the
lengths of the projections.
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y
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|y[1]|

|y[0]|
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independent circular symmetric complex Gaussian random variables with
variances a2+N0 and N0 respectively. (See Section A.1.3 in the appendices for
a discussion on circular symmetric Gaussian random variables and vectors.)
As shown there, �y�0��2� �y�1��2 are exponentially distributed with mean a2 +
N0 and N0 respectively.1 The probability of error can now be computed by
direct integration:

pe = �
{�y�1��2 > �y�0��2�xA

}=
[
2+ a2

N0

]−1

� (3.8)

We make the general definition

SNR �= average received signal energy per (complex) symbol time
noise energy per (complex) symbol time

(3.9)

which we use consistently throughout the book for any modulation scheme.
The noise energy per complex symbol time is N0.

2 For the orthogonal mod-
ulation scheme here, the average received energy per symbol time is a2/2
and so

SNR �= a2

2N0

� (3.10)

Substituting into (3.8), we can express the error probability of the orthogonal
scheme in terms of SNR:

pe =
1

2�1+ SNR�
� (3.11)

This is a very discouraging result. To get an error probability pe = 10−3

one would require SNR ≈ 500 (27 dB). Stupendous amounts of power would
be required for more reliable communication.

3.1.2 Coherent detection

Why is the performance of the non-coherent maximum likelihood (ML)
receiver on a fading channel so bad? It is instructive to compare its perfor-
mance with detection in an AWGN channel without fading:

y�m�= x�m�+w�m�� (3.12)

1 Recall that a random variable U is exponentially distributed with mean � if its pdf is
fU �u�= 1

�
e−u/�.

2 The orthogonal modulation scheme considered here uses only real symbols and hence
transmits only on the I channel. Hence it may seem more natural to define the SNR in
terms of noise energy per real symbol, i.e., N0/2. However, later we will consider
modulation schemes that use complex symbols and hence transmit on both the I and Q
channels. In order to be consistent throughout, we choose to define SNR this way.
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For antipodal signaling (BPSK), x�m�= ±a, a sufficient statistic is �	y�m�

and the error probability is

pe =Q

(
a√
N0/2

)
=Q

(√
2SNR

)
� (3.13)

where SNR= a2/N0 is the received signal-to-noise ratio per symbol time, and
Q�·� is the complementary cumulative distribution function of an N�0�1� ran-
dom variable. This function decays exponentially with x2; more specifically,

Q�x� < e−x
2/2� x > 0 (3.14)

and

Q�x� >
1√
2�x

(
1− 1

x2

)
e−x

2/2� x > 1� (3.15)

Thus, the detection error probability decays exponentially in SNR in the
AWGN channel while it decays only inversely with the SNR in the fading
channel. To get an error probability of 10−3, an SNR of only about 7 dB
is needed in an AWGN channel (as compared to 27 dB in the non-coherent
fading channel). Note that 2

√
SNR is the separation between the two

constellation points as a multiple of the standard deviation of the Gaussian
noise; the above observation says that when this separation is much larger
than 1, the error probability is very small.

Compared to detection in the AWGN channel, the detection problem con-
sidered in the previous section has two differences: the channel gains h�m�
are random, and the receiver is assumed not to know them. Suppose now
that the channel gains are tracked at the receiver so that they are known at
the receiver (but still random). In practice, this is done either by sending a
known sequence (called a pilot or training sequence) or in a decision directed
manner, estimating the channel using symbols detected earlier. The accu-
racy of the tracking depends, of course, on how fast the channel varies. For
example, in a narrowband 30-kHz channel (such as that used in the North
American TDMA cellular standard IS-136) with a Doppler spread of 100Hz,
the coherence time Tc is roughly 80 symbols and in this case the channel can
be estimated with minimal overhead expended in the pilot.3 For our current
purpose, let us suppose that the channel estimates are perfect.
Knowing the channel gains, coherent detection of BPSK can now be per-

formed on a symbol by symbol basis. We can focus on one symbol time and
drop the time index

y = hx+w (3.16)

3 The channel estimation problem for a broadband channel with many taps in the impulse
response is more difficult; we will get to this in Section 3.5.
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Detection of x from y can be done in a way similar to that in the AWGN
case; the decision is now based on the sign of the real sufficient statistic

r �= �	�h/�h��∗y
= �h�x+ z� (3.17)

where z∼ N�0�N0/2�. If the transmitted symbol is x=±a, then, for a given
value of h, the error probability of detecting x is

Q

(
a�h�√
N0/2

)
=Q

(√
2�h�2SNR

)
(3.18)

where SNR = a2/N0 is the average received signal-to-noise ratio per symbol
time. (Recall that we normalized the channel gain such that ���h�2� = 1.)
We average over the random gain h to find the overall error probability. For
Rayleigh fading when h∼ �� �0�1�, direct integration yields

pe = �
[
Q
(√

2�h�2SNR
)]

= 1
2

⎛⎝1−
√

SNR
1+ SNR

⎞⎠ � (3.19)

(See Exercise 3.1.) Figure 3.2 compares the error probabilities of coherent
BPSK and non-coherent orthogonal signaling over the Rayleigh fading chan-
nel, as well as BPSK over the AWGN channel. We see that while the error
probability for BPSK over the AWGN channel decays very fast with the
SNR, the error probabilities for the Rayleigh fading channel are much worse,

Figure 3.2 Performance of
coherent BPSK vs.
non-coherent orthogonal
signaling over Rayleigh fading
channel vs. BPSK over AWGN
schannel.
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whether the detection is coherent or non-coherent. At high SNR, Taylor series
expansion yields √

SNR
1+ SNR

= 1− 1
2SNR

+O

(
1

SNR2

)
� (3.20)

Substituting into (3.19), we get the approximation

pe ≈
1

4SNR
� (3.21)

which decays inversely proportional to the SNR, just as in the non-coherent
orthogonal signaling scheme (cf. (3.11)). There is only a 3 dB difference in the
required SNRbetween the coherent and non-coherent schemes; in contrast, at an
error probability of 10−3, there is a 17 dB difference between the performance
on the AWGN channel and coherent detection on the Rayleigh fading channel.4

We see that themain reasonwhy detection in the fading channel has poor per-
formance is not because of the lack of knowledge of the channel at the receiver.
It is due to the fact that the channel gain is random and there is a significant
probability that the channel is in a “deep fade”. At high SNR, we can in fact be
more precise about what a “deep fade”means by inspecting (3.18). The quantity
�h�2SNR is the instantaneous received SNR. Under typical channel conditions,
i.e., �h�2SNR� 1, the conditional error probability is very small, since the tail of
the Q-function decays very rapidly. In this regime, the separation between the
constellation points is much larger than the standard deviation of the Gaussian
noise. On the other hand, when �h�2SNR is of the order of 1 or less, the separation
is of the sameorder as the standarddeviationof thenoise and theerrorprobability
becomes significant. The probability of this event is

�	�h�2SNR< 1
 =
∫ 1/SNR

0
e−xdx (3.22)

= 1
SNR

+O

(
1

SNR2

)
� (3.23)

This probability has the same order of magnitude as the error probability itself
(cf. (3.21)). Thus, we can define a “deep fade” via an order-of-magnitude
approximation:

Deep fade event � �h�2 < 1
SNR

�

�	deep fade
≈ 1
SNR

�

4 Communication engineers often compare schemes based on the difference in the required
SNR to attain the same error probability. This corresponds to the horizontal gap between the
error probability versus SNR curves of the two schemes.
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We conclude that high-SNR error events most often occur because the channel
is in deep fade and not as a result of the additive noise being large. In contrast,
in the AWGN channel the only possible error mechanism is for the additive
noise to be large. Thus, the error probability performance over the AWGN
channel is much better.
We have used the explicit error probability expression (3.19) to help iden-

tify the typical error event at high SNR. We can in fact turn the table around
and use it as a basis for an approximate analysis of the high-SNR performance
(Exercises 3.2 and 3.3). Even though the error probability pe can be directly
computed in this case, the approximate analysis provides much insight as to
how typical errors occur. Understanding typical error events in a communi-
cation system often suggests how to improve it. Moreover, the approximate
analysis gives some hints as to how robust the conclusion is to the Rayleigh
fading model. In fact, the only aspect of the Rayleigh fading model that is
important to the conclusion is the fact that �	�h�2 < �
 is proportional to � for
� small. This holds whenever the pdf of �h�2 is positive and continuous at 0.

3.1.3 From BPSK to QPSK: exploiting the degrees of freedom

In Section 3.1.2, we have considered BPSK modulation, x�m� = ±a. This
uses only the real dimension (the I channel), while in practice both the I and
Q channels are used simultaneously in coherent communication, increasing
spectral efficiency. Indeed, an extra bit can be transmitted by instead using
QPSK (quadrature phase-shift-keying) modulation, i.e., the constellation is

	a�1+ j�� a�1− j�� a�−1+ j�� a�−1− j�
� (3.24)

in effect, a BPSK symbol is transmitted on each of the I and Q channels
simultaneously. Since the noise is independent across the I and Q channels,
the bits can be detected separately and the bit error probability on the AWGN
channel (cf. (3.12)) is

Q

(√
2a2

N0

)
� (3.25)

the same as BPSK (cf. (3.13)). For BPSK, the SNR (as defined in (3.9)) is
given by

SNR= a2

N0

� (3.26)

while for QPSK,

SNR= 2a2

N0

� (3.27)
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is twice that of BPSK since both the I and Q channels are used. Equiv-
alently, for a given SNR, the bit error probability of BPSK is Q�

√
2SNR�

(cf. (3.13)) and that of QPSK is Q�
√
SNR�. The error probability of QPSK

under Rayleigh fading can be similarly obtained by replacing SNR by SNR/2
in the corresponding expression (3.19) for BPSK to yield

pe =
1
2

⎛⎝1−
√

SNR
2+ SNR

⎞⎠≈ 1
2SNR

� (3.28)

at high SNR. For expositional simplicity, we will consider BPSK modulation
in many of the discussions in this chapter, but the results can be directly
mapped to QPSK modulation.
One important point worth noting is that it is much more energy-efficient

to use both the I and Q channels rather than just one of them. For example,
if we had to send the two bits carried by the QPSK symbol on the I channel
alone, then we would have to transmit a 4-PAM symbol. The constellation is
	−3b�−b�b�3b
 and the average error probability on the AWGN channel is

3
2
Q

(√
2b2

N0

)
� (3.29)

To achieve approximately the same error probability as QPSK, the argument
inside the Q-function should be the same as that in (3.25) and hence b should
be the same as a, i.e., the same minimum separation between points in the two
constellations (Figure 3.3). But QPSK requires a transmit energy of 2a2 per
symbol, while 4-PAM requires a transmit energy of 5b2 per symbol. Hence,
for the same error probability, approximately 2.5 times more transmit energy
is needed: a 4 dB worse performance. Exercise 3.4 shows that this loss is even
more significant for larger constellations. The loss is due to the fact that it is
more energy efficient to pack, for a desired minimum distance separation, a

Figure 3.3 QPSK versus
4-PAM: for the same minimum
separation between
constellation points, the 4-PAM
constellation requires higher
transmit power.
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given number of constellation points in a higher-dimensional space than in a
lower-dimensional space. We have thus arrived at a general design principle
(cf. Discussion 2.1):

A good communication scheme exploits all the available degrees of free-
dom in the channel.

This important principle will recur throughout the book, and in fact will
be shown to be of a fundamental nature as we talk about channel capacity
in Chapter 5. Here, the choice is between using just the I channel and using
both the I and Q channels, but the same principle applies to many other
situations. As another example, the non-coherent orthogonal signaling scheme
discussed in Section 3.1.1 conveys one bit of information and uses one real
dimension per two symbol times (Figure 3.4). This scheme does not assume
any relationship between consecutive channel gains, but if we assume that
they do not change much from symbol to symbol, an alternative scheme
is differential BPSK, which conveys information in the relative phases of
consecutive transmitted symbols. That is, if the BPSK information symbol is
u�m� at time m (u�m�= ±1), the transmitted symbol at time m is given by

x�m�= u�m�x�m−1�� (3.30)

Exercise 3.5 shows that differential BPSK can be demodulated non-coherently
at the expense of a 3-dB loss in performance compared to coherent BPSK
(at high SNR). But since non-coherent orthogonal modulation also has a
3-dB worse performance compared to coherent BPSK, this implies that dif-
ferential BPSK and non-coherent orthogonal modulation have the same error
probability performance. On the other hand, differential BPSK conveys one

Figure 3.4 Geometry of
orthogonal modulation.
Signaling is performed over
one real dimension, but two
(complex) symbol times are
used.

Im

2 a

xA

xB

Re

√
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bit of information and uses one real dimension per single symbol time, and
therefore has twice the spectral efficiency of orthogonal modulation. Better
performance is achieved because differential BPSK uses more efficiently the
available degrees of freedom.

3.1.4 Diversity

The performance of the various schemes considered so far for fading channels
is summarized in Table 3.1. Some schemes are spectrally more efficient than
others, but from a practical point of view, they are all bad: the error proba-
bilities all decay very slowly, like 1/SNR. From Section 3.1.2, it can be seen
that the root cause of this poor performance is that reliable communication
depends on the strength of a single signal path. There is a significant proba-
bility that this path will be in a deep fade. When the path is in a deep fade,
any communication scheme will likely suffer from errors. A natural solution
to improve the performance is to ensure that the information symbols pass
through multiple signal paths, each of which fades independently, making
sure that reliable communication is possible as long as one of the paths is
strong. This technique is called diversity, and it can dramatically improve the
performance over fading channels.
There are many ways to obtain diversity. Diversity over time can be

obtained via coding and interleaving: information is coded and the coded sym-
bols are dispersed over time in different coherence periods so that different
parts of the codewords experience independent fades. Analogously, one can
also exploit diversity over frequency if the channel is frequency-selective.
In a channel with multiple transmit or receive antennas spaced sufficiently,
diversity can be obtained over space as well. In a cellular network, macro-
diversity can be exploited by the fact that the signal from a mobile can be
received at two base-stations. Since diversity is such an important resource,
a wireless system typically uses several types of diversity.
In the next few sections, we will discuss diversity techniques in time,

frequency and space. In each case, we start with a simple scheme based on
repetition coding: the same information symbol is transmitted over several
signal paths. While repetition coding achieves the maximal diversity gain,
it is usually quite wasteful of the degrees of freedom of the channel. More
sophisticated schemes can increase the data rate and achieve a coding gain
along with the diversity gain.
To keep the discussion simple we begin by focusing on the coherent

scenario: the receiver has perfect knowledge of the channel gains and can
coherently combine the received signals in the diversity paths. As discussed
in the previous section, this knowledge is learnt via training (pilot) symbols
and the accuracy depends on the coherence time of the channel and the
received power of the transmitted signal. We discuss the impact of channel
measurement error and non-coherent diversity combining in Section 3.5.
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Table 3.1 Performance of coherent and non-coherent schemes under Rayleigh
fading. The data rates are in bits/s/Hz, which is the same as bits per complex
symbol time. The performance of differential QPSK is derived in Exercise 3.5.
It is also 3-dB worse than coherent QPSK.

Scheme Bit error prob. (High SNR) Data rate (bits/s/Hz)

Coherent BPSK 1/(4SNR) 1
Coherent QPSK 1/(2SNR) 2
Coherent 4-PAM 5/(4SNR) 2
Coherent 16-QAM 5/(2SNR) 4

Non-coherent orth. mod. 1/(2SNR) 1/2
Differential BPSK 1/(2SNR) 1
Differential QPSK 1/SNR 2

3.2 Time diversity

Time diversity is achieved by averaging the fading of the channel over time.
Typically, the channel coherence time is of the order of tens to hundreds of
symbols, and therefore the channel is highly correlated across consecutive
symbols. To ensure that the coded symbols are transmitted through indepen-
dent or nearly independent fading gains, interleaving of codewords is required
(Figure 3.5). For simplicity, let us consider a flat fading channel. We transmit
a codeword x= �x1� � � � � xL�

t of length L symbols and the received signal is
given by

y� = h�x�+w�� �= 1� � � � �L� (3.31)

Assuming ideal interleaving so that consecutive symbols x� are transmitted
sufficiently far apart in time, we can assume that the h� are independent.
The parameter L is commonly called the number of diversity branches. The
additive noises w1� � � � �wL are i.i.d. �� �0�N0� random variables.

3.2.1 Repetition coding

The simplest code is a repetition code, in which x� = x1 for � = 1� � � � �L.
In vector form, the overall channel becomes

y= hx1+w� (3.32)

where y= �y1� � � � � yL�
t, h= �h1� � � � � hL�

t and w = �w1� � � � �wL�
t.
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Figure 3.5 The codewords are
transmitted over consecutive
symbols (top) and interleaved
(bottom). A deep fade will
wipe out the entire codeword
in the former case but only
one coded symbol from each
codeword in the latter. In the
latter case, each codeword can
still be recovered from the
other three unfaded symbols.
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Consider now coherent detection of x1, i.e., the channel gains are known
to the receiver. This is the canonical vector Gaussian detection problem in
Summary A.2 of Appendix A. The scalar

h∗

�h�y= �h�x1+
h∗

�h�w (3.33)

is a sufficient statistic. Thus, we have an equivalent scalar detection problem
with noise �h∗/�h��w∼ �� �0�N0�. The receiver structure is a matched filter
and is also called a maximal ratio combiner: it weighs the received signal in
each branch in proportion to the signal strength and also aligns the phases
of the signals in the summation to maximize the output SNR. This receiver
structure is also called coherent combining.

Consider BPSK modulation, with x1 = ±a. The error probability, condi-
tional on h, can be derived exactly as in (3.18):

Q
(√

2�h�2SNR
)

(3.34)

where as before SNR= a2/N0 is the average received signal-to-noise ratio per
(complex) symbol time, and �h�2SNR is the received SNR for a given channel
vector h. We average over �h�2 to find the overall error probability. Under
Rayleigh fading with each gain h� i.i.d. �� �0�1�,

�h�2 =
L∑
�=1

�h��2 (3.35)
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is a sum of the squares of 2L independent real Gaussian random variables,
each term �h��2 being the sum of the squares of the real and imaginary parts
of h�. It is Chi-square distributed with 2L degrees of freedom, and the density
is given by

f�x�= 1
�L−1�!x

L−1e−x� x ≥ 0� (3.36)

The average error probability can be explicitly computed to be (cf. Exer-
cise 3.6)

pe =
∫ �

0
Q
(√

2xSNR
)
f�x�dx

=
(
1−�

2

)L L−1∑
�=0

(
L−1+�

�

)(
1+�

2

)�

� (3.37)

where

� �=
√

SNR
1+ SNR

� (3.38)

The error probability as a function of the SNR for different numbers of diver-
sity branches L is plotted in Figure 3.6. Increasing L dramatically decreases
the error probability.

At high SNR, we can see the role of L analytically: consider the leading
term in the Taylor series expansion in 1/SNR to arrive at the approximations

1+�

2
≈ 1� and

1−�

2
≈ 1

4SNR
� (3.39)

Figure 3.6 Error probability as
a function of SNR for different
numbers of diversity
branches L.
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Furthermore,

L−1∑
�=0

(
L−1+�

�

)
=
(
2L−1
L

)
� (3.40)

Hence,

pe ≈
(
2L−1
L

)
1

�4SNR�L
(3.41)

at high SNR. In particular, the error probability decreases as the Lth power of
SNR, corresponding to a slope of −L in the error probability curve (in dB/dB
scale).
To understand this better, we examine the probability of the deep fade

event, as in our analysis in Section 3.1.2. The typical error event at high SNR
is when the overall channel gain is small. This happens with probability

�	�h�2 < 1/SNR
� (3.42)

Figure 3.7 plots the distribution of �h�2 for different values of L; clearly the
tail of the distribution near zero becomes lighter for larger L. For small x, the
probability density function of �h�2 is approximately

f�x�≈ 1
�L−1�!x

L−1 (3.43)

and so

�	�h�2 < 1/SNR
≈
∫ 1

SNR

0

1
�L−1�!x

L−1dx = 1
L!

1

SNRL
� (3.44)

Figure 3.7 The probability
density function of �h�2 for
different values of L. The
larger the L, the faster the
probability density function
drops off around 0.
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This analysis is too crude to get the correct constant before the 1/SNRL term
in (3.41), but does get the correct exponent L. Basically, an error occurs when∑L

�=1 �h��2 is of the order of or smaller than 1/SNR, and this happens when
all the magnitudes of the gains �h��2 are small, of the order of 1/SNR. Since
the probability that each �h��2 is less than 1/SNR is approximately 1/SNR and
the gains are independent, the probability of the overall gain being small is
of the order 1/SNRL. Typically, L is called the diversity gain of the system.

3.2.2 Beyond repetition coding

The repetition code is the simplest possible code. Although it achieves a
diversity gain, it does not exploit the degrees of freedom available in the
channel effectively because it simply repeats the same symbol over the L

symbol times. By using more sophisticated codes, a coding gain can also be
obtained beyond the diversity gain. There are many possible codes that one
can use. We first focus on the example of a rotation code to explain some of
the issues in code design for fading channels.
Consider the case L= 2. A repetition code which repeats a BPSK symbol

u=±a twice obtains a diversity gain of 2 but would only transmit one bit of
information over the two symbol times. Transmitting two independent BPSK
symbols u1� u2 over the two times would use the available degrees of freedom
more efficiently, but of course offers no diversity gain: an error would be
made whenever one of the two channel gains h1� h2 is in deep fade. To get
both benefits, consider instead a scheme that transmits the vector

x = R
[
u1
u2

]
(3.45)

over the two symbol times, where

R �=
[
cos� − sin �
sin � cos�

]
(3.46)

is a rotation matrix (for some � ∈ �0�2��). This is a code with four codewords:

xA = R
[
a

a

]
� xB = R

[−a
a

]
� xC = R

[−a
−a

]
� xD = R

[
a

−a
]
�

(3.47)
they are shown in Figure 3.8(a).5 The received signal is given by

y� = h�x�+w�� �= 1�2� (3.48)

5 Here communication is over the (real) I channel since both x1 and x2 are real, but as in
Section 3.1.3, the spectral efficiency can be doubled by using both the I and the Q channels.
Since the two channels are orthogonal, one can apply the same code separately to the
symbols transmitted in the two channels to get the same performance gain.
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Figure 3.8 (a) Codewords of
rotation code. (b) Codewords
of repetition code.
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It is difficult to obtain an explicit expression for the exact error probability.
So, we will proceed by looking at the union bound. Due to the symmetry
of the code, without loss of generality we can assume xA is transmitted. The
union bound says that

pe ≤ �	xA → xB
+�	xA → xC
+�	xA → xD
� (3.49)

where �	xA → xB
 is the pairwise error probability of confusing xA with
xB when xA is transmitted and when these are the only two hypotheses.
Conditioned on the channel gains h1 and h2, this is just the binary detection
problem in Summary A.2 of Appendix A, with

uA =
[
h1xA1
h2xA2

]
and uB =

[
h1xB1
h2xB2

]
� (3.50)

Hence,

�	xA→xB�h1� h2
=Q

(
�uA−uB�
2
√
N0/2

)
=Q

(√
SNR��h1�2�d1�2+�h2�2�d2�2�

2

)
�

(3.51)

where SNR= a2/N0 and

d �= 1
a
�xA−xB�=

[
2 cos�
2 sin �

]
(3.52)

is the normalized difference between the codewords, normalized such that the
transmit energy is 1 per symbol time. We use the upper bound Q�x�≤ e−x2/2,
for x > 0, in (3.51) to get

�	xA → xB�h1� h2
≤ exp
(−SNR��h1�2�d1�2+�h2�2�d2�2�

4

)
� (3.53)
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Averaging with respect to h1 and h2 under the independent Rayleigh fading
assumption, we get

�	xA → xB
 ≤ �h1�h2

[
exp

(−SNR��h1�2�d1�2+�h2�2�d2�2�
4

)]
=

(
1

1+ SNR�d1�2/4
)(

1
1+ SNR�d2�2/4

)
� (3.54)

Here we have used the fact that the moment generating function for a unit
mean exponential random variable X is ��esX� = 1/�1− s� for s < 1. While
it is possible to get an exact expression for the pairwise error probability,
this upper bound is more explicit; moreover, it is asymptotically tight at high
SNR (Exercise 3.7).
We first observe that if d1 = 0 or d2 = 0, then the diversity gain of the

code is only 1. If they are both non-zero, then at high SNR the above bound
on the pairwise error probability becomes

�	xA → xB
≤
16

�d1d2�2
SNR−2� (3.55)

Call

�AB �= �d1d2�2� (3.56)

the squared product distance between xA and xB, when the average energy of
the code is normalized to be 1 per symbol time (cf. (3.52)). This determines
the pairwise error probability between the two codewords. Similarly, we
can define �ij to be the squared product distance between xi and xj , i� j =
A�B�C�D. Combining (3.55) with (3.49) yields a bound on the overall error
probability:

pe ≤ 16
(

1
�AB

+ 1
�AC

+ 1
�AD

)
SNR−2

≤ 48
minj=B�C�D �Aj

SNR−2� (3.57)

We see that as long as �ij > 0 for all i� j, we get a diversity gain of 2. The
minimum squared product distance minj=B�C�D �Aj then determines the coding
gain of the scheme beyond the diversity gain. This parameter depends on �,
and we can optimize over � to maximize the coding gain. Here

�AB = �AD = 4 sin2 2�� and �AC = 16cos2 2�� (3.58)
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The angle �∗ that maximizes the minimum squared product distance makes
�AB equal �AC , yielding �

∗ = �1/2� tan−12 and min�ij = 16/5. The bound in
(3.57) now becomes

pe ≤ 15 SNR−2� (3.59)

To get more insight into why the product distance is important, we see from
(3.51) that the typical way for xA to be confused with xB is for the squared
Euclidean distance �h1�2�d1�2 +�h2�2�d2�2 between the received codewords to
be of the order of 1/SNR. This event holds roughly when both �h1�2�d1�2
and �h2�2�d2�2 are of the order of 1/SNR, and this happens with probability
approximately (

1
�d1�2SNR

)(
1

�d2�2SNR
)

= 1
�d1�2�d2�2

SNR−2� (3.60)

Thus, it is important that both �d1�2 and �d2�2 are large to ensure diversity
against fading in both components.

It is interesting to see how this code compares to the repetition scheme. To
keep the bit rate the same (2 bits over 2 real-valued symbols), the repetition
scheme would be using 4-PAM modulation 	−3b�−b�b�3b
. The codewords
of the repetition scheme are shown in Figure 3.8(b). From (3.51), the pairwise
error probability between two adjacent codewords (say, xA and xB) is

�	xA → xB
= �
[
Q
(√

SNR/2 · ��h1�2�d1�2+�h2�2�d2�2�
)]

� (3.61)

But now SNR= 5b2/N0 is the average SNR per symbol time for the 4-PAM
constellation,6 and d1 = d2 = 2/

√
5 are the normalized component differences

between the adjacent codewords. The minimum squared product distance for
the repetition code is therefore 16/25 and we can compare this to the minimum
squared product distance of 16/5 for the previous rotation code. Since the
error probability is proportional to SNR−2 in both cases, we conclude that
the rotation code has an improved coding gain over the repetition code in
terms of a saving in transmit power by a factor of

√
5 (3.5 dB) for the

same product distance. This improvement comes from increasing the overall
product distance, and this is in turn due to spreading the codewords in the
two-dimensional space rather than packing them on a single-dimensional line
as in the repetition code. This is the same reason that QPSK is more efficient
than BPSK (as we have discussed in Section 3.1.3).
We summarize and generalize the above development to any time diversity

code.

6 As we have seen earlier, the 4-PAM constellation requires five times more energy than
BPSK for the same separation between the constellation points.
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Summary 3.1 Time diversity code design criterion

Ideal time-interleaved channel

y� = h�x�+w�� �= 1� � � � �L� (3.62)

where h� are i.i.d. �� �0�1� Rayleigh faded channel gains.

x1� � � � �xM are the codewords of a time diversity code with block length
L, normalized such that

1
ML

M∑
i=1

�xi�2 = 1� (3.63)

Union bound on overall probability of error:

pe ≤
1
M

∑
i 
=j

�	xi → xj
 (3.64)

Bound on pairwise error probability:

�	xi → xj
≤
L∏
�=1

1
1+ SNR�xi�−xj��2/4

(3.65)

where xi� is the �th component of codeword xi, and SNR �= 1/N0.

Let Lij be the number of components on which the codewords xi and xj
differ. Diversity gain of the code is

min
i 
=j

Lij� (3.66)

If Lij = L for all i 
= j, then the code achieves the full diversity L of the
channel, and

pe ≤
4L

M

∑
i 
=j

1
�ij

SNR−L ≤ 4L�M−1�
mini 
=j �ij

SNR−L (3.67)

where

�ij �=
L∏
�=1

�xi�−xj��2 (3.68)

is the squared product distance between xi and xj .
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The rotation code discussed above is specifically designed to exploit time
diversity in fading channels. In the AWGN channel, however, rotation of
the constellation does not affect performance since the i.i.d. Gaussian noise
is invariant to rotations. On the other hand, codes that are designed for
the AWGN channel, such as linear block codes or convolutional codes, can
be used to extract time diversity in fading channels when combined with
interleaving. Their performance can be analyzed using the general framework
above. For example, the diversity gain of a binary linear block code where
the coded symbols are ideally interleaved is simply the minimum Hamming
distance between the codewords or equivalently the minimum weight of a
codeword; the diversity gain of a binary convolutional code is given by
the free distance of the code, which is the minimum weight of the coded
sequence of the convolutional code. The performance analysis of these codes
and various decoding techniques is further pursued in Exercise 3.11.
It should also be noted that the above code design criterion is derived assum-

ing i.i.d. Rayleigh fading across the symbols. This can be generalized to the
case when the coded symbols pass through correlated fades of the channel (see
Exercise 3.12). Generalization to the case when the fading is Rician is also pos-
sible and is studied in Exercise 3.18. Nevertheless these code design criteria
all depend on the specific channel statistics assumed.Motivated by information
theoretic considerations, we take a completely different approach in Chapter 9
where we seek a universal criterion which works for all channel statistics. We
will also be able to define what it means for a time-diversity code to be optimal.

Example 3.1 Time diversity in GSM
Global System for Mobile (GSM) is a digital cellular standard developed
in Europe in the 1980s. GSM is a frequency division duplex (FDD) system
and uses two 25-MHz bands, one for the uplink (mobiles to base-station)
and one for the downlink (base-station to mobiles). The original bands set
aside for GSM are the 890–915MHz band (uplink) and the 935–960MHz
band (downlink). The bands are further divided into 200-kHz sub-channels
and each sub-channel is shared by eight users in a time-division fashion
(time-division multiple access (TDMA)). The data of each user are sent
over time slots of length 577 microseconds (�s) and the time slots of the
eight users together form a frame of length 4.615ms (Figure 3.9).
Voice is the main application for GSM. Voice is coded by a speech

encoder into speech frames each of length 20ms. The bits in each speech
frame are encoded by a convolutional code of rate 1/2, with the two
generator polynomials D4 +D3 +1 and D4 +D3 +D+1. The number of
coded bits for each speech frame is 456. To achieve time diversity, these
coded bits are interleaved across eight consecutive time slots assigned to
that specific user: the 0th, 8th, . . . , 448th bits are put into the first time
slot, the 1st, 9th, . . . , 449th bits are put into the second time slot, etc.
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125 sub-channels

25 MHz

200 kHz

TS0 TS2 TS3 TS5 TS6 TS7TS4TS1

8 users per sub-channel

Figure 3.9 The 25-MHz band of a GSM system is divided into 200-kHz sub-channels, which are
further divided into time slots for eight different users.

Since one time slot occurs every 4.615ms for each user, this translates
into a delay of roughly 40ms, a delay judged tolerable for voice. The eight
time slots are shared between two 20-ms speech frames. The interleaving
structure is summarized in Figure 3.10.
The maximum possible time diversity gain is 8, but the actual gain that

can be obtained depends on how fast the channel varies, and that depends
primarily on the mobile speed. If the mobile speed is v, then the largest
possible Doppler spread (assuming full scattering in the environment) is
Ds = 2fcv/c, where fc is the carrier frequency and c is the speed of light.
(Recall the example in Section 2.1.4.) The coherence time is roughly
Tc = 1/�4Ds�= c/�8fcv� (cf. (2.44)). For the channel to fade more or less
independently across the different time slots for a user, the coherence time
should be less than 5ms. For fc = 900MHz, this translates into a mobile
speed of at least 30 km/h.

User 1’s time slots

User 1’s coded bitstream

Figure 3.10 How interleaving is done in GSM.
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For a walking speed of say 3 km/h, there may be too little time diversity.
In this case, GSM can go into a frequency hopping mode, where consec-
utive frames (each composed of the time slots of the eight users) can hop
from one 200-kHz sub-channel to another. With a typical delay spread of
about 1�s, the coherence bandwidth is 500 kHz (cf. Table 2.1). The total
bandwidth equal to 25MHz is thus much larger than the typical coherence
bandwidth of the channel and the consecutive frames can be expected to
fade independently. This provides the same effect as having time diversity.
Section 3.4 discusses other ways to exploit frequency diversity.

3.3 Antenna diversity

To exploit time diversity, interleaving and coding over several coherence
time periods is necessary. When there is a strict delay constraint and/or the
coherence time is large, this may not be possible. In this case other forms of
diversity have to be obtained. Antenna diversity, or spatial diversity, can be
obtained by placing multiple antennas at the transmitter and/or the receiver.
If the antennas are placed sufficiently far apart, the channel gains between
different antenna pairs fade more or less independently, and independent
signal paths are created. The required antenna separation depends on the local
scattering environment as well as on the carrier frequency. For a mobile which
is near the ground with many scatterers around, the channel decorrelates over
shorter spatial distances, and typical antenna separation of half to one carrier
wavelength is sufficient. For base-stations on high towers, larger antenna
separation of several to tens of wavelengths may be required. (A more careful
discussion of these issues is found in Chapter 7.)
We will look at both receive diversity, using multiple receive antennas

(single input multiple output or SIMO channels), and transmit diversity, using
multiple transmit antennas (multiple input single output or MISO channels).
Interesting coding problems arise in the latter and have led to recent excite-
ment in space-time codes. Channels with multiple transmit and multiple
receive antennas (so-called multiple input multiple output or MIMO chan-
nels) provide even more potential. In addition to providing diversity, MIMO
channels also provide additional degrees of freedom for communication. We
will touch on some of the issues here using a 2× 2 example; the full study
of MIMO communication will be the subject of Chapters 7 to 10.

3.3.1 Receive diversity

In a flat fading channel with 1 transmit antenna and L receive antennas
(Figure 3.11(a)), the channel model is as follows:

y��m�= h��m�x�m�+w��m� �= 1� � � � �L (3.69)
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Figure 3.11 (a) Receive
diversity; (b) transmit diversity;
(c) transmit and receive
diversity.

(c)(a) (b)

where the noise w��m�∼ �� �0�N0� and is independent across the antennas.
We would like to detect x�1� based on y1�1�� � � � � yL�1�. This is exactly the
same detection problem as in the use of a repetition code and interleaving
over time, with L diversity branches now over space instead of over time. If
the antennas are spaced sufficiently far apart, we can assume that the gains
h��1� are independent Rayleigh, and we get a diversity gain of L.

With receive diversity, there are actually two types of gain as we increase L.
This can be seen by looking at the expression (3.34) for the error probability
of BPSK conditional on the channel gains:

Q
(√

2�h�2SNR
)
� (3.70)

We can break up the total received SNR conditioned on the channel gains
into a product of two terms:

�h�2SNR= LSNR · 1
L
�h�2� (3.71)

The first term corresponds to a power gain (also called array gain): by having
multiple receive antennas and coherent combining at the receiver, the effective
total received signal power increases linearly with L: doubling L yields a
3-dB power gain.7 The second term reflects the diversity gain: by averaging
over multiple independent signal paths, the probability that the overall gain
is small is decreased. The diversity gain L is reflected in the SNR exponent
in (3.41); the power gain affects the constant before the 1/SNRL. Note that if
the channel gains h��1� are fully correlated across all branches, then we only
get a power gain but no diversity gain as we increase L. On the other hand,
even when all the h� are independent there is a diminishing marginal return
as L increases: due to the law of large numbers, the second term in (3.71),

1
L
�h�2 = 1

L

L∑
�=1

�h��1��2� (3.72)

7 Although mathematically the same situation holds in the time diversity repetition coding
case, the increase in received SNR there comes from increasing the total transmit energy
required to send a single bit; it is therefore not appropriate to call that a power gain.
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converges to 1 with increasing L (assuming each of the channel gains is
normalized to have unit variance). The power gain, on the other hand, suffers
from no such limitation: a 3-dB gain is obtained for every doubling of the
number of antennas.8

3.3.2 Transmit diversity: space-time codes

Now consider the case when there are L transmit antennas and 1 receive
antenna, the MISO channel (Figure 3.11(b)). This is common in the downlink
of a cellular system since it is often cheaper to have multiple antennas at the
base-station than to have multiple antennas at every handset. It is easy to get
a diversity gain of L: simply transmit the same symbol over the L different
antennas during L symbol times. At any one time, only one antenna is turned
on and the rest are silent. This is simply a repetition code, and, as we have
seen in the previous section, repetition codes are quite wasteful of degrees of
freedom. More generally, any time diversity code of block length L can be
used on this transmit diversity system: simply use one antenna at a time and
transmit the coded symbols of the time diversity code successively over the
different antennas. This provides a coding gain over the repetition code. One
can also design codes specifically for the transmit diversity system. There
have been a lot of research activities in this area under the rubric of space-time
coding and here we discuss the simplest, and yet one of the most elegant,
space-time code: the so-called Alamouti scheme. This is the transmit diversity
scheme proposed in several third-generation cellular standards. The Alamouti
scheme is designed for two transmit antennas; generalization to more than
two antennas is possible, to some extent.

Alamouti scheme
With flat fading, the two transmit, single receive channel is written as

y�m�= h1�m�x1�m�+h2�m�x2�m�+w�m�� (3.73)

where hi is the channel gain from transmit antenna i. The Alamouti scheme
transmits two complex symbols u1 and u2 over two symbol times: at time 1,
x1�1�= u1� x2�1�= u2; at time 2, x1�2�= −u∗

2� x2�2�= u∗
1. If we assume that

the channel remains constant over the two symbol times and set h1 = h1�1�=
h1�2�� h2 = h2�1�= h2�2�, then we can write in matrix form:

[
y�1� y�2�

]= [
h1 h2

][u1 −u∗
2

u2 u∗
1

]
+ [

w�1� w�2�
]
� (3.74)

8 This will of course ultimately not hold since the received power cannot be larger than the
transmit power, but the number of antennas for our model to break down will have to be
humongous.
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We are interested in detecting u1� u2, so we rewrite this equation as

[
y�1�
y�2�∗

]
=
[
h1 h2

h∗
2 −h∗

1

][
u1
u2

]
+
[
w�1�
w�2�∗

]
� (3.75)

We observe that the columns of the square matrix are orthogonal. Hence, the
detection problem for u1� u2 decomposes into two separate, orthogonal, scalar
problems. We project y onto each of the two columns to obtain the sufficient
statistics

ri = �h�ui+wi� i= 1�2� (3.76)

where h = �h1� h2�
t and wi ∼ �� �0�N0� and w1�w2 are independent. Thus,

the diversity gain is 2 for the detection of each symbol. Compared to the
repetition code, two symbols are now transmitted over two symbol times
instead of one symbol, but with half the power in each symbol (assuming that
the total transmit power is the same in both cases).

The Alamouti scheme works for any constellation for the symbols u1� u2,
but suppose now they are BPSK symbols, thus conveying a total of two bits
over two symbol times. In the repetition scheme, we need to use 4-PAM
symbols to achieve the same data rate. To achieve the same minimum distance
as the BPSK symbols in the Alamouti scheme, we need five times the energy
per symbol. Taking into account the factor of 2 energy saving since we are
only transmitting one symbol at a time in the repetition scheme, we see that
the repetition scheme requires a factor of 2.5 (4 dB) more power than the
Alamouti scheme. Again, the repetition scheme suffers from an inefficient
utilization of the available degrees of freedom in the channel: over the two
symbol times, bits are packed into only one dimension of the received signal
space, namely along the direction �h1� h2�

t. In contrast, the Alamouti scheme
spreads the information onto two dimensions – along the orthogonal directions
�h1� h

∗
2�
t and �h2�−h∗

1�
t.

The determinant criterion for space-time code design
In Section 3.2, we saw that a good code exploiting time diversity should
maximize the minimum product distance between codewords. Is there an
analogous notion for space-time codes? To answer this question, let us think
of a space-time code as a set of complex codewords 	Xi
, where each Xi is an
L by N matrix. Here, L is the number of transmit antennas and N is the block
length of the code. For example, in the Alamouti scheme, each codeword is
of the form [

u1 −u∗
2

u2 u∗
1

]
� (3.77)
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with L = 2 and N = 2. In contrast, each codeword in the repetition scheme
is of the form [

u 0
0 u

]
� (3.78)

More generally, any block length L time diversity code with codewords
	xi
 translates into a block length L transmit diversity code with codeword
matrices 	Xi
, where

Xi = diag	xi1� � � � � xiL
� (3.79)

For convenience, we normalize the codewords so that the average energy
per symbol time is 1, hence SNR= 1/N0. Assuming that the channel remains
constant for N symbol times, we can write

yt = h∗X+wt� (3.80)

where

y �=
⎡⎢⎣y�1����
y�N�

⎤⎥⎦ � h �=
⎡⎢⎣h

∗
1
���

h∗
L

⎤⎥⎦ � w �=
⎡⎢⎣w�1����
w�N�

⎤⎥⎦ � (3.81)

To bound the error probability, consider the pairwise error probability of
confusing XB with XA, when XA is transmitted. Conditioned on the fading
gains h, we have the familiar vector Gaussian detection problem (see Sum-
mary A.2): here we are deciding between the vectors h∗XA and h∗XB under
additive circular symmetric white Gaussian noise. A sufficient statistic is
�	v∗y
, where v �= h∗�XA−XB�. The conditional pairwise error probability
is

�	XA → XB �h
=Q

(
�h∗�XA−XB��

2
√
N0/2

)
� (3.82)

Hence, the pairwise error probability averaged over the channel statistics is

�	XA → XB
= �

[
Q

(√
SNR h∗�XA−XB��XA−XB�

∗h
2

)]
� (3.83)

The matrix �XA−XB��XA−XB�
∗ is Hermitian9 and is thus diagonalizable by

a unitary transformation, i.e., we can write �XA −XB��XA −XB�
∗ = U�U∗,

9 A complex square matrix X is Hermitian if X∗ = X.
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where U is unitary10 and � = diag	�2
1� � � � � �

2
L
. Here �� are the singular

values of the codeword difference matrix XA−XB. Therefore, we can rewrite
the pairwise error probability as

�	XA → XB
= �

⎡⎣Q
⎛⎝√SNR

∑L
�=1 �h̃��2�2

�

2

⎞⎠⎤⎦ � (3.84)

where h̃ �= U∗h. In the Rayleigh fading model, the fading coefficients h�
are i.i.d. �� �0�1� and then h̃ has the same distribution as h (cf. (A.22) in
Appendix A). Thus we can bound the average pairwise error probability, as
in (3.54),

�	XA → XB
≤
L∏
�=1

1

1+ SNR�2
�/4

� (3.85)

If all the �2
� are strictly positive for all the codeword differences, then the

maximal diversity gain of L is achieved. Since the number of positive eigen-
values �2

� equals the rank of the codeword difference matrix, this is possible
only if N ≥ L. If indeed all the �2

� are positive, then,

�	XA → XB
 ≤ 4L

SNRL
∏L

�=1 �
2
�

= 4L

SNRL det��XA−XB��XA−XB�
∗�
� (3.86)

and a diversity gain of L is achieved. The coding gain is determined by the
minimum of the determinant det��XA −XB��XA −XB�

∗� over all codeword
pairs. This is sometimes called the determinant criterion.
In the special case when the transmit diversity code comes from a time

diversity code, the space-time code matrices are diagonal (cf. (3.79)), and
�� = �d��2, the squared magnitude of the component difference between the
corresponding time diversity codewords. The determinant criterion then coin-
cides with the squared product distance criterion (3.68) we already derived
for time diversity codes.

We can compare the coding gains obtained by the Alamouti scheme with the
repetition scheme. That is, how much less power does the Alamouti scheme
consume to achieve the same error probability as the repetition scheme? For
the Alamouti scheme with BPSK symbols ui, the minimum determinant is 4.
For the repetition scheme with 4-PAM symbols, the minimum determinant
is 16/25. (Verify!) This translates into the Alamouti scheme having a coding

10 A complex square matrix U is unitary if U∗U= UU∗ = I.
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gain of roughly a factor of 6 over the repetition scheme, consistent with the
analysis above.
The Alamouti transmit diversity scheme has a particularly simple receiver

structure. Essentially, a linear receiver allows us to decouple the two symbols
sent over the two transmit antennas in two time slots. Effectively, both sym-
bols pass through non-interfering parallel channels, both of which afford a
diversity of order 2. In Exercise 3.16, we derive some properties that a code
construction must satisfy to mimic this behavior for more than two transmit
antennas.

3.3.3 MIMO: a 2×2 example

Degrees of freedom
Consider now a MIMO channel with two transmit and two receive antennas
(Figure 3.11(c)). Let hij be the Rayleigh distributed channel gain from transmit
antenna j to receive antenna i. Suppose both the transmit antennas and the
receive antennas are spaced sufficiently far apart that the fading gains, hij ,
can be assumed to be independent. There are four independently faded signal
paths between the transmitter and the receiver, suggesting that the maximum
diversity gain that can be achieved is 4. The same repetition scheme described
in the last section can achieve this performance: transmit the same symbol
over the two antennas in two consecutive symbol times (at each time, nothing
is sent over the other antenna). If the transmitted symbol is x, the received
symbols at the two receive antennas are

yi�1�= hi1x+wi�1�� i= 1�2 (3.87)

at time 1, and

yi�2�= hi2x+wi�2�� i= 1�2 (3.88)

at time 2. By performing maximal-ratio combining of the four received sym-
bols, an effective channel with gain

∑2
i=1

∑2
j=1 �hij�2 is created, yielding a

four-fold diversity gain.
However, just as in the case of the 2× 1 channel, the repetition scheme

utilizes the degrees of freedom in the channel poorly; it only transmits one
data symbol per two symbol times. In this regard, the Alamouti scheme
performs better by transmitting two data symbols over two symbol times.
Exercise 3.20 shows that the Alamouti scheme used over the 2× 2 channel
provides effectively two independent channels, analogous to (3.76), but with
the gain in each channel equal to

∑2
i=1

∑2
j=1 �hij�2. Thus, both the data symbols

see a diversity gain of 4, the same as that offered by the repetition scheme.
But does the Alamouti scheme utilize all the available degrees of freedom

in the 2×2 channel? How many degrees of freedom does the 2×2 channel
have anyway?
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In Section 2.2.3 we have defined the degrees of freedom of a channel as
the dimension of the received signal space. In a channel with two transmit
and a single receive antenna, this is equal to one for every symbol time. The
repetition scheme utilizes only half a degree of freedom per symbol time,
while the Alamouti scheme utilizes all of it.
With L receive, but a single transmit antenna, the received signal lies in an

L-dimensional vector space, but it does not span the full space. To see this
explicitly, consider the channel model from (3.69) (suppressing the symbol
time index m):

y= hx+w� (3.89)

where y �= �y1� � � � � yL�
t� h= �h1� � � � � hL�

t and w= �w1� � � � �wL�
t. The sig-

nal of interest, hx, lies in a one-dimensional space.11 Thus, we conclude that
the degrees of freedom of a multiple receive, single transmit antenna channel
is still 1 per symbol time.
But in a 2× 2 channel, there are potentially two degrees of freedom per

symbol time. To see this, we can write the channel as

y= h1x1+h2x2+w� (3.90)

where xj and hj are the transmitted symbol and the vector of channel gains
from transmit antenna j respectively, and y = �y1� y2�

t and w = �w1�w2�
t are

the vectors of received signals and �� �0�N0� noise respectively. As long as
h1 and h2 are linearly independent, the signal space dimension is 2: the signal
from transmit antenna j arrives in its own direction hj , and with two receive
antennas, the receiver can distinguish between the two signals. Compared to
a 2×1 channel, there is an additional degree of freedom coming from space.
Figure 3.12 summarizes the situation.

Figure 3.12 (a) In the 1× 2
channel, the signal space is
one-dimensional, spanned by
h. (b) In the 2× 2 channel,
the signal space is
two-dimensional, spanned by
h1 and h2.

h

x

(a)

x2

h2
x1

h1

(b)

11 This is why the scalar �h∗/�h��y is a sufficient statistic to detect x (cf. (3.33)).
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Spatial multiplexing
Now we see that neither the repetition scheme nor the Alamouti scheme uti-
lizes all the degrees of freedom in a 2× 2 channel. A very simple scheme
that does is the following: transmit independent uncoded symbols over the
different antennas as well as over the different symbol times. This is an
example of a spatial multiplexing scheme: independent data streams are mul-
tiplexed in space. (It is also called V-BLAST in the literature.) To analyze
the performance of this scheme, we extend the derivation of the pairwise
error probability bound (3.85) from a single receive antenna to multiple
receive antennas. Exercise 3.19 shows that with nr receive antennas, the corre-
sponding bound on the probability of confusing codeword XB with codeword
XA is

�	XA → XB
≤
[

L∏
�=1

1

1+ SNR�2
�/4

]nr

� (3.91)

where �� are the singular values of the codeword difference XA −XB. This
bound holds for space-time codes of general block lengths. Our specific
scheme does not code across time and is thus “space-only”. The block
length is 1, the codewords are two-dimensional vectors x1�x2 and the bound
simplifies to

�	x1 → x2
 ≤
[

1
1+ SNR�x1−x2�2/4

]2

≤ 16

SNR2 �x1−x2�4
� (3.92)

The exponent of the SNR factor is the diversity gain: the spatial multi-
plexing scheme achieves a diversity gain of 2. Since there is no coding
across the transmit antennas, it is clear that no transmit diversity can be
exploited; thus the diversity comes entirely from the dual receive antennas.
The factor �x1−x2�4 plays a role analogous to the determinant det��XA−XB�

�XA−XB�
∗� in determining the coding gain (cf. (3.86)).

Compared to the Alamouti scheme, we see that V-BLAST has a smaller
diversity gain (2 compared to 4). On the other hand, the full use of the spatial
degrees of freedom should allow a more efficient packing of bits, resulting in
a better coding gain. To see this concretely, suppose we use BPSK symbols
in the spatial multiplexing scheme to deliver 2 bits/s/Hz. Assuming that the
average transmit energy per symbol time is normalized to be 1 as before, we
can use (3.92) to explicitly calculate a bound on the worst-case pairwise error
probability:

max
i 
=j

�	xi → xj
≤ 4 · SNR−2� (3.93)
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On the other hand, the corresponding bound for the Alamouti scheme using
4-PAM symbols to deliver the same 2 bits/s/Hz can be calculated from (3.86)
to be

max
i 
=j

�	xi → xj
≤ 1600 · SNR−4� (3.94)

We see that indeed the bound for the Alamouti scheme has a much poorer
constant before the factor that decays with SNR.

We can draw two lessons from the V-BLAST scheme. First, we see a
new role for multiple antennas: in addition to diversity, they can also provide
additional degrees of freedom for communication. This is in a sense a more
powerful view of multiple antennas, one that will be further explored in
Chapter 7. Second, the scheme also reveals limitations in our performance
analysis framework for space-time codes. In the earlier sections, our approach
has always been to seek schemes which extract the maximum diversity from
the channel and then compare them on the basis of the coding gain, which
is a function of how efficiently the schemes utilize the available degrees of
freedom. This approach falls short in comparing V-BLAST and the Alam-
outi scheme for the 2× 2 channel: V-BLAST has poorer diversity than the
Alamouti scheme but is more efficient in exploiting the spatial degrees of free-
dom, resulting in a better coding gain. A more powerful framework combining
the two performance measures into a unified metric is needed; this is one of
the main subjects of Chapter 9. There we will also address the issue of what
it means by an optimal scheme and whether it is possible to find a scheme
which achieves the full diversity and the full degrees of freedom of the channel.

Low-complexity detection: the decorrelator
One advantage of the Alamouti scheme is its low-complexity ML receiver: the
decoding decouples into two orthogonal single-symbol detection problems.ML
detection ofV-BLASTdoes not enjoy the same advantage: joint detection of the
two symbols is required. The complexity grows exponentially with the number
of antennas. A natural question to ask is: what performance can suboptimal
single-symbol detectors achieve? We will study MIMO receiver architectures
in depth in Chapters 7 and 9, but here we will give an example of a simple
detector, the decorrelator, and analyze its performance in the 2×2 channel.
To motivate the definition of this detector, let us rewrite the channel (3.90)

in matrix form:

y=Hx+w� (3.95)

where H= �h1�h2� is the channel matrix. The input x �= �x1� x2�
t is composed

of two independent symbols x1� x2. To decouple the detection of the two
symbols, one idea is to invert the effect of the channel:

ỹ=H−1y= x+H−1w = x+ w̃ (3.96)
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and detect each of the symbols separately. This is in general suboptimal
compared to joint ML detection, since the noise samples w̃1 and w̃2 are
correlated. How much performance do we lose?
Let us focus on the detection of the symbol x1 from transmit antenna 1.

By direct computation, the variance of the noise w̃1 is

�h22�2+�h21�2
�h11h22−h21h12�2

N0� (3.97)

Hence, we can rewrite the first component of the vector equation in (3.96) as

ỹ1 = x1+
√�h22�2+�h21�2
�h11h22−h21h12�

z1� (3.98)

where z1 ∼ �� �0�N0�, the scaled version of w̃1, is independent of x1. Equi-
valently, the scaled output can be written as

y′1 �=
h11h22−h21h12√�h22�2+�h21�2

ỹ1

= ��∗
2h1�x1+ z1� (3.99)

where

hi �=
[
hi1
hi2

]
� �i �=

1√�hi2�2+�hi1�2
[

h∗
i2

−h∗
i1

]
� i= 1�2� (3.100)

Geometrically, one can interpret hj as the “direction” of the signal from
transmit antenna j and �j as the direction orthogonal to hj . Equation (3.99)
says that when demodulating the symbol from antenna 1, channel inversion
eliminates the interference from transmit antenna 2 by projecting the received
signal y in the direction orthogonal to h2 (Figure 3.13). The signal part is
��∗

2h1�x1. The scalar gain �∗
2h1 is circular symmetric Gaussian, being the

projection of a two-dimensional i.i.d. circular symmetric Gaussian random
vector (h1) onto an independent unit vector (�2) (cf. (A.22) in Appendix A).
The scalar channel (3.99) is therefore Rayleigh faded like a 1×1 channel and
has only unit diversity. Note that if there were no interference from antenna 2,
the diversity gain would have been 2: the norm �h1�2 of the entire vector h1

has to be small for poor reception of x1. However, here, the component of h1

perpendicular to h2 being small already wreacks havoc; this is the price paid
for nulling out the interference from antenna 2. In contrast, the ML detector,
by jointly detecting the two symbols, retains the diversity gain of 2.

We have discussed V-BLAST in the context of a point-to-point link with
two transmit antennas. But since there is no coding across the antennas,
we can equally think of the two transmit antennas as two distinct users
each with a single antenna. In the multiuser context, the receiver described
above is sometimes called the interference nuller, zero-forcing receiver or
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Figure 3.13 Demodulation of
x1: the received vector y is
projected onto the direction
�2 orthogonal to h2. The
effective channel for x1 is in
deep fade whenever the
projection of h1 onto �2 is
small.

h2

h1

y φ2

y1

y2

the decorrelator. It nulls out the effect of the other user (interferer) while
demodulating the symbol of one user. Using this receiver, we see that dual
receive antennas can perform one of two functions in a wireless system: they
can either provide a two-fold diversity gain in a point-to-point link when there
is no interference, or they can be used to null out the effect of an interfering
user but provide no diversity gain more than 1. But they cannot do both. This
is however not an intrinsic limitation of the channel but rather a limitation of
the decorrelator; by performing joint ML detection instead, the two users can
in fact be simultaneously supported with a two-fold diversity gain each.

Summary 3.2 2×2 MIMO schemes

The performance of the various schemes for the 2 × 2 channel is
summarized below.

Diversity gain
Degrees of freedom utilized
per symbol time

Repetition 4 1/2
Alamouti 4 1
V-BLAST (ML) 2 2
V-BLAST (nulling) 1 2

Channel itself 4 2
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3.4 Frequency diversity

3.4.1 Basic concept

So far we have focused on narrowband flat fading channels. These channels
are modeled by a single-tap filter, as most of the multipaths arrive during one
symbol time. In wideband channels, however, the transmitted signal arrives
over multiple symbol times and the multipaths can be resolved at the receiver.
The frequency response is no longer flat, i.e., the transmission bandwidth W
is greater than the coherence bandwidth Wc of the channel. This provides
another form of diversity: frequency.

We begin with the discrete-time baseband model of the wireless channel
in Section 2.2. Recalling (2.35) and (2.38), the sampled output y�m� can be
written as

y�m�=∑
�

h��m�x�m−��+w�m�� (3.101)

Here h��m� denotes the �th channel filter tap at time m. To understand the
concept of frequency diversity in the simplest setting, consider first the one-
shot communication situation when one symbol x�0� is sent at time 0, and no
symbols are transmitted after that. The receiver observes

y���= h����x�0�+w���� �= 0�1�2� � � � (3.102)

If we assume that the channel response has a finite number of taps L, then the
delayed replicas of the signal are providing L branches of diversity in detecting
x�0�, since the tap gains h���� are assumed to be independent. This diversity
is achieved by the ability of resolving the multipaths at the receiver due to the
wideband nature of the channel, and is thus called frequency diversity.

A simple communication scheme can be built on the above idea by sending an
information symbol everyL symbol times. Themaximal diversity gain ofL can
beachieved, but theproblemwith this scheme is that it is verywasteful ofdegrees
of freedom: only one symbol canbe transmitted every delay spread.This scheme
can actually be thought of as analogous to the repetition codes used for both
time and spatial diversity, where one information symbol is repeated L times.
In this setting, once one tries to transmit symbols more frequently, inter-symbol
interference (ISI) occurs: thedelayed replicas of previous symbols interferewith
the current symbol. The problem is then how to deal with the ISI while at the
same time exploiting the inherent frequency diversity in the channel. Broadly
speaking, there are three common approaches:

• Single-carrier systems with equalization By using linear and non-linear
processing at the receiver, ISI can be mitigated to some extent. Optimal
ML detection of the transmitted symbols can be implemented using the
Viterbi algorithm. However, the complexity of the Viterbi algorithm grows
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exponentially with the number of taps, and it is typically used only when the
number of significant taps is small. Alternatively, linear equalizers attempt
to detect the current symbol while linearly suppressing the interference
from the other symbols, and they have lower complexity.

• Direct-sequence spread-spectrum In this method, information symbols
are modulated by a pseudonoise sequence and transmitted over a band-
width W much larger than the data rate. Because the symbol rate is very
low, ISI is small, simplifying the receiver structure significantly. Although
this leads to an inefficient utilization of the total degrees of freedom in the
system from the perspective of one user, this scheme allows multiple users
to share the total degrees of freedom, with users appearing as pseudonoise
to each other.

• Multi-carrier systems Here, transmit precoding is performed to convert
the ISI channel into a set of non-interfering, orthogonal sub-carriers, each
experiencing narrowband flat fading. Diversity can be obtained by coding
across the symbols in different sub-carriers. This method is also called Dis-
crete Multi-Tone (DMT) or Orthogonal Frequency Division Multiplexing
(OFDM). Frequency-hop spread-spectrum can be viewed as a special case
where one carrier is used at a time.

For example, GSM is a single-carrier system, IS-95 CDMA and
IEEE 802.11b (a wireless LAN standard) are based on direct-sequence spread-
spectrum, and IEEE 802.11a is a multi-carrier system,
Below we study these three approaches in turn. An important conceptual

point is that, while frequency diversity is something intrinsic in a wideband
channel, the presence of ISI is not, as it depends on the modulation technique
used. For example, under OFDM, there is no ISI, but sub-carriers that are sep-
arated by more than the coherence bandwidth fade more or less independently
and hence frequency diversity is still present.

Narrowband systems typically operate in a relatively high SNR regime.
In contrast, the energy is spread across many degrees of freedom in many
wideband systems, and the impact of the channel uncertainty on the ability of
the receiver to extract the inherent diversity in frequency-selective channels
becomes more pronounced. This point will be discussed in Section 3.5, but
in the present section, we assume that the receiver has a perfect estimate of
the channel.

3.4.2 Single-carrier with ISI equalization

Single-carrier with ISI equalization is the classic approach to communication
over frequency-selective channels, and has been used in wireless as well as
wireline applications such as voiceband modems. Much work has been done
in this area but here we focus on the diversity aspects.
Starting at time 1, a sequence of uncoded independent symbols

x�1�� x�2�� � � � is transmitted over the frequency-selective channel (3.101).
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Assuming that the channel taps do not vary over these N symbol times, the
received symbol at time m is

y�m�=
L−1∑
�=0

h�x�m−��+w�m�� (3.103)

where x�m� = 0 for m < 1. For simplicity, we assume here that the taps h�
are i.i.d. Rayleigh with equal variance 1/L, but the discussion below holds
more generally (see Exercise 3.25).
We want to detect each of the transmitted symbols from the received signal.

The process of extracting the symbols from the received signal is called
equalization. In contrast to the simple scheme in the previous section where a
symbol is sent every L symbol times, here a symbol is sent every symbol time
and hence there is significant ISI. Can we still get the maximum diversity
gain of L?

Frequency-selective channel viewed as a MISO channel
To analyze this problem, it is insightful to transform the frequency-selective
channel into a flat fading MISO channel with L transmit antennas and a
single receive antenna and channel gains h0� � � � � hL−1. Consider the following
transmission scheme on the MISO channel: at time 1, the symbol x�1� is
transmitted on antenna 1 and the other antennas are silent. At time 2, x�1�
is transmitted at antenna 2, x�2� is transmitted on antenna 1 and the other
antennas remain silent. At time m, x�m− �� is transmitted on antenna �+1,
for �= 0� � � � �L−1. See Figure 3.14. The received symbol at time m in this
MISO channel is precisely the same as that in the frequency-selective channel
under consideration.

Once we transform the frequency-selective channel into a MISO channel,
we can exploit the machinery developed in Section 3.3.2. First, it is clear
that if we want to achieve full diversity on a symbol, say x�N�, we need to
observe the received symbols up to time N +L−1. Over these symbol times,
we can write the system in matrix form (as in (3.80)):

yt = h∗X+wt� (3.104)

where yt �= �y�1�� � � � � y�N +L−1���h∗ �= �h0� � � � � hL−1��w
t �= �w�1�� � � �

w�N +L−1�� and the L by N +L−1 space-time code matrix

X=

⎡⎢⎢⎢⎢⎢⎣
x�1� x�2� · · · x�N� · · x�N +L−1�
0 x�1� x�2� · · · x�N� · x�N +L−2�
0 0 x�1� x�2� · · · · ·
· · · · · · · · ·
0 0 · · x�1� x�2� · · x�N�

⎤⎥⎥⎥⎥⎥⎦ (3.105)

corresponds to the transmitted sequence x = �x�1�� � � � � x�N +L−1��t.
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Figure 3.14 The MISO
scenario equivalent to the
frequency- selective channel.
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Error probability analysis
Consider the maximum likelihood detection of the sequence x based on the
received vector y (MLSD). With MLSD, the pairwise error probability of
confusing xA with xB, when xA is transmitted is, as in (3.85),

�	xA → xB
≤
L∏
�=1

1

1+ SNR�2
�/4

� (3.106)

where �2
� are the eigenvalues of the matrix �XA−XB��XA−XB�

∗ and SNR is
the total received SNR per received symbol (summing over all paths). This
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error probability decays like SNR−L whenever the difference matrix XA−XB

is of rank L.
By a union bound argument, the probability of detecting the particular

symbol x�N� incorrectly is bounded by

∑
xB�xB�N�
=xA�N�

�	xA → xB
� (3.107)

summing over all the transmitted vectors xB which differ with xA in the N th
symbol.12 To get full diversity, the difference matrix XA −XB must be full
rank for every such vector xB (cf. (3.86)). Suppose m∗ is the symbol time
in which the vectors xA and xB first differ. Since they differ at least once
within the first N symbol times, m∗ ≤ N and the difference matrix is of the
form

XA−XB =

⎡⎢⎢⎢⎢⎢⎣
0 · 0 xA�m∗�−xB�m

∗� · · · ·
0 · · 0 xA�m

∗�−xB�m
∗� · · ·

0 · · · 0 · · ·
· · · · · · · ·
0 · · · · 0 xA�m

∗�−xB�m
∗� ·

⎤⎥⎥⎥⎥⎥⎦�
(3.108)

By inspection, all the rows in the difference matrix are linearly independent.
Thus XA−XB is of full rank (i.e., the rank is equal to L). We can summarize:

Uncoded transmission combined with maximum likelihood sequence det-
ection achieves full diversity on symbol x�N� using the observations up to
time N +L−1, i.e., a delay of L−1 symbol times.

Compared to the scheme in which a symbol is transmitted every L symbol
times, the same diversity gain of L is achieved and yet an independent symbol
can be transmitted every symbol time. This translates into a significant “coding
gain” (Exercise 3.26).
In the analysis here it was convenient to transform the frequency-selective

channel into a MISO channel. However, we can turn the transformation
around: if we transmit the space-time code of the form in (3.105) on a MISO
channel, then we have converted the MISO channel into a frequency-selective

12 Strictly speaking, the MLSD only minimizes the sequence error probability, not the symbol
error probability. However, this is the standard detector implemented for ISI equalization
via the Viterbi algorithm, to be discussed next. In any case, the symbol error probability
performance of the MLSD serves as an upper bound to the optimal symbol error
performance.
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channel. This is the delay diversity scheme and it was one of the first proposed
transmit diversity schemes for the MISO channel.

Implementing MLSD: the Viterbi algorithm
Given the received vector y of length n, MLSD requires solving the
optimization problem

max
x

�	y�x
� (3.109)

A brute-force exhaustive search would require a complexity that grows
exponentially with the block length n. An efficient algorithm needs to exploit
the structure of the problem and moreover should be recursive in n so that
the problem does not have to be solved from scratch for every symbol time.
The solution is the ubiquitous Viterbi algorithm.
The key observation is that the memory in the frequency-selective channel

can be captured by a finite state machine. At time m, define the state (an
L-dimensional vector)

s�m� �=

⎡⎢⎢⎣
x�m−L+1�
x�m−L+2�

·
x�m�

⎤⎥⎥⎦ (3.110)

An example of the finite state machine when the x�m� are BPSK symbols is
given in Figure 3.15. The number of states isML, whereM is the constellation
size for each symbol x�m�.

Figure 3.15 A finite state
machine when x[m] are ±1
BPSK symbols and L= 2.
There is a total of four states.

x[m] = –1
x[m – 1] = –1
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+1

x[m – 1] = –1

x[m] = +1
x[m – 1] = +1
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The received symbol y�m� is given by

y�m�= h∗s�m�+w�m�� (3.111)

with h representing the frequency-selective channel, as in (3.104). The MLSD
problem (3.109) can be rewritten as

min
s�1�� � � � �s�n�

− log�	y�1�� � � � � y�n� � s�1�� � � � � s�n�
� (3.112)

subject to the transition constraints on the state sequence (i.e., the second com-
ponent of s�m� is the same as the first component of s�m+1�). Conditioned
on the state sequence s�1�� � � � � s�n�, the received symbols are independent
and the log-likelihood ratio breaks into a sum:

log�	y�1�� � � � � y�n� � s�1�� � � � � s�n�
=
n∑

m=1

log�	y�m� � s�m�
� (3.113)

The optimization problem in (3.112) can be represented as the problem of
finding the shortest path through an n-stage trellis, as shown in Figure 3.16.
Each state sequence �s�1�� � � � � s�n�� is visualized as a path through the trellis,
and given the received sequence y�1�� � � � � y�n�, the cost associated with the
mth transition is

cm�s�m�� �= − log�	y�m� � s�m�
� (3.114)

Figure 3.16 The trellis
representation of the channel.
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The solution is given recursively by the optimality principle of dynamic
programming. Let Vm�s� be the cost of the shortest path to a given state s at
stage m. Then Vm�s� for all states s can be computed recursively:

V1�s�= c1�s�
Vm�s�=min

u
�Vm−1�u�+ cm�s��� m > 1�

(3.115)

(3.116)

Here the minimization is over all possible states u, i.e., we only consider
the states that the finite state machine can be in at stage m−1 and, further,
can still end up at state s at stage m. The correctness of this recursion is based
on the following intuitive fact: if the shortest path to state s at stage m goes
through the state u∗ at stage m−1, then the part of the path up to stage m−1
must itself be the shortest path to state u∗. See Figure 3.17. Thus, to compute
the shortest path up to stage m, it suffices to augment only the shortest paths
up to stage m−1, and these have already been computed.
Once Vm�s� is computed for all states s, the shortest path to stage m is

simply the minimum of these values over all states s. Thus, the optimization
problem (3.112) is solved. Moreover, the solution is recursive in n.

The complexity of the Viterbi algorithm is linear in the number of stages n.
Thus, the cost is constant per symbol, a vast improvement over brute-force
exhaustive search. However, its complexity is also proportional to the size
of the state space, which is ML, where M is the constellation size of each
symbol. Thus, while MLSD can be done for channels with a small number
of taps, it becomes impractical when L becomes large.

The computational complexity of MLSD leads to an interest in seeking
suboptimal equalizers which yield comparable performance. Some candi-
dates are linear equalizers (such as the zero-forcing and minimum mean
square error (MMSE) equalizers, which involve simple linear operations
on the received symbols followed by simple hard decoders), and their
decision-feedback versions (DFE), where previously detected symbols are
removed from the received signal before linear equalization is performed.
We will discuss these equalizers further in Discussion 8.1, where we exploit

Figure 3.17 The dynamic
programming principle. If the
first m−1 segments of the
shortest path to state s at
stage m were not the shortest
path to state u∗ at stage m−1,
then one could have found an
even shorter path to state s.

s

m – 1 m

shorter path

u∗
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a correspondence between the MIMO channel and the frequency-selective
channel.

3.4.3 Direct-sequence spread-spectrum

A common communication system that employs a wide bandwidth is the
direct-sequence (DS) spread-spectrum system. Its basic components are shown
in Figure 3.18. Information is encoded and modulated by a pseudonoise (PN)
sequence and transmitted over a bandwidth W . In contrast to the system
we analyzed in the last section where an independent symbol is sent at
each symbol time, the data rate R bits/s in a spread-spectrum system is
typically much smaller than the transmission bandwidth W Hz. The ratio
W/R is sometimes called the processing gain of the system. For example,
IS-95 (CDMA) is a direct-sequence spread-spectrum system. The bandwidth
is 1.2288MHz and a typical data rate (voice) is 9.6 kbits/s, so the processing
gain is 128. Thus, very few bits are transmitted per degree of freedom per
user. In spread-spectrum jargon, each sample period is called a chip, and
another way of describing a spread-spectrum system is that the chip rate is
much larger than the data rate.
Because the symbol rate per user is very low in a spread-spectrum system,

ISI is typically negligible and equalization is not required. Instead, as we
will discuss next, a much simpler receiver called the Rake receiver can be
used to extract frequency diversity. In the cellular setting, multiple spread-
spectrum users would share the large bandwidth so that the aggregate bit
rate can be high even though the rate of each user is low. The large pro-
cessing gain of a user serves to mitigate the interference from other users,
which appears as random noise. In addition to providing frequency diversity
against multipath fading and allowing multiple access, spread-spectrum sys-
tems serve other purposes, such as anti-jamming from intentional interferers,
and achieving message privacy in the presence of other listeners. We will dis-
cuss the multiple access aspects of spread-spectrum systems in Chapter 4. For
now, we focus on how DS spread-spectrum systems can achieve frequency
diversity.

The Rake receiver
Suppose we transmit one of two n-chips long pseudonoise sequences xA or xB.
Consider the problem of binary detection over a wideband multipath channel.
In this context, a binary symbol is transmitted over n chips. The received
signal is given by

y�m�=∑
�

h��m�x�m−��+w�m�� (3.117)

We assume that h��m� is non-zero only for �= 0� � � � �L−1, i.e., the channel
has L taps. One can think of L/W as the delay spread Td. Also, we assume
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that h��m� does not vary with m during the transmission of the sequence,Figure 3.18 Basic elements of a
direct sequence spread-
spectrum system.

i.e., the channel is considered time-invariant. This holds if n
 TcW , where
Tc is the coherence time of the channel. We also assume that there is negli-
gible interference between consecutive symbols, so that we can consider the
binary detection problem in isolation for each symbol. This assumption is
valid if n� L, which is quite common in a spread-spectrum system with high
processing gain. Otherwise, ISI between consecutive symbols becomes signif-
icant, and an equalizer would be needed to mitigate the ISI. Note however we
assume that simultaneously n� TdW and n
 TcW , which is possible only if
Td 
 Tc. In a typical cellular system, Td is of the order of microseconds and
Tc of the order of tens of milliseconds, so this assumption is quite reasonable.
(Recall from Chapter 2, Table 2.2 that a channel satisfying this condition is
called an underspread channel.)

With the above assumptions, the output is just a convolution of the input
with the LTI channel plus noise

y�m�= �h∗x��m�+w�m�� m= 1� � � � � n+L (3.118)

where h� is the �th tap of the time-invariant channel filter response, with
h� = 0 for � < 0 and � > L− 1. Assuming the channel h is known to the
receiver, two sufficient statistics, rA and rB, can be obtained by projecting
the received vector y �= �y�1�� � � � � y�n+L��t onto the n+L dimensional
vectors vA and vB, where vA �= ��h∗xA��1�� � � � � �h∗xA��n+L��t and vB �=
��h∗xB��1�� � � � � �h∗xB��n+L��t, i.e.,

rA �= v∗
Ay� rB �= v∗

By� (3.119)

The computation of rA and rB can be implemented by first matched filtering
the received signal to xA and to xB. The outputs of the matched filters are
passed through a filter matched to the channel response h and then sampled
at time n+L (Figure 3.19). This is called the Rake receiver. What the Rake
actually does is taking inner products of the received signal with shifted
versions at the candidate transmitted sequences. Each output is then weighted
by the channel tap gains at the appropriate delays and summed. The signal
path associated with a particular delay is sometimes called a finger of the
Rake receiver.
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Figure 3.19 The Rake receiver.
Here, h̃ is the filter matched to
h, i.e., h̃� = h∗−� . Each tap of h̃
represents a finger of the Rake.
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As discussed earlier, we are continuing with the assumption that the channel
gains h� are known at the receiver. In practice, these gains have to be estimated
and tracked from either a pilot signal or in a decision-directed mode using
the previously detected symbols. (The channel estimation problem will be
discussed in Section 3.5.2.) Also, due to hardware limitations, the actual
number of fingers used in a Rake receiver may be less than the total number
of taps L in the range of the delay spread. In this case, there is also a tracking
mechanism in which the Rake receiver continuously searches for the strong
paths (taps) to assign the limited number of fingers to.

Performance analysis
Let us now analyze the performance of the Rake receiver. To simplify our
notation, we specialize to antipodal modulation (i.e., xA = −xB = u); the
analysis for other modulation schemes is similar. One key aspect of spread-
spectrum systems is that the transmitted signal �±u� has a pseudonoise char-
acteristic. The defining characteristic of a pseudonoise sequence is that its
shifted versions are nearly orthogonal to each other. More precisely, if we
write u= �u�1�� � � � � u�n��, and

u��� �= �0� � � � �0� u�1�� � � � � u�n��0� � � � �0�t (3.120)

as the n+L dimensional version of u shifted by � chips (hence there are
� zeros preceding u and L− � zeros following u above), the pseudonoise
property means that for every �= 0� � � � �L−1,

��u����∗�u��′��� 

n∑
i=1

�u�i��2� � 
= �′� (3.121)

To simplify the analysis, we assume full orthogonality: �u����∗�u��′�� = 0 if
� 
= �′.
We will now show that the performance of the Rake is the same as that

in the diversity model with L branches for repetition coding described in
Section 3.2. We can see this by looking at a set of sufficient statistics for the
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detection problem different from the ones we used earlier. First, we rewrite
the channel model in vector form

y=
L−1∑
�=0

h�x
���+w� (3.122)

where w �= �w�1�� � � � �w�n+L��t and x��� = ±u���, the version of the trans-
mitted sequence (either u or −u) shifted by � chips. The received signal
(without the noise) therefore lies in the span of the L vectors 	u���/�u�
�. By
the pseudonoise assumption, all these vectors are orthogonal to each other.
A set of L sufficient statistics 	r���
� can be obtained by projecting y onto
each of these vectors

r��� = h�x+w���� �= 0� � � � �L−1� (3.123)

where x=±�u�. Further, the orthogonality of u��� implies that w��� are i.i.d.
�� �0�N0�. Comparing with (3.32), this is exactly the same as the L-branch
diversity model for the case of repetition code interleaved over time. Thus, we
see that the Rake receiver in this case is nothing more than a maximal ratio
combiner of the signals from the L diversity branches. The error probability
is given by

pe = �

⎡⎣Q
⎛⎝√√√2�u�2

L∑
�=1

�h��2/N0

⎞⎠⎤⎦ � (3.124)

If we assume a Rayleigh fading model such that the tap gains h� are i.i.d.
�� �0�1/L�, i.e., the energy is spread equally among all the L taps (normaliz-
ing such that the ��

∑
� �h��2�= 1), then the error probability can be explicitly

computed (as in (3.37)):

pe =
(
1−�

2

)L L−1∑
�=0

(
L−1+�

�

)(
1+�

2

)�

� (3.125)

where

� �=
√

SNR
1+ SNR

(3.126)

and SNR �= �u�2/�N0L� can be interpreted as the average signal-to-noise ratio
per diversity branch. Noting that �u�2 is the average total energy received
per bit of information, we can define �b �= �u�2. Hence, the SNR per branch
is 1/L ·�b/N0. Observe that the factor of 1/L accounts for the splitting of
energy due to spreading: the larger the spread bandwidth W , the larger L is,
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and the more diversity one gets, but there is less energy in each branch.13

As L→ �,
∑L

�=1 �h��2 converges to 1 with probability 1 by the law of large
numbers, and from (3.124) we see that

pe →Q
(√

2�b/N0

)
� (3.127)

i.e., the performance of the AWGN channel with the same �b/N0 is asymp-
totically achieved.
The above analysis assumes an equal amount of energy in each tap. In a

typical multipath delay profile, there is more energy in the taps with shorter
delays. The analysis can be extended to the cases when the h� have unequal
variances as well. (See Section 14.5.3 in [96]).

3.4.4 Orthogonal frequency division multiplexing

Both the single-carrier system with ISI equalization and the DS spread-
spectrum system with Rake reception are based on a time-domain view of the
channel. But we know that if the channel is linear time-invariant, sinusoids
are eigenfunctions and they get transformed in a particularly simple way.
ISI occurs in a single-carrier system because the transmitted signals are not
sinusoids. This suggests that if the channel is underspread (i.e., the coherence
time is much larger than the delay spread) and is therefore approximately
time-invariant for a sufficiently long time-scale, then transformation into
the frequency domain can be a fruitful approach to communication over
frequency-selective channels. This is the basic idea behind OFDM.
We begin with the discrete-time baseband model

y�m�=∑
�

h��m�x�m−��+w�m�� (3.128)

For simplicity, we first assume that for each �, the �th tap is not changing
with m and hence the channel is linear time-invariant. Again assuming a
finite number of non-zero taps L �= TdW , we can rewrite the channel model
in (3.128) as

y�m�=
L−1∑
�=0

h�x�m−��+w�m�� (3.129)

Sinusoids are eigenfunctions of LTI systems, but they are of infinite dura-
tion. If we transmit over only a finite duration, say Nc symbols, then the
sinusoids are no longer eigenfunctions. One way to restore the eigenfunction

13 This is assuming a very rich scattering environment, leading to many paths, all of equal
energy. In reality, however, there are just a few paths that are strong enough to matter.
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property is by adding a cyclic prefix to the symbols. For every block of
symbols of length Nc, denoted by

d= �d�0�� d�1�� � � � � d�Nc−1��t�

we create an Nc+L−1 input block as

x= �d�Nc−L+1�� d�Nc−L+2�� � � � � d�Nc−1�� d�0�� d�1�� � � � � d�Nc−1��t�
(3.130)

i.e., we add a prefix of length L− 1 consisting of data symbols rotated
cyclically (Figure 3.20). With this input to the channel (3.129), consider the
output

y�m�=
L−1∑
�=0

h�x�m−��+w�m�� m= 1� � � � �Nc+L−1�

The ISI extends over the first L− 1 symbols and the receiver ignores it by
considering only the output over the time interval m ∈ �L�Nc +L− 1�. Due
to the additional cyclic prefix, the output over this time interval (of length
Nc) is

y�m�=
L−1∑
�=0

h�d��m−L−�� modulo Nc�+w�m�� (3.131)

See Figure 3.21.
Denoting the output of length Nc by

y= �y�L�� � � � � y�Nc+L−1��t�

Figure 3.20 The cyclic prefix
operation.

x [N + L – 1] = d[N–1]d̃N–1

d̃0

IDFT

d [N – 1]

d [0] Cyclic
prefix

x [L] = d[0]

x [L –1] = d[N–1]

x [1] = d[N – L + 1]
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Figure 3.21 Convolution
between the channel �h� and
the input �x� formed from the
data symbols �d� by adding a
cyclic prefix. The output is
obtained by multiplying the
corresponding values of x and
h on the circle, and outputs at
different times are obtained by
rotating the x-values with
respect to the h-values. The
current configuration yields the
output y [L].

x [L + 1] = d[1]

x [N + L – 1] = d[N – 1]

x [1]

x [L – 1] = d [N – 1]

x [L] = d[0]

hL – 1

0

0

h1

h0

and the channel by a vector of length Nc

h= �h0� h1� � � � � hL−1�0� � � � �0�
t� (3.132)

(3.131) can be written as

y= h⊗d+w� (3.133)

Here we denoted

w = �w�L�� � � � �w�Nc+L−1��t� (3.134)

as a vector of i.i.d. �� �0�N0� random variables. We also used the notation
of ⊗ to denote the cyclic convolution in (3.131). Recall that the discrete
Fourier transform (DFT) of d is defined to be

d̃n �=
1√
Nc

Nc−1∑
m=0

d�m� exp
(−j2�nm

Nc

)
� n= 0� � � � �N −1� (3.135)

Taking the discrete Fourier transform (DFT) of both sides of (3.133) and
using the identity

DFT�h⊗d�n =
√
NcDFT�h�n ·DFT�d�n� n= 0� � � � �Nc−1� (3.136)

we can rewrite (3.133) as

ỹn = h̃nd̃n+ w̃n� n= 0� � � � �Nc−1� (3.137)

Here we have denoted w̃0� � � � � w̃Nc−1 as the Nc-point DFT of the noise vector
w�1�� � � � �w�Nc�. The vector �h̃0� � � � � h̃Nc−1�

t is defined as the DFT of the
L-tap channel h, multiplied by

√
Nc,

h̃n =
L−1∑
�=0

h� exp
(−j2�n�

Nc

)
� (3.138)
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Note that the nth component h̃n is equal to the frequency response of the
channel (see (2.20)) at f = nW/Nc.

We can redo everything in terms of matrices, a viewpoint which will prove
particularly useful in Chapter 7 when we will draw a connection between the
frequency-selective channel and the MIMO channel. The circular convolution
operation u= h⊗d can be viewed as a linear transformation

u= Cd� (3.139)

where

C �=

⎡⎢⎢⎣
h0 0 · 0 hL−1 hL−2 · h1

h1 h0 0 · 0 hL−1 · h2

· · · · · · · ·
0 · 0 hL−1 hL−2 · h1 h0

⎤⎥⎥⎦ (3.140)

is a circulant matrix, i.e., the rows are cyclic shifts of each other. On the other
hand, the DFT of d can be represented as an Nc-length vector Ud, where U
is the unitary matrix with its �k�n�th entry equal to

1√
Nc

exp
(−j2�kn

Nc

)
� k�n= 0� � � � �Nc−1� (3.141)

This can be viewed as a coordinate change, expressing d in the basis defined
by the rows of U. Equation (3.136) is equivalent to

Uu=�Ud� (3.142)

where � is the diagonal matrix with diagonal entries
√
Nc times the DFT of

h, i.e.,

�nn = h̃n �=
(√

NcUh
)
n
� n= 0� � � � �Nc−1�

Comparing (3.139) and (3.142), we come to the conclusion that

C= U−1�U� (3.143)

Equation (3.143) is the matrix version of the key DFT property (3.136).
In geometric terms, this means that the circular convolution operation is
diagonalized in the coordinate system defined by the rows of U, and the
eigenvalues of C are the DFT coefficients of the channel h. Equation (3.133)
can thus be written as

y= Cd+w = U−1�Ud+w� (3.144)
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d[N–1]

ỹ0

x [N +L–1] = d[N –1]

Cyclic

prefix

y [N + L – 1]d̃N–1

IDFT DFT

Remove

prefix

ỹN–1

y[L]

y[N + L – 1]

y[1]

y[L – 1]

y[L]

x [L – 1] = d[N – 1]

x [L] = d[0]

x [1] = d[N – L + 1]

d̃0 d[0]
Channel

This representation suggests a natural rotation at the input and at the outputFigure 3.22 The OFDM
transmission and reception
schemes.

to convert the channel to a set of non-interfering channels with no ISI.
In particular, the actual data symbols (denoted by the length Nc vector d̃)
in the frequency domain are rotated through the IDFT (inverse DFT) matrix
U−1 to arrive at the vector d. At the receiver, the output vector of length
Nc (obtained by ignoring the first L symbols) is rotated through the DFT
matrix U to obtain the vector ỹ. The final output vector ỹ and the actual data
vector d̃ are related through

ỹn = h̃nd̃n+ w̃n� n= 0� � � � �Nc−1� (3.145)

We have denoted w̃ �= Uw as the DFT of the random vector w and we see
that since w is isotropic, w̃ has the same distribution as w, i.e., a vector of
i.i.d. �� �0�N0� random variables (cf. (A.26) in Appendix A).
These operations are illustrated in Figure 3.22, which affords the following

interpretation. The data symbols modulate Nc tones or sub-carriers, which
occupy the bandwidth W and are uniformly separated by W/Nc. The data
symbols on the sub-carriers are then converted (through the IDFT) to time
domain. The procedure of introducing the cyclic prefix before transmission
allows for the removal of ISI. The receiver ignores the part of the output signal
containing the cyclic prefix (along with the ISI terms) and converts the length
Nc symbols back to the frequency domain through a DFT. The data symbols
on the sub-carriers are maintained to be orthogonal as they propagate through
the channel and hence go through narrowband parallel sub-channels. This
interpretation justifies the name of OFDM for this communication scheme.
Finally, we remark that DFT and IDFT can be very efficiently implemented
(using Fast Fourier Transform) whenever Nc is a power of 2.

OFDM block length
The OFDM scheme converts communication over a multipath channel into
communication over simpler parallel narrowband sub-channels. However, this
simplicity is achieved at a cost of underutilizing two resources, resulting in
a loss of performance. First, the cyclic prefix occupies an amount of time
which cannot be used to communicate data. This loss amounts to a fraction
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L/�Nc +L� of the total time. The second loss is in the power transmitted.
A fraction L/�Nc+L� of the average power is allocated to the cyclic prefix and
cannot be used towards communicating data. Thus, to minimize the overhead
(in both time and power) due to the cyclic prefix we prefer to have Nc as
large as possible. The time-varying nature of the wireless channel, however,
constrains the largest value Nc can reasonably take.
We started the discussion in this section by considering a simple channel

model (3.129) that did not vary with time. If the channel is slowly time-
varying (as discussed in Section 2.2.1, this is a reasonable assumption) then
the coherence time Tc is much larger than the delay spread Td (the under-
spread scenario). For underspread channels, the block length of the OFDM
communication scheme Nc can be chosen significantly larger than the multi-
path length L= TdW , but still much smaller than the coherence block length
TcW . Under these conditions, the channel model of linear time invariance
approximates a slowly time-varying channel over the block length Nc, while
keeping the overhead small.
The constraint on the OFDM block length can also be understood in the

frequency domain. A block length of Nc corresponds to an inter-sub-carrier
spacing equal to W/Nc. In a wireless channel, the Doppler spread introduces
uncertainty in the frequency of the received signal; from Table 2.1 we see
that the Doppler spread is inversely proportional to the coherence time of the
channel: Ds = 1/4Tc. For the inter-sub-carrier spacing to be much larger than
the Doppler spread, the OFDM block length Nc should be constrained to be
much smaller than TcW . This is the same constraint as above.

Apart from an underutilization of time due to the presence of the cyclic
prefix, we also mentioned the additional power due to the cyclic prefix.
OFDM schemes that put a zero signal instead of the cyclic prefix have been
proposed to reduce this loss. However, due to the abrupt transition in the
signal, such schemes introduce harmonics that are difficult to filter in the
overall signal. Further, the cyclic prefix can be used for timing and frequency
acquisition in wireless applications, and this capability would be lost if a zero
signal replaced the cyclic prefix.

Frequency diversity
Let us revert to the non-overlapping narrowband channel representation of
the ISI channel in (3.145). The correlation between the channel frequency
coefficients h̃0� � � � � h̃Nc−1 depends on the coherence bandwidth of the chan-
nel. From our discussion in Section 2.3, we have learned that the coherence
bandwidth is inversely proportional to the multipath spread. In particular, we
have from (2.47) that

Wc =
1
2Td

= W

2L
�
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where we use our notation for L as denoting the length of the ISI. Since each
sub-carrier is W/Nc wide, we expect approximately

NcWc

W
= Nc

2L

as the number of neighboring sub-carriers whose channel coefficients are
heavily correlated (Exercise 3.28). One way to exploit the frequency diver-
sity is to consider ideal interleaving across the sub-carriers (analogous
to the time-interleaving done in Section 3.2) and consider the model
of (3.31)

y� = h�x�+w�� �= 1� � � � �L�

The difference is that now � represents the sub-carriers while it is used to
denote time in (3.31). However, with the ideal frequency interleaving assump-
tion we retain the same independent assumption on the channel coefficients.
Thus, the discussion of Section 3.2 on schemes harnessing diversity is directly
applicable here. In particular, an L-fold diversity gain (proportional to the
number of ISI symbols L) can be obtained. Since the communication scheme
is over sub-carriers, the form of diversity is due to the frequency-selective
channel and is termed frequency diversity (as compared to the time diversity
discussed in Section 3.2 which arises due to the time variations of the channel).

Summary 3.3 Communication over frequency-selective
channels

We have studied three approaches to extract frequency diversity in
a frequency-selective channel (with L taps). We summarize their key
attributes and compare their implementational complexity.

1 Single-carrier with ISI equalization
Using maximum likelihood sequence detection (MLSD), full diversity of
L can be achieved for uncoded transmission sent at symbol rate.

MLSD can be performed by the Viterbi algorithm. The complexity is con-
stant per symbol time but grows exponentially with the number of taps L.

The complexity is entirely at the receiver.

2 Direct-sequence spread-spectrum
Information is spread, via a pseudonoise sequence, across a bandwidth
much larger than the data rate. ISI is typically negligible.

The signal received along the L nearly orthogonal diversity paths is
maximal-ratio combined using the Rake receiver. Full diversity is achieved.
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Compared to MLSD, complexity of the Rake receiver is much lower. ISI
is avoided because of the very low spectral efficiency per user, but the
spectrum is typically shared between many interfering users. Complexity
is thus shifted to the problem of interference management.

3 Orthogonal frequency division multiplexing
Information is modulated on non-interfering sub-carriers in the frequency
domain.

The transformation between the time and frequency domains is done by
means of adding/subtracting a cyclic prefix and IDFT/DFT operations.
This incurs an overhead in terms of time and power.

Frequency diversity is attained by coding over independently faded sub-
carriers. This coding problem is identical to that for time diversity.

Complexity is shared between the transmitter and the receiver in perform-
ing the IDFT and DFT operations; the complexity of these operations
is insensitive to the number of taps, scales moderately with the number
of sub-carriers Nc and is very manageable with current implementation
technology.

Complexity of diversity coding across sub-carriers can be traded off with
the amount of diversity desired.

3.5 Impact of channel uncertainty

In the past few sections we assumed perfect channel knowledge so that
coherent combining can be performed at the receiver. In fast varying channels,
it may not be easy to estimate accurately the phases and magnitudes of the
tap gains before they change. In this case, one has to understand the impact of
estimation errors on performance. In some situations, non-coherent detection,
which does not require an estimate of the channel, may be the preferred route.
In Section 3.1.1, we have already come across a simple non-coherent detector
for fading channels without diversity. In this section, we will extend this to
channels with diversity.
When we compared coherent and non-coherent detection for channels with-

out diversity, the difference was seen to be relatively small (cf. Figure 3.2).
An important question is what happens to that difference as the number of
diversity paths L increases. The answer depends on the specific diversity
scenario. We first focus on the situation where channel uncertainty has the
most impact: DS spread-spectrum over channels with frequency diversity.
Once we understand this case, it is easy to extend the insights to other
scenarios.
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3.5.1 Non-coherent detection for DS spread-spectrum

We considered this scenario in Section 3.4.3, except now the receiver has
no knowledge of the channel gains h�. As we saw in Section 3.1.1, no
information can be communicated in the phase of the transmitted signal in
conjunction with non-coherent detection (in particular, antipodal signaling
cannot be used). Instead, we consider binary orthogonal modulation,14 i.e., xA
and xB are orthogonal and �xA� = �xB�.

Recall that the central pseudonoise property of the transmitted sequences
in DS spread-spectrum is that the shifted versions are nearly orthogonal. For
simplicity of analysis, we continue with the assumption that shifted versions
of the transmitted sequence are exactly orthogonal; this holds for both xA and
xB here. We make the further assumption that versions of the two sequences
with different shifts are also orthogonal to each other, i.e., �x���A �∗�x��

′�
B � = 0

for � 
= �′ (the so-called zero cross-correlation property). This approximately
holds in many spread-spectrum systems. For example, in the uplink of IS-95,
the transmitted sequence is obtained by multiplying the selected codeword of
an orthogonal code by a (common) pseudonoise ±1 sequence, so that the low
cross-correlation property carries over from the auto-correlation property of
the pseudonoise sequence.

Proceeding as in the analysis of coherent detection, we start with the
channel model in vector form (3.122) and observe that the projection of y
onto the 2L orthogonal vectors 	x���A /�xA��x���B /�xB�
� yields 2L sufficient
statistics:

r
���
A = h�x1+w

���
A � �= 0� � � � �L−1�

r
���
B = h�x2+w

���
B � �= 0� � � � �L−1�

where w���
A and w���

B are i.i.d. �� �0�N0�, and

(
x1
x2

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
�xA�
0

)
ifxAis transmitted�(

0

�xB�

)
ifxBis transmitted�

(3.146)

This is essentially a generalization of the non-coherent detection problem in
Section 3.1.1 from 1 branch to L branches. Just as in the 1 branch case, a

14 Typically M-ary orthogonal modulation is used. For example, the uplink of IS-95 employs
non-coherent detection of 64-ary orthogonal modulation.
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square-law type detector is the optimal non-coherent detector: decide in favor
of xA if

L−1∑
�=0

�r���A �2 ≥
L−1∑
�=0

�r���B �2� (3.147)

otherwise decide in favor of xB. The performance can be analyzed as in the
1 branch case: the error probability has the same form as in (3.125), but with
� given by

�= 1/L ·�b/N0

2+1/L ·�b/N0

� (3.148)

where �b �= �xA�2. (See Exercise 3.31.) As a basis of comparison, the perfor-
mance of coherent detection of binary orthogonal modulation can be analyzed
as for the antipodal case; it is again given by (3.125) but with � given by
(Exercise 3.33):

�=
√

1/L ·�b/N0

2+1/L ·�b/N0

� (3.149)

It is interesting to compare the performance of coherent and non-coherent
detection as a function of the number of diversity branches. This is shown in
Figures 3.23 and 3.24. For L = 1, the gap between the performance of both
schemes is small, but they are bad anyway, as there is a lack of diversity. This
point has already been made in Section 3.1. As L increases, the performance
of coherent combining improves monotonically and approaches the perfor-
mance of an AWGN channel. In contrast, the performance of non-coherent
detection first improves with L but then degrades as L is increased further.

Figure 3.23 Comparison of
error probability under
coherent detection (——) and
non-coherent detection (- - -),
as a function of the number of
taps L. Here �b/N0 = 10 dB.
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Figure 3.24 Comparison of
error probability under
coherent detection (——) and
non-coherent detection (- - -),
as a function of the number of
taps L. Here �b/N0 = 15dB.
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The initial improvement comes from a diversity gain. There is however a
law of diminishing return on the diversity gain. At the same time, when L

becomes too large, the SNR per branch becomes very poor and non-coherent
combining cannot effectively exploit the available diversity. This leads to an
ultimate degradation in performance. In fact, it can be shown that as L→�
the error probability approaches 1/2.

3.5.2 Channel estimation

The significant performance difference between coherent and non-coherent
combining when the number of branches is large suggests the importance
of channel knowledge in wideband systems. We assumed perfect channel
knowledge when we analyzed the performance of the coherent Rake receiver,
but in practice, the channel taps have to be estimated and tracked. It is
therefore important to understand the impact of channel measurement errors
on the performance of the coherent combiner. We now turn to the issue of
channel estimation.
In data detection, the transmitted sequence is one of several possible

sequences (representing the data symbol). In channel estimation, the trans-
mitted sequence is assumed to be known at the receiver. In a pilot-based
scheme, a known sequence (called a pilot, sounding tone, or training sequence)
is transmitted and this is used to estimate the channel.15 In a decision-
feedback scheme, the previously detected symbols are used instead to update
the channel estimates. If we assume that the detection is error free, then
the development below applies to both pilot-based and decision-directed
schemes.

15 The downlink of IS-95 uses a pilot, which is assigned its own pseudonoise sequence and
transmitted superimposed on the data.
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Focus on one symbol duration, and suppose the transmitted sequence is a
known pseudonoise sequence u. We return to the channel model in vector
form (cf. (3.122))

y=
L−1∑
�=0

h�u
���+w� (3.150)

We see that since the shifted versions of u are orthogonal to each other
and the taps are assumed to be independent of each other, projecting y
onto u���/�u���� will yield a sufficient statistic to estimate h� (see
Summary A.3)

r��� �= �u����∗y= h��u����+w��� = √
�h�+w���� (3.151)

where � �= �u����2. This is implemented by filtering the received signal by a
filter matched to u and sampling at the appropriate chip time. This operation
is the same as the first stage of the Rake receiver, and the channel estimator
can in fact be combined with the Rake receiver if done in a decision-directed
mode. (See Figure 3.19.)
Typically, channel estimation is obtained by averaging K such measure-

ments over a coherence time period in which the channel is constant:

r
���
k �= √

�h�+w
���
k � k= 1� � � � �K� (3.152)

Assuming that h� ∼ �� �0�1/L�, the minimum mean square estimate of h�
given these measurements is (cf. (A.84) in Summary A.3)

ĥ� =
√
�

K�+LN0

K∑
k=1

r
���
k � (3.153)

The mean square error associated with this estimate is (cf. (A.85) in
Summary A.3)

1
L

· 1
1+K�/�LN0�

� (3.154)

the same for all branches.
The key parameter affecting the estimation error is

SNRest �=
K�

LN0

� (3.155)

When SNRest � 1, the mean square estimation error is much smaller than the
variance of h� (equal to 1/L) and the impact of the channel estimation error
on the performance of the coherent Rake receiver is not significant; perfect
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channel knowledge is a reasonable assumption in this regime. On the other
hand, when SNRest 
 1, the mean square error is close to 1/L, the variance
of h�. In this regime, we hardly have any information about the channel
gains and the performance of the coherent combiner cannot be expected to be
better than the non-coherent combiner, which we know has poor performance
whenever L is large.

How should we interpret the parameter SNRest? Since the channel is constant
over the coherence time Tc, we can interpret K� as the total received energy
over the channel coherence time Tc. We can rewrite SNRest as

SNRest =
PTc

LN0

(3.156)

where P is the received power of the signal from which channel measurements
are obtained. Hence, SNRest can be interpreted as the signal-to-noise ratio
available to estimate the channel per coherence time per tap. Thus, channel
uncertainty has a significant impact on the performance of the Rake receiver
whenever this quantity is significantly below 0 dB.
If the measurements are done in a decision-feedback mode, P is the received

power of the data stream itself. If the measurements are done from a pilot,
then P is the received power of the pilot. On the downlink of a CDMA
system, one can have a pilot common to all users, and the power allocated to
the pilot can be larger than the power of the signals for the individual users.
This results in a larger SNRest, and thus makes coherent combining easier.
On the uplink, however, it is not possible to have a common pilot, and the
channel estimation will have to be done with a weaker pilot allotted to the
individual user. With a lower received power from the individual users, SNRest
can be considerably smaller.

3.5.3 Other diversity scenarios

There are two reasons why wideband DS spread-spectrum systems are
significantly impacted by channel uncertainty:

• the amount of energy per resolvable path decreases inversely with increas-
ing number of paths, making their gains harder to estimate when there are
many paths;

• the number of diversity paths depends both on the bandwidth and the delay
spread and, given these parameters, the designer has no control over this
number.

What about in other diversity scenarios?
In antenna diversity with L receive antennas, the received energy per

antenna is the same regardless of the number of antennas, so the channel
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measurement problem is the same as with a single receive antenna and does
not become harder. The situation is similar in the time diversity scenario. In
antenna diversity with L transmit antennas, the received energy per diversity
path does decrease with the number of antennas used, but certainly we can
restrict the number L to be the number of different channels that can be
reliably learnt by the receiver.

How about in OFDM systems with frequency diversity? Here, the designer
has control over how many sub-carriers to spread the signal energy over.
Thus, while the number of available diversity branches L may increase with
the bandwidth, the signal energy can be restricted to a fixed number of sub-
carriers L′ <L over any one OFDM time block. Such communication can be
restricted to concentrated time-frequency blocks and Figure 3.25 visualizes
one such scheme (for L′ = 2), where the choice of the L′ sub-carriers is
different for different OFDM blocks and is hopped over the entire bandwidth.
Since the energy in each OFDM block is concentrated within a fixed number
of sub-carriers at any one time, coherent reception is possible. On the other
hand, the maximum diversity gain of L can still be achieved by coding
across the sub-carriers within one OFDM block as well as across different
blocks.

One possible drawback is that since the total power is only concentrated
within a subset of sub-carriers, the total degrees of freedom available in the
system are not utilized. This is certainly the case in the context of point-to-
point communication; in a system with other users sharing the same band-
width, however, the other degrees of freedom can be utilized by the other
users and need not go wasted. In fact, one key advantage of OFDM over DS
spread-spectrum is the ability to maintain orthogonality across multiple users
in a multiple access scenario. We will return to this point in Chapter 4.

Figure 3.25 An illustration of a
scheme that uses only a fixed
part of the bandwidth at every
time. Here, one small square
denotes a single sub-carrier
within one OFDM block. The
time-axis indexes the different
OFDM blocks; the
frequency-axis indexes the
different sub-carriers. Time
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Chapter 3 The main plot

Baseline
We first looked at detection on a narrowband slow fading Rayleigh channel.
Under both coherent and non-coherent detection, the error probability
behaves like

pe ≈ SNR−1 (3.157)

at high SNR. In contrast, the error probability decreases exponentially with
the SNR in the AWGN channel. The typical error event for the fading
channel is due to the channel being in deep fade rather than the Gaussian
noise being large.

Diversity
Diversity was presented as an effective approach to improve performance
drastically by providing redundancy across independently faded branches.
Three modes of diversity were considered:
• time – the interleaving of coded symbols over different coherence time
periods;

• space – the use of multiple transmit and/or receive antennas;
• frequency – the use of a bandwidth greater than the coherence bandwidth
of the channel.

In all cases, a simple scheme that repeats the information symbol across the
multiple branches achieves full diversity. With L i.i.d. Rayleigh branches
of diversity, the error probability behaves like

pe ≈ c · SNR−L (3.158)

at high SNR.

Examples of repetition schemes:
• repeating the same symbol over different coherence periods;
• repeating the same symbol over different transmit antennas one at a

time;
• repeating the same symbol across OFDM sub-carriers in different coher-

ence bands;
• transmitting a symbol once every delay spread in a frequency-selective

channel so that multiple delayed replicas of the symbol are received
without interference.

Code design and degrees of freedom
More sophisticated schemes cannot achieve higher diversity gain but can
provide a coding gain by improving the constant c in (3.158). This is
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achieved by utilizing the available degrees of freedom better than in the
repetition schemes.

Examples:
• rotation and permutation codes for time diversity and for frequency

diversity in OFDM;
• Alamouti scheme for transmit diversity;
• uncoded transmission at symbol rate in a frequency-selective channel

with ISI equalization.

Criteria to design schemes with good coding gain were derived for the
different scenarios by using the union bound (based on pairwise error
probabilities) on the actual error probability:
• product distance between codewords for time diversity;
• determinant criterion for space-time codes.

Channel uncertainty
The impact of channel uncertainty is significant in scenarios where there
are many diversity branches but only a small fraction of signal energy is
received along each branch. Direct-sequence spread-spectrum is a prime
example.

The gap between coherent and non-coherent schemes is very significant
in this regime. Non-coherent schemes do not work well as they cannot
combine the signals along each branch effectively.

Accurate channel estimation is crucial. Given the amount of transmit
power devoted to channel estimation, the efficacy of detection performance
depends on the key parameter SNRest, the received SNR per coherence time
per diversity branch. If SNRest � 0dB, then detection performance is near
coherent. If SNRest 
 0dB, then effective combining is impossible.

Impact of channel uncertainty can be ameliorated in some schemes where
the transmit energy can be focused on smaller number of diversity branches.
Effectively SNRest is increased. OFDM is an example.

3.6 Bibliographical notes

Reliable communication over fading channels has been studied since the 1960s.
Improving the performance via diversity is also an old topic. Standard digital commu-
nication texts contain many formulas for the performance of coherent and non-coherent
diversity combiners, which we have used liberally in this chapter (see Chapter 14 of
Proakis [96], for example).

Early works recognizing the importance of the product distance criterion for improv-
ing the coding gain under Rayleigh fading are Wilson and Leung [144] and Divsalar
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and Simon [30], in the context of trellis-coded modulation. The rotation example is
taken from Boutros and Viterbo [13]. Transmit antenna diversity was studied exten-
sively in the late 1990s code design criteria were derived by Tarokh et al. [115] and
by Guey et al. [55]; in particular, the determinant criterion is obtained in Tarokh et al.
[115]. The delay diversity scheme was introduced by Seshadri and Winters [107].
The Alamouti scheme was introduced by Alamouti [3] and generalized to orthog-
onal designs by Tarokh et al. [117]. The diversity analysis of the decorrelator was
performed by Winters et al. [145], in the context of a space-division multiple access
system with multiple receive antennas.

The topic of equalization has been studied extensively and is covered comprehen-
sively in standard textbooks on communication theory; for example, see the book by
Barry et al. [4]. The Viterbi algorithm was introduced in [139]. The diversity analysis
of MLSD is adopted from Grokop and Tse [54].

The OFDM approach to communicate over a wideband channel was first used in mil-
itary systems in the 1950s and discussed in early papers in the 1960s by Chang [18] and
Saltzberg [104].Circular convolution and the DFT are classical undergraduate material
in digital signal processing (Chapter 8, and Section 8.7.5, in particular, of [87]).

The spread-spectrum approach to harness frequency diversity has been well sum-
marized by Viterbi [140]. The Rake receiver was designed by Price and Green [95].
The impact of channel uncertainty on the performance has been studied by various
authors, including Médard and Gallager [85], Telatar and Tse [120] and Subramanian
and Hajek [113].

3.7 Exercises

Exercise 3.1 Verify (3.19) and the high SNR approximation (3.21). Hint: Write the
expression as a double integral and interchange the order of integration.

Exercise 3.2 In Section 3.1.2 we studied the performance of antipodal signaling under
coherent detection over a Rayleigh fading channel. In particular, we saw that the error
probability pe decreases like 1/SNR. In this question, we study a deeper characterization
of the behavior of pe with increasing SNR.
1. A precise way of saying that pe decays like 1/SNR with increasing SNR is the

following:

lim
SNR→�

pe · SNR= c�

where c is a constant. Identify the value of c for the Rayleigh fading channel.
2. Now we want to test how robust the above result is with respect to the fading

distribution. Let h be the channel gain, and suppose �h�2 has an arbitrary continuous
pdf f satisfying f�0� > 0. Does this give enough information to compute the high
SNR error probability like in the previous part? If so, compute it. If not, specify
what other information you need. Hint: You may need to interchange limit and
integration in your calculations. You can assume that this can be done without
worrying about making your argument rigorous.

3. Suppose now we have L independent branches of diversity with gains h1� � � � � hL,
and �h��2 having an arbitrary distribution as in the previous part. Is there enough
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information for you to find the high SNR performance of repetition coding and
coherent combining? If so, compute it. If not, what other information do you need?

4. Using the result in the previous part or otherwise, compute the high SNR perfor-
mance under Rician fading. How does the parameter � affect the performance?

Exercise 3.3 This exercise shows how the high SNR slope of the probability of error
(3.19) versus SNR curve can be obtained using a typical error event analysis, without
the need for directly carrying out the integration.

Fix � > 0 and define the �-typical error events �� and �−�, where

�� �= 	h � �h�2 < 1/SNR1−�
� (3.159)

1. By conditioning on the event ��, show that at high SNR

lim
SNR→�

logpe

log SNR
≤ −�1− ��� (3.160)

2. By conditioning on the event �−�, show that

lim
SNR→�

logpe

log SNR
≥ −�1+ ��� (3.161)

3. Hence conclude that

lim
SNR→�

logpe

log SNR
= −1� (3.162)

This says that the asymptotic slope of the error probability versus SNR plot
(in dB/dB scale) is −1.

Exercise 3.4 In Section 3.1.2, we saw that there is a 4-dB energy loss when using
4-PAM on only the I channel rather than using QPSK on both the I and the Q channels,
although both modulations convey two bits of information. Compute the corresponding
loss when one wants to transmit k bits of information using 2k-PAM rather than
2k-QAM. You can assume k to be even. How does the loss depend on k?

Exercise 3.5 Consider the use of the differential BPSK scheme proposed in
Section 3.1.3 for the Rayleigh flat fading channel.
1. Find a natural non-coherent scheme to detect u�m� based on y�m− 1� and y�m�,

assuming the channel is constant across the two symbol times. Your scheme does
not have to be the ML detector.

2. Analyze the performance of your detector at high SNR. You may need to make
some approximations. How does the high SNR performance of your detector
compare to that of the coherent detector?

3. Repeat your analysis for differential QPSK.

Exercise 3.6 In this exercise we further study coherent detection in Rayleigh fading.
1. Verify Eq. (3.37).
2. Analyze the error probability performance of coherent detection of binary orthogo-

nal signaling with L branches of diversity, under an i.i.d. Rayleigh fading assump-
tion (i.e., verify Eq. (3.149)).
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Exercise 3.7 In this exercise, we study the performance of the rotated code in
Section 3.2.2.
1. Give an explicit expression for the exact pairwise error probability �	xA → xB
 in

(3.49). Hint: The techniques from Exercise 3.1 will be useful here.
2. This pairwise error probability was upper bounded in (3.54). Show that the product

of SNR and the difference between the upper bound and the actual pairwise error
probability goes to zero with increasing SNR. In other words, the upper bound in
(3.54) is tight up to the leading term in 1/SNR.

Exercise 3.8 In the text, we mainly use real symbols to simplify the notation. In
practice, complex constellations are used (i.e., symbols are sent along both the I and
Q components). The simplest complex constellation is QPSK: the constellation is
	a�1+ j�� a�1− j�� a�−1− j�� a�−1+ j�
.
1. Compute the error probability of QPSK detection for a Rayleigh fading channel

with repetition coding over L branches of diversity. How does the performance
compare to a scheme which uses only real symbols?

2. In Section 3.2.2, we developed a diversity scheme based on rotation of real symbols
(thus using only the I channel). One can develop an analogous scheme for QPSK
complex symbols, using a 2×2 complex unitary matrix instead. Find an analogous
pairwise code-design criterion as in the real case.

3. Real orthonormal matrices are special cases of complex unitary matrices. Within
the class of real orthonormal matrices, find the optimal rotation to maximize your
criterion.

4. Find the optimal unitary matrix to maximize your criterion. (This may be difficult!)

Exercise 3.9 In Section 3.2.2, we rotate two BPSK symbols to demonstrate the possible
improvement over repetition coding in a time diversity channel with two diversity
paths. Continuing with the same model, now consider transmitting at a higher rate
using a 2n-PAM constellation for each symbol. Consider rotating the resulting 2D
constellation by a rotation matrix of the form in (3.46). Using the performance criterion
of the minimum squared product distance, construct the optimal rotation matrix.

Exercise 3.10 In Section 3.2.2, we looked at the example of the rotation code to
achieve time diversity (with the number of branches, L, equal to 2). In the text, we use
real symbols and in Exercise 3.8 we extend to complex symbols. In the latter scenario,
another coding scheme is the permutation code. Shown in Figure 3.26 are two 16-
QAM constellations. Each codeword in the permutation code for L = 2 is obtained
by picking a pair of points, one from each constellation, which are represented by the
same icon. The codeword is transmitted over two (complex) symbol times.
1. Why do you think this is called a permutation code?
2. What is the data rate of this code?
3. Compute the diversity gain and the minimum product distance for this code.
4. How does the performance of this code compare to the rotation code in Exercise 3.8,

part (3), in terms of the transmit power required?

Exercise 3.11 In the text, we considered the use of rotation codes to obtain time
diversity. Rotation codes are designed specifically for fading channels. Alternatively,
one can use standard AWGN codes like binary linear block codes. This question looks
at the diversity performance of such codes.
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Figure 3.26 A permutation
code. ♣

♣

♠

♠

Consider a perfectly interleaved Rayleigh fading channel:

y� = h�x�+w�� �= 1� � � � �L

where h� and w� are i.i.d. �� �0�1� and �� �0�N0� random variables respectively.
A �L�k� binary linear block code is specified by a k by L generator matrix G whose
entries are 0 or 1. k information bits form a k-dimensional binary-valued vector b
which is mapped into the binary codeword c=Gtb of length L, which is then mapped
into L BPSK symbols and transmitted over the fading channel.16 The receiver is
assumed to have a perfect estimate of the channel gains h�.
1. Compute a bound on the error probability of ML decoding in terms of the SNR

and parameters of the code. Hence, compute the diversity gain in terms of code
parameter(s).

2. Use your result in (1) to compute the diversity gain of the (3, 2) code with generator
matrix:

G=
[
1 0 1
0 1 1

]
� (3.163)

How does the performance of this code compare to the rate 1/2 repetition code?
3. The ML decoding is also called soft decision decoding as it takes the entire

received vector y and finds the transmitted codeword closest in Euclidean distance
to it. Alternatively, a suboptimal but lower-complexity decoder uses hard decision
decoding, which for each � first makes a hard decision ĉ� on the �th transmitted
coded symbol based only on the corresponding received symbol y�, and then finds
the codeword that is closest in Hamming distance to ĉ. Compute the diversity gain
of this scheme in terms of basic parameters of the code. How does it compare to
the diversity gain achieved by soft decision decoding? Compute the diversity gain
of the code in part (2) under hard decision decoding.

4. Suppose now you still do hard decision decoding except that you are allowed to
also declare an “erasure” on some of the transmitted symbols (i.e., you can refuse
to make a hard decision on some of the symbols). Can you design a scheme that

16 Addition and multiplication are done in the binary field.
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yields a better diversity gain than the scheme in part (3)? Can you do as well as
soft decision decoding? Justify your answers. Try your scheme out on the example
in part (2). Hint: the trick is to figure out when to declare an erasure. You may
want to start thinking of the problems in terms of the example in part (2). The
typical error event view in Exercise 3.3 may also be useful here.

Exercise 3.12 In our study of diversity models (cf. (3.31)), we have modeled the
L branches to have independent fading coefficients. Here we explore the impact of
correlation between the L diversity branches. In the time diversity scenario, consider
the correlated model: h1� � � � � hL are jointly circular symmetric complex Gaussian
with zero mean and covariance Kh (�� �0�Kh� in our notation).
1. Redo the diversity calculations for repetition coding (Section 3.2.1) for this cor-

related channel model by calculating the rate of decay of error probability with
SNR. What is the dependence of the asymptotic (in SNR) behavior of the typical
error event on the correlation Kh? You can answer this by characterizing the rate
of decay of (3.42) at high SNR (as a function of Kh).

2. We arrived at the product distance code design criterion to harvest coding gain
along with time diversity in Section 3.2.2. What is the analogous criterion for
correlated channels? Hint: Jointly complex Gaussian random vectors are related
to i.i.d. complex Gaussian vectors via a linear transformation that depends on the
covariance matrix.

3. For transmit diversity with independent fading across the transmit antennas,
we have arrived at the generalized product distance code design criterion in
Section 3.3.2. Calculate the code design criterion for the correlated fading channel
here (the channel h in (3.80) is now �� �0�Kh�).

Exercise 3.13 The optimal coherent receiver for repetition coding with L branches of
diversity is a maximal ratio combiner. For implementation reasons, a simpler receiver
one often builds is a selection combiner. It does detection based on the received signal
along the branch with the strongest gain only, and ignores the rest. For the i.i.d.
Rayleigh fading model, analyze the high SNR performance of this scheme. How much
of the inherent diversity gain can this scheme get? Quantify the performance loss from
optimal combining. Hint: You may find the techniques developed in Exercise 3.2
useful for this problem.

Exercise 3.14 It is suggested that full diversity gain can be achieved over a Rayleigh
faded MISO channel by simply transmitting the same symbol at each of the transmit
antennas simultaneously. Is this correct?

Exercise 3.15 An L×1 MISO channel can be converted into a time diversity channel
with L diversity branches by simply transmitting over one antenna at a time.
1. In this way, any code designed for a time diversity channel with L diversity branches

can be used for a MISO (multiple input single output) channel with L transmit
antennas. If the code achieves k-fold diversity in the time diversity channel, how
much diversity can it obtain in the MISO channel? What is the relationship between
the minimum product distance metric of the code when viewed as a time diversity
code and its minimum determinant metric when viewed as a transmit diversity
code?
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2. Using this transformation, the rotation code can be used as a transmit diversity
scheme. Compare the performance of this code and the Alamouti scheme in a 2×1
Rayleigh fading channel, using BPSK symbols. Which one is better? How about
using QPSK symbols?

3. Use the permutation code (cf. Figure 3.26) from Exercise 3.10 on the 2×1 Rayleigh
fading channel and compare (via a numerical simulation) its performance with
the Alamouti scheme using QPSK symbols (so the rate is the same in both the
schemes).

Exercise 3.16 In this exercise, we derive some properties a code construction must
satisfy to mimic the Alamouti scheme behavior for more than two transmit anten-
nas. Consider communication over n time slots on the L transmit antenna channel
(cf. (3.80)):

yt = h∗X+wt� (3.164)

Here X is the L×n space-time code. Over n time slots, we want to communicate L
independent constellation symbols, d1� � � � � dL; the space-time code X is a determin-
istic function of these symbols.
1. Consider the following property for every channel realization h and space-time

codeword X

�h∗X�t = Ad� (3.165)

Here we have written d = �d1� � � � � dL�
t and A = �a1� � � � �aL�, a matrix with

orthogonal columns. The vector d depends solely on the codeword X and the
matrix A depends solely on the channel h. Show that, if the space-time codeword
X satisfies the property in (3.165), the joint receiver to detect d separates into
individual linear receivers, each separately detecting d1� � � � � dL.

2. We would like the effective channel (after the linear receiver) to provide each
symbol dm (m= 1� � � � �L) with full diversity. Show that, if we impose the condition
that

�am� = �h�� m= 1� � � � L� (3.166)

then each data symbol dm has full diversity.
3. Show that a space-time code X satisfying (3.165) (the linear receiver property) and

(3.166) (the full diversity property) must be of the form

XX∗ = �d�2IL� (3.167)

i.e., the columns of X must be orthogonal. Such an X is called an orthogonal
design. Indeed, we observe that the codeword X in the Alamouti scheme (cf. (3.77))
is an orthogonal design with L= n= 2.

Exercise 3.17 This exercise is a sequel to Exercise 3.16. It turns out that if we
require n= L, then for L > 2 there are no orthogonal designs. (This result is proved
in Theorem 5.4.2 in [117].) If we settle for n > L then orthogonal designs exist for
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L > 2. In particular, Theorem 5.5.2 of [117] constructs orthogonal designs for all
L and n ≥ 2L. This does not preclude the existence of orthogonal designs with rate
larger than 0.5. A reading exercise is to study [117] where orthogonal designs with
rate larger than 0.5 are constructed.

Exercise 3.18 The pairwise error probability analysis for the i.i.d. Rayleigh fading
channel has led us to the product distance (for time diversity) and generalized product
distance (for transmit diversity) code design criteria. Extend this analysis for the i.i.d.
Rician fading channel.
1. Does the diversity order change for repetition coding over a time diversity channel

with the L branches i.i.d. Rician distributed?
2. What is the new code design criterion, analogous to product distance, based on the

pairwise error probability analysis?

Exercise 3.19 In this exercise we study the performance of space-time codes (the
subject of Section 3.3.2) in the presence of multiple receive antennas.
1. Derive, as an extension of (3.83), the pairwise error probability for space-time

codes with nr receive antennas.
2. Assuming that the channel matrix has i.i.d. Rayleigh components, derive, as an

extension of (3.86), a simple upper bound for the pairwise error probability.
3. Conclude that the code design criterion remains unchanged with multiple receive

antennas.

Exercise 3.20 We have studied the performance of the Alamouti scheme in a channel
with two transmit and one receive antenna. Suppose now we have an additional receive
antenna. Derive the ML detector for the symbols based on the received signals at both
receive antennas. Show that the scheme effectively provides two independent scalar
channels. What is the gain of each of the channels?

Exercise 3.21 In this exercise we study some expressions for error probabilities that
arise in Section 3.3.3.
1. Verify Eqs. (3.93) and (3.94). In which SNR range is (3.93) smaller than (3.94)?
2. Repeat the derivation of (3.93) and (3.94) for a general target rate of R bits/s/Hz

(suppose that R is an integer). How does the SNR range in which the spatial
multiplexing scheme performs better depend on R?

Exercise 3.22 In Section 3.3.3, the performance comparison between the spatial
multiplexing scheme and the Alamouti scheme is done for PAM symbols. Extend the
comparison to QAM symbols with the target data rate R bits/s/Hz (suppose that R≥ 4
is an even integer).

Exercise 3.23 In the text, we have developed code design criteria for pure time
diversity and pure spatial diversity scenarios. In some wireless systems, one can get
both time and spatial diversity simultaneously, and we want to develop a code design
criterion for that. More specifically, consider a channel with L transmit antennas and
1 receive antenna. The channel remains constant over blocks of k symbol times, but
changes to an independent realization every k symbols (as a result of interleaving,
say). The channel is assumed to be independent across antennas. All channel gains
are Rayleigh distributed.
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1. What is the maximal diversity gain that can be achieved by coding over n

such blocks?
2. Develop a pairwise code design criterion over this channel. Show how this criterion

reduces to the special cases we have derived for pure time and pure spatial diversity.

Exercise 3.24 A mobile having a single receive antenna sees a Rayleigh flat fading
channel

y�m�= h�m�x�m�+w�m��

where w�m� ∼ �� �0�N0� and i.i.d. and 	h�m�
 is a complex circular symmetric
stationary Gaussian process with a given correlation function R�m� which is mono-
tonically decreasing with m. (Recall that R�m� is defined to be ��h�0�h�m�∗�.)
1. Suppose now we want to put an extra antenna on the mobile at a separation d.

Can you determine, from the information given so far, the joint distribution of the
fading gains the two antennas see at a particular symbol time? If so, compute it. If
not, specify any additional information you have to assume and then compute it.

2. We transmit uncoded BPSK symbols from the base-station to the mobile with dual
antennas. Give an expression for the average error probability for the ML detector.

3. Give a back-of-the-envelope approximation to the high SNR error probability, mak-
ing explicit the effect of the correlation of the channel gains across antennas. What
is the diversity gain from having two antennas in the correlated case? How does the
error probability compare to the case when the fading gains are assumed to be inde-
pendent across antennas? What is the effect of increasing the antenna separation d?

Exercise 3.25 Show that full diversity can still be obtained with the maximum likeli-
hood sequence equalizer in Section 3.4.2 even when the channel taps h� have different
variances (but are still independent). You can use a heuristic argument based on typical
error analysis.

Exercise 3.26 Consider the maximum likelihood sequence detection described in
Section 3.4.2. We computed the achieved diversity gain but did not compute an explicit
bound on the error probability on detecting each of the symbol x�m�. Below you can
assume that BPSK modulation is used for the symbols.
1. SupposeN =L. Find a boundon the error probability of theMLSD incorrectly detect-

ingx�0�.Hint: finding theworst-case pairwise error probability does not requiremuch
calculation, but you should be a little careful in applying the union bound.

2. Use your result to estimate the coding gain over the scheme that completely avoids
ISI by sending a symbol every L symbol times. How does the coding gain depend
on L?

3. Extend your analysis to general block length N ≥ L and the detection of x�m� for
m≤ N −L.

Exercise 3.27 Consider the equalization problem described in Section 3.4.2. We
studied the performance of MLSD. In this exercise, we will look at the performance
of a linear equalizer. For simplicity, suppose N = L= 2.
1. Over the two symbol times (time 0 and time 1), one can think of the ISI channel as

a 2×2 MIMO channel between the input and output symbols. Identify the channel
matrix H.

2. The MIMO point of view suggests using, as an alternative to MLSD, the zero-
forcing (decorrelating) receiver to detect x�0� based on completely inverting the
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channel. How much diversity gain can this equalizer achieve? How does it compare
to the performance of MLSD?

Exercise 3.28 ConsideramultipathchannelwithL i.i.d.Rayleighfaded taps.Let h̃n be the
complexgain of thenth carrier in theOFDMmodulation at a particular time.Compute the
joint statistics of the gains and lend evidence to the statement that the gains of the carriers
separated by more than the coherence bandwidths are approximately independent.

Exercise 3.29 Argue that for typical wireless channels, the delay spread is much less
than the coherence time. What are the implications of this observation on: (1) an
OFDM system; (2) a direct-sequence spread-spectrum system with Rake combining?
(There may be multiple implications in each case.)

Exercise 3.30 Communication takes place at passband over a bandwidth W around
a carrier frequency of fc. Suppose the baseband equivalent discrete-time model has
a finite number of taps. We use OFDM modulation. Let h̃n�i� be the complex gain
for the nth carrier and the ith OFDM symbol. We typically assume there are a large
number of reflectors so that the tap gains of the discrete-time model can be modeled as
Gaussian distributed, but suppose we do not make this assumption here. Only relying
on natural assumptions on fc and W , argue the following. State your assumptions on
fc and W and make your argument as clear as possible.
1. At a fixed symbol time i, the h̃n�i� are identically distributed across the carriers.
2. More generally, the processes 	h̃n�i�
n have the same statistics for different n.

Exercise 3.31 Show that the square-law combiner (given by (3.147)) is the optimal
non-coherent ML detector for a channel with i.i.d. Rayleigh faded branches, and
analyze the non-coherent error probability performance (i.e., verify (3.148)).

Exercise 3.32 Consider the problem of Rake combining under channel measurement
uncertainty, discussed in Section 3.4.3. Assume a channel with L i.i.d. Rayleigh faded
branches. Suppose the channel estimation is as given in Eqs. (3.152) and (3.153).
We communicate using binary orthogonal signaling. The receive is coherent with the
channel estimates used in place of the true channel gains h�. It is not easy to compute
explicitly the error probability of this detector, but through either an approximate
analysis, numerical computation or simulation, get an idea of its performance as a
function of L. In particular, give evidence supporting the intuitive statement that, when
L� K�/N0, the performance of this detector is very poor.

Exercise 3.33 We have studied coherent performance of antipodal signaling of the
Rake receiver in Section 3.4.3. Now consider binary orthogonal modulation: we either
transmit xA or xB, which are both orthogonal and their shifts are also orthogonal with
each other. Calculate the error probability with the coherent Rake (i.e., verify (3.149)).
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4 Cellular systems: multiple access
and interference management

4.1 Introduction

In Chapter 3, our focus was on point-to-point communication, i.e., the sce-
nario of a single transmitter and a single receiver. In this chapter, we turn to
a network of many mobile users interested in communicating with a common
wireline network infrastructure.1 This form of wireless communication is dif-
ferent from radio or TV in two important respects: first, users are interested in
messages specific to them as opposed to the common message that is broad-
cast in radio and TV. Second, there is two-way communication between the
users and the network. In particular, this allows feedback from the receiver to
the transmitter, which is missing in radio and TV. This form of communica-
tion is also different from the all-wireless walkie-talkie communication since
an access to a wireline network infrastructure is demanded. Cellular systems
address such a multiuser communication scenario and form the focus of this
chapter.

Broadly speaking, two types of spectra are available for commercial cel-
lular systems. The first is licensed, typically nationwide and over a period
of a few years, from the spectrum regulatory agency (FCC, in the United
States). The second is unlicensed spectrum made available for experimental
systems and to aid development of new wireless technologies. While licens-
ing spectrum provides immunity from any kind of interference outside of
the system itself, bandwidth is very expensive. This skews the engineering
design of the wireless system to be as spectrally efficient as possible. There
are no hard constraints on the power transmitted within the licensed spectrum
but the power is expected to decay rapidly outside. On the other hand, unli-
censed spectrum is very cheap to transmit on (and correspondingly larger

1 A common example of such a network (wireline, albeit) is the public switched telephone
network.
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than licensed spectrum) but there is a maximum power constraint over the
entire spectrum as well as interference to deal with. The emphasis thus is
less on spectral efficiency. The engineering design can thus be very different
depending on whether the spectrum is licensed or not. In this chapter, we
focus on cellular systems that are designed to work on licensed spectrum.
Such cellular systems have been deployed nationwide and one of the driving
factors for the use of licensed spectrum for such networks is the risk of huge
capital investment if one has to deal with malicious interference, as would be
the case in unlicensed bands.
A cellular network consists of a number of fixed base-stations, one for each

cell. The total coverage area is divided into cells and a mobile communicates
with the base-station(s) close to it. (See Figure 1.2.) At the physical and
medium access layers, there are two main issues in cellular communication:
multiple access and interference management. The first issue addresses how
the overall resource (time, frequency, and space) of the system is shared
by the users in the same cell (intra-cell) and the second issue addresses the
interference caused by simultaneous signal transmissions in different cells
(inter-cell). At the network layer, an important issue is that of seamless
connectivity to the mobile as it moves from one cell to the other (and thus
switching communication from one base-station to the other, an operation
known as handoff). In this chapter we will focus primarily on the physical-
layer issues of multiple access and interference management, although we
will see that in some instances these issues are also coupled with how handoff
is done.
In addition to resource sharing between different users, there is also an

issue of how the resource is allocated between the uplink (the communication
from the mobile users to the base-station, also called the reverse link) and
the downlink (the communication from the base-station to the mobile users,
also called the forward link). There are two natural strategies for separating
resources between the uplink and the downlink: time division duplex (TDD)
separates the transmissions in time and frequency division duplex (FDD)
achieves the separation in frequency. Most commercial cellular systems are
based on FDD. Since the powers of the transmitted and received signals
typically differ by more than 100 dB at the transmitter, the signals in each
direction occupy bands that are separated far apart (tens of MHz), and a

Sector 3 Sector 1

Sector 2

Figure 4.1 A hexagonal cell
with three sectors.

device called a duplexer is required to filter out any interference between the
two bands.
A cellular network provides coverage of the entire area by dividing it into

cells. We can carry this idea further by dividing each cell spatially. This is
called sectorization and involves dividing the cell into, say three, sectors.
Figure 4.1 shows such a division of a hexagonal cell. One way to think
about sectors is to consider them as separate cells, except that the base-station
corresponding to the sectors is at the same location. Sectorization is achieved
by having a directional antenna at the base-station that focuses transmissions
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into the sector of interest, and is designed to have a null in the other sectors.
The ideal end result is an effective creation of new cells without the added
burden of new base-stations and network infrastructure. Sectorization is most
effective when the base-station is quite tall with few obstacles surrounding
it. Even in this ideal situation, there is inter-sector interference. On the other
hand, if there is substantial local scattering around the base-station, as is the
case when the base-stations are low-lying (such as on the top of lamp posts),
sectorization is far less effective because the scattering and reflection would
transfer energy to sectors other than the one intended. We will discuss the
impact of sectorization on the choice of the system design.
In this chapter, we study three cellular system designs as case studies

to illustrate several different approaches to multiple access and interference
management. Both the uplink and the downlink designs will be studied. In the
first system, which can be termed a narrowband system, user transmissions
within a cell are restricted to separate narrowband channels. Further, neigh-
boring cells use different narrowband channels for user transmissions. This
requires that the total bandwidth be split and reduces the frequency reuse in
the network. However, the network can now be simplified and approximated
by a collection of point-to-point non-interfering links, and the physical-layer
issues are essentially point-to-point ones. The IS-136 and GSM standards are
prime examples of this system. Since the level of interference is kept minimal,
the point-to-point links typically have high signal-to-interference-plus-noise
ratios (SINRs).2

The second and third system designs propose a contrasting strategy: all
transmissions are spread to the entire bandwidth and are hence wideband.
The key feature of these systems is universal frequency reuse: the same
spectrum is used in every cell. However, simultaneous transmissions can now
interfere with each other and links typically operate at low SINRs. The two
system designs differ in how the users’ signals are spread. The code division
multiple access (CDMA) system is based on direct-sequence spread-spectrum.
Here, users’ information bits are coded at a very low rate and modulated by
pseudonoise sequences. In this system, the simultaneous transmissions, intra-
cell and inter-cell, cause interference. The IS-95 standard is the main example
to highlight the design features of this system. In the orthogonal frequency
division multiplexing (OFDM) system, on the other hand, users’ information is
spread by hopping in the time–frequency grid. Here, the transmissions within
a cell can be kept orthogonal but adjacent cells share the same bandwidth
and inter-cell interference still exists. This system has the advantage of the
full frequency reuse of CDMA while retaining the benefits of the narrowband
system where there is no intra-cell interference.

2 Since interference plays an important role in multiuser systems, SINR takes the place
of the parameter SNR we used in Chapter 3 when we only talked about point-to-point
communication.
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We also study the power profiles of the signals transmitted in these systems.
This study will be conducted for both the downlink and the uplink to obtain
an understanding of the peak and average power profile of the transmissions.
We conclude by detailing the impact on power amplifier settings and overall
power consumption in the three systems.
Towards implementing the multiple access design, there is an overhead

in terms of communicating certain parameters from the base-station to the
mobiles and vice versa. They include: authentication of the mobile by the
network, allocation of traffic channels, training data for channel measurement,
transmit power level, and acknowledgement of correct reception of data.
Some of these parameters are one-time communication for a mobile; others
continue in time. The amount of overhead this constitutes depends to some
extent on the design of the system itself. Our discussions include this topic
only when a significant overhead is caused by a specific design choice.
The table at the end of the chapter summarizes the key properties of the

three systems.

4.2 Narrowband cellular systems

In this section, we discuss a cellular system design that uses naturally the
ideas of reliable point-to-point wireless communication towards constructing
a wireless network. The basic idea is to schedule all transmissions so that no
two simultaneous transmissions interfere with each other (for the most part).
We describe an identical uplink and downlink design of multiple access and
interference management that can be termed narrowband to signify that the
user transmissions are restricted to a narrow frequency band and the main
design goal is to minimize all interference.
Our description of the narrowband system is the same for the uplink and

the downlink. The uplink and downlink transmissions are separated, either
in time or frequency. For concreteness, let us consider the separation to be
in frequency, implemented by adopting an FDD scheme which uses widely
separated frequency bands for the two types of transmissions. A bandwidth of
W Hz is allocated for the uplink as well as for the downlink. Transmissions of
different users are scheduled to be non-overlapping in time and frequency thus
eliminating intra-cell interference. Depending on how the overall resource
(time and bandwidth) is split among transmissions to the users, the system
performance and design implications of the receivers are affected.
We first divide the bandwidth into N narrowband chunks (also denoted as

channels). Each narrowband channel has width W/N Hz. Each cell is allotted
some n of these N channels. These n channels are not necessarily contigu-
ous. The idea behind this allocation is that all transmissions within this cell
(in both the uplink and the downlink) are restricted to those n channels.
To prevent interference between simultaneous transmissions in neighboring
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Figure 4.2 A hexagonal
arrangements of cells and a
possible reuse pattern of
channels 1 through 7 with the
condition that a channel
cannot be used in one
concentric ring of cells around
the cell using it. The frequency
reuse factor is 1/7.
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cells, a channel is allocated to a cell only if it is not used by a few con-
centric rings of neighboring cells. Assuming a regular hexagonal cellular
arrangement, Figure 4.2 depicts cells that can use the same channel simulta-
neously (such cells are denoted by the same number) if we want to avoid any
neighboring cell from using the same channel.
The maximum number n of channels that a cell can be allocated depends

on the geometry of the cellular arrangement and on the interference avoid-
ance pattern that dictates which cells can share the same channel. The ratio
n/N denotes how often a channel can be reused and is termed the frequency
reuse factor. In the regular hexagonal model of Figure 4.2, for example, the
frequency reuse factor is at least 1/7. In other words, W/7 is the effective
bandwidth used by any base-station. This reduced spectral efficiency is the
price paid up front towards satisfying the design goal of reducing all interfer-
ence from neighboring base-stations. The specific reuse pattern in Figure 4.2
is ad hoc. A more careful analysis of the channel allocation to suit traffic
conditions and the effect of reuse patterns among the cells is carried out in
Exercises 4.1, 4.2, and 4.3.
Within a cell, different users are allocated transmissions that are non-

overlapping, in both time and channels. The nature of this allocation affects
various aspects of system design. To get a concrete feel for the issues involved,
we treat one specific way of allocation that is used in the GSM system.

4.2.1 Narrowband allocations: GSM system

The GSM system has already been introduced in Example 3.1. Each narrow-
band channel has bandwidth 200 kHz (i.e. W/N = 200kHz). Time is divided
into slots of length T = 577�s. The time slots in the different channels are the
finest divisible resources allocated to the users. Over each slot, n simultaneous
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user transmissions are scheduled within a cell, one in each of the narrowband
channels. To minimize the co-channel interference, these n channels have to
be chosen as far apart in frequency as possible. Furthermore, each narrowband
channel is shared among eight users in a time-division manner. Since voice is
a fixed rate application with predictable traffic, each user is periodically allo-
cated a slot out of every eight. Due to the nature of resource allocation (time
and frequency), transmissions suffer no interference from within the cell and
further see minimal interference from neighboring cells. Hence the network
is stitched out of several point-to-point non-interfering wireless links with
transmissions over a narrow frequency band, justifying our term “narrowband
system” to denote this design paradigm.
Since the allocations are static, the issues of frequency and timing synchro-

nization are the same as those faced by point-to-point wireless communication.
The symmetric nature of voice traffic also enables a symmetric design of
the uplink and the downlink. Due to the lack of interference, the operating
received SINRs can be fairly large (up to 30 dB), and the communication
scheme in both the uplink and the downlink is coherent. This involves learn-
ing the narrowband channel through the use of training symbols (or pilots),
which are time-division multiplexed with the data in each slot.

Performance
What is the link reliability? Since the slot length T is fairly small, it is
typically within the coherence time of the channel and there is not much time
diversity. Further, the transmission is restricted to a contiguous bandwidth
200 kHz that is fairly narrow. In a typical outdoor scenario the delay spread is
of the order of 1�s and this translates to a coherence bandwidth of 500 kHz,
significantly larger than the bandwidth of the channel. Thus there is not much
frequency diversity either. The tough message of Chapter 3 that the error
probability decays very slowly with the SNR is looming large in this scenario.
As discussed in Example 3.1 of Chapter 3, GSM solves this problem by
coding over eight consecutive time slots to extract a combination of time and
frequency diversity (the latter via slow frequency hopping of the frames, each
made up of the eight time slots of the users sharing a narrowband channel).
Moreover, voice quality not only depends on the average frame error rate but
also on how clustered the errors are. A cluster of errors leads to a far more
noticeable quality degradation than independent frame errors even though the
average frame error rate is the same in both the scenarios. Thus, the frequency
hopping serves to break up the cluster of errors as well.

Signal characteristics and receiver design
The mobile user receives signals with energy concentrated in a contiguous,
narrow bandwidth (of width (W/N ), 200 kHz in the GSM standard). Hence
the sample rate can be small and the sampling period is of the order of N/W
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(5�s in the GSM standard). All the signal processing operations are driven off
this low rate, simplifying the implementation demands on the receiver design.
While the sample rate is small, it might still be enough to resolve multipaths.
Let us consider the signals transmitted by a mobile and by the base-station.

The average transmit power in the signal determines the performance of the
communication scheme. On the other hand, certain devices in the RF chain
that carry the transmit signal have to be designed for the peak power of the
signal. In particular, the current bias setting of the power amplifier is directly
proportional to the peak signal power. Typically class AB power amplifiers
are used due to the linearity required by the spectrally efficient modulation
schemes. Further, class AB amplifiers are very power inefficient and their
cost (both capital cost and operating cost) is proportional to the bias setting
(the range over which linearity is to be maintained). Thus an engineering
constraint is to design transmit signals with reduced peak power for a given
average power level. One way to capture this constraint is by studying the
peak to average power ratio (PAPR) of the transmit signal. This constraint is
particularly important in the mobile where power is a very scarce resource,
as compared to the base-station.
Let us first turn to the signal transmitted by the mobile user (in the uplink).

The signal over a slot is confined to a contiguous narrow frequency band
(of width 200 kHz). In GSM, data is modulated on to this single-carrier using
constant amplitude modulation schemes. In this context, the PAPR of the
transmitted signal is fairly small (see Exercise 4.4), and is not much of a
design issue. On the other hand, the signal transmitted from the base-station is
a superposition of n such signals, one for each of the 200 kHz channels. The
aggregate signal (when viewed in the time domain) has a larger PAPR, but the
base-station is usually provided with an AC supply and power consumption
is not as much of an issue as in the uplink. Further, the PAPR of the signal
at the base-station is of the same order in most system designs.

4.2.2 Impact on network and system design

The specific division of resources here in conjunction with a static allocation
among the users simplified the design complexities of multiple access and
interference management in the network. There is however no free lunch.
Two main types of price have to be paid in this design choice. The first is
the physical-layer price of the inefficient use of the total bandwidth (mea-
sured through the frequency reuse factor). The second is the complexity of
network planning. The orthogonal design entails a frequency division that has
to be done up front in a global manner. This includes a careful study of the
topology of the base-stations and shadowing conditions to arrive at accept-
able interference from a base-station reusing one of the N channels. While
Figure 4.2 demonstrated a rather simple setting with a suggestively simple
design of reuse pattern, this study is quite involved in a real world system.
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Further, the introduction of base-stations is done in an incremental way in
real systems. Initially, enough base-stations to provide coverage are installed
and new ones are added when the existing ones are overloaded. Any new
base-station introduced in an area will require reconfiguring the assignment
of channels to the base-stations in the neighborhood.

The nature of orthogonal allocations allows a high SINR link to most
users, regardless of their location in the cell. Thus, the design is geared to
allow the system to operate at about the same SINR levels for mobiles that
are close to the base-stations as well as those that are at the edge of the
cell. How does sectorization affect this design? Though sectored antennas
are designed to isolate the transmissions of neighboring sectors, in practice,
inter-sector interference is seen by the mobile users, particularly those at the
edge of the sector. One implication of reusing the channels among the sectors
of the same cell is that the dynamic range of SINR is reduced due to the
intra-sector interference. This means that neighboring sectors cannot reuse
the same channels while at the same time following the design principles
of this system. To conclude, the gains of sectorization come not so much
from frequency reuse as from an antenna gain and the improved capacity of
the cell.

4.2.3 Impact on frequency reuse

How robust is this design towards allowing neighboring base-stations to reuse
the same set of channels? To answer this question, let us focus on a specific
scenario. We consider the uplink of a base-station one of whose neighboring
base-stations uses the same set of channels. To study the performance of the
uplink with this added interference, let us assume that there are enough users
so that all channels are in use. Over one slot, a user transmission interferes
directly with another transmission in the neighboring cell that uses the same
channel. A simple model for the SINR at the base-station over a slot for one
particular user uplink transmission is the following:

SINR= P�h�2
N0 + I

�

The numerator is the received power at the base-station due to the user
transmission of interest with P denoting the average received power and �h�2
the fading channel gain (with unit mean). The denominator consists of the
background noise �N0� and an extra term due to the interference from the
user in the neighboring cell. I denotes the interference and is modeled as a
random variable with a mean typically smaller than P (say equal to 0�2P).
The interference from the neighboring cell is random due to two reasons.
One of them is small-scale fading and the other is the physical location of
the user in the other cell that is reusing the same channel. The mean of I
represents the average interference caused, averaged over all locations from
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which it could originate and the channel variations. But due to the fact that
the interfering user can be at a wide range of locations, the variance of I is
quite high.
We see that the SINR is a random parameter leading to an undesirably poor

performance. There is an appreciably high probability of unreliable trans-
mission of even a small and fixed data rate in the frame. In Chapter 3, we
focused on techniques that impart channel diversity to the system; for exam-
ple, antenna diversity techniques make the channel less variable, improving
performance. However, there is an important distinction in the variability
of the SINR here that cannot be improved by the diversity techniques of
Chapter 3. The randomness in the interference I due to the interferer’s loca-
tion is inherent in this system and remains. Due to this, we can conclude that
narrowband systems are unsuitable for universal frequency reuse. To reduce
the randomness in the SINR, we would really like the interference to be
averaged over several simultaneous lower-powered transmissions from the
neighboring cell instead of coming from one user only. This is one of the
important underlying themes in the design of the next two systems that have
universal frequency reuse.

Summary 4.1 Narrowband systems

Orthogonal narrowband channels are assigned to users within a cell.

Users in adjacent cells cannot be assigned the same channel due to the
lack of interference averaging across users. This reduces the frequency
reuse factor and leads to inefficient use of the total bandwidth.

The network is decomposed into a set of high SINR point-to-point links,
simplifying the physical-layer design.

Frequency planning is complex, particularly when new cells have to be
added.

4.3 Wideband systems: CDMA

In narrowband systems, users are assigned disjoint time-frequency slots within
the cell, and users in adjacent cells are assigned different frequency bands.
The network is decomposed into a set of point-to-point non-interfering links.
In a code division multiple access (CDMA) system design, the multiple
access and interference management strategies are different. Using the direct-
sequence spread-spectrum technique briefly mentioned in Section 3.4.3, each
user spreads its signal over the entire bandwidth, such that when demodulating
any particular user’s data, other users’ signals appear as pseudo white noise.
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Thus, not only all users in the same cell share all the time-frequency degrees
of freedom, so do the users in different cells. Universal frequency reuse is a
key property of CDMA systems.
Roughly, the design philosophy of CDMA systems can be broken down

into two design goals:

• First, the interference seen by any user is made as similar to white Gaussian
noise as possible, and the power of that interference is kept to a minimum
level and as consistent as possible. This is achieved by:
• Making the received signal of every user as random looking as possible,

via modulating the coded bits onto a long pseudonoise sequence.
• Tight power control among users within the same cell to ensure that the

received power of each user is no more than the minimum level needed
for demodulation. This is so that the interference from users closer to
the base-station will not overwhelm users further away (the so-called
near–far problem).

• Averaging the interference of many geographically distributed users in
nearby cells. This averaging not only makes the aggregate interference
look Gaussian, but more importantly reduces the randomness of the inter-
ference level due to varying locations of the interferers, thus increasing
link reliability. This is the key reason why universal frequency reuse is
possible in a wideband system but impossible in a narrowband system.

• Assuming the first design goal is met, each user sees a point-to-point
wideband fading channel with additive Gaussian noise. Diversity techniques
introduced in Chapter 3, such as coding, time-interleaving, Rake combining
and antenna diversity, can be employed to improve the reliability of these
point-to-point links.

Thus, CDMA is different from narrowband system design in the sense that
all users share all degrees of freedom and therefore interfere with each other:
the system is interference-limited rather than degree-of-freedom-limited. On
the other hand, it is similar in the sense that the design philosophy is still
to decompose the network problem into a set of independent point-to-point
links, only now each link sees both interference as well as the background
thermal noise. We do not question this design philosophy here, but we will
see that there are alternative approaches in later chapters. In this section, we
confine ourselves to discussing the various components of a CDMA system in
the quest to meet the two design goals. We use the IS-95 standard to discuss
concretely the translation of the design goals into a real system.

Compared to the narrowband systems described in the previous section,
CDMA has several potential benefits:

• Universal frequency reuse means that users in all cells get the full band-
width or degrees of freedom of the system. In narrowband systems, the
number of degrees of freedom per user is reduced by both the number of
users sharing the resources within a cell as well as by the frequency-reuse
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factor. This increase in degrees of freedom per user of a CDMA system
however comes at the expense of a lower signal-to-interference-plus-noise
ratio (SINR) per degree of freedom of the individual links.

• Because the performance of a user depends only on the aggregate inter-
ference level, the CDMA approach automatically takes advantage of the
source variability of users; if a user stops transmitting data, the total inter-
ference level automatically goes down and benefits all the other users.
Assuming that users’ activities are independent of each other, this provides
a statistical multiplexing effect to enable the system to accommodate more
users than would be possible if every user were transmitting continuously.
Unlike narrowband systems, no explicit re-assignment of time or frequency
slots is required.

• In a narrowband system, new users cannot be admitted into a network
once the time–frequency slots run out. This imposes a hard capacity limit
on the system. In contrast, increasing the number of users in a CDMA
system increases the total level of interference. This allows a more graceful
degradation on the performance of a system and provides a soft capacity
limit on the system.

• Since all cells share a common spectrum, a user on the edge of a cell can
receive or transmit signals to two or more base-stations to improve recep-
tion. This is called soft handoff, and is yet another diversity technique, but
at the network level (sometimes called macrodiversity). It is an important
mechanism to increase the capacity of CDMA systems.

In addition to these network benefits, there is a further link-level advantage
over narrowband systems: every user in a CDMA experiences a wideband
fading channel and can therefore exploit the inherent frequency diversity in
the system. This is particularly important in a slow fading environment where
there is a lack of time diversity. It significantly reduces the fade margin of
the system (the increased SINR required to achieve the same error probability
as in an AWGN channel).

On the cons side, it should be noted that the performance of CDMA sys-
tems depends crucially on accurate power control, as the channel attenuation
of nearby and cell edge users can differ by many tens of dBs. This requires
frequent feedback of power control information and incurs a significant over-
head per active user. In contrast, tight power control is not necessary in
narrowband systems, and power control is exercised mainly for reducing bat-
tery consumption rather than managing interference. Also, it is important in
a CDMA system that there be sufficient averaging of out-of-cell interference.
While this assumption is rather reasonable in the uplink because the interfer-
ence comes from many weak users, it is more questionable in the downlink,
where the interference comes from a few strong adjacent base-stations.3

3 In fact, the downlink of IS-95 is the capacity limiting link.
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A comprehensive capacity comparison between CDMA and narrowband
systems depends on the specific coding schemes and power control strategies,
the channel propagation models, the traffic characteristics and arrival patterns
of the users, etc. and is beyond the scope of this book. Moreover, many of
the advantages of CDMA outlined above are qualitative and can probably be
achieved in the narrowband system, albeit with a more complex engineering
design. We focus here on a qualitative discussion on the key features of a
CDMA system, backed up by some simple analysis to gain some insights into
these features. In Chapter 5, we look at a simplified cellular setting and apply
some basic information theory to analyze the tradeoff between the increase
in degrees of freedom and the increase in the level of interference due to
universal frequency reuse.
In a CDMA system, users interact through the interference they cause each

other. We discuss ways to manage that interference and analyze its effect on
performance. For concreteness, we first focus on the uplink and then move
on to the downlink. Even though there are many similarities in their design,
there are several differences worth pointing out.

4.3.1 CDMA uplink

The general schematic of the uplink of a CDMA system with K users in the
system is shown in Figure 4.3. A fraction of the K users are in the cell and the
rest are outside the cell. The data of the kth user are encoded into two BPSK
sequences4 	aI

k�m�
 and 	a
Q
k �m�
, which we assume to have equal amplitude

for all m. Each sequence is modulated by a pseudonoise sequence, so that the
transmitted complex sequence is

xk�m�= aI
k�m�s

I
k�m�+ jaQ

k �m�s
Q
k �m�� m= 1�2� � � � � (4.1)

where 	sIk�m�
 and 	sQk �m�
 are pseudonoise sequences taking values ±1.
Recall that m is called a chip time. Typically, the chip rate is much larger than
the data rate.5 Consequently, information bits are heavily coded and the coded
sequences 	aI

k�m�
 and 	aQ
k �M�
 have a lot of redundancy. The transmitted

sequence of user k goes through a discrete-time baseband equivalent multipath
channel h�k� and is superimposed at the receiver:

y�m�=
K∑
k=1

(∑
�

h
�k�
� �m�xk�m−��

)
+w�m�� (4.2)

The fading channels 	h�k�
 are assumed to be independent across users, in
addition to the assumption of independence across taps made in Section 3.4.3.

4 Since CDMA systems operate at very low SINR per degree of freedom, a binary modulation
alphabet is always used.

5 In IS-95, the chip rate is 1.2288MHz and the data rate is 9.6 kbits/s or less.
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Figure 4.3 Schematic of the
CDMA uplink.
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The receiver for user k multiplies the I and Q components of the output
sequence 	y�m�
 by the pseudonoise sequences 	sIk�m�
 and 	s

Q
k �m�
 respec-

tively to extract the coded streams of user k, which are then fed into a
demodulator to recover the information bits. Note that in practice, the users’
signals arrive asynchronously at the transmitter but we are making the ide-
alistic assumption that users are chip-synchronous, so that the discrete-time
model in Chapter 2 can be extended to the multiuser scenario here. Also, we
are making the assumption that the receiver is already synchronized with each
of the transmitters. In practice, there is a timing acquisition process by which
such synchronization is achieved and maintained. Basically, it is a hypothesis
testing problem, in which each hypothesis corresponds to a possible relative
delay between the transmitter and the receiver. The challenge here is that
because timing has to be accurate to the level of a chip, there are many
hypotheses to consider and efficient search procedures are needed. Some of
these procedures are detailed in Chapter 3 of [140].

Generation of pseudonoise sequences
The pseudonoise sequences are typically generated by maximum length shift
registers. For a shift register of memory length r, the value of the sequence
at time m is a linear function (in the binary field of 	0�1
) of the values at
time m− 1�m− 2� � � � �m− r (its state). Thus, these binary 0−1 sequences
are periodic, and the maximum period length is p = 2r − 1, the number of
non-zero states of the register.6 This occurs when, starting from any non-
zero state, the shift register goes through all possible 2r −1 distinct non-zero
states before returning to that state. Maximum length shift register (MLSR)
sequences have this maximum periodic length, and they exist even for r very

6 Starting from the zero state, the register will remain at the zero state, so the zero state cannot
be part of such a period.
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large. For CDMA applications, typically, r is somewhere between 20 and
50, thus the period is very long. Note that the generation of the sequence is
a deterministic process, and the only randomness is in the initial state. An
equivalent way to say this is that realizations of MLSR sequences are random
shifts of each other.
The desired pseudonoise sequence 	s�m�
 can be obtained from an MLSR

sequence simply by mapping each value from 0 to +1 and from 1 to −1. This
pseudonoise sequence has the following characteristics which make it look
like a typical realization of a Bernoulli coin-flipped sequence ([52, 140]):

•
1
p

p∑
m=1

s�m�= − 1
p
� (4.3)

i.e., the fraction of 0’s and 1’s is almost half-and-half over the period p.
• For all � 
= 0:

1
p

p∑
m=1

s�m�s�m+��= − 1
p
� (4.4)

i.e., the shifted versions of the pseudonoise sequence are nearly orthogonal
to each other.

For memory r = 2, the period is 3 and the MLSR sequence is 110110110 …
The states 11, 10, 01 appear in succession within each period. 00 does not
appear, and this is the reason why the sum in (4.3) is not zero. However, this
imbalance is very small when the period p is large.

If we randomize the shift of the pseudonoise sequence (i.e., uniformly
chosen initial state of the shift register), then it becomes a random process.
The above properties suggest that the resulting process is approximately like
an i.i.d. Bernoulli sequence over a long time-scale (since p is very large).
We will make this assumption below in our analysis of the statistics of the
interference.

Statistics of the interference
In a CDMA system, the signal of one user is typically demodulated treating
other users’ signals as interference. The link level performance then depends
on the statistics of the interference. Focusing on the demodulation of user 1,
the aggregate interference it sees is

I�m� �=∑
k>1

(∑
�

h
�k�
� �m�xk�m−��

)
� (4.5)

	I�m�
 has zero mean. Since the fading processes are circular symmetric,
the process 	I�m�
 is circular symmetric as well. The second-order statistics
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are then characterized by ��I�m�I�m+ ��∗� for � = 0�1� � � They can be
computed as

���I�m��2�=∑
k>1

�c
k� ��I�m�I�m+��∗�= 0 for� 
= 0� (4.6)

where

�c
k �= ���xk�m��2�

∑
�

���h�k�� �m��2� (4.7)

is the total average energy received per chip from the kth user due to the
multipath. In the above variance calculation, we make use of the fact that
��xk�m�xk�m+��∗�= 0 (for � 
= 0), due to the random nature of the spreading
sequences. Note that in computing these statistics, we are averaging over both
the data and the fading gains of the other users.
When there are many users in the network, and none of them contributes to a

significant part of the interference, the Central Limit Theorem can be invoked
to justify a Gaussian approximation of the interference process. From the
second-order statistics, we see that this process is white. Hence, a reasonable
approximation from the point of view of designing the point-to-point link for
user 1 is to consider it as a multipath fading channel with white Gaussian
noise of power

∑
k>1 �

c
k+N0.

7

We have made the assumption that none of the users contributes a large
part of the interference. This is a reasonable assumption due to two important
mechanisms in a CDMA system:

• Power control The transmit powers of the users within the cell are con-
trolled to solve the near–far problem, and this makes sure that there is no
significant intra-cell interferer.

• Soft handoff Each base-station that receives a mobile’s signal will attempt
to decode its data and send them to the MSC (mobile switching center)
together with some measure of the quality of the reception. The MSC will
select the one with the highest quality of reception. Typically the user’s
power will be controlled by the base-station which has the best reception.
This reduces the chance that some significant out-of-cell interferer is not
power controlled.

We will discuss these two mechanisms in more detail later on.

Point-to-point link design
We have already discussed to some extent the design issues of the point-to-
point link in a DS spread-spectrum system in Section 3.4.3. In the context

7 This approach is by no means optimal, however. We will see in Chapter 6 that better
performance can be achieved by recognizing that the interference consists of the data of the
other users that can in fact be decoded.
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of the CDMA system, the only difference here is that we are now facing the
aggregation of both interference and noise.
The link level performance of user 1 depends on the SINR:

SINRc �=
�c
1∑

k>1 �
c
k+N0

� (4.8)

Note that this is the SINR per chip. The first observation is that typically
the SINR per chip is very small. For example, if we consider a system with
K perfectly power controlled users in the cell, even ignoring the out-of-cell
interference and background noise, SINRc is 1/�K−1�. In a cell with 31 users,
this is −15dB. In IS-95, a typical level of out-of-cell interference is 0.6 of the
interference from within the cell. (The background noise, on the other hand, is
often negligible in CDMA systems, which are primarily interference-limited.)
This reduces the SINRc further to −17dB.
How can we demodulate the transmitted signal at such low SINR? To see

this in the simplest setting, let us consider an unfaded channel for user 1 and
consider the simple example of BPSK modulation with coherent detection
discussed in Section 3.4.3, where each information bit is modulated onto
a pseudonoise sequence of length G chips. In the system discussed here
which uses a long pseudonoise sequence 	s�m�
 (cf. Figure 4.3), this cor-
responds to repeating every BPSK symbol G times, aI1�Gi+m� = aI1�Gi��

m = 1� � � � �G− 1.8 The detection of the 0th information symbol is accom-
plished by projecting the in-phase component of the received signal onto the
sequence u= �sI1�0�� s

I
1�1�� � � � � s

I
1�G−1��t, and the error probability is

pe =Q

(√
2�u�2�c

1∑
k>1 �

c
k+N0

)
=Q

(√
2G�c

1∑
k>1 �

c
k+N0

)
=Q

(√
2�b∑

k>1 �
c
k+N0

)
(4.9)

where �b �=G�c
1 is the received energy per bit for user 1. Thus, we see that

while the SINR per chip is low, the SINR per bit is increased by a factor of
G, due to the averaging of the noise in the G chips over which we repeat the
information bits. In terms of system parameters, G =W/R, where W Hz is
the bandwidth and R bits/s is the data rate. Recall that this parameter is called
the processing gain of the system, and we see its role here as increasing the
effective SINR against a large amount of interference that the user faces. As
we scale up the size of a CDMA system by increasing the bandwidth W

and the number of users in the system proportionally, but keeping the data
rate of each user R fixed, we see that the total interference

∑
k>1 �

c
k and the

8 As mentioned, a pseudonoise sequence typically has a period ranging from 220 to 250 chips,
much larger than the processing gain G. In contrast, short pseudonoise sequences are used in
the IS-95 downlink to uniquely identify the individual sector or cell.
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processing gain G increase proportionally as well. This means that CDMA isFigure 4.4 The IS-95 uplink.

an inherently scalable multiple access scheme.9

IS-95 link design
The above scheme is based on repetition coding. By using more sophisti-
cated low-rate codes, even better performance can be achieved. Moreover,
in practice the actual channel is a multipath fading channel, and so tech-
niques such as time-interleaving and the Rake receiver are important to
obtain time and frequency diversity respectively. IS-95, for example, uses a
combination of convolutional coding, interleaving and non-coherent demod-
ulation of M-ary orthogonal symbols via a Rake receiver. (See Figure 4.4.)
Compressed voice at rate 9.6 kbits/s is encoded using a rate 1/3, constraint
length 9, convolutional code. The coded bits are time-interleaved at the level
of 6-bit blocks, and each of these blocks is mapped into one of 26 = 64
orthogonal Hadamard sequences,10 each of length 64. Finally, each symbol
of the Hadamard sequence is repeated four times to form the coded sequence
	aI�m�
. The processing gain is seen to be 3 ·64/6 ·4= 128, with a resulting
chip rate of 128 ·9�6= 1�2288Mchips/s.

Each of the 6-bit blocks is demodulated non-coherently using a Rake
receiver. In the binary orthogonal modulation example in Section 3.5.1, for
each orthogonal sequence the non-coherent detector computes the correlation

9 But note that as the bandwidth gets wider and wider, channel uncertainty may eventually
become the bottleneck, as we have seen in Section 3.5.

10 The Hadamard sequences of length M = 2J are the orthogonal columns of the M by
M matrix HM , defined recursively as H1 = �1� and for M ≥ 2:

HM =
[
HM/2 HM/2

HM/2 −HM/2

]
�
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along each diversity branch (finger) and then forms the sum of the squares.
It then decides in favor of the sequence with the largest sum (the square-
law detector). (Recall the discussion around (3.147).) Here, each 6-bit block
should be thought of as a coded symbol of an outer convolutional code, and
we are not interested in hard decision of the block. Instead, we would like to
calculate the branch metric for each of the possible values of the 6-bit block,
for use by a Viterbi decoder for the outer convolutional code. It happens
that the sum of the squares above can be used as a metric, so that the Rake
receiver structure can be used for this purpose as well. It should be noted
that it is important that the time-interleaving be done at the level of the 6-bit
blocks so that the channel remains constant within the chips associated with
each such block. Otherwise non-coherent demodulation cannot be performed.
The IS-95 uplink design employs non-coherent demodulation. Another

design option is to estimate the channel using a pilot signal and perform
coherent demodulation. This option is adopted for CDMA 2000.

Power control
The link-level performance of a user is a function of its SINR. To achieve
reliable communication, the SINR, or equivalently the ratio of the energy
per bit to the interference and noise per chip (commonly called �b/I0 in the
CDMA literature), should be above a certain threshold. This threshold depends
on the specific code used, as well as the multipath channel statistics. For
example, a typical �b/I0 threshold in the IS-95 system is 6 to 7 dB. In a mobile
communication system, the attenuation of both the user of interest and the
interferers varies as the users move, due to varying path loss and shadowing
effects. To maintain a target SINR, transmit power control is needed.
The power control problem can be formulated in the network setting as

follows. There are K users in total in the system and a number of cells
(base-stations). Suppose user k is assigned to base-station ck. Let Pk be the
transmit power of user k, and gkm be the attenuation of user k’s signal to base-
station m.

The received energy per chip for user k at base-station m is simply given by
Pkgkm/W . Using the expression (4.8), we see that if each user’s target �b/I0
is �, then the transmit powers of the users should be controlled such that

GPkgk�ck∑
n 
=k Pngn�ck +N0W

≥ �� k= 1� � � � �K� (4.10)

where G = W/R is the processing gain of the system. Moreover, due to
constraints on the dynamic range of the transmitting mobiles, there is a limit
of the transmit powers as well:

Pk ≤ P̂� k= 1� � � � �K� (4.11)
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These inequalities define the set of all feasible power vectors P �=
�P1� � � � �PK�

t, and this set is a function of the attenuation of the users.
If this set is empty, then the SINR requirements of the users cannot be
simultaneously met. The system is said to be in outage. On the other hand,
whenever this set of feasible powers is non-empty, one is interested in
finding a solution which requires as little power as possible to conserve
energy. In fact, it can be shown (Exercise 4.8) that whenever the feasible
set is non-empty (this characterization is carried out carefully in Exercise
4.5), there exists a component-wise minimal solution P∗ in the feasible set,
i.e., P∗

k ≤ Pk for every user k in any other feasible power vector P. This fact
follows from a basic monotonicity property of the power control problem:
when a user lowers its transmit power, it creates less interference and benefits
all other users in the system. At the optimal solution P∗, every user is at
the minimal possible power so that their SINR requirements are met with
equality and no more. Note that at the optimal point all the users in the same
cell have the same received power at the base-station. It can also be shown
that a simple distributed power control algorithm will converge to the optimal
solution: at each step, each user updates its transmit power so that its own
SINR requirement is just met with the current level of the interference. Even
if the updates are done asynchronously among the users, convergence is still
guaranteed. These results give theoretical justification to the robustness and
stability of the power control algorithms implemented in practice. (Exercise
4.12 studies the robustness of the power update algorithm to inaccuracies in
controlling the received powers of all the mobiles to be exactly equal.)

Power control in IS-95
The actual power control in IS-95 has an open-loop and a closed-loop com-
ponent. The open-loop sets the transmit power of the mobile user at roughly
the right level by inference from the measurements of the downlink channel
strength via a pilot signal. (In IS-95, there is a common pilot transmitted in
the downlink to all the mobiles.) However, since IS-95 is implemented in
the FDD mode, the uplink and downlink channel typically differ in carrier
frequency of tens of MHz and are not identical. Thus, open-loop control is
typically accurate only up to a few dB. Closed-loop control is needed to adjust
the power more precisely.
The closed-loop power control operates at 800Hz and involves 1 bit feed-

back from the base-station to the mobile, based on measured SINR values;
the command is to increase (decrease) power by 1 dB if the measured SINR
is below (above) a threshold. Since there is no pilot in the uplink in IS-95,
the SINR is estimated in a decision-directed mode, based on the output of
the Rake receiver. In addition to measurement errors, the accuracy of power
control is also limited by the 1-bit quantization. Since the SINR threshold �
for reliable communication depends on the multipath channel statistics and is
therefore not known perfectly in advance, there is also an outer loop which
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adjusts the SINR threshold as a function of frame error rates (Figure 4.5).Figure 4.5 Inner and outer
loops of power control. An important point, however, is that even though feedback occurs at a high

rate (800Hz), because of the limited resolution of 1 bit per feedback, power
control does not track the fast multipath fading of the users when they are at
vehicular speeds. It only tracks the slower shadow fading and varying path
loss. The multipath fading is dealt with primarily by the diversity techniques
discussed earlier.

Soft handoff
Handoff from one cell to the other is an important mechanism in cellular
systems. Traditionally, handoffs are hard: users are either assigned to one
cell or the other but not both. In CDMA systems, since all the cells share
the same spectrum, soft handoffs are possible: multiple base-stations can
simultaneously decode the mobile’s data, with the switching center choosing

Figure 4.6 Soft handoff.
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the best reception among them (Figure 4.6). Soft handoffs provide another
level of diversity to the users.
The soft handoff process is mobile-initiated and works like this. While a

user is tracking the downlink pilot of the cell it is currently in, it can be
searching for pilots of adjacent cells (these pilots are known pseudonoise
sequences shifted by known offsets). In general, this involves timing acqui-
sition of the adjacent cell as well. However, we have observed that timing
acquisition is a computationally very expensive step. Thus, a practical alter-
native is for the base-station clocks to be synchronized so that the mobile
only has to acquire timing once. Once a pilot is detected and found to have
sufficient signal strength relative to the first pilot, the mobile will signal the
event to its original base-station. The original base-station will in turn notify
the switching center, which enables the second cell’s base-station to both
send and receive the same traffic to and from the mobile. In the uplink, each
base-station demodulates and decodes the frame or packet independently, and
it is up to the switching center to arbitrate. Normally, the better cell’s decision
will be used.
If we view the base-stations as multiple receive antennas, soft handoff

is providing a form of receive diversity. We know from Section 3.3.1 that
the optimal processing of signals from the multiple antennas is maximal-
ratio combining; this is however difficult to do in the handoff scenario as
the antennas are geographically apart. Instead, what soft handoff achieves
is selection combining (cf. Exercise 3.13). In IS-95, there is another form
of handoff, called softer handoff, which takes place between sectors of the
same cell. In this case, since the signal from the mobile is received at the
sectored antennas which are co-located at the same base-station, maximal-
ratio combining can be performed.
How does power control work in conjunction with soft handoff? Soft

handoff essentially allows users to choose among several cell sites. In the
power control formulation discussed in the previous section, each user is
assumed to be assigned to a particular cell, but cell site selection can be
easily incorporated in the framework. Suppose user k has an active set Sk of
cells among which it is performing soft handoff. Then the transmit powers
Pk and the cell site assignments ck ∈ Sk should be chosen such that the
SINR requirements (4.10) are simultaneously met. Again, if there is a feasible
solution, it can be shown that there is a component-wise minimal solution for
the transmit powers (Exercise 4.5). Moreover, there is an analogous distributed
asynchronous algorithm that will converge to the optimal solution: at each
step, each user is assigned the cell site that will minimize the transmit power
required to meet its SINR requirement, given the current interference levels
at the base-stations. Its transmit power is set accordingly (Exercise 4.8). Put it
another way, the transmit power is set in such a way that the SINR requirement
is just met at the cell with the best reception. This is implemented in the IS-95
system as follows: all the base-stations in the soft handoff set will feedback
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power control bits to the mobile; the mobile will always decrease its transmit
power by 1 dB if at least one of the soft handoff cell sites instructs it to do so.
In other words, the minimum transmit power is always used. The advantages
of soft handoff are studied in more detail in Exercise 4.10.

Interference averaging and system capacity
Power control and soft handoff minimize the transmit powers required to
meet SINR requirements, if there is a feasible solution for the powers at all.
If not, then the system is in outage. The system capacity is the maximum
number of users that can be accommodated in the system for a desired outage
probability and a link level �b/I0 requirement.

The system can be in outage due to various random events. For example,
users can be in certain configurations that create a lot of interference on
neighboring cells. Also, voice or data users have periods of activity, and too
many users can be active in the system at a given point in time. Another
source of randomness is due to imperfect power control. While it is impossible
to have a zero probability of outage, one wants to maintain that probability
small, below a target threshold. Fortunately, the link level performance of a
user in the uplink depends on the aggregate interference at the base-station
due to many users, and the effect of these sources of randomness tends to
average out according to the law of large numbers. This means that one does
not have to be too conservative in admitting users into the network and still
guarantee a small probability of outage. This translates into a larger system
capacity. More specifically,

• Out-of-cell interference averagingUsers tend to be in random independent
locations in the network, and the fluctuations of the aggregate interference
created in the adjacent cell are reduced when there are many users in the
system.

• Users’ burstiness averaging Independent users are unlikely to be active
all the time, thus allowing the system to admit more users than if it is
assumed that every user sends at peak rate all the time.

• Imperfect power control averaging Imperfect power control is due to
tracking inaccuracy and errors in the feedback loop.11 However, these errors
tend to occur independently across the different users in the system and
average out.

These phenomena can be generally termed interference averaging, an
important property of CDMA systems. Note that the concept of interference
averaging is reminiscent of the idea of diversity we discussed in Chapter 3:
while diversity techniques make a point-to-point link more reliable by aver-
aging over the channel fading, interference averaging makes the link more

11 Since power control bits have to be fed back with a very tight delay constraint, they are
usually uncoded which implies quite a high error rate.
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reliable by averaging over the effects of different interferers. Thus, interfer-
ence averaging can also be termed interference diversity.
To give a concrete sense of the benefit of interference averaging on system

capacity, let us consider the specific example of averaging of users’ burstiness.
For simplicity, consider a single-cell situation with K users power controlled
to a common base-station and no out-of-cell interference. Specializing (4.10)
to this case, it can be seen that the �b/I0 requirement � of all users is
satisfied if

GQk∑
n 
=k Qn+N0W

≥ �� k= 1� � � � �K� (4.12)

where Qk �= Pkgk is the received power of user k at the base-station.
Equivalently:

GQk ≥ �

(∑
n
=k

Qn+N0W

)
k= 1� � � � �K� (4.13)

Summing up all the inequalities, we get the following necessary condition for
the Qk:

�G−��K−1��
K∑
k=1

Qk ≥ KN0W�� (4.14)

Thus a necessary condition for the existence of feasible powers is
G−��K−1� > 0, or equivalently,

K<
G

�
+1� (4.15)

On the other hand, if this condition is satisfied, the powers

Qk =
N0W�

G−��K−1�
� k= 1� � � � �K (4.16)

will meet the �b/I0 requirements of all the users. Hence, condition (4.15) is
a necessary and sufficient condition for the existence of feasible powers to
support a given �b/I0 requirement.

Equation (4.15) yields the interference-limited system capacity of the single
cell. It says that, because of the interference between users, there is a limit
on the number of users admissible in the cell. If we substitute G=W/R into
(4.15), we get

KR

W
<

1
�

+ 1
G
� (4.17)

The quantity KR/W is the overall spectral efficiency of the system
(in bits/s/Hz). Since the processing gain G of a CDMA system is typically
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large, (4.17) says that the maximal spectral efficiency is approximately 1/�.
In IS-95, a typical �b/N0 requirement � is 6 dB, which translates into a
maximum spectral efficiency of 0.25 bits/s/Hz.

Let us now illustrate the effect of user burstiness on the system capacity
and the spectral efficiency in the single cell setting. We have assumed that all
K users are active all the time, but suppose now that each user is active and
has data to send only with probability p, and users’ activities are independent
of each other. Voice users, for example, are typically talking 3/8 of the time,
and if the voice coder can detect silence, there is no need to send data during
the quiet periods. If we let !k be the indicator random variable for user k’s
activity, i.e., !k = 1 when user k is transmitting, and !k = 0 otherwise, then
using (4.15), the �b/I0 requirements of the users can be met if and only if

K∑
k=1

!k <
G

�
+1� (4.18)

Whenever this constraint is not satisfied, the system is in outage. If the system
wants to guarantee that no outage can occur, then the maximum number of
users admissible in the network is G/�+1, the same as the case when users
are active all the time. However, more users can be accommodated if a small
outage probability pout can be tolerated: this number K∗�pout� is the largest K
such that

Pr

[
K∑
k=1

!k >
G

�
+1

]
≤ pout� (4.19)

The random variable
∑K

k=1 !k is binomially distributed. It has mean Kp and
standard deviation

√
Kp�1−p�, where p�1−p� is the variance of !k. When

pout = 0, K∗�pout� is G/�+1. If pout > 0, then K∗�pout� can be chosen larger.
It is straightforward to calculate K∗�pout� numerically for a given pout. It
is also interesting to see what happens to the spectral efficiency when the
bandwidth of the system W scales with the rate R of each user fixed. In this
regime, there are many users in the system and it is reasonable to apply a
Gaussian approximation to

∑K
k=1 !k. Hence,

Pr

[
K∑
k=1

!k >
G

�
+1

]
≈Q

[
G/�+1−Kp√

Kp�1−p�

]
� (4.20)

The overall spectral efficiency of the system is given by

" �= KpR

W
� (4.21)
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since the mean rate of each user is pR bits/s. Using the approximation (4.20)
in (4.19), we can solve for the constraint on the spectral efficiency ":

"≤ 1
�

[
1+Q−1�pout�

√
1−p

pK
− 1
Kp

]−1

� (4.22)

This bound on the spectral efficiency is plotted in Figure 4.7 as a function
of the number of users. As seen in Eq. (4.17), the number 1/� is the maximum
spectral efficiency if each user is non-bursty and transmitting at a constant
rate equal to the mean rate pR of the bursty user. However, the actual spectral
efficiency in the system with burstiness is different from that, by a factor of(

1+Q−1�pout�

√
1−p

pK
− 1
Kp

)−1

�

This loss in spectral efficiency is due to a need to admit fewer users to cater
for the burstiness of the traffic. This “safety margin” is larger when the outage
probability requirement pout is more stringent. More importantly, for a given
outage probability, the spectral efficiency approaches 1/� as the bandwidthW
(and hence the number of users K) scales. When there are many users in
the system, interference averaging occurs: the fluctuation of the aggregate
interference is smaller relative to the mean interference level. Since the link
level performance of the system depends on the aggregate interference, less
excess resource needs to be set aside to accommodate the fluctuations. This
is a manifestation of the familiar principle of statistical multiplexing.
In the above example, we have only considered a single cell, where each

active user is assumed to be perfectly power controlled and the only source
of interference fluctuation is due to the random number of active users. In a
multicell setting, the level of interference from outside of the cell depends on
the locations of the interfering users and this contributes to another source

Figure 4.7 Plot of the spectral
efficiency as a function of the
number of users in a system
with burstiness (the right hand
side of (4.22)). Here, p= 3/8,
pout = 0�01 and 	= 6 dB.
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of fluctuation of the aggregate interference level. Further randomness arises
due to imperfect power control. The same principle of interference averaging
applies to these settings as well, allowing CDMA systems to benefit from an
increase in the system size. These settings are analyzed in Exercises (4.11)
and (4.12).
To conclude our discussion, we note that we have made an implicit assump-

tion of separation of time-scales in our analysis of the effect of interference
in CDMA systems. At a faster time-scale, we average over the pseudoran-
dom characteristics of the signal and the fast multipath fading to compute the
statistics of the interference, which determine the bit error rates of the point-
to-point demodulators. At a slower time-scale, we consider the burstiness of
user traffic and the large-scale motion of the users to determine the outage
probability, i.e., the probability that the target bit error rate performance of
users cannot be met. Since these error events occur at completely different
time-scales and have very different ramifications from a system-level per-
spective, this way of measuring the performance of the system makes more
sense than computing an overall average performance.

4.3.2 CDMA downlink

The design of the one-to-many downlink uses the same basic principles of
pseudorandom spreading, diversity techniques, power control and soft handoff
we already discussed for the uplink. However, there are several important
differences:

• The near–far problem does not exist for the downlink, since all the signals
transmitted from a base-station go through the same channel to reach any
given user. Thus, power control is less crucial in the downlink than in the
uplink. Rather, the problem becomes that of allocating different powers
to different users as a function of primarily the amount of out-of-cell
interference they see. However, the theoretical formulation of this power
allocation problem has the same structure as the uplink power control
problem. (See Exercise 4.13.)

• Since signals for the different users in the cell are all transmitted at the base-
station, it is possible to make the users orthogonal to each other, something
that is more difficult to do in the uplink, as it requires chip-level syn-
chronization between distributed users. This reduces but does not remove
intra-cell interference, since the transmitted signal goes through multipath
channels and signals with different delays from different users still interfere
with each other. Still, if there is a strong line-of sight component, this tech-
nique can significantly reduce the intra-cell interference, since then most
of the energy is in the first tap of the channel.

• On the other hand, inter-cell interference is more poorly behaved in the
downlink than in the uplink. In the uplink, there are many distributed
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users transmitting with small power, and significant interference averagingFigure 4.8 The IS-95 downlink.

occurs. In the downlink, in contrast, there are only a few neighboring base-
stations but each transmits at high power. There is much less interference
averaging and the downlink capacity takes a significant hit compared to
the uplink.

• In the uplink, soft handoff is accomplished by multiple base-stations lis-
tening to the transmitted signal from the mobile. No extra system resource
needs to be allocated for this task. In the downlink, however, multiple base-
stations have to simultaneously transmit to a mobile in soft handoff. Since
each cell has a fixed number of orthogonal codes for the users, this means
that a user in soft handoff is consuming double or more system resources.
(See Exercise 4.13 for a precise formulation of the downlink soft handoff
problem.)

• It is common to use a strong pilot and perform coherent demodulation in
the downlink, since the common pilot can be shared by all the users. With
the knowledge of the channels from each base-station, a user in soft handoff
can also coherently combine the signals from the different base-stations.
Synchronization tasks are also made easier in the presence of a strong pilot.

As an example, the IS-95 downlink is shown in Figure 4.8. Note the
different roles of the Hadamard sequences in the uplink and in the downlink.
In the uplink, the Hadamard sequences serve as an orthogonal modulation for
each individual user so that non-coherent demodulation can be performed.
In the downlink, in contrast, each user in the cell is assigned a different
Hadamard sequence to keep them orthogonal (at the transmitter).
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4.3.3 System issues

Signal characteristics
Consider the baseband uplink signal of a user given in (4.1). Due to the abrupt
transitions (from +1 to −1 and vice versa) of the pseudonoise sequences sn,
the bandwidth occupied by this signal is very large. On the other hand, the
signal has to occupy an allotted bandwidth. As an example, we see that the IS-
95 system uses a bandwidth of 1.2288MHz and a steep fall off after 1.67MHz.
To fit this allotted bandwidth, the signal in (4.1) is passed through a pulse
shaping filter and then modulated on to the carrier. Thus though the signal in
(4.1) has a perfect PAPR (equal to 1), the resulting transmit signal has a larger
PAPR. The overall signal transmitted from the base-station is the superposition
of all the user signals and this aggregate signal has PAPR performance similar
to that of the narrowband system described in the previous section.

Sectorization
In the narrowband system we saw that all users can maintain high SINR
due to the nature of the allocations. In fact, this was the benefit gained by
paying the price of poor (re)use of the spectrum. In the CDMA system,
however, due to the intra and inter-cell interferences, the values of SINR
possible are very small. Now consider sectorization with universal frequency
reuse among the sectors. Ideally (with full isolation among the sectors), this
allows us to increase the system capacity by a factor equal to the number of
sectors. However, in practice each sector now has to contend with inter-sector
interference as well. Since intra-sector and inter-cell interference dominate
the noise faced by the user signals, the additional interference caused due to
sectorization does not cause a further degradation in SINR. Thus sectors of the
same cell reuse the frequency without much of an impact on the performance.

Network issues
We have observed that timing acquisition (at a chip level accuracy) by a
mobile is a computationally intensive step. Thus we would like to have this
step repeated as infrequently as possible. On the other hand, to achieve soft
handoff this acquisition has to be done (synchronously) for all base-stations
with which the mobile communicates. To facilitate this step and the eventual
handoff, implementations of the IS-95 system use high precision clocks (about
1 ppm (parts per million)) and further, synchronize the clocks at the base-
stations through a proprietary wireline network that connects the base-stations.
This networking cost is the price paid in the design to ease the handoff process.

Summary 4.2 CDMA

Universal frequency reuse: all users, both within a cell and across different
cells, transmit and receive on the entire bandwidth.
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The signal of each user is modulated onto a pseudonoise sequence so that
it appears as white noise to others.

Interference management is crucial for allowing universal frequency reuse:
• Intra-cell interference is managed via power control. Accurate closed-

loop power control is particularly important for combating the near–far
problem in the uplink.

• Inter-cell interference is managed via averaging of the effects of multiple
interferers. It is more effective in the uplink than in the downlink.

Interference averaging also allows statistical multiplexing of bursty users,
thus increasing system capacity.

Diversity of the point-to-point links is achieved by a combination of
low-rate coding, time-interleaving and Rake combining.

Soft handoff provides a further level of macrodiversity, allowing users to
communicate with multiple base-stations simultaneously.

4.4 Wideband systems: OFDM

The narrowband system design of making transmissions interference-free
simplified several aspects of network design. One such aspect was that the
performance of a user is insensitive to the received powers of other users. In
contrast to the CDMA approach, the requirement for accurate power control
is much less stringent in systems where user transmissions in the same cell are
kept orthogonal. This is particularly important in systems designed to accom-
modate many users each with very low average data rate: the fixed overhead
needed to perform tight power control for each user may be too expensive for
such systems. On the other hand there is a penalty of poor spectral reuse in
narrowband systems compared to the CDMA system. Basically, narrowband
systems are ill suited for universal frequency reuse since they do not average
interference. In this section, we describe a system that combines the desirable
features of both these systems: maintaining orthogonality of transmissions
within the cell and having universal frequency reuse across cells. Again, the
latter feature is made possible through interference averaging.

4.4.1 Allocation design principles

The first step in the design is to decide on the user signals that ensure
orthogonality after passing through the wireless channel. Recall from the
discussion of the downlink signaling in the CDMA system that though the
transmit signals of the users are orthogonal, they interfere with each other at
the receiver after passing through the multipath channel. Thus any orthogonal
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set of signals will not suffice. If we model the wireless channel as a linear time
invariant multipath channel, then the only eigenfunctions are the sinusoids.
Thus sinusoid inputs remain orthogonal at the receiver no matter what the
multipath channel is. However, due to the channel variations in time, we
want to restrict the notion of orthogonality to no more than a coherence time
interval. In this context, sinusoids are no longer orthogonal, but the sub-
carriers of the OFDM scheme of Section 3.4.4 with the cyclic prefix for the
multipath channel provide a set of orthogonal signals over an OFDM block
length.

We describe an allocation of sets of OFDM sub-carriers as the user signals;
this description is identical for both the downlink and the uplink. As in
Section 3.4.4, the bandwidth W is divided into Nc sub-carriers. The number
of sub-carriers Nc is chosen to be as large as possible. As we discussed
earlier, Nc is limited by the coherence time, i.e., the OFDM symbol period
Nc/W < Tc. In each cell, we would like to distribute these Nc sub-carriers to
the users in it (with say n sub-carriers per user). The n sub-carriers should be
spread out in frequency to take advantage of frequency diversity. There is no
interference among user transmissions within a cell by this allocation.

With universal frequency reuse, there is however inter-cell interference. To
be specific, let us focus on the uplink. Two users in neighboring cells sharing
the same sub-carrier in any OFDM symbol time interfere with each other
directly. If the two users are close to each other, the interference can be very
severe and we would like to minimize such overlaps. However, due to full
spectral reuse, there is such an overlap at every OFDM symbol time in a fully
loaded system. Thus, the best one can do is to ensure that the interference does
not come solely from one user (or a small set of users) and the interference
seen over a coded sequence of OFDM symbols (forming a frame) can be
attributed to most of the user transmissions in the neighboring cell. Then the
overall interference seen over a frame is a function of the average received
power of all the users in the neighboring cells. This is yet another example
of the interference diversity concept we already saw in Section 4.3.

How are the designs of the previous two systems geared towards harvesting
interference diversity? The CDMA design fully exploits interferer diversity
by interference averaging. This is achieved by every user spreading its signals
over the entire spectrum. On the other hand, the orthogonal allocation of
channels in the GSM system is poorly suited from the point of view of
interferer diversity. As we saw in Section 4.2, users in neighboring cells that
are close to each other and transmitting on the same channel over the same
slot cause severe interference to each other. This leads to a very degraded
performance and the reason for it is clear: interference seen by a user comes
solely from one interferer and there is no scope to see an average interference
from all the users over a slot. If there were no hopping and coding across
the sub-carriers, the OFDM system would behave exactly like a narrowband
system and suffer the same fate.
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Turning to the downlink we see that now all the transmissions in a cell occur
from the same place: at the base-station. However, the power in different sub-
carriers transmitted from the base-station can be vastly different. For example,
the pilots (training symbols) are typically at a much higher power than the
signal to a user very close to the base-station. Thus even in the downlink, we
would like to hop the sub-carriers allocated to a user every OFDM symbol
time so that over a frame the interference seen by a mobile is a function of
the average transmit power of the neighboring base-stations.

4.4.2 Hopping pattern

We have arrived at two design rules for the sub-carrier allocations to the users.
Allocate the n sub-carriers for the user as spread out as possible and further,
hop the n sub-carriers every OFDM symbol time. We would like the hop
patterns to be as “apart” as possible for neighboring base-stations. We now
delve into the design of periodic hopping patterns that meet these broad design
rules that repeat, say, every Nc OFDM symbol intervals. As we will see, the
choice of the period to be equal to Nc along with the assumption that Nc be
prime (which we nowmake) simplifies the construction of the hopping pattern.

The periodic hopping pattern of the Nc sub-carriers can be represented
by a square matrix (of dimension Nc) with entries from the set of virtual
channels, namely 0�1� � � � �Nc −1. Each virtual channel hops over different
sub-carriers at different OFDM symbol times. Each row of the hopping matrix
corresponds to a sub-carrier and each column represents an OFDM symbol
time, and the entries represent the virtual channels that use that sub-carrier
in different OFDM symbol times. In particular, the �i� j� entry of the matrix
corresponds to the virtual channel number the ith sub-carrier is taken on by, at
OFDM symbol time j. We require that every virtual channel hop over all the
sub-carriers in each period for maximal frequency diversity. Further, in any
OFDM symbol time the virtual channels occupy different sub-carriers. These
two requirements correspond to the constraint that each row and column of
the hopping matrix contains every virtual channel number (0� � � � �Nc − 1),
exactly once. Such a matrix is called a Latin square. Figure 4.9 shows hopping
patterns of the 5 virtual channels over the 5 OFDM symbol times (i.e., Nc = 5).
The horizontal axis corresponds to OFDM symbol times and the vertical axis
denotes the 5 physical sub-carriers (as in Figure 3.25), and the sub-carriers the
virtual channels adopt are denoted by darkened squares. The corresponding
hopping pattern matrix is ⎡⎢⎢⎢⎢⎢⎣

0 1 2 3 4
2 3 4 0 1
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2

⎤⎥⎥⎥⎥⎥⎦ �
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Figure 4.9 Virtual channel
hopping patterns for Nc = 5.

Virtual Channel 4

Virtual Channel 0 Virtual Channel 1 Virtual Channel 2

Virtual Channel 3

For example, we see that the virtual channel 0 is assigned the OFDM symbol
time and sub-carrier pairs (0, 0), (1, 2), (2, 4), (3, 1), (4, 3). Now users could
be allocated n virtual channels, accommodating �Nc/n� users.
Each base-station has its own hopping matrix (Latin square) that determines

the physical structure of the virtual channels. Our design rule to maximize
interferer diversity requires us to have minimal overlap between virtual chan-
nels of neighboring base-stations. In particular, we would like to have exactly
one time/sub-carrier collision for every pair of virtual channels of two base-
stations that employ these hopping patterns. Two Latin squares that have this
property are said to be orthogonal.
When Nc is prime, there is a simple construction for a family of Nc − 1

mutually orthogonal Latin squares. For a= 1� � � � �Nc−1 we define anNc×Nc

matrix Ra with �i� j�th entry

Ra
ij = ai+ j modulo Nc� (4.23)

Here we index rows and columns from 0 through Nc − 1. In Exercise 4.14,
you are asked to verify that Ra is a Latin square and further that for every
a 
= b the Latin squares Ra and Rb are orthogonal. Observe that Figure 4.9
depicts a Latin square hopping pattern of this type with a= 2 and Nc = 5.
With these Latin squares as the hopping patterns, we can assess the

performance of data transmission over a single virtual channel. First, due
to the hopping over the entire band, the frequency diversity in the chan-
nel is harnessed. Second, the interference seen due to inter-cell transmis-
sions comes from different virtual channels (and repeats after Nc symbol
times). Coding over several OFDM symbols allows the full interferer diver-
sity to be harnessed: coding ensures that no one single strong interference
from a virtual channel can cause degradation in performance. If sufficient
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interleaving is permitted, then the time diversity in the system can also be
obtained.
To implement these design goals in a cellular system successfully, the users

within the cell must be synchronized to their corresponding base-station. This
way, the simultaneous uplink transmissions are still orthogonal at the base-
station. Further, the transmissions of neighboring base-stations also have to
be synchronized. This way the design of the hopping patterns to average the
interference is fully utilized. Observe that the synchronization needs to be
done only at the level of OFDM symbols, which is much coarser than at the
level of chips.

4.4.3 Signal characteristics and receiver design

Let us consider the signal transmission corresponding to a particular user
(either in the uplink or the downlink). The signal consists of n virtual chan-
nels, which over a slot constitute a set of n OFDM sub-carriers that are
hopped over OFDM symbol times. Thus, though the signal information con-
tent can be “narrow” (for small ratios n/Nc), the signal bandwidth itself
is wide. Further, since the bandwidth range occupied varies from symbol
to symbol, each (mobile) receiver has to be wideband. That is, the sam-
pling rate is proportional to 1/W . Thus this signal constitutes a (frequency
hopped) spread-spectrum signal just as the CDMA signal is: the ratio of
data rate to bandwidth occupied by the signal is small. However, unlike the
CDMA signal, which spreads the energy over the entire bandwidth, here
the energy of the signal is only in certain sub-carriers (n of a total Nc).
As discussed in Chapter 3, fewer channel parameters have to be measured
and channel estimation with this signal is superior to that with the CDMA
signal.

The major advantages of the third system design are the frequency and
interferer diversity features. There are a few engineering drawbacks to this
choice. The first is that the mobile sampling rate is quite high (same as
that of the CDMA system design but much higher than that of the first
system). All signal processing operations (such as the FFT and IFFT) are
driven off this basic rate and this dictates the processing power required at
the mobile receiver. The second drawback is with respect to the transmit
signal on the uplink. In Exercise 4.15, we calculate the PAPR of a canoni-
cal transmit signal in this design and observe that it is significantly high, as
compared to the signal in the GSM and CDMA systems. As we discussed
in the first system earlier, this higher PAPR translates into a larger bias in
the power amplifier settings and a correspondingly lower average efficiency.
Several engineering solutions have been proposed to this essentially engineer-
ing problem (as opposed to the more central communication problem which
deals with the uncertainties in the channel) and we review some of these in
Exercise 4.16.
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4.4.4 Sectorization

What range of SINRs is possible for the users in this system? We observed
that while the first (narrowband) system provided high SINRs to all the
mobiles, almost no user was in a high SINR scenario in the CDMA system
due to the intra-cell interference. The range of SINRs possible in this system
is midway between these two extremes. First, we observe that the only source
of interference is inter-cell. So, users close to the base-station will be able
to have high SINRs since they are impacted less from inter-cell interference.
On the other hand, users at the edge of the cell are interference limited and
cannot support high SINRs. If there is a feedback of the received SINRs then
users closer by the base-station can take advantage of the higher SINR by
transmitting and receiving at higher data rates.
What is the impact of sectorization? If we universally reuse the frequency

among the sectors, then there is inter-sector interference. We can now observe
an important difference between inter-sector and inter-cell interference. While
inter-cell interference affects mostly the users at the edge of the cell, inter-
sector interference affects users regardless of whether they are at the edge
of the cell or close to the base-station (the impact is pronounced on those at
the edge of the sectors). This interference now reduces the dynamic range of
SINRs this system is capable of providing.

Example 4.1 Flash-OFDM
A technology that partially implements the design features of the wideband
OFDM system is Flash-OFDM, developed by Flarion Technologies [38].
Over 1.25MHz, there are 113 sub-carriers, i.e., Nc = 113. The 113 virtual
channels are created from these sub-carriers using the Latin square hopping
patterns (in the downlink the hops are done every OFDM symbol but
once in every 7 OFDM symbols in the uplink). The sampling rate (or
equivalently, chip rate) is 1.25MHz and a cyclic prefix of 16 samples (or
chips) covers for a delay spread of approximately 11�s. This means that
the OFDM symbol is 128 samples, or approximately 100�s long.
There are four traffic channels of different granularity: there are five in

the uplink (comprising 7, 14, 14, 14 and 28 virtual channels) and four in the
downlink (comprising 48, 24, 12, 12 virtual channels). Users are scheduled
on different traffic channels depending on their traffic requirements and
channel conditions (we study the desired properties of the scheduling
algorithm in greater detail in Chapter 6). The scheduling algorithm operates
once every slot: a slot is about 1.4ms long, i.e., it consists of 14 OFDM
symbols. So, if a user is scheduled (say, in the downlink) the traffic channel
consisting of 48 virtual channels, it can transmit 672 OFDM symbols
over the slot when it is scheduled. An appropriate rate LDPC (low-density
parity check) code combined with a simple modulation scheme (such as
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QPSK or 16-QAM) is used to convert the raw information bits into the
672 OFDM symbols.
The different levels of granularity of the traffic channels are ideally

suited to carry bursty traffic. Indeed, Flash-OFDM is designed to act in
a data network where it harnesses the statistical multiplexing gains of the
user’s bursty data traffic by its packet-switching operation.
The mobiles are in three different states in the network. When they are

inactive, they go to a “sleep” mode monitoring the base-station signal every
once in a while: this mode saves power by turning off most of the mobile
device functionalities. On the other hand,when themobile is actively receiv-
ing and/or sending data it is in the “ON” mode: this mode requires the net-
work to assign resources to the mobile to perform periodic power control
updates and timing and frequency synchronization. Apart from these two
states, there is an in-between “HOLD” mode: here mobiles that have been
recently active are placed without power control updates but still maintain-
ing timing and frequency synchronization with the base-station. Since the
intra-cell users are orthogonal and the accuracy of power control can be
coarse, users in a HOLD state can be quickly moved to an ON state when
there is a need to send or receive data. Flash-OFDM has the ability to hold
approximately 30, 130 and 1000mobiles in theON,HOLDand sleepmodes.
Formanydata applications, it is important tobeable tokeepa largenumber

of users in the HOLD state, since each user may send traffic only once in
a while and in short bursts (requests for http transfers, acknowledgements,
etc.) but when they do want to send, they require short latency and quick
access to the wireless resource. It is difficult to support this HOLD state
in a CDMA system. Since accurate power control is crucial because of the
near–far problem, a user who is not currently power-controlled is required
to slowly ramp up its power before it can send traffic. This incurs a very
significant delay.12 On the other hand, it is very expensive to power control
a large number of users who only transmit infrequently. In an orthogonal
system like OFDM, this overhead can be largely avoided. The issue does not
arise in a voice systemsince each user sends constantly and the power control
overhead is only a small percentage of the payload (about 10% in IS-95).

Chapter 4 The main plot

The focus of this chapter is on multiple access, interference management
and the system issues in the design of cellular networks. To highlight the

12 Readers from the San Francisco Bay area may be familiar with the notorious “Fast Track” lanes
for the Bay Bridge. Once a car gets on one of these lanes, it can cross the toll plaza very quickly.
But the problem is that most of the delay is in getting to them through the traffic jam!



155 4.6 Exercises

issues, we looked at three different system designs. Their key characteris-
tics are compared and contrasted in the table below.

Narrowband
system

Wideband
CDMA Wideband OFDM

Signal Narrowband Wideband Wideband
Intra-cell BW

allocation Orthogonal Pseudorandom Orthogonal
Intra-cell

interference None Significant None
Inter-cell BW

allocation Partial reuse Universal reuse Universal reuse
Inter-cell uplink

interference Bursty Averaged Averaged
Accuracy of

power control Low High Low
Operating SINR High Low Range: low to high
PAPR of uplink

signal Low Medium High
Example system GSM IS-95 Flash-OFDM

4.5 Bibliographical notes

The two important aspects that have to be addressed by a wireless system designer are
how resource is allocated within a cell among the users and how interference (both
intra- and inter-cell) is handled. Three topical wireless technologies have been used
as case studies to bring forth the tradeoffs the designer has to make. The standards
IS-136 [60] and GSM [99] have been the substrate on which the discussion of the
narrowband system design is built. The wideband CDMA design is based on the widely
implemented second-generational technology IS-95 [61]. A succinct description of
the the technical underpinnings of the IS-95 design has been done by Viterbi [140]
with emphasis on a system view, and our discussion here has been influenced by it.
The frequency hopping OFDM system based on Latin squares was first suggested by
Wyner [150] and Pottie and Calderbank [94]. This basic physical-layer construct has
been built into a technology (Flash-OFDM [38]).

4.6 Exercises

Exercise 4.1 In Figure 4.2 we set a specific reuse pattern. A channel used in a cell
precludes its use in all the neighboring cells. With this allocation policy the reuse
factor is at least 1/7. This is a rather ad hoc allocation of channels to the cells and the
reuse ratio can be improved; for example, the four-color theorem [102] asserts that a
planar graph can be colored with four colors with no two vertices joined by an edge
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sharing the same channel. Further, we may have to allocate more channels to cells
which are crowded. In this question, we consider modeling this problem.

Let us represent the cells by a finite set (of vertices) V �= 	v1� � � � � vC
; one vertex
for each cell, so there are C cells. We want to be able to say that only a certain
collection of vertices can share the same channel. We do this by defining an allowable
set S ⊆ V such that all the vertices in S can share the same channel. We are only
interested in maximal allowable sets: these are allowable sets with no strict superset
also an allowable set. Suppose the maximal allowable sets are M in number, denoted
as S1� � � � � SM . Each of these maximal allowable sets can be thought of as a hyper-
edge (the traditional definition of edge means a pair of vertices) and the collection of
V and the hyper-edges forms a hyper-graph. You can learn more about hyper-graphs
from [7].
1. Consider the hexagonal cellular system in Figure 4.10. Suppose we do not allow

any two neighboring cells to share the same channel and further not allow the same
channel to be allocated to cells 1, 3 and 5. Similarly, cells 2, 4 and 6 cannot share
the same channel. For this example, what are C and M? Enumerate the maximal
allowable sets S1� � � � � SM .

2. The hyper-edges can also be represented as an adjacency matrix of size C×M:
the �i� j�th entry is

aij �=
{
1 if vi ∈ Sj�

0 if vi 
∈ Sj�
(4.24)

For the example in Figure 4.10, explicitly construct the adjacency matrix.

Exercise 4.2 [84] In Exercise 4.1, we considered a graphical model of the cellular
system and constraints on channel allocation. In this exercise, we consider modeling
the dynamic traffic and channel allocation algorithms.

Suppose there are N channels to be allocated. Further, the allocation has to satisfy
the reuse conditions: in the graphical model this means that each channel is mapped
to one of the maximal allowable sets. The traffic comprises calls originating and
terminating in the cells. Consider the following statistical model. The average number
of overall calls in all the cells is B. This number accounts for new call arrivals and

7

1

2

3

4

5

6

Figure 4.10 A narrowband
system with seven cells.
Adjacent cells cannot share the
same channel and cells

1� 3� 5� and 
2� 4� 6� cannot
share the same channel either.

calls leaving the cell due to termination. The traffic intensity is the number of call
arrivals per available channel, r �= B/N (in Erlangs per channel). A fraction pi of
these calls occur in cell i (so that

∑C
i=1 pi = 1). So, the long-term average number of

calls per channel to be handled in cell i is pir. We need a channel to service a call,
so to meet this traffic we need on an average at least pir channels allocated to cell
i. We fix the traffic profile p1� � � � � pC over the time-scale for which the number of
calls averaging is done. If a cell has used up all its allocated channels, then a new call
cannot be serviced and is dropped.

A dynamic channel allocation algorithm allocates the N channels to the C cells to
meet the instantaneous traffic requirements and further satisfies the reuse pattern. Let
us focus on the average performance of a dynamic channel allocation algorithm: this
is the sum of the average traffic per channel supported by each cell, denoted by T�r�.
1. Show that

T�r�≤ max
j=1 � � � M

C∑
i=1

aij� (4.25)
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Hint: The quantity on the right hand side is the cardinality of the largest maximal
allowable set.

2. Show that

T�r�≤
C∑
i=1

pir = r� (4.26)

i.e., the total arrival rate is also an upper bound.
3. Let us combine the two simple upper bounds in (4.25) and (4.26). For every fixed

list of of C numbers yi ∈ �0�1�� i= 1� � � � �C, show that

T�r�≤
C∑
i=1

yipir+ max
j=1 � � � M

C∑
i=1

�1−yi�aij � (4.27)

Exercise 4.3 This exercise is a sequel to Exercises 4.1 and 4.2. Consider the cellular
system example in Figure 4.10, with the arrival rates pi = 1/8 for i= 1� � � � �6 (all the
cells at the edge) and p7 = 1/4 (the center cell).
1. Derive a good upper bound on T�r�, the traffic carried per channel for any

dynamic channel allocation algorithm for this system. In particular, use the upper
bound derived in (4.27), but optimized over all choices of y1� � � � � yC . Hint: The
upper bound on T�r� in (4.27) is linear in the variables y1� � � � � yC . So, you can
use software such as MATLAB (with the function linprog) to arrive at your
answer.

2. In general, a channel allocation policy is dynamic: i.e., the number of channels
allocated to a cell varies with time as a function of the traffic. Since we are
interested in the average behavior of a policy over a large amount of time, it is
possible that static channel allocation policies also do well. (Static policies allocate
channels to the cells in the beginning and do not alter this allocation to suit the
varying traffic levels.) Consider the following static allocation policy defined by
the probability vector x �= �x1� � � � � xM�, i.e.,

∑M
j=1 xj = 1. Each maximal allowable

set Sj is allocated �Nxj� channels, in the sense that each cell in Sj is allocated
these �Nxj� channels. Observe that cell i is allocated

M∑
j=1

�Nxj�aij

channels. Denote Tx�r� as the carried traffic by using this static channel allocation
algorithm.
If the incoming traffic is smooth enough that the carried traffic in each cell is the
minimum of arrival traffic in that cell and the number of channels allocated to
that cell,

lim
N→�Tx�r�=

C∑
i=1

min

(
rpi�

M∑
j=1

xjaij

)
� ∀r > 0� (4.28)

What are good static allocation policies? For the cellular system model in
Figure 4.10, try out simple static channel allocation algorithms that you can think
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of. You can evaluate the performance of your algorithm numerically by simulating
a smooth traffic arrival process (common models are uniform arrivals and inde-
pendent and exponential inter-arrival times). How does your answer compare to
the upper bound derived in part (1)?
In [84], the authors show that there exists a static allocation policy that can actually
achieve (for large N , because the integer truncation effects have to be smoothed
out) the upper bound in part (1) for every graphical model and traffic arrival rate.

Exercise 4.4 In this exercise we study the PAPR of the uplink transmit signal in
narrowband systems. The uplink transmit signal is confined to a small bandwidth
(200 kHz in the GSM standard). Consider the folowing simple model of the transmit
signal using the idealized pulse shaping filter:

s�t�= �
[ �∑
n=0

x�n� sinc�t−nT� exp�j2�fct�

]
� t ≥ 0� (4.29)

Here T is approximately the inverse of the bandwidth (5 �s in the GSM standard) and
	x�n�
 is the sequence of (complex) data symbols. The carrier frequency is denoted
by fc; for simplicity let us assume that fcT is an integer.
1. The raw information bits are coded and modulated resulting in the data symbols

x�n�. Modeling the data symbols as i.i.d. uniformly distributed on the complex unit
circle, calculate the average power in the transmit signal s�t�, averaged over the
data symbols. Let us denote the average power by Pav.

2. The statistical behavior of the transmit signal s�t� is periodic with period T . Thus
we can focus on the peak power within the time interval �0� T�, denoted as

PP�d�= max
0≤t≤T

�s�t��2� (4.30)

The peak power is a random variable since the data symbols are random. Obtain an
estimate for the average peak power. How does your estimate depend on T? What
does this imply about the PAPR (ratio of PP to Pav) of the narrowband signal s�t�?

Exercise 4.5 [56] In this problem we study the uplink power control problem in the
CDMA system in some detail. Consider the uplink of a CDMA system with a total of
K mobiles trying to communicate with L base-stations. Each mobile k communicates
with just one among a subset Sk of the L base-stations; this base-station assignment
is denoted by ck (i.e., we do not model diversity combining via soft handoff in this
problem). Observe that by restricting Sk to have just one element, we are ruling out
soft handoff as well. As in Section 4.3.1, we denote the transmit power of mobile k by
Pk and the channel attenuation from mobile k to base-station m by gkm. For successful
communication we require the �b/I0 to be at least a target level �, i.e., successful
uplink communication of the mobiles entails the constraints (cf. (4.10)):

�b

I0
= GPkgk�ck∑

n 
=k Pngn�ck +N0W
≥ �k� k= 1�2� � � � �K� (4.31)
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Here we have let the target level be potentially different for each mobile and denoted
G=W/R as the processing gain of the CDMA system. Writing the transmit powers
as the vector p= �p1� � � � � pK�

t, show that (4.31) can be written as

�IK −F�p≥ b� (4.32)

where F is the K×K matrix with strictly positive off-diagonal entries

fij =

⎧⎪⎨⎪⎩
0 if i= j�
gjci�i

gici
if i 
= j�

(4.33)

and

b �= N0W

(
�1

g1�c1
� � � � �

�K

gK�cK

)t

� (4.34)

It can be shown (see Exercise 4.6) that there exist positive powers to make �b/I0 meet
the target levels, exactly when all the eigenvalues of F have absolute value strictly
less than 1. In this case, there is in fact a component-wise minimal vector of powers
that allows successful communication and is simply given by

p∗ = �IK −F�−1b� (4.35)

Exercise 4.6 Consider the set of linear inequalities in (4.32) that correspond to the
�b/I0 requirements in the uplink of a CDMA system. In this exercise we investigate
the mathematical constraints on the physical parameters of the CDMA system (i.e.,
the channel gains and desired target levels) which allow reliable communication.

We begin by observing that F is a non-negative matrix (i.e., it has non-negative
entries). A non-negative matrix F is said to be irreducible if there exists a positive
integer m such that Fm has all entries strictly positive.
1. Show that F in (4.33) is irreducible. (The number of mobiles K is at least two.)
2. Non-negative matrices also show up as the probability transition matrices of finite

state Markov chains. An important property of irreducible non-negative matrices is
the Perron–Frobenius theorem: There exists a strictly positive eigenvalue (called
the Perron–Frobenius eigenvalue) which is strictly bigger than the absolute value
of any of the other eigenvalues. Further, there is a unique right eigenvector corre-
sponding to the Perron–Frobenius eigenvalue, and this has strictly positive entries.
Recall this result from a book on non-negative matrices such as [106].

3. Consider the vector form of the �b/I0 constraints of the mobiles in (4.32) with F
a non-negative irreducible matrix and b having strictly positive entries. Show that
the following statements are equivalent.
(a) There exists p satisfying (4.32) and having strictly positive entries.
(b) The Perron–Frobenius eigenvalue of F is strictly smaller than 1.
(c) �IK −F�−1 exists and has strictly positive entries.

The upshot is that the existence or non-existence of a power vector that permits
successful uplink communication from all the mobiles to their corresponding base-
stations (with the assignment k �→ ck) can be characterized in terms of the Perron–
Frobenius eigenvalue of an irreducible non-negative matrix F.
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Exercise 4.7 In this problem, a sequel to Exercise 4.5, we allow the assignment of
mobiles to base-stations to be in our control. Let t �= ��1� � � � ��K� denote the vector
of the desired target thresholds on the �b/I0 of the mobiles. Given an assignment of
mobiles to base-stations k �→ ck (with ck ∈ Sk), we say that the pair �c� t� is feasible
if there is a power vector that permits successful communication from all the mobiles
to their corresponding base-stations (i.e., user k’s �b/I0 meets the target level �k).
1. Show that if �c� t�1�� is feasible and t�2� is another vector of desired target levels

such that ��1�
k ≥ �

�2�
k for each mobile 1≤ k≤ K, then �c� t�2�� is also feasible.

2. Suppose �c�1�� t� and �c�2�� t� are feasible. Let p�1�∗ and p�2�∗ denote the correspond-
ing minimal vectors of powers allowing successful communication, and define

p
�3�
k �=min

(
p
�1�∗
k � p

�2�∗
k

)
�

Define the new assignment

c
�3�
k �=

{
c
�1�
k if p�1�∗k ≤ p

�2�∗
k �

c
�2�
k if p�1�∗k > p

�2�∗
k �

Define the new target levels

�
�3�
k �=

g
kc

�3�
k
p
�3�∗
k

N0W +∑
n
=k gnc�3�n

p
�3�∗
n

� k= 1� � � � �K�

and the vector t�3� = ��
�3�
1 � � � � ��

�3�
K �. Show that �c�3�� t�3�� is feasible and further

that ��3�
k ≥ �k for all mobiles 1≤ k≤ K (i.e., t�3� ≥ t component-wise).

3. Using the results of the previous two parts, show that if uplink communication
is feasible, then there is a unique component-wise minimum vector of powers
that allows for successful uplink communication of all the mobiles, by appropriate
assignment of mobiles to base-stations allowing successful communication. Further
show that for any other assignment of mobiles to base-stations allowing successful
communication the corresponding minimal power vector is component-wise at least
as large as this power vector.

Exercise 4.8 [56, 151] In this problem, a sequel to Exercise 4.7, we will see an
adaptive algorithm that updates the transmit powers of the mobiles in the uplink and the
assignment of base-stations to the mobiles. The key property of this adaptive algorithm
is that it converges to the component-wise minimal power among all assignments
of base-stations to the mobiles (if there exists some assignment that is feasible, as
discussed in Exercise 4.7(3)).

Users begin with an arbitrary power vector p�1� and base-station assignment c�1� at
the starting time 1. At time m, let the transmit powers of the mobiles be denoted by
(the vector) p�m� and the base-station assignment function be denoted by c�m�. Let us
first calculate the interference seen by mobile n at each of the base-stations l ∈ Sn;
here Sn is the set of base-stations that can be assigned to mobile n.

I
�m�
nl �= ∑

k 
=n
gklp

�m�
k +N0W� (4.36)
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Now, we choose greedily to assign mobile n to that base-station which requires the
least transmit power on the part of mobile n to meet its target level �n. That is,

p�m+1�
n �= min

l∈Sn
�nI

�m�
nl

Ggnl
� (4.37)

c�m+1�
n �= argmin

l∈Sn
�nI

�m�
nl

gnl
� (4.38)

Consider this greedy update to each mobile being done synchronously: i.e., the updates
of transmit power and base-station assignment for every mobile at time m+1 is made
based on the transmit powers of all other the mobiles at time m. Let us denote this
greedy update algorithm by the map I � p�m� �→ p�m+1�.
1. Show the following properties of I . Vector inequalities are defined to be

component-wise inequalities.
(a) I�p� > 0 for every p≥ 0.
(b) I�p�≥ I�p̃�, whenever p≥ p̃.
(c) I��p�≤ �I�p� whenever � > 1.

2. Using the previous part, or otherwise, show that if I has a fixed point (denoted
by p∗) then it is unique.

3. Using the previous two parts, show that if I has a fixed point then p�m� → p∗

component-wise as m → � where p�m� �= I �p�m−1�� and p�1� and c�1� are an
arbitrary initial allocation of transmit powers and assignments of base-stations.

4. If I has a fixed point, then show that the uplink communication problem must be
feasible and further, the fixed point p∗ must be the same as the component-wise
minimal power vector derived in Exercise 4.7(3).

Exercise 4.9 Consider the following asynchronous version of the update algorithm
in Exercise 4.8. Each mobile’s update (of power and base-station assignment) occurs
asynchronously based on some previous knowledge of all the other users’ transmit
powers. Say the update of mobile n at time m is based on mobile k’s transmit power
at time �nk�m�. Clearly, �nk�m� ≤m and we require that each user eventually has an
update of the other users’ powers, i.e., for every time m0 there exists time m1 ≥ m0

such that �nk�m� ≥ m0 for every time m ≥ m1. We further require that each user’s
power and base-station assignment is allocated infinitely often. Then, starting from
any initial condition of powers of the users, show that the asynchronous power update
algorithm converges to the optimal power vector p∗ (assuming the problem is feasible,
so that p∗ exists in the first place).

Exercise 4.10 Consider the uplink of a CDMA system. Suppose there is only a single
cell with just two users communicating to the base-station in the cell.
1. Express mathematically the set of all feasible power vectors to support given �b/I0

requirements (assumed to be both equal to �).
2. Sketch examples of sets of feasible power vectors. Give one example where the

feasible set is non-empty and give one example where the feasible set is empty.
For the case where the feasible set is non-empty, identify the component-wise
minimum power vector.

3. For the example in part (2) where the feasible set is non-empty, start from an
arbitrary initial point and run the power control algorithm described in Section 4.3.1
(and studied in detail in Exercise 4.8). Exhibit the trajectory of power updates and
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how it converges to the component-wise minimum solution. (You can either do
this by hand or use MATLAB.)

4. Now suppose there are two cells with two base-stations and each of the two users
can be connected to either one of them, i.e. the users are in soft handoff. Extend
parts (1) and (2) to this scenario.

5. Extend the iterative power control algorithm in part (3) to the soft handoff scenario
and redo part (3).

6. For a general number of users, do you think that it is always true that, in the
optimal solution, each user is always connected to the base-station to which it has
the strongest channel gain? Explain.

Exercise 4.11 (Out-of-cell interference averaging) Consider a cellular system with two
adjacent single-dimensional cells along a highway, each of length d. The base-stations
are at the midpoint of their respective cell. Suppose there are K users in each cell,
and the location of each user is uniformly and independently located in its cell. Users
in cell i are power controlled to the base-station in cell i, and create interference at
the base-station in the adjacent cell. The power attenuation is proportional to r−�

where r is the distance. The system bandwidth is W Hz and the �b/I0 requirement
of each user is �. You can assume that the background noise is small compared to
the interference and that users are maintained orthogonal within a cell with the out-
of-cell interference from each of the interferers spread across the entire bandwidth.
(This is an approximate model for the OFDM system in the text.)
1. Outage occurs when the users are located such that the out-of-cell interference is

too large. For a given outage probability pout, give an approximate expression for
the spectral efficiency of the system as a function of K, � and �.

2. What is the limiting spectral efficiency as K and W grow? How does this depend
on �?

3. Plot the spectral efficiency as a function of K for �= 2 and �= 7dB. Is the spectral
efficiency an increasing or decreasing function of K? What is the limiting value?

4. We have assumed orthogonal users within a cell. But in a CDMA system, there is
intra-cell interference aswell.Assuming that all userswithin a cell are perfectly power
controlled at their base-station, repeat the analysis in the first three parts of the ques-
tion.Fromyourplots,whatqualitativedifferencesbetween theCDMAandorthogonal
systems can you observe? Intuitively explain your observations. Hint: Consider
first what happens when the number of users increases fromK = 1 toK = 2.

Exercise 4.12 Consider the uplink of a single-cell CDMA system with N users active
all the time. In the text we have assumed the received powers are controlled such that
they are exactly equal to the target level needed to deliver the desired SINR requirement
for each user. In practice, the received powers are controlled imperfectly due to various
factors such as tracking errors and errors in the feedback links. Suppose that when
the target received power level is P, the actual received power of user i is �iP, where
�i are i.i.d. random variables whose statistics do not depend on P. Experimental data
and theoretical analysis suggest that a good model for �i is a log normal distribution,
i.e., log��i� follows a Gaussian distribution with mean � and variance �2.
1. Assuming there is no power constraint on the users, give an approximate expression

for the achievable spectral efficiency (bits/s/Hz) to support N users for a given
outage probability pout and �b/I0 requirement � for each user.
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2. Plot this expression as a function of N for reasonable values of the parameters
and compare this to the perfect power control case. Do you see any interference
averaging effect?

3. How does this scenario differ from the users’ activity averaging example considered
in the text?

Exercise 4.13 In the downlink of a CDMA system, each users’ signal is spread onto
a pseudonoise sequence.13 Uncoded BPSK modulation is used, with a processing gain
of G. Soft handoff is performed by sending the same symbol to the mobile from mul-
tiple base-stations, the symbol being spread onto independently chosen pseudonoise
sequences. The mobile receiver has knowledge of all the sequences used to spread the
data intended for it as well as the channel gains and can detect the transmitted symbol
in the optimal way. We ignore fading and assume an AWGN channel between the
mobile and each of the base-stations.
1. Give an expression for the detection error probability for a mobile in soft handoff

between two base-stations. You may need to make several simplifying assumptions
here. Feel free to make them but state them explicitly.

2. Now consider a whole network where each mobile is already assigned to a set
of base-stations among which it is in soft handoff. Formulate the power control
problem to meet the error probability requirement for each mobile in the downlink.

Exercise 4.14 In this problem we consider the design of hopping patterns of neigh-
boring cells in the OFDM system. Based on the design principles in Section 4.4.2, we
want the hopping patterns to be Latin squares and further require these Latin squares
to be orthogonal. Another way to express the orthogonality of a pair of Latin squares
is the following. For the two Latin squares, the N 2

c ordered pairs �n1� n2�, where n1
and n2 are the entries (sub-carrier index) from the same position in the respective Latin
squares, exhaust the N 2

c possibilities, i.e., every ordered pair occurs exactly once.
1. Show that the Nc−1 Latin squares constructed in Section 4.4.2 (denoted by Ra in

(4.23)) are mutually orthogonal.
2. Show that there cannot be more than Nc − 1 mutually orthogonal Latin squares.

You can learn more about Latin squares from a book on combinatorial theory such
as [16].

Exercise 4.15 In this exercise we derive some insight into the PAPR of the uplink
transmit signal in the OFDM system. The uplink signal is restricted to n of the Nc sub-
carriers and the specific choice of n depends on the allocation and further hops from
one OFDM symbol to the other. So, for concreteness, we assume that n divides Nc

and assume that sub-carriers are uniformly separated. Let us take the carrier frequency
to be fc and the inter-sub-carrier spacing to be 1/T Hz. This means that the passband
transmit signal over one OFDM symbol (of length T ) is

s�t�= �
[

1√
Nc

n−1∑
i=0

d̃i exp
(
j2�

(
fc +

iNc

nT

)
t

)]
� t ∈ �0� T��

13 Note that this is different from the downlink of IS-95, where each user is assigned an
orthogonal sequence.
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Here we have denoted d̃0� � � � � d̃n−1 to be the data (constellation) symbols chosen
according to the (coded) data bits. We also denote the product fcT by # , which is
typically a very large number. For example, with carrier frequency fc = 2GHz and
bandwidth W = 1MHz with Nc = 512 tones, the length of the OFDM symbol is
approximately T = Nc/W . Then # is of the order of 106.
1. What is the (average) power of s�t� as a function of the data symbols d̃i�

i = 0� � � � � n− 1? In the uplink, the constellation is usually small in size (due
to low SINR values and transmit power constraints). A typical example is equal
energy constellation such as (Q)PSK. For this problem, we assume that the data
symbols are uniform over the circle in the complex plane with unit radius. With
this assumption, compute the average of the power of s�t�, averaged over the data
symbols. We denote this average by Pav.

2. We define the peak power of the signal s�t� as a function of the data symbols as
the square of the largest absolute value s�t� can take in the time interval �0� T�. We
denote this by PP�d̃�, the peak power as a function of the data symbols d. Observe
that the peak power can be written in our notation as

PP�d̃�= max
0≤t≤1

(
�
[

1√
Nc

n−1∑
i=0

d̃i exp
(
j2�

(
#+ iNc

n

)
t

)])2

�

The peak to average power ratio (PAPR) is the ratio of PP�d̃� to Pav.
We would like to understand how PP�d̃� behaves with the data symbols d̃. Since #
is a large number, s�t� is wildly fluctuating with time and is rather hard to analyze
in a clean way. To get some insight, let us take a look at the values of s�t� at the
sample times: t = l/W� l= 0� � � � �Nc −1:

s�l/W�= ��d�l� exp� j2�#l���

where �d�0�� � � � � d�Nc −1�� is the Nc point IDFT (see Figure 3.20) of the vector
with ith component equal to

{
d̃l when i= lNc/n for integer l�

0 otherwise�

The worst amplitude of s�l/W� is equal to the amplitude of d�l�, so let us focus on
d�0�� � � � � d�Nc −1�. With the assumption that the data symbols d̃0� � � � � d̃n−1 are
uniformly distributed on the circle in the complex plane of radius 1/

√
Nc, what

can you say about the marginal distributions of d�0�� � � � � d�Nc−1�? In particular,
what happens to these marginal distributions as n�Nc → � with n/Nc equal to
a non-zero constant? The random variable �d�0��2/Pav can be viewed as a lower
bound to the PAPR.

3. Thus, even though the constellation symbols were all of equal energy, the PAPR
of the resultant time domain signal is quite large. In practice, we can tolerate
some codewords having large PAPRs as long as the majority of the codewords
(say a fraction equal to 1−�) have well-behaved PAPRs. Using the distribution
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�d�0��2/Pav for large n�Nc as a lower bound substitute for the PAPR, calculate
���� defined as

�

{ �d�0��2
Pav

< ����

}
= 1−��

Calculate ���� for � = 0�05. When the power amplifier bias is set to the average
power times �, then on the average 95% of the codewords do not get clipped. This
large value of ���� is one of the main implementational obstacles to using OFDM
in the uplink.

Exercise 4.16 Several techniques have been proposed to reduce the PAPR in OFDM
transmissions. In this exercise, we take a look at a few of these.
1. A standard approach to reduce the large PAPR of OFDM signals is to restrict

signals transmitted to those that have guaranteed small PAPRs. One approach is
based on Golay’s complementary sequences [48, 49, 50]. These sequences possess
an extremely low PAPR of 2 but their rate rapidly approaches zero with the number
of sub-carriers (in the binary case, there are roughly n logn Golay sequences of
length n). A reading exercise is to go through [14] and [93] which first suggested
the applicability of Golay sequences in multitone communication.

2. However, in many communication systems codes are designed to have maximal
rate. For example, LDPC and Turbo codes operate very close to the Shannon
limits on many channels (including the AWGN channel). Thus it is useful to have
strategies that improve the PAPR behavior of existing code sets. In this context,
[64] proposes the following interesting idea: Introduce fixed phase rotations, say
�0� � � � � �n−1, to each of the data symbols d̃0� � � � � d̃n−1. The choice of these
fixed rotations is made such that the overall PAPR behavior of the signal set
(corresponding to the code set) is improved. Focusing on the worst case PAPR
(the largest signal power at any time for any signal among the code set), [116]
introduces a geometric viewpoint and a computationally efficient algorithm to find
the good choice of phase rotations. This reading exercise takes you through [64]
and [116] and introduces these developments.

3. The worst case PAPR may be too conservative in predicting the bias setting. As
an alternative, one can allow large peaks to occur but they should do so with
small probability. When a large peak does occur, the signal will not be faithfully
reproduced by the power amplifier thereby introducing noise into the signal. Since
communication systems are designed to tolerate a certain amount of noise, one can
attempt to control the probability that peak values are exceeded and then ameliorate
the effects of the additional noise through the error control codes. A probabilistic
approach to reduce PAPR of existing codesets is proposed in [70]. The idea is to
remove the worst (say half) of the codewords based on the PAPR performance.
This reduces the code rate by a negligible amount but the probability (�) that a
certain threshold is exceeded by the transmit signal can be reduced a lot (as small
as �2). Since the peak threshold requirement of the amplifiers is typically chosen
so as to set this probability to a sufficiently small level, such a scheme will permit
the threshold to be set lower. A reading exercise takes you through the unpublished
manuscript [70] where a scheme that is specialized to OFDM systems is detailed.
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5 Capacity of wireless channels

In the previous two chapters, we studied specific techniques for communi-
cation over wireless channels. In particular, Chapter 3 is centered on the
point-to-point communication scenario and there the focus is on diversity as
a way to mitigate the adverse effect of fading. Chapter 4 looks at cellular
wireless networks as a whole and introduces several multiple access and
interference management techniques.
The present chapter takes a more fundamental look at the problem of

communication over wireless fading channels. We ask: what is the optimal
performance achievable on a given channel and what are the techniques to
achieve such optimal performance? We focus on the point-to-point scenario in
this chapter and defer the multiuser case until Chapter 6. The material covered
in this chapter lays down the theoretical basis of the modern development in
wireless communication to be covered in the rest of the book.
The framework for studying performance limits in communication is infor-

mation theory. The basic measure of performance is the capacity of a chan-
nel: the maximum rate of communication for which arbitrarily small error
probability can be achieved. Section 5.1 starts with the important exam-
ple of the AWGN (additive white Gaussian noise) channel and introduces
the notion of capacity through a heuristic argument. The AWGN chan-
nel is then used as a building block to study the capacity of wireless
fading channels. Unlike the AWGN channel, there is no single definition
of capacity for fading channels that is applicable in all scenarios. Sev-
eral notions of capacity are developed, and together they form a system-
atic study of performance limits of fading channels. The various capacity
measures allow us to see clearly the different types of resources available
in fading channels: power, diversity and degrees of freedom. We will see
how the diversity techniques studied in Chapter 3 fit into this big pic-
ture. More importantly, the capacity results suggest an alternative technique,
opportunistic communication, which will be explored further in the later
chapters.
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5.1 AWGN channel capacity

Information theory was invented by Claude Shannon in 1948 to characterize
the limits of reliable communication. Before Shannon, it was widely believed
that the only way to achieve reliable communication over a noisy channel,
i.e., to make the error probability as small as desired, was to reduce the data
rate (by, say, repetition coding). Shannon showed the surprising result that
this belief is incorrect: by more intelligent coding of the information, one
can in fact communicate at a strictly positive rate but at the same time with
as small an error probability as desired. However, there is a maximal rate,
called the capacity of the channel, for which this can be done: if one attempts
to communicate at rates above the channel capacity, then it is impossible to
drive the error probability to zero.

In this section, the focus is on the familiar (real) AWGN channel:

y�m�= x�m�+w�m�� (5.1)

where x�m� and y�m� are real input and output at timem respectively and w�m�
is � �0��2� noise, independent over time. The importance of this channel is
two-fold:

• It is a building block of all of the wireless channels studied in this book.
• It serves as a motivating example of what capacity means operationally and
gives some sense as to why arbitrarily reliable communication is possible
at a strictly positive data rate.

5.1.1 Repetition coding

Using uncoded BPSK symbols x�m� = ±√
P, the error probability is

Q
(√

P/�2
)
. To reduce the error probability, one can repeat the same

symbol N times to transmit the one bit of information. This is a
repetition code of block length N , with codewords xA = √

P�1� � � � �1�t

and xB = √
P�−1� � � � �−1�t. The codewords meet a power constraint of

P joules/symbol. If xA is transmitted, the received vector is

y= xA+w� (5.2)

where w = �w�1�� � � � �w�N��t. Error occurs when y is closer to xB than to
xA, and the error probability is given by

Q

(�xA−xB�
2�

)
=Q

(√
NP

�2

)
� (5.3)

which decays exponentially with the block length N . The good news is that
communication can now be done with arbitrary reliability by choosing a large
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enough N . The bad news is that the data rate is only 1/N bits per symbol
time and with increasing N the data rate goes to zero.
The reliably communicated data rate with repetition coding can be

marginally improved by using multilevel PAM (generalizing the two-level
BPSK scheme from earlier). By repeating anM-level PAM symbol, the levels
equally spaced between ±√

P, the rate is logM/N bits per symbol time1 and
the error probability for the inner levels is equal to

Q

( √
NP

�M−1��

)
� (5.4)

As long as the number of levels M grows at a rate less than
√
N , reliable

communication is guaranteed at large block lengths. But the data rate is
bounded by �log

√
N�/N and this still goes to zero as the block length

increases. Is that the price one must pay to achieve reliable communication?

5.1.2 Packing spheres

Geometrically, repetition coding puts all the codewords (the M levels) in just
one dimension (Figure 5.1 provides an illustration; here, all the codewords
are on the same line). On the other hand, the signal space has a large number
of dimensions N . We have already seen in Chapter 3 that this is a very
inefficient way of packing codewords. To communicate more efficiently, the
codewords should be spread in all the N dimensions.

We can get an estimate on the maximum number of codewords that can
be packed in for the given power constraint P, by appealing to the clas-
sic sphere-packing picture (Figure 5.2). By the law of large numbers, the
N -dimensional received vector y= x+w will, with high probability, lie within

Figure 5.1 Repetition coding
packs points inefficiently in the
high-dimensional signal space.

√N(P + σ 
2)

1 In this chapter, all logarithms are taken to be to the base 2 unless specified otherwise.
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Figure 5.2 The number of
noise spheres that can be
packed into the y-sphere
yields the maximum number
of codewords that can be
reliably distinguished. Nσ 

2 √NP

√N(P + σ 
2)

a y-sphere of radius
√
N�P+�2�; so without loss of generality we need only

focus on what happens inside this y-sphere. On the other hand

1
N

N∑
m=1

w2�m�→ �2 (5.5)

as N → �, by the law of large numbers again. So, for N large, the received
vector y lies, with high probability, near the surface of a noise sphere of radius√
N� around the transmitted codeword (this is sometimes called the sphere

hardening effect). Reliable communication occurs as long as the noise spheres
around the codewords do not overlap. The maximum number of codewords
that can be packed with non-overlapping noise spheres is the ratio of the
volume of the y-sphere to the volume of a noise sphere:2(√

N�P+�2�
)N

(√
N�2

)N � (5.6)

This implies that the maximum number of bits per symbol that can be reliably
communicated is

1
N

log

⎛⎜⎝
(√

N�P+�2�
)N

(√
N�2

)N
⎞⎟⎠= 1

2
log

(
1+ P

�2

)
� (5.7)

This is indeed the capacity of the AWGN channel. (The argument might sound
very heuristic. Appendix B.5 takes a more careful look.)

The sphere-packing argument only yields the maximum number of code-
words that can be packed while ensuring reliable communication. How to con-
struct codes to achieve the promised rate is another story. In fact, in Shannon’s
argument, he never explicitly constructed codes. What he showed is that if

2 The volume of an N -dimensional sphere of radius r is proportional to rN and an exact
expression is evaluated in Exercise B.10.
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one picks the codewords randomly and independently, with the components
of each codeword i.i.d. � �0�P�, then with very high probability the randomly
chosen code will do the job at any rate R < C. This is the so-called i.i.d.
Gaussian code. A sketch of this random coding argument can be found in
Appendix B.5.
From an engineering standpoint, the essential problem is to identify easily

encodable and decodable codes that have performance close to the capacity.
The study of this problem is a separate field in itself and Discussion 5.1
briefly chronicles the success story: codes that operate very close to capacity
have been found and can be implemented in a relatively straightforward way
using current technology. In the rest of the book, these codes are referred to
as “capacity-achieving AWGN codes”.

Discussion 5.1 Capacity-achieving AWGN channel codes

Consider a code for communication over the real AWGN channel in (5.1).
The ML decoder chooses the nearest codeword to the received vector as
the most likely transmitted codeword. The closer two codewords are to
each other, the higher the probability of confusing one for the other: this
yields a geometric design criterion for the set of codewords, i.e., place
the codewords as far apart from each other as possible. While such a set
of maximally spaced codewords are likely to perform very well, this in
itself does not constitute an engineering solution to the problem of code
construction: what is required is an arrangement that is “easy” to describe
and “simple” to decode. In other words, the computational complexity of
encoding and decoding should be practical.
Many of the early solutions centered around the theme of ensuring

efficient ML decoding. The search of codes that have this property leads to
a rich class of codes with nice algebraic properties, but their performance
is quite far from capacity. A significant breakthrough occurred when the
stringent ML decoding was relaxed to an approximate one. An iterative
decoding algorithm with near ML performance has led to turbo and low
density parity check codes.
A large ensemble of linear parity check codes can be considered in con-

junctionwith the iterativedecodingalgorithm.Codeswithgoodperformance
can be found offline and they have been verified to perform very close to
capacity.Togeta feel for theirperformance,weconsider somesampleperfor-
mance numbers. The capacity of the AWGN channel at 0 dB SNR is 0.5 bits
per symbol. The error probability of a carefully designedLDPCcode in these
operating conditions (rate 0.5 bits per symbol, and the signal-to-noise ratio is
equal to 0.1 dB)with a block length of 8000 bits is approximately 10−4.With
a larger block length, much smaller error probabilities have been achieved.
These modern developments are well surveyed in [100].
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The capacity of the AWGN channel is probably the most well-known
result of information theory, but it is in fact only a special case of Shannon’s
general theory applied to a specific channel. This general theory is outlined
in Appendix B. All the capacity results used in the book can be derived from
this general framework. To focus more on the implications of the results in
the main text, the derivation of these results is relegated to Appendix B. In
the main text, the capacities of the channels looked at are justified by either

Figure 5.3 The three
communication schemes when
viewed in N-dimensional space:
(a) uncoded signaling: error
probability is poor since large
noise in any dimension is
enough to confuse the receiver;
(b) repetition code: codewords
are now separated in all
dimensions, but there are only
a few codewords packed in a
single dimension; (c)
capacity-achieving code:
codewords are separated in all
dimensions and there are many
of them spread out in the
space.

Summary 5.1 Reliable rate of communication and capacity

• Reliable communication at rate R bits/symbol means that one can design
codes at that rate with arbitrarily small error probability.

• To get reliable communication, one must code over a long block; this
is to exploit the law of large numbers to average out the randomness of
the noise.

• Repetition coding over a long block can achieve reliable communication,
but the corresponding data rate goes to zero with increasing block length.

• Repetition coding does not pack the codewords in the available degrees
of freedom in an efficient manner. One can pack a number of codewords
that is exponential in the block length and still communicate reliably.
This means the data rate can be strictly positive even as reliability is
increased arbitrarily by increasing the block length.

• The maximum data rate at which reliable communication is possible is
called the capacity C of the channel.

• The capacity of the (real) AWGN channel with power constraint P and
noise variance �2 is:

Cawgn =
1
2
log

(
1+ P

�2

)
� (5.8)

and the engineering problem of constructing codes close to this perfor-
mance has been successfully addressed.
Figure 5.3 summarizes the three communication schemes discussed.

(a) (b) (c)
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transforming the channels back to the AWGN channel, or by using the type
of heuristic sphere-packing arguments we have just seen.

5.2 Resources of the AWGN channel

The AWGN capacity formula (5.8) can be used to identify the roles of the
key resources of power and bandwidth.

5.2.1 Continuous-time AWGN channel

Consider a continuous-time AWGN channel with bandwidth W Hz, power
constraint P̄ watts, and additive white Gaussian noise with power spectral
density N0/2. Following the passband–baseband conversion and sampling at
rate 1/W (as described in Chapter 2), this can be represented by a discrete-
time complex baseband channel:

y�m�= x�m�+w�m�� (5.9)

where w�m� is �� �0�N0� and is i.i.d. over time. Note that since the noise is
independent in the I and Q components, each use of the complex channel can
be thought of as two independent uses of a real AWGN channel. The noise
variance and the power constraint per real symbol are N0/2 and P̄/�2W�

respectively. Hence, the capacity of the channel is

1
2
log

(
1+ P̄

N0W

)
bits per real dimension� (5.10)

or

log
(
1+ P̄

N0W

)
bits per complex dimension� (5.11)

This is the capacity in bits per complex dimension or degree of freedom.
Since there areW complex samples per second, the capacity of the continuous-
time AWGN channel is

Cawgn�P̄�W �=W log
(
1+ P̄

N0W

)
bits/s� (5.12)

Note that SNR �= P̄/�N0W� is the SNR per (complex) degree of freedom.
Hence, AWGN capacity can be rewritten as

Cawgn = log�1+ SNR�bits/s/Hz� (5.13)

This formula measures the maximum achievable spectral efficiency through
the AWGN channel as a function of the SNR.
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5.2.2 Power and bandwidth

Let us ponder the significance of the capacity formula (5.12) to a communica-
tion engineer. One way of using this formula is as a benchmark for evaluating
the performance of channel codes. For a system engineer, however, the main
significance of this formula is that it provides a high-level way of thinking
about how the performance of a communication system depends on the basic
resources available in the channel, without going into the details of specific
modulation and coding schemes used. It will also help identify the bottleneck
that limits performance.
The basic resources of the AWGN channel are the received power P̄ and

the bandwidth W . Let us first see how the capacity depends on the received
power. To this end, a key observation is that the function

f�SNR� �= log�1+ SNR� (5.14)

is concave, i.e., f ′′�x�≤ 0 for all x≥ 0 (Figure 5.4). This means that increasing
the power P̄ suffers from a law of diminishing marginal returns: the higher
the SNR, the smaller the effect on capacity. In particular, let us look at the
low and the high SNR regimes. Observe that

log2�1+x� ≈ x log2 e whenx ≈ 0� (5.15)

log2�1+x� ≈ log2 x whenx� 1� (5.16)

Thus, when the SNR is low, the capacity increases linearly with the received
power P̄: every 3 dB increase in (or, doubling) the power doubles the capacity.
When the SNR is high, the capacity increases logarithmically with P̄: every
3 dB increase in the power yields only one additional bit per dimension.
This phenomenon should not come as a surprise. We have already seen in

Figure 5.4 Spectral efficiency
log�1+ SNR� of the AWGN
channel.
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Chapter 3 that packing many bits per dimension is very power-inefficient.
The capacity result says that this phenomenon not only holds for specific
schemes but is in fact fundamental to all communication schemes. In fact,
for a fixed error probability, the data rate of uncoded QAM also increases
logarithmically with the SNR (Exercise 5.7).
The dependency of the capacity on the bandwidth W is somewhat more

complicated. From the formula, the capacity depends on the bandwidth in two
ways. First, it increases the degrees of freedom available for communication.
This can be seen in the linear dependency on W for a fixed SNR= P̄/�N0W�.
On the other hand, for a given received power P̄, the SNR per dimension
decreases with the bandwidth as the energy is spread more thinly across the
degrees of freedom. In fact, it can be directly calculated that the capacity is
an increasing, concave function of the bandwidth W (Figure 5.5). When the
bandwidth is small, the SNR per degree of freedom is high, and then the
capacity is insensitive to small changes in SNR. Increasing W yields a rapid
increase in capacity because the increase in degrees of freedom more than
compensates for the decrease in SNR. The system is in the bandwidth-limited
regime. When the bandwidth is large such that the SNR per degree of freedom
is small,

W log
(
1+ P̄

N0W

)
≈W

(
P̄

N0W

)
log2 e=

P̄

N0

log2 e� (5.17)

In this regime, the capacity is proportional to the total received power across
the entire band. It is insensitive to the bandwidth, and increasing the bandwidth
has a small impact on capacity. On the other hand, the capacity is now linear
in the received power and increasing power has a significant effect. This is
the power-limited regime.

Figure 5.5 Capacity as a
function of the bandwidth W .
Here P̄/N0 = 106.
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As W increases, the capacity increases monotonically (why must it?) and
reaches the asymptotic limit

C� = P̄

N0

log2 e bits/s (5.18)

This is the infinite bandwidth limit, i.e., the capacity of the AWGN channel
with only a power constraint but no limitation on bandwidth. It is seen that
even if there is no bandwidth constraint, the capacity is finite.
In some communication applications, the main objective is to minimize

the required energy per bit �b rather than to maximize the spectral effi-
ciency. At a given power level P̄, the minimum required energy per bit
�b is P̄/Cawgn�P̄�W �. To minimize this, we should be operating in the most
power-efficient regime, i.e., P̄ → 0. Hence, the minimum �b/N0 is given by(

�b

N0

)
min

= lim
P̄→0

P̄

Cawgn�P̄�W �N0

= 1
log2 e

= −1�59dB� (5.19)

To achieve this, the SNR per degree of freedom goes to zero. The price
to pay for the energy efficiency is delay: if the bandwidth W is fixed, the
communication rate (in bits/s) goes to zero. This essentially mimics the
infinite bandwidth regime by spreading the total energy over a long time
interval, instead of spreading the total power over a large bandwidth.

It was already mentioned that the success story of designing capacity-
achieving AWGN codes is a relatively recent one. In the infinite bandwidth
regime, however, it has long been known that orthogonal codes3 achieve the
capacity (or, equivalently, achieve the minimum �b/N0 of −1�59dB). This is
explored in Exercises 5.8 and 5.9.

Example 5.2 Bandwidth reuse in cellular systems
The capacity formula for the AWGN channel can be used to conduct
a simple comparison of the two orthogonal cellular systems discussed
in Chapter 4: the narrowband system with frequency reuse versus the
wideband system with universal reuse. In both systems, users within a cell
are orthogonal and do not interfere with each other. The main parameter
of interest is the reuse ratio "�"≤ 1�. If W denotes the bandwidth per user
within a cell, then each user transmission occurs over a bandwidth of "W .
The parameter "= 1 yields the full reuse of the wideband OFDM system
and " < 1 yields the narrowband system.

3 One example of orthogonal coding is the Hadamard sequences used in the IS-95 system
(Section 4.3.1). Pulse position modulation (PPM), where the position of the on–off pulse
(with large duty cycle) conveys the information, is another example.
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Here we consider the uplink of this cellular system; the study of the
downlink in orthogonal systems is similar. A user at a distance r is heard
at the base-station with an attenuation of a factor r−� in power; in free
space the decay rate � is equal to 2 and the decay rate is 4 in the model
of a single reflected path off the ground plane, cf. Section 2.1.5.

The uplink user transmissions in a neighboring cell that reuses the same
frequency band are averaged and this constitutes the interference (this
averaging is an important feature of the wideband OFDM system; in the
narrowband system in Chapter 4, there is no interference averaging but that
effect is ignored here). Let us denote by f" the amount of total out-of-cell
interference at a base-station as a fraction of the received signal power of
a user at the edge of the cell. Since the amount of interference depends
on the number of neighboring cells that reuse the same frequency band,
the fraction f" depends on the reuse ratio and also on the topology of the
cellular system.

For example, in a one-dimensional linear array of base-stations
(Figure 5.6), a reuse ratio of " corresponds to one in every 1/" cells using
the same frequency band. Thus the fraction f" decays roughly as "�. On
the other hand, in a two-dimensional hexagonal array of base-stations, a
reuse ratio of " corresponds to the nearest reusing base-station roughly a
distance of

√
1/" away: this means that the fraction f" decays roughly as

"�/2. The exact fraction f" takes into account geographical features of the
cellular system (such as shadowing) and the geographic averaging of the
interfering uplink transmissions; it is usually arrived at using numerical
simulations (Table 6.2 in [140] has one such enumeration for a full reuse
system). In a simple model where the interference is considered to come
from the center of the cell reusing the same frequency band, f" can be
taken to be 2�"/2�� for the linear cellular system and 6�"/4��/2 for the
hexagonal planar cellular system (see Exercises 5.2 and 5.3).

The received SINR at the base-station for a cell edge user is

SINR= SNR
"+f"SNR

� (5.20)

where the SNR for the cell edge user is

SNR �= P

N0Wd
�
� (5.21)

d

Figure 5.6 A linear cellular system with base-stations along a line (representing a highway).
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with d the distance of the user to the base-station and P the uplink
transmit power. The operating value of the parameter SNR is decided by the
coverage of a cell: a user at the edge of a cell has to have a minimum SNR
to be able to communicate reliably (at aleast a fixed minimum rate) with
the nearest base-station. Each base-station comes with a capital installation
cost and recurring operation costs and to minimize the number of base-
stations, the cell size d is usually made as large as possible; depending on
the uplink transmit power capability, coverage decides the cell size d.
Using the AWGN capacity formula (cf. (5.14)), the rate of reliable

communication for a user at the edge of the cell, as a function of the reuse
ratio ", is

R" = "W log2�1+ SINR�= "W log2

(
1+ SNR

"+f"SNR

)
bits/s� (5.22)

The rate depends on the reuse ratio through the available degrees of
freedom and the amount of out-of-cell interference. A large " increases
the available bandwidth per cell but also increases the amount of out-of-
cell interference. The formula (5.22) allows us to study the optimal reuse
factor. At low SNR, the system is not degree of freedom limited and the
interference is small relative to the noise; thus the rate is insensitive to the
reuse factor and this can be verified directly from (5.22). On the other hand,
at large SNR the interference grows as well and the SINR peaks at 1/f".
(A general rule of thumb in practice is to set SNR such that the interference
is of the same order as the background noise; this will guarantee that the
operating SINR is close to the largest value.) The largest rate is

"W log2

(
1+ 1

f"

)
� (5.23)

This rate goes to zero for small values of "; thus sparse reuse is not
favored. It can be verified that universal reuse yields the largest rate in
(5.23) for the hexagonal cellular system (Exercise 5.3). For the linear
cellular model, the corresponding optimal reuse is " = 1/2, i.e., reusing
the frequency every other cell (Exercise 5.5). The reduction in interference
due to less reuse is more dramatic in the linear cellular system when
compared to the hexagonal cellular system. This difference is highlighted
in the optimal reuse ratios for the two systems at high SNR: universal
reuse is preferred for the hexagonal cellular system while a reuse ratio of
1/2 is preferred for the linear cellular system.

This comparison also holds for a range of SNR between the small and
the large values: Figures 5.7 and 5.8 plot the rates in (5.22) for different
reuse ratios for the linear and hexagonal cellular systems respectively.
Here the power decay rate � is fixed to 3 and the rates are plotted as a
function of the SNR for a user at the edge of the cell, cf. (5.21). In the
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Figure 5.7 Rates in bits/s/Hz as a function of the SNR for a user at the edge of the cell for
universal reuse and reuse ratios of 1/2 and 1/3 for the linear cellular system. The power decay
rate � is set to 3.
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Figure 5.8 Rates in bits/s/Hz as a function of the SNR for a user at the edge of the cell for
universal reuse, reuse ratios 1/2 and 1/7 for the hexagonal cellular system. The power decay rate
� is set to 3.

hexagonal cellular system, universal reuse is clearly preferred at all ranges
of SNR. On the other hand, in a linear cellular system, universal reuse
and a reuse of 1/2 have comparable performance and if the operating
SNR value is larger than a threshold (10 dB in Figure 5.7), then it pays to
reuse, i.e., R1/2 > R1. Otherwise, universal reuse is optimal. If this SNR
threshold is within the rule of thumb setting mentioned earlier (i.e., the
gain in rate is worth operating at this SNR), then reuse is preferred. This
Preference has to be traded off with the size of the cell dictated by (5.21)
due to a transmit power constraint on the mobile device.
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5.3 Linear time-invariant Gaussian channels

We give three examples of channels which are closely related to the simple
AWGN channel and whose capacities can be easily computed. Moreover,
optimal codes for these channels can be constructed directly from an optimal
code for the basic AWGN channel. These channels are time-invariant, known
to both the transmitter and the receiver, and they form a bridge to the fading
channels which will be studied in the next section.

5.3.1 Single input multiple output (SIMO) channel

Consider a SIMO channel with one transmit antenna and L receive antennas:

y��m�= h�x�m�+w��m� �= 1� � � � �L� (5.24)

where h� is the fixed complex channel gain from the transmit antenna to
the �th receive antenna, and w��m� is �� �0�N0� is additive Gaussian noise
independent across antennas. A sufficient statistic for detecting x�m� from
y�m� �= �y1�m�� � � � � yL�m��

t is

ỹ�m� �= h∗y�m�= �h�2x�m�+h∗w�m�� (5.25)

where h �= �h1� � � � � hL�
t and w�m� �= �w1�m�� � � � �wL�m��

t. This is an
AWGN channel with received SNR P�h�2/N0 if P is the average energy per
transmit symbol. The capacity of this channel is therefore

C = log
(
1+ P�h�2

N0

)
bits/s/Hz� (5.26)

Multiple receive antennas increase the effective SNR and provide a power
gain. For example, for L= 2 and �h1� = �h2� = 1, dual receive antennas provide
a 3 dB power gain over a single antenna system. The linear combining (5.25)
maximizes the output SNR and is sometimes called receive beamforming.

5.3.2 Multiple input single output (MISO) channel

Consider a MISO channel with L transmit antennas and a single receive
antenna:

y�m�= h∗x�m�+w�m�� (5.27)

where h = �h1� � � � � hL�
t and h� is the (fixed) channel gain from transmit

antenna � to the receive antenna. There is a total power constraint of P across
the transmit antennas.



180 Capacity of wireless channels

In the SIMO channel above, the sufficient statistic is the projection of the
L-dimensional received signal onto h: the projections in orthogonal directions
contain noise that is not helpful to the detection of the transmit signal. A natural
reciprocal transmission strategy for the MISO channel would send information
only in the direction of the channel vector h; information sent in any orthogonal
direction will be nulled out by the channel anyway. Therefore, by setting

x�m�= h
�h� x̃�m�� (5.28)

the MISO channel is reduced to the scalar AWGN channel:

y�m�= �h�x̃�m�+w�m�� (5.29)

with a power constraint P on the scalar input. The capacity of this scalar
channel is

log
(
1+ P�h�2

N0

)
bits/s/Hz� (5.30)

Can one do better than this scheme? Any reliable code for the MISO channel
canbeusedasa reliable code for the scalarAWGNchannely�m�= x�m�+w�m�:
if 	Xi
 are the transmittedL×N (space-time) codematrices for theMISO chan-
nel, then the received 1×N vectors 	h∗Xi
 form a code for the scalar AWGN
channel. Hence, the rate achievable by a reliable code for the MISO channel
must be at most the capacity of a scalar AWGN channel with the same received
SNR. Exercise 5.11 shows that the received SNR P�h�2/N0 of the transmission
strategy above is in fact the largest possible SNR given the transmit power con-
straint of P. Any other scheme has a lower received SNR and hence its reliable
rate must be less than (5.30), the rate achieved by the proposed transmission
strategy. We conclude that the capacity of the MISO channel is indeed

C = log
(
1+ P�h�2

N0

)
bits/s/Hz� (5.31)

Intuitively, the transmission strategy maximizes the received SNR by hav-
ing the received signals from the various transmit antennas add up in-phase
(coherently) and by allocating more power to the transmit antenna with the
better gain. This strategy, “aligning the transmit signal in the direction of
the transmit antenna array pattern”, is called transmit beamforming. Through
beamforming, the MISO channel is converted into a scalar AWGN channel
and thus any code which is optimal for the AWGN channel can be used directly.
In both the SIMO and the MISO examples the benefit from having multiple

antennas is a power gain. To get a gain in degrees of freedom, one has to use
both multiple transmit and multiple receive antennas (MIMO). We will study
this in depth in Chapter 7.
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5.3.3 Frequency-selective channel

Transformation to a parallel channel
Consider a time-invariant L-tap frequency-selective AWGN channel:

y�m�=
L−1∑
�=0

h�x�m−��+w�m�� (5.32)

with an average power constraint P on each input symbol. In Section 3.4.4, we
saw that the frequency-selective channel can be converted into Nc independent
sub-carriers by adding a cyclic prefix of length L− 1 to a data vector of
length Nc, cf. (3.137). Suppose this operation is repeated over blocks of data
symbols (of length Nc each, along with the corresponding cyclic prefix of
length L−1); see Figure 5.9. Then communication over the ith OFDM block
can be written as

ỹn�i�= h̃nd̃n�i�+ w̃n�i� n= 0�1� � � � �Nc−1� (5.33)

Here,

d̃�i� �= �d̃0�i�� � � � � d̃Nc−1�i��
t� (5.34)

w̃�i� �= �w̃0�i�� � � � � w̃Nc−1�i��
t� (5.35)

ỹ�i� �= �ỹ0�i�� � � � � ỹNc−1�i��
t (5.36)

are the DFTs of the input, the noise and the output of the ith OFDM block
respectively. h̃ is the DFT of the channel scaled by

√
Nc (cf. (3.138)). Since the

overhead in the cyclic prefix relative to the block lengthNc can bemade arbitrar-
ily small by choosing Nc large, the capacity of the original frequency-selective
channel is the same as the capacity of this transformed channel asNc → �.
The transformedchannel (5.33) canbeviewedas a collectionof sub-channels,

one for each sub-carrier n. Each of the sub-channels is an AWGN channel. The

Figure 5.9 A coded OFDM
system. Information bits are
coded and then sent over the
frequency-selective channel via
OFDM modulation. Each
channel use corresponds to an
OFDM block. Coding can be
done across different OFDM
blocks as well as over different
sub-carriers.

Encoder

OFDM
modulator

Channel 
(use 2)

OFDM
modulator

Channel 
(use 3)

Channel 
(use 1)

Information
bits

OFDM
modulator
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transformed noise w̃�i� is distributed as �� �0�N0I�, so the noise is �� �0�N0�

in each of the sub-channels and, moreover, the noise is independent across
sub-channels. The power constraint on the input symbols in time translates
to one on the data symbols on the sub-channels (Parseval theorem for DFTs):

�
[�d̃�i��2]≤ NcP� (5.37)

In information theory jargon, a channel which consists of a set of non-
interfering sub-channels, each of which is corrupted by independent noise, is
called a parallel channel. Thus, the transformed channel here is a parallel
AWGN channel, with a total power constraint across the sub-channels. A nat-
ural strategy for reliable communication over a parallel AWGN channel is
illustrated in Figure 5.10. We allocate power to each sub-channel, Pn to the
nth sub-channel, such that the total power constraint is met. Then, a separate
capacity-achieving AWGN code is used to communicate over each of the sub-
channels. The maximum rate of reliable communication using this scheme is

Nc−1∑
n=0

log

(
1+ Pn�h̃n�2

N0

)
bits/OFDM symbol� (5.38)

Further, the power allocation can be chosen appropriately, so as to maximize
the rate in (5.38). The “optimal power allocation”, thus, is the solution to the
optimization problem:

CNc
�= max

P0� � � � �PNc−1

Nc−1∑
n=0

log

(
1+ Pn�h̃n�2

N0

)
� (5.39)

Figure 5.10 Coding
independently over each of the
sub-carriers. This architecture,
with appropriate power and
rate allocations, achieves the
capacity of the
frequency-selective channel.
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subject to

Nc−1∑
n=0

Pn = NcP� Pn ≥ 0� n= 0� � � � �Nc−1� (5.40)

Waterfilling power allocation
The optimal power allocation can be explicitly found. The objective function
in (5.39) is jointly concave in the powers and this optimization problem can
be solved by Lagrangian methods. Consider the Lagrangian

����P0� � � � �PNc−1� �=
Nc−1∑
n=0

log

(
1+ Pn�h̃n�2

N0

)
−�

Nc−1∑
n=0

Pn� (5.41)

where � is the Lagrange multiplier. The Kuhn–Tucker condition for the
optimality of a power allocation is

$�

$Pn

{
= 0 if Pn > 0

≤ 0 if Pn = 0�
(5.42)

Define x+ �=max�x�0�. The power allocation

P∗
n =

(
1
�
− N0

�h̃n�2
)+
� (5.43)

satisfies the conditions in (5.42) and is therefore optimal, with the Lagrange
multiplier � chosen such that the power constraint is met:

1
Nc

Nc−1∑
n=0

(
1
�
− N0

�h̃n�2
)+

= P� (5.44)

Figure 5.11 gives a pictorial view of the optimal power allocation strategy
for the OFDM system. Think of the values N0/�h̃n�2 plotted as a function
of the sub-carrier index n = 0� � � � �Nc − 1, as tracing out the bottom of a
vessel. If P units of water per sub-carrier are filled into the vessel, the depth
of the water at sub-carrier n is the power allocated to that sub-carrier, and
1/� is the height of the water surface. Thus, this optimal strategy is called
waterfilling or waterpouring. Note that there are some sub-carriers where the
bottom of the vessel is above the water and no power is allocated to them. In
these sub-carriers, the channel is too poor for it to be worthwhile to transmit
information. In general, the transmitter allocates more power to the stronger
sub-carriers, taking advantage of the better channel conditions, and less or
even no power to the weaker ones.
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Figure 5.11 Waterfilling power
allocation over the Nc sub-
carriers.

P1 = 0

N0

|H( f )|2
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P2

P3

*

*

*

1
λ

Observe that

h̃n =
L−1∑
�=0

h� exp
(
− j2��n

Nc

)
� (5.45)

is the discrete-time Fourier transform H�f� evaluated at f = nW/Nc, where
(cf. (2.20))

H�f � �=
L−1∑
�=0

h� exp
(
− j2��f

W

)
� f ∈ �0�W�� (5.46)

As the number of sub-carriers Nc grows, the frequency width W/Nc of the
sub-carriers goes to zero and they represent a finer and finer sampling of the
continuous spectrum. So, the optimal power allocation converges to

P∗�f �=
(
1
�
− N0

�H�f ��2
)+

� (5.47)

where the constant � satisfies (cf. (5.44))

∫ W

0
P∗�f �df = P� (5.48)

The power allocation can be interpreted as waterfilling over frequency (see
Figure 5.12). With Nc sub-carriers, the largest reliable communication rate
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Figure 5.12 Waterfilling power
allocation over the frequency
spectrum of the two-tap
channel (high-pass filter):
h�0�= 1 and h�1�= 0�5.
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with independent coding is CNc
bits per OFDM symbol or CNc

/Nc bits/s/Hz
(CNc

given in (5.39)). So as Nc → �, the WCNc
/Nc converges to

C =
∫ W

0
log

(
1+ P∗�f ��H�f ��2

N0

)
df bits/s� (5.49)

Does coding across sub-carriers help?
So far we have considered a very simple scheme: coding independently over
each of the sub-carriers. By coding jointly across the sub-carriers, presumably
better performance can be achieved. Indeed, over a finite block length, coding
jointly over the sub-carriers yields a smaller error probability than can be
achieved by coding separately over the sub-carriers at the same rate. However,
somewhat surprisingly, the capacity of the parallel channel is equal to the
largest reliable rate of communication with independent coding within each
sub-carrier. In other words, if the block length is very large then coding jointly
over the sub-carriers cannot increase the rate of reliable communication any
more than what can be achieved simply by allocating power and rate over
the sub-carriers but not coding across the sub-carriers. So indeed (5.49) is the
capacity of the time-invariant frequency-selective channel.
To get some insight into why coding across the sub-carriers with large

block length does not improve capacity, we turn to a geometric view. Consider
a code, with block length NcN symbols, coding over all Nc of the sub-carriers
with N symbols from each sub-carrier. In high dimensions, i.e., N � 1, the
NcN -dimensional received vector after passing through the parallel channel
(5.33) lives in an ellipsoid, with different axes stretched and shrunk by the
different channel gains h̃n. The volume of the ellipsoid is proportional to

Nc−1∏
n=0

(
�h̃n�2Pn+N0

)N
� (5.50)



186 Capacity of wireless channels

see Exercise 5.12. The volume of the noise sphere is, as in Section 5.1.2,
proportional to N

NcN
0 . The maximum number of distinguishable codewords

that can be packed in the ellipsoid is therefore

Nc−1∏
n=0

(
1+ Pn�h̃n�2

N0

)N

� (5.51)

The maximum reliable rate of communication is

1
N

log
Nc−1∏
n=0

(
1+ Pn�h̃n�2

N0

)N

=
Nc−1∑
n=0

log

(
1+ Pn�h̃n�2

N0

)
bits/OFDM symbol�

(5.52)
This is precisely the rate (5.38) achieved by separate coding and this suggests
that coding across sub-carriers can do no better. While this sphere-packing
argument is heuristic, Appendix B.6 gives a rigorous derivation from infor-
mation theoretic first principles.

Even though coding across sub-carriers cannot improve the reliable rate of
communication, it can still improve the error probability for a given data rate.
Thus, coding across sub-carriers can still be useful in practice, particularly
when the block length for each sub-carrier is small, in which case the coding
effectively increases the overall block length.

In this section we have used parallel channels to model a frequency-
selective channel, but parallel channels will be seen to be very useful in
modeling many other wireless communication scenarios as well.

5.4 Capacity of fading channels

The basic capacity results developed in the last few sections are now applied
to analyze the limits to communication over wireless fading channels.
Consider the complex baseband representation of a flat fading channel:

y�m�= h�m�x�m�+w�m�� (5.53)

where 	h�m�
 is the fading process and 	w�m�
 is i.i.d. �� �0�N0� noise.
As before, the symbol rate is W Hz, there is a power constraint of P

joules/symbol, and ���h�m��2� = 1 is assumed for normalization. Hence
SNR �= P/N0 is the average received SNR.
In Section 3.1.2, we analyzed the performance of uncoded transmission for

this channel. What is the ultimate performance limit when information can
be coded over a sequence of symbols? To answer this question, we make
the simplifying assumption that the receiver can perfectly track the fading
process, i.e., coherent reception. As we discussed in Chapter 2, the coherence
time of typical wireless channels is of the order of hundreds of symbols and
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so the channel varies slowly relative to the symbol rate and can be estimated
by say a pilot signal. For now, the transmitter is not assumed to have any
knowledge of the channel realization other than the statistical characterization.
The situation when the transmitter has access to the channel realizations will
be studied in Section 5.4.6.

5.4.1 Slow fading channel

Let us first look at the situation when the channel gain is random but remains
constant for all time, i.e., h�m� = h for all m. This models the slow fad-
ing situation where the delay requirement is short compared to the channel
coherence time (cf. Table 2.2). This is also called the quasi-static scenario.

Conditional on a realization of the channel h, this is an AWGN channel
with received signal-to-noise ratio �h�2SNR. The maximum rate of reliable
communication supported by this channel is log�1+�h�2SNR� bits/s/Hz. This
quantity is a function of the random channel gain h and is therefore random
(Figure 5.13). Now suppose the transmitter encodes data at a rate R bits/s/Hz.
If the channel realization h is such that log�1+�h�2SNR� < R, then whatever
the code used by the transmitter, the decoding error probability cannot be
made arbitrarily small. The system is said to be in outage, and the outage
probability is

pout�R� �= �	log�1+�h�2SNR� < R
� (5.54)

Thus, the best the transmitter can do is to encode the data assuming that
the channel gain is strong enough to support the desired rate R. Reliable
communication can be achieved whenever that happens, and outage occurs
otherwise.
A more suggestive interpretation is to think of the channel as allowing

log�1+�h�2SNR� bits/s/Hz of information through when the fading gain is h.

Figure 5.13 Density of
log�1+�h�2SNR�, for Rayleigh
fading and SNR= 0 dB. For
any target rate R, there is a
non-zero outage probability.
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Reliable decoding is possible as long as this amount of information exceeds
the target rate.
For Rayleigh fading (i.e., h is �� �0�1�), the outage probability is

pout�R�= 1− exp
(−�2R−1�

SNR

)
� (5.55)

At high SNR,

pout�R�≈
�2R−1�
SNR

� (5.56)

and the outage probability decays as 1/SNR. Recall that when we discussed
uncoded transmission in Section 3.1.2, the detection error probability also
decays like 1/SNR. Thus, we see that coding cannot significantly improve the
error probability in a slow fading scenario. The reason is that while coding
can average out the Gaussian white noise, it cannot average out the channel
fade, which affects all the coded symbols. Thus, deep fade, which is the
typical error event in the uncoded case, is also the typical error event in the
coded case.
There is a conceptual difference between the AWGN channel and the slow

fading channel. In the former, one can send data at a positive rate (in fact, any
rate less than C) while making the error probability as small as desired. This
cannot be done for the slow fading channel as long as the probability that
the channel is in deep fade is non-zero. Thus, the capacity of the slow fading
channel in the strict sense is zero. An alternative performance measure is the
�-outage capacity C�. This is the largest rate of transmission R such that the
outage probability pout�R� is less than �. Solving pout�R�= � in (5.54) yields

C� = log�1+F−1�1− �� SNR�bits/s/Hz� (5.57)

where F is the complementary cumulative distribution function of �h�2, i.e.,
F�x� �= �	�h�2 > x
.
In Section 3.1.2, we looked at uncoded transmission and there it was natural

to focus only on the high SNR regime; at low SNR, the error probability of
uncoded transmission is very poor. On the other hand, for coded systems,
it makes sense to consider both the high and the low SNR regimes. For
example, the CDMA system in Chapter 4 operates at very low SINR and
uses very low-rate orthogonal coding. A natural question is: in which regime
does fading have a more significant impact on outage performance? One can
answer this question in two ways. Eqn (5.57) says that, to achieve the same
rate as the AWGN channel, an extra 10 log�1/F−1�1− ��� dB of power is
needed. This is true regardless of the operating SNR of the environment. Thus
the fade margin is the same at all SNRs. If we look at the outage capacity
at a given SNR, however, the impact of fading depends very much on the
operating regime. To get a sense, Figure 5.14 plots the �-outage capacity as
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Figure 5.14 
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a function of SNR for the Rayleigh fading channel. To assess the impact of
fading, the �-outage capacity is plotted as a fraction of the AWGN capacity
at the same SNR. It is clear that the impact is much more significant in the
low SNR regime. Indeed, at high SNR,

C� ≈ log SNR+ log�F−1�1− ��� (5.58)

≈ Cawgn − log
(

1
F−1�1− ��

)
� (5.59)

a constant difference irrespective of the SNR. Thus, the relative loss gets
smaller at high SNR. At low SNR, on the other hand,

C� ≈ F−1�1− ��SNR log2 e (5.60)

≈ F−1�1− ��Cawgn� (5.61)

For reasonably small outage probabilities, the outage capacity is only a
small fraction of the AWGN capacity at low SNR. For Rayleigh fading,
F−1�1− �� ≈ � for small � and the impact of fading is very significant. At
an outage probability of 0�01, the outage capacity is only 1% of the AWGN
capacity! Diversity has a significant effect at high SNR (as already seen in
Chapter 3), but can be more important at low SNR. Intuitively, the impact
of the randomness of the channel is in the received SNR, and the reliable
rate supported by the AWGN channel is much more sensitive to the received
SNR at low SNR than at high SNR. Exercise 5.10 elaborates on this point.

5.4.2 Receive diversity

Let us increase the diversity of the channel by having L receive antennas
instead of one. For given channel gains h �= �h1� � � � � hL�

t, the capacity was
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calculated in Section 5.3.1 to be log�1+�h�2SNR�. Outage occurs whenever
this is below the target rate R:

prx
out�R� �= �	log�1+�h�2SNR� < R
� (5.62)

This can be rewritten as

pout�R�= �

{
�h�2 < 2R−1

SNR

}
� (5.63)

Under independent Rayleigh fading, �h�2 is a sum of the squares of 2L
independent Gaussian random variables and is distributed as Chi-square with
2L degrees of freedom. Its density is

f�x�= 1
�L−1�!x

L−1e−x� x ≥ 0� (5.64)

Approximating e−x by 1 for x small, we have (cf. (3.44)),

�	�h�2 < �
≈ 1
L!�

L� (5.65)

for � small. Hence at high SNR the outage probability is given by

pout�R�≈
�2R−1�L

L!SNRL � (5.66)

Comparing with (5.55), we see a diversity gain of L: the outage probability
now decays like 1/SNRL. This parallels the performance of uncoded trans-
mission discussed in Section 3.3.1: thus, coding cannot increase the diversity
gain.

The impact of receive diversity on the �-outage capacity is plotted in
Figure 5.15. The �-outage capacity is given by (5.57) with F now the cumu-
lative distribution function of �h�2. Receive antennas yield a diversity gain
and an L-fold power gain. To emphasize the impact of the diversity gain, let
us normalize the outage capacity C� by Cawgn = log�1+LSNR�. The dramatic
salutary effect of diversity on outage capacity can now be seen. At low SNR
and small �, (5.61) and (5.65) yield

C� ≈ F−1�1− ��SNR log2 e (5.67)

≈ �L!� 1
L ���

1
L SNR log2 e bits/s/Hz (5.68)

and the loss with respect to the AWGN capacity is by a factor of �1/L rather
than by � when there is no diversity. At � = 0�01 and L = 2, the outage
capacity is increased to 14% of the AWGN capacity (as opposed to 1% for
L= 1).
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Figure 5.15 
-outage capacity
with L-fold receive diversity, as
a fraction of the AWGN
capacity log�1+ LSNR�� for

= 0�01 and different L.
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5.4.3 Transmit diversity

Now suppose there are L transmit antennas but only one receive antenna, with
a total power constraint of P. From Section 5.3.2, the capacity of the channel
conditioned on the channel gains h = �h1� � � � � hL�

t is log�1+ �h�2SNR�.
Following the approach taken in the SISO and the SIMO cases, one is tempted
to say that the outage probability for a fixed rate R is

pfull−csi
out �R�= �	log�1+�h�2SNR� < R
� (5.69)

which would have been exactly the same as the corresponding SIMO system
with 1 transmit and L receive antennas. However, this outage performance
is achievable only if the transmitter knows the phases and magnitudes of the
gains h so that it can perform transmit beamforming, i.e., allocate more power
to the stronger antennas and arrange the signals from the different antennas to
align in phase at the receiver. When the transmitter does not know the channel
gains h, it has to use a fixed transmission strategy that does not depend on h.
(This subtlety does not arise in either the SISO or the SIMO case because the
transmitter need not know the channel realization to achieve the capacity for
those channels.) How much performance loss does not knowing the channel
entail?

Alamouti scheme revisited
For concreteness, let us focus on L = 2 (dual transmit antennas). In this
situation, we can use the Alamouti scheme, which extracts transmit diversity
without transmitter channel knowledge (introduced in Section 3.3.2). Recall
from (3.76) that, under this scheme, both the transmitted symbols u1� u2 over a
block of 2 symbol times see an equivalent scalar fading channel with gain �h�
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and additive noise �� �0�N0� (Figure 5.16(b)). The energy in the symbolsFigure 5.16 A space-time
coding scheme combined with
the MISO channel can be
viewed as an equivalent scalar
channel: (a) repetition coding;
(b) the Alamouti scheme. The
outage probability of the
scheme is the outage
probability of the equivalent
channel.

u1 and u2 is P/2. Conditioned on h1� h2, the capacity of the equivalent scalar
channel is

log
(
1+�h�2 SNR

2

)
bits/s/Hz� (5.70)

Thus, if we now consider successive blocks and use an AWGN capacity-
achieving code of rate R over each of the streams 	u1�m�
 and 	u2�m�


separately, then the outage probability of each stream is

pAla
out �R�= �

{
log

(
1+�h�2 SNR

2

)
< R

}
� (5.71)

Compared to (5.69) when the transmitter knows the channel, the Alamouti
scheme performs strictly worse: the loss is 3 dB in the received SNR. This
can be explained in terms of the efficiency with which energy is transferred
to the receiver. In the Alamouti scheme, the symbols sent at the two transmit
antennas in each time are independent since they come from two separately
coded streams. Each of them has power P/2. Hence, the total SNR at the
receive antenna at any given time is

(�h1�2+�h2�2
) SNR

2
� (5.72)

In contrast, when the transmitter knows the channel, the symbols trans-
mitted at the two antennas are completely correlated in such a way that the
signals add up in phase at the receive antenna and the SNR is now(�h1�2+�h2�2

)
SNR�
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a 3-dB power gain over the independent case.4 Intuitively, there is a power
loss because, without channel knowledge, the transmitter is sending signals
that have energy in all directions instead of focusing the energy in a specific
direction. In fact, the Alamouti scheme radiates energy in a perfectly isotropic
manner: the signal transmitted from the two antennas has the same energy
when projected in any direction (Exercise 5.14).
A scheme radiates energy isotropicallywhenever the signals transmitted from

the antennas are uncorrelated and have equal power (Exercise 5.14). Although
the Alamouti scheme does not perform as well as transmit beamforming, it
is optimal in one important sense: it has the best outage probability among
all schemes that radiate energy isotropically. Indeed, any such scheme must
have a received SNR equal to (5.72) and hence its outage performance must be
no better than that of a scalar slow fading AWGN channel with that received
SNR. But this is precisely the performance achieved by the Alamouti scheme.
Can one do even better by radiating energy in a non-isotropic manner (but

in a way that does not depend on the random channel gains)? In other words,
can one improve the outage probability by correlating the signals from the
transmit antennas and/or allocating unequal powers on the antennas? The
answer depends of course on the distribution of the gains h1� h2. If h1� h2

are i.i.d. Rayleigh, Exercise 5.15 shows, using symmetry considerations, that
correlation never improves the outage performance, but it is not necessarily
optimal to use all the transmit antennas. Exercise 5.16 shows that uniform
power allocation across antennas is always optimal, but the number of anten-
nas used depends on the operating SNR. For reasonable values of target outage
probabilities, it is optimal to use all the antennas. This implies that in most
cases of interest, the Alamouti scheme has the optimal outage performance
for the i.i.d. Rayleigh fading channel.

What about for L> 2 transmit antennas? An information theoretic argument
in Appendix B.8 shows (in a more general framework) that

pout�R�= �

{
log

(
1+�h�2 SNR

L

)
< R

}
(5.73)

is achievable. This is the natural generalization of (5.71) and corresponds again
to isotropic transmission of energy from the antennas. Again, Exercises 5.15
and 5.16 show that this strategy is optimal for the i.i.d. Rayleigh fading
channel and for most target outage probabilities of interest. However, there
is no natural generalization of the Alamouti scheme for a larger number
of transmit antennas (cf. Exercise 3.17). We will return to the problem of
outage-optimal code design for L > 2 in Chapter 9.

4 The addition of two in-phase signals of equal power yields a sum signal that has double the
amplitude and four times the power of each of the signals. In contrast, the addition of two
independent signals of equal power only doubles the power.
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Rayleigh gains are plotted in Figure 5.17 for different numbers of transmit
antennas. The difference in outage performance clearly outlines the asymme-
try between receive and transmit antennas caused by the transmitter lacking
knowledge of the channel.

Suboptimal schemes: repetition coding
In the above, the Alamouti scheme is viewed as an inner code that converts
the MISO channel into a scalar channel. The outage performance (5.71) is
achieved when the Alamouti scheme is used in conjunction with an outer code
that is capacity-achieving for the scalar AWGN channel. Other space-time
schemes can be similarly used as inner codes and their outage probability
analyzed and compared to the channel outage performance.
Here we consider the simplest example, the repetition scheme: the same

symbol is transmitted over the L different antennas over L symbol periods,
using only one antenna at a time to transmit. The receiver does maximal
ratio combining to demodulate each symbol. As a result, each symbol sees
an equivalent scalar fading channel with gain �h� and noise variance N0

(Figure 5.16(a)). Since only one symbol is transmitted every L symbol periods,
a rate of LR bits/symbol is required on this scalar channel to achieve a target
rate of R bits/symbol on the original channel. The outage probability of this
scheme, when combined with an outer capacity-achieving code, is therefore:

p
rep
out�R�= �

{
1
L
log�1+�h�2SNR� < R

}
� (5.74)

Compared to the outage probability (5.73) of the channel, this scheme is
suboptimal: the SNR has to be increased by a factor of

L�2R−1�
2LR−1

� (5.75)
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to achieve the same outage probability for the same target rate R. Equivalently,
the reciprocal of this ratio can be interpreted as the maximum achievable
coding gain over the simple repetition scheme. For a fixed R, the performance
loss increases with L: the repetition scheme becomes increasingly inefficient
in using the degrees of freedom of the channel. For a fixed L, the perfor-
mance loss increases with the target rate R. On the other hand, for R small,
2R−1≈ R ln 2 and 2RL−1≈ RL ln 2, so

L�2R−1�
2LR−1

≈ LR ln 2
LR ln 2

= 1� (5.76)

and there is hardly any loss in performance. Thus, while the repetition scheme
is very suboptimal in the high SNR regime where the target rate can be high,
it is nearly optimal in the low SNR regime. This is not surprising: the system
is degree-of-freedom limited in the high SNR regime and the inefficiency of
the repetition scheme is felt more there.

Summary 5.2 Transmit and receive diversity

With receive diversity, the outage probability is

prx
out�R� �= �	log�1+�h�2SNR� < R
� (5.77)

With transmit diversity and isotropic transmission, the outage probability is

ptx
out�R� �= �

{
log

(
1+�h�2 SNR

L

)
< R

}
� (5.78)

a loss of a factor of L in the received SNR because the transmitter has
no knowledge of the channel direction and is unable to beamform in the
specific channel direction.

With two transmit antennas, capacity-achieving AWGN codes in conjunc-
tion with the Alamouti scheme achieve the outage probability.

5.4.4 Time and frequency diversity

Outage performance of parallel channels
Another way to increase channel diversity is to exploit the time-variation
of the channel: in addition to coding over symbols within one coherence
period, one can code over symbols from L such periods. Note that this is
a generalization of the schemes considered in Section 3.2, which take one
symbol from each coherence period. When coding can be performed over
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many symbols from each period, as well as between symbols from different
periods, what is the performance limit?
One can model this situation using the idea of parallel channels intro-

duced in Section 5.3.3: each of the sub-channels, � = 1� � � � �L, represents
a coherence period of duration Tc symbols:

y��m�= h�x��m�+w��m�� m= 1� � � � � Tc� (5.79)

Here h� is the (non-varying) channel gain during the �th coherence period.
It is assumed that the coherence time Tc is large such that one can code
over many symbols in each of the sub-channels. An average transmit power
constraint of P on the original channel translates into a total power constraint
of LP on the parallel channel.

For a given realization of the channel, we have already seen in Section 5.3.3
that the optimal power allocation across the sub-channels is waterfilling.
However, since the transmitter does not know what the channel gains are, a
reasonable strategy is to allocate equal power P to each of the sub-channels.
In Section 5.3.3, it was mentioned that the maximum rate of reliable commu-
nication given the fading gains h� is

L∑
�=1

log�1+�h��2SNR�bits/s/Hz� (5.80)

where SNR= P/N0. Hence, if the target rate is R bits/s/Hz per sub-channel,
then outage occurs when

L∑
�=1

log�1+�h��2SNR� < LR� (5.81)

Can one design a code to communicate reliably whenever

L∑
�=1

log�1+�h��2SNR� > LR? (5.82)

If so, an L-fold diversity is achieved for i.i.d. Rayleigh fading: outage occurs
only if each of the terms in the sum

∑L
�=1 log�1+�h��2SNR� is small.

The term log�1+ �h��2SNR� is the capacity of an AWGN channel with
received SNR equal to �h��2SNR. Hence, a seemingly straightforward strategy,
already used in Section 5.3.3, would be to use a capacity-achieving AWGN
code with rate

log�1+�h��2SNR�
for the �th coherence period, yielding an average rate of

1
L

L∑
�=1

log�1+�h��2SNR�bits/s/Hz
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and meeting the target rate whenever condition (5.82) holds. The caveat is
that this strategy requires the transmitter to know in advance the channel state
during each of the coherence periods so that it can adapt the rate it allocates to
each period. This knowledge is not available. However, it turns out that such
transmitter adaptation is unnecessary: information theory guarantees that
one can design a single code that communicates reliably at rate R whenever
the condition (5.82) is met. Hence, the outage probability of the time diversity
channel is precisely

pout�R�= �

{
1
L

L∑
�=1

log�1+�h��2SNR� < R

}
� (5.83)

Even though this outage performance can be achieved with or without
transmitter knowledge of the channel, the coding strategy is vastly different.
With transmitter knowledge of the channel, dynamic rate allocation and sep-
arate coding for each sub-channel suffices. Without transmitter knowledge,
separate coding would mean using a fixed-rate code for each sub-channel and
poor diversity results: errors occur whenever one of the sub-channels is bad.
Indeed, coding across the different coherence periods is now necessary: if the
channel is in deep fade during one of the coherence periods, the information
bits can still be protected if the channel is strong in other periods.

A geometric view
Figure 5.18 gives a geometric view of our discussion so far. Consider a code
with rate R, coding over all the sub-channels and over one coherence time-
interval; the block length is LTc symbols. The codewords lie in an LTc-
dimensional sphere. The received LTc-dimensional signal lives in an ellipsoid,
with (L groups of) different axes stretched and shrunk by the different sub-
channel gains (cf. Section 5.3.3). The ellipsoid is a function of the sub-channel
gains, and hence random. The no-outage condition (5.82) has a geometric
interpretation: it says that the volume of the ellipsoid is large enough to
contain 2LTcR noise spheres, one for each codeword. (This was already seen
in the sphere-packing argument in Section 5.3.3.) An outage-optimal code is
one that communicates reliably whenever the random ellipsoid is at least this
large. The subtlety here is that the same code must work for all such ellipsoids.
Since the shrinking can occur in any of the L groups of dimensions, a robust
code needs to have the property that the codewords are simultaneously well-
separated in each of the sub-channels (Figure 5.18(a)). A set of independent
codes, one for each sub-channel, is not robust: errors will be made when even
only one of the sub-channels fades (Figure 5.18(b)).

We have already seen, in the simple context of Section 3.2, codes for
the parallel channel which are designed to be well-separated in all the sub-
channels. For example, the repetition code and the rotation code in Figure 3.8
have the property that the codewords are separated in bot the sub-channels
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Channel
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Channel
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(a)

Reliable communication Noise spheres overlap
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(here Tc = 1 symbol and L= 2 sub-channels). More generally, the code design

Figure 5.18 Effect of the fading
gains on codes for the parallel
channel. Here there are L= 2
sub-channels and each axis
represents Tc dimensions within
a sub-channel. (a) Coding
across the sub-channels. The
code works as long as the
volume of the ellipsoid is big
enough. This requires good
codeword separation in both
the sub-channels. (b) Separate,
non-adaptive code for each
sub-channel. Shrinking of one
of the axes is enough to cause
confusion between the
codewords.

criterion of maximizing the product distance for all pairs of codewords natu-
rally favors codes that satisfy this property. Coding over long blocks affords
a larger coding gain; information theory guarantees the existence of codes
with large enough coding gain to achieve the outage probability in (5.83).
To achieve the outage probability, one wants to design a code that commu-

nicates reliably over every parallel channel that is not in outage (i.e., parallel
channels that satisfy (5.82)). In information theory jargon, a code that com-
municates reliably for a class of channels is said to be universal for that class.
In this language, we are looking for universal codes for parallel channels that
are not in outage. In the slow fading scalar channel without diversity (L= 1),
this problem is the same as the code design problem for a specific channel.
This is because all scalar channels are ordered by their received SNR; hence a
code that works for the channel that is just strong enough to support the target
rate will automatically work for all better channels. For parallel channels,
each channel is described by a vector of channel gains and there is no natural
ordering of channels; the universal code design problem is now non-trivial.
In Chapter 9, a universal code design criterion will be developed to construct
universal codes that come close to achieving the outage probability.

Extensions
In the above development, a uniform power allocation across the sub-channels
is assumed. Instead, if we choose to allocate power P� to sub-channel �, then
the outage probability (5.83) generalizes to

pout�R�= �

{
L∑
�=1

log�1+�h��2SNR�� < LR

}
� (5.84)

where SNR� = P�/N0. Exercise 5.17 shows that for the i.i.d. Rayleigh fading
model, a non-uniform power allocation that does not depend on the channel
gains cannot improve the outage performance.
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The parallel channel is used to model time diversity, but it can model
frequency diversity as well. By using the usual OFDM transformation, a slow
frequency-selective fading channel can be converted into a set of parallel sub-
channels, one for each sub-carrier. This allows us to characterize the outage
capacity of such channels as well (Exercise 5.22).
We summarize the key idea in this section using more suggestive

language.

Summary 5.3 Outage for parallel channels

Outage probability for a parallel channel with L sub-channels and the �th
channel having random gain h�:

pout�R�= �

{
1
L

L∑
�=1

log�1+�h��2SNR� < R

}
� (5.85)

where R is in bits/s/Hz per sub-channel.

The �th sub-channel allows log�1+�h��2SNR� bits of information per sym-
bol through. Reliable decoding can be achieved as long as the total amount
of information allowed through exceeds the target rate.

5.4.5 Fast fading channel

In the slow fading scenario, the channel remains constant over the transmission
duration of the codeword. If the codeword length spans several coherence
periods, then time diversity is achieved and the outage probability improves.
When the codeword length spans many coherence periods, we are in the
so-called fast fading regime. How does one characterize the performance limit
of such a fast fading channel?

Capacity derivation
Let us first consider a very simple model of a fast fading channel:

y�m�= h�m�x�m�+w�m�� (5.86)

where h�m�= h� remains constant over the �th coherence period of Tc sym-
bols and is i.i.d. across different coherence periods. This is the so-called
block fading model; see Figure 5.19(a). Suppose coding is done over L such
coherence periods. If Tc � 1, we can effectively model this as L parallel
sub-channels that fade independently. The outage probability from (5.83) is

pout�R�= �

{
1
L

L∑
�=1

log�1+�h��2SNR� < R

}
� (5.87)
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Figure 5.19 (a) Typical
trajectory of the channel
strength as a function of
symbol time under a block
fading model. (b) Typical
trajectory of the channel
strength after interleaving. One
can equally think of these
plots as rates of flow of
information allowed through
the channel over time.
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For finite L, the quantity

1
L

L∑
�=1

log�1+�h��2SNR�

is random and there is a non-zero probability that it will drop below any
target rate R. Thus, there is no meaningful notion of capacity in the sense of
maximum rate of arbitrarily reliable communication and we have to resort to
the notion of outage. However, as L→�, the law of large numbers says that

1
L

L∑
�=1

log�1+�h��2SNR�→ ��log�1+�h�2SNR��� (5.88)

Now we can average over many independent fades of the channel by coding
over a large number of coherence time intervals and a reliable rate of com-
munication of ��log�1+�h�2SNR�� can indeed be achieved. In this situation,
it is now meaningful to assign a positive capacity to the fast fading channel:

C = ��log�1+�h�2SNR��bits/s/Hz (5.89)

Impact of interleaving
In the above, we considered codes with block lengths LTc symbols, where
L is the number of coherence periods and Tc is the number of symbols in
each coherence block. To approach the capacity of the fast fading channel,
L has to be large. Since Tc is typically also a large number, the overall block
length may become prohibitively large for implementation. In practice, shorter
codes are used but they are interleaved so that the symbols of each codeword
are spaced far apart in time and lie in different coherence periods. (Such
interleaving is used for example in the IS-95 CDMA system, as illustrated in
Figure 4.4.) Does interleaving impart a performance loss in terms of capacity?
Going back to the channel model (5.86), ideal interleaving can be modeled

by assuming the h�m� are now i.i.d., i.e., successive interleaved symbols go
through independent fades. (See Figure 5.19(b).) In Appendix B.7.1, it is
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shown that for a large block length N and a given realization of the fading
gains h�1�� � � � � h�N�, the maximum achievable rate through this interleaved
channel is

1
N

N∑
m=1

log�1+�h�m��2SNR�bits/s/Hz� (5.90)

By the law of large numbers,

1
N

N∑
m=1

log�1+�h�m��2SNR�→ ��log�1+�h�2SNR�� (5.91)

as N → �, for almost all realizations of the random channel gains. Thus,
even with interleaving, the capacity (5.89) of the fast fading channel can be
achieved. The important benefit of interleaving is that this capacity can now
be achieved with a much shorter block length.
A closer examination of the above argument reveals why the capacity under

interleaving (with 	h�m�
 i.i.d.) and the capacity of the original block fading
model (with 	h�m�
 block-wise constant) are the same: the convergence in
(5.91) holds for both fading processes, allowing the same long-term average
rate through the channel. If one thinks of log�1+�h�m��2SNR� as the rate of
information flow allowed through the channel at time m, the only difference
is that in the block fading model, the rate of information flow is constant over
each coherence period, while in the interleaved model, the rate varies from
symbol to symbol. See Figure 5.19 again.

This observation suggests that the capacity result (5.89) holds for a much
broader class of fading processes. Only the convergence in (5.91) is needed.
This says that the time average should converge to the same limit for almost all
realizations of the fading process, a concept called ergodicity, and it holds in
many models. For example, it holds for the Gaussian fading model mentioned
in Section 2.4. What matters from the point of view of capacity is only the
long-term time average rate of flow allowed, and not on how fast that rate
fluctuates over time.

Discussion
In the earlier parts of the chapter, we focused exclusively on deriving the
capacities of time-invariant channels, particularly the AWGN channel. We
have just shown that time-varying fading channels also have a well-defined
capacity. However, the operational significance of capacity in the two cases
is quite different. In the AWGN channel, information flows at a constant
rate of log�1+ SNR� through the channel, and reliable communication can
take place as long as the coding block length is large enough to average out
the white Gaussian noise. The resulting coding/decoding delay is typically
much smaller than the delay requirement of applications and this is not a
big concern. In the fading channel, on the other hand, information flows
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at a variable rate of log�1+ �h�m��2SNR� due to variations of the channel
strength; the coding block length now needs to be large enough to average
out both the Gaussian noise and the fluctuations of the channel. To average
out the latter, the coded symbols must span many coherence time periods, and
this coding/decoding delay can be quite significant. Interleaving reduces the
block length but not the coding/decoding delay: one still needs to wait many
coherence periods before the bits get decoded. For applications that have
a tight delay constraint relative to the channel coherence time, this notion of
capacity is not meaningful, and one will suffer from outage.
The capacity expression (5.89) has the following interpretation. Consider

a family of codes, one for each possible fading state h, and the code for state
h achieves the capacity log�1+ �h�2SNR� bits/s/Hz of the AWGN channel
at the corresponding received SNR level. From these codes, we can build
a variable-rate coding scheme that adaptively selects a code of appropriate
rate depending on what the current channel condition is. This scheme would
then have an average throughput of ��log�1+�h�2SNR�� bits/s/Hz. For this
variable-rate scheme to work, however, the transmitter needs to know the
current channel state. The significance of the fast fading capacity result (5.89)
is that one can communicate reliably at this rate even when the transmitter is
blind and cannot track the channel.5

The nature of the information theoretic result that guarantees a code which
achieves the capacity of the fast fading channel is similar to what we have
already seen in the outage performance of the slow fading channel (cf. (5.83)).
In fact, information theory guarantees that a fixed code with the rate in (5.89)
is universal for the class of ergodic fading processes (i.e., (5.91) is satisfied
with the same limiting value). This class of processes includes the AWGN
channel (where the channel is fixed for all time) and, at the other extreme, the
interleaved fast fading channel (where the channel varies i.i.d. over time). This
suggests that capacity-achieving AWGN channel codes (cf. Discussion 5.1)
could be suitable for the fast fading channel as well. While this is still an
active research area, LDPC codes have been adapted successfully to the fast
Rayleigh fading channel.

Performance comparison
Let us explore a few implications of the capacity result (5.89) by comparing
it with that for the AWGN channel. The capacity of the fading channel is
always less than that of the AWGN channel with the same SNR. This follows
directly from Jensen’s inequality, which says that if f is a strictly concave
function and u is any random variable, then ��f�u��≤ f���u��, with equality
if and only if u is deterministic (Exercise B.2). Intuitively, the gain from

5 Note however that if the transmitter can really track the channel, one can do even better than
this rate. We will see this next in Section 5.4.6.
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the times when the channel strength is above the average cannot compensate
for the loss from the times when the channel strength is below the average.
This again follows from the law of diminishing marginal return on capacity
from increasing the received power.
At low SNR, the capacity of the fading channel is

C = ��log�1+�h�2SNR��≈ ���h�2SNR� log2 e= SNR log2 e≈ Cawgn� (5.92)

where Cawgn is the capacity of the AWGN channel and is measured in bits
per symbol. Hence at low SNR the “Jensen’s loss” becomes negligible; this
is because the capacity is approximately linear in the received SNR in this
regime. At high SNR,

C ≈ ��log��h�2SNR��= log SNR+��log �h�2�≈ Cawgn +��log �h�2�� (5.93)

i.e., a constant difference with the AWGN capacity at high SNR. This differ-
ence is −0�83 bits/s/Hz for the Rayleigh fading channel. Equivalently, 2.5 dB
more power is needed in the fading case to achieve the same capacity as in
the AWGN case. Figure 5.20 compares the capacity of the Rayleigh fading
channel with the AWGN capacity as a function of the SNR. The difference
is not that large for the entire plotted range of SNR.

5.4.6 Transmitter side information

So far we have assumed that only the receiver can track the channel. But let
us now consider the case when the transmitter can track the channel as well.
There are several ways in which such channel information can be obtained
at the transmitter. In a TDD (time-division duplex) system, the transmitter

Figure 5.20 Plot of AWGN
capacity, fading channel
capacity with receiver tracking
the channel only (CSIR) and
capacity with both transmitter
and the receiver tracking the
channel (full CSI). (A
discussion of the latter is in
Section 5.4.6.)
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can exploit channel reciprocity and make channel measurements based on
the signal received along the opposite link. In an FDD (frequency-division
duplex) system, there is no reciprocity and the transmitter will have to rely
on feedback information from the receiver. For example, power control in the
CDMA system implicitly conveys some channel state information through
the feedback in the uplink.

Slow fading: channel inversion
When we discussed the slow fading channel in Section 5.4.1, it was seen that
with no channel knowledge at the transmitter, outage occurs whenever the
channel cannot support the target data rate R. With transmitter knowledge,
one option is now to control the transmit power such that the rate R can be
delivered no matter what the fading state is. This is the channel inversion
strategy: the received SNR is kept constant irrespective of the channel gain.
(This strategy is reminiscent of the power control used in CDMA systems,
discussed in Section 4.3.) With exact channel inversion, there is zero outage
probability. The price to pay is that huge power has to be consumed to invert
the channel when it is very bad. Moreover, many systems are also peak-power
constrained and cannot invert the channel beyond a certain point. Systems
like IS-95 use a combination of channel inversion and diversity to achieve a
target rate with reasonable power consumption (Exercise 5.24).

Fast fading: waterfilling
In the slow fading scenario, we are interested in achieving a target data rate
within a coherence time period of the channel. In the fast fading case, one
is now concerned with the rate averaged over many coherence time periods.
With transmitter channel knowledge, what is the capacity of the fast fading
channel? Let us again consider the simple block fading model (cf. (5.86)):

y�m�= h�m�x�m�+w�m�� (5.94)

where h�m�= h� remains constant over the � th coherence period of Tc�Tc�1�
symbols and is i.i.d. across different coherence periods. The channel over L
such coherence periods can be modeled as a parallel channel with L sub-
channels that fade independently. For a given realization of the channel gains
h1� � � � � hL, the capacity (in bits/symbol) of this parallel channel is (cf. (5.39),
(5.40) in Section 5.3.3)

max
P1� � � � �PL

1
L

L∑
�=1

log
(
1+ P��h��2

N0

)
(5.95)

subject to

1
L

L∑
�=1

P� = P� (5.96)
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where P is the average power constraint. It was seen (cf. (5.43)) that the
optimal power allocation is waterfilling:

P∗
� =

(
1
�
− N0

�h��2
)+
� (5.97)

where � satisfies

1
L

L∑
�=1

(
1
�
− N0

�h��2
)+

= P� (5.98)

In the context of the frequency-selective channel, waterfilling is done over
the OFDM sub-carriers; here, waterfilling is done over time. In both cases,
the basic problem is that of power allocation over a parallel channel.
The optimal power P� allocated to the �th coherence period depends on

the channel gain in that coherence period and �, which in turn depends on
all the other channel gains through the constraint (5.98). So it seems that
implementing this scheme would require knowledge of the future channel
states. Fortunately, as L→�, this non-causality requirement goes away. By
the law of large numbers, (5.98) converges to

�

[(
1
�
− N0

�h�2
)+]

= P (5.99)

for almost all realizations of the fading process 	h�m�
. Here, the expectation
is taken with respect to the stationary distribution of the channel state. The
parameter � now converges to a constant, depending only on the channel
statistics but not on the specific realization of the fading process. Hence, the
optimal power at any time depends only on the channel gain h at that time:

P∗�h�=
(
1
�
− N0

�h�2
)+

� (5.100)

The capacity of the fast fading channel with transmitter channel knowledge is

C = �

[
log

(
1+ P∗�h��h�2

N0

)]
bits/s/Hz� (5.101)

Equations (5.101), (5.100) and (5.99) together allow us to compute the
capacity.
We have derived the capacity assuming the block fading model. The gen-

eralization to any ergodic fading process can be done exactly as in the case
with no transmitter channel knowledge.
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Discussion
Figure 5.21 gives a pictorial view of the waterfilling power allocation strategy.
In general, the transmitter allocates more power when the channel is good,
taking advantage of the better channel condition, and less or even no power
when the channel is poor. This is precisely the opposite of the channel
inversion strategy. Note that only the magnitude of the channel gain is needed
to implement the waterfilling scheme. In particular, phase information is not
required (in contrast to transmit beamforming, for example).
The derivation of the waterfilling capacity suggests a natural variable-rate

coding scheme (see Figure 5.22). This scheme consists of a set of codes of
different rates, one for each channel state h. When the channel is in state h,
the code for that state is used. This can be done since both the transmitter and
the receiver can track the channel. A transmit power of P∗�h� is used when

Figure 5.21 Pictorial
representation of the
waterfilling strategy.
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Figure 5.22 Comparison of the
fixed-rate and variable-rate
schemes. In the fixed-rate
scheme, there is only one
code spanning many
coherence periods. In the
variable-rate scheme, different
codes (distinguished by
different shades) are used
depending on the channel
quality at that time. For
example, the code in white is a
low-rate code used only when
the channel is weak.
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Variable-rate scheme
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⏐h
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] ⏐
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the channel gain is h. The rate of that code is therefore log�1+P∗�h��h�2/N0�

bits/s/Hz. No coding across channel states is necessary. This is in contrast
to the case without transmitter channel knowledge, where a single fixed-
rate code with the coded symbols spanning across different coherence time
periods is needed (Figure 5.22). Thus, knowledge of the channel state at the
transmitter not only allows dynamic power allocation but simplifies the code
design problem as one can now use codes designed for the AWGN channel.

Waterfilling performance
Figure 5.20 compares the waterfilling capacity and the capacity with channel
knowledge only at the receiver, under Rayleigh fading. Figure 5.23 focuses
on the low SNR regime. In the literature the former is also called the capacity
with full channel side information (CSI) and the latter is called the capacity
with channel side information at the receiver (CSIR). Several observations
can be made:

• At low SNR, the capacity with full CSI is significantly larger than the
CSIR capacity.

• At high SNR, the difference between the two goes to zero.
• Over a wide range of SNR, the gain of waterfilling over the CSIR capacity
is very small.

The first two observations are in fact generic to a wide class of fading
models, and can be explained by the fact that the benefit of dynamic power
allocation is a received power gain: by spending more power when the
channel is good, the received power gets boosted up. At high SNR, however,
the capacity is insensitive to the received power per degree of freedom and
varying the amount of transmit power as a function of the channel state yields
a minimal gain (Figure 5.24(a)). At low SNR, the capacity is quite sensitive
to the received power (linear, in fact) and so the boost in received power from
optimal transmit power allocation provides significant gain. Thus, dynamic

Figure 5.23 Plot of capacities
with and without CSI at the
transmitter, as a fraction of the
AWGN capacity.
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power allocation is more important in the power-limited (low SNR) regimeFigure 5.24 (a) High SNR:
allocating equal powers at all
times is almost optimal. (b)
Low SNR: allocating all the
power when the channel is
strongest is almost optimal.

than in the bandwidth-limited (high SNR) regime.
Let us look more carefully at the low SNR regime. Consider first the

case when the channel gain �h�2 has a peak value Gmax. At low SNR, the
waterfilling strategy transmits information only when the channel is very
good, near Gmax: when there is very little water, the water ends up at the
bottom of the vessel (Figure 5.24(b)). Hence at low SNR

C ≈ �
{�h�2 ≈Gmax

}
log

(
1+Gmax ·

SNR
�	�h�2 ≈Gmax


)
≈ Gmax · SNR log2 e bits/s/Hz� (5.102)

Recall that at low SNR the CSIR capacity is SNR log2 e bits/s/Hz. Hence,
transmitter CSI increases the capacity by Gmax times, or a 10 log10Gmax dB
gain. Moreover, since the AWGN capacity is the same as the CSIR capacity
at low SNR, this leads to the interesting conclusion that with full CSI, the
capacity of the fading channel can be much larger than when there is no
fading. This is in contrast to the CSIR case where the fading channel capacity
is always less than the capacity of the AWGN channel with the same average
SNR. The gain is coming from the fact that in a fading channel, channel
fluctuations create peaks and deep nulls, but when the energy per degree
of freedom is small, the sender opportunistically transmits only when the
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channel is near its peak. In a non-fading AWGN channel, the channel stays
constant at the average level and there are no peaks to take advantage of.
For models like Rayleigh fading, the channel gain is actually unbounded.

Hence, theoretically, the gain of the fading channel waterfilling capacity over
the AWGN channel capacity is also unbounded. (See Figure 5.23.) However,
to get very large relative gains, one has to operate at very low SNR. In this
regime, it may be difficult for the receiver to track and feed back the channel
state to the transmitter to implement the waterfilling strategy.
Overall, the performance gain from full CSI is not that large compared to

CSIR, unless the SNR is very low. On the other hand, full CSI potentially
simplifies the code design problem, as no coding across channel states is
necessary. In contrast, one has to interleave and code across many channel
states with CSIR.

Waterfilling versus channel inversion
The capacity of the fading channel with full CSI (by using the waterfill-
ing power allocation) should be interpreted as a long-term average rate of
flow of information, averaged over the fluctuations of the channel. While
the waterfilling strategy increases the long-term throughput of the system
by transmitting when the channel is good, an important issue is the delay
entailed. In this regard, it is interesting to contrast the waterfilling power allo-
cation strategy with the channel inversion strategy. Compared to waterfilling,
channel inversion is much less power-efficient, as a huge amount of power is
consumed to invert the channel when it is bad. On the other hand, the rate of
flow of information is now the same in all fading states, and so the associ-
ated delay is independent of the time-scale of channel variations. Thus, one
can view the channel inversion strategy as a delay-limited power allocation
strategy. Given an average power constraint, the maximum achievable rate by
this strategy can be thought of as a delay-limited capacity. For applications
with very tight delay constraints, this delay-limited capacity may be a more
appropriate measure of performance than the waterfilling capacity.
Without diversity, the delay-limited capacity is typically very small. With

increased diversity, the probability of encountering a bad channel is reduced
and the average power consumption required to support a target delay-limited
rate is reduced. Put another way, a larger delay-limited capacity is achieved
for a given average power constraint (Exercise 5.24).

Example 5.3 Rate adaptation in IS-856

IS-856 downlink
IS-856, also called CDMA 2000 1× EV-DO (Enhanced Version Data Opti-
mized) is a cellular data standard operating on the 1.25-MHz bandwidth.
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Figure 5.25 Downlink of IS-856 (CDMA 2000 1× EV-DO). Users measure their channels based on
the downlink pilot and feed back requested rates to the base-station. The base-station schedules
users in a time-division manner.

The uplink is CDMA-based, not too different from IS-95, but the downlink
is quite different (Figure 5.25):
• Multiple access is TDMA, with one user transmission at a time. The

finest granularity for scheduling the user transmissions is a slot of
duration 1.67ms.

• Each user is rate-controlled rather than power- controlled. The transmit
power at the base-station is fixed at all times and the rate of transmission
to a user is adapted based on the current channel condition.

In contrast, the uplink of IS-95 (cf. Section 4.3.2) is CDMA-based, with the
total power dynamically allocated among the users to meet their individual
SIR requirements. The multiple access and scheduling aspects of IS-856
are discussed in Chapter 6; here the focus is only on rate adaptation.

Rate versus power control
The contrast between power control in IS-95 and rate control in IS-856 is
roughly analogous to that between the channel inversion and thewaterfilling
strategies discussed above. In the former, power is allocated dynamically to
a user to maintain a constant target rate at all times; this is suitable for voice,
whichhas a stringent delay requirement and requires a consistent throughput.
In the latter, rate is adapted to transmitmore informationwhen the channel is
strong; this is suitable for data, which have a laxer delay requirement and can
take better advantage of a variable transmission rate. The main difference
between IS-856and thewaterfilling strategy is that there isnodynamicpower
adaptation in IS-856, only rate adaption.

Rate control in IS-856
Like IS-95, IS-856 is an FDD system. Hence, rate control has to be
performed based on channel state feedback from the mobile to the base-
station. The mobile measures its own channel based on a common strong
pilot broadcast by the base-station. Using the measured values, the mobile
predicts the SINR for the next time slot and uses that to predict the rate
the base-station can send information to it. This requested rate is fed back
to the base-station on the uplink. The transmitter then sends a packet at
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the requested rate to the mobile starting at the next time slot (if the mobile
is scheduled). The table below describes the possible requested rates, the
SINR thresholds for those rates, the modulation used and the number of
time slots the transmission takes.

Requested rate
(kbits/s)

SINR threshold
(dB) Modulation

Number of
slots

38.4 −11�5 QPSK 16
76.8 −9�2 QPSK 8

153.6 −6�5 QPSK 4
307.2 −3�5 QPSK 2 or 4
614.4 −0�5 QPSK 1 or 2
921.6 2�2 8-PSK 2
1228.8 3�9 QPSK or 16-QAM 1 or 2
1843.2 8�0 8-PSK 1
2457.6 10�3 16-QAM 1

To simplify the implementation of the encoder, the codes at the different
rates are all derived from a basic 1/5-rate turbo code. The low-rate codes
are obtained by repeating the turbo-coded symbols over a number of time
slots; as demonstrated in Exercise 5.25, such repetition loses little spectral
efficiency in the low SNR regime. The higher-rate codes are obtained by
using higher-order constellations in the modulation.
Rate control is made possible by the presence of the strong pilot to

measure the channel and the rate request feedback from the mobile to
the base-station. The pilot is shared between all users in the cell and
is also used for many other functions such as coherent reception and
synchronization. The rate request feedback is solely for the purpose of rate
control. Although each request is only 4 bits long (to specify the various
rate levels), this is sent by every active user at every slot and moreover
considerable power and coding is needed to make sure the information gets
fed back accurately and with little delay. Typically, sending this feedback
consumes about 10% of the uplink capacity.

Impact of prediction uncertainty
Proper rate adaptation relies on the accurate tracking and prediction of the
channel at the transmitter. This is possible only if the coherence time of
the channel is much longer than the lag between the time the channel is
measured at the mobile and the time when the packet is actually transmitted
at the base-station. This lag is at least two slots (2×1�67ms) due to the
delay in getting the requested rate fed back to the base-station, but can
be considerably more at the low rates since the packet is transmitted over
multiple slots and the predicted channel has to be valid during this time.
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At a walking speed of 3 km/h and a carrier frequency fc = 1�9GHz,
the coherence time is of the order of 25ms, so the channel can be quite
accurately predicted. At a driving speed of 30 km/h, the coherence time is
only 2.5ms and accurate tracking of the channel is already very difficult.
(Exercise 5.26 explicitly connects the prediction error to the physical
parameters of the channel.) At an even faster speed of 120 km/h, the
coherence time is less than 1ms and tracking of the channel is impossible;
there is now no transmitter CSI. On the other hand, the multiple slot low
rate packets essentially go through a fast fading channel with significant
time diversity over the duration of the packet. Recall that the fast fading
capacity is given by (5.89):

C = �
[
log

(
1+�h�2SNR)]≈ ���h�2�SNR log2 e bits/s/Hz (5.103)

in the low SNR regime, where h follows the stationary distribution of
the fading. Thus, to determine an appropriate transmission rate across this
fast fading channel, it suffices for the mobile to predict the average SINR
over the transmission time of the packet, and this average is quite easy
to predict. Thus, the difficult regime is actually in between the very slow
and very fast fading scenarios, where there is significant uncertainty in the
channel prediction and yet not very much time diversity over the packet
transmission time. This channel uncertainty has to be taken into account
by being more conservative in predicting the SINR and in requesting a
rate. This is similar to the outage scenario considered in Section 5.4.1,
except that the randomness of the channel is conditional on the predicted
value. The requested rate should be set to meet a target outage probability
(Exercise 5.27).

The various situations are summarized in Figure 5.26. Note the different
roles of coding in the three scenarios. In the first scenario, when the pre-
dicted SINR is accurate, the main role of coding is to combat the additive
Gaussian noise; in the other two scenarios, coding combats the residual
randomness in the channel by exploiting the available time diversity.
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Figure 5.26 (a) Coherence time is long compared to the prediction time lag; predicted SINR is
accurate. Near perfect CSI at transmitter. (b) Coherence time is comparable to the prediction time
lag, predicted SINR has to be conservative to meet an outage criterion. (c) Coherence time is short
compared to the prediction time lag; prediction of average SINR suffices. No CSI at the transmitter.
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To reduce the loss in performance due to the conservativeness of
the channel prediction, IS-856 employs an incremental ARQ (or hybrid-
ARQ) mechanism for the repetition-coded multiple slot packets. Instead of
waiting until the end of the transmission of all slots before decoding, the
mobile will attempt to decode the information incrementally as it receives
the repeated copies over the time slots. When it succeeds in decoding,
it will send an acknowledgement back to the base-station so that it can
stop the transmission of the remaining slots. This way, a rate higher than
the requested rate can be achieved if the actual SINR is higher than the
predicted SINR.

5.4.7 Frequency-selective fading channels

So far, we have considered flat fading channels (cf. (5.53)). In Section 5.3.3,
the capacity of the time-invariant frequency-selective channel (5.32) was also
analyzed. It is simple to extend the understanding to underspread time-varying
frequency-selective fading channels: these are channels with the coherence
time much larger than the delay spread. We model the channel as a time-
invariant L-tap channel as in (5.32) over each coherence time interval and
view it as Nc parallel sub-channels (in frequency). For underspread chan-
nels, Nc can be chosen large so that the cyclic prefix loss is negligible.
This model is a generalization of the flat fading channel in (5.53): here
there are Nc (frequency) sub-channels over each coherence time interval
and multiple (time) sub-channels over the different coherence time inter-
vals. Overall it is still a parallel channel. We can extend the capacity results
from Sections 5.4.5 and 5.4.6 to the frequency-selective fading channel. In
particular, the fast fading capacity with full CSI (cf. Section 5.4.6) can be
generalized here to a combination of waterfilling over time and frequency:
the coherence time intervals provide sub-channels in time and each coher-
ence time interval provides sub-channels in frequency. This is carried out in
Exercise 5.30.

5.4.8 Summary: a shift in point of view

Let us summarize our investigation on the performance limits of fading
channels. In the slow fading scenario without transmitter channel knowledge,
the amount of information that is allowed through the channel is random, and
no positive rate of communication can be reliably supported (in the sense
of arbitrarily small error probability). The outage probability is the main
performance measure, and it behaves like 1/SNR at high SNR. This is due
to a lack of diversity and, equivalently, the outage capacity is very small.
With L branches of diversity, either over space, time or frequency, the outage
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probability is improved and decays like 1/SNRL. The fast fading scenario
can be viewed as the limit of infinite time diversity and has a capacity of
��log�1+ �h�2SNR�� bits/s/Hz. This however incurs a coding delay much
longer than the coherence time of the channel. Finally, when the transmitter
and the receiver can both track the channel, a further performance gain can be
obtained by dynamically allocating power and opportunistically transmitting
when the channel is good.

The slow fading scenario emphasizes the detrimental effect of fading: a
slow fading channel is very unreliable. This unreliability is mitigated by pro-
viding more diversity in the channel. This is the traditional way of viewing the
fading phenomenon and was the central theme of Chapter 3. In a narrowband
channel with a single antenna, the only source of diversity is through time.
The capacity of the fast fading channel (5.89) can be viewed as the perfor-
mance limit of any such time diversity scheme. Still, the capacity is less than
the AWGN channel capacity as long as there is no channel knowledge at the
transmitter. With channel knowledge at the transmitter, the picture changes.
Particularly at low SNR, the capacity of the fading channel with full CSI
can be larger than that of the AWGN channel. Fading can be exploited by
transmitting near the peak of the channel fluctuations. Channel fading is now
turned from a foe to a friend.
This new theme on fading will be developed further in the multiuser context

in Chapter 6, where we will see that opportunistic communication will have
a significant impact at all SNRs, and not only at low SNR.

Chapter 5 The main plot

Channel capacity
The maximum rate at which information can be communicated across a
noisy channel with arbitrary reliability.

Linear time-invariant Gaussian channels
Capacity of the AWGN channel with SNR per degree of freedom is

Cawgn = log�1+ SNR�bits/s/Hz� (5.104)

Capacity of the continuous-time AWGN channel with bandwidth W , aver-
age received power P̄ and white noise power spectral density N0 is

Cawgn =W log
(
1+ P̄

N0W

)
bits/s� (5.105)

Bandwidth-limited regime: SNR = P̄/�N0W� is high and capacity is loga-
rithmic in the SNR.
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Power-limited regime: SNR is low and capacity is linear in the SNR.

Capacities of the SIMO and the MISO channels with time-invariant channel
gains h1� � � � � hL are the same:

C = log�1+ SNR�h�2�bits/s/Hz� (5.106)

Capacity of frequency-selective channel with response H�f � and power
constraint P per degree of freedom:

C =
∫ W

0
log

(
1+ P∗�f ��H�f ��2

N0

)
df bits/s (5.107)

where P∗�f � is waterfilling:

P∗�f �=
(
1
�
− N0

�H�f ��2
)+

� (5.108)

and � satisfies:

∫ W

0

(
1
�
− N0

�H�f ��2
)+

df = P� (5.109)

Slow fading channels with receiver CSI only
Setting: coherence time is much longer than constraint on coding delay.

Performance measures:

Outage probability pout�R� at a target rate R.

Outage capacity C� at a target outage probability �.

Basic flat fading channel:

y�m�= hx�m�+w�m�� (5.110)

Outage probability is

pout�R�= �
{
log

(
1+�h�2SNR)< R

}
� (5.111)

where SNR is the average signal-to-noise ratio at each receive antenna.
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Outage probability with receive diversity is

pout�R� �= �
{
log

(
1+�h�2SNR)< R

}
� (5.112)

This provides power and diversity gains.

Outage probability with L-fold transmit diversity is

pout�R� �= �

{
log

(
1+�h�2 SNR

L

)
< R

}
� (5.113)

This provides diversity gain only.

Outage probability with L-fold time diversity is

pout�R�= �

{
1
L

L∑
�=1

log
(
1+�h��2SNR

)
< R

}
� (5.114)

This provides diversity gain only.

Fast fading channels
Setting: coherence time is much shorter than coding delay.

Performance measure: capacity.

Basic model:

y�m�= h�m�x�m�+w�m�� (5.115)

	h�m�
 is an ergodic fading process.

Receiver CSI only:

C = �
[
log

(
1+�h�2SNR�)] � (5.116)

Full CSI:

C = �

[
log

(
1+ P∗�h��h�2

N0

)]
bits/s/Hz (5.117)

where P∗�h� waterfills over the fading states:

P∗�h�=
(
1
�
− N0

�h�2
)+

� (5.118)

and � satisfies:

�

[(
1
�
− N0

�h�2
)+]

= P� (5.119)

Power gain over the receiver CSI only case. Significant at low SNR.
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5.5 Bibliographical notes

Information theory and the formulation of the notions of reliable communication
and channel capacity were introduced in a path-breaking paper by Shannon [109].
The underlying philosophy of using simple models to understand the essence of an
engineering problem has pervaded the development of the communication field ever
since. In that paper, as a consequence of his general theory, Shannon also derived the
capacity of the AWGN channel. He returned to a more in-depth geometric treatment
of this channel in a subsequent paper [110]. Sphere-packing arguments were used
extensively in the text by Wozencraft and Jacobs [148].

The linear cellular model was introduced by Shamai and Wyner [108]. One of the
early studies of wireless channels using information theoretic techniques is due to
Ozarow. et al. [88], where they introduced the concept of outage capacity. Telatar [119]
extended the formulation to multiple antennas. The capacity of fading channels with
full CSI was analyzed by Goldsmith and Varaiya [51]. They observed the optimality
of the waterfilling power allocation with full CSI and the corollary that full CSI over
CSI at the receiver alone is beneficial only at low SNRs. A comprehensive survey of
information theoretic results on fading channels was carried out by Biglieri, Proakis
and Shamai [9].

The design issues in IS-856 have been elaborately discussed in Bender
et al. [6] and by Wu and Esteves [149].

5.6 Exercises

Exercise 5.1 What is the maximum reliable rate of communication over the (complex)
AWGN channel when only the I channel is used? How does that compare to the capac-
ity of the complex channel at low and high SNR, with the same average power con-
straint? Relate your conclusion to the analogous comparison between uncoded schemes
in Section 3.1.2 and Exercise 3.4, focusing particularly on the high SNR regime.

Exercise 5.2 Consider a linear cellular model with equi-spaced base-stations at distance
2d apart. With a reuse ratio of ", base-stations at distances of integer multiples of
2d/" reuse the same frequency band. Assuming that the interference emanates from
the center of the cell, calculate the fraction f" defined as the ratio of the interference to
the received power from a user at the edge of the cell. You can assume that all uplink
transmissions are at the same transmit power P and that the dominant interference
comes from the nearest cells reusing the same frequency.

Exercise 5.3 Consider a regular hexagonal cellular model (cf. Figure 4.2) with a
frequency reuse ratio of ".
1. Identify “appropriate” reuse patterns for different values of ", with the design

goal of minimizing inter-cell interference. You can use the assumptions made in
Exercise 5.2 on how the interference originates.

2. For the reuse patterns identified, show that f" = 6�
√
"/2�� is a good approximation

to the fraction of the received power of a user at the edge of the cell that the
interference represents. Hint: You can explicitly construct reuse patterns for " =
1�1/3�1/4�1/7�1/9 with exactly these fractions.
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3. What reuse ratio yields the largest symmetric uplink rate at high SNR (an expression
for the symmetric rate is in (5.23))?

Exercise 5.4 In Exercise 5.3 we computed the interference as a fraction of the signal
power of interest assuming that the interference emanated from the center of the cell
using the same frequency. Re-evaluate f" using the assumption that the interference
emanates uniformly in the cells using the same frequency. (You might need to do
numerical computations varying the power decay rate �.)

Exercise 5.5 Consider the expression in (5.23) for the rate in the uplink at very high
SNR values.
1. Plot the rate as a function of the reuse parameter ".
2. Show that "= 1/2, i.e., reusing the frequency every other cell, yields the largest rate.

Exercise 5.6 In this exercise, we study time sharing, as a means to communicate over
the AWGN channel by using different codes over different intervals of time.
1. Consider a communication strategy over the AWGN channel where for a fraction

of time � a capacity-achieving code at power level P1 is used, and for the rest of
the time a capacity-achieving code at power level P2 is used, meeting the overall
average power constraint P. Show that this strategy is strictly suboptimal, i.e., it is
not capacity-achieving for the power constraint P.

2. Consider an additive noise channel:

y�m�= x�m�+w�m�� (5.120)

The noise is still i.i.d. over time but not necessarily Gaussian. Let C�P� be the
capacity of this channel under an average power constraint of P. Show that C�P�
must be a concave function of P. Hint: Hardly any calculation is needed. The
insight from part (1) will be useful.

Exercise 5.7 In this exercise we use the formula for the capacity of the AWGN
channel to see the contrast with the performance of certain communication schemes
studied in Chapter 3. At high SNR, the capacity of the AWGN channel scales like
log2 SNR bits/s/Hz. Is this consistent with how the rate of an uncoded QAM system
scales with the SNR?

Exercise 5.8 For the AWGN channel with general SNR, there is no known explicitly
constructed capacity-achieving code. However, it is known that orthogonal codes
can achieve the minimum �b/N0 in the power-limited regime. This exercise shows
that orthogonal codes can get arbitrary reliability with a finite �b/N0. Exercise 5.9
demonstrates how the Shannon limit can actually be achieved. We focus on the
discrete-time complex AWGN channel with noise variance N0 per dimension.
1. An orthogonal code consists of M orthogonal codewords, each with the same

energy �s. What is the energy per bit �b for this code? What is the block length
required? What is the data rate?

2. Does the ML error probability of the code depend on the specific choice of the
orthogonal set? Explain.

3. Give an expression for the pairwise error probability, and provide a good upper
bound for it.

4. Using the union bound, derive a bound on the overall ML error probability.
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5. To achieve reliable communication, we let the number of codewords M grow and
adjust the energy �s per codeword such that the �b/N0 remains fixed. What is the
minimum �b/N0 such that your bound in part (4) vanishes with M increasing?
How far are you from the Shannon limit of −1�59 dB?

6. What happens to the data rate? Reinterpret the code as consuming more and more
bandwidth but at a fixed data rate (in bits/s).

7. How do you contrast the orthogonal code with a repetition code of longer and longer
block length (as in Section 5.1.1)? In what sense is the orthogonal code better?

Exercise 5.9 (Orthogonal codes achieve �b/N0 = −1�59dB.) The minimum �b/N0

derived in Exercise 5.8 does notmeet the Shannon limit, not because the orthogonal code
is not good but because the union bound is not tight enough when �b/N0 is close to the
Shannon limit. This exercise explores how the union bound can be tightened in this range.
1. Let ui be the real part of the inner product of the received signal vector with the

ith orthogonal codeword. Express the ML detection rule in terms of the ui.
2. Suppose codeword 1 is transmitted. Conditional on u1 large, the ML detector can get

confusedwith very fewother codewords, and the union bound on the conditional error
probability is quite tight. On the other hand, when u1 is small, theML detector can get
confused with many other codewords and the union bound is lousy and can be much
larger than 1. In the latter regime, one might as well bound the conditional error by
1. Compute then a bound on the ML error probability in terms of  , a threshold that
determineswhetheru1 is “large” or “small”. Simplify your bound asmuch as possible.

3. By an appropriate choice of  , find a good bound on the ML error probability in
terms of �b/N0 so that you can demonstrate that orthogonal codes can approach
the Shannon limit of −1�59dB. Hint: a good choice of  is when the union bound
on the conditional error is approximately 1. Why?

4. In what range of �b/N0 does your bound in the previous part coincide with the
union bound used in Exercise 5.8?

5. From your analysis, what insights about the typical error events in the various
ranges of �b/N0 can you derive?

Exercise 5.10 The outage performance of the slow fading channel depends on the
randomness of log�1+ �h�2SNR�. One way to quantify the randomness of a random
variable is by the ratio of the standard deviation to the mean. Show that this parameter
goes to zero at high SNR. What about low SNR? Does this make sense to you in light
of your understanding of the various regimes associated with the AWGN channel?

Exercise 5.11 Show that the transmit beamforming strategy in Section 5.3.2 maximizes
the received SNR for a given total transmit power constraint. (Part of the question
involves making precise what this means!)

Exercise 5.12 Consider coding over N OFDM blocks in the parallel channel in
(5.33), i.e., i = 1� � � � �N , with power Pn over the nth sub-channel. Suppose that
ỹn �= �ỹn�1�� � � � � ỹn�N��

t, with d̃n and w̃n defined similarly. Consider the entire
received vector with 2NNc real dimensions:

ỹ �= diag	h̃1IN � � � � � h̃Nc
IN 
d̃+ w̃� (5.121)

where d̃ �=
[
d̃t1� � � � � d̃

t
Nc

]t
and w̃ �= �w̃t

1� � � � � w̃
t
Nc
�t.
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1. Fix � > 0 and consider the ellipsoid E��� defined as

{
a � a∗

(
diag

{
P1�h̃1�2IN � � � � �PNc

�h̃Nc
�2IN

}
+N0INNc

)−1
a ≤ N�Nc + ��

}
�

(5.122)

Show for every � that

�	ỹ ∈ E���
→ 1� as N → �� (5.123)

Thus we can conclude that the received vector lives in the ellipsoid E�0� for large
N with high probability.

2. Show that the volume of the ellipsoid E�0� is equal to

(
Nc∏
n=1

(
�h̃n�2Pn+N0

)N)
(5.124)

times the volume of a 2NNc-dimensional real sphere with radius
√
NNc. This

justifies the expression in (5.50).
3. Show that

�	�w̃�2 ≤ N0N�Nc + ��
→ 1� as N → �� (5.125)

Thus w̃ lives, with high probability, in a 2NNc-dimensional real sphere of radius√
N0NNc. Compare the volume of this sphere to the volume of the ellipsoid in

(5.124) to justify the expression in (5.51).

Exercise 5.13 Consider a system with 1 transmit antenna and L receive antennas.
Independent �� �0�N0� noise corrupts the signal at each of the receive antennas. The
transmit signal has a power constraint of P.
1. Suppose the gain between the transmit antenna and each of the receive antennas is

constant, equal to 1. What is the capacity of the channel? What is the performance
gain compared to a single receive antenna system? What is the nature of the
performance gain?

2. Suppose now the signal to each of the receive antennas is subject to independent
Rayleigh fading. Compute the capacity of the (fast) fading channel with channel
information only at the receiver. What is the nature of the performance gain
compared to a single receive antenna system? What happens when L→ �?

3. Give an expression for the capacity of the fading channel in part (2) with CSI at
both the transmitter and the receiver. At low SNR, do you think the benefit of
having CSI at the transmitter is more or less significant when there are multiple
receive antennas (as compared to having a single receive antenna)? How about
when the operating SNR is high?

4. Now consider the slow fading scenario when the channel is random but constant.
Compute the outage probability and quantify the performance gain of having
multiple receive antennas.
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Exercise 5.14 Consider a MISO slow fading channel.
1. Verify that the Alamouti scheme radiates energy in an isotropic manner.
2. Show that a transmit diversity scheme radiates energy in an isotropic manner if

and only if the signals transmitted from the antennas have the same power and are
uncorrelated.

Exercise 5.15 Consider the MISO channel with L transmit antennas and channel gain
vector h = �h1� � � � � hL�

t. The noise variance is N0 per symbol and the total power
constraint across the transmit antennas is P.
1. First, think of the channel gains as fixed. Suppose someone uses a transmission

strategy for which the input symbols at any time have zero mean and a covariance
matrix Kx. Argue that the maximum achievable reliable rate of communication
under this strategy is no larger than

log
(
1+ htKxh

N0

)
bits/symbol� (5.126)

2. Now suppose we are in a slow fading scenario and h is random and i.i.d. Rayleigh.
The outage probability of the scheme in part (1) is given by

pout�R�= �

{
log

(
1+ htKxh

N0

)
< R

}
� (5.127)

Show that correlation never improves the outage probability: i.e., given a total
power constraint P, one can do no worse by choosing Kx to be diagonal. Hint:
Observe that the covariance matrix Kx admits a decomposition of the form
U diag	P1� � � � �PL
U

∗.

Exercise 5.16 Exercise 5.15 shows that for the i.i.d. Rayleigh slow fading MISO
channel, one can always choose the input to be uncorrelated, in which case the outage
probability is

�

{
log

(
1+

∑L
�=1 P��h��2
N0

)
< R

}
� (5.128)

where P� is the power allocated to antenna �. Suppose the operating SNR is high
relative to the target rate and satisfies

log
(
1+ P

N0

)
≥ R� (5.129)

with P equal to the total transmit power constraint.
1. Show that the outage probability (5.128) is a symmetric function of P1� � � � �PL.
2. Show that the partial double derivative of the outage probability (5.128) with

respect to Pj is non-positive as long as
∑L

�=1 P� = P, for each j = 1� � � � �L.
These two conditions imply that the isotropic strategy, i.e., P1 = · · · = PL = P/L

minimizes the outage probability (5.128) subject to the constraint P1+· · ·+PL =P.
This result is adapted from Theorem 1 of [11], where the justification for the last
step is provided.

3. For different values of L, calculate the range of outage probabilities for which the
isotropic strategy is optimal, under condition (5.129).
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Exercise 5.17 Consider the expression for the outage probability of the parallel fading
channel in (5.84). In this exercise we consider the Rayleigh model, i.e., the channel
entries h1� � � � � hL to be i.i.d. �� �0�1�, and show that uniform power allocation,
i.e., P1 = · · · = PL = P/L achieves the minimum in (5.84). Consider the outage
probability:

�

{
L∑
�=1

log
(
1+ P��h��2

N0

)
< LR

}
� (5.130)

1. Show that (5.130) is a symmetric function of P1� � � � �PL.
2. Show that (5.130) is a convex function of P�, for each �= 1� � � � �L.6

With the sum power constraint
∑L

�=1 P� =P, these two conditions imply that the outage
probability in (5.130) is minimized when P1 = · · · = PL = P/L. This observation
follows from a result in the theory of majorization, a partial order on vectors. In
particular, Theorem 3.A.4 in [80] provides the required justification.

Exercise 5.18 Compute a high-SNR approximation of the outage probability for the
parallel channel with L i.i.d. Rayleigh faded branches.

Exercise 5.19 In this exercise we study the slow fading parallel channel.
1. Give an expression for the outage probability of the repetition scheme when used

on the parallel channel with L branches.
2. Using the result in Exercise 5.18, compute the extra SNR required for the repetition

scheme to achieve the same outage probability as capacity, at high SNR. How does
this depend on L, the target rate R and the SNR?

3. Redo the previous part at low SNR.

Exercise 5.20 In this exercise we study the outage capacity of the parallel channel in
further detail.
1. Find an approximation for the �-outage capacity of the parallel channel with L

branches of time diversity in the low SNR regime.
2. Simplify your approximation for the case of i.i.d. Rayleigh faded branches and

small outage probability �.
3. IS-95 operates over a bandwidth of 1.25MHz. The delay spread is 1�s, the

coherence time is 50ms, the delay constraint (on voice) is 100ms. The SINR each
user sees is −17dB per chip. Estimate the 1%-outage capacity for each user. How
far is that from the capacity of an unfaded AWGN channel with the same SNR?
Hint: You can model the channel as a parallel channel with i.i.d. Rayleigh faded
sub-channels.

Exercise 5.21 In Chapter 3, we have seen that one way to communicate over the
MISO channel is to convert it into a parallel channel by sending symbols over the
different transmit antennas one at a time.
1. Consider first the case when the channel is fixed (known to both the transmitter

and the receiver). Evaluate the capacity loss of using this strategy at high and low
SNR. In which regime is this transmission scheme a good idea?

6 Observe that this condition is weaker than saying that (5.130) is jointly convex in the
arguments �P1� � � � �PL�.
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2. Now consider the slow fading MISO channel. Evaluate the loss in performance of
using this scheme in terms of (i) the outage probability pout�R� at high SNR; (ii)
the �-outage capacity C� at low SNR.

Exercise 5.22 Consider the frequency-selective channel with CSI only at the receiver
with L i.i.d. Rayleigh faded paths.
1. Compute the capacity of the fast fading channel. Give approximate expressions at

the high and low SNR regimes.
2. Provide an expression for the outage probability of the slow fading channel. Give

approximate expressions at the high and low SNR regimes.
3. In Section 3.4, we introduced a suboptimal scheme which transmits one symbol

every L symbol times and uses maximal ratio combining at the receiver to detect
each symbol. Find the outage and fast fading performance achievable by this
scheme if the transmitted symbols are ideally coded and the outputs from the
maximal-ratio are soft combined. Calculate the loss in performance (with respect
to the optimal outage and fast fading performance) in using this scheme for a GSM
system with two paths operating at average SNR of 15 dB. In what regime do we
not lose much performance by using this scheme?

Exercise 5.23 In this exercise, we revisit the CDMA system of Section 4.3 in the light
of our understanding of capacity of wireless channels.
1. In our analysis in Chapter 4 of the performance of CDMA systems, it was common

for us to assume a �b/N0 requirement for each user. This requirement depends
on the data rate R of each user, the bandwidth W Hz, and also the code used.
Assuming an AWGN channel and the use of capacity-achieving codes, compute
the �b/N0 requirement as a function of the data rate and bandwidth. What is this
number for an IS-95 system with R= 9�6 kbits/s and W = 1�25MHz? At the low
SNR, power-limited regime, what happens to this �b/N0 requirement?

2. In IS-95, the code used is not optimal: each coded symbol is repeated four times
in the last stage of the spreading. With only this constraint on the code, find
the maximum achievable rate of reliable communication over an AWGN channel.
Hint: Exercise 5.13(1) may be useful here.

3. Compare the performance of the code used in IS-95 with the capacity of the AWGN
channel. Is the performance loss greater in the low SNR or high SNR regime?
Explain intuitively.

4. With the repetition constraint of the code as in part (2), quantify the resulting
increase in �b/N0 requirement compared to that in part (1). Is this penalty serious
for an IS-95 system with R= 9�6 kbits/s and W = 1�25MHz?

Exercise 5.24 In this exercise we study the price of channel inversion.
1. Consider a narrowband Rayleigh flat fading SISO channel. Show that the aver-

age power (averaged over the channel fading) needed to implement the channel
inversion scheme is infinite for any positive target rate.

2. Suppose now there are L > 1 receive antennas. Show that the average power for
channel inversion is now finite.

3. Compute numerically and plot the average power as a function of the target rate
for different L to get a sense of the amount of gain from having multiple receive
antennas. Qualitatively describe the nature of the performance gain.
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Exercise 5.25 This exercise applies basic capacity results to analyze the IS-856 system.
You should use the parameters of IS-865 given in the text.
1. The table in the IS-865 example in the text gives the SINR thresholds for using

the various rates. What would the thresholds have been if capacity-achieving codes
were used? Are the codes used in IS-856 close to optimal? (You can assume that
the interference plus noise is Gaussian and that the channel is time-invariant over
the time-scale of the coding.)

2. At low rates, the coding is performed by a turbo code followed by a repetition code
to reduce the complexity. How much is the sub- optimality of the IS-865 codes
due to the repetition structure? In particular, at the lowest rate of 38.4 kbits/s,
coded symbols are repeated 16 times. With only this constraint on the code, find
the minimum SINR needed for reliable communication. Comparing this to the
corresponding threshold calculated in part (1), can you conclude whether one loses
a lot from the repetition?

Exercise 5.26 In this problem we study the nature of the error in the channel estimate
fed back to the transmitter (to adapt the transmission rate, as in the IS-856 system).
Consider the following time-varying channel model (called the Gauss–Markov model):

h�m+1�= √
1−�h�m�+√

�w�m+1�� m≥ 0� (5.131)

with 	w�m�
 a sequence of i.i.d. �� �0�1� random variables independent of h�0� ∼
�� �0�1�. The coherence time of the channel is controlled by the parameter �.
1. Calculate the auto-correlation function of the channel process in (5.131).
2. Defining the coherence time as the largest time for which the auto-correlation

is larger than 0.5 (cf. Section 2.4.3), derive an expression for � in terms of the
coherence time and the sample rate. What are some typical values of � for the
IS-856 system at different vehicular speeds?

3. The channel is estimated at the receiver using training symbols. The estimation
error (evaluated in Section 3.5.2) is small at high SNR and we will ignore it
by assuming that h�0� is estimated exactly. Due to the delay, the fed back h�0�
reaches the transmitter at time n. Evaluate the predictor ĥ�n� of h�n� from h�0�
that minimizes the mean squared error.

4. Show that the minimum mean squared error predictor can be expressed as

h�n�= ĥ�n�+he�n�� (5.132)

with the error he�n� independent of ĥ�n� and distributed as �� �0��2
e �. Find an

expression for the variance of the prediction error �2
e in terms of the delay n and

the channel variation parameter �. What are some typical values of �2
e for the

IS-856 system with a 2-slot delay in the feedback link?

Exercise 5.27 Consider the slow fading channel (cf. Section 5.4.1)

y�m�= hx�m�+w�m�� (5.133)
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with h∼ �� �0�1�. If there is a feedback link to the transmitter, then an estimate of
the channel quality can be relayed back to the transmitter (as in the IS-856 system).
Let us suppose that the transmitter is aware of ĥ, which is modeled as

h= ĥ+he� (5.134)

where the error in the estimate he is independent of the estimate ĥ and is �� �0��2
e �

(see Exercise 5.26 and (5.132) in particular). The rate of communication R is chosen
as a function of the channel estimate ĥ. If the estimate is perfect, i.e., �2

e = 0, then
the slow fading channel is simply an AWGN channel and R can be chosen to be less
than the capacity and an arbitrarily small error probability is achieved. On the other
hand, if the estimate is very noisy, i.e., �2

e � 1, then we have the original slow fading
channel studied in Section 5.4.1.
1. Argue that the outage probability, conditioned on the estimate of the channel ĥ, is

�
{
log�1+�h�2SNR� < R�ĥ��ĥ

}
� (5.135)

2. Let us fix the outage probability in (5.135) to be less than � for every realization of
the channel estimate ĥ. Then the rate can be adapted as a function of the channel
estimate ĥ. To get a feel for the amount of loss in the rate due to the imperfect
channel estimate, carry out the following numerical experiment. Fix � = 0�01 and
evaluate numerically (using a software such as MATLAB) the average difference
between the rate with perfect channel feedback and the rate R with imperfect
channel feedback for different values of the variance of the channel estimate error
�2
e (the average is carried out over the joint distribution of the channel and its

estimate).
What is the average difference for the IS-856 system at different vehicular speeds?
You can use the results from the calculation in Exercise 5.26(3) that connect the
vehicular speeds to �2

e in the IS-856 system.
3. The numerical example gave a feel for the amount of loss in transmission rate due

to the channel uncertainty. In this part, we study approximations to the optimal
transmission rate as a function of the channel estimate.
(a) If ĥ is small, argue that the optimal rate adaptation is of the form

R�ĥ�≈ log
(
1+a1�ĥ�2 +b1

)
� (5.136)

by finding appropriate constants a1� b1 as functions of � and �2
e .

(b) When ĥ is large, argue that the optimal rate adaptation is of the form

R�ĥ�≈ log
(
1+a2�ĥ�+b2

)
� (5.137)

and find appropriate constants a2� b2.

Exercise 5.28 In the text we have analyzed the performance of fading channels
under the assumption of receiver CSI. The CSI is obtained in practice by transmitting
training symbols. In this exercise, we will study how the loss in degrees of freedom
from sending training symbols compares with the actual capacity of the non-coherent
fading channel. We will conduct this study in the context of a block fading model: the
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channel remains constant over a block of time equal to the coherence time and jumps
to independent realizations over different coherent time intervals. Formally,

y�m+nTc�= h�n�x�m+nTc�+w�m+nTc�� m= 1� � � � � Tc� n≥ 1� (5.138)

where Tc is the coherence time of the channel (measured in terms of the number of
samples). The channel variations across the blocks h�n� are i.i.d. Rayleigh.
1. For the IS-856 system, what are typical values of Tc at different vehicular speeds?
2. Consider the following pilot (or training symbol) based scheme that converts the

non-coherent communication into a coherent one by providing receiver CSI. The
first symbol of the block is a known symbol and information is sent in the remaining
symbols (Tc − 1 of them). At high SNR, the pilot symbol allows the receiver to
estimate the channel (h�n�, over the nth block) with a high degree of accuracy.
Argue that the reliable rate of communication using this scheme at high SNR is
approximately

Tc −1
Tc

C�SNR�bits/s/Hz� (5.139)

where C�SNR� is the capacity of the channel in (5.138) with receiver CSI. In what
mathematical sense can you make this approximation precise?

3. A reading exercise is to study [83] where the authors show that the capacity of the
original non-coherent block fading channel in (5.138) is comparable (in the same
sense as the approximation in the previous part) to the rate achieved with the pilot
based scheme (cf. (5.139)). Thus there is little loss in performance with pilot based
reliable communication over fading channels at high SNR.

Exercise 5.29 Consider the block fading model (cf. (5.138)) with a very short coherent
time Tc. In such a scenario, the pilot based scheme does not perform very well as
compared to the capacity of the channel with receiver CSI (cf. (5.139)). A reading
exercise is to study the literature on the capacity of the non-coherent i.i.d. Rayleigh
fading channel (i.e., the block fading model in (5.138) with Tc = 1) [68, 114, 1]. The
main result is that the capacity is approximately

log log SNR (5.140)

at high SNR, i.e., communication at high SNR is very inefficient. An intuitive way
to think about this result is to observe that a logarithmic transform converts the
multiplicative noise (channel fading) into an additive Gaussian one. This allows us to
use techniques from the AWGN channel, but now the effective SNR is only log SNR.

Exercise 5.30 In this problem we will derive the capacity of the underspread frequency-
selective fading channel modeled as follows. The channel is time invariant over each
coherence time interval (with length Tc). Over the ith coherence time interval the
channel has Ln taps with coefficients7

h0�i�� � � � � hLi−1�i�� (5.141)

7 We have slightly abused our notation here: in the text h��m� was used to denote the �th tap
at symbol time m, but here h��i� is the �th tap at the ith coherence interval.
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The underspread assumption �Tc � Li� means that the edge effect of having the next
coherent interval overlap with the last Li−1 symbols of the current coherent interval
is insignificant. One can then jointly code over coherent time intervals with the same
(or nearly the same) channel tap values to achieve the corresponding largest reliable
communication rate afforded by that frequency-selective channel. To simplify notation
we use this operational reasoning to make the following assumption: over the finite
time interval Tc, the reliable rate of communication can be well approximated as equal
to the capacity of the corresponding time-invariant frequency-selective channel.
1. Suppose a power P�i� is allocated to the ith coherence time interval. Use the

discussion in Section 5.4.7 to show that the largest rate of reliable communication
over the ith coherence time interval is

max
P0�i�� � � � �PTc−1�i�

1
Tc

Tc−1∑
n=0

log

(
1+ Pn�i��h̃n�i��2

N0

)
� (5.142)

subject to the power constraint

Tc−1∑
n=0

Pn�i�≤ TcP�i�� (5.143)

It is optimal to choose Pn�i� to waterfill N0/�h̃n�i��2 where h̃0�i�� � � � � h̃Tc−1�i� is
the Tc-point DFT of the channel h0�i�� � � � � hLi−1�i� scaled by

√
Tc.

2. Now consider M coherence time intervals over which the powers P�1�� � � � � P�M�

are to be allocated subject to the constraint

M∑
i=1

P�i�≤MP�

Determine the optimal power allocation Pn�i�� n= 0� � � � � Tc−1 and i= 1� � � � �M
as a function of the frequency-selective channels in each of the coherence time
intervals.

3. What happens to the optimal power allocation as M , the number of coherence
time intervals, grows large? State precisely any assumption you make about the
ergodicity of the frequency-selective channel sequence.
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6 Multiuser capacity and
opportunistic communication

In Chapter 4, we studied several specific multiple access techniques
(TDMA/FDMA, CDMA, OFDM) designed to share the channel among sev-
eral users. A natural question is: what are the “optimal” multiple access
schemes? To address this question, one must now step back and take a fun-
damental look at the multiuser channels themselves. Information theory can
be generalized from the point-to-point scenario, considered in Chapter 5,
to the multiuser ones, providing limits to multiuser communications and
suggesting optimal multiple access strategies. New techniques and concepts
such as successive cancellation, superposition coding and multiuser diversity
emerge.
The first part of the chapter focuses on the uplink (many-to-one) and

downlink (one-to-many) AWGN channel without fading. For the uplink, an
optimal multiple access strategy is for all users to spread their signal across
the entire bandwidth, much like in the CDMA system in Chapter 4. However,
rather than decoding every user treating the interference from other users
as noise, a successive interference cancellation (SIC) receiver is needed to
achieve capacity. That is, after one user is decoded, its signal is stripped
away from the aggregate received signal before the next user is decoded.
A similar strategy is optimal for the downlink, with signals for the users
superimposed on top of each other and SIC done at the mobiles: each user
decodes the information intended for all of the weaker users and strips them
off before decoding its own. It is shown that in situations where users have
very disparate channels to the base-station, CDMA together with successive
cancellation can offer significant gains over the conventional multiple access
techniques discussed in Chapter 4.
In the second part of the chapter, we shift our focus to multiuser fading

channels. One of the main insights learnt in Chapter 5 is that, for fast fading
channels, the ability to track the channel at the transmitter can increase point-
to-point capacity by opportunistic communication: transmitting at high rates
when the channel is good, and at low rates or not at all when the channel
is poor. We extend this insight to the multiuser setting, both for the uplink

228



229 6.1 Uplink AWGN channel

and for the downlink. The performance gain of opportunistic communication
comes from exploiting the fluctuations of the fading channel. Compared to
the point-to-point setting, the multiuser settings offer more opportunities to
exploit. In addition to the choice of when to transmit, there is now an additional
choice of which user(s) to transmit from (in the uplink) or to transmit to (in
the downlink) and the amount of power to allocate between the users. This
additional choice provides a further performance gain not found in the point-
to-point scenario. It allows the system to benefit from a multiuser diversity
effect: at any time in a large network, with high probability there is a user
whose channel is near its peak. By allowing such a user to transmit at that
time, the overall multiuser capacity can be achieved.
In the last part of the chapter, we will study the system issues arising from

the implementation of opportunistic communication in a cellular system. We
use as a case study IS-856, the third-generation standard for wireless data
already introduced in Chapter 5. We show how multiple antennas can be used
to further boost the performance gain that can be extracted from opportunistic
communication, a technique known as opportunistic beamforming. We dis-
till the insights into a new design principle for wireless systems based on
opportunistic communication and multiuser diversity.

6.1 Uplink AWGN channel

6.1.1 Capacity via successive interference cancellation

The baseband discrete-time model for the uplink AWGN channel with two
users (Figure 6.1) is

y�m�= x1�m�+x2�m�+w�m�� (6.1)

where w�m� ∼ �� �0�N0� is i.i.d. complex Gaussian noise. User k has an
average power constraint of Pk joules/symbol (with k= 1�2).

Figure 6.1 Two-user uplink.

In the point-to-point case, the capacity of a channel provides the per-
formance limit: reliable communication can be attained at any rate R < C;
reliable communication is impossible at rates R > C. In the multiuser case,
we should extend this concept to a capacity region � : this is the set of all
pairs �R1�R2� such that simultaneously user 1 and 2 can reliably commu-
nicate at rate R1 and R2, respectively. Since the two users share the same
bandwidth, there is naturally a tradeoff between the reliable communication
rates of the users: if one wants to communicate at a higher rate, the other
user may need to lower its rate. For example, in orthogonal multiple access
schemes, such as OFDM, this tradeoff can be achieved by varying the number
of sub-carriers allocated to each user. The capacity region � characterizes
the optimal tradeoff achievable by any multiple access scheme. From this
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capacity region, one can derive other scalar performance measures of interest.
For example:

• The symmetric capacity:

Csym �= max
�R�R�∈�

R (6.2)

is the maximum common rate at which both the users can simultaneously
reliably communicate.

• The sum capacity:

Csum �= max
�R1�R2�∈�

R1+R2 (6.3)

is the maximum total throughput that can be achieved.

Just like the capacity of the AWGN channel, there is a very simple char-
acterization of the capacity region � of the uplink AWGN channel: this is
the set of all rates �R1�R2� satisfying the three constraints (Appendix B.9
provides a formal justification):

R1 < log
(
1+ P1

N0

)
�

R2 < log
(
1+ P2

N0

)
�

R1+R2 < log
(
1+ P1+P2

N0

)
�

(6.4)

(6.5)

(6.6)

The capacity region is the pentagon shown in Figure 6.2. All the three con-
straints are natural. The first two say that the rate of the individual user cannot
exceed the capacity of the point-to-point link with the other user absent from

Figure 6.2 Capacity region of
the two-user uplink AWGN
channel.
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the system (these are called single-user bounds). The third says that the total
throughput cannot exceed the capacity of a point-to-point AWGN channel
with the sum of the received powers of the two users. This is indeed a valid
constraint since the signals the two users send are independent and hence
the power of the aggregate received signal is the sum of the powers of the
individual received signals.1 Note that without the third constraint, the capac-
ity region would have been a rectangle, and each user could simultaneously
transmit at the point-to-point capacity as if the other user did not exist. This
is clearly too good to be true and indeed the third constraint says this is not
possible: there must be a tradeoff between the performance of the two users.
Nevertheless, something surprising does happen: user 1 can achieve its

single-user bound while at the same time user 2 can get a non-zero rate; in
fact as high as its rate at point A, i.e.,

R∗
2 = log

(
1+ P1+P2

N0

)
− log

(
1+ P1

N0

)
= log

(
1+ P2

P1+N0

)
� (6.7)

How can this be achieved? Each user encodes its data using a capacity-
achieving AWGN channel code. The receiver decodes the information of both
the users in two stages. In the first stage, it decodes the data of user 2, treating
the signal from user 1 as Gaussian interference. The maximum rate user 2
can achieve is precisely given by (6.7). Once the receiver decodes the data
of user 2, it can reconstruct user 2’s signal and subtract it from the aggregate
received signal. The receiver can then decode the data of user 1. Since there is
now only the background Gaussian noise left in the system, the maximum rate
user 1 can transmit at is its single-user bound log�1+P1/N0�. This receiver
is called a successive interference cancellation (SIC) receiver or simply a
successive cancellation decoder. If one reverses the order of cancellation, then
one can achieve point B, the other corner point. All the other rate points on
the segment AB can be obtained by time-sharing between the multiple access
strategies in point A and point B. (We see in Exercise 6.7 another technique
called rate-splitting that also achieves these intermediate points.)

The segment AB contains all the “optimal” operating points of the channel,
in the sense that any other point in the capacity region is component-wise
dominated by some point on AB. Thus one can always increase both users’
rates by moving to a point on AB, and there is no reason not to.2 No such
domination exists among the points on AB, and the preferred operating point
depends on the system objective. If the goal of the system is to maximize
the sum rate, then any point on AB is equally fine. On the other hand, some
operating points are not fair, especially if the received power of one user is

1 This is the same argument we used for deriving the capacity of the MISO channel in
Section 5.3.2.

2 In economics terms, the points on AB are called Pareto optimal.
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much larger than the other. In this case, consider operating at the corner point
in which the strong user is decoded first: now the weak user gets the best
possible rate.3 In the case when the weak user is the one further away from
the base-station, it is shown in Exercise 6.10 that this decoding order has the
property of minimizing the total transmit power to meet given target rates
for the two users. Not only does this lead to savings in the battery power
of the users, it also translates to an increase in the system capacity of an
interference-limited cellular system (Exercise 6.11).

6.1.2 Comparison with conventional CDMA

There is a certain similarity between the multiple access technique that
achieves points A and B, and the CDMA technique discussed in Chapter 4.
The only difference is that in the CDMA system described there, every user
is decoded treating the other users as interference. This is sometimes called a
conventional or a single-user CDMA receiver. In contrast, the SIC receiver
is a multiuser receiver: one of the users, say user 1, is decoded treating user 2
as interference, but user 2 is decoded with the benefit of the signal of user 1
already removed. Thus, we can immediately conclude that the performance
of the conventional CDMA receiver is suboptimal; in Figure 6.2, it achieves
the point C which is strictly in the interior of the capacity region.
The benefit of SIC over the conventional CDMA receiver is particularly

significant when the received power of one user is much larger than that of
the other: by decoding and subtracting the signal of the strong user first, the
weaker user can get a much higher data rate than when it has to contend with
the interference of the strong user (Figure 6.3). In the context of a cellular
system, this means that rather than having to keep the received powers of all
users equal by transmit power control, users closer to the base-station can be
allowed to take advantage of the stronger channel and transmit at a higher
rate while not degrading the performance of the users in the edge of the cell.
With a conventional receiver, this is not possible due to the near–far problem.
With the SIC, we are turning the near–far problem into a near–far advantage.
This advantage is less apparent in providing voice service where the required
data rate of a user is constant over time, but it can be important for providing
data services where users can take advantage of the higher data rates when
they are closer to the base-station.

6.1.3 Comparison with orthogonal multiple access

How about orthogonal multiple access techniques? Can they be information
theoretically optimal? Consider an orthogonal scheme that allocates a fraction

3 This operating point is said to be max–min fair.
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Figure 6.3 In the case when
the received powers of the
users are very disparate,
successive cancellation (point
A) can provide a significant
advantage to the weaker user
compared to conventional
CDMA decoding (point C). The
conventional CDMA solution is
to control the received power
of the strong user to equal
that of the weak user (point
D), but then the rates of both
users are much lower. Here,
P1/N0 = 0 dB, P2/N0 = 20 dB.
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� of the degrees of freedom to user 1 and the rest, 1−�, to user 2 (note
that it is irrelevant for the capacity analysis whether the partitioning is across
frequency or across time, since the power constraint is on the average across
the degrees of freedom). Since the received power of user 1 is P1, the amount
of received energy is P1/� joules per degree of freedom. The maximum rate
user 1 can achieve over the total bandwidth W is

�W log
(
1+ P1

�N0

)
bits/s� (6.8)

Similarly, the maximum rate user 2 can achieve is

�1−��W log
(
1+ P2

�1−��N0

)
bits/s� (6.9)

Varying � from 0 to 1 yields all the rate pairs achieved by orthogonal schemes.
See Figure 6.4.
Comparing these rates with the capacity region, one can see that the

orthogonal schemes are in general suboptimal, except for one point: when
� = P1/�P1 +P2�, i.e., the amount of degrees of freedom allocated to each
user is proportional to its received power (Exercise 6.2 explores the reason
why). However, when there is a large disparity between the received powers
of the two users (as in the example of Figure 6.4), this operating point is
highly unfair since most of the degrees of freedom are given to the strong
user and the weak user has hardly any rate. On the other hand, by decoding
the strong user first and then the weak user, the weak user can achieve the
highest possible rate and this is therefore the most fair possible operating point
(point A in Figure 6.4). In contrast, orthogonal multiple access techniques



234 Multiuser capacity and opportunistic communication

Figure 6.4 Performance of
orthogonal multiple access
compared to capacity. The
SNRs of the two users are:
P1/N0 = 0 dB and
P2/N0 = 20 dB. Orthogonal
multiple access achieves the
sum capacity at exactly one
point, but at that point the
weak user 1 has hardly any
rate and it is therefore a highly
unfair operating point. Point A
gives the highest possible rate
to user 1 and is most fair.
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can approach this performance for the weak user only by nearly sacrificing
all the rate of the strong user. Here again, as in the comparison with CDMA,
SIC’s advantage is in exploiting the proximity of a user to the base-station to
give it high rate while protecting the far-away user.

6.1.4 General K -user uplink capacity

Wehave so far focused on the two-user case for simplicity, but the results extend
readily to an arbitrary number of users. TheK-user capacity region is described
by 2K −1 constraints, one for each possible non-empty subset � of users:

∑
k∈�

Rk < log
(
1+

∑
k∈� Pk

N0

)
for all � ⊂ 	1� � � � �K
� (6.10)

The right hand side corresponds to the maximum sum rate that can be achieved
by a single transmitter with the total power of the users in � and with no
other users in the system. The sum capacity is

Csum = log
(
1+

∑K
k=1 Pk

N0

)
bits/s/Hz� (6.11)

It can be shown that there are exactlyK! corner points, each one corresponding
to a successive cancellation order among the users (Exercise 6.9).

The equal received power case (P1 = � � � = PK = P) is particularly simple.
The sum capacity is

Csum = log
(
1+ KP

N0

)
� (6.12)
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The symmetric capacity is

Csym = 1
K

· log
(
1+ KP

N0

)
� (6.13)

This is the maximum rate for each user that can be obtained if every user
operates at the same rate. Moreover, this rate can be obtained via orthogonal
multiplexing: each user is allocated a fraction 1/K of the total degrees of free-
dom.4 In particular, we can immediately conclude that under equal received
powers, the OFDM scheme considered in Chapter 4 has a better performance
than the CDMA scheme (which uses conventional receivers.)

Observe that the sum capacity (6.12) is unbounded as the number of users
grows. In contrast, if the conventional CDMA receiver (decoding every user
treating all other users as noise) is used, each user will face an interference
from K−1 users of total power �K−1�P, and thus the sum rate is only

K · log
(
1+ P

�K−1�P+N0

)
bits/s/Hz� (6.14)

which approaches

K · P

�K−1�P+N0

log2 e≈ log2 e= 1�442bits/s/Hz� (6.15)

as K → �. Thus, the total spectral efficiency is bounded in this case: the
growing interference is eventually the limiting factor. Such a rate is said to
be interference-limited.
The above comparison pertains effectively to a single-cell scenario, since

the only external effect modeled is white Gaussian noise. In a cellular network,
the out-of-cell interference must be considered, and as long as the out-of-cell
signals cannot be decoded, the system would still be interference-limited, no
matter what the receiver is.

6.2 Downlink AWGN channel

The downlink communication features a single transmitter (the base-station)
sending separate information to multiple users (Figure 6.5). The baseband
downlink AWGN channel with two users is

yk�m�= hkx�m�+wk�m�� k= 1�2� (6.16)

where wk�m�∼ �� �0�N0� is i.i.d. complex Gaussian noise and yk�m� is the
received signal at user k at time m, for both the users k = 1�2. Here hk is

4 This fact is specific to the AWGN channel and does not hold in general. See Section 6.3.



236 Multiuser capacity and opportunistic communication

the fixed (complex) channel gain corresponding to user k. We assume that hk

Figure 6.5 Two-user downlink.

is known to both the transmitter and the user k (for k = 1�2). The transmit
signal 	x�m�
 has an average power constraint of P joules/symbol. Observe
the difference from the uplink of this overall constraint: there the power
restrictions are separate for the signals of each user. The users separately
decode their data using the signals they receive.
As in the uplink, we can ask for the capacity region � , the region of the rates

�R1�R2�, at which the two users can simultaneously reliably communicate.
We have the single-user bounds, as in (6.4) and (6.5),

Rk < log
(
1+ P�hk�2

N0

)
� k= 1�2� (6.17)

This upper bound on Rk can be attained by using all the power and degrees
of freedom to communicate to user k (with the other user getting zero rate).
Thus, we have the two extreme points (with rate of one user being zero) in
Figure 6.6. Further, we can share the degrees of freedom (time and bandwidth)
between the users in an orthogonal manner to obtain any rate pair on the
line joining these two extreme points. Can we achieve a rate pair outside this
triangle by a more sophisticated communication strategy?

6.2.1 Symmetric case: two capacity-achieving schemes

To get more insight, let us first consider the symmetric case where �h1� = �h2�.
In this symmetric situation, the SNR of both the users is the same. This means
that if user 1 can successfully decode its data, then user 2 should also be

Figure 6.6 The capacity region
of the downlink with two users
having symmetric AWGN
channels, i.e., �h1� = �h2�.
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R1

log  1+ ⏐h2⏐P2
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able to decode successfully the data of user 1 (and vice versa). Thus the sum
information rate must also be bounded by the single-user capacity:

R1+R2 < log
(
1+ P�h1�2

N0

)
� (6.18)

Comparing this with the single-user bounds in (6.17) and recalling the sym-
metry assumption �h1� = �h2�, we have shown the triangle in Figure 6.6 to be
the capacity region of the symmetric downlink AWGN channel.

Let us continue our thought process within the realm of the symmetry
assumption. The rate pairs in the capacity region can be achieved by strategies
used on point-to-point AWGN channels and sharing the degrees of freedom
(time and bandwidth) between the two users. However, the symmetry between
the two channels (cf. (6.16)) suggests a natural, and alternative, approach.
The main idea is that if user 1 can successfully decode its data from y1, then
user 2, which has the same SNR, should also be able to decode the data of
user 1 from y2. Then user 2 can subtract the codeword of user 1 from its
received signal y2 to better decode its own data, i.e., it can perform successive
interference cancellation. Consider the following strategy that superposes the
signals of the two users, much like in a spread-spectrum CDMA system. The
transmit signal is the sum of two signals,

x�m�= x1�m�+x2�m�� (6.19)

where 	xk�m�
 is the signal intended foruserk.The transmitter encodes the infor-
mation for each user using an i.i.d.Gaussian code spread on the entire bandwidth
(and powers P1�P2, respectively, with P1+P2 = P). User 1 treats the signal for
user 2 as noise and can hence be communicated to reliably at a rate of

R1 = log
(
1+ P1�h1�2

P2�h1�2+N0

)
= log

(
1+ �P1+P2��h1�2

N0

)
− log

(
1+ P2�h1�2

N0

)
� (6.20)

User 2 performs successive interference cancellation: it first decodes the data
of user 1 by treating x2 as noise, subtracts the exactly determined (with high
probability) user 1 signal from y2 and extracts its data. Thus user 2 can support
reliably a rate

R2 = log
(
1+ P2�h2�2

N0

)
� (6.21)

This superposition strategy is schematically represented in Figures 6.7 and
6.8. Using the power constraint P1+P2 = P we see directly from (6.20) and
(6.21) that the rate pairs in the capacity region (Figure 6.6) can be achieved
by this strategy as well. We have hence seen two coding schemes for the
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Figure 6.7 Superposition
encoding example. The QPSK
constellation of user 2 is
superimposed on that of
user 1.
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Figure 6.8 Superposition
decoding example. The
transmitted constellation point
of user 1 is decoded first,
followed by decoding of the
constellation point of user 2.
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symmetric downlink AWGN channel that are both optimal: single-user codes
followed by orthogonalization of the degrees of freedom among the users,
and the superposition coding scheme.

6.2.2 General case: superposition coding achieves capacity

Let us now return to the general downlink AWGN channel without the
symmetry assumption and take �h1� < �h2�. Now user 2 has a better channel
than user 1 and hence can decode any data that user 1 can successfully decode.
Thus, we can use the superposition coding scheme: First the transmit signal
is the (linear) superposition of the signals of the two users. Then, user 1 treats
the signal of user 2 as noise and decodes its data from y1. Finally, user 2,
which has the better channel, performs SIC: it decodes the data of user 1 (and
hence the transmit signal corresponding to user 1’s data) and then proceeds to
subtract the transmit signal of user 1 from y2 and decode its data. As before,
with each possible power split of P = P1+P2, the following rate pair can be
achieved:

R1 = log
(
1+ P1�h1�2

P2�h1�2+N0

)
bits/s/Hz�

R2 = log
(
1+ P2�h2�2

N0

)
bits/s/Hz� (6.22)
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On the other hand, orthogonal schemes achieve, for each power split
P = P1+P2 and degree-of-freedom split � ∈ �0�1�, as in the uplink (cf. (6.8)
and (6.9)),

R1 = � log
(
1+ P1�h1�2

�N0

)
bits/s/Hz�

R2 = �1−�� log
(
1+ P2�h2�2

�1−��N0

)
bits/s/Hz� (6.23)

Here, � represents the fraction of the bandwidth devoted to user 1. Figure 6.9
plots the boundaries of the rate regions achievable with superposition coding
and optimal orthogonal schemes for the asymmetric downlink AWGN channel
(with SNR1 = 0dB and SNR2 = 20dB). We observe that the performance of
the superposition coding scheme is better than that of the orthogonal scheme.

One can show that the superposition decoding scheme is strictly better than
the orthogonalization schemes (except for the two corner points where only
one user is being communicated to). That is, for any rate pair achieved by
orthogonalization schemes there is a power split for which the successive
decoding scheme achieves rate pairs that are strictly larger (see Exercise 6.25).
This gap in performance is more pronounced when the asymmetry between
the two users deepens. In particular, superposition coding can provide a very
reasonable rate to the strong user, while achieving close to the single-user
bound for the weak user. In Figure 6.9, for example, while maintaining the
rate of the weaker user R1 at 0�9 bits/s/Hz, superposition coding can provide
a rate of around R2 = 3 bits/s/Hz to the strong user while an orthogonal
scheme can provide a rate of only around 1 bits/s/Hz. Intuitively, the strong
user, being at high SNR, is degree-of-freedom limited and superposition
coding allows it to use the full degrees of freedom of the channel while being
allocated only a small amount of transmit power, thus causing small amount

Figure 6.9 The boundary of
rate pairs (in bits/s/Hz)
achievable by superposition
coding (solid line) and
orthogonal schemes (dashed
line) for the two-user
asymmetric downlink AWGN
channel with the user SNRs
equal to 0 and 20dB
(i.e., P�h1�2/N0 = 1 and
P�h2�2/N0 = 100). In the
orthogonal schemes, both the
power split P = P1+ P2 and
split in degrees of freedom �

are jointly optimized to
compute the boundary.
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of interference to the weak user. In contrast, an orthogonal scheme has to
allocate a significant fraction of the degrees of freedom to the weak user to
achieve near single-user performance, and this causes a large degradation in
the performance of the strong user.
So far we have considered a specific signaling scheme: linear superposition

of the signals of the two users to form the transmit signal (cf. (6.19)). With this
specific encoding method, the SIC decoding procedure is optimal. However,
one can show that this scheme in fact achieves the capacity and the boundary
of the capacity region of the downlink AWGN channel is given by (6.22)
(Exercise 6.26).
While we have restricted ourselves to two users in the presentation, these

results have natural extensions to the general K-user downlink channel. In
the symmetric case �hk� = �h� for all k, the capacity region is given by the
single constraint

K∑
k=1

Rk < log
(
1+ P�h�2

N0

)
� (6.24)

In general with the ordering �h1� ≤ �h2� ≤ · · · ≤ �hK�, the boundary of the
capacity region of the downlink AWGN channel is given by the parameterized
rate tuple

Rk = log

(
1+ Pk�hk�2

N0 +
(∑K

j=k+1 Pj

) �hk�2
)
� k= 1� � � K� (6.25)

where P =∑K
k=1 Pk is the power split among the users. Each rate tuple on the

boundary, as in (6.25), is achieved by superposition coding.
Since we have a full characterization of the tradeoff between the rates at

which users can be reliably communicated to, we can easily derive specific
scalar performance measures. In particular, we focused on sum capacity in the
uplink analysis; to achieve the sum capacity we required all the users to trans-
mit simultaneously (using the SIC receiver to decode the data). In contrast,
we see from (6.25) that the sum capacity of the downlink is achieved by
transmitting to a single user, the user with the highest SNR.

Summary 6.1 Uplink and downlink AWGN capacity

Uplink:

y�m�=
K∑
k=1

xk�m�+w�m� (6.26)

with user k having power constraint Pk.
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Achievable rates satisfy:

∑
k∈�

Rk ≤ log
(
1+

∑
k∈� Pk

N0

)
for all � ⊂ 	1� � � � �K
 (6.27)

The K! corner points are achieved by SIC, one corner point for each
cancellation order. They all achieve the same optimal sum rate.

A natural ordering would be to decode starting from the strongest user
first and move towards the weakest user.

Downlink:

yk�m�= hkx�m�+wk�m�� k= 1� � � � K (6.28)

with �h1� ≤ �h2� ≤ � � � ≤ �hK�.
The boundary of the capacity region is given by the rate tuples:

Rk = log

(
1+ Pk�hk�2

N0 + �
∑K

j=k+1 Pj��hk�2
)
� k= 1� � � K� (6.29)

for all possible splits P =∑
k Pk of the total power at the base-station.

The optimal points are achieved by superposition coding at the transmitter
and SIC at each of the receivers.

The cancellation order at every receiver is always to decode the weaker
users before decoding its own data.

Discussion 6.1 SIC: implementation issues

We have seen that successive interference cancellation plays an important
role in achieving the capacities of both the uplink and the downlink
channels. In contrast to the receivers for the multiple access systems in
Chapter 4, SIC is a multiuser receiver. Here we discuss several potential
practical issues in using SIC in a wireless system.
• Complexity scaling with the number of users In the uplink, the base-

station has to decode the signals of every user in the cell, whether it uses
the conventional single-user receiver or the SIC. In the downlink, on the
other hand, the use of SIC at the mobile means that it now has to decode
information intended for some of the other users, something it would not
be doing in a conventional system. Then the complexity at each mobile
scales with the number of users in the cell; this is not very acceptable.
However, we have seen that superposition coding in conjunction with
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SIC has the largest performance gain when the users have very disparate
channels from the base-station. Due to the spatial geometry, typically
there are only a few users close to the base-station while most of
the users are near the edge of the cell. This suggests a practical way
of limiting complexity: break the users in the cell into groups, with
each group containing a small number of users with disparate channels.
Within each group, superposition coding/SIC is performed, and across
the groups, transmissions are kept orthogonal. This should capture a
significant part of the performance gain.

• Error propagation Capacity analysis assumes error-free decoding but
of course, with actual codes, errors are made. Once an error occurs for
a user, all the users later in the SIC decoding order will very likely be
decoded incorrectly. Exercise 6.12 shows that if p�i�e is the probability
of decoding the ith user incorrectly, assuming that all the previous users
are decoded correctly, then the actual error probability for the kth user
under SIC is at most

k∑
i=1

p�i�e � (6.30)

So, if all the users are coded with the same target error probability
assuming no propagation, the effect of error propagation degrades the
error probability by a factor of at most the number of users K. IfK is rea-
sonably small, this effect can easily be compensated by using a slightly
stronger code (by, say, increasing the block length by a small amount).

• Imperfect channel estimates To remove the effect of a user from
the aggregate received signal, its contribution must be reconstructed
from the decoded information. In a wireless multipath channel, this
contribution depends also on the impulse response of the channel.
Imperfect estimate of the channel will lead to residual cancellation
errors. One concern is that, if the received powers of the users are
very disparate (as in the example in Figure 6.3 where they differ by
20 dB), then the residual error from cancelling the stronger user can
still swamp the weaker user’s signal. On the other hand, it is also easier
to get an accurate channel estimate when the user is strong. It turns out
that these two effects compensate each other and the effect of residual
errors does not grow with the power disparity (Exercise 6.13).

• Analog-to-digital quantization error When the received powers of
the users are very disparate, the analog-to-digital (A/D) converter needs
to have a very large dynamic range, and at the same time, enough
resolution to quantize accurately the contribution from the weak signal.
For example, if the power disparity is 20 dB, even 1-bit accuracy for
the weak signal would require an 8-bit A/D converter. This may well
pose an implementation constraint on how much gain SIC can offer.
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6.3 Uplink fading channel

Let us now include fading. Consider the complex baseband representation of
the uplink flat fading channel with K users:

y�m�=
K∑
k=1

hk�m�xk�m�+w�m�� (6.31)

where 	hk�m�
m is the fading process of user k. We assume that the fading
processes of different users are independent of each other and���hk�m��2�= 1.
Here, we focus on the symmetric case when each user is subject to the
same average power constraint, P, and the fading processes are identically
distributed. In this situation, the sum and the symmetric capacities are the
key performance measures. We will see later in Section 6.7 how the insights
obtained from this idealistic symmetric case can be applied to more realistic
asymmetric situations. To understand the effect of the channel fluctuations, we
make the simplifying assumption that the base-station (receiver) can perfectly
track the fading processes of all the users.

6.3.1 Slow fading channel

Let us start with the slow fading situation where the time-scale of commu-
nication is short relative to the coherence time interval for all the users, i.e.,
hk�m� = hk for all m. Suppose the users are transmitting at the same rate R
bits/s/Hz. Conditioned on each realization of the channels h1� � � � � hK , we
have the standard uplink AWGN channel with received SNR of user k equal
to �hk�2P/N0. If the symmetric capacity of this uplink AWGN channel is less
than R, then the base-station can never recover all of the users’ information
accurately; this results in outage. From the expression for the capacity region
of the general K-user uplink AWGN channel (cf. (6.10)), the probability of
the outage event can be written as

pul
out �= �

{
log

(
1+ SNR

∑
k∈�

�hk�2
)
< ���R� for some � ⊂ 	1� � � � �K


}
�

(6.32)

Here ��� denotes the cardinality of the set � and SNR �= P/N0. The corre-
sponding �-outage symmetric capacity, Csym

� , is then the largest rate R such
that the outage probability in (6.32) is smaller than or equal to �.

In Section 5.4.1, we have analyzed the behavior of the outage capacity,
C��SNR�, of the point-to-point slow fading channel. Since this corresponds to
the performance of just a single user, it is equal to Csym

� with K = 1. With
more than one user, Csym

� is only smaller: now each user has to deal not only
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with a random channel realization but also inter-user interference. Orthogonal
multiple access is designed to completely eliminate inter-user interference at
the cost of lesser (by a factor of 1/K) degrees of freedom to each user (but
the SNR is boosted by a factor of K). Since the users experience independent
fading, an individual outage probability of � for each user translates into

1− �1− ��K ≈ K�

outage probability when we require each user’s information to be success-
fully decoded. We conclude that the largest symmetric �-outage rate with
orthogonal multiple access is equal to

C�/K�KSNR�
K

� (6.33)

How much improved are the outage performances of more sophisticated
multiple access schemes, as compared to orthogonal multiple access?

At low SNRs, the outage performance for any K is just as poor as the
point-to-point case (with the outage probability, pout, in (5.54)): indeed, at
low SNRs we can approximate (6.32) as

pul
out ≈ �

{ �hk�2P
N0

< R loge 2� for some k ∈ 	1� � � � �K

}

≈ Kpout� (6.34)

So we can write

Csym
� ≈ C�/K�SNR�

≈ F−1
(
1− �

K

)
Cawgn� (6.35)

Here we used the approximation for C� at low SNR in (5.61). Since Cawgn is
linear in SNR at low SNR,

Csym
� ≈ C�/K�KSNR�

K
� (6.36)

the same performance as orthogonal multiple access (cf. (6.33)).
The analysis at high SNR is more involved, so to get a feel for the role of

inter-user interference on the outage performance of optimal multiple access
schemes, we plot Csym

� for K= 2 users as compared to C�, for Rayleigh fading,
in Figure 6.10. As SNR increases, the ratio of Csym

� to C� increases; thus the
effect of the inter-user interference is becoming smaller. However, as SNR
becomes very large, the ratio starts to decrease; the inter-user interference
begins to dominate. In fact, at very large SNRs the ratio drops back to 1/K
(Exercise 6.14). We will obtain a deeper understanding of this behavior when
we study outage in the uplink with multiple antennas in Section 10.1.4.
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Figure 6.10 Plot of the
symmetric 
-outage capacity of
the two-user Rayleigh slow
fading uplink as compared to
C
 , the corresponding
performance of a
point-to-point Rayleigh slow
fading channel.
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6.3.2 Fast fading channel

Let us now turn to the fast fading scenario, where each 	hk�m�
m is modelled
as a time-varying ergodic process. With the ability to code over multiple
coherence time intervals, we can have a meaningful definition of the capacity
region of the uplink fading channel. With only receiver CSI, the transmitters
cannot track the channel and there is no dynamic power allocation. Analogous
to the discussion in the point-to-point case (cf. Section 5.4.5 and, in particular,
(5.89)), the sum capacity of the uplink fast fading channel can be expressed
as:

Csum = �

[
log

(
1+

∑K
k=1 �hk�2P
N0

)]
� (6.37)

Here hk is the random variable denoting the fading of user k at a particular
time and the time averages are taken to converge to the same limit for all
realizations of the fading process (i.e., the fading processes are ergodic).
A formal derivation of the capacity region of the fast fading uplink (with
potentially multiple antenna elements) is carried out in Appendix B.9.3.

How does this compare to the sum capacity of the uplink channel without
fading (cf. (6.12))? Jensen’s inequality implies that

�

[
log

(
1+

∑K
k=1 �hk�2P
N0

)]
≤ log

(
1+ ��

∑K
k=1 �hk�2�P
N0

)
= log

(
1+ KP

N0

)
�
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Hence, without channel state information at the transmitter, fading always
hurts, just as in the point-to-point case. However, when the number of users
becomes large, 1/K ·∑K

k=1 �hk�2 → 1 with probability 1, and the penalty due
to fading vanishes.
To understand why the effect of fading goes away as the number of users

grows, let us focus on a specific decoding strategy to achieve the sum capacity.
With each user spreading their information on the entire bandwidth simul-
taneously, the successive interference cancellation (SIC) receiver, which is
optimal for the uplink AWGN channel, is also optimal for the uplink fading
channel. Consider the kth stage of the cancellation procedure, where user k is
being decoded and users k+1� � � � �K are not canceled. The effective channel
that user k sees is

y�m�= hk�m�xk�m�+
K∑

i=k+1

hi�m�xi�m�+w�m�� (6.38)

The rate that user k gets is

Rk = �

[
log

(
1+ �hk�2P∑K

i=k+1 �hi�2P+N0

)]
� (6.39)

Since there are many users sharing the spectrum, the SINR for user k is low.
Thus, the capacity penalty due to the fading of user k is small (cf. (5.92)).
Moreover, there is also averaging among the interferers. Thus, the effect of
the fading of the interferers also vanishes. More precisely,

Rk ≈ �

[
�hk�2P∑K

i=k+1 �hi�2P+N0

]
log2 e

≈ �

[ �hk�2P
�K−k�P+N0

]
log2 e

= P

�K−k�P+N0

log2 e�

which is the rate that user k would have got in the (unfaded) AWGN channel.
The first approximation comes from the linearity of log�1+ SNR� for small
SNR, and the second approximation comes from the law of large numbers.

In the AWGN case, the sum capacity can be achieved by an orthogonal
multiple access scheme which gives a fraction, 1/K, of the total degrees of
freedom to each user. How about the fading case? The sum rate achieved by
this orthogonal scheme is

K∑
k=1

1
K
�

[
log

(
1+ K�hk�2P

N0

)]
= �

[
log

(
1+ K�hk�2P

N0

)]
� (6.40)
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which is strictly less than the sum capacity of the uplink fading channel (6.37)
for K ≥ 2. In particular, the penalty due to fading persists even when there is
a large number of users.

6.3.3 Full channel side information

We now come to a case of central interest in this chapter, the fast fading
channel with tracking of the channels of all the users at the receiver and all
the transmitters.5 As opposed to the case with only receiver CSI, we can now
dynamically allocate powers to the users as a function of the channel states.
Analogous to the point-to-point case, we can without loss of generality focus
on the simple block fading model

y�m�=
K∑
k=1

hk�m�xk�m�+w�m�� (6.41)

where hk�m� = hk�� remains constant over the �th coherence period of
Tc�Tc � 1� symbols and is i.i.d. across different coherence periods. The
channel over L such coherence periods can be modeled as a parallel uplink
channel with L sub-channels which fade independently. Each sub-channel is
an uplink AWGN channel. For a given realization of the channel gains hk��,
k= 1� � � � �K� �= 1� � � � �L, the sum capacity (in bits/symbol) of this parallel
channel is, as for the point-to-point case (cf. (5.95)),

max
Pk���k=1� � � � �K��=1� � � � �L

1
L

L∑
�=1

log

(
1+

∑K
k=1 Pk���hk���2

N0

)
� (6.42)

subject to the powers being non-negative and the average power constraint
on each user:

1
L

L∑
�=1

Pk�� = P� k= 1� � � � �K� (6.43)

The solution to this optimization problem as L→ � yields the appropriate
power allocation policy to be followed by the users.

As discussed in the point-to-point communication context with full CSI
(cf. Section 5.4.6), we can use a variable rate coding scheme: in the �th
sub-channel, the transmit powers dictated by the solution to the optimization
problem above (6.42) are used by the users and a code designed for this
fading state is used. For this code, each codeword sees a time-invariant uplink

5 As we will see, the transmitters will not need to explicitly keep track of the channel
variations of all the users. Only an appropriate function of the channels of all the users
needs to be tracked, which the receiver can compute and feed back to the users.
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AWGN channel. Thus, we can use the encoding and decoding procedures for
the code designed for the uplink AWGN channel. In particular, to achieve the
maximum sum rate, we can use orthogonal multiple access: this means that the
codes designed for the point-to-point AWGN channel can be used. Contrast
this with the case when only the receiver has CSI, where we have shown
that orthogonal multiple access is strictly suboptimal for fading channels.
Note that this argument on the optimality of orthogonal multiple access holds
regardless of whether the users have symmetric fading statistics.
In the case of the symmetric uplink considered here, the optimal power

allocation takes on a particularly simple structure. To derive it, let us consider
the optimization problem (6.42), but with the individual power constraints in
(6.43) relaxed and replaced by a total power constraint:

1
L

L∑
�=1

K∑
k=1

Pk�� = KP� (6.44)

The sum rate in the �th sub-channel is

log

(
1+

∑K
k=1 Pk���hk���2

N0

)
� (6.45)

and for a given total power
∑K

k=1 Pk�� allocated to the �th sub-channel, this
quantity is maximized by giving all that power to the user with the strongest
channel gain. Thus, the solution of the optimization problem (6.42) subject
to the constraint (6.44) is that at each time, allow only the user with the best
channel to transmit. Since there is just one user transmitting at any time,
we have reduced to a point-to-point problem and can directly infer from our
discussion in Section 5.4.6 that the best user allocates its power according to
the waterfilling policy. More precisely, the optimal power allocation policy is

Pk�� =
⎧⎨⎩
(
1
�
− N0

maxi �hi���2
)+

if �hk��� =maxi �hi����
0 else�

(6.46)

where � is chosen to meet the sum power constraint (6.44). Taking the number
of coherence periods L→ � and appealing to the ergodicity of the fading
process, we get the optimal capacity-achieving power allocation strategy,
which allocates powers to the users as a function of the joint channel state
h �= �h1� � � � � hK�:

P∗
k �h�=

⎧⎨⎩
(
1
�
− N0

maxi �hi�2
)+

if �hk�2 =maxi �hi�2�
0 else�

(6.47)
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with � chosen to satisfy the power constraint

K∑
k=1

��P∗
k �h��= KP� (6.48)

(Rigorously speaking, this formula is valid only when there is exactly one
user with the strongest channel. See Exercise 6.16 for the generalization to
the case when multiple users can have the same fading state.) The resulting
sum capacity is

Csum = �

[
log

(
1+ Pk∗�h��hk∗ �2

N0

)]
� (6.49)

where k∗�h� is the index of the user with the strongest channel at joint channel
state h.

We have derived this result assuming a total power constraint on all the
users, but by symmetry, the power consumption of all the users is the same
under the optimal solution (recall that we are assuming independent and
identical fading processes across the users here). Therefore the individual
power constraints in (6.43) are automatically satisfied and we have solved the
original problem as well.

This result is the multiuser generalization of the idea of opportunistic
communication developed in Chapter 5: resource is allocated at the times and
to the user whose channel is good.

When one attempts to generalize the optimal power allocation solution from
the point-to-point setting to the multiuser setting, it may be tempting to think
of “users” as a new dimension, in addition to the time dimension, over which
dynamic power allocation can be performed. This may lead us to guess that the
optimal solution is waterfilling over the joint time/user space. This, as we have
already seen, is not the correct solution. The flaw in this reasoning is that having
multiple users does not provide additional degrees of freedom in the system: the
users are just sharing the time/frequency degrees of freedom already existing in
thechannel.Thus, theoptimalpowerallocationproblemshould reallybe thought
of as how to partition the total resource (power) across the time/frequency
degrees of freedom and how to share the resource across the users in each of
those degrees of freedom. The above solution says that from the point of view of
maximizing the sumcapacity, the optimal sharing is just to allocate all the power
to the user with the strongest channel on that degree of freedom.

We have focused on the sum capacity in the symmetric case where users
have identical channel statistics and power constraints. It turns out that in the
asymmetric case, the optimal strategy to achieve sum capacity is still to have
one user transmitting at a time, but the criterion of choosing which user is
different. This problem is analyzed in Exercise 6.15. However, in the asym-
metric case, maximizing the sum rate may not be the appropriate objective,
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since the user with the statistically better channel may get a much higher rate
at the expense of the other users. In this case, one may be interested in oper-
ating at points in the multiuser capacity region of the uplink fading channel
other than the point maximizing the sum rate. This problem is analyzed in
Exercise 6.18. It turns out that, as in the time-invariant uplink, orthogonal
multiple access is not optimal. Instead, users transmit simultaneously and are
jointly decoded (using SIC, for example), even though the rates and powers
are still dynamically allocated as a function of the channel states.

Summary 6.2 Uplink fading channel

Slow Rayleigh fading At low SNR, the symmetric outage capacity is
equal to the outage capacity of the point-to-point channel, but scaled down
by the number of users. At high SNR, the symmetric outage capacity for
moderate number of users is approximately equal to the outage capacity of
the point-to-point channel. Orthogonal multiple access is close to optimal
at low SNR.

Fast fading, receiver CSIWith a large number of users, each user gets the
same performance as in an uplink AWGN channel with the same average
SNR. Orthogonal multiple access is strictly suboptimal.

Fast fading, full CSI Orthogonal multiple access can still achieve the sum
capacity. In a symmetric uplink, the policy of allowing only the best user
to transmit at each time achieves the sum capacity.

6.4 Downlink fading channel

We now turn to the downlink fading channel with K users:

yk�m�= hk�m�x�m�+wk�m�� k= 1� � � � �K� (6.50)

where 	hk�m�
m is the channel fading process of user k. We retain the average
power constraint of P on the transmit signal and wk�m� ∼ �� �0�N0� to be
i.i.d. in time m (for each user k= 1� � � � �K).

As in the uplink, we consider the symmetric case: 	hk�m�
m are identically
distributed processes for k = 1� � � K. Further, let us also make the same
assumption we did in the uplink analysis: the processes 	hk�m�
m are ergodic
(i.e., the time average of every realization equals the statistical average).

6.4.1 Channel side information at receiver only

Let us first consider the case when the receivers can track the channel but the
transmitter does not have access to the channel realizations (but has access
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to a statistical characterization of the channel processes of the users). To
get a feel for good strategies to communicate on this fading channel and
to understand the capacity region, we can argue as in the downlink AWGN
channel. We have the single-user bounds, in terms of the point-to-point fading
channel capacity in (5.89):

Rk < �

[
log

(
1+ �h�2P

N0

)]
� k= 1� � � � �K� (6.51)

where h is a random variable distributed as the stationary distribution of
the ergodic channel processes. In the symmetric downlink AWGN channel,
we argued that the users have the same channel quality and hence could
decode each other’s data. Here, the fading statistics are symmetric and by the
assumption of ergodicity, we can extend the argument of the AWGN case to
say that, if user k can decode its data reliably, then all the other users can
also successfully decode user k’s data. Analogous to (6.18) in the AWGN
downlink analysis, we obtain

K∑
k=1

Rk < �

[
log

(
1+ �h�2P

N0

)]
� (6.52)

An alternative way to see that the right hand side in (6.52) is the best sum
rate one can achieve is outlined in Exercise 6.27. The bound (6.52) is clearly
achievable by transmitting to one user only or by time-sharing between any
number of users. Thus in the symmetric fading channel, we obtain the same
conclusion as in the symmetric AWGN downlink: the rate pairs in the capacity
region can be achieved by both orthogonalization schemes and superposition
coding.

How about the downlink fading channel with asymmetric fading statistics
of the users? While we can use the orthogonalization scheme in this asym-
metric model as well, the applicability of superposition decoding is not so
clear. Superposition coding was successfully applied in the downlink AWGN
channel because there is an ordering of the channel strength of the users from
weak to strong. In the asymmetric fading case, users in general have different
fading distributions and there is no longer a complete ordering of the users.
In this case, we say that the downlink channel is non-degraded and little is
known about good strategies for communication. Another interesting situation
when the downlink channel is non-degraded arises when the transmitter has
an array of multiple antennas; this is studied in Chapter 10.

6.4.2 Full channel side information

We saw in the uplink that the communication scenario becomes more inter-
esting when the transmitters can track the channel as well. In this case, the
transmitters can vary their powers as a function of the channel. Let us now
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turn to the analogous situation in the downlink where the single transmitter
tracks all the channels of the users it is communicating to (the users continue
to track their individual channels). As in the uplink, we can allocate powers
to the users as a function of the channel fade level. To see the effect, let us
continue focusing on sum capacity. We have seen that without fading, the
sum capacity is achieved by transmitting only to the best user. Now as the
channels vary, we can pick the best user at each time and further allocate it
an appropriate power, subject to a constraint on the average power. Under
this strategy, the downlink channel reduces to a point-to-point channel with
the channel gain distributed as

max
k=1 � � � K

�hk�2�

The optimal power allocation is the, by now familiar, waterfilling solution:

P∗�h�=
(
1
�
− N0

maxk=1 � � � K �hk�2
)+

� (6.53)

where h= �h1� � � � � hK�
t is the joint fading state and �> 0 is chosen such that

the average power constraint is met. The optimal strategy is exactly the same
as in the sum capacity of the uplink. The sum capacity of the downlink is:

�

[
log

(
1+ P∗�h��maxk=1 � � � K �h2

k��
N0

)]
� (6.54)

6.5 Frequency-selective fading channels

The extension of the flat fading analysis in the uplink and the downlink to
underspread frequency-selective fading channels is conceptually straightfor-
ward. As we saw in Section 5.4.7 in the point-to-point setting, we can think of
the underspread channel as a set of parallel sub-carriers over each coherence
time interval and varying independently from one coherence time interval
to the other. We can see this constructively by imposing a cyclic prefix to
all the transmit signals; the cyclic prefix should be of length that is larger
than the largest multipath delay spread that we are likely to encounter among
the different users. Since this overhead is fixed, the loss is amortized when
communicating over a long block length.
We can apply exactly the same OFDM transformation to the multiuser

channels. Thus on the nth sub-carrier, we can write the uplink channel as

ỹn�i�=
K∑
k=1

h̃�k�n �i� d̃�k�n �i�+ w̃n�i�� (6.55)
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where d̃�k��i�, h̃�k��i� and ỹ�i�, respectively, represent the DFTs of the trans-
mitted sequence of user k, of the channel and of the received sequence at
OFDM symbol time i.

The flat fading uplink channel can be viewed as a set of parallel multiuser
sub-channels, one for each coherence time interval. With full CSI, the optimal
strategy to maximize the sum rate in the symmetric case is to allow only
the user with the best channel to transmit at each coherence time interval.
The frequency-selective fading uplink channel can also be viewed as a set of
parallel multiuser sub-channels, one for each sub-carrier and each coherence
time interval. Thus, the optimal strategy is to allow the best user to transmit on
each of these sub-channels. The power allocated to the best user is waterfilling
over time and frequency. As opposed to the flat fading case, multiple users
can now transmit at the same time, but over different sub-carriers. Exactly
the same comments apply to the downlink.

6.6 Multiuser diversity

6.6.1 Multiuser diversity gain

Let us consider the sum capacity of the uplink and downlink flat fading
channels (see (6.49) and (6.54), respectively). Each can be interpreted as the
waterfilling capacity of a point-to-point link with a power constraint equal
to the total transmit power (in the uplink this is equal to KP and in the
downlink it is equal to P), and a fading process whose magnitude varies as
	maxk �hk�m��
. Compared to a system with a single transmitting user, the
multiuser gain comes from two effects:

1. the increase in total transmit power in the case of the uplink;
2. the effective channel gain at time m that is improved from �h1�m��2 to

max1≤k≤K �hk�m��2.

The first effect already appeared in the uplink AWGN channel and also in
the fading channel with channel side information only at the receiver. The
second effect is entirely due to the ability to dynamically schedule resources
among the users as a function of the channel state.

The sum capacity of the uplink Rayleigh fading channel with full CSI is
plotted in Figure 6.11 for different numbers of users. The performance curves
are plotted as a function of the total SNR �= KP/N0 so as to focus on the
second effect. The sum capacity of the channel with only CSI at the receiver is
also plotted for different numbers of users. The capacity of the point-to-point
AWGN channel with received power KP (which is also the sum capacity of
a K-user uplink AWGN channel) is shown as a baseline. Figure 6.12 focuses
on the low SNR regime.
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Figure 6.11 Sum capacity of
the uplink Rayleigh fading
channel plotted as a function
of SNR= KP/N0.

2

4

6

5–5–10–15–20 10 15 20

8

AWGN
CSIR
Full CSI

Csum(bits /s / Hz)

SNR (dB)

K = 16

K = 2

K = 4

K = 1

AWGN

Figure 6.12 Sum capacity of
the uplink Rayleigh fading
channel plotted as a function
of SNR= KP/N0 in the low
SNR regime. Everything is
plotted as a fraction of the
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Several observations can be made from the plots:

• The sum capacity without transmitter CSI increases with the number of the
users, but not significantly. This is due to the multiuser averaging effect
explained in the last section. This sum capacity is always bounded by the
capacity of the AWGN channel.

• The sum capacity with full CSI increases significantly with the number of
users. In fact, with even two users, this sum capacity already exceeds that
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of the AWGN channel. At 0 dB, the capacity with K = 16 users is about a
factor of 2.5 of the capacity with K = 1. The corresponding power gain is
about 7 dB. Compared to the AWGN channel, the capacity gain for K = 16
is about a factor of 2.2 and an SNR gain of 5.5 dB.

• For K= 1, the capacity benefit of transmitter CSI only becomes apparent at
quite low SNR levels; at high SNR there is no gain. For K> 1 the benefit
is apparent throughout the entire SNR range, although the relative gain is
still more significant at low SNR. This is because the gain is still primarily
a power gain.

The increase in the full CSI sum capacity comes from a multiuser diversity
effect: when there are many users that fade independently, at any one time
there is a high probability that one of the users will have a strong channel.
By allowing only that user to transmit, the shared channel resource is used in
the most efficient manner and the total system throughput is maximized. The
larger the number of users, the stronger tends to be the strongest channel, and
the more the multiuser diversity gain.

The amount of multiuser diversity gain depends crucially on the tail of
the fading distribution �hk�2: the heavier the tail, the more likely there is a
user with a very strong channel, and the larger the multiuser diversity gain.
This is shown in Figure 6.13, where the sum capacity is plotted as a function
of the number of users for both Rayleigh and Rician fading with �-factor
equal to 5, with the total SNR, equal to KP/N0, fixed at 0 dB. Recall from

Figure 6.13 Multiuser diversity
gain for Rayleigh and Rician
fading channels ��= 5�;
KP/N0 = 0 dB.
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Section 2.4 that, Rician fading models the situation when there is a strong
specular line-of-sight path plus many small reflected paths. The parameter �
is defined as the ratio of the energy in the specular line-of-sight path to the
energy in the diffused components. Because of the line-of-sight component,
the Rician fading distribution is less “random” and has a lighter tail than the
Rayleigh distribution with the same average channel gain. As a consequence,
it can be seen that the multiuser diversity gain is significantly smaller in the
Rician case compared to the Rayleigh case (Exercise 6.21).

6.6.2 Multiuser versus classical diversity

We have called the above explained phenomenon multiuser diversity. Like
the diversity techniques discussed in Chapter 3, multiuser diversity also arises
from the existence of independently faded signal paths, in this case from the
multiple users in the network. However, there are several important differ-
ences. First, the main objective of the diversity techniques in Chapter 3 is to
improve the reliability of communication in slow fading channels; in contrast,
the role of multiuser diversity is to increase the total throughput over fast
fading channels. Under the sum-capacity-achieving strategy, a user has no
guarantee of a high rate in any particular slow fading state; only by averaging
over the variations of the channel is a high long-term average throughput
attained. Second, while the diversity techniques are designed to counteract the
adverse effect of fading, multiuser diversity improves system performance by
exploiting channel fading: channel fluctuations due to fading ensure that with
high probability there is a user with a channel strength much larger than the
mean level; by allocating all the system resources to that user, the benefit of
this strong channel is fully capitalized. Third, while the diversity techniques
in Chapter 3 pertain to a point-to-point link, the benefit of multiuser diver-
sity is system-wide, across the users in the network. This aspect of multiuser
diversity has ramifications on the implementation of multiuser diversity in a
cellular system. We will discuss this next.

6.7 Multiuser diversity: system aspects

The cellular system requirements to extract the multiuser diversity bene-
fits are:

• the base-station has access to channel quality measurements: in the down-
link, we need each receiver to track its own channel SNR, through say a
common downlink pilot, and feed back the instantaneous channel quality
to the base-station (assuming an FDD system); and in the uplink, we need
transmissions from the users so that their channel qualities can be tracked;
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• the ability of the base-station to schedule transmissions among the users
as well as to adapt the data rate as a function of the instantaneous channel
quality.

These features are already present in the designs of many third-generation
systems. Nevertheless, in practice there are several considerations to take
into account before realizing such gains. In this section, we study three main
hurdles towards a system implementation of the multiuser diversity idea and
some prominent ways of addressing these issues.

1. Fairness and delay To implement the idea of multiuser diversity in a real
system, one is immediately confronted with two issues: fairness and delay.
In the ideal situation when users’ fading statistics are the same, the strategy
of communicating with the user having the best channel maximizes not
only the total throughput of the system but also that of individual users.
In reality, the statistics are not symmetric; there are users who are closer
to the base-station with a better average SNR; there are users who are
stationary and some that are moving; there are users who are in a rich
scattering environment and some with no scatterers around them. More-
over, the strategy is only concerned with maximizing long-term average
throughputs; in practice there are latency requirements, in which case the
average throughput over the delay time-scale is the performance metric of
interest. The challenge is to address these issues while at the same time
exploiting the multiuser diversity gain inherent in a system with users hav-
ing independent, fluctuating channel conditions. As a case study, we will
look at one particular scheduler that harnesses multiuser diversity while
addressing the real-world fairness and delay issues.

2. Channel measurement and feedback One of the key system requirements
to harness multiuser diversity is to have scheduling decisions by the base-
station be made as a function of the channel states of the users. In the
uplink, the base-station has access to the user transmissions (over trickle
channels which are used to convey control information) and has an estimate
of the user channels. In the downlink, the users have access to their channel
states but need to feedback these values to the base-station. Both the error
in channel state measurement and the delay in feeding it back constitute a
significant bottleneck in extracting the multiuser diversity gains.

3. Slow and limited fluctuations We have observed that the multiuser diver-
sity gains depend on the distribution of channel fluctuations. In particular,
larger and faster variations in a channel are preferred over slow ones.
However, there may be a line-of-sight path and little scattering in the
environment, and hence the dynamic range of channel fluctuations may
be small. Further, the channel may fade very slowly compared to the
delay constraints of the application so that transmissions cannot wait until
the channel reaches its peak. Effectively, the dynamic range of channel
fluctuations is small within the time-scale of interest. Both are important
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sources of hindrance to implementing multiuser diversity in a real system.
We will see a simple and practical scheme using an antenna array at the
base-station that creates fast and large channel fluctuations even when the
channel is originally slow fading with a small range of fluctuation.

6.7.1 Fair scheduling and multiuser diversity

As a case study, we describe a simple scheduling algorithm, called the pro-
portional fair scheduler, designed to meet the challenges of delay and fairness
constraints while harnessing multiuser diversity. This is the baseline scheduler
for the downlink of IS-856, the third-generation data standard, introduced in
Chapter 5. Recall that the downlink of IS-856 is TDMA-based, with users
scheduled on time slots of length 1.67ms based on the requested rates from the
users (Figure 5.25). We have already discussed the rate adaptation mechanism
in Chapter 5; here we will study the scheduling aspect.

Proportional fair scheduling: hitting the peaks
The scheduler decides which user to transmit information to at each time
slot, based on the requested rates the base-station has previously received
from the mobiles. The simplest scheduler transmits data to each user in a
round-robin fashion, regardless of the channel conditions of the users. The
scheduling algorithm used in IS-856 schedules in a channel-dependentmanner
to exploit multiuser diversity. It works as follows. It keeps track of the
average throughput Tk�m� of each user in an exponentially weighted window
of length tc. In time slot m, the base-station receives the “requested rates”
Rk�m�, k= 1� � � � �K, from all the users and the scheduling algorithm simply
transmits to the user k∗ with the largest

Rk�m�

Tk�m�

among all active users in the system. The average throughputs Tk�m� are
updated using an exponentially weighted low-pass filter:

Tk�m+1�=
{
�1−1/tc�Tk�m�+ �1/tc�Rk�m� k= k∗�

�1−1/tc�Tk�m� k 
= k∗�
(6.56)

One can get an intuitive feel of how this algorithm works by inspecting
Figures 6.14 and 6.15. We plot the sample paths of the requested data rates
of two users as a function of time slots (each time slot is 1.67ms in IS-856).
In Figure 6.14, the two users have identical fading statistics. If the scheduling
time-scale tc is much larger than the coherence time of the channels, then by
symmetry the throughput of each user Tk�m� converges to the same quantity.
The scheduling algorithm reduces to always picking the user with the highest
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Figure 6.14 For symmetric
channel statistics of users, the
scheduling algorithm reduces
to serving each user with the
largest requested rate.
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Figure 6.15 In general, with
asymmetric user channel
statistics, the scheduling
algorithm serves each user
when it is near its peak within
the latency time-scale tc .
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requested rate. Thus, each user is scheduled when its channel is good and at
the same time the scheduling algorithm is perfectly fair in the long-term.
In Figure 6.15, due perhaps to different distances from the base-station, one

user’s channel is much stronger than that of the other user on average, even
though both channels fluctuate due to multipath fading. Always picking the
user with the highest requested rate means giving all the system resources to
the statistically stronger user, and would be highly unfair. In contrast, under
the scheduling algorithm described above, users compete for resources not
directly based on their requested rates but based on the rates normalized by
their respective average throughputs. The user with the statistically stronger
channel will have a higher average throughput.
Thus, the algorithm schedules a user when its instantaneous channel quality

is high relative to its own average channel condition over the time-scale tc.
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In short, data are transmitted to a user when its channel is near its own peaks.
Multiuser diversity benefit can still be extracted because channels of different
users fluctuate independently so that if there is a sufficient number of users
in the system, most likely there will be a user near its peak at any one time.
The parameter tc is tied to the latency time-scale of the application. Peaks

are defined with respect to this time-scale. If the latency time-scale is large,
then the throughput is averaged over a longer time-scale and the scheduler
can afford to wait longer before scheduling a user when its channel hits a
really high peak.
The main theoretical property of this algorithm is the following: With a

very large tc (approaching �), the algorithm maximizes

K∑
k=1

logTk� (6.57)

among all schedulers (see Exercise 6.28). Here, Tk is the long-term average
throughput of user k.

Multiuser diversity and superposition coding
Proportional fair scheduling is an approach to deal with fairness among asym-
metric users within the orthogonal multiple access constraint (TDMA in the
case of IS-856). But we understand from Section 6.2.2 that for the AWGN
channel, superposition coding in conjunction with SIC can yield significantly
better performance than orthogonal multiple access in such asymmetric envi-
ronments. One would expect similar gains in fading channels, and it is there-
fore natural to combine the benefits of superposition coding with multiuser
diversity scheduling.
One approach is to divide the users in a cell into, say, two classes depending

on whether they are near the base-station or near the cell edge, so that users
in each class have statistically comparable channel strengths. Users whose
current channel is instantaneously strongest in their own class are scheduled
for simultaneous transmission via superposition coding (Figure 6.16). The
user near the base-station can decode its own signal after stripping off the
signal destined for the far-away user. By transmitting to the strongest user
in each class, multiuser diversity benefits are captured. On the other hand,
the nearby user has a very strong channel and the full degrees of freedom
available (as opposed to only a fraction under orthogonal multiple access),
and thus only needs to be allocated a small fraction of the power to enjoy
very good rates. Allocating a small fraction of power to the nearby user
has a salutary effect: the presence of this user will minimally affect the
performance of the cell edge user. Hence, fairness can be maintained by a
suitable allocation of power. The efficiency of this approach over proportional
fair TDMA scheduling is quantified in Exercise 6.20. Exercise 6.19 shows
that this strategy is in fact optimal in achieving any point on the boundary of
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Figure 6.16 Superposition
coding in conjunction with
multiuser diversity scheduling.
The strongest user from each
cluster is scheduled and they
are simultaneously transmitted
to, via superposition coding.

the downlink fading channel capacity region (as opposed to the strategy of
transmitting to the user with the best channel overall, which is only optimal
for the sum rate and which is an unfair operating point in this asymmetric
scenario).

Multiuser diversity gain in practice
We can use the proportional fair algorithm to get some more insights into
the issues involved in realizing multiuser diversity benefits in practice. Con-
sider the plot in Figure 6.17, showing the total simulated throughput of the
1�25MHz IS-856 downlink under the proportional fair scheduling algorithm
in three environments:

• Fixed Users are fixed, but there are movements of objects around them
(2Hz Rician, � �=Edirect/Especular = 5). Here Edirect is the energy in the direct

Figure 6.17 Multiuser diversity
gain in fixed and mobile
environments.
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path that is not varying, while Especular refers to the energy in the specular
or time-varying component that is assumed to be Rayleigh distributed.
The Doppler spectrum of this component follows Clarke’s model with a
Doppler spread of 2Hz.

• Low mobility Users move at walking speeds (3 km/hr, Rayleigh).
• High mobility Users move at 30 km/hr, Rayleigh.

The average channel gain ���h�2� is kept the same in all the three scenarios
for fairness of comparison. The total throughput increases with the number
of users in both the fixed and low mobility environments, but the increase
is more dramatic in the low mobility case. While the channel varies in both
cases, the dynamic range and the rate of the variations is larger in the mobile
environment than in the fixed one (Figure 6.18). This means that over the
latency time-scale (tc = 1�67 s in these examples) the peaks of the channel
fluctuations are likely to be higher in the mobile environment, and the peaks
are what determines the performance of the scheduling algorithm. Thus, the
inherent multiuser diversity is more limited in the fixed environment.

Should one then expect an even higher throughput gain in the high mobility
environment? In fact quite the opposite is true. The total throughput hardly
increases with the number of users! It turns out that at this speed the receiver
has trouble tracking and predicting the channel variations, so that the predicted
channel is a low-pass smoothed version of the actual fading process. Thus,
even though the actual channel fluctuates, opportunistic communication is
impossible without knowing when the channel is actually good.

In the next section, we will discuss how the tracking of the channel can be
improved in high mobility environments. In Section 6.7.3, we will discuss a
scheme that boosts the inherent multiuser diversity in fixed environments.

6.7.2 Channel prediction and feedback

The prediction error is due to two effects: the error in measuring the channel
from the pilot and the delay in feeding back the information to the base-station.

Figure 6.18 The channel
varies much faster and has
larger dynamic range in the
mobile environment.
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In the downlink, the pilot is shared between many users and is strong; so, the
measurement error is quite small and the prediction error is mainly due to the
feedback delay. In IS-856, this delay is about two time slots, i.e., 3�33ms. At
a vehicular speed of 30km/h and carrier frequency of 1�9GHz, the coherence
time is approximately 2�5ms; the channel coherence time is comparable to
the delay and this makes prediction difficult.

One remedy to reduce the feedback delay is to shrink the size of the
scheduling time slot. However, this increases the requested rate feedback
frequency in the uplink and thus increases the system overhead. There are
ways to reduce this feedback though. In the current system, every user feeds
back the requested rates, but in fact only users whose channels are near
their peaks have any chance of getting scheduled. Thus, an alternative is for
each user to feed back the requested rate only when its current requested
rate to average throughput ratio, Rk�m�/Tk�m�, exceeds a threshold  . This
threshold,  , can be chosen to trade off the average aggregate amount of
feedback the users send with the probability that none of the users sends any
feedback in a given time slot (thus wasting the slot) (Exercise 6.22).
In IS-856, multiuser diversity scheduling is implemented in the downlink,

but the same concept can be applied to the uplink. However, the issues of
prediction error and feedback are different. In the uplink, the base-station
would be measuring the channels of the users, and so a separate pilot would
be needed for each user. The downlink has a single pilot and this amortization
among the users is used to have a strong pilot. However, in the uplink,
the fraction of power devoted to the pilot is typically small. Thus, it is expected
that the measurement error will play a larger role in the uplink. Moreover,
the pilot will have to be sent continuously even if the user is not currently
scheduled, thus causing some interference to other users. On the other hand,
the base-station only needs to broadcast which user is scheduled at that time
slot, so the amount of feedback is much smaller than in the downlink (unless
the selective feedback scheme is implemented).
The above discussion pertains to an FDD system. You are asked to discuss

the analogous issues for a TDD system in Exercise 6.23.

6.7.3 Opportunistic beamforming using dumb antennas

The amount of multiuser diversity depends on the rate and dynamic range
of channel fluctuations. In environments where the channel fluctuations are
small, a natural idea comes to mind: why not amplify the multiuser diversity
gain by inducing faster and larger fluctuations? Focusing on the downlink,
we describe a technique that does this using multiple transmit antennas at the
base-station as illustrated in Figure 6.19.
Consider a system with nt transmit antennas at the base-station. Let hlk�m�

be the complex channel gain from antenna l to user k in time m. In time m,
the same symbol x�m� is transmitted from all of the antennas except that it is
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Figure 6.19 Same signal is
transmitted over the two
antennas with time-varying
phase and powers.

User kx(t)

h1k(t)

h2k(t)

√α (t)

√1–α(t)e jθ(t)

multiplied by a complex number
√
�l�m� e

j�l�m� at antenna l, for l= 1� � � � � nt ,
such that

∑nt
l=1�l�m� = 1, preserving the total transmit power. The received

signal at user k (see the basic downlink fading channel model in (6.50) for
comparison) is given by

yk�m�=
(

nt∑
l=1

√
�l�m� e

j�l�m�hlk�m�

)
x�m�+wk�m�� (6.58)

In vector form, the scheme transmits q�m�x�m� at time m, where

q�m� �=

⎡⎢⎢⎣
√
�1�m� e

j�1�m�

���√
�nt

�m� ej�nt �m�

⎤⎥⎥⎦ (6.59)

is a unit vector and

yk�m�= �hk�m�
∗q�m��x�m�+wk�m� (6.60)

where hk�m�
∗ �= �h1k�m�� � � � � hnt�k�m�� is the channel vector from the trans-

mit antenna array to user k.
The overall channel gain seen by user k is now

hk�m�
∗q�m�=

nt∑
l=1

√
�l�m� e

j�l�m�hlk�m�� (6.61)

The �l�m� denote the fractions of power allocated to each of the transmit
antennas, and the �l�m� denote the phase shifts applied at each antenna to the
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Figure 6.20 Pictorial
representation of the slow
fading channels of two users
before (left) and after (right)
applying opportunistic
beamforming.
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signal. By varying these quantities over time (�l�m� from 0 to 1 and �l�m�

from 0 to 2�) , the antennas transmit signals in a time-varying direction, and
fluctuations in the overall channel can be induced even if the physical channel
gains 	hlk�m�
 have very little fluctuation (Figure 6.20).
As in the single transmit antenna system, each user k feeds back the overall

received SNR of its own channel, �hk�m�∗q�m��2/N0, to the base-station (or
equivalently the data rate that the channel can currently support) and the
base-station schedules transmissions to users accordingly. There is no need
to measure the individual channel gains hlk�m� (phase or magnitude); in fact,
the existence of multiple transmit antennas is completely transparent to the
users. Thus, only a single pilot signal is needed for channel measurement
(as opposed to a pilot to measure each antenna gain). The pilot symbols are
repeated at each transmit antenna, exactly like the data symbols.
The rate of variation of 	�l�m�
 and 	�l�m�
 in time (or, equivalently, of

the transmit direction q�m�) is a design parameter of the system. We would
like it to be as fast as possible to provide full channel fluctuations within the
latency time-scale of interest. On the other hand, there is a practical limitation
to how fast this can be. The variation should be slow enough and should
happen at a time-scale that allows the channel to be reliably estimated by the
users and the SNR fed back. Further, the variation should be slow enough
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to ensure that the channel seen by a user does not change abruptly and thus
maintains stability of the channel tracking loop.

Slow fading: opportunistic beamforming
To get some insight into the performance of this scheme, consider the case of
slow fading where the channel gain vector of each user k remains constant,
i.e., hk�m�= hk, for all m. (In practice, this means for all m over the latency
time-scale of interest.) The received SNR for this user would have remained
constant if only one antenna were used. If all users in the system experience
such slow fading, no multiuser diversity gain can be exploited. Under the
proposed scheme, on the other hand, the overall channel gain hk�m�

∗q�m� for
each user k varies in time and provides opportunity for exploiting multiuser
diversity.

Let us focus on a particular user k. Now if q�m� varies across all directions,
the amplitude squared of the channel �h∗

kq�m��2 seen by user k varies from 0
to ��hk��2. The peak value occurs when the transmission is aligned along the
direction of the channel of user k, i.e., q�m� = hk/�hk� (recall Example 5.2
in Section 5.3). The power and phase values are then in the beamforming
configuration:

�l = � hlk �2
��hk��2

� l= 1� � � � � nt�

�l = −arg�hlk�� l= 1� � � � � nt�

To be able to beamform to a particular user, the base-station needs to
know individual channel amplitude and phase responses from all the antennas,
which requires much more information to feedback than just the overall SNR.
However, if there are many users in the system, the proportional fair algorithm
will schedule transmission to a user only when its overall channel SNR is near
its peak. Thus, it is plausible that in a slow fading environment, the technique
can approach the performance of coherent beamforming but with only overall
SNR feedback (Figure 6.21). In this context, the technique can be interpreted
as opportunistic beamforming: by varying the phases and powers allocated to
the transmit antennas, a beam is randomly swept and at any time transmission
is scheduled to the user currently closest to the beam. With many users, there
is likely to be a user very close to the beam at any time. This intuition has
been formally justified (see Exercise 6.29).

Fast fading: increasing channel fluctuations
We see that opportunistic beamforming can significantly improve perfor-
mance in slow fading environments by adding fast time-scale fluctuations on
the overall channel quality. The rate of channel fluctuation is artificially sped
up. Can opportunistic beamforming help if the underlying channel variations
are already fast (fast compared to the latency time-scale)?
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Figure 6.21 Plot of spectral
efficiency under opportunistic
beamforming as a function of
the total number of users in
the system. The scenario is for
slow Rayleigh faded channels
for the users and the channels
are fixed in time. The spectral
efficiency plotted is the
performance averaged over
the Rayleigh distribution. As
the number of users grows,
the performance approaches
the performance of true
beamforming.
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The long-term throughput under fast fading depends only on the stationary
distribution of the channel gains. The impact of opportunistic beamforming
in the fast fading scenario then depends on how the stationary distributions of
the overall channel gains can be modified by power and phase randomization.
Intuitively, better multiuser diversity gain can be exploited if the dynamic
range of the distribution of hk can be increased, so that the maximum SNRs
can be larger. We consider two examples of common fading models.

• Independent Rayleigh fading In this model, appropriate for an environ-
ment where there is full scattering and the transmit antennas are spaced
sufficiently, the channel gains h1k�m�� � � � � hntk�m� are i.i.d. �� random
variables. In this case, the channel vector hk�m� is isotropically distributed,
and hk�m�

∗q�m� is circularly symmetric Gaussian for any choice of q�m�;
moreover the overall gains are independent across the users. Hence, the
stationary statistics of the channel are identical to the original situation
with one transmit antenna. Thus, in an independent fast Rayleigh fading
environment, the opportunistic beamforming technique does not provide
any performance gain.

• Independent Rician fading In contrast to the Rayleigh fading case, oppor-
tunistic beamforming has a significant impact in a Rician environment,
particularly when the �-factor is large. In this case, the scheme can sig-
nificantly increase the dynamic range of the fluctuations. This is because
the fluctuations in the underlying Rician fading process come from the
diffused component, while with randomization of phase and powers, the
fluctuations are from the coherent addition and cancellation of the direct
path components in the signals from the different transmit antennas, in
addition to the fluctuation of the diffused components. If the direct path
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Figure 6.22 Total throughput
as a function of the number of
users under Rician fast fading,
with and without opportunistic
beamforming. The power
allocations �l �m� are
uniformly distributed in �0� 1�
and the phases �l �m� uniform
in �0� 2��.
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is much stronger than the diffused part (large � values), then much larger
fluctuations can be created with this technique.

This intuition is substantiated in Figure 6.22, which plots the total
throughput with the proportional fair algorithm (large tc, of the order of 100
time slots) for Rician fading with �= 10. We see that there is a considerable
improvement in performance going from the single transmit antenna case
to dual transmit antennas with opportunistic beamforming. For comparison,
we also plot the analogous curves for pure Rayleigh fading; as expected,
there is no improvement in performance in this case. Figure 6.23 compares
the stationary distributions of the overall channel gain �hk�m�∗q�m�� in the
single-antenna and dual-antenna cases; one can see the increase in dynamic
range due to opportunistic beamforming.

Antennas: dumb, smart and smarter
In this section so far, our discussion has focused on the use of multiple
transmit antennas to induce larger and faster channel fluctuations for multiuser
diversity benefits. It is insightful to compare this with the two other point-
to-point transmit antenna techniques we have already discussed earlier in the
book:

• Space-time codes like the Alamouti scheme (Section 3.3.2). They are
primarily used to increase the diversity in slow fading point-to-point links.

• Transmit beamforming (Section 5.3.2). In addition to providing diversity,
a power gain is also obtained through the coherent addition of signals at
the users.
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Figure 6.23 Comparison of the
distribution of the overall
channel gain with and without
opportunistic beamforming
using two transmit antennas,
Rician fading. The Rayleigh
distribution is also shown.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Rayleigh

2 antenna, Rician

1 antenna, Rician

Channel amplitude

D
en

si
ty

The three techniques have different system requirements. Coherent space-
time codes like the Alamouti scheme require the users to track all the indi-
vidual channel gains (amplitude and phase) from the transmit antennas. This
requires separate pilot symbols on each of the transmit antennas. Transmit
beamforming has an even stronger requirement that the channel should be
known at the transmitter. In an FDD system, this means feedback of the
individual channel gains (amplitude and phase). In contrast to these two tech-
niques, the opportunistic beamforming scheme requires no knowledge of the
individual channel gains, neither at the users nor at the transmitter. In fact,
the users are completely ignorant of the fact that there are multiple transmit
antennas and the receiver is identical to that in the single transmit antenna
case. Thus, they can be termed dumb antennas. Opportunistic beamforming
does rely on multiuser diversity scheduling, which requires the feedback of
the overall SNR of each user. However, this only needs a single pilot to
measure the overall channel.
What is the performance of these techniques when used in the downlink?

In a slow fading environment, we have already remarked that opportunistic
beamforming approaches the performance of transmit beamforming when
there are many users in the system. On the other hand, space-time codes do
not perform as well as transmit beamforming since they do not capture the
array power gain. This means, for example, using the Alamouti scheme on
dual transmit antennas in the downlink is 3 dB worse than using opportunistic
beamforming combined with multiuser diversity scheduling when there are
many users in the system. Thus, dumb antennas together with smart scheduling
can surpass the performance of smart space-time codes and approach that of
the even smarter transmit beamforming.
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Table 6.1 A comparison between three methods of using transmit antennas.

Dumb antennas
(Opp. beamform)

Smart antennas
(Space-time codes)

Smarter antennas
(Transmit
beamform)

Channel knowledge Overall SNR Entire CSI at Rx Entire CSI at Rx, Tx

Slow fading
performance gain

Diversity and
power gains Diversity gain only

Diversity and power
gains

Fast fading
performance gain No impact Multiuser diversity ↓

Multiuser diversity ↓
power ↑

How about in a fast Rayleigh fading environment? In this case, we have
observed that dumb antennas have no effect on the overall channel as the full
multiuser diversity gain has already been realized. Space-time codes, on the
other hand, increase the diversity of the point-to-point links and consequently
decrease the channel fluctuations and hence the multiuser diversity gain.
(Exercise 6.31 makes this more precise.) Thus, the use of space-time codes
as a point-to-point technology in a multiuser downlink with rate control and
scheduling can actually be harmful, in the sense that even the naturally present
multiuser diversity is removed. The performance impact of using transmit
beamforming is not so clear: on the one hand it reduces the channel fluctuation
and hence the multiuser diversity gain, but on the other hand it provides an
array power gain. However, in an FDD system the fast fading channel may
make it very difficult to feed back so much information to enable coherent
beamforming.
The comparison between the three schemes is summarized in Table 6.1.

All three techniques use the multiple antennas to transmit to only one user
at a time. With full channel knowledge at the transmitter, an even smarter
scheme can transmit to multiple users simultaneously, exploiting the multiple
degrees of freedom existing inherently in the multiple antenna channel. We
will discuss this in Chapter 10.

6.7.4 Multiuser diversity in multicell systems

So far we have considered a single-cell scenario, where the noise is assumed
to be white Gaussian. For wideband cellular systems with full frequency reuse
(such as the CDMA and OFDM based systems in Chapter 4), it is important
to consider the effect of inter-cell interference on the performance of the
system, particularly in interference-limited scenarios. In a cellular system, this
effect is captured by measuring the channel quality of a user by the SINR,
signal-to-interference-plus-noise ratio. In a fading environment, the energies
in both the received signal and the received interference fluctuate over time.
Since the multiuser diversity scheduling algorithm allocates resources based
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on the channel SINR (which depends on both the channel amplitude and the
amplitude of the interference), it automatically exploits both the fluctuations
in the energy of the received signal and those of the interference: the algorithm
tries to schedule resource to a user whose instantaneous channel is good and
the interference is weak. Thus, multiuser diversity naturally takes advantage
of the time-varying interference to increase the spatial reuse of the network.
From this point of view, amplitude and phase randomization at the base-

station transmit antennas plays an additional role: it increases not only the
amount of fluctuations of the received signal to the intended users within
the cells, it also increases the fluctuations of the interference that the base-
station causes in adjacent cells. Hence, opportunistic beamforming has a dual
benefit in an interference-limited cellular system. In fact, opportunistic beam-
forming performs opportunistic nulling simultaneously: while randomization
of amplitude and phase in the transmitted signals from the antennas allows
near coherent beamforming to some user within the cell, it will create near
nulls at some other user in an adjacent cell. This in effect allows interference
avoidance for that user if it is currently being scheduled.
Let us focus on the downlink and slow flat fading scenario to get

some insight into the performance gain from opportunistic beamforming and
nulling. Under amplitude and phase randomization at all base-stations, the
received signal of a typical user that is interfered by J adjacent base-stations
is given by

y�m�= �h∗q�m��x�m�+
J∑

j=1

�g∗
jqj�m��uj�m�+ z�m�� (6.62)

Here, x�m��h�q�m� are respectively the signal, channel vector and ran-
dom transmit direction from the base-station of interest; uj�m��gj�qj�m� are
respectively the interfering signal, channel vector and random transmit direc-
tion from the jth base-station. All base-stations have the same transmit power,
P, and nt transmit antennas and are performing amplitude and phase random-
ization independently.

By averaging over the signal x�m� and the interference uj�m�, the (time-
varying) SINR of the user k can be computed to be

SINRk�m�=
P�h∗q�m��2

P
∑J

j=1 �g∗
jqj�m��2+N0

� (6.63)

As the random transmit directions q�m��qj�m� vary, the overall SINR
changes over time. This is due to the variations of the overall gain from the
base-station of interest as well as those from the interfering base-stations. The
SINR is high when q�m� is closely aligned to the channel vector h, and/or
for many j, qj�m� is nearly orthogonal to gj , i.e., the user is near a null
of the interference pattern from the jth base-station. In a system with many
other users, the proportional fair scheduler will serve this user while its SINR
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is at its peak P�h�2/N0, i.e., when the received signal is the strongest and
the interference is completely nulled out. Thus, the opportunistic nulling and
beamforming technique has the potential of shifting a user from a low SINR,
interference-limited regime to a high SINR, noise-limited regime. An analysis
of the tail of the distribution of SINR is conducted in Exercise 6.30.

6.7.5 A system view

A new design principle for wireless systems can now be seen through the lens
of multiuser diversity. In the three systems in Chapter 4, many of the design
techniques centered on making the individual point-to-point links as close to
AWGN channels as possible, with a reliable channel quality that is constant
over time. This is accomplished by channel averaging, and includes the use
of diversity techniques such as multipath combining, time-interleaving and
antenna diversity that attempt to keep the channel fading constant in time, as
well as interference management techniques such as interference averaging
by means of spreading.
However, if one shifts from the view of the wireless system as a set of

point-to-point links to the view of a system with multiple users sharing the
same resources (spectrum and time), then quite a different design objective
suggests itself. Indeed, the results in this chapter suggest that one should
instead try to exploit the channel fluctuations. This is done through an appro-
priate scheduling algorithm that “rides the peaks”, i.e., each user is scheduled
when it has a very strong channel, while taking into account real world traffic
constraints such as delay and fairness. The technique of dumb antennas goes
one step further by creating variations when there are none. This is accom-
plished by varying the strengths of both the signal and the interference that
a user receives through opportunistic beamforming and nulling.

The viability of the opportunistic communication scheme depends on traffic
that has some tolerance to scheduling delays. On the other hand, there are
some forms of traffic that are not so flexible. The functioning of the wireless
systems is supported by the overhead control channels, which are “circuit-
switched” and hence have very tight latency requirements, unlike data, which
have the flexibility to allow dynamic scheduling. From the perspective of
these signals, it is preferable that the channel remain unfaded; a requirement
that is contradictory to our scheduler-oriented observation that we would
prefer the channel to have fast and large variations.

This issue suggests the following design perspective: separate very-low
latency signals (such as control signals) from flexible latency data. One way
to achieve this separation is to split the bandwidth into two parts. One part
is made as flat as possible (by using the principles we saw in Chapter 4
such as spreading over this part of the bandwidth) and is used to transmit
flows with very low latency requirements. The performance metric here is to
make the channel as reliable as possible (equivalently keeping the probability
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of outage low) for some fixed data rate. The second part uses opportunistic
beamforming to induce large and fast channel fluctuations and a scheduler to
harness the multiuser diversity gains. The performance metric on this part is
to maximize the multiuser diversity gain.
The gains of the opportunistic beamforming and nulling depend on the

probability that the received signal is near beamformed and all the interfer-
ence is near null. In the interference-limited regime and when P/N0 � 1,
the performance depends mainly on the probability of the latter event (see
Exercise 6.30). In the downlink, this probability is large since there are only
one or two base-stations contributing most of the interference. The uplink
poses a contrasting picture: there is interference from many mobiles allowing
interference averaging. Now the probability that the total interference is near
null is much smaller. Interference averaging, which is one of the principle
design features of the wideband full reuse systems (such as the ones we saw
in Chapter 4 based on CDMA and OFDM), is actually unfavorable for the
opportunistic scheme described here, since it reduces the likelihood of the
nulling of the interference and hence the likelihood of the peaks of the SINR.
In a typical cell, there will be a distribution of users, some closer to

the base-station and some closer to the cell boundaries. Users close to the
base-station are at high SINR and are noise-limited; the contribution of the
inter-cell interference is relatively small. These users benefit mainly from
opportunistic beamforming. Users close to the cell boundaries, on the other
hand, are at low SINR and are interference-limited; the average interference
power can be much larger than the background noise. These users benefit both
from opportunistic beamforming and from opportunistic nulling of inter-cell
interference. Thus, the cell edge users benefit more in this system than users
in the interior. This is rather desirable from a system fairness point-of-view,
as the cell edge users tend to have poorer service. This feature is particularly
important for a system without soft handoff (which is difficult to implement
in a packet data scheduling system). To maximize the opportunistic nulling
benefits, the transmit power at the base-station should be set as large as
possible, subject to regulatory and hardware constraints. (See Exercise 6.30(5)
where this is explored in more detail.)
We have seen the multiuser diversity as primarily a form of power gain. The

opportunistic beamforming technique of using an array of multiple transmit
antennas has approximately an nt-fold improvement in received SNR to a user
in a slow fading environment, as compared to the single-antenna case. With
an array of nr receive antennas at each mobile (and say a single transmit
antenna at the base-station), the received SNR of any user gets an nr-fold
improvement as compared to a single receive antenna; this gain is realized by
receiver beamforming. This operation is easy to accomplish since the mobile
has full channel information at each of the antenna elements. Hence the gains
of opportunistic beamforming are about the same order as that of installing a
receive antenna array at each of the mobiles.
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Thus, for a system designer, the opportunistic beamforming technique
provides a compelling case for implementation, particularly in view of the
constraints of space and cost of installing multiple antennas on each mobile
device. Further, this technique needs neither any extra processing on the part
of any user, nor any updates to an existing air-link interface standard. In other
words, the mobile receiver can be completely ignorant of the use or non-use
of this technique. This means that it does not have to be “designed in” (by
appropriate inclusions in the air interface standard and the receiver design)
and can be added/removed at any time. This is one of the important benefits
of this technique from an overall system design point of view.
In the cellular wireless systems studied in Chapter 4, the cell is sectorized

to allow better focusing of the power transmitted from the antennas and also
to reduce the interference seen by mobile users from transmissions of the
same base-station but intended for users in different sectors. This technique
is particularly gainful in scenarios when the base-station is located at a fairly
large height and thus there is limited scattering around the base-station. In
contrast, in systems with far denser deployment of base-stations (a strategy
that can be expected to be a good one for wireless systems aiming to pro-
vide mobile, broadband data services), it is unreasonable to stipulate that the
base-stations be located high above the ground so that the local scattering
(around the base-station) is minimal. In an urban environment, there is sub-
stantial local scattering around a base-station and the gains of sectorization
are minimal; users in a sector also see interference from the same base-station
(due to the local scattering) intended for another sector. The opportunistic
beamforming scheme can be thought of as sweeping a random beam and
scheduling transmissions to users when they are beamformed. Thus, the gains

Table 6.2 Contrast between conventional multiple access and opportunistic
communication.

Conventional multiple
access

Opportunistic
communication

Guiding principle Averaging out fast
channel fluctuations

Exploiting channel
fluctuations

Knowledge at Tx Track slow fluctuations
No need to track fast ones

Track as many fluctuations
as possible

Control Power control the slow
fluctuations

Rate control to all
fluctuations

Delay requirement Can support tight delay Needs some laxity

Role of Tx antennas Point-to-point diversity Increase fluctuations

Power gain in downlink Multiple Rx antennas Opportunistic beamform via
multiple Tx antennas

Interference management Averaged Opportunistically avoided
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of sectorization are automatically realized. We conclude that the opportunistic

beamforming technique is particularly suited to harness sectorization gains

even in low-height base-stations with plenty of local scattering. In a cel-

lular system, the opportunistic beamforming scheme also obtains the gains

of nulling, a gain traditionally obtained by coordinated transmissions from

neighboring base-stations in a full frequency reuse system or by appropriately

designing the frequency reuse pattern.

The discussion is summarized in Table 6.2.

Chapter 6 The main plot

This chapter looked at the capacities of uplink and downlink channels.
Two important sets of concepts emerged:
• successive interference cancellation (SIC) and superposition coding;
• multiuser opportunistic communication and multiuser diversity.

SIC and superposition coding
Uplink

Capacity is achieved by allowing users to simultaneously transmit on the
full bandwidth and the use of SIC to decode the users.

SIC has a significant performance gain over conventional multiple access
techniques in near–far situations. It takes advantage of the strong channel
of the nearby user to give it high rate while providing the weak user with
the best possible performance.

Downlink

Capacity is achieved by superimposing users’ signals and the use of SIC
at the receivers. The strong user decodes the weak user’s signal first and
then decodes its own.

Superposition coding/SIC has a significant gain over orthogonal tech-
niques. Only a small amount of power has to be allocated to the strong
user to give it a high rate, while delivering near-optimal performance to
the weak user.

Opportunistic communication
Symmetric uplink fading channel:

y�m�=
K∑
k=1

hk�m�xk�m�+w�m�� (6.64)
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Sum capacity with CSI at receiver only:

Csum = �

[
log

(
1+

∑K
k=1 �hk�2P
N0

)]
� (6.65)

Very close to AWGN capacity for large number of users. Orthogonal
multiple access is strictly suboptimal.

Sum capacity with full CSI:

Csum = �

[
log

(
1+ Pk∗�h��hk∗ �2

N0

)]
� (6.66)

where k∗ is the user with the strongest channel at joint channel state h.
This is achieved by transmitting only to the user with the best channel and
a waterfilling power allocation Pk∗�h� over the fading state.
Symmetric downlink fading channel:

yk�m�= hk�m�x�m�+wk�m�� k= 1� � � � �K� (6.67)

Sum capacity with CSI at receiver only:

Csum = �

[
log

(
1+ �hk�2P

N0

)]
� (6.68)

Can be achieved by orthogonal multiple access.
Sum capacity with full CSI: same as uplink.

Multiuser diversity
Multiuser diversity gain: under full CSI, capacity increases with the number
of users: in a large system with high probability there is always a user
with a very strong channel.
System issues in implementing multiuser diversity:
• Fairness Fair access to the channel when some users are statistically

stronger than others.
• Delay Cannot wait too long for a good channel.
• Channel tracking Channel has to be measured and fed back fast enough.
• Small and slow channel fluctuationsMultiuser diversity gain is limited

when channel varies too slowly and/or has a small dynamic range.
The solutions discussed were:
• Proportional fair scheduler transmits to a user when its channel is near

its peak within the delay constraint. Every user has access to the channel
for roughly the same amount of time.

• Channel feedback delay can be reduced by having shorter time slots and
feeding back more often. Aggregate feedback can be reduced by each
user selectively feeding channel state back only when its channel is near
its peak.
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• Channel fluctuations can be sped up and their dynamic range increased
by the use of multiple transmit antennas to perform opportunistic beam-
forming. The scheme sweeps a random beam and schedules transmis-
sions to users when they are beamformed.

In a cellular system, multiuser diversity scheduling performs interference
avoidance as well: a user is scheduled transmission when its channel is
strong and the out-of-cell interference is weak.

Multiple transmit antennas can perform opportunistic beamforming as well
as nulling.

6.8 Bibliographical notes

Classical treatment of the general multiple access channel was initiated by Ahlswede
[2] and Liao [73] who characterized the capacity region. The capacity region of the
Gaussian multiple access channel is derived as a special case. A good survey of
the literature on MACs was done by Gallager [45]. Hui [59] first observed that the
sum capacity of the uplink channel with single-user decoding is bounded by 1.442
bits/s/Hz.

The general broadcast channel was introduced by Cover [25] and a complete
characterization of its capacity is one of the famous open problems in information
theory. Degraded broadcast channels, where the users can be “ordered” based on their
channel quality, are fully understood with superposition coding being the optimal
strategy; a textbook reference is Chapter 14.6 in Cover and Thomas [26]. The best
inner and outer bounds are by Marton [81] and a good survey of the literature
appears in [24].

The capacity region of the uplink fading channel with receiver CSI was derived
by Gallager [44], where he also showed that orthogonal multiple access schemes
are strictly suboptimal in fading channels. Knopp and Humblet [65] studied the sum
capacity of the uplink fading channel with full CSI. They noted that transmitting to
only one user is the optimal strategy. An analogous result was obtained earlier by
Cheng and Verdú [20] in the context of the time-invariant uplink frequency-selective
channels. Both these channels are instances of the parallel Gaussian multiple access
channel, so the two results are mathematically equivalent. The latter authors also
derived the capacity region in the two-user case. The solution for arbitrary number of
users was obtained by Tse and Hanly [122], exploiting a basic polymatroid property
of the region.

The study of downlink fading channels with full CSI was carried out by Tse [124]
and Li and Goldsmith [74]. The key aspect of the study was to observe that the fading
downlink is really a parallel degraded broadcast channel, the capacity of which has
been fully understood (El Gamal [33]). There is an intriguing similarity between the
downlink resource allocation solution and the uplink one. This connection is studied
further in Chapter 10.

Multiuser diversity is a key distinguishing feature of the uplink and the downlink
fading channel study as compared to our understanding of the point-to-point fading
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channel. The term multiuser diversity was coined by Knopp and Humblet [66]. The
multiuser diversity concept was integrated into the downlink design of IS-856 (CDMA
2000 EV-DO) via the proportional fair scheduler by Tse [19]. In realistic scenarios,
performance gains of 50% to 100% have been reported (Wu and Esteves [149]).

If the channels are slowly varying, then the multiuser diversity gains are lim-
ited. The opportunistic beamforming idea mitigates this defect by creating variations
while maintaining the same average channel quality; this was proposed by Viswanath
et al. [137], who also studied its impact on system design.

Several works have studied the design of schedulers that harness the multiuser
diversity gain. A theoretical analysis of the proportional fair scheduler has appeared
in several places including a work by Borst and Whiting [12].

6.9 Exercises

Exercise 6.1 The sum constraint in (6.6) applies because the two users send inde-
pendent information and cannot cooperate in the encoding. If they could cooperate,
what is the maximum sum rate they could achieve, still assuming individual power
constraints P1 and P2 on the two users? In the case P1 = P2, quantify the cooperation
gain at low and at high SNR. In which regime is the gain more significant?

Exercise 6.2 Consider the basic uplink AWGN channel in (6.1) with power constraints
Pk on user k (for k= 1�2). In Section 6.1.3, we stated that orthogonal multiple access
is optimal when the degrees of freedom are split in direct proportion to the powers of
the users. Verify this. Show also that any other split of degrees of freedom is strictly
suboptimal, i.e., the corresponding rate pair lies strictly inside the capacity region
given by the pentagon in Figure 6.2. Hint: Think of the sum rate as the performance
of a point-to-point channel and apply the insight from Exercise 5.6.

Exercise 6.3 Calculate the symmetric capacity, (6.2), for the two-user uplink channel.
Identify scenarios where there are definitely superior operating points.

Exercise 6.4 Consider the uplink of a single IS-95 cell where all the users are controlled
to have the same received power P at the base-station.
1. In the IS-95 system, decoding is done by a conventional CDMA receiver which

treats the interference of the other users as Gaussian noise. What is the maximum
number of voice users that can be accommodated, assuming capacity-achieving
point-to-point codes? You can assume a total bandwidth of 1.25MHz and a data
rate per user of 9.6 kbits/s. You can also assume that the background noise is
negligible compared to the intra-cell interference.

2. Now suppose one of the users is a data user and it happens to be close to the
base-station. By not controlling its power, its received power can be 20 dB above
the rest. Propose a receiver that can give this user a higher rate while still delivering
9.6 kbits/s to the other (voice) users. What rate can it get?

Exercise 6.5 Consider the uplink of an IS-95 system.
1. A single cell is modeled as a disk of radius 1 km. If a mobile at the edge of the

cell transmits at its maximum power limit, its received SNR at the base-station
is 15 dB when no one else is transmitting. Estimate (via numerical simulations)
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the average sum capacity of the uplink with 16 users that are independently and
uniformly located in the disk. Compare this to the corresponding average total
throughput in a system with conventional CDMA decoding and each user perfectly
power controlled at the base-station. What is the potential percentage gain in
spectral efficiency by using the more sophisticated receiver? You can assume that
all mobiles have the same transmit power constraint and the path loss (power)
attenuation is proportional to r−4.

2. Part (1) ignores out-of-cell interference. With out-of-cell interference taken into
consideration, the received SINR of the cell edge user is only−10dB. Redo part (1).
Is the potential gain from using a more sophisticated receiver still as impressive?

Exercise 6.6 Consider the downlink of the IS-856 system.
1. Suppose there are two users on the cell edge. Users are scheduled on a TDMA

basis, with equal time for each user. The received SINR of each user is 0 dB when it
is transmitted to. Find the rate that each user gets. The total bandwidth is 1.25MHz
and you can assume an AWGN channel and the use of capacity-achieving codes.

2. Now suppose there is an extra user which is near the base-station with a 20 dB SINR
advantage over the other two users. Consider two ways to accommodate this user:
• Give a fraction of the time slots to this user and divide the rest equally among

the two cell edge users.
• Give a fraction of the power to this user and superimpose its signal on top

of the signals of both users. The two cell edge users are still scheduled on a
TDMA basis with equal time, and the strong user uses a SIC decoder to extract
its signal after decoding the other users’ signals at each time slot.

Since the two cell edge users have weak reception, it is important to maintain the
best possible quality of service to them. So suppose the constraint is that we want
each of them to have 95% of the rates they were getting before this strong user
joined. Compare the performance that the strong user gets in the two schemes above.

Exercise 6.7 The capacity region of the two-user AWGN uplink channel is shown
in Figure 6.2. The two corner points A and B can be achieved using successive
cancellation. Points inside the line segment AB can be achieved by time sharing. In
this exercise we will see another way to achieve every point �R1�R2� on the line
segment AB using successive cancellation. By definition we must have

Rk < log
(
1+ Pk

N0

)
k= 1�2� (6.69)

R1 +R2 = log
(
1+ P1 +P2

N0

)
� (6.70)

Define � > 0 by

R2 = log
(
1+ P2

�+N0

)
� (6.71)

Now consider the situation when user 1 splits itself into two users, say users 1a and 1b,
with power constraints P1−� and � respectively. We decode the users with successive
cancellation in the order user 1a, 2, 1b, i.e., user 1a is decoded first, user 2 is decoded
next (with user 1a cancelled) and finally user 1b is decoded (seeing no interference
from users 1a and 2).
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1. Calculate the rates of reliable communication �r1a� r2� r1b� for the users 1a, 2 and
1b using the successive cancellation just outlined.

2. Show that r2 = R2 and r1a + r1b = R1. This means that the point �R1�R2� on the
line segment AB can be achieved by successive cancellation of three users formed
by one of the users “splitting” itself into two virtual users.

Exercise 6.8 In Exercise 6.7, we studied rate splitting multiple access for two users.
A reading exercise is to study [101], where this result was introduced and generalized
to the K-user uplink: K− 1 users can split themselves into two users each (with
appropriate power splits) so that any rate vector on the boundary of the capacity region
that meets the sum power constraint can be achieved via successive cancellation (with
appropriate ordering of the 2K−1 users).

Exercise 6.9 Consider the K-user AWGN uplink channel with user power constraints
P1� � � � �PK . The capacity region is the set of rate vectors that lie in the intersection
of the constraints (cf. (6.10)):

∑
k∈�

Rk < log
(
1+

∑
k∈� Pk
N0

)
� (6.72)

for every subset � of the K users.
1. Fix an ordering of the users �1� � � � ��K (here � represents a permutation of set

	1� � � � �K
). Show that the rate vector
(
R
���
1 � � � � �R

���
K

)
:

R���
�k

�= log

(
1+ P�k∑K

i=k+1 P�i +N0

)
k= 1� � � � �K� (6.73)

is in the capacity region. This rate vector can be interpreted using the successive
cancellation viewpoint: the users are successively decoded in the order �1� � � � ��K

with cancellation after each decoding step. So, user �k has no interference from
the previously decoded users �1� � � � ��k−1, but experiences interference from the
users following it (namely �k+1� � � � ��K). In Figure 6.2, the point A corresponds
to the permutation �1 = 2��2 = 1 and the point B corresponds to the identity
permutation �1 = 1��2 = 2.

2. Consider maximizing the linear objective function
∑K

k=1 akRk with non-negative
a1� � � � � aK over the rate vectors in the capacity region. (ak can be interpreted as
the revenue per unit rate for user k.) Show that the maximum occurs at the rate
vector of the form in (6.73) with the permutation � defined by the property:

a�1
≤ a�2

≤ · · · ≤ a�K � (6.74)

This means that optimizing linear objective functions on the capacity region can be
done in a greedy way: we order the users based on their priority (ak for user k). This
ordering is denoted by the permutation � in (6.74). Next, the receiver decodes via
successive cancellation using this order: the user with the least priority is decoded
first (seeing full interference from all the other users) and the user with the highest
priority decoded last (seeing no interference from the other users). Hint: Show
that if the ordering is not according to (6.74), then one can always improve the
objective function by changing the decoding order.
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3. Since the capacity region is the intersection of hyperplanes, it is a convex polyhe-
dron. An equivalent representation of a convex polyhedron is through enumerating
its vertices: points which cannot be expressed as a strict convex combination of any
subset of other points in the polyhedron. Show that

(
R
���
1 � � � � �R

���
K

)
is a vertex

of the capacity region. Hint: Consider the following fact: a linear object function
is maximized on a convex polyhedron at one of the vertices. Further, every vertex
must be optimal for some linear objective function.

4. Show that vertices of the form (6.73) (one for each permutation, so there are K! of
them) are the only interesting vertices of the capacity region. (This means that any
other vertex of the capacity region is component-wise dominated by one of these
K! vertices.)

Exercise 6.10 Consider the K-user uplink AWGN channel. In the text, we focus
on the capacity region ��P�: the set of achievable rates for given power constraint
vector P �= �P1� � � � �PK�

t. A “dual” characterization is the power region 	�R�: set
of all feasible received power vectors that can support a given target rate vector
R �= �R1� � � � �RK�

t.
1. Write down the constraints describing 	�R�. Sketch the region for K = 2.
2. What are the vertices of 	�R�?
3. Find a decoding strategy and a power allocation that minimizes

∑K
k=1 bkPk while

meeting the given target rates. Here, the constants bk are positive and should be
interpreted as “power prices”. Hint: Exercise 6.9 may be useful.

4. Suppose users are at different distances from the base-station so that the transmit
power of user k is attenuated by a factor of  i. Find a decoding strategy and a
power allocation that minimizes the total transmit power of the users while meeting
the target rates R.

5. In IS-95, the code used by each user is not necessarily capacity-achieving but
communication is considered reliable as long as a �b/I0 requirement of 7 dB is met.
Suppose these codes are used in conjunction with SIC. Find the optimal decoding
order to minimize the total transmit power in the uplink.

Exercise 6.11 (Impact of using SIC on interference-limited capacity) Consider the two-
cell system in Exercise 4.11. The interference-limited spectral efficiency in the many-
user regime was calculated for both CDMA and OFDM. Now suppose SIC is used
instead of the conventional receiver in the CDMA system. In the context of SIC, the
interference I0 in the target �b/I0 requirement refers to the interference from the uncan-
celled users. Below you can always assume that interference cancellation is perfect.
1. Focus on a single cell first and assume a background noise power of N0. Is the

system interference-limited under the SIC receiver? Was it interference-limited
under the conventional CDMA receiver?

2. Suppose there are K users with user k at a distance rk from the base-station. Give
an expression for the total transmit power saving (in dB) in using SIC with the
optimal decoding order as compared to the conventional CDMA receiver (with an
�b/I0 requirement of �).

3. Give an expression for the power saving in the asymptotic regime with a large
number of users and large bandwidth. The users are randomly located in the single
cell as specified in Exercise 4.11. What is this value when �= 7dB and the power
decay is r−2 (i.e., �= 2)?
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4. Now consider the two-cell system. Explain why in this case the system is
interference-limited even when using SIC.

5. Nevertheless, SIC increases the interference-limited capacity because of the reduc-
tion in transmit power, which translates into a reduction of out-of-cell interference.
Give an expression for the asymptotic interference-limited spectral efficiency under
SIC in terms of � and �. You can ignore the background noise and assume
that users closer to the base-station are always decoded before the users further
away.

6. For �= 7dB and �= 2, compare the performance with the conventional CDMA
system and the OFDM system.

7. Is the cancellation order in part 5 optimal? If not, find the optimal order and give
an expression for the resulting asymptotic spectral efficiency. Hint: You might find
Exercise 6.10 useful.

Exercise 6.12 Verify the bound (6.30) on the actual error probability of the kth user
in the SIC, accounting for error propagation.

Exercise 6.13 Consider the two-user uplink fading channel,

y�m�= h1�m�x1�m�+h2�m�x2�m�+w�m�� (6.75)

Here the user channels 	h1�m�
� 	h2�m�
 are statistically independent. Suppose that
h1�m� and h2�m� are �� �0�1� and user k has power Pk� k = 1�2, with P1 � P2.
The background noise w�m� is i.i.d. �� �0�N0�. An SIC receiver decodes user 1 first,
removes its contribution from 	y�m�
 and then decodes user 2. We would like to assess
the effect of channel estimation error of h1 on the performance of user 2.
1. Assuming that the channel coherence time is Tc seconds and user 1 spends 20% of

its power on sending a training signal, what is the mean square estimation error of
h1? You can assume the same setup as in Section 3.5.2. You can ignore the effect
of user 2 in this estimation stage, since P1 � P2.

2. The SIC receiver decodes the transmitted signal from user 1 and subtracts its
contribution from 	y�m�
. Assuming that the information is decoded correctly, the
residual error is due to the channel estimation error of h1. Quantify the degradation
in SINR of user 2 due to this channel estimation error. Plot this degradation as a
function of P1/N0 for Tc = 10ms. Does the degradation worsen if the power P1 of
user 1 increases? Explain.

3. In part (2), user 2 still faced some interference due to the presence of user 1
despite decoding the information meant for user 1 accurately. This is due to the
error in the channel estimate of user 1. In the calculation in part (2), we used the
expression for the error of user 1’s channel estimate as derived from the training
symbol. However, conditioned on the event that the first user’s information has
been correctly decoded, the channel estimate of user 1 can be improved. Model
this situation appropriately and arrive at an approximation of the error in user 1’s
channel estimate. Now redo part (2). Does your answer change qualitatively?

Exercise 6.14 Consider the probability of the outage event (pul
out , cf. (6.32)) in a

symmetric slow Rayleigh fading uplink with the K users operating at the symmetric
rate R bits/s/Hz.
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1. Suppose pul
out is fixed to be �. Argue that at very high SNR (with SNR defined to

be P/N0), the dominating event is the one on the sum rate:

KR> log
(
1+

∑K
k=1 P�hk�2
N0

)
�

2. Show that the �-outage symmetric capacity, Csym
� , can be approximated at very

high SNR as

Csym
� ≈ 1

K
log2

(
1+ P�

1
K

N0

)
�

3. Argue that at very high SNR, the ratio of Csym
� to C� (the �-outage capacity with

just a single user in the uplink) is approximately 1/K.

Exercise 6.15 In Section 6.3.3, we have discussed the optimal multiple access strategy
for achieving the sum capacity of the uplink fading channel when users have identical
channel statistics and power constraints.
1. Solve the problem for the general case when the channel statistics and the power

constraints of the users are arbitrary. Hint: Construct a Lagrangian for the convex
optimization problem (6.42) with a separate Lagrange multiplier for each of the
individual power constraints (6.43).

2. Do you think the sum capacity is a reasonable performance measure in the asym-
metric case?

Exercise 6.16 In Section 6.3.3, we have derived the optimal power allocation with full
CSI in the symmetric uplink with the assumption that there is always a unique user
with the strongest channel at any one time. This assumption holds with probability 1
when the fading distributions are continuous. Moreover, under this assumption, the
solution is unique. This is in contrast to the uplink AWGN channel where there is
a continuum of solutions that achieves the optimal sum rate, of which only one is
orthogonal. We will see in this exercise that transmitting to only one user at a time
is not necessarily the unique optimal solution even for fading channels, if the fading
distribution is discrete (to model measurement realities, such as the feedback of a
finite number of rate levels).

Consider the full CSI two-user uplink with identical, independent, stationary and
ergodic flat fading processes for the two users. The stationary distribution of the flat
fading for both of the users takes one of just two values: channel amplitude is either
at 0 or at 1 (with equal probability). Both of the users are individually average power
constrained (by P̄). Calculate explicitly all the optimal joint power allocation and
decoding policies to maximize the sum rate. Is the optimal solution unique? Hint:
Clearly there is no benefit by allocating power to a user whose channel is fully faded
(the zero amplitude state).

Exercise 6.17 In this exercise we further study the nature of the optimal power and
rate control strategy that achieves the sum capacity of the symmetric uplink fading
channel.
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1. Show that the optimal power/rate allocation policy for achieving the sum capacity
of the symmetric uplink fading channel can be obtained by solving for each fading
state the optimization problem:

max
r�p

K∑
k=1

rk−�
K∑
k=1

pk� (6.76)

subject to the constraint that

r ∈ ��p�h�� (6.77)

where ��p�h� is the uplink AWGN channel capacity region with received power
pk�hk�2. Here � is chosen to meet the average power constraint of P for each user.

2. What happens when the channels are not symmetric but we are still interested in
the sum rate?

Exercise 6.18 [122] In the text, we focused on computing the power/rate allocation
policy that maximizes the sum rate. More generally, we can look for the policy that
maximizes a weighted sum of rates

∑
k �kRk. Since the uplink fading channel capacity

region is convex, solving this for all non-negative �i will enable us to characterize
the entire capacity region (as opposed to just the sum capacity point).

In analogy with Exercise 6.17, it can be shown that the optimal power/rate allocation
policy can be computed by solving for each fading state h the optimization problem:

max
r�p

K∑
k=1

�krk−
K∑
k=1

�kpk� (6.78)

subject to the constraint that

r ∈ ��p�h�� (6.79)

where the �k are chosen to meet the average power constraints Pk of the users (averaged
over the fading distribution). If we define qk �= pk�hk�2 as the received power, then
we can rewrite the optimization problem as

max
r�q

K∑
k=1

�krk−
K∑
k=1

�k
�hk�2

pk (6.80)

subject to the constraint that

r ∈ ��q�� (6.81)

where ��q� is the uplink AWGN channel capacity region. You are asked to solve this
optimization problem in several steps below.
1. Verify that the capacity of a point-to-point AWGN channel can be written in the

integral form:

Cawgn = log
(
1+ P

N0

)
=
∫ P

0

1
N0 + z

dz� (6.82)
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Give an interpretation in terms of splitting the single user into many infinitesimally
small virtual users, each with power dz (cf. Exercise 6.7). What is the interpretation
of the quantity 1/�N0 + z�dz?

2. Consider first K = 1 in the uplink fading channel above, i.e., the point-to-point
scenario. Define the utility function:

u1�z�=
�1

N0 + z
− �1

�h1�2
� (6.83)

where N0 is the background noise power. Express the optimal solution in terms of
the graph of u1�z� against z. Interpret the solution as a greedy solution and also give
an interpretation of u1�z�. Hint: Make good use of the rate-splitting interpretation
in part 1.

3. Now, for K> 1, define the utility function of user k to be

uk�z�=
�k

N0 + z
− �k

�hk�2
� (6.84)

Guess what the optimal solution should be in terms of the graphs of uk�z� against
z for k= 1� � � � �K.

4. Show that each pair of the utility functions intersects at most once for non-
negative z.

5. Using the previous parts, verify your conjecture in part (3).
6. Can the optimal solution be achieved by successive cancellation?
7. Verify that your solution reduces to the known solution for the sum capacity

problem (i.e., when �1 = · · · = �K).
8. What does your solution look like when there are two groups of users such that

within each group, users have the same �k and �k (but not necessarily the same hk).
9. Using your solution to the optimization problem (6.78), compute numerically the

boundary of the capacity region of the two-user Rayleigh uplink fading channel
with average received SNR of 0 dB for each of the two users.

Exercise 6.19 [124] Consider the downlink fading channel.
1. Formulate and solve the downlink version of Exercise 6.18.
2. The total transmit power varies as a function of time in the optimal solution. But

now suppose we fix the total transmit power to be P at all times (as in the IS-856
system). Re-derive the optimal solution.

Exercise 6.20 Within a cell in the IS-856 system there are eight users on the edge and
one user near the base-station. Every user experiences independent Rayleigh fading,
but the average SNR of the user near the base-station is  times that of the users on
the edge. Suppose the average SNR of a cell edge user is 0 dB when all the power of
the base-station is allocated to it. A fixed transmit power of P is used at all times.
1. Simulate the proportional fair scheduling algorithm for tc large and compute the

performance of each user for a range of  from 1 to 100. You can assume the use
of capacity-achieving codes.

2. Fix  . Show how you would compute the optimal achievable rate among all
strategies for the user near the base-station, given a (equal) rate for all the users
on the edge. Hint: Use the results in Exercise 6.19.
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3. Plot the potential gain in rate for the strong user over what it gets under the
proportional fair algorithm, for the same rate for the weak users.

Exercise 6.21 In Section 6.6, we have seen that the multiuser diversity gain comes
about because the effective channel gain becomes the maximum of the channel gains
of the K users:

�h�2 �= max
k=1 � � � K

�hk�2�

1. Let h1� � � � � hK be i.i.d. �� (0,1) random variables. Show that

���h�2�=
K∑
k=1

1
k
� (6.85)

Hint: You might find it easier to prove the following stronger result (using
induction):

�h�2 has the same distribution as
K∑
k=1

�hk�2
k

� (6.86)

2. Using the previous part, or directly, show that

���h�2�
logeK

→ 1 as K → �� (6.87)

thus the mean of the effective channel grows logarithmically with the number of
users.

3. Now suppose h1� � � � � hK are i.i.d. �� �
√
�/

√
1+��1/�1+��� (i.e., Rician ran-

dom variables with the ratio of specular path power to diffuse path power equal
to �). Show that

���h�2�
logeK

→ 1
1+�

as K → �� (6.88)

i.e., the mean of the effective channel is now reduced by a factor 1+� compared
to the Rayleigh fading case. Can you see this result intuitively as well? Hint: You
might find the following limit theorem (p. 261 of [28]) useful for this exercise. Let
h1� � � � � hK be i.i.d. real random variables with a common cdf F�·� and pdf f�·�
satisfying F�h� is less than 1 and is twice differentiable for all h, and is such that

lim
h→�

d
dh

[
1−F�h�

f�h�

]
= 0� (6.89)

Then

max
1≤k≤K

Kf �lK� �hk− lK�

converges in distribution to a limiting random variable with cdf

exp�−e−x��

In the above, lK is given by F�lK�= 1−1/K. This result states that the maximum
of K such i.i.d. random variables grows like lK .
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Exercise 6.22 (Selective feedback) The downlink of IS-856 has K users each experi-
encing i.i.d. Rayleigh fading with average SNR of 0 dB. Each user selectively feeds
back the requested rate only if its channel is greater than a threshold  . Suppose
 is chosen such that the probability that no one sends a requested rate is �. Find
the expected number of users that sends in a requested rate. Plot this number for
K = 2�4�8�16�32�64 and for �= 0�1 and �= 0�01. Is selective feedback effective?

Exercise 6.23 The discussions in Section 6.7.2 about channel measurement, prediction
and feedback are based on an FDD system. Discuss the analogous issues for a TDD
system, both in the uplink and in the downlink.

Exercise 6.24 Consider the two-user downlink AWGN channel (cf. (6.16)):

yk�m�= hkx�m�+ zk�m�� k= 1�2� (6.90)

Here zk�m� are i.i.d. �� �0�N0� Gaussian processes marginally �k= 1�2�. Let us take
�h1�> �h2� for this problem.
1. Argue that the capacity region of this downlink channel does not depend on the

correlation between the additive Gaussian noise processes z1�m� and z2�m�. Hint:
Since the two users cannot cooperate, it should be intuitive that the error probability
for user k depends only on the marginal distribution of zk�m� (for both k= 1�2).

2. Now consider the following specific correlation between the two additive noises
of the users. The pair �z1�m�� z2�m�� is i.i.d. with time m with the distribution
�� �0�Kz�. To preserve the marginals, the diagonal entries of the covariance
matrix Kz have to be both equal to N0. The only parameter that is free to be chosen
is the off-diagonal element (denoted by "N0 with �"� ≤ 1):

Kz =
[
N0 "N0

"N0 N0

]
�

Let us now allow the two users to cooperate, in essence creating a point-to-point
AWGN channel with a single transmit but two receive antennas. Calculate the
capacity �C�"�� of this channel as a function of " and show that if the rate pair
�R1�R2� is within the capacity region of the downlink AWGN channel, then

R1 +R2 ≤ C�"�� (6.91)

3. We can now choose the correlation " to minimize the upper bound in (6.91). Find
the minimizing " (denoted by "min) and show that the corresponding (minimal)
C�"min� is equal to log�1+�h1�2P/N0�.

4. The result of the calculation in the previous part is rather surprising: the rate
log�1+�h1�2P/N0� can be achieved by simply user 1 alone. This means that with
a specific correlation �"min�, cooperation among the users is not gainful. Show
this formally by proving that for every time m with the correlation given by "min,
the sequence of random variables x�m�� y1�m�� y2�m� form a Markov chain (i.e.,
conditioned on y1�m�, the random variables x�m� and y2�m� are independent).
This technique is useful in characterizing the capacity region of more involved
downlinks, such as when there are multiple antennas at the base station.

Exercise 6.25 Consider the rate vectors in the downlink AWGN channel (cf. (6.16))
with superposition coding and orthogonal signaling as given in (6.22) and (6.23),
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respectively. Show that superposition coding is strictly better than the orthogonal
schemes, i.e., for every non-zero rate pair achieved by an orthogonal scheme, there is
a superposition coding scheme which allows each user to strictly increase its rate.

Exercise 6.26 A reading exercise is to study [8], where the sufficiency of superposition
encoding and decoding for the downlink AWGN channel is shown.

Exercise 6.27 Consider the two-user symmetric downlink fading channel with receiver
CSI alone (cf. (6.50)). We have seen that the capacity region of the downlink
channel does not depend on the correlation between the additive noise processes
z1�m� and z2�m� (cf. Exercise 6.24(1)). Consider the following specific correlation:
�z1�m�� z2�m�� are �� �0�K�m�� and independent in time m. To preserve the marginal
variance, the diagonal entries of the covariance matrix K�m� must be N0 each. Let us
denote the off-diagonal term by "�m�N0 (with �"�m�� ≤ 1). Suppose now we let the
two users cooperate.
1. Show that by a careful choice of "�m� (as a function of h1�m� and h2�m�), cooperation

is not gainful: that is, for any reliable rates R1�R2 in the downlink fading channel,

R1 +R2 ≤ �

[
log

(
1+ �h�2P

N0

)]
� (6.92)

the same as can be achieved by a single user alone (cf. (6.51)). Here distribution
of h is the symmetric stationary distribution of the fading processes 	hk�m�


(for k= 1�2). Hint: You will find Exercise 6.24(3) useful.
2. Conclude that the capacity region of the symmetric downlink fading channel is

that given by (6.92).

Exercise 6.28 Show that the proportional fair algorithm with an infinite time-scale
window maximizes (among all scheduling algorithms) the sum of the logarithms of
the throughputs of the users. This justifies (6.57). This result has been derived in the
literature at several places, including [12].

Exercise 6.29 Consider the opportunistic beamforming scheme in conjunction with a
proportional fair scheduler operating in a slow fading environment. A reading exercise
is to study Theorem 1 of [137], which shows that the rate available to each user is
approximately equal to the instantaneous rate when it is being transmit beamformed,
scaled down by the number of users.

Exercise 6.30 In a cellular system, the multiuser diversity gain in the downlink is
expressed through the maximum SINR (cf. (6.63))

SINRmax �= max
k=1 � � � K

SINRk =
P�hk�2

N0 +P
∑J

j=1 �gkj �2
� (6.93)

where we have denoted P by the average received power at a user. Let us denote
the ratio P/N0 by SNR. Let us suppose that h1� � � � � hK are i.i.d. �� �0�1� random
variables, and 	gkj� k = 1� � � K� j = 1� � � J
 are i.i.d. �� �0�0�2� random variables
independent of h. (A factor of 0.2 is used to model the average scenario of the mobile
user being closer to the base-station it is communicating with as opposed to all the
other base-stations it is hearing interference from, cf. Section 4.2.3.)
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1. Show using the limit theorem in Exercise 6.21 that

��SINRmax�

xK
→ 1� as K → �� (6.94)

where xK satisfies the non-linear equation:(
1+ xK

5

)J = K exp
(
− xK
SNR

)
� (6.95)

2. Plot xK for K= 1� � � � �16 for different values of SNR (ranging from 0 dB to 20 dB).
Can you intuitively justify the observation from the plot that xK increases with
increasing SNR values? Hint: The probability that �hk�2 is less than or equal to a
small positive number � is approximately equal to � itself, while the probability that
�hk�2 is larger than a large number 1/� is exp�−1/��. Thus the likely way SINR
becomes large is by the denominator being small as opposed to the numerator
becoming large.

3. Show using part (1), or directly, that at small values of SNR the mean of the
effective SINR grows like logK. You can also see this directly from (6.93): at
small values of SNR, the effective SINR is simply the maximum of K Rayleigh
distributed random variables and from Exercise 6.21(2) we know that the mean
value grows like logK.

4. At very high values of SNR, we can approximate exp�−xK/SNR� in (6.95) by 1.
With this approximation, show, using part (1), that the scaling xK is approximately
like K1/J . This is a faster growth rate than the one at low SNR.

5. In a cellular system, typically the value of P is chosen such that the background
noise N0 and the interference term are of the same order. This makes sense for a
system where there is no scheduling of users: since the system is interference plus
noise limited, there is no point in making one of them (interference or background
noise) much smaller than the other. In our notation here, this means that SNR is
approximately 0 dB. From the calculations of this exercise what design setting of
P can you infer for a system using the multiuser diversity harnessing scheduler?
Thus, conventional transmit power settings will have to be revisited in this new
system point of view.

Exercise 6.31 (Interaction between space-time codes and multiuser diversity schedul-
ing) A design is proposed for the downlink IS-856 using dual transmit antennas at the
base-station. It employs the Alamouti scheme when transmitting to a single user and
among the users schedules the user with the best effective instantaneous SNR under
the Alamouti scheme. We would like to compare the performance gain, if any, of
using this scheme as opposed to using just a single transmit antenna and scheduling
to the user with the best instantaneous SNR. Assume independent Rayleigh fading
across the transmit antennas.
1. Plot the distribution of the instantaneous effective SNR under the Alamouti scheme,

and compare that to the distribution of the SNR for a single antenna.
2. Suppose there is only a single user (i.e., K = 1). From your plot in part (1), do you

think the dual transmit antennas provide any gain? Justify your answer. Hint: Use
Jensen’s inequality.

3. How about when K > 1? Plot the achievable throughput under both schemes at
average SNR = 0dB and for different values of K.

4. Is the proposed way of using dual transmit antennas smart?
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7 MIMO I: spatial multiplexing
and channel modeling

In this book, we have seen several different uses of multiple antennas in
wireless communication. In Chapter 3, multiple antennas were used to provide
diversity gain and increase the reliability of wireless links. Both receive
and transmit diversity were considered. Moreover, receive antennas can also
provide a power gain. In Chapter 5, we saw that with channel knowledge at
the transmitter, multiple transmit antennas can also provide a power gain via
transmit beamforming. In Chapter 6, multiple transmit antennas were used
to induce channel variations, which can then be exploited by opportunistic
communication techniques. The scheme can be interpreted as opportunistic
beamforming and provides a power gain as well.
In this and the next few chapters, we will study a new way to use multiple

antennas. We will see that under suitable channel fading conditions, having
both multiple transmit and multiple receive antennas (i.e., a MIMO channel)
provides an additional spatial dimension for communication and yields a
degree-of- freedom gain. These additional degrees of freedom can be exploited
by spatially multiplexing several data streams onto the MIMO channel, and
lead to an increase in the capacity: the capacity of such a MIMO channel
with n transmit and receive antennas is proportional to n.
Historically, it has been known for a while that a multiple access system

with multiple antennas at the base-station allows several users to simultane-
ously communicate with the base-station. The multiple antennas allow spatial
separation of the signals from the different users. It was observed in the mid
1990s that a similar effect can occur for a point-to-point channel with multiple
transmit and receive antennas, i.e., even when the transmit antennas are not
geographically far apart. This holds provided that the scattering environment
is rich enough to allow the receive antennas to separate out the signals from
the different transmit antennas. We have already seen how channel fading
can be exploited by opportunistic communication techniques. Here, we see
yet another example where channel fading is beneficial to communication.
It is insightful to compare and contrast the nature of the performance

gains offered by opportunistic communication and by MIMO techniques.

290
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Opportunistic communication techniques primarily provide a power gain.
This power gain is very significant in the low SNR regime where systems are
power-limited but less so in the high SNR regime where they are bandwidth-
limited. As we will see, MIMO techniques can provide both a power gain
and a degree-of-freedom gain. Thus, MIMO techniques become the primary
tool to increase capacity significantly in the high SNR regime.
MIMO communication is a rich subject, and its study will span the remain-

ing chapters of the book. The focus of the present chapter is to investigate
the properties of the physical environment which enable spatial multiplexing
and show how these properties can be succinctly captured in a statistical
MIMO channel model. We proceed as follows. Through a capacity analysis,
we first identify key parameters that determine the multiplexing capability of
a deterministic MIMO channel. We then go through a sequence of physical
MIMO channels to assess their spatial multiplexing capabilities. Building on
the insights from these examples, we argue that it is most natural to model the
MIMO channel in the angular domain and discuss a statistical model based
on that approach. Our approach here parallels that in Chapter 2, where we
started with a few idealized examples of multipath wireless channels to gain
insights into the underlying physical phenomena, and proceeded to statistical
fading models, which are more appropriate for the design and performance
analysis of communication schemes. We will in fact see a lot of parallelism
in the specific channel modeling technique as well.
Our focus throughout is on flat fading MIMO channels. The extensions to

frequency-selective MIMO channels are straightforward and are developed in
the exercises.

7.1 Multiplexing capability of deterministic MIMO channels

A narrowband time-invariant wireless channel with nt transmit and nr receive
antennas is described by an nr by nt deterministic matrix H. What are the key
properties of H that determine how much spatial multiplexing it can support?
We answer this question by looking at the capacity of the channel.

7.1.1 Capacity via singular value decomposition

The time-invariant channel is described by

y=Hx+w� (7.1)

where x ∈ �nt , y ∈ �nr and w ∼ �� �0�N0Inr� denote the transmitted sig-
nal, received signal and white Gaussian noise respectively at a symbol time
(the time index is dropped for simplicity). The channel matrix H ∈ �nr×nt
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is deterministic and assumed to be constant at all times and known to both
the transmitter and the receiver. Here, hij is the channel gain from transmit
antenna j to receive antenna i. There is a total power constraint, P, on the
signals from the transmit antennas.

This is a vector Gaussian channel. The capacity can be computed by
decomposing the vector channel into a set of parallel, independent scalar
Gaussian sub-channels. From basic linear algebra, every linear transformation
can be represented as a composition of three operations: a rotation operation, a
scaling operation, and another rotation operation. In the notation of matrices,
the matrix H has a singular value decomposition (SVD):

H= U�V∗� (7.2)

where U ∈ �nr×nr and V ∈ �nt×nt are (rotation) unitary matrices1 and � ∈
�nr×nt is a rectangular matrix whose diagonal elements are non-negative real
numbers and whose off-diagonal elements are zero.2 The diagonal elements
�1 ≥ �2 ≥ · · · ≥ �nmin

are the ordered singular values of the matrix H, where
nmin �=min�nt� nr�. Since

HH∗ = U��tU∗� (7.3)

the squared singular values �2
i are the eigenvalues of the matrix HH∗ and

also of H∗H. Note that there are nmin singular values. We can rewrite the
SVD as

H=
nmin∑
i=1

�iuiv
∗
i � (7.4)

i.e., the sum of rank-one matrices �iuiv
∗
i . It can be seen that the rank of H is

precisely the number of non-zero singular values.
If we define

x̃ �= V∗x� (7.5)

ỹ �= U∗y� (7.6)

w̃ �= U∗w� (7.7)

then we can rewrite the channel (7.1) as

ỹ=�x̃+ w̃� (7.8)

1 Recall that a unitary matrix U satisfies U∗U= UU∗ = I.
2 We will call this matrix diagonal even though it may not be square.
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Figure 7.1 Converting the
MIMO channel into a parallel
channel through the SVD.
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where w̃ ∼ �� �0�N0Inr� has the same distribution as w (cf. (A.22) in
Appendix A), and �x̃�2 = �x�2. Thus, the energy is preserved and we have
an equivalent representation as a parallel Gaussian channel:

ỹi = �ix̃i+ w̃i� i= 1�2� � � � � nmin� (7.9)

The equivalence is summarized in Figure 7.1.
The SVD decomposition can be interpreted as two coordinate transforma-

tions: it says that if the input is expressed in terms of a coordinate system
defined by the columns of V and the output is expressed in terms of a coordi-
nate system defined by the columns of U, then the input/output relationship
is very simple. Equation (7.8) is a representation of the original channel (7.1)
with the input and output expressed in terms of these new coordinates.

We have already seen examples of Gaussian parallel channels in Chapter 5,
when we talked about capacities of time-invariant frequency-selective chan-
nels and about time-varying fading channels with full CSI. The time-invariant
MIMO channel is yet another example. Here, the spatial dimension plays the
same role as the time and frequency dimensions in those other problems. The
capacity is by now familiar:

C =
nmin∑
i=1

log
(
1+ P∗

i �
2
i

N0

)
bits/s/Hz� (7.10)

where P∗
1 � � � � �P

∗
nmin

are the waterfilling power allocations:

P∗
i =

(
�− N0

�2
i

)+
� (7.11)

with � chosen to satisfy the total power constraint
∑

i P
∗
i = P. Each �i

corresponds to an eigenmode of the channel (also called an eigenchannel).
Each non-zero eigenchannel can support a data stream; thus, the MIMO
channel can support the spatial multiplexing of multiple streams. Figure 7.2
pictorially depicts the SVD-based architecture for reliable communication.
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There is a clear analogy between this architecture and the OFDM systemFigure 7.2 The SVD architecture
for MIMO communication. introduced in Chapter 3. In both cases, a transformation is applied to convert a

matrix channel into a set of parallel independent sub-channels. In the OFDM
setting, the matrix channel is given by the circulant matrix C in (3.139),
defined by the ISI channel together with the cyclic prefix added onto the
input symbols. In fact, the decomposition C=Q−1�Q in (3.143) is the SVD
decomposition of a circulant matrix C, with U = Q−1 and V∗ = Q. The
important difference between the ISI channel and the MIMO channel is that,
for the former, the U and V matrices (DFTs) do not depend on the specific
realization of the ISI channel, while for the latter, they do depend on the
specific realization of the MIMO channel.

7.1.2 Rank and condition number

What are the key parameters that determine performance? It is simpler to
focus separately on the high and the low SNR regimes. At high SNR, the
water level is deep and the policy of allocating equal amounts of power on
the non-zero eigenmodes is asymptotically optimal (cf. Figure 5.24(a)):

C ≈
k∑
i=1

log
(
1+ P�2

i

kN0

)
≈ k log SNR+

k∑
i=1

log
(
�2
i

k

)
bits/s/Hz� (7.12)

where k is the number of non-zero �2
i , i.e., the rank of H, and SNR �= P/N0.

The parameter k is the number of spatial degrees of freedom per second per
hertz. It represents the dimension of the transmitted signal as modified by
the MIMO channel, i.e., the dimension of the image of H. This is equal to
the rank of the matrix H and with full rank, we see that a MIMO channel
provides nmin spatial degrees of freedom.
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The rank is a first-order but crude measure of the capacity of the channel.
To get a more refined picture, one needs to look at the non-zero singular
values themselves. By Jensen’s inequality,

1
k

k∑
i=1

log
(
1+ P

kN0

�2
i

)
≤ log

(
1+ P

kN0

(
1
k

k∑
i=1

�2
i

))
(7.13)

Now,

k∑
i=1

�2
i = Tr�HH∗�=∑

i�j

�hij�2� (7.14)

which can be interpreted as the total power gain of the matrix channel if
one spreads the energy equally between all the transmit antennas. Then, the
above result says that among the channels with the same total power gain,
the one that has the highest capacity is the one with all the singular values
equal. More generally, the less spread out the singular values, the larger the
capacity in the high SNR regime. In numerical analysis, �maxi �i/mini �i� is
defined to be the condition number of the matrix H. The matrix is said to be
well-conditioned if the condition number is close to 1. From the above result,
an important conclusion is:

Well-conditioned channel matrices facilitate communication in the high
SNR regime.

At low SNR, the optimal policy is to allocate power only to the strongest
eigenmode (the bottom of the vessel to waterfill, cf. Figure 5.24(b)). The
resulting capacity is

C ≈ P

N0

(
max

i
�2
i

)
log2 e bits/s/Hz� (7.15)

The MIMO channel provides a power gain of maxi �
2
i . In this regime, the

rank or condition number of the channel matrix is less relevant. What matters
is how much energy gets transferred from the transmitter to the receiver.

7.2 Physical modeling of MIMO channels

In this section, we would like to gain some insight on how the spatial multi-
plexing capability of MIMO channels depends on the physical environment.
We do so by looking at a sequence of idealized examples and analyzing the
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rank and conditioning of their channel matrices. These deterministic examples
will also suggest a natural approach to statistical modeling of MIMO chan-
nels, which we discuss in Section 7.3. To be concrete, we restrict ourselves
to uniform linear antenna arrays, where the antennas are evenly spaced on a
straight line. The details of the analysis depend on the specific array structure
but the concepts we want to convey do not.

7.2.1 Line-of-sight SIMO channel

The simplest SIMO channel has a single line-of-sight (Figure 7.3(a)). Here,
there is only free space without any reflectors or scatterers, and only a
direct signal path between each antenna pair. The antenna separation is �r�c,
where �c is the carrier wavelength and �r is the normalized receive antenna
separation, normalized to the unit of the carrier wavelength. The dimension
of the antenna array is much smaller than the distance between the transmitter
and the receiver.

The continuous-time impulse response hi��� between the transmit antenna
and the ith receive antenna is given by

hi���= a���−di/c�� i= 1� � � � � nr� (7.16)

Figure 7.3 (a) Line-of-sight
channel with single transmit
antenna and multiple receive
antennas. The signals from the
transmit antenna arrive almost
in parallel at the receiving
antennas. (b) Line-of-sight
channel with multiple transmit
antennas and single receive
antenna.
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where di is the distance between the transmit antenna and ith receive antenna,
c is the speed of light and a is the attenuation of the path, which we assume
to be the same for all antenna pairs. Assuming di/c 
 1/W , where W is
the transmission bandwidth, the baseband channel gain is given by (2.34)
and (2.27):

hi = a exp
(
− j2�fcdi

c

)
= a exp

(
− j2�di

�c

)
� (7.17)

where fc is the carrier frequency. The SIMO channel can be written as

y= hx+w (7.18)

where x is the transmitted symbol, w ∼ �� �0�N0I� is the noise and y is the
received vector. The vector of channel gains h= �h1� � � � � hnr �

t is sometimes
called the signal direction or the spatial signature induced on the receive
antenna array by the transmitted signal.
Since the distance between the transmitter and the receiver is much larger

than the size of the receive antenna array, the paths from the transmit antenna
to each of the receive antennas are, to a first-order, parallel and

di ≈ d+ �i−1��r�c cos�� i= 1� � � � � nr� (7.19)

where d is the distance from the transmit antenna to the first receive
antenna and � is the angle of incidence of the line-of-sight onto the receive
antenna array. (You are asked to verify this in Exercise 7.1.) The quantity
�i−1��r�c cos� is the displacement of receive antenna i from receive antenna
1 in the direction of the line-of-sight. The quantity

% �= cos�

is often called the directional cosine with respect to the receive antenna array.
The spatial signature h= �h1� � � � � hnr �

t is therefore given by

h= a exp
(
− j2�d

�c

)
⎡⎢⎢⎢⎢⎢⎢⎣

1
exp�−j2��r%�

exp�−j2�2�r%�
���

exp�−j2��nr −1��r%�

⎤⎥⎥⎥⎥⎥⎥⎦ � (7.20)
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i.e., the signals received at consecutive antennas differ in phase by 2��r%

due to the relative delay. For notational convenience, we define

er�%� �=
1√
nr

⎡⎢⎢⎢⎢⎢⎢⎣
1

exp�−j2��r%�

exp�−j2�2�r%�
���

exp�−j2��nr −1��r%�

⎤⎥⎥⎥⎥⎥⎥⎦ � (7.21)

as the unit spatial signature in the directional cosine %.
The optimal receiver simply projects the noisy received signal onto the

signal direction, i.e., maximal ratio combining or receive beamforming
(cf. Section 5.3.1). It adjusts for the different delays so that the received
signals at the antennas can be combined constructively, yielding an nr-fold
power gain. The resulting capacity is

C = log
(
1+ P�h�2

N0

)
= log

(
1+ Pa2nr

N0

)
bits/s/Hz� (7.22)

The SIMO channel thus provides a power gain but no degree-of-freedom
gain.

In the context of a line-of-sight channel, the receive antenna array is some-
times called a phased-array antenna.

7.2.2 Line-of-sight MISO channel

The MISO channel with multiple transmit antennas and a single receive
antenna is reciprocal to the SIMO channel (Figure 7.3(b)). If the transmit
antennas are separated by �t�c and there is a single line-of-sight with angle
of departure of � (directional cosine % �= cos�), the MISO channel is
given by

y = h∗x+w (7.23)

where

h= a exp
(
j2�d
�c

)
⎡⎢⎢⎢⎢⎢⎢⎣

1
exp�−j2��t%�

exp�−j2�2�t%�
���

exp�−j2��nr −1��t%�

⎤⎥⎥⎥⎥⎥⎥⎦ � (7.24)
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The optimal transmission (transmit beamforming) is performed along the
direction et�%� of h, where

et�%� �=
1√
nt

⎡⎢⎢⎢⎢⎢⎢⎣
1

exp�−j2��t%�

exp�−j2�2�t%�
���

exp�−j2��nt −1��t%�

⎤⎥⎥⎥⎥⎥⎥⎦ � (7.25)

is the unit spatial signature in the transmit direction of % (cf. Section 5.3.2).
The phase of the signal from each of the transmit antennas is adjusted so that
they add constructively at the receiver, yielding an nt-fold power gain. The
capacity is the same as (7.22). Again there is no degree-of-freedom gain.

7.2.3 Antenna arrays with only a line-of-sight path

Let us now consider a MIMO channel with only direct line-of-sight paths
between the antennas. Both the transmit and the receive antennas are in linear
arrays. Suppose the normalized transmit antenna separation is �t and the
normalized receive antenna separation is �r . The channel gain between the
kth transmit antenna and the ith receive antenna is

hik = a exp�−j2�dik/�c�� (7.26)

where dik is the distance between the antennas, and a is the attenuation along
the line-of-sight path (assumed to be the same for all antenna pairs). Assuming
again that the antenna array sizes are much smaller than the distance between
the transmitter and the receiver, to a first-order:

dik = d+ �i−1��r�c cos�r − �k−1��t�c cos�t� (7.27)

where d is the distance between transmit antenna 1 and receive antenna 1, and
�t��r are the angles of incidence of the line-of-sight path on the transmit and
receive antenna arrays, respectively. Define %t �= cos�t and %r �= cos�r .
Substituting (7.27) into (7.26), we get

hik = a exp
(
− j2�d

�c

)
·exp� j2��k−1��t%t� ·exp�−j2��i−1��r%r� (7.28)

and we can write the channel matrix as

H= a
√
ntnr exp

(
− j2�d

�c

)
er�%r�et�%t�

∗� (7.29)
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where er�·� and et�·� are defined in (7.21) and (7.25), respectively. Thus, H
is a rank-one matrix with a unique non-zero singular value �1 = a

√
ntnr . The

capacity of this channel follows from (7.10):

C = log
(
1+ Pa2ntnr

N0

)
bits/s/Hz� (7.30)

Note that although there are multiple transmit and multiple receive antennas,
the transmitted signals are all projected onto a single-dimensional space (the
only non-zero eigenmode) and thus only one spatial degree of freedom is
available. The receive spatial signatures at the receive antenna array from all
the transmit antennas (i.e., the columns of H) are along the same direction,
er�%r�. Thus, the number of available spatial degrees of freedom does not
increase even though there are multiple transmit and multiple receive antennas.

The factor ntnr is the power gain of the MIMO channel. If nt = 1, the power
gain is equal to the number of receive antennas and is obtained by maximal
ratio combining at the receiver (receive beamforming). If nr = 1, the power
gain is equal to the number of transmit antennas and is obtained by transmit
beamforming. For general numbers of transmit and receive antennas, one gets
benefits from both transmit and receive beamforming: the transmitted signals
are constructively added in-phase at each receive antenna, and the signal at
each receive antenna is further constructively combined with each other.
In summary: in a line-of-sight only environment, a MIMO channel provides

a power gain but no degree-of-freedom gain.

7.2.4 Geographically separated antennas

Geographically separated transmit antennas
How do we get a degree-of-freedom gain? Consider the thought experiment
where the transmit antennas can now be placed very far apart, with a separation
of the order of the distance between the transmitter and the receiver. For
concreteness, suppose there are two transmit antennas (Figure 7.4). Each

Figure 7.4 Two geographically
separated transmit antennas
each with line-of-sight to a
receive antenna array.

.

.

.
Rx antenna
     array

φr1φr2
Tx antenna 1

Tx antenna 2
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transmit antenna has only a line-of-sight path to the receive antenna array,
with attenuations a1 and a2 and angles of incidence �r1 and �r2, respectively.
Assume that the delay spread of the signals from the transmit antennas is
much smaller than 1/W so that we can continue with the single-tap model.
The spatial signature that transmit antenna k impinges on the receive antenna
array is

hk = ak
√
nr exp

(−j2�d1k

�c

)
er�%rk�� k= 1�2� (7.31)

where d1k is the distance between transmit antenna k and receive antenna 1,
%rk �= cos�rk and er�·� is defined in (7.21).
It can be directly verified that the spatial signature er�%� is a periodic

function of % with period 1/�r , and within one period it never repeats itself
(Exercise 7.2). Thus, the channel matrix H= �h1�h2� has distinct and linearly
independent columns as long as the separation in the directional cosines

%r �=%r2−%r1 
= 0 mod
1
�r

� (7.32)

In this case, it has two non-zero singular values �2
1 and �2

2, yielding two
degrees of freedom. Intuitively, the transmitted signal can now be received
from two different directions that can be resolved by the receive antenna
array. Contrast this with the example in Section 7.2.3, where the antennas are
placed close together and the spatial signatures of the transmit antennas are
all aligned with each other.

Note that since%r1�%r2, being directional cosines, lie in �−1�1� and cannot
differ by more than 2, the condition (7.32) reduces to the simpler condition
%r1 
=%r2 whenever the antenna spacing �r ≤ 1/2.

Resolvability in the angular domain
The channel matrix H is full rank whenever the separation in the directional
cosines %r 
= 0 mod 1/�r . However, it can still be very ill-conditioned. We
now give an order-of-magnitude estimate on how large the angular separation
has to be so that H is well-conditioned and the two degrees of freedom can
be effectively used to yield a high capacity.

The conditioning of H is determined by how aligned the spatial signatures
of the two transmit antennas are: the less aligned the spatial signatures are, the
better the conditioning of H. The angle � between the two spatial signatures
satisfies

� cos�� �= �er�%r1�
∗er�%r2��� (7.33)

Note that er�%r1�
∗er�%r2� depends only on the difference %r �= %r2 −%r1.

Define then

fr�%r2−%r1� �= er�%r1�
∗er�%r2�� (7.34)
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By direct computation (Exercise 7.3),

fr�%r�=
1
nr

exp� j��r%r�nr −1��
sin��Lr%r�

sin��Lr%r/nr�
� (7.35)

where Lr �= nr�r is the normalized length of the receive antenna array. Hence,

� cos�� =
∣∣∣∣ sin��Lr%r�

nr sin��Lr%r/nr�

∣∣∣∣ � (7.36)

The conditioning of the matrix H depends directly on this parameter. For
simplicity, consider the case when the gains a1 = a2 = a. The squared singular
values of H are

�2
1 = a2nr�1+� cos���� �2

2 = a2nr�1−� cos��� (7.37)

and the condition number of the matrix is

�1

�2

=
√
1+� cos��
1−� cos�� � (7.38)

The matrix is ill-conditioned whenever � cos�� ≈ 1, and is well-conditioned
otherwise. In Figure 7.5, this quantity � cos�� = �fr�%r�� is plotted as a function
of %r for a fixed array size and different values of nr . The function fr�·� has
the following properties:

• fr�%r� is periodic with period nr/Lr = 1/�r;
• fr�%r� peaks at %r = 0; f�0�= 1;
• fr�%r�= 0 at %r = k/Lr� k= 1� � � � � nr −1.

The periodicity of fr�·� follows from the periodicity of the spatial signature
er�·�. It has a main lobe of width 2/Lr centered around integer multiples of
1/�r . All the other lobes have significantly lower peaks. This means that the
signatures are close to being aligned and the channel matrix is ill conditioned
whenever

�%r −
m

�r

� 
 1
Lr

(7.39)

for some integer m. Now, since %r ranges from −2 to 2, this condition
reduces to

�%r� 

1
Lr

(7.40)

whenever the antenna separation �r ≤ 1/2.



303 7.2 Physical modeling of MIMO channels

Figure 7.5 The function |f(�r)|
plotted as a function of �r for
fixed Lr = 8 and different
values of the number of
receive antennas nr .
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Increasing the number of antennas for a fixed antenna length Lr does not
substantially change the qualitative picture above. In fact, as nr → � and
�r → 0,

fr�%r�→ ej�Lr%r sinc�Lr%r� (7.41)

and the dependency of fr�·� on nr vanishes. Equation (7.41) can be directly
derived from (7.35), using the definition sinc�x�= sin��x�/�x (cf. (2.30)).
The parameter 1/Lr can be thought of as a measure of resolvability in the

angular domain: if%r 
 1/Lr , then the signals from the two transmit antennas
cannot be resolved by the receive antenna array and there is effectively only
one degree of freedom. Packing more and more antenna elements in a given
amount of space does not increase the angular resolvability of the receive
antenna array; it is intrinsically limited by the length of the array.

A common pictorial representation of the angular resolvability of an antenna
array is the (receive) beamforming pattern. If the signal arrives from a single
direction �0, then the optimal receiver projects the received signal onto the
vector er�cos�0�; recall that this is called the (receive) beamforming vector.
A signal from any other direction � is attenuated by a factor of

�er�cos�0�
∗er�cos��� = �fr�cos�− cos�0��� (7.42)

The beamforming pattern associated with the vector er�cos�� is the polar
plot

��� �fr�cos�− cos�0��� (7.43)
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Figure 7.6 Receive
beamforming patterns aimed
at 90� , with antenna array
length Lr = 2 and different
numbers of receive antennas
nr . Note that the beamforming
pattern is always symmetrical
about the 0� − 180� axis, so
lobes always appear in pairs.
For nr = 4� 6� 32, the antenna
separation �r ≤ 1/2, and
there is a single main lobe
around 90� (together with its
mirror image). For nr = 2,
�r = 1> 1/2 and there is an
additional pair of main lobes.
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(Figures 7.6 and 7.7). Two important points to note about the beamforming
pattern:

• It has main lobes around �0 and also around any angle � for which

cos�= cos�0 mod
1
�r

� (7.44)

this follows from the periodicity of fr�·�. If the antenna separation �r is
less than 1/2, then there is only one main lobe at �, together with its mirror
image at −�. If the separation is greater than 1/2, there can be several
more pairs of main lobes (Figure 7.6).

• The main lobe has a directional cosine width of 2/Lr; this is also called
the beam width. The larger the array length Lr , the narrower the beam
and the higher the angular resolution: the array filters out the signal from
all directions except for a narrow range around the direction of interest
(Figure 7.7). Signals that arrive along paths with angular seperation larger
than 1/Lr can be discriminated by focusing different beams at them.

There is a clear analogy between the roles of the antenna array size Lr and
the bandwidth W in a wireless channel. The parameter 1/W measures the
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Figure 7.7 Beamforming
patterns for different antenna
array lengths. (Left) Lr = 4 and
(right) Lr = 8. Antenna
separation is fixed at half the
carrier wavelength. The larger
the length of the array, the
narrower the beam.
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resolvability of signals in the time domain: multipaths arriving at time sepa-
ration much less than 1/W cannot be resolved by the receiver. The parameter
1/Lr measures the resolvability of signals in the angular domain: signals
that arrive within an angle much less than 1/Lr cannot be resolved by the
receiver. Just as over-sampling cannot increase the time-domain resolvability
beyond 1/W , adding more antenna elements cannot increase the angular-
domain resolvability beyond 1/Lr . This analogy will be exploited in the
statistical modeling of MIMO fading channels and explained more precisely
in Section 7.3.

Geographically separated receive antennas
We have increased the number of degrees of freedom by placing the transmit
antennas far apart and keeping the receive antennas close together, but we can
achieve the same goal by placing the receive antennas far apart and keeping
the transmit antennas close together (see Figure 7.8). The channel matrix is
given by

H=
[
h∗
1

h∗
2

]
� (7.45)

Figure 7.8 Two geographically
separated receive antennas
each with line-of-sight from a
transmit antenna array.
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where

hi = ai exp
(
j2�di1
�c

)
et�%ti�� (7.46)

and %ti is the directional cosine of departure of the path from the transmit
antenna array to receive antenna i and di1 is the distance between transmit
antenna 1 and receive antenna i. As long as

%t �=%t2−%t1 
= 0 mod
1
�t

� (7.47)

the two rows ofH are linearly independent and the channel has rank 2, yielding
2 degrees of freedom. The output of the channel spans a two-dimensional
space as we vary the transmitted signal at the transmit antenna array. In order
to make H well-conditioned, the angular separation %t of the two receive
antennas should be of the order of or larger than 1/Lt , where Lt �= nt�t is the
length of the transmit antenna array, normalized to the carrier wavelength.
Analogous to the receive beamforming pattern, one can also define a trans-

mit beamforming pattern. This measures the amount of energy dissipated in
other directions when the transmitter attempts to focus its signal along a direc-
tion �0. The beam width is 2/Lt ; the longer the antenna array, the sharper
the transmitter can focus the energy along a desired direction and the better
it can spatially multiplex information to the multiple receive antennas.

7.2.5 Line-of-sight plus one reflected path

Can we get a similar effect to that of the example in Section 7.2.4, without
putting either the transmit antennas or the receive antennas far apart? Consider
again the transmit and receive antenna arrays in that example, but now suppose
in addition to a line-of-sight path there is another path reflected off a wall
(see Figure 7.9(a)). Call the direct path, path 1 and the reflected path, path 2.
Path i has an attenuation of ai, makes an angle of �ti (%ti �= cos�ti) with
the transmit antenna array and an angle of �ri�%ri �= cos�ri) with the receive
antenna array. The channel H is given by the principle of superposition:

H= ab1er�%r1�et�%t1�
∗ +ab2er�%r2�er�%t2�

∗ (7.48)

where for i= 1�2,

abi �= ai
√
ntnr exp

(
− j2�d�i�

�c

)
� (7.49)

and d�i� is the distance between transmit antenna 1 and receive antenna 1
along path i. We see that as long as

%t1 
=%t2 mod
1
�t

(7.50)
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Figure 7.9 (a) A MIMO
channel with a direct path and
a reflected path. (b) Channel is
viewed as a concatenation of
two channels H′ and H′′ with
intermediate (virtual) relays
A and B.
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%r1 
=%r2 mod
1
�r

� (7.51)

the matrix H is of rank 2. In order to make H well-conditioned, the angular
separation �%t� of the two paths at the transmit array should be of the same
order or larger than 1/Lt and the angular separation �%r � at the receive array
should be of the same order as or larger than 1/Lr , where

%t �= cos�t2− cos�t1� Lt �= nt�t (7.52)

and

%r �= cos�r2− cos�r1� Lr �= nr�r� (7.53)

To see clearly what the role of the multipath is, it is helpful to rewrite H
as H=H′′H′, where

H′′ = [
ab1er�%r1�� a

b
2er�%r2�

]
� H′ =

[
e∗t �%t1�

e∗t �%t2�

]
� (7.54)

H′ is a 2 by nt matrix while H′′ is an nr by 2 matrix. One can interpret H′ as
the matrix for the channel from the transmit antenna array to two imaginary
receivers at point A and point B, as marked in Figure 7.9. Point A is the point
of incidence of the reflected path on the wall; point B is along the line-of-sight
path. Since points A and B are geographically widely separated, the matrix
H′ has rank 2; its conditioning depends on the parameter Lt%t . Similarly,



308 MIMO I: spatial multiplexing and channel modeling

one can interpret the second matrix H′′ as the matrix channel from two
imaginary transmitters at A and B to the receive antenna array. This matrix
has rank 2 as well; its conditioning depends on the parameter Lr%r . If both
matrices are well-conditioned, then the overall channel matrix H is also well-
conditioned.

The MIMO channel with two multipaths is essentially a concatenation of the
nt by 2 channel in Figure 7.8 and the 2 by nr channel in Figure 7.4. Although
both the transmit antennas and the receive antennas are close together, mul-
tipaths in effect provide virtual “relays”, which are geographically far apart.
The channel from the transmit array to the relays as well as the channel from
the relays to the receive array both have two degrees of freedom, and so
does the overall channel. Spatial multiplexing is now possible. In this con-
text, multipath fading can be viewed as providing an advantage that can be
exploited.

It is important to note in this example that significant angular separation
of the two paths at both the transmit and the receive antenna arrays is crucial
for the well-conditionedness of H. This may not hold in some environments.
For example, if the reflector is local around the receiver and is much closer
to the receiver than to the transmitter, then the angular separation %t at the
transmitter is small. Similarly, if the reflector is local around the transmitter
and is much closer to the transmitter than to the receiver, then the angular
separation %r at the receiver is small. In either case H would not be very
well-conditioned (Figure 7.10). In a cellular system this suggests that if the
base-station is high on top of a tower with most of the scatterers and reflectors
locally around the mobile, then the size of the antenna array at the base-station

Figure 7.10 (a) The reflectors
and scatterers are in a ring
locally around the receiver;
their angular separation at the
transmitter is small. (b) The
reflectors and scatterers are in
a ring locally around the
transmitter; their angular
separation at the receiver is
small.
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will have to be many wavelengths to be able to exploit this spatial multiplexing
effect.

Summary 7.1 Multiplexing capability of MIMO channels

SIMO and MISO channels provide a power gain but no degree-of-freedom
gain.

Line-of-sight MIMO channels with co-located transmit antennas and
co-located receive antennas also provide no degree-of-freedom gain.

MIMO channels with far-apart transmit antennas having angular separation
greater than 1/Lr at the receive antenna array provide an effective degree-
of-freedom gain. So do MIMO channels with far-apart receive antennas
having angular separation greater than 1/Lt at the transmit antenna array.

Multipath MIMO channels with co-located transmit antennas and
co-located receive antennas but with scatterers/reflectors far away also
provide a degree-of-freedom gain.

7.3 Modeling of MIMO fading channels

The examples in the previous section are deterministic channels. Building on
the insights obtained, we migrate towards statistical MIMO models which
capture the key properties that enable spatial multiplexing.

7.3.1 Basic approach

In the previous section, we assessed the capacity of physical MIMO channels
by first looking at the rank of the physical channel matrix H and then its
condition number. In the example in Section 7.2.4, for instance, the rank
of H is 2 but the condition number depends on how the angle between the
two spatial signatures compares to the spatial resolution of the antenna array.
The two-step analysis process is conceptually somewhat awkward. It suggests
that physical models of the MIMO channel in terms of individual multipaths
may not be at the right level of abstraction from the point of view of the
design and analysis of communication systems. Rather, one may want to
abstract the physical model into a higher-level model in terms of spatially
resolvable paths.
We have in fact followed a similar strategy in the statistical modeling

of frequency-selective fading channels in Chapter 2. There, the modeling is
directly on the gains of the taps of the discrete-time sampled channel rather
than on the gains of the individual physical paths. Each tap can be thought
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of as a (time-)resolvable path, consisting of an aggregation of individual
physical paths. The bandwidth of the system dictates how finely or coarsely
the physical paths are grouped into resolvable paths. From the point of view
of communication, it is the behavior of the resolvable paths that matters,
not that of the individual paths. Modeling the taps directly rather than the
individual paths has the additional advantage that the aggregation makes
statistical modeling more reliable.
Using the analogy between the finite time-resolution of a band-limited

system and the finite angular-resolution of an array-size-limited system, we
can follow the approach of Section 2.2.3 in modeling MIMO channels. The
transmit and receive antenna array lengths Lt and Lr dictate the degree of
resolvability in the angular domain: paths whose transmit directional cosines
differ by less than 1/Lt and receive directional cosines by less than 1/Lr

are not resolvable by the arrays. This suggests that we should “sample” the
angular domain at fixed angular spacings of 1/Lt at the transmitter and at
fixed angular spacings of 1/Lr at the receiver, and represent the channel in
terms of these new input and output coordinates. The �k� l�th channel gain in
these angular coordinates is then roughly the aggregation of all paths whose
transmit directional cosine is within an angular window of width 1/Lt around
l/Lt and whose receive directional cosine is within an angular window of
width 1/Lr around k/Lr . See Figure 7.11 for an illustration of the linear
transmit and receive antenna array with the corresponding angular windows.
In the following subsections, we will develop this approach explicitly for
uniform linear arrays.

Figure 7.11 A representation
of the MIMO channel in the
angular domain. Due to the
limited resolvability of the
antenna arrays, the physical
paths are partitioned into
resolvable bins of angular
widths 1/Lr by 1/Lt . Here
there are four receive
antennas (Lr = 2) and six
transmit antennas (Lr = 3).
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7.3.2 MIMO multipath channel

Consider the narrowband MIMO channel:

y=Hx+w� (7.55)

The nt transmit and nr receive antennas are placed in uniform linear arrays
of normalized lengths Lt and Lr , respectively. The normalized separation
between the transmit antennas is �t = Lt/nt and the normalized separation
between the receive antennas is �r = Lr/nr . The normalization is by the
wavelength �c of the passband transmitted signal. To simplify notation, we are
now thinking of the channel H as fixed and it is easy to add the time-variation
later on.
Suppose there is an arbitrary number of physical paths between the trans-

mitter and the receiver; the ith path has an attenuation of ai, makes an angle
of �ti (%ti �= cos�ti) with the transmit antenna array and an angle of �ri

(%ri �= cos�ri) with the receive antenna array. The channel matrix H is
given by

H=∑
i

ab
i er�%ri�et�%ti�

∗ (7.56)

where, as in Section 7.2,

ab
i �= ai

√
ntnr exp

(
− j2�d�i�

�c

)
�

er�%� �=
1√
nr

⎡⎢⎢⎢⎣
1

exp�−j2��r%�
���

exp�−j2��nr −1��r%�

⎤⎥⎥⎥⎦ � (7.57)

et�%� �=
1√
nt

⎡⎢⎢⎢⎣
1

exp�−j2��t%�
���

exp�−j2��nt −1��t%�

⎤⎥⎥⎥⎦ � (7.58)

Also, d�i� is the distance between transmit antenna 1 and receive antenna 1
along path i. The vectors et�%� and er�%� are, respectively, the transmitted
and received unit spatial signatures along the direction %.

7.3.3 Angular domain representation of signals

The first step is to define precisely the angular domain representation of the
transmitted and received signals. The signal arriving at a directional cosine %
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onto the receive antenna array is along the unit spatial signature er�%�, given
by (7.57). Recall (cf. (7.35))

fr�%� �= er�0�
∗er�%�=

1
nr

exp� j��r%�nr −1��
sin��Lr%�

sin��Lr%/nr�
� (7.59)

analyzed in Section 7.2.4. In particular, we have

fr

(
k

Lr

)
= 0� andfr

(−k
Lr

)
= fr

(
nr −k

Lr

)
� k= 1� � � � � nr −1 (7.60)

(Figure 7.5). Hence, the nr fixed vectors:

�r �=
{
er�0�� er

(
1
Lr

)
� � � � � er

(
nr −1
Lr

)}
(7.61)

form an orthonormal basis for the received signal space �nr . This basis
provides the representation of the received signals in the angular domain.

Why is this representation useful? Recall that associated with each vec-
tor er�%� is its beamforming pattern (see Figures 7.6 and 7.7 for exam-
ples). It has one or more pairs of main lobes of width 2/Lr and small
side lobes. The different basis vectors er�k/Lr� have different main lobes.
This implies that the received signal along any physical direction will have
almost all of its energy along one particular er�k/Lr� vector and very little
along all the others. Thus, this orthonormal basis provides a very simple
(but approximate) decomposition of the total received signal into the multi-
paths received along the different physical directions, up to a resolution
of 1/Lr .
We can similarly define the angular domain representation of the transmit-

ted signal. The signal transmitted at a direction % is along the unit vector
et�%�, defined in (7.58). The nt fixed vectors:

�t �=
{
et�0�� et

(
1
Lt

)
� � � � � et

(
nt −1
Lt

)}
(7.62)

form an orthonormal basis for the transmitted signal space �nt . This basis
provides the representation of the transmitted signals in the angular domain.
The transmitted signal along any physical direction will have almost all its
energy along one particular et�k/Lt� vector and very little along all the oth-
ers. Thus, this orthonormal basis provides a very simple (again, approximate)
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Figure 7.12 Receive
beamforming patterns of the
angular basis vectors.
Independent of the antenna
spacing, the beamforming
patterns all have the same
beam widths for the main
lobe, but the number of main
lobes depends on the spacing.
(a) Critically spaced case; (b)
Sparsely spaced case. (c)
Densely spaced case.
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(c) L r = 2, n r = 8

decomposition of the overall transmitted signal into the components transmit-
ted along the different physical directions, up to a resolution of 1/Lt .

Examples of angular bases
Examples of angular bases, represented by their beamforming patterns, are
shown in Figure 7.12. Three cases are distinguished:

• Antennas are critically spaced at half the wavelength (�r = 1/2). In this
case, each basis vector er�k/Lr� has a single pair of main lobes around the
angles ± arccos�k/Lr�.

• Antennas are sparsely spaced (�r > 1/2). In this case, some of the basis
vectors have more than one pair of main lobes.

• Antennas are densely spaced (�r < 1/2). In this case, some of the basis
vectors have no main lobes.
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These statements can be understood from the fact that the function fr�%r�

is periodic with period 1/�r . The beamforming pattern of the vector er�k/Lr�

is the polar plot (
��

∣∣∣∣fr (cos�− k

Lr

)∣∣∣∣) (7.63)

and the main lobes are at all angles � for which

cos�= k

Lr

mod
1
�r

(7.64)

In the critically spaced case, 1/�r = 2 and k/Lr is between 0 and 2; there is
a unique solution for cos� in (7.64). In the sparsely spaced case, 1/�r < 2
and for some values of k there are multiple solutions: cos� = k/Lr +m/�r

for integers m. In the densely spaced case, 1/�r > 2, and for k satisfying
Lr < k < nr −Lr , there is no solution to (7.64). These angular basis vectors
do not correspond to any physical directions.
Only in the critically spaced antennas is there a one-to-one correspondence

between the angular windows and the angular basis vectors. This case is the
simplest and we will assume critically spaced antennas in the subsequent
discussions. The other cases are discussed further in Section 7.3.7.

Angular domain transformation as DFT
Actually the transformation between the spatial and angular domains is a
familiar one! Let Ut be the nt ×nt unitary matrix the columns of which are
the basis vectors in �t . If x and xa are the nt-dimensional vector of trans-
mitted signals from the antenna array and its angular domain representation
respectively, then they are related by

x = Utx
a� xa = U∗

t x� (7.65)

Now the �k� l�th entry of Ut is

1√
nt

exp
(−j2�kl

nt

)
k� l= 0� � � � � nr −1� (7.66)

Hence, the angular domain representation xa is nothing but the inverse dis-
crete Fourier transform of x (cf. (3.142)). One should however note that
the specific transformation for the angular domain representation is in fact
a DFT because of the use of uniform linear arrays. On the other hand, the
representation of signals in the angular domain is a more general concept and
can be applied to other antenna array structures. Exercise 7.8 gives another
example.
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7.3.4 Angular domain representation of MIMO channels

We now represent the MIMO fading channel (7.55) in the angular domain.
Ut and Ur are respectively the nt×nt and nr×nr unitary matrices the columns
of which are the vectors in �t and �r respectively (IDFT matrices). The
transformations

xa �= U∗
t x� (7.67)

ya �= U∗
r y (7.68)

are the changes of coordinates of the transmitted and received signals into
the angular domain. (Superscript “a” denotes angular domain quantities.)
Substituting this into (7.55), we have an equivalent representation of the
channel in the angular domain:

ya = U∗
rHUtx

a +U∗
rw

= Haxa +wa� (7.69)

where

Ha �= U∗
rHUt (7.70)

is the channel matrix expressed in angular coordinates and

wa �= U∗
rw ∼ �� �0�N0Inr�� (7.71)

Now, recalling the representation of the channel matrix H in (7.56),

ha
kl = er�k/Lr�

∗Het�l/Lt�

= ∑
i

ab
i �er�k/Lr�

∗er�%ri�� · �et�%ti�
∗et�l/Lt��� (7.72)

Recall from Section 7.3.3 that the beamforming pattern of the basis vector
er�k/Lr� has a main lobe around k/Lr . The term er�k/Lr�

∗er�%ri� is significant
for the ith path if ∣∣∣∣%ri−

k

Lr

∣∣∣∣< 1
Lr

� (7.73)

Define then �k as the set of all paths whose receive directional cosine is
within a window of width 1/Lr around k/Lr (Figure 7.13). The bin �k can be
interpreted as the set of all physical paths that have most of their energy along
the receive angular basis vector er�k/Lr�. Similarly, define 
l as the set of
all paths whose transmit directional cosine is within a window of width 1/Lt
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Figure 7.13 The bin �k is the
set of all paths that arrive
roughly in the direction of the
main lobes of the
beamforming pattern of
er�k/L�. Here Lr = 2 and
nr = 4.
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around l/Lt . The bin 
l can be interpreted as the set of all physical paths that
have most of their energy along the transmit angular basis vector et�l/Lt�.
The entry ha

kl is then mainly a function of the gains ab
i of the physical paths

that fall in 
l ∩�k, and can be interpreted as the channel gain from the lth
transmit angular bin to the kth receive angular bin.
The paths in 
l ∩�k are unresolvable in the angular domain. Due to

the finite antenna aperture sizes (Lt and Lr), multiple unresolvable physical
paths can be appropriately aggregated into one resolvable path with gain ha

kl.
Note that

	
l∩�k� l= 0�1� � � � � nt −1� k= 0�1� � � � � nr −1


forms a partition of the set of all physical paths. Hence, different physical paths
(approximately) contribute to different entries in the angular representation
Ha of the channel matrix.
The discussion in this section substantiates the intuitive picture in

Figure 7.11. Note the similarity between (7.72) and (2.34); the latter quanti-
fies how the underlying continuous-time channel is smoothed by the limited
bandwidth of the system, while the former quantifies how the underlying
continuous-space channel is smoothed by the limited antenna aperture. In the
latter, the smoothing function is the sinc function, while in the former, the
smoothing functions are fr and ft .

To simplify notations, we focus on a fixed channel as above. But time-
variation can be easily incorporated: at time m, the ith time-varying path
has attenuation ai�m�, length d

�i��m�, transmit angle �ti
�m� and receive angle

�ri
�m�. At time m, the resulting channel and its angular representation are

time-varying: H�m� and Ha�m�, respectively.
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7.3.5 Statistical modeling in the angular domain

The basis for the statistical modeling of MIMO fading channels is the approxi-
mation that the physical paths are partitioned into angularly resolvable bins and
aggregated to form resolvable pathswhose gains are ha

kl�m�. Assuming that the
gains ab

i �m� of the physical paths are independent, we can model the resolvable
pathgainsha

kl�m� as independent.Moreover, the angles 	�ri�m�
m and 	�ti�m�
m
typically evolve at a much slower time-scale than the gains 	ab

i �m�
m; there-
fore, within the time-scale of interest it is reasonable to assume that paths do
not move from one angular bin to another, and the processes 	ha

kl�m�
m can be
modeled as independent acrossk and l (seeTable 2.1 inSection 2.3 for the analo-
gous situation for frequency-selective channels). In an angular bin �k� l�, where
there are many physical paths, one can invoke the Central Limit Theorem and
approximate the aggregate gain ha

kl�m� as a complex circular symmetric Gaus-
sian process. On the other hand, in an angular bin �k� l� that contains no paths,
the entries ha

kl�m� can be approximated as 0. For a channel with limited angular
spread at the receiver and/or the transmitter,many entries ofHa�m�maybe zero.
Some examples are shown in Figures 7.14 and 7.15.

Figure 7.14 Some examples of
Ha . (a) Small angular spread at
the transmitter, such as the
channel in Figure 7.10(a). (b)
Small angular spread at the
receiver, such as the channel in
Figure 7.10(b). (c) Small
angular spreads at both the
transmitter and the receiver. (d)
Full angular spreads at both the
transmitter and the receiver.
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7.3.6 Degrees of freedom and diversity

Degrees of freedom
Given the statistical model, one can quantify the spatial multiplexing capa-
bility of a MIMO channel. With probability 1, the rank of the random matrix
Ha is given by

rank�Ha�=min	number of non-zero rows, number of non-zero columns


(7.74)

(Exercise 7.6). This yields the number of degrees of freedom available in the
MIMO channel.
The number of non-zero rows and columns depends in turn on two separate

factors:

• The amount of scattering and reflection in the multipath environment. The

Figure 7.15 Some examples of
Ha . (a) Two clusters of
scatterers, with all paths going
through a single bounce.
(b) Paths scattered via multiple
bounces.

more scatterers and reflectors there are, the larger the number of non-zero
entries in the random matrix Ha, and the larger the number of degrees of
freedom.

• The lengths Lt and Lr of the transmit and receive antenna arrays. With small
antenna array lengths, many distinct multipaths may all be lumped into a
single resolvable path. Increasing the array apertures allows the resolution
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of more paths, resulting in more non-zero entries of Ha and an increased
number of degrees of freedom.

The number of degrees of freedom is explicitly calculated in terms of the
multipath environment and the array lengths in a clustered response model
in Example 7.1.

Example 7.1 Degrees of freedom in clustered response models

Clarke’s model
Let us start with Clarke’s model, which was considered in Example 2.2.
In this model, the signal arrives at the receiver along a continuum set
of paths, uniformly from all directions. With a receive antenna array of
length Lr , the number of receive angular bins is 2Lr and all of these
bins are non-empty. Hence all of the 2Lr rows of H

a are non-zero. If the
scatterers and reflectors are closer to the receiver than to the transmitter
(Figures 7.10(a) and 7.14(a)), then at the transmitter the angular spread %t

(measured in terms of directional cosines) is less than the full span of 2.
The number of non-empty rows in Ha is therefore  Lt%t", such paths are
resolved into bins of angular width 1/Lt . Hence, the number of degrees
of freedom in the MIMO channel is

min	 Lt%t"�2Lr
� (7.75)

If the scatterers and reflectors are located at all directions from the trans-
mitter as well, then &t = 2 and the number of degrees of freedom in the
MIMO channel is

min	2Lt�2Lr
� (7.76)

the maximum possible given the antenna array lengths. Since the antenna
separation is assumed to be half the carrier wavelength, this formula can
also be expressed as

min	nt� nr
�

the rank of the channel matrix H

General clustered response model
In a more general model, scatterers and reflectors are not located at all
directions from the transmitter or the receiver but are grouped into several
clusters (Figure 7.16). Each cluster bounces off a continuum of paths.
Table 7.1 summarizes several sets of indoor channel measurements that
support such a clustered responsemodel. In an indoor environment, cluster-
ing can be the result of reflections from walls and ceilings, scattering from
furniture, diffraction from doorway openings and transmission through soft
partitions. It is a reasonable model when the size of the channel objects is
comparable to the distances from the transmitter and from the receiver.
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Table 7.1 Examples of some indoor channel measurements. The Intel
measurements span a very wide bandwidth and the number of clusters and
angular spread measured are frequency dependent. This set of data is further
elaborated in Figure 7.18.

Frequency (GHz) No. of clusters Total angular spread (#)

USC UWB [27] 0–3 2–5 37
Intel UWB [91] 2–8 1–4 11–17
Spencer [112] 6.75–7.25 3–5 25.5
COST 259 [58] 24 3–5 18.5

Cluster of scatterers

Receive
array

Transmit
array

φ t φ rΘ t,1

Θ t,2

Θ r,1

Θ r,2

Figure 7.16 The clustered response model for the multipath environment. Each cluster bounces
off a continuum of paths.

In such a model, the directional cosines &r along which paths arrive
are partitioned into several disjoint intervals: &r = ∪k&rk. Similarly, on
the transmit side, &t = ∪k&tk. The number of degrees of freedom in the
channel is

min

{∑
k

 Lt�&tk�"�
∑
k

 Lr�&tk�"
}

(7.77)

For Lt and Lr large, the number of degrees of freedom is approximately

min	Lt%t�total�Lr%r�total
� (7.78)

where

%t�total �=
∑
k

�&tk� and %r�total �=
∑
k

�&rk� (7.79)
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are the total angular spreads of the clusters at the transmitter and at the
receiver, respectively. This formula shows explicitly the separate effects
of the antenna array and of the multipath environment on the number of
degrees of freedom. The larger the angular spreads the more degrees of
freedom there are. For fixed angular spreads, increasing the antenna array
lengths allows zooming into and resolving the paths from each cluster,
thus increasing the available degrees of freedom (Figure 7.17).
One can draw an analogy between the formula (7.78) and the classic

fact that signals with bandwidth W and duration T have approximately
2WT degrees of freedom (cf. Discussion 2.1). Here, the antenna array
lengths Lt and Lr play the role of the bandwidth W , and the total angular
spreads %t�total and %r�total play the role of the signal duration T .

Effect of carrier frequency
As an application of the formula (7.78), consider the question of how
the available number of degrees of freedom in a MIMO channel depends
on the carrier frequency used. Recall that the array lengths Lt and Lr

are quantities normalized to the carrier wavelength. Hence, for a fixed
physical length of the antenna arrays, the normalized lengths Lt and Lr

increase with the carrier frequency. Viewed in isolation, this fact would
suggest an increase in the number of degrees of freedom with the carrier
frequency; this is consistent with the intuition that, at higher carrier fre-
quencies, one can pack more antenna elements in a given amount of area
on the device. On the other hand, the angular spread of the environment

Cluster of scatterers

(a) Array length of L1

(b) Array length of L2 > L1

Cluster of scatterers

Receive
array

Receive
array

1/L1 1/L1

1/L21/L2

Transmit
array

Transmit
array

Figure 7.17 Increasing the antenna array apertures increases path resolvability in the angular
domain and the degrees of freedom.
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typically decreases with the carrier frequency. The reasons are
two-fold:
• signals at higher frequency attenuate more after passing through or
bouncing off channel objects, thus reducing the number of effective
clusters;

• at higher frequency the wavelength is small relative to the feature size
of typical channel objects, so scattering appears to be more specular in
nature and results in smaller angular spread.

These factors combine to reduce %t�total and %r�total as the carrier frequency
increases. Thus the impact of carrier frequency on the overall degrees of
freedom is not necessarily monotonic. A set of indoor measurements is
shown in Figure 7.18. The number of degrees of freedom increases and
then decreases with the carrier frequency, and there is in fact an optimal
frequency at which the number of degrees of freedom is maximized. This
example shows the importance of taking into account both the physical
environment as well as the antenna arrays in determining the available
degrees of freedom in a MIMO channel.
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Figure 7.18 (a) The total angular spread �total of the scattering environment (assumed equal at
the transmitter side and at the receiver side) decreases with the carrier frequency; the normalized
array length increases proportional to 1/�c . (b) The number of degrees of freedom of the MIMO
channel, proportional to �total/�c , first increases and then decreases with the carrier frequency.
The data are taken from [91].

Diversity
In this chapter, we have focused on the phenomenon of spatial multiplexing
and the key parameter is the number of degrees of freedom. In a slow fading
environment, another important parameter is the amount of diversity in the
channel. This is the number of independent channel gains that have to be in
a deep fade for the entire channel to be in deep fade. In the angular domain
MIMO model, the amount of diversity is simply the number of non-zero
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Figure 7.19 Angular domain
representation of three MIMO
channels. They all have four
degrees of freedom but they
have diversity 4, 8 and 16
respectively. They model
channels with increasing
amounts of bounces in the
paths (cf. Figure 7.15).

(a)

nt

n r n r n r

nt nt

(b) (c)

entries in Ha. Some examples are shown in Figure 7.19. Note that channels
that have the same degrees of freedom can have very different amounts of
diversity. The number of degrees of freedom depends primarily on the angular
spreads of the scatters/reflectors at the transmitter and at the receiver, while
the amount of diversity depends also on the degree of connectivity between
the transmit and receive angles. In a channel with multiple-bounced paths,
signals sent along one transmit angle can arrive at several receive angles
(see Figure 7.15). Such a channel would have more diversity than one with
single-bounced paths with signal sent along one transmit angle received at a
unique angle, even though the angular spreads may be the same.

7.3.7 Dependency on antenna spacing

So far we have been primarily focusing on the case of critically spaced
antennas (i.e., antenna separations �t and �r are half the carrier wavelength).
What is the impact of changing the antenna separation on the channel statistics
and the key channel parameters such as the number of degrees of freedom?
To answer this question, we fix the antenna array lengths Lt and Lr and vary

the antenna separation, or equivalently the number of antenna elements. Let
us just focus on the receiver side; the transmitter side is analogous. Given the
antenna array length Lr , the beamforming patterns associated with the basis
vectors 	er�k/Lr�
k all have beam widths of 2/Lr (Figure 7.12). This dictates
the maximum possible resolution of the antenna array: paths that arrive within
an angular window of width 1/Lr cannot be resolved no matter how many
antenna elements there are. There are 2Lr such angular windows, partitioning
all the receive directions (Figure 7.20). Whether or not this maximum reso-
lution can actually be achieved depends on the number of antenna elements.

Recall that the bins �k can be interpreted as the set of all physical
paths which have most of their energy along the basis vector et�k/Lr�. The
bins dictate the resolvability of the antenna array. In the critically spaced case
��r = 1/2), the beamforming patterns of all the basis vectors have a single
main lobe (together with its mirror image). There is a one-to-one correspon-
dence between the angular windows and the resolvable bins �k, and paths
arriving in different windows can be resolved by the array (Figure 7.21). In
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Figure 7.20 An antenna array
of length Lr partitions the
receive directions into 2Lr
angular windows. Here, Lr = 3
and there are six angular
windows. Note that because of
symmetry across the 0� −180�

axis, each angular window
comes as a mirror image pair,
and each pair is only counted
as one angular window.
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4 2

3

0

0

Figure 7.21 Antennas are
critically spaced at half the
wavelength. Each resolvable
bin corresponds to exactly one
angular window. Here, there
are six angular windows and
six bins.

L r = 3, nr = 6
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Bins

the sparsely spaced case (�r > 1/2), the beamforming patterns of some of the
basis vectors have multiple main lobes. Thus, paths arriving in the different
angular windows corresponding to these lobes are all lumped into one bin
and cannot be resolved by the array (Figure 7.22). In the densely spaced case
(�r < 1/2), the beamforming patterns of 2Lr of the basis vectors have a single
main lobe; they can be used to resolve among the 2Lr angular windows. The
beamforming patterns of the remaining nr −2Lr basis vectors have no main
lobe and do not correspond to any angular window. There is little received
energy along these basis vectors and they do not participate significantly in
the communication process. See Figure 7.23.
The key conclusion from the above analysis is that, given the antenna

array lengths Lr and Lt , the maximum achievable angular resolution can
be achieved by placing antenna elements half a wavelength apart. Placing
antennas more sparsely reduces the resolution of the antenna array and can
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reduce the number of degrees of freedom and the diversity of the channel.Figure 7.22 (a) Antennas are
sparsely spaced. Some of the
bins contain paths from
multiple angular windows.
(b) The antennas are very
sparsely spaced. All bins
contain several angular
windows of paths.

Placing the antennas more densely adds spurious basis vectors which do not
correspond to any physical directions, and does not add resolvability. In terms
of the angular channel matrix Ha, this has the effect of adding zero rows and
columns; in terms of the spatial channel matrixH, this has the effect of making
the entries more correlated. In fact, the angular domain representation makes
it apparent that one can reduce the densely spaced system to an equivalent
2Lt ×2Lr critically spaced system by just focusing on the basis vectors that
do correspond to physical directions (Figure 7.24).

Increasing the antenna separation within a given array length Lr does not
increase the number of degrees of freedom in the channel. What about increas-
ing the antenna separation while keeping the number of antenna elements nr

the same? This question makes sense if the system is hardware-limited rather
than limited by the amount of space to put the antenna array in. Increasing
the antenna separation this way reduces the beam width of the nr angular
basis beamforming patterns but also increases the number of main lobes in
each (Figure 7.25). If the scattering environment is rich enough such that the
received signal arrives from all directions, the number of non-zero rows of
the channel matrix Ha is already nr , the largest possible, and increasing the
spacing does not increase the number of degrees of freedom in the channel.
On the other hand, if the scattering is clustered to within certain directions,
increasing the separation makes it possible for the scattered signal to be
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Figure 7.23 Antennas are
densely spaced. Some bins
contain no physical paths.
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received in more bins, thus increasing the number of degrees of freedom
(Figure 7.25). In terms of the spatial channel matrix H, this has the effect of
making the entries look more random and independent. At a base-station on
a high tower with few local scatterers, the angular spread of the multipaths is
small and therefore one has to put the antennas many wavelengths apart to
decorrelate the channel gains.

Sampling interpretation
One can give a sampling interpretation to the above results. First, think of
the discrete antenna array as a sampling of an underlying continuous array
�−Lr/2�Lr/2�. On this array, the received signal x�s� is a function of the
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Figure 7.25 An example of a
clustered response channel in
which increasing the
separation between a fixed
number of antennas increases
the number of degrees of
freedom from 2 to 3.

Cluster of scatterers

(a) Antenna separation of ∆1 = 1/2

(b) Antenna separation of ∆2 > ∆1

Cluster of scatterers

Receive
array

Receive
array

Transmit
array

Transmit
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1 / (nt∆1) 1 / (nr∆1)

1 / (nt∆2) 1 / (nr∆2)

continuous spatial location s ∈ �−Lr/2�Lr/2�. Just like in the discrete case
(cf. Section 7.3.3), the spatial-domain signal x�s� and its angular representa-
tion xa�%� form a Fourier transform pair. However, since only % ∈ �−1�1�
corresponds to directional cosines of actual physical directions, the angular
representation xa�%� of the received signal is zero outside �−1�1�. Hence, the
spatial-domain signal x�s� is “bandlimited” to �−W�W�, with “bandwidth”
W = 1. By the sampling theorem, the signal x�s� can be uniquely specified
by samples spaced at distance 1/�2W� = 1/2 apart, the Nyquist sampling
rate. This is precise when Lr →� and approximate when Lr is finite. Hence,
placing the antenna elements at the critical separation is sufficient to describe
the received signal; a continuum of antenna elements is not needed. Antenna
spacing greater than 1/2 is not adequate: this is under-sampling and the loss
of resolution mentioned above is analogous to the aliasing effect when one
samples a bandlimited signal at below the Nyquist rate.

7.3.8 I.i.d. Rayleigh fading model

A very common MIMO fading model is the i.i.d. Rayleigh fading model:
the entries of the channel gain matrix H�m� are independent, identically
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distributed and circular symmetric complex Gaussian. Since the matrix H�m�
and its angular domain representation Ha�m� are related by

Ha�m� �= U∗
rH�m�Ut� (7.80)

andUr andUt are fixedunitarymatrices, thismeans thatHa shouldhave the same
i.i.d. Gaussian distribution asH. Thus, using the modeling approach described
here, we can see clearly the physical basis of the i.i.d Rayleigh fading model, in
terms of both the multipath environment and the antenna arrays. There should
be a significant number of multipaths in each of the resolvable angular bins,
and the energy should be equally spread out across these bins. This is the so-
called richly scattered environment. If there are very few or no paths in some
of the angular directions, then the entries inHwill be correlated. Moreover, the
antennas shouldbeeither criticallyor sparsely spaced. If theantennasaredensely
spaced, then some entries ofHa are approximately zero and the entries inH itself
are highly correlated. However, by a simple transformation, the channel can be
reduced toanequivalentchannelwith fewerantennaswhicharecriticallyspaced.

Compared to the critically spaced case, having sparser spacing makes it
easier for the channel matrix to satisfy the i.i.d. Rayleigh assumption. This is
because each bin now spans more distinct angular windows and thus contains
more paths, from multiple transmit and receive directions. This substantiates
the intuition that putting the antennas further apart makes the entries of H
less dependent. On the other, if the physical environment already provides
scattering in all directions, then having critical spacing of the antennas is
enough to satisfy the i.i.d. Rayleigh assumption.

Due to the analytical tractability, we will use the i.i.d. Rayleigh fading
model quite often to evaluate performance of MIMO communication schemes,
but it is important to keep in mind the assumptions on both the physical
environment and the antenna arrays for the model to be valid.

Chapter 7 The main plot

The angular domain provides a natural representation of the MIMO chan-
nel, highlighting the interaction between the antenna arrays and the physical
environment.

The angular resolution of a linear antenna array is dictated by its length: an
array of length L provides a resolution of 1/L. Critical spacing of antenna
elements at half the carrier wavelength captures the full angular resolution
of 1/L. Sparser spacing reduces the angular resolution due to aliasing.
Denser spacing does not increase the resolution beyond 1/L.

Transmit and receive antenna arrays of length Lt and Lr partition the
angular domain into 2Lt ×2Lr bins of unresolvable multipaths. Paths that
fall within the same bin are aggregated to form one entry of the angular
channel matrix Ha.
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A statistical model of Ha is obtained by assuming independent Gaussian
distributed entries, of possibly different variances. Angular bins that con-
tain no paths correspond to zero entries.

The number of degrees of freedom in the MIMO channel is the minimum
of the number of non-zero rows and the number of non-zero columns of
Ha. The amount of diversity is the number of non-zero entries.

In a clustered-response model, the number of degrees of freedom is approx-
imately:

min	Lt%t�total�Lr%r�total
 (7.81)

The multiplexing capability of a MIMO channel increases with the angu-
lar spreads %t�total�%r�total of the scatterers/reflectors as well as with
the antenna array lengths. This number of degrees of freedom can be
achieved when the antennas are critically spaced at half the wavelength or
closer. With a maximum angular spread of 2, the number of degrees of
freedom is

min	2Lt�2Lr
�

and this equals

min	nt� nr


when the antennas are critically spaced.

The i.i.d. Rayleigh fading model is reasonable in a richly scattering envi-
ronment where the angular bins are fully populated with paths and there is
roughly equal amount of energy in each bin. The antenna elements should
be critically or sparsely spaced.

7.4 Bibliographical notes

The angular domain approach to MIMO channel modeling is based on works by
Sayeed [105] and Poon et al. [90, 92]. [105] considered an array of discrete antenna ele-
ments, while [90, 92] considered a continuum of antenna elements to emphasize that
spatial multiplexability is limited not by the number of antenna elements but by the
size of the antenna array. We considered only linear arrays in this chapter, but [90] also
treated other antenna array configurations such as circular rings and spherical surfaces.
Thedegree-of-freedomformula (7.78) is derived in [90] for the clustered responsemodel.

Other related approaches to MIMO channel modeling are by Raleigh and Cioffi
[97], by Gesbert et al. [47] and by Shiu et al. [111]. The latter work used a Clarke-like
model but with two rings of scatterers, one around the transmitter and one around the
receiver, to derive the MIMO channel statistics.
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7.5 Exercises

Exercise 7.1
1. For the SIMO channel with uniform linear array in Section 7.2.1, give an exact

expression for the distance between the transmit antenna and the ith receive antenna.
Make precise in what sense is (7.19) an approximation.

2. Repeat the analysis for the approximation (7.27) in the MIMO case.

Exercise 7.2 Verify that the unit vector er�%r�, defined in (7.21), is periodic with
period �r and within one period never repeats itself.

Exercise 7.3 Verify (7.35).

Exercise 7.4 In an earlier work on MIMO communication [97], it is stated that the
number of degrees of freedom in a MIMO channel with nt transmit, nr receive antennas
and K multipaths is given by

min	nt� nr�K
 (7.82)

and this is the key parameter that determines the multiplexing capability of the channel.
What are the problems with this statement?

Exercise 7.5 In this question we study the role of antenna spacing in the angular
representation of the MIMO channel.
1. Consider the critically spaced antenna array in Figure 7.21; there are six bins, each

one corresponding to a specific physical angular window. All of these angular
windows have the same width as measured in solid angle. Compute the angular
window width in radians for each of the bins 
l, with l= 0� � � � �5. Argue that the
width in radians increases as we move from the line perpendicular to the antenna
array to one that is parallel to it.

2. Now consider the sparsely spaced antenna arrays in Figure 7.22. Justify the depicted
mapping from the angular windows to the bins 
l and evaluate the angular window
width in radians for each of the bins 
l (for l = 0�1� � � � � nt − 1). (The angular
window width of a bin 
l is the sum of the widths of all the angular windows that
correspond to the bin 
l.)

3. Justify the depiction of the mapping from angular windows to the bins 
l in the
densely spaced antenna array of Figure 7.23. Also evaluate the angular width of
each bin in radians.

Exercise 7.6 The non-zero entries of the angular matrix Ha are distributed as inde-
pendent complex Gaussian random variables. Show that with probability 1, the rank
of the matrix is given by the formula (7.74).

Exercise 7.7 In Chapter 2, we introduced Clarke’s flat fading model, where both the
transmitter and the receiver have a single antenna. Suppose now that the receiver has
nr antennas, each spaced by half a wavelength. The transmitter still has one antenna
(a SIMO channel). At time m

y�m�= h�m�x�m�+w�m�� (7.83)

where y�m��h�m� are the nr-dimensional received vector and receive spatial signature
(induced by the channel), respectively.



331 7.5 Exercises

1. Consider first the case when the receiver is stationary. Compute approximately the
joint statistics of the coefficients of h in the angular domain.

2. Now suppose the receiver is moving at a speed v. Compute the Doppler spread and
the Doppler spectrum of each of the angular domain coefficients of the channel.

3. What happens to the Doppler spread as nr → �? What can you say about the
difficulty of estimating and tracking the process 	h�m�
 as n grows? Easier, harder,
or the same? Explain.

Exercise 7.8 [90] Consider a circular array of radius R normalized by the carrier
wavelength with n elements uniformly spaced.
1. Compute the spatial signature in the direction �.
2. Find the angle, f��1��2�, between the two spatial signatures in the direction �1

and �2.
3. Does f��1��2� only depend on the difference �1 −�2? If not, explain why.
4. Plot f��1�0� for R= 2 and different values of n, from n equal to  �R/2",  �R",

 2�R", to  4�R". Observe the plot and describe your deductions.
5. Deduce the angular resolution.
6. Linear arrays of length L have a resolution of 1/L along the cos�-domain, that

is, they have non-uniform resolution along the �-domain. Can you design a linear
array with uniform resolution along the �-domain?

Exercise 7.9 (Spatial sampling) Consider a MIMO system with Lt = Lr = 2 in a
channel with M = 10 multipaths. The ith multipath makes an angle of i�� with the
transmit array and an angle of i�� with the receive array where ��= �/M .
1. Assuming there are nt transmit and nr receive antennas, compute the channel

matrix.
2. Compute the channel eigenvalues for nt = nr varying from 4 to 8.
3. Describe the distribution of the eigenvalues and contrast it with the binning inter-

pretation in Section 7.3.4.

Exercise 7.10 In this exercise, we study the angular domain representation of
frequency-selective MIMO channels.
1. Starting with the representation of the frequency-selective MIMO channel in time

(cf. (8.112)) describe how you would arrive at the angular domain equivalent
(cf. (7.69)):

ya�m�=
L−1∑
�=0

Ha
��m�x

a�m−��+wa�m�� (7.84)

2. Consider the equivalent (except for the overhead in using the cyclic prefix) parallel
MIMO channel as in (8.113).

(a) Discuss the role played by the density of the scatterers and the delay spread in
the physical environment in arriving at an appropriate statistical model for H̃n at
the different OFDM tones n.

(b) Argue that the (marginal) distribution of the MIMO channel H̃n is the same for
each of the tones n= 0� � � � �N −1.

Exercise 7.11 A MIMO channel has a single cluster with the directional cosine ranges
as &t =&r = �0�1�. Compute the number of degrees of freedom of an n×n channel
as a function of the antenna separation �t = �r = �.



C H A P T E R

8 MIMO II: capacity and multiplexing
architectures

In this chapter, we will look at the capacity of MIMO fading channels and
discuss transceiver architectures that extract the promised multiplexing gains
from the channel. We particularly focus on the scenario when the transmitter
does not know the channel realization. In the fast fading MIMO channel, we
show the following:

• At high SNR, the capacity of the i.i.d. Rayleigh fast fading channel scales
like nmin log SNR bits/s/Hz, where nmin is the minimum of the number
of transmit antennas nt and the number of receive antennas nr . This is
a degree-of-freedom gain.

• At low SNR, the capacity is approximately nrSNR log2 e bits/s/Hz. This is
a receive beamforming power gain.

• At all SNR, the capacity scales linearly with nmin. This is due to a combi-
nation of a power gain and a degree-of-freedom gain.

Furthermore, there is a transmit beamforming gain together with an oppor-
tunistic communication gain if the transmitter can track the channel as well.

Over a deterministic time-invariant MIMO channel, the capacity-achieving
transceiver architecture is simple (cf. Section 7.1.1): independent data streams
are multiplexed in an appropriate coordinate system (cf. Figure 7.2). The
receiver transforms the received vector into another appropriate coordinate
system to separately decode the different data streams. Without knowledge
of the channel at the transmitter the choice of the coordinate system in which
the independent data streams are multiplexed has to be fixed a priori. In
conjunction with joint decoding, we will see that this transmitter architecture
achieves the capacity of the fast fading channel. This architecture is also
called V-BLAST1 in the literature.

1 Vertical Bell Labs Space-Time Architecture. There are several versions of V-BLAST with
different receiver structures but they all share the same transmitting architecture of
multiplexing independent streams, and we take this as its defining feature.

332



333 8.1 The V-BLAST architecture

In Section 8.3, we discuss receiver architectures that are simpler than joint
ML decoding of the independent streams. While there are several receiver
architectures that can support the full degrees of freedom of the channel, a par-
ticular architecture, the MMSE-SIC, which uses a combination of minimum
mean square estimation (MMSE) and successive interference cancellation
(SIC), achieves capacity.
The performance of the slow fading MIMO channel is characterized through

the outage probability and the corresponding outage capacity. At low SNR,
the outage capacity can be achieved, to a first order, by using one transmit
antenna at a time, achieving a full diversity gain of nt nr and a power gain
of nr . The outage capacity at high SNR, on the other hand, benefits from a
degree-of-freedom gain as well; this is more difficult to characterize succinctly
and its analysis is relegated until Chapter 9.

Although it achieves the capacity of the fast fading channel, the V-BLAST
architecture is strictly suboptimal for the slow fading channel. In fact, it does
not even achieve the full diversity gain promised by the MIMO channel.
To see this, consider transmitting independent data streams directly over the
transmit antennas. In this case, the diversity of each data stream is limited
to just the receive diversity. To extract the full diversity from the channel,
one needs to code across the transmit antennas. A modified architecture,
D-BLAST2, which combines transmit antenna coding with MMSE-SIC, not
only extracts the full diversity from the channel but its performance also
comes close to the outage capacity.

8.1 The V-BLAST architecture

We start with the time-invariant channel (cf. (7.1))

y�m�=Hx�m�+w�m�� m= 1�2� � � � (8.1)

When the channel matrix H is known to the transmitter, we have seen in
Section 7.1.1 that the optimal strategy is to transmit independent streams in the
directions of the eigenvectors of H∗H, i.e., in the coordinate system defined
by the matrix V, where H=U�V∗ is the singular value decomposition of H.
This coordinate system is channel-dependent. With an eye towards dealing
with the case of fading channels where the channel matrix is unknown to
the transmitter, we generalize this to the architecture in Figure 8.1, where
the independent data streams, nt of them, are multiplexed in some arbitrary

2 Diagonal Bell Labs Space-Time Architecture
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Figure 8.1 The V-BLAST
architecture for communicating
over the MIMO channel.
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coordinate system given by a unitary matrix Q, not necessarily dependent on
the channel matrix H. This is the V-BLAST architecture. The data streams
are decoded jointly. The kth data stream is allocated a power Pk (such that
the sum of the powers, P1+· · ·+Pnt

, is equal to P, the total transmit power
constraint) and is encoded using a capacity-achieving Gaussian code with rate
Rk. The total rate is R=∑nt

k=1Rk.
As special cases:

• If Q=V and the powers are given by the waterfilling allocations, then we
have the capacity-achieving architecture in Figure 7.2.

• If Q= Inr , then independent data streams are sent on the different transmit
antennas.

Using a sphere-packing argument analogous to the ones used in Chapter 5,
we will argue an upper bound on the highest reliable rate of communication:

R < logdet
(
Inr +

1
N0

HKxH
∗
)
bits/s/Hz� (8.2)

Here Kx is the covariance matrix of the transmitted signal x and is a function
of the multiplexing coordinate system and the power allocations:

Kx �=Q diag	P1� � � � �Pnt

Q∗� (8.3)

Considering communication over a block of time symbols of length N , the
received vector, of length nrN , lies with high probability in an ellipsoid of
volume proportional to

det�N0Inr +HKxH
∗�N � (8.4)

This formula is a direct generalization of the corresponding volume for-
mula (5.50) for the parallel channel, and is justified in Exercise 8.2. Since
we have to allow for non-overlapping noise spheres (of radius

√
N0 and,

hence, volume proportional to NnrN
0 ) around each codeword to ensure reliable
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communication, the maximum number of codewords that can be packed is
the ratio

det�N0Inr +HKxH
∗�N

N
nrN
0

� (8.5)

We can now conclude the upper bound on the rate of reliable communication
in (8.2).
Is this upper bound actually achievable by the V-BLAST architecture?

Observe that independent data streams are multiplexed in V-BLAST; perhaps
coding across the streams is required to achieve the upper bound (8.2)? To get
some insight on this question, consider the special case of a MISO channel
(nr = 1) and set Q= Int in the architecture, i.e., independent streams on each
of the transmit antennas. This is precisely an uplink channel, as considered in
Section 6.1, drawing an analogy between the transmit antennas and the users.
We know from the development there that the sum capacity of this uplink
channel is

log
(
1+

∑nt
k=1 �hk�2Pk

N0

)
� (8.6)

This is precisely the upper bound (8.2) in this special case. Thus, the
V-BLAST architecture, with independent data streams, is sufficient to achieve
the upper bound (8.2). In the general case, an analogy can be drawn between
the V-BLAST architecture and an uplink channel with nr receive antennas
and channel matrix HQ; just as in the single receive antenna case, the upper
bound (8.2) is the sum capacity of this uplink channel and therefore achievable
using the V-BLAST architecture. This uplink channel is considered in greater
detail in Chapter 10 and its information theoretic analysis is in Appendix B.9.

8.2 Fast fading MIMO channel

The fast fading MIMO channel is

y�m�=H�m�x�m�+w�m�� m= 1�2� � � � � (8.7)

where 	H�m�
 is a random fading process. To properly define a notion of
capacity (achieved by averaging of the channel fading over time), we make
the technical assumption (as in the earlier chapters) that 	H�m�
 is a stationary
and ergodic process. As a normalization, let us suppose that ���hij�2�= 1. As
in our earlier study, we consider coherent communication: the receiver tracks
the channel fading process exactly. We first start with the situation when the
transmitter has only a statistical characterization of the fading channel. Finally,
we look at the case when the transmitter also perfectly tracks the fading
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channel (full CSI); this situation is very similar to that of the time-invariant
MIMO channel.

8.2.1 Capacity with CSI at receiver

Consider using the V-BLAST architecture (Figure 8.1) with a channel-
independent multiplexing coordinate system Q and power allocations
P1� � � � �Pnt

. The covariance matrix of the transmit signal is Kx and is not
dependent on the channel realization. The rate achieved in a given channel
state H is

logdet
(
Inr +

1
N0

HKxH
∗
)
� (8.8)

As usual, by coding over many coherence time intervals of the channel, a
long-term rate of reliable communication equal to

�H

[
logdet

(
Inr +

1
N0

HKxH
∗
)]

(8.9)

is achieved. We can now choose the covariance Kx as a function of the
channel statistics to achieve a reliable communication rate of

C = max
Kx�Tr�Kx�≤P

�

[
logdet

(
Inr +

1
N0

HKxH
∗
)]

� (8.10)

Here the trace constraint corresponds to the total transmit power constraint.
This is indeed the capacity of the fast fading MIMO channel (a formal
justification is in Appendix B.7.2). We emphasize that the input covariance
is chosen to match the channel statistics rather than the channel realization,
since the latter is not known at the transmitter.
The optimal Kx in (8.10) obviously depends on the stationary distribution

of the channel process 	H�m�
. For example, if there are only a few dominant
paths (no more than one in each of the angular bins) that are not time-
varying, then we can view H as being deterministic. In this case, we know
from Section 7.1.1 that the optimal coordinate system to multiplex the data
streams is in the eigen-directions of H∗H and, further, to allocate powers in
a waterfilling manner across the eigenmodes of H.

Let us now consider the other extreme: there are many paths (of approxi-
mately equal energy) in each of the angular bins. Some insight can be obtained
by looking at the angular representation (cf. (7.80)): Ha �= U∗

rHUt . The key
advantage of this viewpoint is in statistical modeling: the entries of Ha are
generated by different physical paths and can be modeled as being statistically
independent (cf. Section 7.3.5). Here we are interested in the case when the
entries of Ha have zero mean (no single dominant path in any of the angular



337 8.2 Fast fading MIMO channel

windows). Due to independence, it seems reasonable to separately send infor-
mation in each of the transmit angular windows, with powers corresponding
to the strength of the paths in the angular windows. That is, the multiplex-
ing is done in the coordinate system given by Ut (so Q = Ut in (8.3)). The
covariance matrix now has the form

Kx = Ut�U∗
t � (8.11)

where � is a diagonal matrix with non-negative entries, representing the
powers transmitted in the angular windows, so that the sum of the entries is
equal to P. This is shown formally in Exercise 8.3, where we see that this
observation holds even if the entries of Ha are only uncorrelated.

If there is additional symmetry among the transmit antennas, such as when
the elements of Ha are i.i.d. �� �0�1� (the i.i.d. Rayleigh fading model),
then one can further show that equal powers are allocated to each transmit
angular window (see Exercises 8.4 and 8.6) and thus, in this case, the optimal
covariance matrix is simply

Kx =
(
P

nt

)
Int � (8.12)

More generally, the optimal powers (i.e., the diagonal entries of �) are chosen
to be the solution to the maximization problem (substituting the angular
representation H= UrH

aU∗
t and (8.11) in (8.10)):

C = max
��Tr	��≤P

�

[
logdet

(
Inr +

1
N0

UrH
a�Ha∗U∗

r

)]
(8.13)

= max
��Tr���≤P

�

[
logdet

(
Inr +

1
N0

Ha�Ha∗
)]

� (8.14)

With equal powers (i.e., the optimal � is equal to �P/nt�Int�, the resulting
capacity is

C = �

[
logdet

(
Inr +

SNR
nt

HH∗
)]

� (8.15)

where SNR �= P/N0 is the common SNR at each receive antenna.
If �1 ≥ �2 ≥ · · · ≥ �nmin

are the (random) ordered singular values of H, then
we can rewrite (8.15) as

C = �

[
nmin∑
i=1

log
(
1+ SNR

nt

�2
i

)]

=
nmin∑
i=1

�

[
log

(
1+ SNR

nt

�2
i

)]
� (8.16)
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Comparing this expression to the waterfilling capacity in (7.10), we see the
contrast between the situation when the transmitter knows the channel and
when it does not. When the transmitter knows the channel, it can allocate
different amounts of power in the different eigenmodes depending on their
strengths. When the transmitter does not know the channel but the channel
is sufficiently random, the optimal covariance matrix is identity, resulting in
equal amounts of power across the eigenmodes.

8.2.2 Performance gains

The capacity, (8.16), of the MIMO fading channel is a function of the distri-
bution of the singular values, �i, of the random channel matrixH. By Jensen’s
inequality, we know that

nmin∑
i=1

log
(
1+ SNR

nt

�2
i

)
≤ nmin log

(
1+ SNR

nt

[
1
nmin

nmin∑
i=1

�2
i

])
� (8.17)

with equality if and only if the singular values are all equal. Hence, one would
expect a high capacity if the channel matrix H is sufficiently random and
statistically well conditioned, with the overall channel gain well distributed
across the singular values. In particular, one would expect such a channel to
attain the full degrees of freedom at high SNR.
We plot the capacity for the i.i.d. Rayleigh fading model in Figure 8.2

for different numbers of antennas. Indeed, we see that for such a random
channel the capacity of a MIMO system can be very large. At moderate to
high SNR, the capacity of an n by n channel is about n times the capacity
of a 1 by 1 system. The asymptotic slope of capacity versus SNR in dB
scale is proportional to n, which means that the capacity scales with SNR like
n log SNR.

High SNR regime
The performance gain can be seen most clearly in the high SNR regime. At
high SNR, the capacity for the i.i.d. Rayleigh channel is given by

C ≈ nmin log
SNR
nt

+
nmin∑
i=1

��log�2
i �� (8.18)

and

��log�2
i � >−�� (8.19)

for all i. Hence, the full nmin degrees of freedom is attained. In fact, further
analysis reveals that

nmin∑
i=1

��log�2
i �=

max	nt�nr
∑
i=�nt−nr �+1

��log'2
2i�� (8.20)
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Figure 8.2 Capacity of an i.i.d.
Rayleigh fading channel.
Upper: 4 by 4 channel. Lower:
8 by 8 channel.
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where '2
2i is a '-square distributed random variable with 2i degrees of

freedom.
Note that the number of degrees of freedom is limited by the minimum

of the number of transmit and the number of receive antennas, hence, to get
a large capacity, we need multiple transmit and multiple receive antennas.
To emphasize this fact, we also plot the capacity of a 1 by nr channel in
Figure 8.2. This capacity is given by

C = �

[
log

(
1+ SNR

nr∑
i=1

�hi�2
)]

bits/s/Hz� (8.21)

We see that the capacity of such a channel is significantly less than that of an
nr by nr system in the high SNR range, and this is due to the fact that there
is only one degree of freedom in a 1 by nr channel. The gain in going from
a 1 by 1 system to a 1 by nr system is a power gain, resulting in a parallel
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shift of the capacity versus SNR curves. At high SNR, a power gain is much
less impressive than a degree-of-freedom gain.

Low SNR regime
Herewe use the approximation log2�1+x�≈ x log2 e for x small in (8.15) to get

C =
nmin∑
i=1

�

[
log

(
1+ SNR

nt

�2
i

)]

≈
nmin∑
i=1

SNR
nt

�
[
�2
i

]
log2 e

= SNR
nt

��Tr�HH∗�� log2 e

= SNR
nt

�

[∑
i�j

�hij�2
]
log2 e

= nrSNR log2 e bits/s/Hz�

Thus, at low SNR, an nt by nr system yields a power gain of nr over a single
antenna system. This is due to the fact that the multiple receive antennas can
coherently combine their received signals to get a power boost. Note that
increasing the number of transmit antennas does not increase the power gain
since, unlike the case when the channel is known at the transmitter, transmit
beamforming cannot be done to constructively add signals from the different
antennas. Thus, at low SNR and without channel knowledge at the transmitter,
multiple transmit antennas are not very useful: the performance of an nt by
nr channel is comparable with that of a 1 by nr channel. This is illustrated
in Figure 8.3, which compares the capacity of an n by n channel with that
of a 1 by n channel, as a fraction of the capacity of a 1 by 1 channel. We
see that at an SNR of about −20 dB, the capacities of a 1 by 4 channel and
a 4 by 4 channel are very similar.
Recall from Chapter 4 that the operating SINR of cellular systems with

universal frequency reuse is typically very low. For example, an IS-95 CDMA
system may have an SINR per chip of −15 to −17dB. The above observation
then suggests that just simply overlaying point-to-point MIMO technology on
such systems to boost up per link capacity will not provide much additional
benefit than just adding antennas at one end. On the other hand, the story
is different if the multiple antennas are used to perform multiple access and
interference management. This issue will be revisited in Chapter 10.
Another difference between the high and the low SNR regimes is that while

channel randomness is crucial in yielding a large capacity gain in the high
SNR regime, it plays little role in the low SNR regime. The low SNR result
above does not depend on whether the channel gains, 	hij
, are independent
or correlated.
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Figure 8.3 Low SNR capacities.
Upper: a 1 by 4 and a 4 by 4
channel. Lower: a 1 by 8 an 8
by 8 channel. Capacity is a
fraction of the 1 by 1 channel
in each case.
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Large antenna array regime
We saw that in the high SNR regime, the capacity increases linearly with the
minimum of the number of transmit and the number of receive antennas. This
is a degree-of-freedom gain. In the low SNR regime, the capacity increases
linearly with the number of receive antennas. This is a power gain. Will the
combined effect of the two types of gain yield a linear growth in capacity at
any SNR, as we scale up both nt and nr? Indeed, this turns out to be true. Let
us focus on the square channel nt = nr = n to demonstrate this.

With i.i.d. Rayleigh fading, the capacity of this channel is (cf. (8.15))

Cnn�SNR�= �

[
n∑
i=1

log
(
1+ SNR

�2
i

n

)]
� (8.22)

where we emphasize the dependence on n and SNR in the notation. The �i/
√
n

are the singular values of the random matrixH/
√
n. By a random matrix result
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due to Marc̆enko and Pastur [78], the empirical distribution of the singular
values of H/

√
n converges to a deterministic limiting distribution for almost

all realizations of H. Figure 8.4 demonstrates the convergence. The limiting
distribution is the so-called quarter circle law.3 The corresponding limiting
density of the squared singular values is given by

f ∗�x�=
⎧⎨⎩ 1

�

√
1
x
− 1

4 0 ≤ x ≤ 4�

0 else�
(8.23)

Hence, we can conclude that, for increasing n,

1
n

n∑
i=1

log
(
1+ SNR

�2
i

n

)
→

∫ 4

0
log�1+ SNRx�f ∗�x�dx� (8.24)

If we denote

c∗�SNR� �=
∫ 4

0
log�1+ SNRx�f ∗�x�dx� (8.25)

Figure 8.4 Convergence of the
empirical singular value
distribution of H/

√
n. For

each n, a single random
realization of H/

√
n is

generated and the empirical
distribution (histogram) of the
singular values is plotted. We
see that as n grows, the
histogram converges to the
quarter circle law.
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3 Note that although the singular values are unbounded, in the limit they lie in the interval
�0�2� with probability 1.
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we can solve the integral for the density in (8.23) to arrive at (see Exer-
cise 8.17)

c∗�SNR�= 2 log
(
1+ SNR− 1

4
F�SNR�

)
− log e

4SNR
F�SNR�� (8.26)

where

F�SNR� �=
(√

4SNR+1−1
)2
� (8.27)

The significance of c∗�SNR� is that

lim
n→�

Cnn�SNR�
n

= c∗�SNR�� (8.28)

So capacity grows linearly in n at any SNR and the constant c∗�SNR� is the
rate of the growth.
We compare the large-n approximation

Cnn�SNR�≈ nc∗�SNR�� (8.29)

with the actual value of the capacity for n = 2�4 in Figure 8.5. We see the
approximation is very good, even for such small values of n. In Exercise 8.7,
we see statistical models other than i.i.d. Rayleigh, which also have a linear
increase in capacity with an increase in n.

Linear scaling: a more in-depth look
To better understand why the capacity scales linearly with the number of
antennas, it is useful to contrast the MIMO scenario here with three other
scenarios:

Figure 8.5 Comparison
between the large-n
approximation and the actual
capacity for n= 2� 4.
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• MISO channel with a large transmit antenna array Specializing (8.15)
to the n by 1 MISO channel yields the capacity

Cn1 = �

[
log

(
1+ SNR

n

n∑
i=1

�hi�2
)]

bits/s/Hz� (8.30)

As n→ �, by the law of large numbers,

Cn1 → log�1+ SNR�= Cawgn� (8.31)

For n = 1, the 1 by 1 fading channel (with only receiver CSI) has lower
capacity than the AWGN channel; this is due to the “Jensen’s loss”
(Section 5.4.5). But recall from Figure 5.20 that this loss is not large for
the entire range of SNR. Increasing the number of transmit antennas has
the effect of reducing the fluctuation of the instantaneous SNR

1
n

n∑
i=1

�hi�2 · SNR� (8.32)

and hence reducing the Jensen’s loss, but the loss was not big to start
with, hence the gain is minimal. Since the total transmit power is fixed,
the multiple transmit antennas provide neither a power gain nor a gain in
spatial degrees of freedom. (In a slow fading channel, the multiple transmit
antennas provide a diversity gain, but this is not relevant in the fast fading
scenario considered here.)

• SIMO channel with a large receive antenna array A 1 by n SIMO
channel has capacity

C1n = �

[
log

(
1+ SNR

n∑
i=1

�hi�2
)]

� (8.33)

For large n

C1n ≈ log�nSNR�= logn+ log SNR� (8.34)

i.e., the receive antennas provide a power gain (which increases linearly
with the number of receive antennas) and the capacity increases logarith-
mically with the number of receive antennas. This is quite in contrast to
the MISO case: the difference is due to the fact that now there is a lin-
ear increase in total received power due to a larger receive antenna array.
However, the increase in capacity is only logarithmic in n; the increase
in total received power is all accumulated in the single degree of freedom
of the channel. There is power gain but no gain in the spatial degrees of
freedom.

The capacities, as a function of n, are plotted for the SIMO, MISO and
MIMO channels in Figure 8.6.
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Figure 8.6 Capacities of the n
by 1 MISO channel, 1 by n
SIMO channel and the n by n
MIMO channel as a function of
n, for SNR= 0 dB
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• AWGN channel with infinite bandwidth Given a power constraint of
P̄ and AWGN noise spectral density N0/2, the infinite bandwidth limit is
(cf. 5.18)

C� = lim
W→�

W log
(
1+ P̄

N0W

)
= P̄

N0

bits/s� (8.35)

Here, although the number of degrees of freedom increases, the capacity
remains bounded. This is because the total received power is fixed and
hence the SNR per degree of freedom vanishes. There is a gain in the
degrees of freedom, but since there is no power gain the received power
has to be spread across the many degrees of freedom.

In contrast to all of these scenarios, the capacity of an n by n MIMO
channel increases linearly with n, because simultaneously:

• there is a linear increase in the total received power, and
• there is a linear increase in the degrees of freedom, due to the substantial
randomness and consequent well-conditionedness of the channel matrix H.

Note that the well-conditionedness of the matrix depends on maintaining the
uncorrelated nature of the channel gains, 	hij
, while increasing the number
of antennas. This can be achieved in a rich scattering environment by keeping
the antenna spacing fixed at half the wavelength and increasing the aperture,
L, of the antenna array. On the other hand, if we just pack more and more
antenna elements in a fixed aperture, L, then the channel gains will become
more and more correlated. In fact, we know from Section 7.3.7 that in the
angular domain a MIMO channel with densely spaced antennas and aperture
L can be reduced to an equivalent 2L by 2L channel with antennas spaced
at half the wavelength. Thus, the number of degrees of freedom is ultimately
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limited by the antenna array aperture rather than the number of antenna
elements.

8.2.3 Full CSI

We have considered the scenario when only the receiver can track the channel.
This is the most interesting case in practice. In a TDD system or in an FDD
system where the fading is very slow, it may be possible to track the channel
matrix at the transmitter. We shall now discuss how channel capacity can
be achieved in this scenario. Although channel knowledge at the transmitter
does not help in extracting an additional degree-of-freedom gain, extra power
gain is possible.

Capacity
The derivation of the channel capacity in the full CSI scenario is only a slight
twist on the time-invariant case discussed in Section 7.1.1. At each time m,
we decompose the channel matrix as H�m� = U�m���m�V�m�∗, so that the
MIMO channel can be represented as a parallel channel

ỹi�m�= �i�m�x̃i�m�+ w̃i�m�� i= 1� � � � � nmin� (8.36)

where �1�m� ≥ �2�m� ≥ � � � ≥ �nmin
�m� are the ordered singular values of

H�m� and

x̃�m� = V∗�m�x�m��

ỹ�m� = U∗�m�y�m��

w̃�m� = U∗�m�w�m��

We have encountered the fast fading parallel channel in our study of the
single antenna fast fading channel (cf. Section 5.4.6). We allocate powers to
the sub-channels based on their strength according to the waterfilling policy

P∗���=
(
�− N0

�2

)+
� (8.37)

with � chosen so that the total transmit power constraint is satisfied:

nmin∑
i=1

�

[(
�− N0

�2
i

)+]
= P� (8.38)

Note that this is waterfilling over time and space (the eigenmodes). The
capacity is given by

C =
nmin∑
i=1

�

[
log

(
1+ P∗��i��2

i

N0

)]
� (8.39)
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Transceiver architecture
The transceiver architecture that achieves the capacity follows naturally from
the SVD-based architecture depicted in Figure 7.2. Information bits are split
into nmin parallel streams, each coded separately, and then augmented by nt −
nmin streams of zeros. The symbols across the streams at time m form the vec-
tor x̃�m�. This vector is pre-multiplied by the matrix V�m� before being sent
through the channel, where H�m� = U�m���m�V∗�m� is the singular value
decomposition of the channel matrix at time m. The output is post-multiplied
by the matrix U∗�m� to extract the independent streams, which are then sepa-
rately decoded. The power allocated to each stream is time-dependent and is
given by the waterfilling formula (8.37), and the rates are dynamically allo-
cated accordingly. If anAWGNcapacity-achieving code is used for each stream,
then the entire system will be capacity-achieving for the MIMO channel.

Performance analysis
Let us focus on the i.i.d. Rayleigh fading model. Since with probability 1,
the random matrix HH∗ has full rank (Exercise 8.12), and is, in fact, well-
conditioned (Exercise 8.14), it can be shown that at high SNR, the waterfilling
strategy allocates an equal amount of power P/nmin to all the spatial modes,
as well as an equal amount of power over time. Thus,

C ≈
nmin∑
i=1

�

[
log

(
1+ SNR

nmin

�2
i

)]
� (8.40)

where SNR = P/N0. If we compare this to the capacity (8.16) with only
receiver CSI, we see that the number of degrees of freedom is the same �nmin�

but there is a power gain of a factor of nt/nmin when the transmitter can track
the channel. Thus, whenever there are more transmit antennas then receive
antennas, there is a power boost of nt/nr from having transmitter CSI. The
reason is simple. Without channel knowledge at the transmitter, the transmit
energy is spread out equally across all directions in �nt . With transmitter CSI,
the energy can now be focused on only the nr non-zero eigenmodes, which
form a subspace of dimension nr inside �nt . For example, with nr = 1, the
capacity with only receiver CSI is

�

[
log

(
1+ SNR/nt

nt∑
i=1

�hi�2
)]

�

while the high SNR capacity when there is full CSI is

�

[
log

(
1+ SNR

nt∑
i=1

�hi�2
)]

�
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Thus a power gain of a factor of nt is achieved by transmit beamforming.
With dual transmit antennas, this is a gain of 3 dB.
At low SNR, there is a further gain from transmitter CSI due to dynamic

allocation of power across the eigenmodes: at any given time, more power
is given to stronger eigenmodes. This gain is of the same nature as the one
from opportunistic communication discussed in Chapter 6.
What happens in the large antenna array regime?Applying the randommatrix

result of Marc̆enko and Pastur from Section 8.2.2, we conclude that the random
singular values�i�m�/

√
n of the channelmatrixH�m�/

√
n converge to the same

deterministic limiting distribution f ∗ across all timesm. This means that in the
waterfilling strategy, there is no dynamic power allocation over time, only over
space. This is sometimes known as a channel hardening effect.

Summary 8.1 Performance gains in a MIMO channel

The capacity of an nt ×nr i.i.d. Rayleigh fading MIMO channel H with
receiver CSI is

Cnn�SNR�= �

[
logdet

(
Inr +

SNR
nt

HH∗
)]

� (8.41)

At high SNR, the capacity is approximately equal (up to an additive
constant) to nmin log SNR bits/s/Hz.

At low SNR, the capacity is approximately equal to nr SNR log2 e bits/s/Hz,
so only a receive beamforming gain is realized.

With nt = nr = n, the capacity can be approximated by nc∗�SNR� where
c∗�SNR� is the constant in (8.26).

Conclusion: In an n×n MIMO channel, the capacity increases linearly
with n over the entire SNR range.

With channel knowledge at the transmitter, an additional nt/nr-fold trans-
mit beamforming gain can be realized with an additional power gain from
temporal–spatial waterfilling at low SNR.

8.3 Receiver architectures

The transceiver architecture of Figure 8.1 achieves the capacity of the fast
fading MIMO channel with receiver CSI. The capacity is achieved by joint
ML decoding of the data streams at the receiver, but the complexity grows
exponentially with the number of data streams. Simpler decoding rules
that provide soft information to feed to the decoders of the individual data
streams is an active area of research; some of the approaches are reviewed
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in Exercise 8.15. In this section, we consider receiver architectures that use
linear operations to convert the problem of joint decoding of the data streams
into one of individual decoding of the data streams. These architectures
extract the spatial degree of freedom gains characterized in the previous
section. In conjunction with successive cancellation of data streams, we can
achieve the capacity of the fast fading MIMO channel. To be able to focus on
the receiver design, we start with transmitting the independent data streams
directly over the antenna array (i.e., Q= Int in Figure 8.1).

8.3.1 Linear decorrelator

Geometric derivation
Is it surprising that the full degrees of freedom of H can be attained even
when the transmitter does not track the channel matrix? When the transmitter
does know the channel, the SVD architecture enables the transmitter to send
parallel data streams through the channel so that they arrive orthogonally
at the receiver without interference between the streams. This is achieved
by pre-rotating the data so that the parallel streams can be sent along the
eigenmodes of the channel. When the transmitter does not know the channel,
this is not possible. Indeed, after passing through the MIMO channel of (7.1),
the independent data streams sent on the transmit antennas all arrive cross-
coupled at the receiver. It is not clear a priori that the receiver can separate
the data streams efficiently enough so that the resulting performance has full
degrees of freedom. But in fact we have already seen such a receiver: the
channel inversion receiver in the 2× 2 example discussed in Section 3.3.3.
We develop the structure of this receiver in full generality here.

To simplify notations, let us first focus on the time-invariant case, where the
channel matrix is fixed. We can write the received vector at symbol timem as

y�m�=
nt∑
i=1

hixi�m�+w�m�� (8.42)

where h1� � � � �hnt are the columns of H and the data streams transmitted on
the antennas, 	xi�m�
 on the ith antenna, are all independent. Focusing on the
kth data stream, we can rewrite (8.42):

y�m�= hkxk�m�+
∑
i 
=k

hixi�m�+w� (8.43)

Compared to the SIMO point-to-point channel from Section 7.2.1, we see
that the kth data stream faces an extra source of interference, that from
the other data streams. One idea that can be used to remove this inter-
stream interference is to project the received signal y onto the subspace
orthogonal to the one spanned by the vectors h1� � � � �hk−1�hk+1� � � � �hnt
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(denoted henceforth by Vk). Suppose that the dimension of Vk is dk. Projection
is a linear operation and we can represent it by a dk by nr matrix Qk, the
rows of which form an orthonormal basis of Vk; they are all orthogonal
to h1� � � � �hk−1�hk+1� � � � �hnt . The vector Qkv should be interpreted as the
projection of the vector v onto Vk, but expressed in terms of the coordinates
defined by the basis of Vk formed by the rows of Qk. A pictorial depiction of
this projection operation is in Figure 8.7.
Now, the inter-stream interference “nulling” is successful (that is, the result-

ing projection of hk is a non-zero vector) if the kth data stream “spatial
signature” hk is not a linear combination of the spatial signatures of the other
data streams. In other words, if there are more data streams than the dimen-
sion of the received signal (i.e., nt > nr), then the nulling operation will not
be successful, even for a full rank H. Hence, we should choose the number
of data streams to be no more than nr . Physically, this corresponds to using
only a subset of the transmit antennas and for notational convenience we will
count only the transmit antennas that are used, by just making the assumption
nt ≤ nr in the decorrelator discussion henceforth.
After the projection operation,

ỹ�m� �=Qky�m�=Qkhkxk�m�+ w̃�m�

where w̃�m� �=Qkw�m� is the noise, still white, after the projection. Optional
demodulation of the kth stream can now be performed by match filtering to
the vector Qkhk. The output of this matched filter (or maximal ratio combiner)
has SNR

Pk�Qkhk�2
N0

� (8.44)

where Pk is the power allocated to stream k.

Figure 8.7 A schematic
representation of the
projection operation: y is
projected onto the subspace
orthogonal to h1 to
demodulate stream 2.

h1

h2

y
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The combination of the projection operation followed by the matched filter
is called the decorrelator (also known as interference nulling or zero-forcing
receiver). Since projection and matched filtering are both linear operations,
the decorrelator is a linear filter. The filter ck is given by

c∗k = �Qkhk�
∗Qk� (8.45)

or

ck = �Q∗
kQk�hk� (8.46)

which is the projection of hk onto the subspace Vk, expressed in terms of
the original coordinates. Since the matched filter maximizes the output SNR,
the decorrelator can also be interpreted as the linear filter that maximizes the
output SNR subject to the constraint that the filter nulls out the interference
from all other streams. Intuitively, we are projecting the received signal in
the direction within Vk that is closest to hk.

Only the kth stream has been in focus so far. We can now decorrelate each
of the streams separately, as illustrated in Figure 8.8. We have described the
decorrelator geometrically; however, there is a simple explicit formula for
the entire bank of decorrelators: the decorrelator for the kth stream is the kth
column of the pseudoinverse H† of the matrix H, defined by

H† �= �H∗H�−1H∗� (8.47)

Figure 8.8 A bank of
decorrelators, each estimating
the parallel data streams.

Decorrelator
for stream nt

Decorrelator
for stream 2

Decorrelator
for stream 1

y[m]
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The validity of this formula is verified in Exercise 8.11. In the special case
when H is square and invertible, H† =H−1 and the decorrelator is precisely
the channel inversion receiver we already discussed in Section 3.3.3.

Performance for a deterministic H
The channel from the kth stream to the output of the corresponding decor-
relator is a Gaussian channel with SNR given by (8.44). A Gaussian code
achieves the maximum data rate, given by

Ck �= log
(
1+ Pk�Qkhk�2

N0

)
� (8.48)

To get a better feel for this performance, let us compare it with the ideal
situation of no inter-stream interference in (8.43). As we observed above, if
there were no inter-stream interference in (8.43), the situation is exactly the
SIMO channel of Section 7.2.1; the filter would be matched to hk and the
achieved SNR would be

Pk�hk�2
N0

� (8.49)

Since the inter-stream interference only hampers the recovery of the kth
stream, the performance of the decorrelator (in terms of the SNR in (8.44))
must in general be less than that achieved by a matched filter with no inter-
stream interference. We can also see this explicitly: the projection operation
cannot increase the length of a vector and hence �Qkhk� ≤ �hk�. We can
further say that the projection operation always reduces the length of hk
unless hk is already orthogonal to the spatial signatures of the other data
streams.
Let us return to the bank of decorrelators in Figure 8.8. The total rate

of communication supported here with efficient coding in each of the data
streams is the sum of the individual rates in (8.48) and is given by

nt∑
k=1

Ck�

Performance in fading channels
So far our analysis has focused on a deterministic channel H. As usual, in
the time-varying fast fading scenario, coding should be done over time across
the different fades, usually in combination with interleaving. The maximum
achievable rate can be computed by simply averaging over the stationary
distribution of the channel process 	H�m�
m, yielding

Rdecorr =
nt∑
k=1

C̄k� (8.50)
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where

C̄k = �

[
log

(
1+ Pk�Qkhk�2

N0

)]
� (8.51)

The achievable rate in (8.50) is in general less than or equal to the capacity
of the MIMO fading channel with CSI at the receiver (cf. (8.10)) since
transmission using independent data streams and receiving using the bank
of decorrelators is only one of several possible communication strategies.
To get some further insight, let us look at a specific statistical model, that
of i.i.d. Rayleigh fading. Motivated by the fact that the optimal covariance
matrix is of the form of scaled identity (cf. (8.12)), let us choose equal powers
for each of the data streams (i.e., Pk = P/nt). Continuing from (8.50), the
decorrelator bank performance specialized to i.i.d. Rayleigh fading is (recall
that for successful decorrelation nmin = nt)

Rdecorr = �

[
nmin∑
k=1

log
(
1+ SNR

nt

�Qkhk�2
)]

� (8.52)

Sincehk ∼ �� �0� Inr�, we know that�hk�2 ∼ '2
2nr
, where'2

2i is a'-squared ran-
domvariablewith2idegreesof freedom(cf. (3.36)).HereQkhk ∼ �� �0� IdimVk

�

(since QkQ
∗
k = IdimVk

). It can be shown that the channel H is full rank with
probability 1 (see Exercise 8.12), and this means that dimVk = nr −nt +1 (see
Exercise 8.13). Thus �Qkhk�2 ∼ '2

2�nr−nt+1�� This provides us with an explicit
example for our earlier observation that the projection operation reduces the
length. In the special case of a square system, dimVk = 1, and Qkhk is a scalar
distributed as circular symmetricGaussian;wehave already seen this in the2×2
example of Section 3.3.3.
Rdecorr is plotted in Figure 8.9 for different numbers of antennas. We see

that the asymptotic slope of the rate obtained by the decorrelator bank as a

Figure 8.9 Rate achieved
(in bits/s/Hz) by the
decorrelator bank.
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function of SNR in dB is proportional to nmin; the same slope in the capacity
of the MIMO channel. More specifically, we can approximate the rate in
(8.52) at high SNR as

Rdecorr ≈ nmin log
SNR
nt

+�

[
nt∑
k=1

log
(�Qkhk�2

)]
� (8.53)

= nmin log
(
SNR
nt

)
+nt�

[
log'2

2�nr−nt+1�

]
� (8.54)

Comparing (8.53) and (8.54) with the corresponding high SNR expansion of
the capacity of this MIMO channel (cf. (8.18) and (8.20)), we can make the
following observations:

• The first-order term (in the high SNR expansion) is the same for both
the rate achieved by the decorrelator bank and the capacity of the MIMO
channel. Thus, the decorrelator bank is able to fully harness the spatial
degrees of freedom of the MIMO channel.

• The next term in the high SNR expansion (constant term) shows the per-
formance degradation, in rate, of using the decorrelator bank as compared
to the capacity of the channel. Figure 8.10 highlights this difference in the
special case of nt = nr = n.

The above analysis is for the high SNR regime. At any fixed SNR, it is also
straightforward to show that, just like the capacity, the total rate achievable
by the bank of decorrelators scales linearly with the number of antennas (see
Exercise 8.21).

Figure 8.10 Plot of rate
achievable with the
decorrelator bank for the
nt = nr = 8 i.i.d. Rayleigh
fading channel. The capacity of
the channel is also plotted for
comparison.
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8.3.2 Successive cancellation

We have just considered a bank of separate filters to estimate the data streams.
However, the result of one of the filters could be used to aid the operation of
the others. Indeed, we can use the successive cancellation strategy described in
the uplink capacity analysis (in Section 6.1): once a data stream is successfully
recovered, we can subtract it off from the received vector and reduce the
burden on the receivers of the remaining data streams. With this motivation,
consider the following modification to the bank of separate receiver structures
in Figure 8.8. We use the first decorrelator to decode the data stream x1�m�

and then subtract off this decoded stream from the received vector. If the first
stream is successfully decoded, then the second decorrelator has to deal only
with streams x3� � � � � xnt as interference, since x1 has been correctly subtracted
off. Thus, the second decorrelator projects onto the subspace orthogonal to that
spanned by h3� � � � �hnt . This process is continued until the final decorrelator
does not have to deal with any interference from the other data streams
(assuming successful subtraction in each preceding stage). This decorrelator–
SIC (decorrelator with successive interference cancellation) architecture is
illustrated in Figure 8.11.

One problem with this receiver structure is error propagation: an error in
decoding the kth data stream means that the subtracted signal is incorrect
and this error propagates to all the streams further down, k+ 1� � � � � nt .
A careful analysis of the performance of this scheme is complicated, but
can be made easier if we take the data streams to be well coded and the
block length to be very large, so that streams are successfully cancelled
with very high probability. With this assumption the kth data stream sees
only down-stream interference, i.e., from the streams k+ 1� � � � � nt . Thus,

Figure 8.11 Decorrelator–SIC:
A bank of decorrelators with
successive cancellation of
streams.
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the corresponding projection operation (denoted by Q̃k) is onto a higher
dimensional subspace (one orthogonal to that spanned by hk+1� � � � �hnt , as
opposed to being orthogonal to the span of h1� � � � �hk−1�hk+1� � � � �hnt ). As
in the calculation of the previous section, the SNR of the kth data stream is
(cf. (8.44))

Pk�Q̃khk�2
N0

� (8.55)

While we clearly expect this to be an improvement over the simple bank
of decorrelators, let us again turn to the i.i.d. Rayleigh fading model to see
this concretely. Analogous to the high SNR expansion of (8.52) in (8.53) for
the simple decorrelator bank, with SIC and equal power allocation to each
stream, we have

Rdec−sic ≈ nmin log
SNR
nt

+�

[
nt∑
k=1

log��Q̃khk�2�
]
� (8.56)

Similar to our analysis of the basic decorrelator bank, we can argue that
�Q̃khk�2 ∼ '2

2�nr−nt+k� with probability 1 (cf. Exercise 8.13), thus arriving at

�
[
log��Q̃khk�2�

]
= ��log'2

2�nr−nt+k��� (8.57)

Comparing this rate at high SNR with both the simple decorrelator bank and
the capacity of the channel (cf. (8.53) and (8.18)), we observe the following

• The first-order term in the high SNR expansion is the same as that in the
rate of the decorrelator bank and in the capacity: successive cancellation
does not provide additional degrees of freedom.

• Moving to the next (constant) term, we see the performance boost in
using the decorrelator–SIC over the simple decorrelator bank: the improved
constant term is now equal to that in the capacity expansion. This boost in
performance can be viewed as a power gain: by decoding and subtracting
instead of linear nulling, the effective SNR at each stage is improved.

8.3.3 Linear MMSE receiver

Limitation of the decorrelator
We have seen the performance of the basic decorrelator bank and the
decorrelator–SIC. At high SNR, for i.i.d. Rayleigh fading, the basic decorre-
lator bank achieves the full degrees of freedom in the channel. With SIC even
the constant term in the high SNR capacity expansion is achieved. What about
low SNR? The performance of the decorrelator bank (both with and without
the modification of successive cancellation) as compared to the capacity of
the MIMO channel is plotted in Figure 8.12.
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Figure 8.12 Performance of
the decorrelator bank, with
and without successive
cancellation at low SNR. Here
nt = nr = 8.
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The main observation is that while the decorrelator bank performs well at
high SNR, it is really far away from the capacity at low SNR. What is going
on here?
To get more insight, let us plot the performance of a bank of matched

filters, the kth filter being matched to the spatial signature hk of transmit
antenna k. From Figure 8.13 we see that the performance of the bank of
matched filters is far superior to the decorrelator bank at low SNR (although
far inferior at high SNR).

Derivation of the MMSE receiver
The decorrelator was motivated by the fact that it completely nulls out inter-
stream interference; in fact it maximizes the output SNR among all linear

Figure 8.13 Performance (ratio
of the rate to the capacity) of
the matched filter bank as
compared to that of the
decorrelator bank. At low SNR,
the matched filter is superior.
The opposite is true for the
decorrelator. The channel is
i.i.d. Rayleigh with nt = nr = 8.
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receivers that completely null out the interference. On the other hand, matched
filtering (maximal ratio combining) is the optimal strategy for SIMO channels
without any inter-stream interference. We called this receive beamforming
in Example 1 in Section 7.2.1. Thus, we see a tradeoff between completely
eliminating inter-stream interference (without any regard to how much energy
of the stream of interest is lost in this process) and preserving as much energy
content of the stream of interest as possible (at the cost of possibly facing high
inter-stream interference). The decorrelator and the matched filter operate at
two extreme ends of this tradeoff. At high SNR, the inter-stream interference is
dominant over the additive Gaussian noise and the decorrelator performs well.
On the other hand, at low SNR the inter-stream interference is not as much of
an issue and receive beamforming (matched filter) is the superior strategy. In
fact, the bank of matched filters achieves capacity at low SNR (Exercise 8.20).
We can ask for a linear receiver that optimally trades off fighting inter-

stream interference and the background Gaussian noise, i.e., the receiver that
maximizes the output signal-to-interference-plus-noise ratio (SINR) for any
value of SNR. Such a receiver looks like the decorrelator when the inter-
stream interference is large (i.e., when SNR is large) and like the matched
filter when the interference is small (i.e., when SNR is small) (Figure 8.14).
This can be thought of as the natural generalization of receive beamforming
to the case when there is interference as well as noise.
To formulate this tradeoff precisely, let us first look at the following generic

vector channel:

y= hx+ z� (8.58)

where z is complex circular symmetric colored noise with an invertible covari-
ance matrixKz, h is a deterministic vector and x is the unknown scalar symbol

Figure 8.14 The optimal filter
goes from being the
decorrelator at high SNR to
being the matched filter at low
SNR.

Interference subspace

Decorrelator
Optimal filter

Signal direction
(matched filter)
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to be estimated. z and x are assumed to be uncorrelated. We would like to
choose a filter with maximum output SNR. If the noise is white, we know
that it is optimal to project y onto the direction along h. This observation
suggests a natural strategy for the colored noise situation: first whiten the
noise, and then follow the strategy used with white additive noise. That is,
we first pass y through the invertible4 linear transformation K

− 1
2

z such that
the noise z̃ �=K

− 1
2

z z becomes white:

K
− 1

2
z y=K

− 1
2

z hx+ z̃� (8.59)

Next, we project the output in the direction of K
− 1

2
z h to get an effective scalar

channel

�K
− 1

2
z h�∗K− 1

2
z y= h∗K−1

z y= h∗K−1
z hx+h∗K−1

z z� (8.60)

Thus the linear receiver in (8.60), represented by the vector

vmmse �=K−1
z h� (8.61)

maximizes the SNR. It can also be shown that this receiver, with an appro-
priate scaling, minimizes the mean square error in estimating x (see Exer-
cise 8.18), and hence it is also called the linear MMSE (minimum mean
squared error) receiver. The corresponding SINR achieved is

�2
xh

∗K−1
z h� (8.62)

We can now upgrade the receiver structure in Section 8.3.1 by replacing
the decorrelator for each stream by the linear MMSE receiver. Again, let us
first consider the case where the channel H is fixed. The effective channel
for the kth stream is

y�m�= hkxk�m�+ zk�m�� (8.63)

where zk represents the noise plus interference faced by data stream k:

zk�m� �=
∑
i 
=k

hixi�m�+w�m�� (8.64)

4 Kz is an invertible covariance matrix and so it can be written as U�U∗ for rotation matrix U

and diagonal matrix � with positive diagonal elements. Now K
1
2
z is defined as U�

1
2 U∗, with

�
1
2 defined as a diagonal matrix with diagonal elements equal to the square root of the

diagonal elements of �.
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With power Pi associated with the data stream i, we can explicitly calculate
the covariance of zk

Kzk
�= N0Inr +

nt∑
i 
=k

Pihih
∗
i � (8.65)

and also note that the covariance is invertible. Substituting this expression for
the covariance matrix into (8.61) and (8.62), we see that the linear receiver
in the kth stage is given by(

N0Inr +
nt∑
i 
=k

Pihih
∗
i

)−1

hk� (8.66)

and the corresponding output SINR is

Pkh
∗
k

(
N0Inr +

nt∑
i 
=k

Pihih
∗
i

)−1

hk� (8.67)

Performance
We motivated the design of the linear MMSE receiver as something in
between the decorrelator and receiver beamforming. Let us now see this
explicitly. At very low SNR (i.e., P1� � � � �Pnt

are very small compared to N0)
we see that

Kzk
≈ N0Inr � (8.68)

and the linear MMSE receiver in (8.66) reduces to the matched filter. On the

other hand, at high SNR, the K
− 1

2
zk operation reduces to the projection of y

onto the subspace orthogonal to that spanned by h1� � � � �hk−1�hk+1� � � � �hnt
and the linear MMSE receiver reduces to the decorrelator.
Assuming the use of capacity-achieving codes for each stream, the maxi-

mum data rate that stream k can reliably carry is

Ck = log
(
1+Pkh

∗
kK

−1
zk
hk
)
� (8.69)

As usual, the analysis directly carries over to the time-varying fading
scenario, with data rate of the kth stream being

C̄k = ��log�1+Pkh
∗
kK

−1
zk
hk��� (8.70)

where the average is over the stationary distribution of H.
The performance of a bank of MMSE filters with equal power allocation

over an i.i.d. Rayleigh fading channel is plotted in Figure 8.15. We see that
the MMSE receiver performs strictly better than both the decorrelator and the
matched filter over the entire range of SNRs.
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Figure 8.15 Performance (the
ratio of rate to the capacity) of
a basic bank of MMSE
receivers as compared to the
matched filter bank and to the
decorrelator bank. MMSE
performs better than both,
over the entire range of SNR.
The channel is i.i.d. Rayleigh
with nt = nr = 8.
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MMSE–SIC
Analogous to what we did in Section 8.3.2 for the decorrelator, we can now
upgrade the basic bank of linear MMSE receivers by allowing successive
cancellation of streams as well, as depicted in Figure 8.16. What is the
performance improvement in using the MMSE–SIC receiver? Figure 8.17
plots the performance as compared to the capacity of the channel (with nt =
nr = 8) for i.i.d. Rayleigh fading. We observe a startling fact: the bank of linear
MMSE receivers with successive cancellation and equal power allocation
achieves the capacity of the i.i.d. Rayleigh fading channel.

Figure 8.16 MMSE–SIC: a
bank of linear MMSE receivers,
each estimating one of the
parallel data streams, with
streams successively cancelled
from the received vector at
each stage.
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Figure 8.17 The MMSE–SIC
receiver achieves the capacity
of the MIMO channel when
fading is i.i.d. Rayleigh.
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In fact, the MMSE–SIC receiver is optimal in a much stronger sense: it
achieves the best possible sum rate (8.2) of the transceiver architecture in
Section 8.1 for any given H. That is, if the MMSE–SIC receiver is used for
demodulating the streams and the SINR and rate for stream k are SINRk and
log�1+ SINRk� respectively, then the rates sum up to

nt∑
k=1

log�1+ SINRk�= logdet�Inr +HKxH
∗�� (8.71)

which is the best possible sum rate. While this result can be verified directly
by matrix manipulations (Exercise 8.22), the following section gives a deeper
explanation in terms of the underlying information theory (the background
of which is covered in Appendix B). Understanding at this level will be very
useful as we adapt the MMSE–SIC architecture to the analysis of the uplink
with multiple antennas in Chapter 10.

8.3.4 Information theoretic optimality∗

MMSE is information lossless
As a key step to understanding why the MMSE–SIC receiver is optimal, let
us go back to the generic vector channel with additive colored noise (8.58):

y= hx+ z� (8.72)

∗ This section can be skipped on a first reading. It requires knowledge of material in Appendix B
and is not essential for understanding the rest of the book, except for the analysis of the
MIMO uplink in Chapter 10.
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but now with the further assumption that x and z are Gaussian. In this case, it
can be seen that the linear MMSE filter (vmmse �=K−1

z h, cf. (8.61)) not only
maximizes the SNR, but also provides a sufficient statistic to detect x, i.e., it
is information lossless. Thus,

I�x�y�= I�x�v∗
mmsey�� (8.73)

The justification for this step is carried out in Exercise 8.19.

A time-invariant channel
Consider again the MIMO channel with a time-invariant channel matrix H:

y�m�=Hx�m�+w�m��

We choose the input x to be �� �0�diag	P1� � � � �Pnt

�. We can rewrite the

mutual information between the input and the output as

I�x�y� = I�x1� x2� � � � � xnt �y�

= I�x1�y�+ I�x2�y�x1�+· · ·+ I�xnt �y�x1� � � � � xnt−1�� (8.74)

where the last equality is a consequence of the chain rule of mutual infor-
mation (see (B.18) in Appendix B). Let us look at the kth term in the chain
rule expansion: I�xk�y�x1� � � � � xk−1�. Conditional on x1� � � � � xk−1, we can
subtract their effect from the output and obtain

y′ �= y−
k−1∑
i=1

hixi = hkxk+
∑
i>k

hixi+w�

Thus,

I�xk�y�x1� � � � � xk−1�= I�xk�y
′�= I�xk�v

∗
mmsey

′�� (8.75)

where vmmse is the MMSE filter for estimating xk from y′ and the last equality
follows directly from the fact that the MMSE receiver is information-lossless.
Hence, the rate achieved in kth stage of the MMSE–SIC receiver is precisely
I�xk�y�x1� � � � � xk−1�, and the total rate achieved by this receiver is precisely
the overall mutual information between the input x and the output y of the
MIMO channel.

We now see why the MMSE filter is special: its scalar output preserves
the information in the received vector about xk. This property does not hold
for other filters such as the decorrelator or the matched filter.
In the special case of a MISO channel with a scalar output

y�m�=
nt∑
k=1

hkxk�m�+w�m�� (8.76)
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the MMSE receiver at the kth stage is reduced to simple scalar multiplication
followed by decoding; thus it is equivalent to decoding xk while treating
signals from antennas k+ 1� k+ 2� � � � � nt as Gaussian interference. If we
interpret (8.76) as an uplink channel with nt users, the MMSE–SIC receiver
thus reduces to the SIC receiver introduced in Section 6.1. Here we see another
explanation why the SIC receiver is optimal in the sense of achieving the
sum rate I�x1� x2� � � � � xK� y� of the K-user uplink channel: it “implements”
the chain rule of mutual information.

Fading channel
Now consider communicating using the transceiver architecture in Figure 8.1
but with the MMSE–SIC receiver on a time-varying fading MIMO channel
with receiver CSI. If Q= Int , the MMSE–SIC receiver allows reliable com-
munication at a sum of the rates of the data streams equal to the mutual
information of the channel under inputs of the form

�� �0�diag	P1� � � � �Pnt

�� (8.77)

In the case of i.i.d. Rayleigh fading, the optimal input is precisely �� �0� Int�,
and so the MMSE–SIC receiver achieves the capacity as well.

More generally, we have seen that if a MIMO channel, viewed in the
angular domain, can be modeled by a matrix H having zero mean, uncor-
related entries, then the optimal input distribution is always of the form in
(8.77) (cf. Section 8.2.1 and Exercise 8.3). Independent data streams decoded
using the MMSE–SIC receiver still achieve the capacity of such MIMO
channels, but the data streams are now transmitted over the transmit angular
windows (instead of directly on the antennas themselves). This means that
the transceiver architecture of Figure 8.1 with Q = Ut and the MMSE-SIC
receiver, achieves the capacity of the fast fading MIMO channel.

Discussion 8.1 Connections with CDMA multiuser detection and ISI
equalization

Consider the situation where independent data streams are sent out
from each antenna (cf. (8.42)). Here the received vector is a combi-
nation of the streams arriving in different receive spatial signatures,
with stream k having a receive spatial signature of hk. If we make
the analogy between space and bandwidth, then (8.42) serves as a
model for the uplink of a CDMA system: the streams are replaced by
the users (since the users cannot cooperate, the independence between
them is justified naturally) and hk now represents the received signa-
ture sequence of user k. The number of receive antennas is replaced by
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the number of chips in the CDMA signal. The base-station has access
to the received signal and decodes the information simultaneously com-
municated by the different users. The base-station could use a bank of
linear filters with or without successive cancellation. The study of the
receiver design at the base-station, its complexities and performance, is
called multiuser detection. The progress of multiuser detection is well
chronicled in [131].
Another connection can be drawn to point-to-point communication over

frequency-selective channels. In our study of the OFDM approach to
communicating over frequency-selective channels in Section 3.4.4, we
expressed the effect of the ISI in a matrix form (see (3.139)). This rep-
resentation suggests the following interpretation: communicating over a
block length of Nc on the L-tap time-invariant frequency-selective chan-
nel (see (3.129)) is equivalent to communicating over an Nc ×Nc MIMO
channel. The equivalent MIMO channel H is related to the taps of the
frequency-selective channel, with the �th tap denoted by h� (for � ≥ L,
the tap h� = 0), is

Hij =
{
hi−j for i ≥ j�

0 otherwise�
(8.78)

Due to the nature of the frequency-selective channel, previously trans-
mitted symbols act as interference to the current symbol. The study of
appropriate techniques to recover the transmit symbols in a frequency-
selective channel is part of classical communication theory under the
rubric of equalization. In our analogy, the transmitted symbols at different
times in the frequency-selective channel correspond to the ones sent over
the transmit antennas. Thus, there is a natural analogy between equaliza-
tion for frequency-selective channels and transceiver design for MIMO
channels (Table 8.1).

Table 8.1 Analogies between ISI equalization and MIMO communication
techniques. We have covered all of these except the last one, which will be
discussed in Chapter 10.

ISI equalization MIMO communication

OFDM SVD
Linear zero-forcing equalizer Decorrelator/interference nuller
Linear MMSE equalizer Linear MMSE receiver
Decision feedback equalizer (DFE) Successive interference cancellation (SIC)
ISI precoding Costa precoding
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8.4 Slow fading MIMO channel

We now turn our attention to the slow fading MIMO channel,

y�m�=Hx�m�+w�m�� (8.79)

where H is fixed over time but random. The receiver is aware of the channel
realization but the transmitter only has access to its statistical characterization.
As usual, there is a total transmit power constraint P. Suppose we want
to communicate at a target rate R bits/s/Hz. If the transmitter were aware
of the channel realization, then we could use the transceiver architecture in
Figure 8.1 with an appropriate allocation of rates to the data streams to achieve
reliable communication as long as

logdet
(
Inr +

1
N0

HKxH
∗
)
> R� (8.80)

where the total transmit power constraint implies a condition on the covariance
matrix: Tr�Kx� ≤ P. However, remarkably, information theory guarantees
the existence of a channel-state independent coding scheme that achieves
reliable communication whenever the condition in (8.80) is met. Such a
code is universal, in the sense that it achieves reliable communication on
every MIMO channel satisfying (8.80). This is similar to the universality
of the code achieving the outage performance on the slow fading parallel
channel (cf. Section 5.4.4). When the MIMO channel does not satisfy the
condition in (8.80), then we are in outage. We can choose the transmit strategy
(parameterized by the covariance) to minimize the probability of the outage
event:

pmimo
out �R�= min

Kx�Tr�Kx�≤P
�

{
logdet

(
Inr +

1
N0

HKxH
∗
)
< R

}
� (8.81)

Section 8.5 describes a transceiver architecture which achieves this outage
performance.
The solution to this optimization problem depends, of course, on the statis-

tics of channel H. For example, if H is deterministic, the optimal solution is
to perform a singular value decomposition of H and waterfill over the eigen-
modes. When H is random, then one cannot tailor the covariance matrix to
one particular channel realization but should instead seek a covariance matrix
that works well statistically over the ensemble of the channel realizations.
It is instructive to compare the outage optimization problem (8.81) with

that of computing the fast fading capacity with receiver CSI (cf. (8.10)). If
we think of

f�Kx�H� �= logdet
(
Inr +

1
N0

HKxH
∗
)
� (8.82)
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as the rate of information flow over the channel H when using a coding
strategy parameterized by the covariance matrix Kx, then the fast fading
capacity is

C = max
Kx�Tr�Kx�≤P

�H�f�Kx�H��� (8.83)

while the outage probability is

pout�R�= min
Kx�Tr�Kx�≤P

�	f�Kx�H� < R
� (8.84)

In the fast fading scenario, one codes over the fades through time and the
relevant performance metric is the long-term average rate of information flow
that is permissible through the channel. In the slow fading scenario, one is
only provided with a single realization of the channel and the objective is to
minimize the probability that the rate of information flow falls below the target
rate. Thus, the former is concerned with maximizing the expected value of the
random variable f�Kx�H� and the latter with minimizing the tail probability
that the same random variable is less than the target rate. While maximizing
the expected value typically helps to reduce this tail probability, in general
there is no one-to-one correspondence between these two quantities: the tail
probability depends on higher-order moments such as the variance.

We can consider the i.i.d. Rayleigh fading model to get more insight into
the nature of the optimizing covariance matrix. The optimal covariance matrix
over the fast fading i.i.d. Rayleigh MIMO channel is K∗

x = P/nt · Int . This
covariance matrix transmits isotropically (in all directions), and thus one
would expect that it is also good in terms of reducing the variance of the
information rate f�Kx�H� and, indirectly, the tail probability. Indeed, we have
seen (cf. Section 5.4.3 and Exercise 5.16) that this is the optimal covariance
in terms of outage performance for the MISO channel, i.e., nr = 1, at high
SNR. In general, [119] conjectures that this is the optimal covariance matrix
for the i.i.d. Rayleigh slow fading MIMO channel at high SNR. Hence, the
resulting outage probability

piid
out�R�= �

{
logdet

(
Inr +

SNR
nt

HH∗
)
< R

}
� (8.85)

is often taken as a good upper bound to the actual outage probability at high
SNR.

More generally, the conjecture is that it is optimal to restrict to a subset
of the antennas and then transmit isotropically among the antennas used.
The number of antennas used depends on the SNR level: the lower the SNR
level relative to the target rate, the smaller the number of antennas used. In
particular, at very low SNR relative to the target rate, it is optimal to use just
one transmit antenna. We have already seen the validity of this conjecture
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in the context of a single receive antenna (cf. Section 5.4.3) and we are
considering a natural extension to the MIMO situation. However, at typical
outage probability levels, the SNR is high relative to the target rate and it is
expected that using all the antennas is a good strategy.

High SNR
What outage performance can we expect at high SNR? First, we see that the
MIMO channel provides increased diversity. We know that with nr = 1 (the
MISO channel) and i.i.d. Rayleigh fading, we get a diversity gain equal to nt .
On the other hand, we also know that with nt = 1 (the SIMO channel) and
i.i.d. Rayleigh fading, the diversity gain is equal to nr . In the i.i.d. Rayleigh
fading MIMO channel, we can achieve a diversity gain of nt ·nr , which is the
number of independent random variables in the channel. A simple repetition
scheme of using one transmit antenna at a time to send the same symbol x
successively on the different nt antennas over nt consecutive symbol periods,
yields an equivalent scalar channel

ỹ =
nr∑
i=1

nt∑
j=1

�hij�2x+w� (8.86)

whose outage probability decays like 1/SNRntnr . Exercise 8.23 shows the
unsurprising fact that the outage probability of the i.i.d. Rayleigh fading
MIMO channel decays no faster than this.

Thus, a MIMO channel yields a diversity gain of exactly nt ·nr . The cor-
responding �-outage capacity of the MIMO channel benefits from both the
diversity gain and the spatial degrees of freedom. We will explore the high
SNR characterization of the combined effect of these two gains in Chapter 9.

8.5 D-BLAST: an outage-optimal architecture

We have mentioned that information theory guarantees the existence of cod-
ing schemes (parameterized by the covariance matrix) that ensure reliable
communication at rate R on every MIMO channel that satisfies the condition
(8.80). In this section, we will derive a transceiver architecture that achieves
the outage performance. We begin with considering the performance of the
V-BLAST architecture in Figure 8.1 on the slow fading MIMO channel.

8.5.1 Suboptimality of V-BLAST

Consider the V-BLAST architecture in Figure 8.1 with the MMSE–SIC
receiver structure (cf. Figure 8.16) that we have shown to achieve the
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capacity of the fast fading MIMO channel. This architecture has two main
features:

• Independently coded data streams are multiplexed in an appropriate coordi-
nate system Q and transmitted over the antenna array. Stream k is allocated
an appropriate power Pk and an appropriate rate Rk.

• A bank of linear MMSE receivers, in conjunction with successive cancel-
lation, is used to demodulate the streams (the MMSE–SIC receiver).

The MMSE–SIC receiver demodulates the stream from transmit antenna 1
using an MMSE filter, decodes the data, subtracts its contribution from the
stream, and proceeds to stream 2, and so on. Each stream is thought of as a
layer.
Can this same architecture achieve the optimal outage performance in the

slow fading channel? In general, the answer is no. To see this concretely,
consider the i.i.d. Rayleigh fading model. Here the data streams are transmitted
over separate antennas and it is easy to see that each stream has a diversity
of at most nr: if the channel gains from the kth transmit antenna to all the
nr receive antennas are in deep fade, then the data in the kth stream will
be lost. On the other hand, the MIMO channel itself provides a diversity
gain of nt ·nr . Thus, V-BLAST does not exploit the full diversity available
in the channel and therefore cannot be outage-optimal. The basic problem is
that there is no coding across the streams so that if the channel gains from
one transmit antenna are bad, the corresponding stream will be decoded in
error.

We have said that, under the i.i.d. Rayleigh fading model, the diversity of
each stream in V-BLAST is at most nr . The diversity would be exactly nr if
it were the only stream being transmitted; with simultaneous transmission of
streams, the diversity could be even lower depending on the receiver. This
can be seen most clearly if we replace the bank of linear MMSE receivers
in V-BLAST with a bank of decorrelators and consider the case nt ≤ nr . In
this case, the distribution of the output SNR at each stage can be explicitly
computed; this was actually done in Section 8.3.2:

SINRk ∼
Pk

N0

·'2
2�nr−�nt−k��� (8.87)

The diversity of the kth stream is therefore nr − �nt −k�. Since nt −k is the
number of uncancelled interfering streams at the kth stage, one can interpret
this as saying that the loss of diversity due to interference is precisely the
number of interferers needed to be nulled out. The first stream has the worst
diversity of nr−nt+1; this is also the bottleneck of the whole system because
the correct decoding of subsequent streams depends on the correct decoding
and cancellation of this stream. In the case of a square system, the first stream
has a diversity of only 1, i.e., no diversity gain. We have already seen this
result in the special case of the 2×2 example in Section 3.3.3. Though this
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analysis is for the decorrelator, it turns out that the MMSE receiver yields
exactly the same diversity gain (see Exercise 8.24). Using joint ML detection
of the streams, on the other hand, a diversity of nr can be recovered (as in
the 2×2 example in Section 3.3.3). However, this is still far away from the
full diversity gain ntnr of the channel.

There are proposed improvements to the basic V-BLAST architecture. For
instance, adapting the cancellation order as a function of the channel, and
allocating different rates to different streams depending on their position in the
cancellation order. However, none of these variations can provide a diversity
larger than nr , as long as we are sending independently coded streams on the
transmit antennas.

A more careful look
Here is a more precise understanding of why V-BLAST is suboptimal, which
will suggest how V-BLAST can be improved. For a given H, (8.71) yields
the following decomposition:

logdet�Inr +HKxH
∗�=

nt∑
k=1

log�1+ SINRk�� (8.88)

SINRk is the output signal-to-interference-plus-noise ratio of the MMSE
demodulator at the kth stage of the cancellation. The output SINRs are random
since they are a function of the channel matrix H. Suppose we have a target
rate of R and we split this into rates R1� � � � �Rnt

allocated to the individual
streams. Suppose that the transmit strategy (parameterized by the covariance
matrix Kx �= Q diag	P1� � � � �Pnt


Q∗, cf. (8.3)) is chosen to be the one that
yields the outage probability in (8.81). Now we note that the channel is in
outage if

logdet�Inr +HKxH
∗� < R� (8.89)

or equivalently,

nt∑
k=1

log�1+ SINRk� <
nt∑
k=1

Rk� (8.90)

However, V-BLAST is in outage as long as the random SINR in any stream
cannot support the rate allocated to that stream, i.e.,

log�1+ SINRk� < Rk� (8.91)

for any k. Clearly, this can occur even when the channel is not in outage.
Hence, V-BLAST cannot be universal and is not outage-optimal. This problem
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did not appear in the fast fading channel because there we code over the
temporal channel variations and thus kth stream gets a deterministic rate of

��log�1+ SINRk�� bits/s/Hz� (8.92)

8.5.2 Coding across transmit antennas: D-BLAST

Significant improvement of V-BLAST has to come from coding across the
transmit antennas. How do we improve the architecture to allow that? To see
more clearly how to proceed, one can draw an analogy between V-BLAST
and the parallel fading channel. In V-BLAST, the kth stream effectively sees
a channel with a (random) signal-to-noise ratio SINRk; this can therefore be
viewed as a parallel channel with nt sub-channels. In V-BLAST, there is
no coding across these sub-channels: outage therefore occurs whenever one
of these sub-channels is in a deep fade and cannot support the rate of the
stream using that sub-channel. On the other hand, by coding across the sub-
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Figure 8.18 How D-BLAST
works. (a) A soft estimate of
block A of the first codeword
(layer) obtained without
interference. (b) A soft MMSE
estimate of block B is obtained
by suppressing the interference
from antenna 2. (c) The soft
estimates are combined to
decode the first codeword
(layer). (d) The first codeword
is cancelled and the process
restarts with the second
codeword (layer).

channels, we can average over the randomness of the individual sub-channels
and get better outage performance. From our discussion on parallel channels
in Section 5.4.4, we know reliable communication is possible whenever

nt∑
k=1

log�1+ SINRk� > R� (8.93)

From the decomposition (8.88), we see that this is exactly the no-outage
condition of the original MIMO channel as well. Therefore, it seems that
universal codes for the parallel channel can be transformed directly into
universal codes for the original MIMO channel.

However, there is a problem here. To obtain the second sub-channel (with
SINR2), we are assuming that the first stream is already decoded and its
received signal is cancelled off. However, to code across the sub-channels,
the two streams should be jointly decoded. There seems to be a chicken-and-
egg problem: without decoding the first stream, one cannot cancel its signal
and get the second stream in the first place. The key idea to solve this problem
is to stagger multiple codewords so that each codeword spans multiple trans-
mit antennas but the symbols sent simultaneously by the different transmit
antennas belong to different codewords.

Let us go through a simple example with two transmit antennas
(Figure 8.18). The ith codeword x�i� is made up of two blocks, x�i�A and x�i�B , each
of length N . In the first N symbol times, the first antenna sends nothing. The
second antenna sends x�1�A , blockA of the first codeword. The receiver performs
maximal ratio combining of the signals at the receive antennas to estimate x�1�A ;
this yields an equivalent sub-channel with signal-to-noise ratio SINR2, since the
other antenna is sending nothing.

In the second N symbol times, the first antenna sends x�1�B (block B of the
first codeword), while the second antenna sends x�2�A (block A of the second
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codeword). The receiver does a linear MMSE estimation of x�1�B , treating x�2�A

as interference to be suppressed. This produces an equivalent sub-channel of
signal-to-noise ratio SINR1. Thus, the first codeword as a whole now sees the
parallel channel described above (Exercise 8.25), and, assuming the use of a
universal parallel channel code, can be decoded provided that

log�1+ SINR1�+ log�1+ SINR2� > R� (8.94)

Once codeword 1 is decoded, x�1�B can be subtracted off the received signal
in the second N symbol times. This leaves x�2�A alone in the received signal,
and the process can be repeated. Exercise 8.26 generalizes this architecture
to arbitrary number of transmit antennas.

In V-BLAST, each coded stream, or layer, extends horizontally in the space-
time grid and is placed vertically above another. In the improved architecture
above, each layer is striped diagonally across the space-time grid (Figure 8.18).
This architecture is naturally called Diagonal BLAST, or D-BLAST for short.

The D-BLAST scheme suffers from a rate loss because in the initialization
phase some of the antennas have to be kept silent. For example, in the
two transmit antenna architecture illustrated in Figure 8.18 (with N = 1 and
5 layers), two symbols are set to zero among the total of 10; this reduces the
rate by a factor of 4/5 (Exercise 8.27 generalizes this calculation). So for a
finite number of layers, D-BLAST does not achieve the outage performance
of the MIMO channel. As the number of layers grows, the rate loss gets
amortized and the MIMO outage performance is approached. In practice,
D-BLAST suffers from error propagation: if one layer is decoded incorrectly,
all subsequent layers are affected. This puts a practical limit on the number
of layers which can be transmitted consecutively before re-initialization. In
this case, the rate loss due to initialization and termination is not negligible.

8.5.3 Discussion

D-BLAST should really be viewed as a transceiver architecture rather than a
space-time code: through signal processing and interleaving of the codewords
across the antennas, it converts the MIMO channel into a parallel channel.
As such, it allows the leveraging of any good parallel-channel code for the
MIMO channel. In particular, a universal code for the parallel channel, when
used in conjunction with D-BLAST, is a universal space-time code for the
MIMO channel.
It is interesting to compare D-BLAST with the Alamouti scheme discussed

in Chapters 3 and 5. The Alamouti scheme can also be considered as a
transceiver architecture: it converts the 2× 1 MISO slow fading channel
into a SISO slow fading channel. Any universal code for the SISO channel
when used in conjunction with the Alamouti scheme yields a universal code
for the MISO channel. Compared to D-BLAST, the signal processing is
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much simpler, and there are no rate loss or error propagation issues. On the
other hand, D-BLAST works for an arbitrary number of transmit and receive
antennas. As we have seen, the Alamouti scheme does not generalize to
arbitrary numbers of transmit antennas (cf. Exercise 3.16). Further, we will
see in Chapter 9 that the Alamouti scheme is strictly suboptimal in MIMO
channels with multiple transmit and receive antennas. This is because, unlike
D-BLAST, the Alamouti scheme does not exploit all the available degrees of
freedom in the channel.

Chapter 8 The main plot

Capacity of fast fading MIMO channels
In a rich scattering environment with receiver CSI, the capacity is approx-
imately
• min�nt� nr� log SNR at high SNR: a gain in spatial degrees of freedom;
• nrSNR log2 e at low SNR: a receive beamforming gain.
With nt = nr = n, the capacity is approximately nc∗�SNR� for all SNR.
Here c∗�SNR� is a constant.

Transceiver architectures

• With full CSI convert the MIMO channel into nmin parallel channels by
an appropriate change in the basis of the transmit and receive signals.
This transceiver structure is motivated by the singular value decomposi-
tion of any linear transformation: a composition of a rotation, a scaling
operation, followed by another rotation.

• With receiver CSI send independent data streams over each of the
transmit antennas. The ML receiver decodes the streams jointly and
achieves capacity. This is called the V-BLAST architecture.

Reciever structures
• Simple receiver structure Decode the data streams separately. Three

main structures:
– matched filter: use the receive antenna array to beamform to the

receive spatial signature of the stream. Performance close to capacity
at low SNR.

– decorrelator: project the received signal onto the subspace orthogonal
to the receive spatial signatures of all the other streams.
• to be able to do the projection operation, need nr ≥ nt .
• For nr ≥ nt , the decorrelator bank captures all the spatial degrees of
freedom at high SNR.

– MMSE: linear receiver that optimally trades off capturing the energy
of the data stream of interest and nulling the inter-stream interference.
Close to optimal performance at both low and high SNR.
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• Successive cancellation Decode the data streams sequentially, using the
results of the decoding operation to cancel the effect of the decoded data
streams on the received signal.

Bank of linear MMSE receivers with successive cancellation achieves the
capacity of the fast fading MIMO channel at all SNR.

Outage performance of slow fading MIMO channels
The i.i.d. Rayleigh slow fading MIMO channel provides a diversity gain
equal to the product of nt and nr . Since the V-BLAST architecture does not
code across the transmit antennas, it can achieve a diversity gain of at most
nr . Staggered interleaving of the streams of V-BLAST among the transmit
antennas achieves the full outage performance of the MIMO channel. This
is the D-BLAST architecture.

8.6 Bibliographical notes

The interest in MIMO communications was sparked by the capacity analysis of
Foschini [40], Foschini and Gans [41] and Telatar [119]. Foschini and Gans focused
on analyzing the outage capacity of the slow fading MIMO channel, while Telatar
studied the capacity of fixed MIMO channels under optimal waterfilling, ergodic
capacity of fast fading channels under receiver CSI, as well as outage capacity of slow
fading channels. The D-BLAST architecture was introduced by Foschini [40], while
the V-BLAST architecture was considered by Wolniansky et al. [147] in the context
of point-to-point MIMO communication.

The study of the linear receivers, decorrelator and MMSE, was initiated in the
context of multiuser detection of CDMA signals. The research in multiuser detection
is very well exposited and summarized in a book by Verdú [131], who was the pioneer
in this field. In particular, decorrelators were introduced by Lupas and Verdú [77] and
the MMSE receiver by Madhow and Honig [79]. The optimality of the MMSE receiver
in conjunction with successive cancellation was shown by Varanasi and Guess [129].

The literature on random matrices as applied in communication theory is summa-
rized by Tulino and Verdú [127]. The key result on the asymptotic distribution of
the singular values of large random matrices used in this chapter is by Marc̆enko and
Pastur [78].

8.7 Exercises

Exercise 8.1 (reciprocity) Show that the capacity of a time-invariant MIMO channel
with nt transmit, nr receive antennas and channel matrix H is the same as that of
the channel with nr transmit, nt receive antennas, matrix H∗, and same total power
constraint.
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Exercise 8.2 Consider coding over a block of length N on the data streams in the
transceiver architecture in Figure 8.1 to communicate over the time-invariant MIMO
channel in (8.1).
1. Fix � > 0 and consider the ellipsoid E��� defined as

	a � a∗�HKxH
∗ ⊗ IN +N0InrN �

−1a ≤ N�nr + ��
� (8.95)

Here we have denoted the tensor product (or Kronecker product) between matrices
by the symbol ⊗. In particular, HKxH

∗⊗IN is a nrN ×nrN block diagonal matrix:

HKxH
∗ ⊗ IN =

⎡⎢⎢⎣
HKxH

∗ 0
HKxH

∗
� � �

0 HKxH

⎤⎥⎥⎦ �

Show that, for every �, the received vector yN (of length nrN ) lies with high
probability in the ellipsoid E���, i.e.,

�	yN ∈ E���
→ 1� as N → �� (8.96)

2. Show that the volume of the ellipsoid E�0� is equal to

det�N0Inr +HKxH
∗�N (8.97)

times the volume of a 2nrN -dimensional real sphere with radius
√
nrN . This

justifies the expression in (8.4).
3. Show that the noise vector wN of length nrN satisfies

�	�wN�2 ≤ N0N�nr + ��
→ 1� as N → �� (8.98)

Thus wN lives, with high probability, in a 2nrN -dimensional real sphere of radius√
N0nrN . Compare the volume of this sphere to the volume of the ellipsoid in

(8.97) to justify the expression in (8.5).

Exercise 8.3 [130, 126] Consider the angular representation Ha of the MIMO
channel H. We statistically model the entries of Ha as zero mean and jointly uncor-
related.
1. Starting with the expression in (8.10) for the capacity of the MIMO channel with

receiver CSI and substituting H �= UrH
aU∗

t , show that

C = max
Kx�TrKx≤P

�

[
logdet

(
Inr +

1
N0

HaU∗
t KxUtH

a∗
)]

� (8.99)

2. Show that we can restrict the input covariance in (8.99), without changing the
maximal value, to be of the following special structure:

Kx = Ut�U∗
t � (8.100)
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where � is a diagonal matrix with non-negative entries that sum to P. Hint: We
can always consider a covariance matrix of the form

Kx = UtK̃xU
∗
t � (8.101)

with K̃ also a covariance matrix satisfying the total power constraint. To show that
K̃ can be restricted to be diagonal, consider the following decomposition:

K̃x =�+Koff � (8.102)

where � is a diagonal matrix and Koff has zero diagonal elements (and thus
contains all the off-diagonal elements of K̃). Validate the following sequence of
inequalities:

�

[
logdet

(
Inr +

1
N0

HaKoffH
a∗
)]

≤ log�
[
det

(
Inr +

1
N0

HaKoffH
a∗
)]

� (8.103)

= logdet
(
�

[
Inr +

1
N0

HaKoffH
a∗
])

� (8.104)

= 0� (8.105)

You can use Jensen’s inequality (cf. Exercise B.2) to get (8.103). In (8.104), we
have denoted ��X� to be the matrix with �i� j�th entry equal to ��Xij �. Now use the
property that the elements of Ha are uncorrelated in arriving at (8.104) and (8.105).
Finally, using the decomposition in (8.102), conclude (8.100), i.e., it suffices to
consider covariance matrices K̃x in (8.101) to be diagonal.

Exercise 8.4 [119] Consider i.i.d. Rayleigh fading, i.e., the entries of H are i.i.d.
�� �0�1�, and the capacity of the fast fading channel with only receiver CSI
(cf. (8.10)).
1. For i.i.d. Rayleigh fading, show that the distribution of H and that of HU are

identical for every unitary matrix U. This is a generalization of the rotational
invariance of an i.i.d. complex Gaussian vector (cf. (A.22) in Appendix A).

2. Show directly for i.i.d. Rayleigh fading that the input covariance Kx in (8.10) can
be restricted to be diagonal (without resorting to Exercise 8.3(2)).

3. Show further that among the diagonal matrices, the optimal input covariance is
�P/nt�Int . Hint: Show that the map

�p1� � � � � pK� �→ �

[
logdet

(
Inr +

1
N0

Hdiag	p1� � � � � pnt 
H
∗
)]

(8.106)

is jointly concave. Further show that the map is symmetric, i.e., reordering the
argument p1� � � � � pnt does not change the value. Observe that a jointly concave,
symmetric function is maximized, subject to a sum constraint, exactly when all the
function arguments are the same and conclude the desired result.

Exercise 8.5 Consider the uplink of the cellular systems studied in Chapter 4: the
narrowband system (GSM), the wideband CDMA system (IS-95), and the wideband
OFDM system (Flash-OFDM).
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1. Suppose that the base-station is equipped with an array of multiple receive antennas.
Discuss the impact of the receive antenna array on the performance of the three
systems discussed in Chapter 4. Which system benefits the most?

2. Now consider the MIMO uplink, i.e., the mobiles are also equipped with multiple
(transmit) antennas. Discuss the impact on the performance of the three cellular
systems. Which system benefits the most?

Exercise 8.6 In Exercise 8.3 we have seen that the optimal input covariance is of the
form Kx = Ut�U∗

t with � a diagonal matrix. In this exercise, we study the situations
under which� is �P/nt�Int , making the optimal input covariance also equal to �P/nt�Int .
(We have already seen one instance when this is true in Exercise 8.4: the i.i.d. Rayleigh
fading scenario.) Intuitively, this should be true whenever there is complete symmetry
among the transmit angular windows. This heuristic idea is made precise below.
1. The symmetry condition formally corresponds to the following assumption on the

columns (there are nt of them, one for each of the transmit angular windows) of
the angular representation Ha = UtHU∗

r : the nt column vectors are independent
and, further, the vectors are identically distributed. We do not specify the joint
distribution of the entries within any of the columns other than requiring that
they have zero mean. With this symmetry condition, show that the optimal input
covariance is �P/nt�Int .

2. Using the previous part, or directly, strengthen the result of Exercise 8.4 by showing
that the optimal input covariance is �P/nt�Int whenever

H �= �h1� � � hnt �� (8.107)

where h1� � � � �hnt are i.i.d. �� �0�Kh� for some covariance matrix Kh.

Exercise 8.7 In Section 8.2.2, we showed that with receiver CSI the capacity of the
i.i.d. Rayleigh fading n×n MIMO channel grows linearly with n at all SNR. In this
reading exercise, we consider other statistical channel models which also lead to a
linear increase of the capacity with n.
1. The capacity of the MIMO channel with i.i.d. entries (not necessarily Rayleigh),

grows linearly with n. This result is derived in [21].
2. In [21], the authors also consider a correlated channel model: the entries of the

MIMOchannel are jointly complexGaussian (with invertible covariancematrix). The
authors show that the capacity still increases linearly with the number of antennas.

3. In [75], the authors show a linear increase in capacity for a MIMO channel with
the number of i.i.d. entries growing quadratically in n (i.e., the number of i.i.d.
entries is proportional to n2, with the rest of the entries equal to zero).

Exercise 8.8 Consider the block fading MIMO channel (an extension of the single
antenna model in Exercise 5.28):

y�m+nTc�=H�n�x�m+nTc�+w�m+nTc�� m= 1� � � � � Tc� n≥ 1� (8.108)

where Tc is the coherence time of the channel (measured in terms of the number of
samples). The channel variations across the blocks H�n� are i.i.d. Rayleigh. A pilot
based communication scheme transmits known symbols for k time samples at the
beginning of each coherence time interval: each known symbol is sent over a different
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transmit antenna, with the other transmit antennas silent. At high SNR, the k pilot
symbols allow the receiver to partially estimate the channel: over the nth block, k of
the nt columns of H�n� are estimated with a high degree of accuracy. This allows us
to reliably communicate on the k×nr MIMO channel with receiver CSI.
1. Argue that the rate of reliable communication using this scheme at high SNR is

approximately at least(
Tc −k

Tc

)
min�k�nr� log SNR bits/s/Hz� (8.109)

Hint: An information theory fact says that replacing the effect of channel uncer-
tainty as Gaussian noise (with the same covariance) can only make the reliable
communication rate smaller.

2. Show that the optimal training time (and the corresponding number of transmit
antennas to use) is

k∗ �=min
(
nt� nr�

Tc

2

)
� (8.110)

Substituting this in (8.109) we see that the number of spatial degrees of freedom
using the pilot scheme is equal to(

Tc −k∗

Tc

)
k∗� (8.111)

3. A reading exercise is to study [155], which shows that the capacity of the non-
coherent block fading channel at high SNR also has the same number of spatial
degrees freedom as in (8.111).

Exercise 8.9 Consider the time-invariant frequency-selective MIMO channel:

y�m�=
L−1∑
�=0

H�x�m−��+w�m�� (8.112)

Construct an appropriate OFDM transmission and reception scheme to transform the
original channel to the following parallel MIMO channel:

ỹn = H̃nx̃n+ w̃n� n= 0� � � � �Nc −1� (8.113)

Here Nc is the number of OFDM tones. Identify H̃n, n = 0� � � � �Nc − 1 in terms of
H�� �= 0� � � � �L−1.

Exercise 8.10 Consider a fixed physical environment and a corresponding flat fad-
ing MIMO channel. Now suppose we double the transmit power constraint and the
bandwidth. Argue that the capacity of the MIMO channel with receiver CSI exactly
doubles. This scaling is consistent with that in the single antenna AWGN channel.

Exercise 8.11 Consider (8.42) where independent data streams 	xi�m�
 are transmitted
on the transmit antennas (i= 1� � � � nt):

y�m�=
nt∑
i=1

hixi�m�+w�m�� (8.114)

Assume nt ≤ nr .
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1. We would like to study the operation of the decorrelator in some detail here. So
we make the assumption that hi is not a linear combination of the other vectors
h1� � � � �hi−1�hi+1� � � � �hnt for every i= 1� � � � � nt . DenotingH= �h1 · · ·hnt �, show
that this assumption is equivalent to the fact that H∗H is invertible.

2. Consider the following operation on the received vector in (8.114):

x̂�m� �= �H∗H�−1H∗y�m� (8.115)

= x�m�+ �H∗H�−1H∗w�m�� (8.116)

Thus x̂i�m�= xi�m�+ w̃i�m� where w̃�m� �= �H∗H�−1H∗w�m� is colored Gaussian
noise. This means that the ith data stream sees no interference from any of the other
streams in the received signal x̂i�m�. Show that x̂i�m� must be the output of the
decorrelator (up to a scaling constant) for the ith data stream and hence conclude
the validity of (8.47). This property, and many more, about the decorrelator can be
learnt from Chapter 5 of [99]. The special case of nt = nr = 2 can be verified by
explicit calculations.

Exercise 8.12 Suppose H (with nt < nr) has i.i.d. �� �0�1� entries and denote
h1� � � � �hnt as the columns of H. Show that the probability that the columns are
linearly dependent is zero. Hence, conclude that the probability that the rank of H is
strictly smaller than nt is zero.

Exercise 8.13 Suppose H (with nt < nr) has i.i.d. �� �0�1� entries and denote the
columns ofH as h1� � � � �hnt . Use the result of Exercise 8.12 to show that the dimension
of the subspace spanned by the vectors h1� � � � �hk−1�hk+1� � � � �hnt is nt − 1 with
probability 1. Hence conclude that the dimension of the subspace Vk, orthogonal to
this one, has dimension nr −nt +1 with probability 1.

Exercise 8.14 Consider the Rayleigh fading n× n MIMO channel H with i.i.d.
�� �0�1� entries. In the text we have discussed a random matrix result about the
convergence of the empirical distribution of the singular values of H/

√
n. It turns out

that the condition number of H/
√
n converges to a deterministic limiting distribution.

This means that the random matrix H is well-conditioned. The corresponding limiting
density is given by

f�x� �= 4
x3

e−2/x2 � (8.117)

A reading exercise is to study the derivation of this result proved in Theorem 7.2 of [32].

Exercise 8.15 Consider communicating over the time-invariant nt×nr MIMO channel:

y�m�=Hx�m�+w�m�� (8.118)

The information bits are encoded using, say, a capacity-achieving Gaussian code such
as an LDPC code. The encoded bits are then modulated into the transmit signal x�m�;
typically the components of the transmit vector belong to a regular constellation such as
QAM. The receiver, typically, operates in two stages. The first stage is demodulation:
at each time, soft information (a posteriori probabilities of the bits that modulated the
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transmit vector) about the transmitted QAM symbol is evaluated. In the second stage,
the soft information about the bits is fed to a channel decoder.

In this reading exercise, we study the first stage of the receiver. At time m, the
demodulation problem is to find the QAM points composing the vector x�m� such
that �y�m�−Hx�m��2 is the smallest possible. This problem is one of classical “least
squares”, but with the domain restricted to a finite set of points. When the modulation
is QAM, the domain is a finite subset of the integer lattice. Integer least squares is
known to be a computationally hard problem and several heuristic solutions, with less
complexity, have been proposed. One among them is the sphere decoding algorithm.
A reading exercise is to use [133] to understand the algorithm and an analysis of the
average (over the fading channel) complexity of decoding.

Exercise 8.16 In Section 8.2.2 we showed two facts for the i.i.d. Rayleigh fading
channel: (i) for fixed n and at low SNR, the capacity of a 1 by n channel approaches
that of an n by n channel; (ii) for fixed SNR but large n, the capacity of a 1 by n

channel grows only logarithmically with n while that of an n by n channel grows
linearly with n. Resolve the apparent paradox.

Exercise 8.17 Verify (8.26). This result is derived in [132].

Exercise 8.18 Consider the channel (8.58):

y= hx+ z� (8.119)

where z is �� �0�Kz�, h is a (complex) deterministic vector and x is the zero mean
unknown (complex) random variable to be estimated. The noise z and the data symbol
x are assumed to be uncorrelated.
1. Consider the following estimate of x from y using the vector c (normalized so that

�c� = 1):

x̂ �= a c∗y= a c∗hx+a c∗z� (8.120)

Show that the constant a that minimizes the mean square error (���x− x̂�2�) is
equal to

���x�2��c∗h�2
���x�2��c∗h�2 + c∗Kzc

h∗c
�h∗c� � (8.121)

2. Calculate the minimal mean square error (denoted by MMSE) of the linear estimate
in (8.120) (by using the value of a in (8.121)). Show that

���x�2�
MMSE

= 1+SNR �= 1+ ���x�2��c∗h�2
c∗Kzc

� (8.122)

3. Since we have shown that c = K−1
z h maximizes the SNR (cf. (8.61)) among all

linear estimators, conclude that this linear estimate (along with an appropriate
choice of the scaling a, as in (8.121)), minimizes the mean square error in the
linear estimation of x from (8.119).
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Exercise 8.19 Consider detection on the generic vector channel with additive colored
Gaussian noise (cf. (8.72)).
1. Show that the output of the linear MMSE receiver,

v∗
mmsey� (8.123)

is a sufficient statistic to detect x from y. This is a generalization of the scalar
sufficient statistic extracted from the vector detection problem in Appendix A (cf.
(A.55)).

2. From the previous part, we know that the random variables y and x are independent
conditioned on v∗

mmsey. Use this to verify (8.73).

Exercise 8.20 We have seen in Figure 8.13 that, at low SNR, the bank of linear
matched filter achieves capacity of the 8 by 8 i.i.d. Rayleigh fading channel, in the
sense that the ratio of the total achievable rate to the capacity approaches 1. Show
that this is true for general nt and nr .

Exercise 8.21 Consider the n by n i.i.d. flat Rayleigh fading channel. Show that
the total achievable rate of the following receiver architectures scales linearly with
n: (a) bank of linear decorrelators; (b) bank of matched filters; (c) bank of linear
MMSE receivers. You can assume that independent information streams are coded
and sent out of each of the transmit antennas and the power allocation across antennas
is uniform. Hint: The calculation involving the linear MMSE receivers is tricky. You
have to show that the linear MMSE receiver performance, asymptotically for large
n, depends on the covariance matrix of the interference faced by each stream only
through its empirical eigenvalue distribution, and then apply the large-n random matrix
result used in Section 8.2.2. To show the first step, compute the mean and variance of
the output SINR, conditional on the spatial signatures of the interfering streams. This
calculation is done in [132, 123]

Exercise 8.22 Verify (8.71) by direct matrix manipulations.
Hint: You might find useful the following matrix inversion lemma (for invertible A),

�A+xx∗�−1 = A−1 − A−1xx∗A−1

1+x∗A−1x
� (8.124)

Exercise 8.23 Consider the outage probability of an i.i.d. Rayleigh MIMO channel
(cf. (8.81)). Show that its decay rate in SNR (equal to P/N0) is no faster than nt ·nr by
justifying each of the following steps.

pout�R� ≥ �	logdet�Inr + SNRHH∗� < R
 (8.125)

≥ �	SNR Tr�HH∗� < R
 (8.126)

≥ ��	SNR �h11�2 < R
�ntnr (8.127)

=
(
1− e−

R
SNR

)ntnr
(8.128)

≈ Rntnr

SNRntnr
� (8.129)
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Exercise 8.24 Calculate the maximum diversity gains for each of the streams in the
V-BLAST architecture using the MMSE–SIC receiver.Hint: At high SNR, interference
seen by each stream is very high and the SINR of the linear MMSE receiver is very
close to that of the decorrelator in this regime.

Exercise 8.25 Consider communicating over a 2× 2 MIMO channel using the
D-BLAST architecture with N = 1 and equal power allocation P1 = P2 = P for both
the layers. In this exercise, we will derive some properties of the parallel channel
(with L= 2 diversity branches) created by the MMSE–SIC operation. We denote the
MIMO channel by H= �h1�h2� and the projections

h1�2 �=
h∗
1h2

�h2�2
h2� h1⊥2 �= h1 −h1�2� (8.130)

Let us denote the induced parallel channel as

y� = g� x�+w�� �= 1�2� (8.131)

1. Show that

�g1�2 = �h1⊥2�2 +
�h1�2�2

SNR�h2�2 +1
� �g2�2 = �h2�2� (8.132)

where SNR= P/N0.
2. What is the marginal distribution of �g1�2 at high SNR? Are �g1�2 and �g2�2 positively

correlated or negatively correlated?
3. What is the maximum diversity gain offered by this parallel channel?
4. Now suppose �g1�2 and �g2�2 in the parallel channel in (8.131) are independent,

while still having the same marginal distribution as before. What is the maximum
diversity gain offered by this parallel channel?

Exercise 8.26 Generalize the staggered stream structure (discussed in the context of
a 2× nr MIMO channel in Section 8.5) of the D-BLAST architecture to a MIMO
channel with nt > 2 transmit antennas.

Exercise 8.27 Consider a block length N D-BLAST architecture on a MIMO channel
with nt transmit antennas. Determine the rate loss due to the initialization phase as a
function of N and nt .
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9 MIMO III: diversity–multiplexing
tradeoff and universal space-time
codes

In the previous chapter, we analyzed the performance benefits of MIMO
communication and discussed architectures that are designed to reap those
benefits. The focus was on the fast fading scenario. The story on slow fading
MIMO channels is more complex. While the communication capability of
a fast fading channel can be described by a single number, its capacity, that
of a slow fading channel has to be described by the outage probability curve
pout�·�� as a function of the target rate. This curve is in essence a tradeoff
between the data rate and error probability. Moreover, in addition to the
power and degree-of-freedom gains in the fast fading scenario, multiple
antennas provide a diversity gain in the slow fading scenario as well. A clear
characterization of the performance benefits of multiple antennas in slow
fading channels and the design of good space-time coding schemes that reap
those benefits are the subjects of this chapter.
The outage probability curve pout�·� is the natural benchmark for evaluating

the performance of space-time codes. However, it is difficult to characterize
analytically the outage probability curves for MIMO channels. We develop
an approximation that captures the dual benefits of MIMO communication
in the high SNR regime: increased data rate (via an increase in the spatial
degrees of freedom or, equivalently, the multiplexing gain) and increased
reliability (via an increase in the diversity gain). The dual benefits are captured
as a fundamental tradeoff between these two types of gains.1 We use the
optimal diversity–multiplexing tradeoff as a benchmark to compare the various
space-time schemes discussed previously in the book. The tradeoff curve also
suggests how optimal space-time coding schemes should look. A powerful
idea for the design of tradeoff-optimal schemes is universality, which we
discuss in the second part of the chapter.
We have studied an approach to space-time code design in Chapter 3. Codes

designed using that approach have small error probabilities, averaged over

1 The careful reader will note that we saw an inkling of the tension between these two types of
gains in our study of the 2×2 MIMO Rayleigh fading channel in Chapter 3.
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the distribution of the fading channel gains. The drawback of the approach
is that the performance of the designed codes may be sensitive to the sup-
posed fading distribution. This is problematic, since, as we mentioned in
Chapter 2, accurate statistical modeling of wireless channels is difficult.
The outage formulation, however, suggests a different approach. The oper-
ational interpretation of the outage performance is based on the existence
of universal codes: codes that simultaneously achieve reliable communica-
tion over every MIMO channel that is not in outage. Such codes are robust
from an engineering point of view: they achieve the best possible outage
performance for every fading distribution. This result motivates a universal
code design criterion: instead of using the pairwise error probability aver-
aged over the fading distribution of the channel, we consider the worst-case
pairwise error probability over all channels that are not in outage. Somewhat
surprisingly, the universal code-design criterion is closely related to the prod-
uct distance, which is obtained by averaging over the Rayleigh distribution.
Thus, the product distance criterion, while seemingly tailored for the Rayleigh
distribution, is actually more fundamental. Using universal code design
ideas, we construct codes that achieve the optimal diversity–multiplexing
tradeoff.
Throughout this chapter, the receiver is assumed to have perfect knowledge

of the channel matrix while the transmitter has none.

9.1 Diversity–multiplexing tradeoff

In this section, we use the outage formulation to characterize the performance
capability of slow fading MIMO channels in terms of a tradeoff between
diversity and multiplexing gains. This tradeoff is then used as a unified
framework to compare the various space-time coding schemes described in
this book.

9.1.1 Formulation

When we analyzed the performance of communication schemes in the slow
fading scenario in Chapters 3 and 5, the emphasis was on the diversity
gain. In this light, a key measure of the performance capability of a slow
fading channel is the maximum diversity gain that can be extracted from it.
For example, a slow i.i.d. Rayleigh faded MIMO channel with nt transmit
and nr receive antennas has a maximum diversity gain of nt ·nr: i.e., for a
fixed target rate R, the outage probability pout�R� decays like 1/SNRntnr at
high SNR.
On the other hand, we know from Chapter 7 that the key performance

benefit of a fast fading MIMO channel is the spatial multiplexing capabil-
ity it provides through the additional degrees of freedom. For example, the
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capacity of an i.i.d. Rayleigh fading channel scales like nmin log SNR, where
nmin �=min�nt� nr� is the number of spatial degrees of freedom in the chan-
nel. This fast fading (ergodic) capacity is achieved by averaging over the
variation of the channel over time. In the slow fading scenario, no such aver-
aging is possible and one cannot communicate at this rate reliably. Instead,
the information rate allowed through the channel is a random variable fluc-
tuating around the fast fading capacity. Nevertheless, one would still expect
to be able to benefit from the increased degrees of freedom even in the
slow fading scenario. Yet the maximum diversity gain provides no such
indication; for example, both an nt × nr channel and an ntnr × 1 channel
have the same maximum diversity gain and yet one would expect the for-
mer to allow better spatial multiplexing than the latter. One needs something
more than the maximum diversity gain to capture the spatial multiplexing
benefit.
Observe that to achieve the maximum diversity gain, one needs to com-

municate at a fixed rate R, which becomes vanishingly small compared to
the fast fading capacity at high SNR (which grows like nmin log SNR). Thus,
one is actually sacrificing all the spatial multiplexing benefit of the MIMO
channel to maximize the reliability. To reclaim some of that benefit, one
would instead want to communicate at a rate R= r log SNR, which is a fraction
of the fast fading capacity. Thus, it makes sense to formulate the following
diversity–multiplexing tradeoff for a slow fading channel.

A diversity gain d∗�r� is achieved at multiplexing gain r if

R= r log SNR (9.1)

and

pout�R�≈ SNR−d
∗�r�� (9.2)

or more precisely,

lim
SNR→�

logpout�r log SNR�
log SNR

= −d∗�r�� (9.3)

The curve d∗�·� is the diversity–multiplexing tradeoff of the slow fading
channel.

The above tradeoff characterizes the slow fading performance limit of the
channel. Similarly, we can formulate a diversity–multiplexing tradeoff for
any space-time coding scheme, with outage probabilities replaced by error
probabilities.
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A space-time coding scheme is a family of codes, indexed by the signal-
to-noise ratio SNR. It attains a multiplexing gain r and a diversity gain d
if the data rate scales as

R= r log SNR (9.4)

and the error probability scales as

pe ≈ SNR−d� (9.5)

i.e.,

lim
SNR→�

logpe

log SNR
= −d� (9.6)

The diversity–multiplexing tradeoff formulation may seem abstract at first
sight. We will now go through a few examples to develop a more concrete
feel. The tradeoff performance of specific coding schemes will be analyzed
and we will see how they perform compared to each other and to the opti-
mal diversity–multiplexing tradeoff of the channel. For concreteness, we use
the i.i.d. Rayleigh fading model. In Section 9.2, we will describe a general
approach to tradeoff-optimal space-time code based on universal coding ideas.

9.1.2 Scalar Rayleigh channel

PAM and QAM
Consider the scalar slow fading Rayleigh channel,

y�m�= hx�m�+w�m�� (9.7)

with the additive noise i.i.d. �� �0�1� and the power constraint equal to SNR.
Suppose h is �� �0�1� and consider uncoded communication using PAM
with a data rate of R bits/s/Hz. We have done the error probability analysis
in Section 3.1.2 for R= 1; for general R, the analysis is similar. The average
error probability is governed by the minimum distance between the PAM
points. The constellation ranges from approximately −√

SNR to +√
SNR, and

since there are 2R constellation points, the minimum distance is approximately

Dmin ≈
√
SNR
2R

� (9.8)
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and the error probability at high SNR is approximately (cf. (3.28)),

pe ≈
1
2

(
1−

√
D2

min

4+D2
min

)
≈ 1

D2
min

≈ 22R

SNR
� (9.9)

By setting the data rate R= r log SNR, we get

pe ≈
1

SNR1−2r � (9.10)

yielding a diversity–multiplexing tradeoff of

dpam�r�= 1−2r� r ∈
[
0�

1
2

]
� (9.11)

Note that in the approximate analysis of the error probability above, we
focus on the scaling of the error probability with the SNR and the data rate
but are somewhat careless with constant multipliers: they do not matter as far
as the diversity–multiplexing tradeoff is concerned.
We can repeat the analysis for QAM with data rate R. There are now 2R/2

constellation points in each of the real and imaginary dimensions, and hence
the minimum distance is approximately

Dmin ≈
√
SNR
2R/2

� (9.12)

and the error probability at high SNR is approximately

pe ≈
2R

SNR
� (9.13)

yielding a diversity–multiplexing tradeoff of

dqam�r�= 1− r� r ∈ �0�1�� (9.14)

The tradeoff curves are plotted in Figure 9.1.
Let us relate the two endpoints of a tradeoff curve to notions that we already

know. The value dmax �= d�0� can be interpreted as the SNR exponent that
describes how fast the error probability can be decreased with the SNR for
a fixed data rate; this is the classical diversity gain of a scheme. It is 1 for
both PAM and QAM. The decrease in error probability is due to an increase
in Dmin. This is illustrated in Figure 9.2.
In a dual way, the value rmax for which d�rmax�= 0 describes how fast the

data rate can be increased with the SNR for a fixed error probability. This
number can be interpreted as the number of (complex) degrees of freedom
that are exploited by the scheme. It is 1 for QAM but only 1/2 for PAM.
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Figure 9.1 Tradeoff curves for
the single antenna slow fading
Rayleigh channel.
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Figure 9.2 Increasing the SNR
by 6dB decreases the error
probability by 1/4 for both
PAM and QAM due to a
doubling of the minimum
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This is consistent with our observation in Section 3.1.3 that PAM uses only
half the degrees of freedom of QAM. The increase in data rate is due to the
packing of more constellation points for a given Dmin. This is illustrated in
Figure 9.3.

The two endpoints represent two extreme ways of using the increase in the
resource (SNR): increasing the reliability for a fixed data rate, or increasing
the data rate for a fixed reliability. More generally, we can simultaneously
increase the data rate (positive multiplexing gain r) and increase the reliability
(positive diversity gain d > 0) but there is a tradeoff between how much of
each type of gain we can get. The diversity–multiplexing curve describes
this tradeoff. Note that the classical diversity gain only describes the rate
of decay of the error probability for a fixed data rate, but does not provide
any information on how well a scheme exploits the available degrees of
freedom. For example, PAM and QAM have the same classical diversity
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Figure 9.3 Increasing the SNR
by 6dB increases the data rate
for QAM by 2 bits/s/Hz but
only increases the data rate of
PAM by 1 bit/s/Hz.

4SNR

+2 bits
QAM

+1 bit
PAM

SNR √≈√≈

gain, even though clearly QAM is more efficient in exploiting the available
degrees of freedom. The tradeoff curve, by treating error probability and data
rate in a symmetrical manner, provides a more complete picture. We see
that in terms of their tradeoff curves, QAM is indeed superior to PAM (see
Figure 9.1).

Optimal tradeoff
So far, we have considered the tradeoff between diversity and multiplexing
in the context of two specific schemes: uncoded PAM and QAM. What is the
fundamental diversity–multiplexing tradeoff of the scalar channel itself? For
the slow fading Rayleigh channel, the outage probability at a target data rate
R= r log SNR is

pout = �	log�1+�h�2SNR� < r log SNR


= �

{
�h�2 < SNRr −1

SNR



}
≈ 1

SNR1−r
� (9.15)

at high SNR. In the last step, we used the fact that for Rayleigh fading,
�	�h�2 < �
≈ � for small �. Thus

d∗�r�= 1− r� r ∈ �0�1�� (9.16)

Hence, the uncoded QAM scheme trades off diversity and multiplexing gains
optimally.
The tradeoff between diversity and multiplexing gains can be viewed as

a coarser way of capturing the fundamental tradeoff between error proba-
bility and data rate over a fading channel at high SNR. Even very simple,
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low-complexity schemes can trade off optimally in this coarser context (the
uncoded QAM achieved the tradeoff for the Rayleigh slow fading channel).
To achieve the exact tradeoff between outage probability and data rate, we
need to code over long block lengths, at the expense of higher complexity.

9.1.3 Parallel Rayleigh channel

Consider the slow fading parallel channel with i.i.d. Rayleigh fading on each
sub-channel:

y��m�= h�x��m�+w��m�� �= 1� � � � �L� (9.17)

Here, the w� are i.i.d. �� �0�1� additive noise and the transmit power per
sub-channel is constrained by SNR. We have seen that L Rayleigh faded sub-
channels provide a (classical) diversity gain equal to L (cf. Section 3.2 and
Section 5.4.4): this is an L-fold improvement over the basic single antenna
slow fading channel. In the parlance we introduced in the previous section, this
says that d∗�0�=L. How about the diversity gain at any positive multiplexing
rate?

Suppose the target data rate is R = r log SNR bits/s/Hz per sub-channel.
The optimal diversity d∗�r� can be calculated from the rate of decay of the
outage probability with increasing SNR. For the i.i.d. Rayleigh fading parallel
channel, the outage probability at rate per sub-channel R = r log SNR is (cf.
(5.83))

pout = �

{
L∑
�=1

log�1+�h��2SNR� < Lr log SNR

}
� (9.18)

Outage typically occurs when each of the sub-channels cannot support the
rate R (Exercise 9.1): so we can write

pout ≈ ��	log�1+�h1�2SNR� < r log SNR
�L ≈ 1

SNRL�1−r�
� (9.19)

So, the optimal diversity–multiplexing tradeoff for the parallel channel with
L diversity branches is

d∗�r�= L�1− r�� r ∈ �0�1�� (9.20)

an L-fold gain over the scalar single antenna performance (cf. (9.16)) at every
multiplexing gain r; this performance is illustrated in Figure 9.4.

One particular scheme is to transmit the same QAM symbol over the L

sub-channels; the repetition converts the parallel channel into a scalar channel
with squared amplitude

∑
� �h��2, but with the rate reduced by a factor of 1/L.
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Figure 9.4 The diversity–
multiplexing tradeoff of the
i.i.d. Rayleigh fading parallel
channel with L sub-channels
together with that of the
repetition scheme.
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The diversity–multiplexing tradeoff achieved by this scheme can be computed
to be

drep�r�= L�1−Lr�� r ∈
[
0�

1
L

]
� (9.21)

(Exercise 9.2). The classical diversity gain drep�0� is L, the full diversity of
the parallel channel, but the number of degrees of freedom per sub-channel
is only 1/L, due to the repetition.

9.1.4 MISO Rayleigh channel

Consider the nt transmit and single receive antenna MISO channel with i.i.d.
Rayleigh coefficients:

y�m�= h∗x�m�+w�m�� (9.22)

As usual, the additive noise w�m� is i.i.d. �� �0�1� and there is an overall
transmit power constraint of SNR. We have seen that the Rayleigh fading
MISO channel with nt transmit antennas provides the (classical) diversity
gain of nt (cf. Section 3.3.2 and Section 5.4.3). By how much is the diversity
gain increased at a positive multiplexing rate of r?
We can answer this question by looking at the outage probability at target

data rate R= r log SNR bits/s/Hz:

pout = �

{
log

(
1+�h�2 SNR

nt

)
< r log SNR

}
� (9.23)

Now �h�2 is a '2 random variable with 2nt degrees of freedom and we have
seen that �	�h�2 < �
≈ �nt (cf. (3.44)). Thus, pout decays as SNR

−nt�1−r� with
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increasing SNR and the optimal diversity–multiplexing tradeoff for the i.i.d.
Rayleigh fading MISO channel is

d∗�r�= nt�1− r�� r ∈ �0�1�� (9.24)

Thus the MISO channel provides an nt-fold increase in diversity at all
multiplexing gains.

In the case of nt = 2, we know that the Alamouti scheme converts the
MISO channel into a scalar channel with the same outage behavior as the
original MISO channel. Hence, if we use QAM symbols in conjunction with
the Alamouti scheme, we achieve the diversity–multiplexing tradeoff of the
MISO channel. In contrast, the repetition scheme that transmits the same
QAM symbol from each of the two transmit antennas one at a time achieves
a diversity–multiplexing tradeoff curve of

drep�r�= 2�1−2r�� r ∈
[
0�

1
2

]
� (9.25)

The tradeoff curves of these schemes as well as that of the 2× 1 MISO
channel are shown in Figure 9.5.

9.1.5 2×2 MIMO Rayleigh channel

Four schemes revisited
In Section 3.3.3, we analyzed the (classical) diversity gains and degrees
of freedom utilized by four schemes for the 2× 2 i.i.d. Rayleigh fading

Figure 9.5 The diversity–
multiplexing tradeoff of the
2× 1 i.i.d. Rayleigh fading
MISO channel along with those
of two schemes. Spatial multiplexing gain r = R / log SNR
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Table 9.1 A summary of the performance of the four schemes for the 2× 2
channel.

Classical
diversity gain

Degrees of
freedom utilized

D–M tradeoff

Repetition 4 1/2 4−8r� r ∈ �0�1/2�
Alamouti 4 1 4−4r� r ∈ �0�1�
V-BLAST (ML) 2 2 2− r� r ∈ �0�2�
V-BLAST (nulling) 1 2 1− r/2� r ∈ �0�2�

Channel itself 4 2 4−3r� r ∈ �0�1�
2− r� r ∈ �1�2�

Figure 9.6 The
diversity–multiplexing tradeoff
of the 2× 2 i.i.d. Rayleigh
fading MIMO channel along
with those of four schemes.
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MIMO channel (with the results summarized in Summary 3.2). The diversity–
multiplexing tradeoffs of these schemes when used in conjunction with
uncoded QAM can be computed as well; they are summarized in Table 9.1
and plotted in Figure 9.6. The classical diversity gains and degrees of freedom
utilized correspond to the endpoints of these curves.
The repetition, Alamouti and V-BLAST with nulling schemes all convert

the MIMO channel into scalar channels for which the diversity–multiplexing
tradeoffs can be computed in a straightforward manner (Exercises 9.3,
9.4 and 9.5). The diversity–multiplexing tradeoff of V-BLAST with ML
decoding can be analyzed starting from the pairwise error probability between
two codewords xA and xB (with average transmit energy normalized to 1):

�	xA → xB�H
≤
16

SNR2�xA−xB�4
� (9.26)
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(cf. 3.92). Each codeword is a pair of QAM symbols transmitted on the two
antennas, and hence the distance between the two closest codewords is that
between two adjacent constellation points in one of the QAM constellation,
i.e., xA and xB differ only in one of the two QAM symbols. With a total data
rate of R bits/s/Hz, each QAM symbol carries R/2 bits, and hence each of
the I and Q channels carries R/4 bits. The distance between two adjacent
constellation points is of the order of 1/2R/4. Thus, the worst-case pairwise
error probability is of the order

16 ·2R
SNR2

= 16 · SNR−�2−r�� (9.27)

where the data rate R= r log SNR. This is the worst-case pairwise error prob-
ability, but Exercise 9.6 shows that the overall error probability is also of
the same order. Hence, the diversity–multiplexing tradeoff of V-BLAST with
ML decoding is

d�r�= 2− r r ∈ �0�2�� (9.28)

As already remarked in Section 3.3.3, the (classical) diversity gain and the
degrees of freedom utilized are not always sufficient to say which scheme is
best. For example, the Alamouti scheme has a higher (classical) diversity gain
than V-BLAST but utilizes fewer degrees of freedom. The tradeoff curves,
in contrast, provide a clear basis for the comparison. We see that which
scheme is better depends on the target diversity gain (error probability) of the
operating point: for smaller target diversity gains, V-BLAST is better than
the Alamouti scheme, while the situation reverses for higher target diversity
gains.

Optimal tradeoff
Do any of the four schemes actually achieve the optimal tradeoff of the 2×2
channel? The tradeoff curve of the 2×2 i.i.d. Rayleigh fading MIMO channel
turns out to be piecewise linear joining the points (0, 4), (1, 1) and (2, 0)
(also shown in Figure 9.6). Thus, all of the schemes are tradeoff-suboptimal,
except for V-BLAST with ML, which is optimal but only for r > 1.
The endpoints of the optimal tradeoff curve are (0, 4) and (2, 0), con-

sistent with the fact that the 2× 2 MIMO channel has a maximum diver-
sity gain of 4 and 2 degrees of freedom. More interestingly, unlike all
the tradeoff curves we have computed before, this curve is not a line but
piecewise linear, consisting of two linear segments. V-BLAST with ML
decoding sends two symbols per symbol time with (classical) diversity of
2 for each symbol, and achieves the gentle part, 2− r, of this curve. But
what about the steep part, 4−3r? Intuitively, there should be a scheme that
sends 4 symbols over 3 symbol times (with a rate of 4/3 symbols/s/Hz)
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and achieves the full diversity gain of 4. We will see such a scheme in
Section 9.2.4.

9.1.6 nt×nr MIMO i.i.d. Rayleigh channel

Optimal tradeoff
Consider the nt × nr MIMO channel with i.i.d. Rayleigh faded gains. The
optimal diversity gain at a data rate r log SNR bits/s/Hz is the rate at which
the outage probability (cf. (8.81)) decays with SNR:

pmimo
out �r log SNR�= min

Kx�Tr�Kx�≤SNR
�	logdet�Inr +HKxH

∗� < r log SNR
� (9.29)

While the optimal covariance matrix Kx depends on the SNR and the data
rate, we argued in Section 8.4 that the choice of Kx = SNR/ntInt is often
used as a good approximation to the actual outage probability. In the coarser
scaling of the tradeoff curve formulation, that argument can be made precise:
the decay rate of the outage probability in (9.29) is the same as when the
covariance matrix is the scaled identity. (See Exercise 9.8.) Thus, for the
purpose of identifying the optimal diversity gain at a multiplexing rate r it
suffices to consider the expression in (8.85):

piid
out�r log SNR�= �

{
logdet

(
Inr +

SNR
nt

HH∗
)
< r log SNR

}
� (9.30)

By analyzing this expression, the diversity–multiplexing tradeoff of the nt×nr

i.i.d. Rayleigh fading channel can be computed. It is the piecewise linear
curve joining the points

�k� �nt −k��nr −k��� k= 0� � � � � nmin� (9.31)

as shown in Figure 9.7.
The tradeoff curve summarizes succinctly the performance capability of

the slow fading MIMO channel. At one extreme where r → 0, the maximal
diversity gain nt ·nr is achieved, at the expense of very low multiplexing gain.
At the other extreme where r → nmin, the full degrees of freedom are attained.
However, the system is now operating very close to the fast fading capacity
and there is little protection against the randomness of the slow fading channel;
the diversity gain is approaching 0. The tradeoff curve bridges between the two
extremes and provides a more complete picture of the slow fading performance
capability than the two extreme points. For example, adding one transmit and
one receive antenna to the system increases the degrees of freedom min�nt� nr�

by 1; this corresponds to increasing the maximum possible multiplexing gain
by 1. The tradeoff curve gives a more refined picture of the system benefit: for
any diversity requirement d, the supported multiplexing gain is increased by 1.
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Figure 9.7
Diversity–multiplexing tradeoff,
d∗(r) for the i.i.d. Rayleigh
fading channel.
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This is because the entire tradeoff curve is shifted by 1 to the right; see
Figure 9.8.
The optimal tradeoff curve is based on the outage probability, so in principle

arbitrarily large block lengths are required to achieve the optimal tradeoff
curve. However, it has been shown that, in fact, space-time codes of block
length l= nt+nr−1 achieve the curve. In Section 9.2.4, we will see a scheme
that achieves the tradeoff curve but requires arbitrarily large block lengths.
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Geometric interpretation
To provide more intuition let us consider the geometric picture behind the
optimal tradeoff for integer values of r . The outage probability is given by

pout�r log SNR� = �

{
logdet

(
Inr +

SNR
nt

HH∗
)
< r log SNR

}

= �

{
nmin∑
i=1

log
(
1+ SNR

nt

�2
i

)
< r log SNR

}
� (9.32)

where �i are the (random) singular values of the matrix H. There are nminε

Bad H Good H

Figure 9.9 Geometric picture
for the 1× 1 channel. Outage
occurs when �h� is close to 0.

possible modes for communication but the effectiveness of mode i depends
on how large the received signal strength SNR�2

i /nt is for that mode; we can
think of a mode as fully effective if SNR�2

i /nt is of order SNR and not effective
at all when SNR�2

i /nt is of order 1 or smaller.
At low multiplexing gains (r → 0), outage occurs when none of the modes

are effective at all; i.e., all the squared singular values are small, of the order

Good H

ε Bad H

h2

h1

Figure 9.10 Geometric picture
for the 1× 2 channel. Outage
occurs when �h1�2+�h2�2 is
close to 0.

of 1/SNR. Geometrically, this event happens when the channel matrix H is
close to the zero matrix; see Figure 9.9 and 9.10. Since

∑
i �

2
i =

∑
i�j �hij�2, this

event occurs only when all of the ntnr squared magnitude channel gains, �hij�2,
are small, each on the order of 1/SNR. As the channel gains are independent
and �	�hij�2 < 1/SNR
 ≈ 1/SNR, the probability of this event is on the order
of 1/SNRntnr .
Now consider the case when r is a positive integer. The situation is more

complicated. For the outage event in (9.32) to occur, there are now many
possible combinations of values that the singular values, �i, can take on, with
modes taking on different shades of effectiveness. However, at high SNR, it
can be shown that the typical way for outage to occur is when precisely r of
the modes are fully effective and the rest completely ineffective. This means
the largest r singular values of H are of order 1, while the rest are of the
order 1/SNR or smaller; geometrically, H is close to a rank r matrix. What is
the probability of this event?
In the case of r = 0, the outage event is when the channel matrix H is close

to a rank 0 matrix. The channel matrix lies in the ntnr-dimensional space

Good H
full rank

Typical bad H

Rank(H) ≤ rε

Figure 9.11 Geometric picture
for the nt×nr channel at
multiplexing gain r �r integer�.
Outage occurs when the
channel matrix H is close to a
rank r matrix.

�nr×nt , so for this to occur, there is a collapse in all ntnr dimensions. This
leads to an outage probability of 1/SNRntnr . At general multiplexing gain r

(r positive integer), outage occurs when H is close to �r , the space of all rank
r matrices. This requires a collapse in the component of H “orthogonal” to
�r . Thus, one would expect the probability of this event to be approximately
1/SNRd, where d is the number of such dimensions.2 See Figure 9.11. It is

2 �r is not a linear space. So, strictly speaking, we cannot talk about the concept of orthogonal
dimensions. However, �r is a manifold, which means that the neighborhood of every point
looks like a Euclidean space of the same dimension. So the notion of orthogonal dimensions
(called the “co-dimension” of �r ) still makes sense.



398 MIMO III: diversity–multiplexing tradeoff and universal space-time codes

easy to compute d. A nr×nt matrix H of rank r is described by rnt+�nr−r�r

parameters: rnt parameters to specify r linearly independent row vectors of H
and �nr−r�r parameters to specify the remaining nr−r rows in terms of linear
combinations of the first r row vectors. Hence �r is ntr+�nr−r�r-dimensional
and the number of dimensions orthogonal to �r in �ntnr is simply

ntnr − �ntr+ �nr − r�r�= �nt − r��nr − r��

This is precisely the SNR exponent of the outage probability in (9.32).

9.2 Universal code design for optimal diversity–multiplexing tradeoff

The operational interpretation of the outage formulation is based on the
existence of universal codes that can achieve arbitrarily small error whenever
the channel is not in outage. To achieve such performance, arbitrarily long
block lengths and powerful codes are required. In the high SNR regime, we
have seen in Chapter 3 that the typical error event is the event that the channel
is in a deep fade, where the deep-fade event depends on the channel as well
as the scheme. This leads to a natural high SNR relaxation of the universality
concept:

A scheme is approximately universal if it is in deep fade only when the
channel itself is in outage.

Being approximately universal is sufficient for a scheme to achieve the
diversity–multiplexing tradeoff of the channel. Moreover, one can explic-
itly construct approximately universal schemes of short block lengths. We
describe this approach towards optimal diversity–multiplexing tradeoff code
design in this section. We start with the scalar channel and progress
towards more complex models, culminating in the general nt × nr MIMO
channel.

9.2.1 QAM is approximately universal for scalar channels

In Section 9.1.2 we have seen that uncoded QAM achieves the optimal
diversity–multiplexing tradeoff of the scalar Rayleigh fading channel. One
can obtain a deeper understanding of why this is so via a typical error event
analysis. Conditional on the channel gain h, the probability of error of uncoded
QAM at data rate R is approximately

Q

(√
SNR
2

�h�2d2
min

)
� (9.33)
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where dmin is the minimum distance between two normalized constellation
points, given by

dmin ≈
1

2R/2
� (9.34)

When
√
SNR�h�dmin � 1, i.e. the separation of the constellation points

at the receiver is much larger than the standard deviation of the additive
Gaussian noise, errors occur very rarely due to the very rapid drop off of
the Gaussian tail probability. Thus, as an order-of-magnitude approximation,
errors typically occur due to:

Deep-fade event � �h�2 < 2R

SNR
� (9.35)

This deep-fade event is analogous to that of BPSK in Section 3.1.2. On the
other hand, the channel outage condition is given by

log
(
1+�h�2SNR)< R� (9.36)

or equivalently

�h�2 < 2R−1
SNR

� (9.37)

At high SNR and high rate, the channel outage condition (9.37) and the deep-
fade event of QAM (9.35) coincide. Thus, typically errors occur for QAM
only when the channel is in outage. Since the optimal diversity–multiplexing
tradeoff is determined by the outage probability of the channel, this explains
why QAM achieves the optimal tradeoff. (A rigorous proof of the tradeoff
optimality of QAM based solely on this typical error event view is carried out
in Exercise 9.9, which is the generalization of Exercise 3.3 where we used
the typical error event to analyze classical diversity gain.)

In Section 9.1.2, the diversity–multiplexing tradeoff of QAM is computed
by averaging the error probability over the Rayleigh fading. It happens to be
equal to the optimal tradeoff. The present explanation based on relating the
deep-fade event of QAM and the outage condition is more insightful. For one
thing, this explanation is in terms of conditions on the channel gain h and has
nothing to do with the distribution of h. This means that QAM achieves the
optimal diversity–multiplexing tradeoff not only under Rayleigh fading but in
fact under any channel statistics. This is the true meaning of universality. For
example, for a channel with the near-zero behavior of �	�h�2 < �
 ≈ �k, the
optimal diversity–multiplexing tradeoff curve follows directly from (9.15):
d∗�r� = k�1− r�. Uncoded QAM on this channel can achieve this tradeoff
as well.
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Note that the approximate universality of QAM depends only on a condition
on its normalized minimum distance:

d2
min >

1
2R
� (9.38)

Any other constellation with this property is also approximately universal
(Exercise 9.9).

Summary 9.1 Approximate universality

A scheme is approximately universal if it is in deep fade only when the
channel itself is in outage.

Being approximately universal is sufficient for a scheme to achieve the
diversity–multiplexing tradeoff of the channel.

9.2.2 Universal code design for parallel channels

In Section 3.2.2 we derived design criteria for codes that have a good cod-
ing gain while extracting the maximum diversity from the parallel channel.
The criterion was derived based on averaging the error probability over the
statistics of the fading channel. For example, the i.i.d. Rayleigh fading paral-
lel channel yielded the product distance criterion (cf. Summary 3.1). In this
section, we consider instead a universal design criterion based on considering
the performance of the code over the worst-case channel that is not in outage.
Somewhat surprisingly, this universal code design criterion reduces to the
product distance criterion at high SNR. Using this universal design criterion,
we can characterize codes that are approximately universal using the idea of
typical error event used in the last section.

Universal code design criterion
We begin with the parallel channel with L diversity branches, focusing on
just one time symbol (and dropping the time index):

y� = h�x�+w� (9.39)

for �= 1� � � � �L. Here, as before, the w� are i.i.d. �� �0�1� noise. Suppose
the rate of communication is R bits/s/Hz per sub-channel. Each codeword
is a vector of length L. The �th component of any codeword is transmitted
over the �th sub-channel in (9.39). Here, a codeword consists of one symbol
for each of the L sub-channels; more generally, we can consider coding over
multiple symbols for each of the sub-channels as well as coding across the
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different sub-channels. The derivation of a code design criterion for the more
general case is done in Exercise 9.10.
The channels that are not in outage are those whose gains satisfy

L∑
�=1

log�1+�h��2SNR�≥ LR� (9.40)

As before, SNR is the transmit power constraint per sub-channel.
For a fixed pair of codewords xA�xB, the probability that xB is more

likely than xA when xA is transmitted, conditional on the channel gains h, is
(cf. (3.51))

�	xA → xB�h
=Q

⎛⎝√√√SNR
2

L∑
�=1

�h��2�d��2
⎞⎠ � (9.41)

where d� is the �th component of the normalized codeword difference
(cf. (3.52)):

d� �=
1√
SNR

�xA�−xB��� (9.42)

The worst-case pairwise error probability over the channels that are not in
outage is the Q�

√·� function evaluated at the solution to the optimization
problem

min
h1� � � � �hL

SNR
2

L∑
�=1

�h��2�d��2� (9.43)

subject to the constraint (9.40). If we define Q� �= SNR · �h��2�d��2, then the
optimization problem can be rewritten as

min
Q1≥0� � � � �QL≥0

1
2

L∑
�=1

Q� (9.44)

subject to the constraint

L∑
�=1

log
(
1+ Q�

�d��2
)

≥ LR� (9.45)

This is analogous to the problem of minimizing the total power required to
support a target rate R bits/s/Hz per sub-channel over a parallel Gaussian
channel; the solution is just standard waterfilling, and the worst-case channel is

�h��2 =
1

SNR
·
(

1
��d��2

−1
)+

� �= 1� � � � �L� (9.46)
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Here � is the Lagrange multiplier chosen such that the channel in (9.46)
satisfies (9.40) with equality. The worst-case pairwise error probability is

Q

⎛⎝√√√1
2

L∑
�=1

(
1
�
−�d��2

)+
⎞⎠ � (9.47)

where � satisfies

L∑
�=1

[
log

(
1

��d��2
)]+

= LR� (9.48)

Examples
We look at some simple coding schemes to better understand the universal
design criterion, the argument of the Q

(√·/2) function in (9.47):

L∑
�=1

(
1
�
−�d��2

)+
� (9.49)

where � satisfies the constraint in (9.48).

1. No coding Here symbols from L independent constellations (say, QAM),
with 2R points each, are transmitted separately on each of the sub-channels.
This has very poor performance since all but one of the �d��2 can be
simultaneously zero. Thus the design criterion in (9.49) evaluates to zero.

2. Repetition coding Suppose the symbol is drawn from a QAM constellation
(with 2RL points) but the same symbol is repeated over each of the sub-
channels. For the 2-parallel channel with R= 2 bits/s/Hz per sub-channel,
the repetition code is illustrated in Figure 9.12. The smallest value of �d��2
is 4/9. Due to the repetition, for any pair of codewords, the differences in the
sub-channels are equal. With the choice of the worst pairwise differences,
the universal criterion in (9.49) evaluates to 8/3 (see Exercise 9.12).

3. Permutation coding Consider the 2-parallel channel where the symbol on
each of the sub-channels is drawn from a separate QAM constellation. This

Figure 9.12 A repetition code
for the 2-parallel channel with
rate R = 2 bits/s/Hz per
sub-channel. ••

♣ ♠ ♣ ♠
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Figure 9.13 A permutation
code for the 2-parallel channel
with rate R = 2 bits/s/Hz per
sub-channel.

•

•♣ ♠

♣ ♠

is similar to the repetition code (Figure 9.12), but we consider different
mappings of the QAM points in the sub-channels. In particular, we map
the points such that if two points are close to each other in one QAM
constellation, their images in the other QAM constellation are far apart.
One such choice is illustrated in Figure 9.13, for R = 2 bits/s/Hz per
sub-channel where two points that are nearest neighbors in one QAM
constellation have their images in the other QAM constellation separated
by at least double the minimum distance. With the choice of the worst
pairwise differences for this code, the universal design criterion in (9.49)
can be explicitly evaluated to be 44/9 (see Exercise 9.13).

This code involves a one-to-one map between the two QAM constel-
lations and can be parameterized by a permutation of the QAM points.
The repetition code is a special case of this class of codes: it corresponds
to the identity permutation.

Universal code design criterion at high SNR
Although the universal criterion (9.49) can be computed given the codewords,
the expression is quite complicated (Exercise 9.11) and is not amenable to
use as a criterion for code design. We can however find a simple bound
by relaxing the non-negativity constraint in the optimization problem (9.44).
This allows the water depth to go negative, resulting in the following lower
bound on (9.49):

L2R�d1d2 · · ·dL�2/L−
L∑
�=1

�d��2� (9.50)

When the rate of communication per sub-channel R is large, the water level in
the waterfilling problem (9.44) is deep at every sub-channel for good codes,
and this lower bound is tight. Moreover, for good codes the second term is
small compared to the first term, and so in this regime the universal criterion
is approximately

L2R�d1d2 · · ·dL�2/L� (9.51)
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Thus, the universal code design problem is to choose the codewords maxi-
mizing the pairwise product distance; in this regime, the criterion coincides
with that of the i.i.d. Rayleigh parallel fading channel (cf. Section 3.2.2).

Property of an approximately universal code
We can use the universal code design criterion developed above to characterize
the property of a code that makes it approximately universal over the parallel
channel at high SNR. Following the approach in Section 9.2.1, we first define
a pairwise typical error event: this is when the argument of the Q�

√·/2� in
(9.41) is less than 1:

SNR ·
L∑
�=1

�h��2�d��2 < 1� (9.52)

For a code to be approximately universal, we want this event to occur only
when the channel is in outage; equivalently, this event should not occur
whenever the channel is not in outage. This translates to saying that the
worst-case code design criterion derived above should be greater than 1. At
high SNR, using (9.51), the condition becomes

�d1d2 · · ·dL�2/L >
1
L2R

� (9.53)

Moreover, this condition should hold for any pair of codewords. It is verified
in Exercise 9.14 that this is sufficient to guarantee that a coding scheme
achieves the optimal diversity–multiplexing tradeoff of the parallel channel.
We saw the permutation code in Figure 9.13 as an example of a code with

good universal design criterion value. This class of codes contains approxi-
mately universal codes. To see this, we first need to generalize the essential
structure in the permutation code example in Figure 9.13 to higher rates and
to more than two sub-channels. We consider codes of just a single block
length to carry out the following generalization.
We fix the constellation from which the codeword is chosen in each sub-

channel to be a QAM. Each of these QAM constellations contains the entire
information to be transmitted: so, the total number of points in the QAM
constellation is 2LR if R is the data rate per sub-channel. The overall code is
specified by the maps between the QAM points for each of the sub-channels.
Since the maps are one-to-one, they can be represented by permutations of
the QAM points. In particular, the code is specified by L− 1 permutations
�2� � � � ��L: for each message, say m, we identify one of the QAM points,
say q, in the QAM constellation for the first sub-channel. Then, to convey
the message m, the transmit codeword is

�q��2�q�� � � � ��L�q���
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•
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i.e., the QAM point transmitted over the �th sub-channel is ���q� with �1Figure 9.14 A permutation
code for a parallel channel with
three sub-channels. The entire
information (4 bits) is
contained in each of the QAM
constellations.

defined to be the identity permutation. An example of a permutation code with
a rate of 4/3 bits/s/Hz per sub-channel for L= 3 (so the QAM constellation
has 24 points) is illustrated in Figure 9.14.
Given the physical constraints (the operating SNR, the data rate, and the

number of sub-channels), the engineer can now choose appropriate permuta-
tions to maximize the universal code design criterion. Thus permutation codes
provide a framework within which specific codes can be designed based on
the requirements. This framework is quite rich: Exercise 9.15 shows that
even randomly chosen permutations are approximately universal with high
probability.

Bit-reversal scheme: an operational interpretation of the outage condition
We can use the concept of approximately universal codes to give an oper-
ational interpretation of the outage condition for the parallel channel. To be
able to focus on the essential issues, we restrict our attention to just two
sub-channels, so L= 2. If we communicate at a total rate 2R bits/s/Hz over
the parallel channel, the no-outage condition is

log�1+�h1�2SNR�+ log�1+�h2�2SNR� > 2R� (9.54)

One way of interpreting this condition is as though the first sub-channel
provides log�1+ �h1�2SNR� bits of information and the second sub-channel
provides log�1+�h2�2SNR� bits of information, and as long as the total num-
ber of bits provided exceeds the target rate, then reliable communication is
possible. In the high SNR regime, we exhibit below a permutation code that
makes the outage condition concrete.

Suppose we independently code over the I and Q channels of the two
sub-channels. So we can focus on only one of them, say, the I channel. We
wish to communicate R bits over two uses of the I-channel. Analogous to the
typical event analysis for the scalar channel, we can exactly recover all the R
information bits from the first I sub-channel alone if

�h1�2 >
22R

SNR
� (9.55)
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or

�h1�2SNR> 22R� (9.56)

However, we do not need to use just the first I sub-channel to recover
all the information bits: the second I sub-channel also contains the same
information and can be used in the recovery process. Indeed, if we create xI1
by treating the ordered R bits as the binary representation of the points xI1,
then one would intuitively expect that if

�h1�2SNR> 22R1� (9.57)

then one should be able to recover at least R1 of the most significant bits of
information. Now, if we create xI2 by treating the reversal of the R bits as its
binary representation, then one should be able to recover at least R2 of the
most significant bits, if

�h2�2SNR> 22R2 � (9.58)

But due to the reversal, the most significant bits in the representation in the
second I sub-channel are the least significant bits in the representation in the
first I sub-channel. Hence, as long as R1+R2 ≥ R, then we can recover all R
bits. This translates to the condition

log��h1�2SNR�+ log��h2�2SNR� > 2R� (9.59)

which is precisely the no-outage condition (9.54) at high SNR.
The bit-reversal scheme described here with some slight modifications can

be shown to be approximately universal (Exercise 9.16). A simple variant of
this scheme is also approximately universal (Exercise 9.17).

Summary 9.2 Universal codes for the parallel channel

A universal code design criterion between two codewords can be computed
by finding the channel not in outage that yields the worst-case pairwise
error probability.

At high SNR and high rate, the universal code design criterion becomes
proportional to the product distance:

�d1� � � dL�2/L (9.60)

where L is the number of sub-channels and d� is the difference between
the �th components of the codewords.
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A code is approximately universal for the parallel channel if its product
distance is large enough: for a code at a data rate of R bits/s/Hz per
sub-channel, we require

�d1d2 · · ·dL�2 >
1

�L2R�L
� (9.61)

Simple bit-reversal schemes are approximately universal for the 2-parallel
channel. Random permutation codes are approximately universal for the
L-parallel channel with high probability.

9.2.3 Universal code design for MISO channels

The outage event for the nt ×1 MISO channel (9.22) is

log
(
1+�h�2 SNR

nt

)
< R� (9.62)

In the case when nt = 2, the Alamouti scheme converts the MISO channel
to a scalar channel with gain �h� and SNR reduced by a factor of 2. Hence,
the outage behavior is exactly the same as in the original MISO channel,
and the Alamouti scheme provides a universal conversion of the 2×1 MISO
channel to a scalar channel. Any approximately universal scheme for the
scalar channel, such as QAM, when used in conjunction with the Alamouti
scheme is also approximately optimal for the MISO channel and achieves its
diversity–multiplexing tradeoff.

In the general case when the number of transmit antennas is greater than
two, there is no equivalence of the Alamouti scheme. Here we explore two
approaches to constructing universal schemes for the general MISO channel.

MISO channel viewed as a parallel channel
Using one transmit antenna at a time converts the MISO channel into a parallel
channel. We have used this conversion in conjunction with repetition coding
to argue the classical diversity gain of the MISO channel (cf. Section 3.3.2).
Replacing the repetition code with an appropriate parallel channel code (such
as the bit-reversal scheme from Section 9.2.2), we will see that converting
the MISO channel into a parallel channel is actually tradeoff-optimal for the
i.i.d. Rayleigh fading channel.
Suppose we want to communicate at rate R = r log SNR bits/s/Hz on the

MISO channel. Using one transmit antenna at a time yields a parallel chan-
nel with nt diversity branches and the data rate of communication is R

bits/s/Hz per sub-channel. The optimal diversity gain for the i.i.d. Rayleigh
parallel fading channel is nt�1− r� (cf. (9.20)); thus, using one antenna at a
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Figure 9.15 The error
probability of uncoded QAM
with the Alamouti scheme and
that of a permutation code
over one antenna at a time for
the Rayleigh fading MISO
channel with two transmit
antennas: the permutation
code is about 1.5dB worse
than the Alamouti scheme
over the plotted error
probability range.
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time in conjunction with a tradeoff-optimal parallel channel code achieves the
largest diversity gain over the i.i.d. Rayleigh fading MISO channel (cf. (9.24)).
To understand how much loss the conversion of the MISO channel into

a parallel channel entails with respect to the optimal outage performance,
we plot the error probabilities of two schemes with the same rate (R = 2
bits/s/Hz): uncoded QAM over the Alamouti scheme and the permutation
code in Figure 9.13. This performance is plotted in Figure 9.15 where we see
that the conversion of the MISO channel into a parallel channel entails a loss
of about 1.5 dB in SNR for the same error probability performance.

Universality of conversion to parallel channel
We have seen that the conversion of the MISO channel into a parallel channel
is tradeoff-optimal for the i.i.d. Rayleigh fading channel. Is this conversion
universal? In other words, will a tradeoff-optimal scheme for the parallel chan-
nel also be tradeoff-optimal for the MISO channel, under any channel statis-
tics? In general, the answer is no. To see this, consider the following MISO
channel model: suppose the channels from all but the first transmit antenna
are very poor. To make this example concrete, suppose h� = 0� �= 2� � � � � nt .
The tradeoff curve depends on the outage probability (which depends only
on the statistics of the first channel)

pout = �
{
log

(
1+ SNR�h1�2

)
< R

}
� (9.63)

Using one transmit antenna at a time is a waste of degrees of freedom: since
the channels from all but the first antenna are zero, there is no point in
transmitting any signal on them. This loss in degrees of freedom is explicit
in the outage probability of the parallel channel formed by transmitting from
one antenna at a time:

p
parallel
out = �

{
log

(
1+ SNR�h1�2

)
< ntR

}
� (9.64)
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Comparing (9.64) with (9.63), we see clearly that the conversion to the parallel
channel is not tradeoff-optimal for this channel model.
Essentially, using one antenna at a time equates temporal degrees of free-

dom with spatial ones. All temporal degrees of freedom are the same, but
the spatial ones need not be the same: in the extreme example above, the
spatial channels from all but the first transmit antenna are zero. Thus, it seems
reasonable that when all the spatial channels are symmetric then the parallel
channel conversion of the MIMO channel is justified. This sentiment is jus-
tified in Exercise 9.18, which shows that the parallel channel conversion is
approximately universal over a restricted class of MISO channels: those with
i.i.d. spatial channel coefficients.

Universal code design criterion
Instead of converting to a parallel channel, one can design universal schemes
directly for the MISO channel. What is an appropriate code design criterion?
In the context of the i.i.d. Rayleigh fading channel, we derived the determinant
criterion for the codeword difference matrices in Section 3.3.2. What is the
corresponding criterion for universal MISO schemes? We can answer this
question by considering the worst-case pairwise error probability over all
MISO channels that are not in outage.
The pairwise error probability (of confusing the transmit codeword matrix

XA with XB) conditioned on a specific MISO channel realization is (cf. (3.82))

�	XA → XB�h
=Q

(�h∗�XA−XB��√
2

)
� (9.65)

In Section 3.3.2 we averaged this quantity over the statistics of the MISO
channel (cf. (3.83)). Here we consider the worst-case over all channels not in
outage:

max
h��h�2> nt �2R−1�

SNR

Q

(�h∗�XA−XB��√
2

)
� (9.66)

From a basic result in linear algebra, the worst-case pairwise error probability
in (9.66) can be explicitly written as (Exercise 9.19)

Q

(√
1
2
�2
1nt�2R−1�

)
� (9.67)

where �1 is the smallest singular value of the normalized codeword difference
matrix

1√
SNR

�XA−XB�� (9.68)
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Essentially, the worst-case channel aligns itself in the direction of the
weakest singular value of the codeword difference matrix. So, the universal
code design criterion for the MISO channel is to ensure that no singular value
is too small; equivalently

maximize the minimum singular value of the codeword difference matrices.

�9�69�

There is an intuitive explanation for this design criterion: a universal code
has to protect itself against the worst channel that is not in outage. The condi-
tion of no-outage only puts a constraint on the norm of the channel vector h
but not on its direction. So, the worst channel aligns itself to the “weakest
direction” of the codeword difference matrix to create the most havoc. The
corresponding worst-case pairwise error probability will be governed by the
smallest singular value of the codeword difference matrix. On the other hand,
the i.i.d. Rayleigh channel does not prefer any specific direction: thus the
design criterion tailored to its statistics requires that the average direction be
well protected and this translates to the determinant criterion. While the two
criteria are different, codes with large determinant tend to also have a large
value for the smallest singular value; the two criteria (based on worst-case
and average-case) are related in this aspect.
We can use the universal code design criterion to derive a property that

makes a code universally achieve the tradeoff curve (as we did for the parallel
channel in the previous section). We want the typical error event to occur
only when the channel is in outage. This corresponds to the argument of
Q�

√
�·�/2� in the worst-case error probability (9.67) to be greater than 1, i.e.,

�2
1 >

1
nt�2R−1�

≈ 1
nt2R

� (9.70)

for every pair of codewords. We can explicitly verify that the Alam-
outi scheme with independent uncoded QAMs on the two data streams
satisfies the approximate universality property in (9.70). This is done in
Exercise 9.20.

Summary 9.3 Universal codes for the MISO channel

The MISO channel can be converted into a parallel channel by using one
transmit antenna at a time. This conversion is approximately universal for
the class of MISO channels with i.i.d. fading coefficients.

The universal code design criterion is to maximize the minimum singular
value of the codeword difference matrices.
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9.2.4 Universal code design for MIMO channels

We finally arrive at the multiple transmit and multiple receive antenna slow
fading channel:

y�m�=Hx�m�+w�m�� (9.71)

The outage event of this channel is

logdet�Inr +HKxH
∗� < R� (9.72)

where Kx is the optimizing covariance in (9.29).

Universality of D-BLAST
In Section 8.5, we have seen that the D-BLAST architecture with the MMSE–
SIC receiver converts the MIMO channel into a parallel channel with nt

sub-channels. Suppose we pick the transmit strategy Kx in the D-BLAST
architecture (the covariance matrix represents the combination of the power
allocated to the streams and coordinate system under which they are mixed
before transmitting, cf. (8.3)) to be the one in (9.72). The important property of
this conversion is the conservation expressed in (8.88): denoting the effective
SNR of the kth sub-channel of the parallel channel by SINRk,

logdet
(
Inr +HKxH

∗)= nt∑
k=1

log�1+ SINRk�� (9.73)

However, SINR1� � � � � SINRnt , across the sub-channels are correlated. On the
other hand, we saw codes (with just block length 1) that universally achieve
the tradeoff curve for any parallel channel (in Section 9.2.2). This means
that, using approximately universal parallel channel codes for each of the
interleaved streams, the D-BLAST architecture with the MMSE–SIC receiver
at a rate of R= r log SNR bits/s/Hz per stream has a diversity gain determined
by the decay rate of

�

{
nt∑
k=1

log�1+ SINRk� < R

}
� (9.74)

with increasing SNR. With n interleaved streams, each having block length 1
(i.e.,N = 1 in the notation of Section 8.5.2), the initialization loss in D-BLAST
reduces a data rate of R bits/s/Hz per stream into a data rate of nR/�n+nt−1�
bits/s/Hz on the MIMO channel (Exercise 8.27). Suppose we use the D-
BLAST architecture in conjunction with a block length 1 universal parallel
channel code for each of n interleaved streams. If this code operates at a
multiplexing gain of r on the MIMO channel, the diversity gain obtained
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is, substituting for the rate in (9.74) and comparing with (9.73), the decay
rate of

�

{
logdet

(
Inr +HKxH

∗)< r�n+nt −1�
n

log SNR
}
� (9.75)

Now comparing this with the actual decay behavior of the outage probability
(cf. (9.29)), we see that the D-BLAST/MMSE–SIC architecture with n inter-
leaved streams used to operate at a multiplexing gain of r over the MIMO
channel has a diversity gain equal to the decay rate of

pmimo
out

(
r�n+nt −1�

n
log SNR

)
� (9.76)

Thus, with a large number, n, of interleaved streams, the D-BLAST/MMSE–
SIC architecture achieves universally the tradeoff curve of the MIMO channel.
With a finite number of streams, it is strictly tradeoff-suboptimal. In fact, the
tradeoff performance can be improved by replacing the MMSE–SIC receiver
by joint ML decoding of all the streams. To see this concretely, let us
consider the 2× 2 MIMO Rayleigh fading channel (so nt = nr = 2) with
just two interleaved streams (so n = 2). The transmit signal lasts 3 time
symbols: [

0 x
�1�
B x

�2�
B

x
�1�
A x

�2�
A 0

]
� (9.77)

With the MMSE–SIC receiver, the diversity gain obtained at the multiplexing
rate of r is the optimal diversity gain at the multiplexing rate of 3r/2. This
scaled version of the optimal tradeoff curve is depicted in Figure 9.16. On the
other hand, with the ML receiver the performance is significantly improved,
also depicted in Figure 9.16. This achieves the optimal diversity performance
for multiplexing rates between 0 and 1, and in fact is the scheme that sends
4 symbols over 3 symbol times that we were seeking in Section 9.1.5! The per-
formance analysis of the D-BLAST architecture with the joint ML receiver
is rather intricate and is carried out in Exercise 9.21. Basically, MMSE–SIC
is suboptimal because it favors stream 1 over stream 2 while ML treats them
equally. This asymmetry is only a small edge effect when there are many
interleaved streams but does impact performance when there are only a small
number of streams.

Universal code design criterion
We have seen that the D-BLAST architecture is a universal one, but how do we
recognizewhen another space-time code also has good outage performance uni-
versally? To answer this question, we can derive a code design criterion based
on the worst-case MIMO channel that is not in outage. Consider space-time
code matrices with block length nt . The worst-case channel aligns itself in the
“weakest directions” afforded by a codeword pair difference matrix. With just
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Figure 9.16 Tradeoff
performance for the D-BLAST
architecture with the ML
receiver and with the
MMSE–SIC receiver.
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one receive antenna, the MISO channel is simply a row vector and it aligns
itself in the direction of the smallest singular value of the codeword differ-
ence matrix (cf. Section 9.2.3). Here, there are nmin directions for the MIMO
channel and the corresponding design criterion is an extension of that for the
MISO channel: the universal code design criterion at high SNR is to maximize

�1�2 · · ·�nmin
� (9.78)

where �1� � � � � �nmin
are the smallest nmin singular values of the normalized

codeword difference matrices (cf. (9.68)). The derivation is carried out in
Exercise 9.22. With nt ≤ nr , this is just the determinant criterion, derived in
Chapter 3 by averaging the code performance over the i.i.d. Rayleigh statistics.

The exact code design criterion at an intermediate value of SNR is sim-
ilar to the expression for the universal code design for the parallel channel
(cf. (9.49)).

Property of an approximately universal code
Using exactly the same arguments as in Section 9.2.2, we can use the uni-
versal code design criterion developed above to characterize the property of
a code that makes it approximately universal over the MIMO channel (see
Exercise 9.23):

��1�2 · · ·�nmin
�2/nmin >

1
nmin2R/nmin

� (9.79)

As in the parallel channel (cf. Exercise 9.14), this condition is only an
order-of-magnitude one. A relaxed condition

��1�2 · · ·�nmin
�2/nmin > c · 1

nmin2R/nmin
� for some constant c > 0� (9.80)
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can also be used for approximate universality: it is sufficient to guarantee that
the code achieves the optimal diversity–multiplexing tradeoff. We can make
a couple of interesting observations immediately from this result.

• If a code satisfies the condition for approximate universality in (9.80) for
an nt×nr MIMO channel with nr ≥ nt , i.e., the number of receive antennas
is equal to or larger than the number of transmit antennas, then it is also
approximately universal for an nt × l MIMO channel with l≥ nr .

• The singular values of the normalized codeword matrices are upper bounded
by 2

√
nt (Exercise 9.24). Thus, a code that satisfies (9.80) for an nt ×nr

MIMO channel also satisfies the criterion in (9.80) for an nt × l MIMO
channel with l ≤ nr . Thus is it also approximately universal for the nt × l

MIMO channel with l≤ nr .

We can conclude the following from the above two observations:

A code that satisfies (9.80) for an nt×nt MIMO channel is approximately
universal for an nt ×nr MIMO channel for every value of the number of
receive antennas nr .

Exercise 9.25 shows a rotation code that satisfies (9.80) for the 2× 2 MIMO
channel; so this code is approximately universal for every 2×nr MIMOchannel.

We have already observed that the D-BLAST architecture with approx-
imately universal parallel channel codes for the interleaved streams is
approximately universal for the MIMO channel. Alternatively, we can see its
approximate universality by explicitly verifying that it satisfies the condition
in (9.80) with nt = nr . Here, we will see this for the 2×2 channel with two
interleaved streams in the D-BLAST transmit codeword matrix (cf. (9.77)).
The normalized codeword difference matrix can be written as

D=
[

0 d
�1�
B d

�2�
B

d
�1�
A d

�2�
A 0

]
� (9.81)

where
(
d
���
B �d

���
A

)
is thenormalizedpairwisedifferencecodeword for anapprox-

imately universal parallel channel code and satisfies the condition in (9.53):

�d���B d
���
A �> 1

4 ·2R � �= 1�2� (9.82)

Here R is the rate in bits/s/Hz in each of the streams. The product of the two
singular values of D is

�2
1�

2
2 = det�DD∗�

= �d�1�B d
�1�
A �2+�d�2�B d

�2�
A �2+�d�2�B d

�1�
A �2

>
1

4 ·2R � (9.83)
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where the last inequality follows from (9.82). A rate of R bits/s/Hz on
each of the streams corresponds to a rate of 2R/3 bits/s/Hz on the MIMO
channel. Thus, comparing (9.83) with (9.79), we have verified the approximate
universality of D-BLAST at a reduced rate due to the initialization loss. In
other words, the diversity gain obtained by the D-BLAST architecture in
(9.77) at a multiplexing rate of r over the MIMO channel is d∗�3r/2�.

Discussion 9.1 Universal codes in the downlink

Consider the downlink of a cellular system where the base-stations are
equipped with multiple transmit antennas. Suppose we want to broadcast
the same information to all the users in the cell in the downlink. We would
like our transmission scheme to not depend on the number of receive
antennas at the users: each user could have a different number of receive
antennas, depending on the model, age, and type of the mobile device.
Universal MIMO codes provide an attractive solution to this problem.

Suppose we broadcast the common information at rate R using a space-
time code that satisfies (9.79) for an nt ×nt MIMO channel. Since this
code is approximately universal for every nt × nr MIMO channel, the
diversity seen by each user is simultaneously the best possible at rate R.
To summarize: the diversity gain obtained by each user is the best possible
with respect to both
• the number of receive antennas it has, and
• the statistics of the fading channel the user is currently experiencing.

Chapter 9 The main plot

For a slow fading channel at high SNR, the tradeoff between data rate
and error probability is captured by the tradeoff between multiplexing and
diversity gains. The optimal diversity gain d∗�r� is the rate at which outage
probability decays with increasing SNR when the data rate is increasing as
r log SNR. The classical diversity gain is the diversity gain at a fixed rate,
i.e., the multiplexing gain r = 0.

The optimal diversity gain d∗�r� is determined by the outage probability
of the channel at a data rate of r log SNR bits/s/Hz. The operational inter-
pretation is via the existence of a universal code that achieves reliable
communication simultaneously over all channels that are not in outage.

The universal code viewpoint provides a new code design criterion. Instead
of averaging over the channel statistics, we consider the performance of a
code over the worst-case channel that is not in outage.
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• For the parallel channel, the universal criterion is to maximize the product
of the codeword differences. Somewhat surprisingly, this is the same as
the criterion arrived at by averaging over the Rayleigh channel statistics.

• For the MISO channel, the universal criterion is to maximize the smallest
singular value of the codeword difference matrices.

• For the nt×nr MIMO channel, the universal criterion is to maximize the
product of the nmin smallest singular values of the codeword difference
matrices. With nr ≥ nt , this criterion is the same as that arrived at by
averaging over the i.i.d. Rayleigh statistics.

The MIMO channel can be transformed into a parallel channel via
D-BLAST. This transformation is universal: universal parallel channel
codes for each of the interleaved streams in D-BLAST serve as a uni-
versal code for the MIMO channel. The rate loss due to initialization in
D-BLAST can be reduced by increasing the number of interleaved streams.
For the MISO channel, however, the D-BLAST transformation with only
one stream, i.e., using the transmit antennas one at a time, is approximately
universal within the class of channels that have i.i.d. fading coefficients.

9.3 Bibliographical notes

The design of space-time codes has been a fertile area of research. There are books that
provide a comprehensive viewof the subject: for example, see the books byLarsson, Sto-
ica and Ganesan [72], and Paulraj et al. [89]. Several works have recognized the tradeoff
between diversity andmultiplexing gains. The formulation of the coarser scaling of error
probability and data rate and the corresponding characterization of their fundamental
tradeoff for the i.i.d. Rayleigh fading channel is the work of Zheng and Tse [156].

The notion of universal communication, i.e., communicating reliably over a class of
channel, was first formulated in the context of discrete memoryless channels by Black-
well et al. [10], Dobrushin [31] and Wolfowitz [146]. They showed the existence of
universal codes. The results were later extended to Gaussian channels by Root and
Varaiya [103]. Motivated by these information theoretic results, Wesel and his coau-
thors have studied the problem of universal code design in a sequence of works, start-
ing with his Ph.D. thesis [142]. The worst-case code design metric for the parallel
channel and a heuristic derivation of the product distance criterion were obtained in
[143]. This was extended to MIMO channels in [67]. The general concept of approxi-
mate universality in the high SNR regime was formulated by Tavildar and Viswanath
[118]; earlier, in the special case of the 2× 2 MIMO channel, Yao and Wornell [152]
used the determinant condition (9.80) to show the tradeoff-optimality of their rotation-
based codes. The conditions derived for approximate universality, (cf. (9.38), (9.53),
(9.70) and (9.80)) are also necessary; this is derived in Tavildar and Viswanath [118].

The design of tradeoff-optimal space-time codes is an active area of research, and
several approaches have been presented recently. They include: rotation-based codes
for the 2×2 channel, by Yao and Wornell [152] and Dayal and Varanasi [29]; lattice
space-time (LAST) codes, by El Gamal et al. [34]; permutation codes for the parallel
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channel derived from D-BLAST, by Tavildar and Viswanath [118]; Golden code, by
Belfiore et al. [5] for the 2× 2 channel; codes based on cyclic divisional algebras,
by Elia et al. [35]. The tradeoff-optimality of most of these codes is demonstrated by
verifying the approximate universality conditions.

9.4 Exercises

Exercise 9.1 Consider the L-parallel channel with i.i.d. Rayleigh coefficients. Show
that the optimal diversity gain at a multiplexing rate of r per sub-channel is L−Lr.

Exercise 9.2 Consider therepetitionschemewhere thesamecodeword is transmittedover
the L i.i.d. Rayleigh sub-channels of a parallel channel. Show that the largest diversity
gain this scheme can achieve at a multiplexing rate of r per sub-channel is L�1−Lr�.

Exercise 9.3 Consider the repetition scheme of transmitting the same codeword over
the nt transmit antennas, one at a time, of an i.i.d. Rayleigh fading nt×nr MIMO chan-
nel. Show that the maximum diversity gain this scheme can achieve, at a multiplexing
rate of r , is ntnr�1−ntr�.

Exercise 9.4 Consider using the Alamouti scheme over a 2×nr i.i.d. Rayleigh fading
MIMO channel. The transmit codeword matrix spans two symbol times m= 1�2 (cf.
Section 3.3.2): [

u1 − u∗
2

u2 u∗
1

]
� (9.84)

1. With this input to the MIMO channel in (9.71), show that we can write the output
over the two time symbols as (cf. (3.75))[

y�1�
�y�2�∗�t

]
=
[

h1 h2

�h∗
2�

t −�h∗
1�

t

][
u1
u2

]
+
[

w�1�
�w�2�∗�t

]
� (9.85)

Here we have denoted the two columns of H by h1 and h2.
2. Observing that the two columns of the effective channel matrix in (9.85) are

orthogonal, show that we can extract simple sufficient statistics for the data symbols
u1� u2 (cf. (3.76)):

ri = �H�ui+wi� i= 1�2� (9.86)

Here �H�2 denotes �h1�2 +�h2�2 and the additive noises w1 and w2 are i.i.d.
�� �0�1�.

3. Conclude that the maximum diversity gain seen by either stream (u1 or u2) at a
multiplexing rate of r per stream is 2nr�1− r�.

Exercise 9.5 Consider the V-BLAST architecture with a bank of decorrelators for the
nt × nr i.i.d. Rayleigh fading MIMO channel with nr ≥ nt . Show that the effective
channel seen by each stream is a scalar fading channel with distribution '2

2�nr−nt+1�.
Conclude that the diversity gain with a multiplexing gain of r is �nr−nt+1� �1−r/nt�.
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Exercise 9.6 Verify the claim in (9.28) by showing that the sum of the pairwise error
probabilities in (9.26), with xA�xB each a pair of QAM symbols (the union bound on
the error probability) has a decay rate of 2− r with increasing SNR.

Exercise 9.7 The result in Exercise 9.6 can be generalized. Show that the diversity
gain of transmitting uncoded QAMs (each at a rate of R= r/n log SNR bits/s/Hz) on
the n transmit antennas of an i.i.d. Rayleigh fading MIMO channel with n receive
antennas is n− r .

Exercise 9.8 Consider the expression for pmimo
out in (9.29) and for piid

out in (9.30). Suppose
that the entries of the MIMO channel H have some joint distribution and are not
necessarily i.i.d. Rayleigh.
1. Show that

piid
out�r log SNR�≥ pmimo

out �r log SNR�≥ �	logdet�Inr + SNR HH∗� < r log SNR
�
(9.87)

2. Show that the lower bound above decays at the same polynomial rate as piid
out with

increasing SNR.
3. Conclude that the polynomial decay rates of both pmimo

out and piid
out with increasing

SNR are the same.

Exercise 9.9 Consider a scalar slow fading channel

y�m�= hx�m�+w�m�� (9.88)

with an optimal diversity–multiplexing tradeoff d∗�·�, i.e.,

lim
SNR→�

logpout�r log SNR�
log SNR

= −d∗�r�� (9.89)

Let � > 0 and consider the following event on the channel gain h:

�� �= 	h � log�1+�h�2SNR1−�� < R
� (9.90)

1. Show, by conditioning on the event �� or otherwise, that the probability of error
pe�SNR� of QAM with rate R= r log SNR bits/symbol satisfies

lim
SNR→�

logpe�SNR�
log SNR

≤ −d∗�r��1− ��� (9.91)

Hint: you should show that conditional on the �� not happening, the probability
of error decays very fast and is negligible compared to the probability of error
conditional on �� happening.

2. Hence, conclude that QAM achieves the diversity–multiplexing tradeoff of any
scalar channel.

3. More generally, show that any constellation that satisfies the condition (9.38)
achieves the diversity–multiplexing tradeoff curve of the channel.

4. Even more generally, show that any constellation that satisfies the condition

d2
min > c · 1

2R
for any constant c > 0 (9.92)
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achieves the diversity–multiplexing tradeoff curve of the channel. This shows that
the condition (9.38) is really only an order-of-magnitude condition. A slightly
weaker version of this condition is also necessary for a code to be approximately
universal; see [118].

Exercise 9.10 Consider coding over a block length N for communication over the
parallel channel in (9.17). Derive the universal code design criterion, generalizing the
derivation in Section 9.2.2 over a block length of 1.

Exercise 9.11 In this exercise we will try to explicitly calculate the universal code
design criterion for the parallel fading channel; for given differences between a pair
of normalized codewords, the criterion is to maximize the expression in (9.49).
1. Suppose the codeword differences on all the sub-channels have the same magnitude,

i.e., �d1� = · · · = �dL�. Show that in this case the worst case channel is the same over
all the sub-channels and the universal criterion in (9.49) simplifies considerably to

L�2R−1��d1�2� (9.93)

2. Suppose the codeword differences are ordered: �d1� ≤ · · · ≤ �dL�.
(a) Argue that if the worst case channel h� on the �th sub-channel is non-zero,

then it is also non-zero on all the sub-channels 1� � � � � �−1.
(b) Consider the largest k such that

�dk�2k ≤ 2RL�d1 · · ·dk�2 ≤ �dk+1�2k� (9.94)

with �dL+1� defined as +�. Argue that the worst-case channel is zero on all the
sub-channelsk+1� � � � �L.Observe thatk=Lwhenall thecodeworddifferences
have the same magnitude; this is in agreement with the result in part (1).

3. Use the results of the previous part (and the notation of k from (9.94)) to derive
an explicit expression for � in (9.49):

�k�d1 · · ·dk�2 = 2−RL� (9.95)

Conclude that the universal code design criterion is to maximize(
k�2RL�d1d2 · · ·dk�2�1/k−

k∑
�=1

�d��2
)
� (9.96)

Exercise 9.12 Consider the repetition code illustrated in Figure 9.12. This code is for
the 2-parallel channel with R= 2bits/s/Hz per sub-channel. We would like to evaluate
the value of the universal design criterion, minimized over all pairs of codewords.
Show that this value is equal to 8/3. Hint: The smallest value is yielded by choosing
the pair of codewords as nearest neighbors in the QAM constellation. Since this is a
repetition code, the codeword differences are the same for both the channels; now use
(9.93) to evaluate the universal design criterion.

Exercise 9.13 Consider the permutation code illustrated in Figure 9.13 (with
R= 2bits/s/Hz per sub-channel). Show that the smallest value of the universal design
criterion, minimized over all choices of codeword pairs, is equal to 44/9.
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Exercise 9.14 In this exercise we will explore the implications of the condition for
approximate universality in (9.53).
1. Show that if a parallel channel scheme satisfies the condition (9.53), then it achieves

the diversity–multiplexing tradeoff of the parallel channel.Hint:DoExercise 9.9 first.
2. Show that the diversity–multiplexing tradeoff can still be achieved even when the

scheme satisfies a more relaxed condition:

�d1d2 · · ·dL�2/L > c · 1
L2R

� for some constant c > 0� (9.97)

Exercise 9.15 Consider the class of permutatation codes for the L-parallel channel
described in Section 9.2.2. The codeword is described as �q��2�q�� � � � ��L�q��where q
belongs to a normalized QAM (so that each of the I and Q channels are peak constrained
by ±1) with 2LR points; so, the rate of the code is R bits/s/Hz per sub-channel. In this
exercise we will see that this class contains approximately universal codes.
1. Consider random permutations with the uniform measure; since there are 2LR!

of them, each of the permutations occurs with probability 1/2LR!. Show that the
average inverse product of the pairwise codeword differences, averaged over both
the codeword pairs and the random permutations, is upper bounded as follows:

��2� � � � ��L

[
1

2LR�2LR−1�

× ∑
q1 
=q2

1
�q1 −q2�2��2�q1�−�2�q2��2 · · · ��L�q1�−�L�q2��2

]
≤ LLRL�

(9.98)

2. Conclude from the previous part that there exist permutations �2� � � � ��L such that

1
2LR

∑
q1

( ∑
q2 
=q1

1
�q1 −q2�2��2�q1�−�2�q2��2 · · · ��L�q1�−�L�q2��2

)
≤ LLRL2LR� (9.99)

3. Now suppose we fix q1 and consider the sum of the inverse product of all the
possible pairwise codeword differences:

f�q1� �=
∑
q2 
=q1

1
�q1 −q2�2��2�q1�−�2�q2��2 · · · ��L�q1�−�L�q2��2

� (9.100)

Since f�q1�≥ 0, argue from (9.99) that at least half the QAM points q1 must have
the property that

f�q1�≤ 2LLRL2LR� (9.101)

Further, conclude that for such q1 (they make up at least half of the total QAM
points) we must have for every q2 
= q1 that

�q1 −q2�2��2�q1�−�2�q2��2 · · · ��L�q1�−�L�q2��2 ≥
1

2LLRL2LR
� (9.102)
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4. Finally, conclude that there exists a permutation code that is approximately uni-
versal for the parallel channel by arguing the following:
• Expurgating no more than half the number of QAM points only reduces the

total rate LR by no more than 1 bit/s/Hz and thus does not affect the multiplex-
ing gain.

• The product distance condition on the permutation codeword differences in
(9.102) does not quite satisfy the condition for approximate universality in (9.97).
Relax the condition in (9.97) to

�d1d2 · · ·dL�2/L > c · 1
R2R

� for some constant c > 0� (9.103)

and show that this is sufficient for a code to achieve the optimal diversity–
multiplexing tradeoff curve.

Exercise 9.16 Consider the bit-reversal scheme for the parallel channel described in
Section 9.2.2. Strictly speaking, the condition in (9.57) is not true for every integer
between 0 and 2R−1. However, the set of integers for which this is not true is small
(i.e., expurgating them will not change the multiplexing rate of the scheme). Thus the
bit-reversal scheme with an appropriate expurgation of codewords is approximately
universal for the 2-parallel channel. A reading exercise is to study [118] where the
expurgated bit-reversal scheme is described in detail.

Exercise 9.17 Consider the bit-reversal scheme described in Section 9.2.2 but with
every alternate bit flipped after the reversal. Then for every pair of normalized code-
word differences, it can be shown that

�d1d2�2 >
1

64 ·22R � (9.104)

where the data rate is R bits/s/Hz per sub-channel. Argue now that the bit-reversal
scheme with alternate bit flipping is approximately universal for the 2-parallel channel.
A reading exercise is to study the proof of (9.104) in [118]. Hint: Compare (9.104)
with (9.53) and use the result derived in Exercise 9.14.

Exercise 9.18 Consider a MISO channel with the fading channels from the nt transmit
antennas, h1� � � � � hnt , i.i.d.
1. Show that

�

{
log

(
1+ SNR

nt

nt∑
�=1

�h��2
)
< r log SNR

}
(9.105)

and

�

{
nt∑
�=1

log�1+ SNR�h��2� < ntr log SNR

}
(9.106)

have the same decay rate with increasing SNR.
2. Interpret (9.105) and (9.106) with the outage probabilities of the MISO channel

and that of a parallel channel obtained through an appropriate transformation of
the MISO channel, respectively. Argue that the conversion of the MISO channel
into a parallel channel discussed in Section 9.2.3 is approximately universal for
the class of i.i.d. fading coefficients.
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Exercise 9.19 Consider an nt ×nt matrix D. Show that

min
h��h�=1

h∗DD∗h= �2
1� (9.107)

where �1 is the smallest singular value of D.

Exercise 9.20 Consider the Alamouti transmit codeword (cf. (9.84)) with u1� u2 inde-
pendent uncoded QAMs with 2R points in each.
1. For every codeword difference matrix

[
d1 − d∗

2

d2 d∗
1

]
� (9.108)

show that the two singular values are the same and equal to
√�d1�2 +�d2�2.

2. With the codeword difference matrix normalized as in (9.68) and each of the QAM
symbols u1� u2 constrained in power of SNR/2 (i.e., both the I and Q channels are
peak constrained by ±√SNR/2), show that if the codeword difference d� is not
zero, then it is

�d��2 ≥
2
2R

� �= 1�2�

3. Conclude from the previous steps that the square of the smallest singular value
of the codeword difference matrix is lower bounded by 2/2R. Since the condition
for approximate universality in (9.70) is an order-of-magnitude one (the constant
factor next to the 2R term does not matter, see Exercises 9.9 and 9.14), we have
explicitly shown that the Alamouti scheme with uncoded QAMs on the two streams
is approximately universal for the two transmit antenna MISO channel.

Exercise 9.21 Consider the D-BLAST architecture in (9.77) with just two interleaved
streams for the 2× 2 i.i.d. Rayleigh fading MIMO channel. The two streams are
independently coded at rate R = r log SNR bits/s/Hz each and composed of the pair
of codewords

(
x
���
A � x

���
B

)
for � = 1�2. The two streams are coded using an approx-

imately universal parallel channel code (say, the bit-reversal scheme described in
Section 9.2.2).

A union bound averaged over the Rayleigh MIMO channel can be used to show
that the diversity gain obtained by each stream with joint ML decoding is 4− 2r .
A reading exercise is to study the proof of this result in [118].

Exercise 9.22 [67] Consider transmitting codeword matrices of length at least nt on
the nt ×nr MIMO slow fading channel at rate R bits/s/Hz (cf. (9.71)).
1. Show that the pairwise error probability between two codeword matrices XA and

XB, conditioned on a specific realization of the MIMO channel H, is

Q

(√
SNR
2

�HD�2
)
� (9.109)

where D is the normalized codeword difference matrix (cf. (9.68)).
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2. Writing the SVDs H �= U1�V∗
1 and D �= U2�V∗

2, show that the pairwise error
probability in (9.109) can be written as

Q

(√
SNR
2

�
V∗
1U2��2

)
� (9.110)

3. Suppose the singular values are increasingly ordered in � and decreasingly ordered
in 
 . For fixed 
���U2, show that the channel eigendirections V∗

1 that minimize
the pairwise error probability in (9.110) are

V1 = U2� (9.111)

4. Observe that the channel outage condition depends only on the singular values 

of H (cf. Exercise 9.8). Use the previous parts to conclude that the calculation
of the worst-case pairwise error probability for the MIMO channel reduces to the
optimization problem

min
�1� � � � ��nmin

SNR
2

L∑
�=1

����2����2� (9.112)

subject to the constraint

nmin∑
�=1

log
(
1+ SNR

nt
����2

)
≥ R� (9.113)

Here we have written

� �= diag	�1� � � � ��nmin

� and � �= diag	�1� � � � � �nt 
�

5. Observe that the optimization problem in (9.112) and the constraint (9.113) are
very similar to the corresponding ones in the parallel channel (cf. (9.43) and (9.40),
respectively). Thus the universal code design criterion for the MIMO channel is
the same as that of a parallel channel (cf. (9.47)) with the following parameters:
• there are nmin sub-channels,
• the rate per sub-channel is R/nmin bits/s/Hz,
• the parallel channel coefficients are �1� � � � ��nmin

, the singular values of the
MIMO channel, and

• the codeword differences are the smallest singular values, �1� � � � � �nmin
, of the

codeword difference matrix.

Exercise 9.23 Using the analogy between the worst-case pairwise error probability of a
MIMO channel and that of an appropriately defined parallel channel (cf. Exercise 9.22),
justify the condition for approximate universality for the MIMO channel in (9.79).

Exercise 9.24 Consider transmitting codeword matrices of length l≥ nt on the nt ×nr
MIMO slow fading channel. The total power constraint is SNR, so for any transmit
codeword matrix X, we have �X�2 ≤ lSNR. For a pair of codeword matrices XA and
XB, let the normalized codeword difference matrix be D (normalized as in (9.68)).
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1. Show that D satisfies

�D�2 ≤ 2
SNR

��XA�2 +�XB�2�≤ 4l� (9.114)

2. Writing the singular values of D as �1� � � � � �nt , show that

nt∑
�=1

�2
� ≤ 4l� (9.115)

Thus, each of the singular values is upper bounded by 2
√
l, a constant that does

not increase with SNR.

Exercise 9.25 [152] Consider the following transmission scheme (spanning two sym-
bols) for the two transmit antenna MIMO channel. The entries of the transmit codeword
matrix X �= �xij� are defined as[

x11
x22

]
�= R��1�

[
u1
u2

]
� and

[
x21
x12

]
�= R��2�

[
u3
u4

]
� (9.116)

Here u1� u2� u3� u4 are independent QAMs of size 2R/2 each (so the data rate of this
scheme is R bits/s/Hz). The rotation matrix R��� is (cf. (3.46))

R��� �=
[
cos� − sin �
sin � cos�

]
� (9.117)

With the choice of the angles �1� �2 equal to 1/2 tan−1 2 and 1/2 tan−1�1/2� radians
respectively, Theorem 2 of [152] shows that the determinant of every normalized
codeword difference matrix D satisfies

�detD�2 ≥ 1
10 ·2R � (9.118)

Conclude that the code described in (9.116), with the appropriate choice of the angles
�1� �2 above, is approximately universal for every MIMO channel with two transmit
antennas.
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10 MIMO IV: multiuser communication

In Chapters 8 and 9, we have studied the role of multiple transmit and receive
antennas in the context of point-to-point channels. In this chapter, we shift
the focus to multiuser channels and study the role of multiple antennas in
both the uplink (many-to-one) and the downlink (one-to-many). In addition to
allowing spatial multiplexing and providing diversity to each user, multiple
antennas allow the base-station to simultaneously transmit or receive data
from multiple users. Again, this is a consequence of the increase in degrees
of freedom from having multiple antennas.
We have considered several MIMO transceiver architectures for the point-

to-point channel in Chapter 8. In some of these, such as linear receivers with
or without successive cancellation, the complexity is mainly at the receiver.
Independent data streams are sent at the different transmit antennas, and
no cooperation across transmit antennas is needed. Equating the transmit
antennas with users, these receiver structures can be directly used in the uplink
where the users have a single transmit antenna each but the base-station has
multiple receive antennas; this is a common configuration in cellular wireless
systems.
It is less apparent how to come up with good strategies for the downlink,

where the receive antennas are at the different users; thus the receiver struc-
ture has to be separate, one for each user. However, as will see, there is an
interesting duality between the uplink and the downlink, and by exploiting this
duality, one can map each receive architecture for the uplink to a correspond-
ing transmit architecture for the downlink. In particular, there is an interesting
precoding strategy, which is the “transmit dual” to the receiver-based succes-
sive cancellation strategy. We will spend some time discussing this.
The chapter is structured as follows. In Section 10.1, we first focus on

the uplink with a single transmit antenna for each user and multiple receive
antennas at the base-station. We then, in Section 10.2, extend our study to the
MIMO uplink where there are multiple transmit antennas for each user. In
Sections 10.3 and 10.4, we turn our attention to the use of multiple antennas
in the downlink. We study precoding strategies that achieve the capacity of
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the downlink. We conclude in Section 10.5 with a discussion of the system
implications of using MIMO in cellular networks; this will link up the new
insights obtained here with those in Chapters 4 and 6.

10.1 Uplink with multiple receive antennas

We begin with the narrowband time-invariant uplink with each user having
a single transmit antenna and the base-station equipped with an array of
antennas (Figure 10.1). The channels from the users to the base-station are
time-invariant. The baseband model is

y�m�=
K∑
k=1

hkxk�m�+w�m�� (10.1)

with y�m� being the received vector (of dimension nr , the number of receive
antennas) at time m, and hk the spatial signature of user k impinged on the
receive antenna array at the base-station. User k’s scalar transmit symbol at
time m is denoted by xk�m� and w�m� is i.i.d. �� �0�N0Inr� noise.

10.1.1 Space-division multiple access

In the literature, the use of multiple receive antennas in the uplink is often
called space-division multiple access (SDMA): we can discriminate amongst
the users by exploiting the fact that different users impinge different spatial
signatures on the receive antenna array.
An easy observation we can make is that this uplink is very similar to

the MIMO point-to-point channel in Chapter 5 except that the signals sent

Figure 10.1 The uplink with
single transmit antenna at each
user and multiple receive
antennas at the base-station.

out on the transmit antennas cannot be coordinated. We studied precisely
such a signaling scheme using separate data streams on each of the transmit
antennas in Section 8.3. We can form an analogy between users and transmit
antennas (so nt , the number of transmit antennas in the MIMO point-to-point
channel in Section 8.3, is equal to the number of users K). Further, the
equivalent MIMO point-to-point channel H is �h1� � � � �hK�, constructed from
the SIMO channels of the users.

Thus, the transceiver architecture in Figure 8.1 in conjunction with the
receiver structures in Section 8.3 can be used as an SDMA strategy. For
example, each of the user’s signal can be demodulated using a linear decorre-
lator or an MMSE receiver. The MMSE receiver is the optimal compromise
between maximizing the signal strength from the user of interest and sup-
pressing the interference from the other users. To get better performance, one
can also augment the linear receiver structure with successive cancellation
to yield the MMSE–SIC receiver (Figure 10.2). With successive cancella-
tion, there is also a further choice of cancellation ordering. By choosing a
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MMSE
Receiver 2

MMSE
Receiver 1

y[m]

User 2Decode
User 2

Subtract
User 1

User 1Decode
User 1

different order, users are prioritized differently in the sharing of the commonFigure 10.2 The MMSE–SIC
receiver: user 1’s data is first
decoded and then the
corresponding transmit signal
is subtracted off before the next
stage. This receiver structure,
by changing the ordering of
cancellation, achieves the two
corner points in the capacity
region.

resource of the uplink channel, in the sense that users canceled later are treated
better.
Provided that the overall channel matrix H is well-conditioned, all of

these SDMA schemes can fully exploit the total number of degrees of free-
dom min	K�nr
 of the uplink channel (although, as we have seen, different
schemes have different power gains). This translates to being able to simul-
taneously support multiple users, each with a data rate that is not limited
by interference. Since the users are geographically separated, their trans-
mit signals arrive in different directions at the receive array even when
there is limited scattering in the environment, and the assumption of a well-
conditionedH is usually valid. (Recall Example 7.4 in Section 7.2.4.) Contrast
this to the point-to-point case when the transmit antennas are co-located, and
a rich scattering environment is needed to provide a well-conditioned channel
matrix H.

Given the power levels of the users, the achieved SINR of each user can
be computed for the different SDMA schemes using the formulas derived in
Section 8.3 (Exercise 10.1). Within the class of linear receiver architecture,
we can also formulate a power control problem: given target SINR require-
ments for the users, how does one optimally choose the powers and linear
filters to meet the requirements? This is similar to the uplink CDMA power
control problem described in Section 4.3.1, except that there is a further
flexibility in the choice of the receive filters as well as the transmit powers.
The first observation is that for any choice of transmit powers, one always
wants to use the MMSE filter for each user, since that choice maximizes the
SINR for every user. Second, the power control problem shares the basic
monotonicity property of the CDMA problem: when a user lowers its transmit
power, it creates less interference and benefits all other users in the system.
As a consequence, there is a component-wise optimal solution for the pow-
ers, where every user is using the minimum possible power to support the
SINR requirements. (See Exercise 10.2.) A simple distributed power control
algorithm will converge to the optimal solution: at each step, each user first
updates its MMSE filter as a function of the current power levels of the other
users, and then updates its own transmit power so that its SINR requirement
is just met. (See Exercise 10.3.)
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10.1.2 SDMA capacity region

In Section 8.3.4, we have seen that the MMSE–SIC receiver achieves the
best total rate among all the receiver structures. The performance limit of the
uplink channel is characterized by the notion of a capacity region, introduced
in Chapter 6. How does the performance achieved by MMSE–SIC compare
to this limit?
With a single receive antenna at the base-station, the capacity region of

the two-user uplink channel was presented in Chapter 6; it is the pentagon in
Figure 6.2:

R1 < log
(
1+ P1

N0

)
�

R2 < log
(
1+ P2

N0

)
�

R1+R2 < log
(
1+ P1+P2

N0

)
�

where P1 and P2 are the average power constraints on users 1 and 2 respec-
tively. The individual rate constraints correspond to the maximum rate that
each user can get if it has the entire channel to itself; the sum rate constraint
is the total rate of a point-to-point channel with the two users acting as two
transmit antennas of a single user, but sending independent signals.

The SDMA capacity region, for the multiple receive antenna case, is the
natural extension (Appendix B.9 provides a formal justification):

R1 < log
(
1+ �h1�2P1

N0

)
� (10.2)

R2 < log
(
1+ �h2�2P2

N0

)
� (10.3)

R1+R2 < logdet
(
Inr +

1
N0

HKxH
∗
)
� (10.4)

where Kx = diag�P1�P2�. The capacity region is plotted in Figure 10.3.
The capacities of the point-to-point SIMO channels from each user to the

base-station serve as the maximum rate each user can reliably communicate
at if it has the entire channel to itself. These yield the constraints (10.2)
and (10.3). The point-to-point capacity for user k�k = 1�2� is achieved by
receive beamforming (projecting the received vector y in the direction of hk),
converting the effective channel into a SISO one, and then decoding the data
of the user.

Inequality (10.4) is a constraint on the sum of the rates that the users can
communicate at. The right hand side is the total rate achieved in a point-to-
point channel with the two users acting as two transmit antennas of one user
with independent inputs at the antennas (cf. (8.2)).
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Figure 10.3 Capacity region of
the two-user SDMA uplink.
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Since MMSE–SIC receivers (in Figure 10.2) are optimal with respect to
achieving the total rate of the point-to-point channel with the two users acting
as two transmit antennas of one user, it follows that the rates for the two
users that this architecture can achieve in the uplink meets inequality (10.4)
with equality. Moreover, if we cancel user 1 first, user 2 only has to contend
with the background Gaussian noise and its performance meets the single-
user bound (10.2). Hence, we achieve the corner point A in Figure 10.3.
By reversing the cancellation order, we achieve the corner point B. Thus,
MMSE–SIC receivers are information theoretically optimal for SDMA in the
sense of achieving rate pairs corresponding to the two corner points A and B.
Explicitly, the rate point A is given by the rate tuple �R1�R2�:

R2 = log
(
1+ P2�h2�2

N0

)
�

R1 = log�1+P1h
∗
1�N0Inr +P2h2h

∗
2�

−1h1�� (10.5)

where P1h
∗
1�N0Inr +P2h

∗
2h

∗
2�

−1h1 is the output SIR of the MMSE receiver for
user 1 treating user 2’s signal as colored Gaussian interference (cf. (8.62)).

For the single receive antenna (scalar) uplink channel, we have already seen
in Section 6.1 that the corner points are also achievable by the SIC receiver,
where at each stage a user is decoded treating all the uncanceled users as Gaus-
sian noise. In the vector case with multiple receive antennas, the uncanceled
users are also treated as Gaussian noise, but now this is a colored vector Gaus-
sian noise. The MMSE filter is the optimal demodulator for a user in the face
of such colored noise (cf. Section 8.3.3). Thus, we see that successive cancella-
tion with MMSE filtering at each stage is the natural generalization of the SIC
receiver we developed for the single antenna channel. Indeed, as explained in
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Section 8.3.4, the SIC receiver is really just a special case of the MMSE–SIC
receiver when there is only one receive antenna, and they are optimal for the
same reason: they “implement” the chain rule of mutual information.
A comparison between the capacity regions of the uplink with and without

multiple receive antennas (Figure 6.2 and Figure 10.3, respectively) highlights
the importance of having multiple receive antennas in allowing SDMA. Let
us focus on the high SNR scenario when N0 is very small as compared with
P1 and P2. With a single receive antenna at the base-station, we see from
Figure 6.2 that there is a total of only one spatial degree of freedom, shared
between the users. In contrast, with multiple receive antennas we see from
Figure 10.3 that while the individual rates of the users have no more than one
spatial degree of freedom, the sum rate has two spatial degrees of freedom.
This means that both users can simultaneously enjoy one spatial degree of
freedom, a scenario made possible by SDMA and not possible with a single
receive antenna. The intuition behind this is clear when we look back at our
discussion of the decorrelator (cf. Section 8.3.1). The received signal space
has more dimensions than that spanned by the transmit signals of the users.
Thus in decoding user 1’s signal we can project the received signal in a
direction orthogonal to the transmit signal of user 2, completely eliminating
the inter-user interference (the analogy between streams and users carries
forth here as well). This allows two effective parallel channels at high SNR.
Improving the simple decorrelator by using the MMSE–SIC receiver allows
us to exactly achieve the information theoretic limit.
In the light of this observation, we can take a closer look at the two corner

points in the boundary of the capacity region (points A and B in Figure 10.3).
If we are operating at point A we see that both users 1 and 2 have one spatial
degree of freedom each. The point C, which corresponds to the symmetric
capacity of the uplink (cf. (6.2)), also allows both users to have unit spatial
degree of freedom. (In general, the symmetric capacity point C need not lie on
the line segment joining points A and B; however it will be the center of this
line segment when the channels are symmetric, i.e., �h1� = �h2�.) While the
point C cannot be achieved directly using the receiver structure in Figure 10.2,
we can achieve that rate pair by time-sharing between the operating points
A and B (these two latter points can be achieved by the MMSE–SIC receiver).

Our discussion has been restricted to the two-user uplink. The extension to
K users is completely natural. The capacity region is now a K-dimensional
polyhedron: the set of rates �R1� � � � �RK� such that∑

k∈S
Rk < logdet

(
Inr +

1
N0

∑
k∈�

Pkhkh
∗
k

)
� for each � ⊂ 	1� � � � �K
� (10.6)

There are K! corner points on the boundary of the capacity region and each
corner point is specified by an ordering of the K users and the correspond-
ing rates are achieved by an MMSE–SIC receiver with that ordering of
cancelling users.



431 10.1 Uplink with multiple receive antennas

10.1.3 System implications

What are the practical ways of exploiting multiple receive antennas in the
uplink, and how does their performance compare to capacity? Let us first
consider the narrowband system from Chapter 4 where the allocation of
resources among the users is orthogonal. In Section 6.1 we studied orthogonal
multiple access for the uplink with a single receive antenna at the base-station.
Analogous to (6.8) and (6.9), the rates achieved by two users, when the
base-station has multiple receive antennas and a fraction � of the degrees of
freedom is allocated to user 1, are(

� log
(
1+ P1�h1�2

�N0

)
� �1−�� log

(
1+ P2�h2�2

�1−��N0

))
� (10.7)

It is instructive to compare this pair of rates with the one obtained with
orthogonal multiple access in the single receive antenna setting (cf. (6.8)
and (6.9)). The difference is that the received SNR of user k is boosted by
a factor �hk�2; this is the receive beamforming power gain. There is however
no gain in the degrees of freedom: the total is still one. The power gain
allows the users to reduce their transmit power for the same received SNR
level. However, due to orthogonal resource allocation and sparse reuse of
the bandwidth, narrowband systems already operate at high SNR and in this
situation a power gain is not much of a system benefit. A degree-of-freedom
gain would have made a larger impact.
At high SNR, we have already seen that the two-user SDMA sum capacity

has two spatial degrees of freedom as opposed to the single one with only one
receive antenna at the base-station. Thus, orthogonal multiple access makes
very poor use of the available spatial degrees of freedom when there are
multiple receive antennas. Indeed, this can be seen clearly from a comparison
of the orthogonal multiple access rates with the capacity region. With a single
receive antenna, we have found that we can get to exactly one point on
the boundary of the uplink capacity region (see Figure 6.4); the gap is not
too large unless there is a significant power disparity. With multiple receive
antennas, Figure 10.4 shows that the orthogonal multiple access rates are
strictly suboptimal at all points1 and the gap is also larger.

Intuitively, to exploit the available degrees of freedom both users must
access the channel simultaneously and their signals should be separable at
the base-station (in the sense that h1 and h2, the receive spatial signatures of
the users at the base-station, are linearly independent). To get this benefit,
more complex signal processing is required at the receiver to extract the
signal of each user from the aggregate. The complexity of SDMA grows
with the number of users K when there are more users in the system. On the

1 Except for the degenerate case when h1 and h2 are multiples of each other; see Exercise 10.4.
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Figure 10.4 The two-user
uplink with multiple receive
antennas at the base-station:
performance of orthogonal
multiple access is strictly
inferior to the capacity.
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other hand, the available degrees of freedom are limited by the number of
receive antennas, nr , and so there is no further degree-of-freedom gain beyond
having nr users performing SDMA simultaneously. This suggests a nearly
optimal multiple access strategy where the users are divided into groups of nr

users with SDMA within each group and orthogonal multiple access between
the groups. Exercise 10.5 studies the performance of this scheme in greater
detail.
On the other hand, at low SNR, the channel is power-limited rather than

degrees-of-freedom-limited and SDMA provides little performance gain over
orthogonal multiple access. This can be observed by an analysis as in the char-
acterization of the capacity of MIMO channels at low SNR, cf. Section 8.2.2,
and is elaborated in Exercise 10.6.
In general, multiple receive antennas can be used to provide beamforming

gain for the users. While this power gain is not of much benefit to the
narrowband systems, both the wideband CDMA and wideband OFDM uplink
operate at low SNR and the power gain is more beneficial.

Summary 10.1 SDMA and orthogonal multiple access

The MMSE–SIC receiver is optimal for achieving SDMA capacity.

SDMA with nr receive antennas and K users provides min�nr�K� spatial
degrees of freedom.
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Orthogonal multiple access with nr receive antennas provides only one
spatial degree of freedom but nr-fold power gain.

Orthogonal multiple access provides comparable performance to SDMA
at low SNR but is far inferior at high SNR.

10.1.4 Slow fading

We introduce fading first in the scenario when the delay constraint is small
relative to the coherence time of all the users: the slow fading scenario. The
uplink fading channel can be written as an extension of (10.1), as

y�m�=
K∑
k=1

hk�m�xk�m�+w�m�� (10.8)

In the slow fading model, for every user k, hk�m�= hk for all time m. As in
the uplink with a single antenna (cf. Section 6.3.1), we will analyze only the
symmetric uplink: the users have the same transmit power constraint, P, and
further, the channels of the users are statistically independent and identical.
In this situation, symmetric capacity is a natural performance measure and
we suppose the users are transmitting at the same rate R bits/s/Hz.

Conditioned on a realization of the received spatial signatures h1� � � � �hK ,
we have the time-invariant uplink studied in Section 10.1.2. When the sym-
metric capacity of this channel is less than R, an outage results. The probability
of the outage event is, from (10.6),

pul−mimo
out �= �

{
logdet

(
Inr + SNR

∑
k∈�

hkh
∗
k

)
< ���R�

for some � ⊂ 	1� � � � �K


}
� (10.9)

Here we have written SNR �= P/N0. The corresponding largest rate R such that
pul−mimo
out is less than or equal to � is the �-outage symmetric capacity Csym

� . With
a single user in the system, Csym

� is simply the �-outage capacity, C��SNR�,
of the point-to-point channel with receive diversity studied in Section 5.4.2.
More generally, with K > 1, Csym

� is upper bounded by this quantity: with
more users, inter-user interference is another source of error.

Orthogonal multiple access completely eliminates inter-user interference
and the corresponding largest symmetric outage rate is, as in (6.33),

C�/K�KSNR�
K

� (10.10)

We can see, just as in the situation when the base-station has a single receive
antenna (cf. Section 6.3.1), that orthogonal multiple access at low SNR is
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close to optimal. At low SNR, we can approximate pul−mimo
out (with nr = 1,

a similar approximation is in (6.34)):

pul−mimo
out ≈ Kprx

out� (10.11)

where prx
out is the outage probability of the point-to-point channel with receive

diversity (cf. (5.62)). Thus Csym
� is approximately C�/K�SNR�. On the other

hand, the rate in (10.10) is also approximately equal to C�/K�SNR� at low SNR.
At high SNR, we have seen that orthogonal multiple access is suboptimal,

both in the context of outage performance with a single receive antenna and the
capacity region of SDMA. A better baseline performance can be obtained by
considering the outage performance of the bank of decorrelators: this receiver
structure performed well in terms of the capacity of the point-to-point MIMO
channel, cf. Figure 8.9. With the decorrelator bank, the inter-user interference
is completely nulled out (assuming nr ≥ K). Further, with i.i.d. Rayleigh
fading, each user sees an effective point-to-point channel with nr −K+ 1
receive diversity branches (cf. Section 8.3.1). Thus, the largest symmetric
outage rate is exactly the �-outage capacity of the point-to-point channel with
nr −K+1 receive diversity branches, leading to the following interpretation:

Using the bank of decorrelators, increasing the number of receive antennas,
nr , by 1 allows us to either admit one extra user with the same outage
performance for each user, or increase the effective number of diversity
branches seen by each user by 1.

How does the outage performance improve if we replace the bank of decor-
relators with the joint ML receiver? The direct analysis of Csym

� at high SNR
is quite involved, so we resort to the use of the coarser diversity–multiplexing
tradeoff introduced in Chapter 9 to answer this question. For the bank of
decorrelators, the diversity gain seen by each user is �nr −K+1��1− r� where
r is the multiplexing gain of each user (cf. Exercise 9.5). This provides
a lower bound to the diversity–multiplexing performance of the joint ML
receiver. On the other hand, the outage performance of the uplink cannot be
better than the situation when there is no inter-user interference, i.e., each
user sees a point-to-point channel with receiver diversity of nr branches. This
is the single-user upper bound. The corresponding single-user tradeoff curve
is nr�1− r�. These upper and lower bounds to the outage performance are
plotted in Figure 10.5.

The tradeoff curve with the joint ML receiver in the uplink can be evaluated:
with more receive antennas than the number of users (i.e., nr ≥ K), the
tradeoff curve is the same as the upper bound derived with each user seeing
no inter-user interference. In other words, the tradeoff curve is nr�1− r� and
single-user performance is achieved even though there are other users in
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Figure 10.5 The diversity–
multiplexing tradeoff curves for
the uplink with a bank of
decorrelators (equal to
�nr −K+ 1��1− r�, a lower
bound to the outage
performance with the joint ML
receiver) and that when there
is no inter-user interference
(equal to nr�1− r�, the
single-user upper bound to the
outage performance of the
uplink). The latter is actually
achievable.

1 r

d(r)

nr

nr – K + 1

the system. This allows the following interpretation of the performance of the
joint ML receiver, in contrast to the decorrelator bank:

Using the joint ML receiver, increasing the number of receive antennas,
nr , by 1 allows us to both admit one extra user and simultaneously increase
the effective number of diversity branches seen by each user by 1.

With nr < K, the optimal uplink tradeoff curve is more involved. We can
observe that the total spatial degrees of freedom in the uplink is now limited
by nr and thus the largest multiplexing rate per user can be no more than
nr/K. On the other hand, with no inter-user interference, each user can have
a multiplexing gain up to 1; thus, this upper bound can never be attained
for large enough multiplexing rates. It turns out that for slightly smaller
multiplexing rates r ≤ nr/�K+1� per user, the diversity gain obtained is still
equal to the single-user bound of nr�1− r�. For r larger than this threshold
(but still smaller than nr/K), the diversity gain is that of a K× nr MIMO
channel at a total multiplexing rate of Kr; this is as if the K users pooled
their total rate together. The overall optimal uplink tradeoff curve is plotted
in Figure 10.6: it has two line segments joining the points

�0� nr��

(
nr

K+1
�
nr�K−nr +1�

K+1

)
� and

(nr

K
�0
)
�

Exercise 10.7 provides the justification to the calculation of this tradeoff
curve.
In Section 6.3.1, we plotted the ratio of Csym

� for a single receive antenna
uplink to C��SNR�, the outage capacity of a point-to-point channel with no
inter-user interference. For a fixed outage probability �, increasing the SNR
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Figure 10.6 The diversity–
multiplexing tradeoff curve for
the uplink with the joint ML
receiver for nr < K . The
multiplexing rate r is measured
per user. Up to a multiplexing
gain of nr/�K+ 1�, single-user
tradeoff performance of
nr�1− r� is achieved. The
maximum number of degrees
of freedom per user is nr/K ,
limited by the number of
receive antennas.

1

d(r)

nr

nr

K+1
nr
K

r
•

corresponds to decreasing the required diversity gain. Substituting nr = 1 and
K = 2, in Figure 10.6, we see that as long as the required diversity gain
is larger than 2/3, the corresponding multiplexing gain is as if there is no
inter-user interference. This explains the behavior in Figure 6.10, where the
ratio of Csym

� to C��SNR� increases initially with SNR. With a further increase
in SNR, the corresponding desired diversity gain drops below 2/3 and now
there is a penalty in the achievable multiplexing rate due to the inter-user
interference. This penalty corresponds to the drop of the ratio in Figure 6.10
as SNR increases further.

10.1.5 Fast fading

Here we focus on the case when communication is over several coherence
intervals of the user channels; this way most channel fade levels are experi-
enced. This is the fast fading assumption studied for the single antenna uplink
in Section 6.3 and the point-to-point MIMO channel in Section 8.2. As usual,
to simplify the analysis we assume that the base-station can perfectly track
the channels of all the users.

Receiver CSI
Let us first consider the case when the users have only a statistical model of
the channel (taken to be stationary and ergodic, as in the earlier chapters). In
our notation, this is the case of receiver CSI. For notational simplicity, let us
consider only two users in the uplink (i.e., K = 2). Each user’s rate cannot be
larger than when it is the only user transmitting (an extension of (5.91) with
multiple receive antennas):

Rk ≤ �

[
log

(
1+ �hk�2Pk

N0

)]
� k= 1�2� (10.12)
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A

B

E

R2

R1

log 1+
|| h2||2P2

N0

E log 1+
|| h1||2P1

N0

R1+R2 = E log det Inr
+

HKxH*
N0

We also have the sum constraint (an extension of (6.37) with multiple receiveFigure 10.7 Capacity region of
the two-user SIMO uplink with
receiver CSI.

antennas, cf.(8.10)):

R1+R2 ≤ �

[
logdet

(
Inr +

1
N0

HKxH
∗
)]

� (10.13)

Here we have written H = �h1h2� and Kx = diag	P1�P2
. The capacity
region is a pentagon (see Figure 10.7). The two corner points are achieved
by the receiver architecture of linear MMSE filters followed by succes-
sive cancellation of the decoded user. Appendix B.9.3 provides a formal
justification.

Let us focus on the sum capacity in (10.13). This is exactly the capacity
of a point-to-point MIMO channel with receiver CSI where the covariance
matrix is chosen to be diagonal. The performance gain in the sum capacity
over the single receive antenna case (cf. (6.37)) is of the same nature as that
of a point-to-point MIMO channel over a point-to-point channel with only
a single receive antenna. With a sufficiently random and well-conditioned
channel matrix H, the performance gain is significant (cf. our discussion in
Section 8.2.2). Since there is a strong likelihood of the users being geograph-
ically far apart, the channel matrix is likely to be well-conditioned (recall
our discussion in Example 7.4 in Section 7.2.4). In particular, the important
observation we can make is that each of the users has one spatial degree of
freedom, while with a single receive antenna, the sum capacity itself has one
spatial degree of freedom.
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Full CSI
We now move to the other scenario, full CSI both at the base-station and at
each of the users.2 We have studied the full CSI case in the uplink for single
transmit and receive antennas in Section 6.3 and here we will see the role
played by an array of receive antennas.

Now the users can vary their transmit power as a function of the channel
realizations; still subject to an average power constraint. If we denote the
transmit power of user k at time m by Pk�h1�m��h2�m��, i.e., it is a function
of the channel states h1�m��h2�m� at time m, then the rate pairs �R1�R2� at
which the users can jointly reliably communicate to the base-station satisfy
(analogous to (10.12) and (10.13)):

Rk ≤ �

[
log

(
1+ �hk�2Pk�h1�h2�

N0

)]
� k= 1�2� (10.14)

R1+R2 ≤ �

[
logdet

(
Inr +

1
N0

HKxH
∗
)]

� (10.15)

Here we have writtenKx = diag	P1�h1�h2��P2�h1�h2�
. By varying the power
allocations, the users can communicate at rate pairs in the union of the
pentagons of the form defined in (10.14) and (10.15). By time sharing between
two different power allocation policies, the users can also achieve every rate
pair in the convex hull3 of the union of these pentagons; this is the capacity
region of the uplink with full CSI. The power allocations are still subject to
the average constraint, denoted by P (taken to be the same for each user for
notational convenience):

��Pk�h1�h2��≤ P� k= 1�2� (10.16)

In the point-to-point channel, we have seen that the power variations are
waterfilling over the channel states (cf. Section 5.4.6). To get some insight
into how the power variations are done in the uplink with multiple receive
antennas, let us focus on the sum capacity

Csum = max
Pk�h1�h2�� k=1�2

�

[
logdet

(
Inr +

1
N0

HKxH
∗
)]

� (10.17)

where the power allocations are subject to the average constraint in (10.16). In
the uplink with a single receive antenna at the base-station (cf. Section 6.3.3),
we have seen that the power allocation that maximizes sum capacity allows
only the best user to transmit (a power that is waterfilling over the best user’s

2 In an FDD system, the base-station need not feedback all the channel states of all the users to
every user. Instead, only the amount of power to be transmitted needs be relayed to the users.

3 The convex hull of a set is the collection of all points that can be represented as convex
combinations of elements of the set.
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channel state, cf. (6.47)). Here each user is received as a vector (hk for user k)
at the base-station and there is no natural ordering of the users to bring this
argument forth here. Still, the optimal allocation of powers can be found using
the Lagrangian techniques, but the solution is somewhat complicated and is
studied in Exercise 10.9.

10.1.6 Multiuser diversity revisited

One of the key insights from the study of the performance of the uplink
with full CSI in Chapter 6 was the discovery of multiuser diversity. How do
multiple receive antennas affect multiuser diversity? With a single receive
antenna and i.i.d. user channel statistics, we have seen (see Section 6.6)
that the sum capacity in the uplink can be interpreted as the capacity of the
following point-to-point channel with full CSI:

• The power constraint is the sum of the power constraints of the users (equal
to KP with equal power constraints for the users Pi = P).

• The channel quality is �hk∗ �2 �=maxk=1 � � � K �hk�2, that corresponding to the
strongest user k∗.

The corresponding sum capacity is (see (6.49))

Csum = �

[
log

(
1+ P∗�hk∗��hk∗ �2

N0

)]
� (10.18)

where P∗ is the waterfilling power allocation (see (5.100) and (6.47)). With
multiple receive antennas, the optimal power allocation does not allow a sim-
ple characterization. To get some insight, let us first consider (the suboptimal
strategy of) transmitting from only one user at a time.

One user at a time policy
In this case, the multiple antennas at the base-station translate into receive
beamforming gain for the users. Now we can order the users based on the
beamforming power gain due to the multiple receive antennas at the base-
station. Thus, as an analogy to the strongest user in the single antenna situation,
here we can choose that user which has the largest receive beamforming gain:
the user with the largest �hk�2. Assuming i.i.d. user channel statistics, the
sum rate with this policy is

�

[
log

(
1+ P∗

k∗��hk∗���hk∗�2
N0

)]
� (10.19)

Comparing (10.19) with (10.18), we see that the only difference is that the
scalar channel gain �hk�2 is replaced by the receive beamforming gain �hk�2.

The multiuser diversity gain depends on the probability that the maxi-
mum of the users’ channel qualities becomes large (the tail probability). For
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example, we have seen (cf. Section 6.7) that the multiuser diversity gain with
Rayleigh fading is larger than that in Rician fading (with the same average
channel quality). With i.i.d. channels to the receive antenna array (with unit
average channel quality), we have by the law of large numbers

�hk�2
nr

→ 1� nr → �� (10.20)

So, the receive beamforming gain can be approximated as �hk�2 ≈ nr for
large enough nr . This means that the tail of the receive beamforming gain
decays rapidly for large nr .
As an illustration, the density of �hk�2 for i.i.d. Rayleigh fading (i.e., it is

a '2
2nr

random variable) scaled by nr is plotted in Figure 10.8. We see that the
larger the nr value is, the more concentrated the density of the scaled random
variable '2

2nr
is around its mean. This illustration is similar in nature to that

in Figure 6.23 in Section 6.7 where we have seen the plot of the densities of
the channel quality with Rayleigh and Rician fading. Thus, while the array of
receive antennas provides a beamforming gain, the multiuser diversity gain is
restricted. This effect is illustrated in Figure 10.9 where we see that the sum
capacity does not increase much with the number of users, when compared
to the corresponding AWGN channel.

Optimal power allocation policy
We have discussed the impact of multiple receive antennas on multiuser diver-
sity under the suboptimal strategy of allowing only one user (the best user)
to transmit at any time. Let us now consider how the sum capacity benefits
from multiuser diversity; i.e., we have to study the power allocation policy
that is optimal for the sum of user rates. In our previous discussions, we have
found a simple form for this power allocation policy: for a point-to-point single

Figure 10.8 Plot of the density
of a �2

2nr
random variable

divided by nr for nr = 1� 5.
The larger the nr , the more
concentrated the normalized
random variable is around its
mean of one.
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Figure 10.9 Sum capacities of
the uplink Rayleigh fading
channel with nr the number of
receive antennas, for nr = 1� 5.
Here SNR= 1 (0dB) and the
Rayleigh fading channel is
h∼ �� �0� Inr �. Also plotted
for comparison is the
corresponding performance for
the uplink AWGN channel with
nr = 5 and SNR= 5 (7dB).
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antenna channel, the allocation is waterfilling. For the single antenna uplink,
the policy is to allow only the best user to transmit and, further, the power
allocated to the best user is waterfilling over its channel quality. In the uplink
with multiple receive antennas, there is no such simple expression in gen-
eral. However, with both nr and K large and comparable, the following sim-
ple policy is very close to the optimal one. (See Exercise 10.10.) Every user
transmits and the power allocated is waterfilling over its own channel state, i.e.,

Pk�H�=
(
1
�
− I0

�hk�2
)+
� k= 1� � � � �K� (10.21)

As usual the water level, �, is chosen such that the average power constraint
is met.

It is instructive to compare the waterfilling allocation in (10.21) with the
one in the uplink with a single receive antenna (see (6.47)). The important
difference is that when there is only one user transmitting, waterfilling is
done over the channel quality with respect to the background noise (of power
density N0). However, here all the users are simultaneously transmitting,
using a similar waterfilling power allocation policy. Hence the waterfilling in
(10.21) is done over the channel quality (the receive beamforming gain) with
respect to the background interference plus noise: this is denoted by the term
I0 in (10.21). In particular, at high SNR the waterfilling policy in (10.21)
simplifies to the constant power allocation at all times (under the condition
that there are more receive antennas than the number of users).
Now the impact on multiuser diversity is clear: it is reduced to the basic

opportunistic communication gain by waterfilling in a point-to-point channel.
This gain depends solely on how the individual channel qualities of the users
fluctuate with time and thus the multiuser nature of the gain is lost. As we
have seen earlier (cf. Section 6.6), the gain of opportunistic communication in a
point-to-point context is much more limited than that in the multiuser context.
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Summary 10.2 Opportunistic communication and multiple
receive antennas

Orthogonal multiple access: scheduled user gets a power gain but reduced
multiuser diversity gain.

SDMA: multiple users simultaneously transmit.
• Optimal power allocation approximated by waterfilling with respect to

an intra-cell interference level.
• Multiuser nature of the opportunistic gain is lost.

10.2 MIMO uplink

Now we move to consider the role of multiple transmit antennas (at the

Figure 10.10 The MIMO uplink
with multiple transmit antennas
at each user and multiple
receive antennas at the
base-station.

mobiles) along with the multiple receive antennas at the base-station
(Figure 10.10). Let us denote the number of transmit antennas at user k by
ntk� k= 1� � � � �K. We begin with the time-invariant channel; the correspond-
ing model is an extension of (10.1):

y�m�=
K∑
k=1

Hkxk�m�+w�m�� (10.22)

where Hk is a fixed nr by ntk matrix.

10.2.1 SDMA with multiple transmit antennas

There is a natural extension of our SDMA discussion in Section 10.1.2 to
multiple transmit antennas. As before, we start with K = 2 users.

• Transmitter architecture Each user splits its data and encodes them
into independent streams of information with user k employing nk �=
min�ntk� nr� streams (just as in the point-to-point MIMO channel). Powers
Pk1�Pk2� � � � �Pknk

are allocated to the nk data streams, passed through
a rotation Uk and sent over the transmit antenna array at user k. This is
analogous to the transmitter structure we have seen in the point-to-point
MIMO channel in Chapter 5. In the time-invariant point-to-point MIMO
channel, the rotation matrix U was chosen to correspond to the right rota-
tion in the singular value decomposition of the channel and the powers
allocated to the data streams correspond to the waterfilling allocations over
the squared singular values of the channel matrix (cf. Figure 7.2). The
transmitter architecture is illustrated in Figure 10.11.

• Receiver architecture The base-station uses the MMSE–SIC receiver to
decode the data streams of the users. This is an extension of the receiver
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architecture in Chapter 8 (cf. Figure 8.16). This architecture is illustratedFigure 10.11 The transmitter
architecture for the two-user
MIMO uplink. Each user splits
its data into independent data
streams, allocates powers to
the data streams and transmits
a rotated version over the
transmit antenna array.

in Figure 10.12.

The rates R1�R2 achieved by this transceiver architecture must satisfy the
constraints, analogous to (10.2), (10.3) and (10.4):

Rk ≤ logdet
(
Inr +

1
N0

HkKxkH
∗
k

)
� k= 1�2� (10.23)

R1+R2 ≤ logdet

(
Inr +

1
N0

2∑
k=1

HkKxkH
∗
k

)
� (10.24)

Here we have written Kxk �= Uk�kU
∗
k and �k to be a diagonal matrix with

the ntk diagonal entries equal to the power allocated to the data streams
Pk1� � � � �Pknk

(if nk < ntk then the remaining diagonal entries are equal to
zero, see Figure 10.11). The rate region defined by the constraints in (10.23)
and (10.24) is a pentagon; this is similar to the one in Figure 10.3 and
illustrated in Figure 10.13. The receiver architecture in Figure 10.2, where the
data streams of user 1 are decoded first, canceled, and then the data streams
of user 2 are decoded, achieves the corner point A in Figure 10.13.
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With a single transmit antenna at each user, the transmitter architectureFigure 10.12 Receiver
architecture for the two-user
MIMO uplink. In this figure,
each user has two transmit
antennas and splits their data
into two data streams each. The
base-station decodes the data
streams of the users using the
linear MMSE filter, successively
canceling them as they are
decoded.

simplifies considerably: there is only one data stream and the entire power
is allocated to it. With multiple transmit antennas, we have a choice of
power splits among the data streams and also the choice of the rotation U
before sending the data streams out of the transmit antennas. In general,
different choices of power splits and rotations lead to different pentagons (see
Figure 10.14), and the capacity region is the convex hull of the union of all
these pentagons; thus the capacity region in general is not a pentagon. This
is because, unlike the single transmit antenna case, there are no covariance
matrices Kx1�Kx2 that simultaneously maximize the right hand side of all the
three constraints in (10.23) and (10.24). Depending on how one wants to trade
off the performance of the two users, one would use different input strategies.
This is formulated as a convex programming problem in Exercise 10.12.
Throughout this section, our discussion has been restricted to the two-user

uplink. The extension to K users is completely natural. The capacity region
is now K dimensional and for fixed transmission filters Kxk modulating the
streams of user k (here k = 1� � � � �K) there are K! corner points on the
boundary region of the achievable rate region; each corner point is specified
by an ordering of the K users and the corresponding rate tuple is achieved by
the linear MMSE filter bank followed by successive cancellation of users (and
streams within a user’s data). The transceiver structure is a K user extension
of the pictorial depiction for two users in Figures 10.11 and 10.12.

10.2.2 System implications

Simple engineering insights can be drawn from the capacity results. Consider
an uplink channel with K mobiles, each with a single transmit antenna. There
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are nr receive antennas at the base-station. Suppose the system designer wantsFigure 10.13 The rate region of
the two-user MIMO uplink with
transmitter strategies (power
allocations to the data streams
and the choice of rotation
before sending over the
transmit antenna array) given
by the covariance matrices Kx1

and Kx2.

to add one more transmit antenna at each mobile. How does this translate to
increasing the number of spatial degrees of freedom?
If we look at each user in isolation and think of the uplink channel as a set

of isolated SIMO point-to-point links from each user to the base-station, then
adding one extra antenna at the mobile increases by one the available spatial
degrees of freedom in each such link. However, this is misleading. Due to
the sum rate constraint, the total number of spatial degrees of freedom is
limited by the minimum of K and nr . Hence, if K is larger than nr , then the
number of spatial degrees of freedom is already limited by the number of
receive antennas at the base-station, and increasing the number of transmit
antennas at the mobiles will not increase the total number of spatial degrees
of freedom further. This example points out the importance of looking at

Figure 10.14 The achievable
rate region for the two-user
MIMO MAC with two specific
choices of transmit filter
covariances: Kxk for user k,
for k = 1� 2.
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the uplink channel as a whole rather than as a set of isolated point-to-point
links.
On the other hand, multiple transmit antennas at each of the users signifi-

cantly benefit the performance of orthogonal multiple access (which, however,
is suboptimal to start with when nr > 1). With a single transmit antenna, the
total number of spatial degrees of freedom with orthogonal multiple access is
just one. Increasing the number of transmit antennas at the users boosts the
number of spatial degrees of freedom; user k has min�ntk� nr� spatial degrees
of freedom when it is transmitting.

10.2.3 Fast fading

Our channel model is an extension of (10.22):

y�m�=
K∑
k=1

Hk�m�xk�m�+w�m�� (10.25)

The channel variations 	Hk�m�
m are independent across users k and stationary
and ergodic in time m.

Receiver CSI
In the receiver CSI model, the users only have access to the statistical charac-
terization of the channels while the base-station tracks all the users’ channel
realizations. The users can still follow the SDMA transmitter architecture in
Figure 10.11: splitting the data into independent data streams, splitting the
total power across the streams and then sending the rotated version of the
data streams over the transmit antenna array. However, the power allocations
and the choice of rotation can only depend on the channel statistics and not
on the explicit realization of the channels at any time m.
In our discussion of the point-to-point MIMO channel with receiver CSI

in Section 8.2.1, we have seen some additional structure to the transmit
signal. With linear antenna arrays and sufficiently rich scattering so that
the channel elements can be modelled as zero mean uncorrelated entries,
the capacity achieving transmit signal sends independent data streams over
the different angular windows; i.e., the covariance matrix is of the form
(cf. (8.11)):

Kx = Ut�U
∗
t � (10.26)

where � is a diagonal matrix with non-negative entries (representing the
power transmitted in each of the transmit angular windows). The rotation
matrix Ut represents the transformation of the signal sent over the angular
windows to the actual signal sent out of the linear antenna array (cf. (7.68)).
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A similar result holds in the uplink MIMO channel as well. When each of
the users’ MIMO channels (viewed in the angular domain) have zero mean,
uncorrelated entries then it suffices to consider covariance matrices of the
form in (10.26); i.e., user k has the transmit covariance matrix:

Kxk = Utk�kU
∗
tk� (10.27)

where the diagonal entries of �k represent the powers allocated to the data
streams, one in each of the angular windows (so their sum is equal to Pk,
the power constraint for user k). (See Exercise 10.13.) With this choice of
transmit strategy, the pair of rates �R1�R2� at which users can jointly reliably
communicate is constrained, as in (10.12) and (10.13), by

Rk ≤ �

[
logdet

(
Inr +

1
N0

HkKxkH
∗
k

)]
� k= 1�2� (10.28)

R1+R2 ≤ �

[
logdet

(
Inr +

1
N0

2∑
k=1

HkKxkH
∗
k

)]
� (10.29)

This constraint forms a pentagon and the corner points are achieved by the
architecture of the linear MMSE filter combined with successive cancellation
of data streams (cf. Figure 10.12).
The capacity region is the convex hull of the union of these pentagons, one

for each power allocation to the data streams of the users (i.e., the diagonal
entries of �1��2). In the point-to-point MIMO channel, with some additional
symmetry (such as in the i.i.d. Rayleigh fading model), we have seen that
the capacity achieving power allocation is equal powers to the data streams
(cf. (8.12)). An analogous result holds in the MIMO uplink as well. With
i.i.d. Rayleigh fading for all the users, the equal power allocation to the data
streams, i.e.,

Kxk =
Pk

ntk

Intk � (10.30)

achieves the entire capacity region; thus in this case the capacity region is
simply a pentagon. (See Exercise 10.14.)

The analysis of the capacity region with full CSI is very similar to our
previous analysis (cf. Section 10.1.5). Due to the increase in number of
parameters to feedback (so that the users can change their transmit strategies
as a function of the time-varying channels), this scenario is also somewhat
less relevant in engineering practice, at least for FDD systems.
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10.3 Downlink with multiple transmit antennas

We now turn to the downlink channel, from the base-station to the multiple

Figure 10.15 The downlink
with multiple transmit antennas
at the base-station and single
receive antenna at each user.

users. This time the base-station has an array of transmit antennas but each
user has a single receive antenna (Figure 10.15). It is often a practically
interesting situation since it is easier to put multiple antennas at the base-
station than at the mobile users. As in the uplink case we first consider the
time-invariant scenario where the channel is fixed. The baseband model of the
narrowband downlink with the base-station having nt antennas and K users
with each user having a single receive antenna is

yk�m�= h∗
kx�m�+wk�m�� k= 1� � � � �K� (10.31)

where yk�m� is the received vector for user k at time m, h∗
k is an nt dimen-

sional row vector representing the channel from the base-station to user k.
Geometrically, user k observes the projection of the transmit signal in the
spatial direction hk in additive Gaussian noise. The noise wk�m�∼ �� �0�N0�

and is i.i.d. in time m. An important assumption we are implicitly making
here is that the channel’s hk are known to the base-station as well as to the
users.

10.3.1 Degrees of freedom in the downlink

If the users could cooperate, then the resulting MIMO point-to- point channel
would have min�nt�K� spatial degrees of freedom, assuming that the rank of
the matrix H= �h1� � � � �hK� is full. Can we attain this full spatial degrees of
freedom even when users cannot cooperate?
Let us look at a special case. Suppose h1� � � � �hK are orthogonal (which is

only possible if K ≤ nt). In this case, we can transmit independent streams of
data to each user, such that the stream for the kth user 	x̃k�m�
 is along the
transmit spatial signature hk, i.e.,

x�m�=
K∑
k=1

x̃k�m�hk� (10.32)

The overall channel decomposes into a set of parallel channels; user k receives

yk�m�= �hk�2x̃k�m�+wk�m�� (10.33)

Hence, one can transmit K parallel non-interfering streams of data to the
users, and attain the full number of spatial degrees of freedom in the channel.
What happens in general, when the channels of the users are not orthogonal?

Observe that to obtain non-interfering channels for the users in the example
above, the key property of the transmit signature hk is that hk is orthogonal
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to the spatial direction’s hi of all the other users. For general channels (but
still assuming linear independence among h1� � � � �hK; thus K ≤ nt), we can
preserve the same property by replacing the signature hk by a vector uk that
lies in the subspace Vk orthogonal to all the other hi; the resulting channel
for user k is

yk�m�= �h∗
kuk�x̃k�m�+wk�m�� (10.34)

Thus, in the general case too, we can get K spatial degrees of freedom.
We can further choose uk ∈ Vk to maximize the SNR of the channel above;
geometrically, this is given by the projection of hk onto the subspace Vk. This
transmit filter is precisely the decorrelating receive filter used in the uplink
and also in the point-to-point setting. (See Section 8.3.1 for the geometric
derivation of the decorrelator.)

The above discussion is for the case when K ≤ nt . When K ≥ nt , one can
apply the same scheme but transmitting only to nt users at a time, achieving
nt spatial degrees of freedom. Thus, in all cases, we can achieve a total spatial
degrees of freedom of min�nt�K�, the same as that of the point-to-point link
when all the receivers can cooperate.
An important point to observe is that this performance is achieved assuming

knowledge of the channels hk at the base-station. We required the same chan-
nel side information at the base-station when we studied SDMA and showed
that it achieves the same spatial degrees of freedom as when the users coop-
erate. In a TDD system, the base-station can exploit channel reciprocity and
measure the uplink channel to infer the downlink channel. In an FDD system,
the uplink and downlink channels are in general quite different, and feedback
would be required: quite an onerous task especially when the users are highly
mobile and the number of transmit antennas is large. Thus the requirement of
channel state information at the base-station is quite asymmetric in the uplink
and the downlink: it is more onerous in the downlink.

10.3.2 Uplink–downlink duality and transmit beamforming

In the uplink, we understand that the decorrelating receiver is the optimal
linear filter at high SNR when the interference from other streams dominates
over the additive noise. For general SNR, one should use the linear MMSE
receiver to balance optimally between interference and noise suppression.
This was also called receive beamforming. In the previous section, we found a
downlink transmission strategy that is the analog of the decorrelating receive
strategy. It is natural to look for a downlink transmission strategy analogous
to the linear MMSE receiver. In other words, what is “optimal” transmit
beamforming?

For a given set of powers, the uplink performance of the kth user is
a function of only the receive filter uk. Thus, it is simple to formulate what



450 MIMO IV: multiuser communication

we mean by an “optimal” linear receiver: the one that maximizes the output
SINR. The solution is the MMSE receiver. In the downlink, however, the
SINR of each user is a function of all of the transmit signatures u1� � � � �uK
of the users. Thus, the problem is seemingly more complex. However, there
is in fact a downlink transmission strategy that is a natural “dual” to the
MMSE receive strategy and is optimal in a certain sense. This is in fact a
consequence of a more general duality between the uplink and the downlink,
which we now explain.

Uplink–downlink duality
Suppose transmit signatures u1� � � � �uK are used for the K users. The trans-
mitted signal at the antenna array is

x�m�=
K∑
k=1

x̃k�m�uk� (10.35)

where 	x̃k�m�
 is the data stream of user k. Substituting into (10.31) and
focusing on user k, we get

yk�m�= �h∗
kuk�x̃k�m�+

∑
j 
=k
�h∗

kuj�x̃j�m�+wk�m�� (10.36)

The SINR for user k is given by

SINRk �=
Pk � u∗

khk �2
N0 +

∑
j 
=k Pj � u∗

jhk �2
� (10.37)

where Pk is the power allocated to user k.
Denote a �= �a1� � � � � aK�

t where

ak �=
SINRk

�1+ SINRk� � h∗
kuk �2

�

and we can rewrite (10.37) in matrix notation as

�IK −diag	a1� � � � � aK
A�p= N0a� (10.38)

Here we denoted p to be the vector of transmitted powers �P1� � � � �PK�. We
also denoted the K×K matrix A to have component �k� j� equal to � u∗

jhk �2.
We now consider an uplink channel that is naturally “dual” to the given

downlink channel. Rewrite the downlink channel (10.31) in matrix form:

ydl�m�=H∗xdl�m�+wdl�m�� (10.39)

where ydl�m� �= �y1�m�� � � � � yK�m��
t is the vector of the received signals at

the K users and H �= �h1�h2� � � � �hK� is an nt by K matrix. We added the
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User K
ydl,K

xdl

uK

H*

User 1
ydl,1

wdl

u1~x1

~xK

User K

User 1

x̂K

x̂1

yul

wul

uK

u1

H

xul,1

xul,K

subscript “dl” to emphasize that this is the downlink. The dual uplink channel
has K users (each with a single transmit antenna) and nt receive antennas:

yul�m�=Hxul�m�+wul�m�� (10.40)

where xul�m� is the vector of transmitted signals from the K users, yul�m� is the
vector of received signals at the nt receive antennas, and wul�m�∼ �N�0�N0�.
To demodulate the kth user in this uplink channel, we use the receive filter uk,
which is the transmit filter for user k in the downlink. The two dual systems
are shown in Figure 10.16.

In this uplink, the SINR for user k is given by

Figure 10.16 The original
downlink with linear transmit
strategy and its uplink dual with
linear reception strategy.

SINRulk �=
Qk � u∗

khk �2
N0 +

∑
j 
=k Qj � u∗

khj �2
� (10.41)

where Qk is the transmit power of user k. Denoting b �= �b1� � � � � bK�
t where

bk �=
SINRulk

�1+ SINRulk � � u∗
khk �2

�

we can rewrite (10.41) in matrix notation as

�IK −diag	b1� � � � � bK
A
t�q= N0b� (10.42)

Here, q is the vector of transmit powers of the users and A is the same as in
(10.38).
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What is the relationship between the performance of the downlink transmis-
sion strategy and its dual uplink reception strategy? We claim that to achieve
the same SINR for the users in both the links, the total transmit power is the
same in the two systems. To see this, we first solve (10.38) and (10.42) for
the transmit powers and we get

p = N0�IK −diag	a1� � � � � aK
A�
−1a = N0�Da−A�−11� (10.43)

q = N0�IK −diag	b1� � � � � bK
A
t�−1b= N0�Db−At�−11� (10.44)

where Da �= diag�1/a1� � � � �1/aK�, Db �= diag�1/b1� � � � �1/bK� and 1 is the
vector of all 1’s. To achieve the same SINR in the downlink and its dual
uplink, a = b, and we conclude

K∑
k=1

Pk = N01
t�Da−A�−11= N01

t
[
�Da−A�−1

]t
1

= N01
t�Da−At�−11=

K∑
k=1

Qk� (10.45)

It should be emphasized that the individual powers Pk and Qk to achieve
the same SINR are not the same in the downlink and the uplink dual; only
the total power is the same.

Transmit beamforming and optimal power allocation
As observed earlier, the SINR of each user in the downlink depends in general
on all the transmit signatures of the users. Hence, it is not meaningful to
pose the problem of choosing the transmit signatures to maximize each of
the SINR separately. A more sensible formulation is to minimize the total
transmit power needed to meet a given set of SINR requirements. The optimal
transmit signatures balance between focusing energy in the direction of the
user of interest and minimizing the interference to other users. This transmit
strategy can be thought of as performing transmit beamforming. Implicit in
this problem formulation is also a problem of allocating powers to each of
the users.
Armed with the uplink–downlink duality established above, the transmit

beamforming problem can be solved by looking at the uplink dual. Since
for any choice of transmit signatures, the same SINR can be met in the
uplink dual using the transmit signatures as receive filters and the same
total transmit power, the downlink problem is solved if we can find receive
filters that minimize the total transmit power in the uplink dual. But this
problem was already solved in Section 10.1.1. The receive filters are always
chosen to be the MMSE filters given the transmit powers of the users; the
transmit powers are iteratively updated so that the SINR requirement of
each user is just met. (In fact, this algorithm not only minimizes the total
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transmit power, it minimizes the transmit powers of every user simultane-
ously.) The MMSE filters at the optimal solution for the uplink dual can
now be used as the optimal transmit signatures in the downlink, and the
corresponding optimal power allocation p for the downlink can be obtained
via (10.43).
It should be noted that the MMSE filters are the ones associated with the

minimum powers used in the uplink dual, not the ones associated with the
optimal transmit powers p in the downlink. At high SNR, each MMSE filter
approaches a decorrelator, and since the decorrelator, unlike the MMSE filter,
does not depend on the powers of the other interfering users, the same filter
is used in the uplink and in the downlink. This is what we have already
observed in Section 10.3.1.

Beyond linear strategies
In our discussion of receiver architectures for point-to-point communication
in Section 8.3 and the uplink in Section 10.1.1, we boosted the performance
of linear receivers by adding successive cancellation. Is there something
analogous in the downlink as well?
In the case of the downlink with single transmit antenna at the base-station,

we have already seen such a strategy in Section 6.2: superposition coding
and decoding. If multiple users’ signals are superimposed, the user with the
strongest channel can decode the signals of the weaker users, strip them off
and then decode its own. This is a natural analog to successive cancellation
in the uplink. In the multiple transmit antenna case, however, there is no
natural ordering of the users. In particular, if a linear superposition of signals
is transmitted at the base-station:

x�m�=
K∑
k=1

x̃k�m�uk�

then each user’s signal will be projected differently onto different users, and
there is no guarantee that there is a single user who would have sufficient
SINR to decode everyone else’s data.
In both the uplink and the point-to-point MIMO channel, successive can-

cellation was possible because there was a single entity (the base-station) that
had access to the entire vector of received signals. In the downlink we do not
have that luxury since the users cannot cooperate. This was overcome in the
special case of single transmit antenna because, from a decodability point of
view, it is as though a given user has access to the received signals of all the
users with weaker channels. In the general multiple transmit antenna case,
this property does not hold and a “cancellation” scheme has to be necessarily
at the base-station, which does indeed have access to the data of all the
users. But how does one cancel a signal of a user even before it has been
transmitted? We turn to this topic next.
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10.3.3 Precoding for interference known at transmitter

Let us consider the precoding problem in a simple point-to-point context:

y�m�= x�m�+ s�m�+w�m�� (10.46)

where x�m�� y�m��w�m� are the real transmitted symbol, received symbol
and � �0��2� noise at time m respectively. The noise is i.i.d. in time. The
interference sequence 	s�m�
 is known in its entirety at the transmitter but
not at the receiver. The transmitted signal 	x�m�
 is subject to a power
constraint. For simplicity, we have assumed all the signals to be real-valued
for now. When applied to the downlink problem, 	s�m�
 is the signal intended
for another user, hence known at the transmitter (the base-station) but not
necessary at the receiver of the user of interest. This problem also appears
in many other scenarios. For example, in data hiding applications, 	s�m�
 is
the “host” signal in which one wants to hide digital information; typically
the encoder has access to the host signal but not the decoder. The power
constraint on 	x�m�
 in this case reflects a constraint on how much the host
signal can be distorted, and the problem here is to embed as much information
as possible given this constraint.4

How can the transmitter precode the information onto the sequence 	x�m�

taking advantage of its knowledge of the interference? How much power
penalty must be paid when compared to the case when the interference is also
known at the receiver, or equivalently, when the interference does not exist?
To get some intuition about the problem, let us first look at symbol-by-symbol
precoding schemes.

Symbol-by-symbol precoding: Tomlinson–Harashima
For concreteness, suppose we would like to modulate information
using uncoded 2M-PAM: the constellation points are 	a�1+ 2i�/2� i =
−M� � � � �M−1
, with a separation of a. We consider only symbol-by-symbol
precoding in this subsection, and so to simplify notations below, we drop
the index m. Suppose we want to send a symbol u in this constellation. The
simplest way to compensate for the interference s is to transmit x = u− s

instead of u, so that the received signal is y = u+w.5 However, the price to
pay is an increase in the required energy by s2. This power penalty grows
unbounded with s2. This is depicted in Figure 10.17.
The problem with the naive pre-cancellation scheme is that the PAM symbol

may be arbitrarily far away from the interference. Consider the following

4 A good application of data hiding is embedding digital information in analog television
broadcast.

5 This strategy will not work for the downlink channel at all because s contains the message
of the other user and cancellation of s at the transmitter means that the other user will get
nothing.
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u s

x

precoding scheme which performs better. The idea is to replicate the PAMFigure 10.17 The transmitted
signal is the difference between
the PAM symbol and the
interference. The larger the
interference, the more the
power that is consumed.

constellation along the entire length of the real line to get an infinite extended
constellation (Figures 10.18 and 10.19). Each of the 2M information symbols
now corresponds to the equivalence class of points at the same relative position
in the replicated constellations. Given the information symbol u, the precoding
scheme chooses that representation p in its equivalence class which is closest to
the interference s. We then transmit the difference x = p− s. Unlike the naive
scheme, thisdifferencecanbemuchsmalleranddoesnotgrowunboundedwiths.
A visual representation of the precoding scheme is provided in Figure 10.20.
One way to interpret the precoding operation is to think of the equivalence

class of any one PAM symbol u as a (uniformly spaced) quantizer qu�·� of
the real line. In this context, we can think of the transmitted signal x to be the
quantization error: the difference between the interference s and the quantized
value p= qu�s�, with u being the information symbol to be transmitted.
The received signal is

y = �qu�s�− s�+ s+w = qu�s�+w�

The receiver finds the point in the infinite replicated constellation that is
closest to s and then decodes to the equivalence class containing that point.

Let us look at the probability of error and the power consumption of this
scheme, and how they compare to the corresponding performance when there
is no interference. The probability of error is approximately6

2Q
( a

2�

)
� (10.47)

When there is no interference and a 2M-PAM is used, the error probability of
the interior points is the same as (10.47) but for the two exterior points, the
error probability is Q�a/2��, smaller by a factor of 1/2. The probability of
error is larger for the exterior points in the precoding case because there is an

6 The reason why this is not exact is because there is a chance that the noise will be so large
that the closest point to y just happens to be in the same equivalence class of the information
symbol, thus leading to a correct decision. However, the probability of this event is
negligible.
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Figure 10.18 A four-point
PAM constellation.
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additional possibility of confusion across replicas. However, the difference isFigure 10.19 The four-point
PAM constellation is replicated
along the entire real line. Points
marked by the same sign
correspond to the same
information symbol (one of the
four points in the original
constellation).

negligible when error probabilities are small.7

What about the power consumption of the precoding scheme? The distance
between adjacent points in each equivalence class is 2Ma; thus, unlike in the
naive interference pre-cancellation scheme, the quantization error does not
grow unbounded with s:

�x� ≤Ma�

If we assume that s is totally random so that this quantization error is uniform
between zero and this value, then the average transmit power is

��x2�= a2M2

3
� (10.48)

In comparison, the average transmit power of the original 2M-PAM constel-
lation is a2M2/3−a2/12. Hence, the precoding scheme requires a factor of

Figure 10.20 Depiction of the
precoding operation for M = 2
and PAM information symbol
u =−3a/2. The crosses form
the equivalence class for this
symbol. The difference between
s and the closest cross p is
transmitted.

4M2

4M2−1

more transmit power. Thus, there is still a gap from AWGN detection per-
formance. However, this power penalty is negligible when the constellation
size M is large.

Our description is motivated from a similar precoding scheme for the
point-to-point frequency-selective (ISI) channel, devised independently by

transmitted signal x
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7 This factor of 2 can easily be compensated for by making the symbol separation slightly
larger.
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Tomlinson [121] and Harashima and Miyakawa [57]. In this context, the
interference is inter-symbol interference:

s�m�=∑
�≥0

h�x�m−���

where h is the impulse response of the channel. Since the previous transmitted
symbols are known to the transmitter, the interference is known if the transmit-
ter has knowledge of the channel. In Discussion 8.1 we have alluded to con-
nections between MIMO and frequency-selective channels and precoding is
yet another import from one knowledge base to the other. Indeed, Tomlinson–
Harashima precoding was devised as an alternative to receiver-based decision-
feedback equalization for the frequency-selective channel, the analog to the
SIC receiver in MIMO and uplink channels. The precoding approach has the
advantage of avoiding the error propagation problem of decision-feedback
equalizers, since in the latter the cancellation is based on detected symbols,
while the precoding is based on known symbols at the transmitter.

Dirty-paper precoding: achieving AWGN capacity
The precoding scheme in the last section is only for a single-dimensional con-
stellation (such as PAM), while spectrally efficient communication requires
coding over multiple dimensions. Moreover, in the low SNR regime, uncoded
transmission yields very poor error probability performance and coding is
necessary. There has been much work in devising block precoding schemes
and it is still a very active research area. A detailed discussion of specific
schemes is beyond the scope of this book. Here, we will build on the insights
from symbol-by-symbol precoding to give a plausibility argument that appro-
priate precoding can in fact completely obliviate the impact of the interference
and achieve the capacity of the AWGN channel. Thus, the power penalty we
observed in the symbol-by-symbol precoding scheme can actually be avoided
with high-dimensional coding. In the literature, the precoding technique pre-
sented here is also called Costa precoding or dirty-paper precoding.8

A first attempt
Consider communication over a block of length N symbols:

y= x+ s+w� (10.49)

In the symbol-by-symbol precoding scheme earlier, we started with a basic
PAM constellation and replicated it to cover uniformly the entire (one-
dimensional) range the interference s spans. For block coding, we would like

8 This latter name comes from the title of Costa’s paper: “Writing on dirty-paper” [23]. The
writer of the message knows where the dirt is and can adapt his writing to help the reader
decipher the message without knowing where the dirt is.
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to mimic this strategy by starting with a basic AWGN constellation and repli-

Figure 10.21 A replicated
constellation in high dimension.
The information specifies an
equivalence class of points
corresponding to replicas of a
codeword (here with the same
marking).

cating it to cover the N -dimensional space uniformly. Using a sphere-packing
argument, we give an estimate of the maximum rate of reliable communication
using this type of scheme.
Consider a domain of volume V in �N . The exact size of the domain is

not important, as long as we ensure that the domain is large enough for the
received signal y to lie inside. This is the domain on which we replicate the
basic codebook. We generate a codebook with M codewords, and replicate
each of the codewords K times and place the extended constellation �e of
MK points on the domain sphere (Figure 10.21). Each codeword then cor-
responds to an equivalence class of points in �N . Equivalently, the given
information bits u define a quantizer qu�·�. The natural generalization of the
symbol-by-symbol precoding procedure simply quantizes the known inter-
ference s using this quantizer to a point p = qu�s� in �e and transmits the
quantization error

x1 = p− s� (10.50)

Based on the received signal y, the decoder finds the point in the extended
constellation that is closest to y and decodes to the information bits corre-
sponding to its equivalence class.

Performance
To estimate the maximum rate of reliable communication for a given average
power constraint P using this scheme, we make two observations:

• Sphere-packing To avoid confusing x1 with any of the other K�M − 1�
points in the extended constellation �e that belong to other equivalence
classes, the noise spheres of radius

√
N�2 around each of these points

should be disjoint. This means that

KM<
V

Vol�BN �
√
N�2��

� (10.51)

the ratio of the volume of the domain sphere to that of the noise sphere.
• Sphere-covering To maintain the average transmit power constraint of P,
the quantization error should be no more than

√
NP for any interference

vector s. Thus, the spheres of radius
√
NP around the K replicas of a

codeword should be able to cover the whole domain such that any point is
within a distance of

√
NP from a replica. To ensure that,

K>
V

Vol�BN �
√
NP��

� (10.52)

This in effect imposes a constraint on the minimal density of the replication.
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Putting the two constraints (10.51) and (10.52) together, we get

M<
Vol�BN �

√
NP��

Vol�BN �
√
N�2��

=
(√

NP
)N

(√
N�2

)N � (10.53)

which implies that the maximum rate of reliable communication is, at most,

R �= logM
N

= 1
2
log

P

�2
� (10.54)

This yields an upper bound on the rate of reliable communication. More-
over, it can be shown that if the MK constellation points are independently
and uniformly distributed on the domain, then with high probability, commu-
nication is reliable if condition (10.51) holds and the average power constraint
is satisfied if condition (10.52) holds. Thus, the rate (10.54) is also achievable.
The proof of this is along the lines of the argument in Appendix B.5.2, where
the achievability of the AWGN capacity is shown.
Observe that the rate (10.54) is close to the AWGN capacity 1/2 log�1+

P/�2� at high SNR. However, the scheme is strictly suboptimal at finite
SNR. In fact, it achieves zero rate if the SNR is below 0 dB. How can the
performance of this scheme be improved?

Performance enhancement via MMSE estimation
The performance of the above scheme is limited by the two constraints (10.51)
and (10.52). To meet the average power constraint, the density of replication
cannot be reduced beyond (10.52). On the other hand, constraint (10.51) is a
direct consequence of the nearest neighbor decoding rule, and this rule is in fact
suboptimal for the problem at hand. To see why, consider the case when the
interference vector s is 0 and the noise variance �2 is significantly larger than
P. In this case, the transmitted vector x1 is roughly at a distance

√
NP from the

origin while the received vector y is at a distance
√
N�P+�2�, much further

away. Blindly decoding to the point in �e nearest to ymakes no use of the prior
information that the transmitted vector x1 is of (relatively short) length

√
NP

(Figure 10.22). Without using this prior information, the transmitted vector is
thought of by the receiver as anywhere in a large uncertainty sphere of radius√
N�2 around y and the extended constellation points have to be spaced that far

apart to avoid confusion. By making use of the prior information, the size of the
uncertainty sphere can be reduced. In particular, we can consider a linear estim-
ate �y of x1. By the law of large numbers, the squared error in the estimate is

��y−x1�2 = ��w+ ��−1�x1�2 ≈ N
[
�2�2+ �1−��2P

]
(10.55)

and by choosing

�= P

P+�2
� (10.56)
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Figure 10.22 MMSE decoding
yields a much smaller
uncertainty sphere than does
nearest neighbor decoding.

MMSE then nearest neighbor decoding

αy

Nearest neighbor decoding

y

x1

Uncertainty sphere

radius = NPσ 
2

P + σ 
2

radius = √NP

Uncertainty sphere

√

this error is minimized, equalling

NP�2

P+�2
� (10.57)

In fact �y is nothing but the linear MMSE estimate x̂mmse of x1 from y and
NP�2/�P +�2� is the MMSE estimation error. If we now use a decoder
that decodes to the constellation point nearest to �y (as opposed to y), then
an error occurs only if there is another constellation point closer than this
distance to �y. Thus, the uncertainty sphere is now of radius√

NP�2

P+�2
� (10.58)

We can now redo the analysis in the above subsection, but with the radius√
N�2 of the noise sphere replaced by this radius of the MMSE uncertainty

sphere. The maximum achievable rate is now

1
2
log

(
1+ P

�2

)
� (10.59)

thus achieving the AWGN capacity.
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In the above, we have simplified the problem by assuming s= 0, to focus

α s

p

x1

Figure 10.23 The precoding
process with the � factor.

on how the decoder has to be modified. For a general interference vector s,

�y= ��x1+ s+w�= ��x1+w�+�s= x̂mmse +�s� (10.60)

i.e., the linear MMSE estimate of x1 but shifted by �s. Since the receiver
does not know s, this shift has to be pre-compensated for at the transmit-
ter. In the earlier scheme, we were using the nearest neighbor rule and we
compensated for the effect of s by pre-subtracting s from the constellation
point p representing the information, i.e., we sent the error in quantizing s.
But now we are using the MMSE rule and hence we should compensate by
pre-subtracting �s instead. Specifically, given the data u, we find within the
equivalence class representing u the point p that is closest to �s, and transmit
x1 = p−�s (Figure 10.23). Then,

p = x1+�s

�y = x̂mmse +�s= p̂

and

p−�y= x1− x̂mmse� (10.61)

The receiver finds the constellation point nearest to �y and decodes the infor-
mation (Figure 10.24). An error occurs only if there is another constellation
point closer to �y than p, i.e., if it lies in the MMSE uncertainty sphere. This
is exactly the same situation as in the case of zero interference.

Figure 10.24 The decoding
process with the � factor.

y

w

x1

s
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α s
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Transmitter knowledge of interference is enough
Something quite remarkable has been accomplished: even though the interfer-
ence is known only at the transmitter and not at the receiver, the performance
that can be achieved is as though there were no interference at all. The
comparison between the cases with and without interference is depicted in
Figure 10.25.
For the plain AWGN channel without interference, the codewords lie in

a sphere of radius
√
NP (x-sphere). When a codeword x1 is transmitted, the

received vector y lies in the y-sphere, outside the x-sphere. The MMSE rule
scales down y to �y, and the uncertainty sphere of radius

√
NP�2/�P+�2�

around �y lies inside the x-sphere. The maximum reliable rate of communi-
cation is given by the number of uncertainty spheres that can be packed into
the x-sphere:

1
N

log
Vol�BN �

√
NP��

Vol�BN �
√
NP�2/�P+�2���

= 1
2
log

(
1+ P

�2

)
� (10.62)

the capacity of the AWGN channel. In fact, this is how achievability of the
AWGN capacity is shown in Appendix B.5.2.

Figure 10.25 Pictorial
representation of the cases
with and without interference.

x1

x1

origin

Uncertainty sphere

AWGN
without interference

AWGN
with interference

Uncertainty sphere

α y

p

origin

α y

α s



463 10.3 Downlink with multiple transmit antennas

With interference, the codewords have to be replicated to cover the entire
domain where the interference vector can lie. For any interference vector s,
consider a sphere of radius

√
NP around �s; this can be thought of as

the AWGN x-sphere whose center is shifted to �s. A constellation point p
representing the given information bits lies inside this sphere. The vec-
tor p−�s is transmitted. By using the MMSE rule, the uncertainty sphere
around �y again lies inside this shifted x-sphere. Thus, we have the same
situation as in the case without interference: the same information rate can be
supported.
In the case without interference and where the codewords lie in a sphere

of radius
√
NP, both the nearest neighbor rule and the MMSE rule achieve

capacity. This is because although y lies outside the x-sphere, there are no
codewords outside the x-sphere and the nearest neighbor rule will automati-
cally find the codeword in the x-sphere closest to y. However, in the precoding
problem when there are constellation points lying outside the shifted x-sphere,
the nearest neighbor rule will lead to confusion with these other points and
is therefore strictly suboptimal.

Dirty-paper code design
We have given a plausibility argument of how the AWGN capacity can be
achieved without knowledge of the interference at the receiver. It can be shown
that randomly chosen codewords can achieve this performance. Construction
of practical codes is the subject of current research. One such class of codes
is called nested lattice codes (Figure 10.26). The design requirements of this
nested lattice code are:

• Each sub-lattice should be a good vector quantizer for the scaled interfer-
ence �s, to minimize the transmit power.

• The entire extended constellation should behave as a good AWGN channel
code.

Figure 10.26 A nested lattice
code. All the points in each
sub-lattice represent the same
information bits.
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The discussion of such codes is beyond the scope of this book. The design
problem, however, simplifies in the low SNR regime. We discuss this below.

Low SNR: opportunistic orthogonal coding
In the infinite bandwidth channel, the SNR per degree of freedom is zero
and we can use this as a concrete channel to study the nature of precoding at
low SNR. Consider the infinite bandwidth real AWGN channel with additive
interference s�t� modelled as real white Gaussian (with power spectral density
Ns/2) and known non-causally to the transmitter. The interference is indepen-
dent of both the background real white Gaussian noise and the real transmit
signal, which is power constrained, but not bandwidth constrained. Since
the interference is known non-causally only to the transmitter, the minimum
�b/N0 for reliable communication on this channel can be no smaller than that
in the plain AWGN channel without interference; thus a lower bound on the
minimum �b/N0 is −1�59 dB.

We have already seen for the AWGN channel (cf. Section 5.2.2 and
Exercises 5.8 and 5.9) that orthogonal codes achieve the capacity in the
infinite bandwidth regime. Equivalently, orthogonal codes achieve the
minimum �b/N0 of −1�59 dB over the AWGN channel. Hence, we start with
an orthogonal set of codewords representing M messages. Each of the code-
words is replicated K times so that the overall constellation with MK vectors
forms an orthogonal set. Each of the M messages corresponds to a set of K
orthogonal signals. To convey a specific message, the encoder transmits that
signal, among the set of K orthogonal signals corresponding to the message
selected, that is closest to the interference s�t�, i.e., the one that has the largest
correlation with the s�t�. This signal is the constellation point to which s�t� is
quantized. Note that, in the general scheme, the signal qu��s�−�s is trans-
mitted, but since �→ 0 in the low SNR regime, we are transmitting qu��s�
itself.

An equivalent way of seeing this scheme is as opportunistic pulse position
modulation: classical PPM involves a pulse that conveys information based
on the position when it is not zero. Here, every K of the pulse positions
corresponds to one message and the encoder opportunistically chooses the
position of the pulse among the K possible pulse positions (once the desired
message to be conveyed is picked) where the interference is the largest.

The decoder first picks the most likely position of the transmit pulse (among
the MK possible choices) using the standard largest amplitude detector. Next,
it picks the message corresponding to the set in which the most likely pulse
occurs. Choosing K large allows the encoder to harness the opportunistic
gains afforded by the knowledge of the additive interference. On the other
hand, decoding gets harder as K increases since the number of possible pulse
positions, MK, grows with K. An appropriate choice of K as a function
of the number of messages, M , and the noise and interference powers, N0

and Ns respectively, trades off the opportunistic gains on the one hand with
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the increased difficulty in decoding on the other. This tradeoff is evaluated
in Exercise 10.16 where we see that the correct choice of K allows the
opportunistic orthogonal codes to achieve the infinite bandwidth capacity of
the AWGN channel without interference. Equivalently, the minimum �b/N0 is
the same as that in the plain AWGN channel and is achieved by opportunistic
orthogonal coding.

10.3.4 Precoding for the downlink

We now apply the precoding technique to the downlink channel. We first start
with the single transmit antenna case and then discuss the multiple antenna
case.

Single transmit antenna
Consider the two-user downlink channel with a single transmit antenna:

yk�m�= hkx�m�+wk�m�� k= 1�2� (10.63)

where wk�m� ∼ �� �0�N0�. Without loss of generality, let us assume that
user 1 has the stronger channel: �h1�2 ≥ �h2�2. Write x�m� = x1�m�+ x2�m�,
where 	xk�m�
 is the signal intended for user k�k= 1�2. Let Pk be the power
allocated to user k. We use a standard i.i.d. Gaussian codebook to encode
information for user 2 in 	x2�m�
. Treating 	x2�m�
 as interference that is
known at the transmitter, we can apply Costa precoding for user 1 to achieve
a rate of

R1 = log
(
1+ �h1�2P1

N0

)
� (10.64)

the capacity of an AWGN channel for user 1 with 	x2�m�
 completely absent.
What about user 2? It can be shown that 	x1�m�
 can be made to appear like
independent Gaussian noise to user 2. (See Exercise 10.17.) Hence, user 2
gets a reliable data rate of

R2 = log
(
1+ �h2�2P2

�h2�2P1+N0

)
� (10.65)

Since we have assumed that user 1 has the stronger channel, these same rates
can in fact be achieved by superposition coding and decoding (cf. Section 6.2):
we superimpose independent i.i.d. Gaussian codebook for user 1 and 2, with
user 2 decoding the signal 	x2�m�
 treating 	x1�m�
 as Gaussian noise, and
user 1 decoding the information for user 2, canceling it off, and then decoding
the information intended for it. Thus, precoding is another approach to achieve
rates on the boundary of the capacity region in the single antenna downlink
channel.
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Superposition coding is a receiver-centric scheme: the base-station simply
adds the codewords of the users while the stronger user has to do the decoding
job of both the users. In contrast, precoding puts a substantial computational
burden on the base-station with receivers being regular nearest neighbor
decoders (though the user whose signal is being precoded needs to decode
the extended constellation, which has more points than the rate would entail).
In this sense we can think of precoding as a transmitter-centric scheme.
However, there is something curious about this calculation. The precoding

strategy described above encodes information for user 1 treating user 2’s
signal as known interference. But certainly we can reverse the role of user 1
and user 2, and encode information for user 2, treating user 1’s signal as
interference. This strategy achieves rates

R′
1 = log

(
1+ �h1�2P1

�h1�2P2+N0

)
� R′

2 = log
(
1+ �h2�2P2

N0

)
� (10.66)

But these rates cannot be achieved by superposition coding/decoding under
the power allocations P1�P2: the weak user cannot remove the signal intended
for the strong user. Is this rate tuple then outside the capacity region? It turns
out that there is no contradiction and this rate pair is strictly contained inside
the capacity region (Exercise 10.19).
In this discussion, we have restricted ourselves to just two users, but the

extension to K users is obvious. See Exercise 10.19.

Multiple transmit antennas
We now return to the scenario of real interest, multiple transmit antennas
(10.31):

yk�m�= h∗
kx�m�+wk�m�� k= 1�2� � � � �K� (10.67)

The precoding technique can be applied to upgrade the performance of the lin-
ear beamforming technique described in Section 10.3.2. Recall from (10.35),
the transmitted signal is

x�m�=
K∑
k=1

x̃k�m�uk� (10.68)

where 	x̃k�m�
 is the signal for user k and uk is its transmit beamforming
vector. The received signal of user k is given by

yk�m� = �h∗
kuk�x̃k�m�+

∑
j 
=k
�h∗

kuj�x̃j�m�+wk�m�� (10.69)

= �h∗
kuk�x̃k�m�+

∑
j<k

�h∗
kuj�x̃j�m�

+∑
j>k

�h∗
kuj�x̃j�m�+wk�m�� (10.70)
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Applying Costa precoding for user k, treating the interference∑
j<k�h

∗
kuj�x̃j�m� from users 1� � � � � k− 1 as known and

∑
j>k�h

∗
kuj�x̃j�m�

from users k+1� � � � K as Gaussian noise, the rate that user k gets is

Rk = log�1+ SINRk�� (10.71)

where SINRk is the effective signal-to-interference-plus-noise ratio after pre-
coding:

SINRk =
Pk � u∗

khk �2
N0 +

∑
j>k Pj � u∗

jhk �2
� (10.72)

Here Pj is the power allocated to user j. Observe that unlike the single trans-
mit antenna case, this performance may not be achievable by superposition
coding/decoding.
For linear beamforming strategies, an interesting uplink–downlink duality

is identified in Section 10.3.2. We can use the downlink transmit signatures
(denoted by u1� � � � �uK) to be the same as the receive filters in the dual uplink
channel (10.40) and the same SINR for the users can be achieved in both the
uplink and the downlink with appropriate user power allocations such that the
sum of these power allocations is the same for both the uplink and the downlink.
Wenowextend this observation to aduality between transmit beamformingwith
precoding in the downlink and receive beamforming with SIC in the uplink.

Specifically, suppose we use Costa precoding in the downlink and SIC in
the uplink, and the transmit signatures of the users in the downlink are the
same as the receive filters of the users in the uplink. Then it turns out that
the same set SINR of the users can be achieved by appropriate user power
allocations in the uplink and the downlink and, further, the sum of these
power allocations is the same. This duality holds provided that the order of
SIC in the uplink is the reverse of the Costa precoding order in the downlink.
For example, in the Costa precoding above we employed the order 1� � � � �K;
i.e., we precoded the user k signal so as to cancel the interference from the
signals of users 1� � � � � k−1. For this duality to hold, we need to reverse this
order in the SIC in the uplink; i.e., the users are successively canceled in the
order K� � � � �1 (with user k seeing no interference from the canceled user
signals K�K−1� � � � � k+1).

The derivation of this duality follows the same lines as for linear strategies
and is done in Exercise 10.20. Note that in this SIC ordering, user 1 sees the
least uncanceled interference and user K sees the most. This is exactly the
opposite to that under the Costa precoding strategy. Thus, we see that in this
duality the ordering of the users is reversed. Identifying this duality facilitates
the computation of good transmit filters in the downlink. For example, we
know that in the uplink the optimal filters for a given set of powers are MMSE
filters; the same filters can be used in the downlink transmission.
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In Section 10.1.2, we saw that receive beamforming in conjunction with
SIC achieves the capacity region of the uplink channel with multiple receive
antennas. It has been shown that transmit beamforming in conjunction with
Costa precoding achieves the capacity of the downlink channel with multiple
transmit antennas.

10.3.5 Fast fading

The time-varying downlink channel is an extension of (10.31):

yk�m�= h∗
k�m�x�m�+wk�m�� k= 1� � � � �K� (10.73)

Full CSI
With full CSI, both the base-station and the users track the channel fluctuations
and, in this case, the extension of the linear beamforming strategies combined
with Costa precoding to the fading channel is natural. Now we can vary the
power and transmit signature allocations of the users, and the Costa precoding
order as a function of the channel variations. Linear beamforming combined
with Costa precoding achieves the capacity of the fast fading downlink channel
with full CSI, just as in the time-invariant downlink channel.
It is interesting to compare this sum capacity achieving strategy with that

when the base-station has just one transmit antenna (see Section 6.4.2). In
this basic downlink channel, we identified the structure of the sum capac-
ity achieving strategy: transmit only to the best user (using a power that
is waterfilling over the best user’s channel quality, see (6.54)). The linear
beamforming strategy proposed here involves in general transmitting to all
the users simultaneously and is quite different from the one user at a time
policy. This difference is analogous to what we have seen in the uplink with
single and multiple receive antennas at the base-station.
Due to the duality, we have a connection between the strategies for the

downlink channel and its dual uplink channel. Thus, the impact of multiple
transmit antennas at the base-station on multiuser diversity follows the dis-
cussion in the uplink context (see Section 10.1.6): focusing on the one user at
a time policy, the multiple transmit antennas provide a beamforming power
gain; this gain is the same as in the point-to-point context and the multiuser
nature of the gain is lost. With the sum capacity achieving strategy, the mul-
tiple transmit antennas provide multiple spatial degrees of freedom allowing
the users to be transmitted to simultaneously, but the opportunistic gains are
of the same form as in the point-to-point case; the multiuser nature of the
gain is diminished.

Receiver CSI
So far we have made the full CSI assumption. In practice, it is often very
hard for the base-station to have access to the user channel fluctuations and
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the receiver CSI model is more natural. The major difference here is that
now the transmit signatures of the users cannot be allocated as a function
of the channel variations. Furthermore, the base-station is not aware of the
interference caused by the other users’ signals for any specific user k (since
the channel to the kth user is unknown) and Costa precoding is ruled out.

Exercise 10.21 discusses how to use the multiple antennas at the base-
station without access to the channel fluctuations. One of the important con-
clusions is that time sharing among the users achieves the capacity region in
the symmetric downlink channel with receiver CSI alone. This implies that
the total spatial degrees of freedom in the downlink are restricted to one,
the same as the degrees of freedom of the channel from the base-station to
any individual user. On the other hand, with full CSI at the base-station we
have seen (Section 10.3.1) that the spatial degrees of freedom are equal to
min�nt�K�. Thus lack of CSI at the base-station causes a drastic reduction in
the degrees of freedom of the channel.

Partial CSI at the base-station: opportunistic beamforming with multiple beams
In many practical systems, there is some form of partial CSI fed back to the
base-station from the users. For example, in the IS-856 standard discussed in
Chapter 6 each user feeds back the overall SINR of the link to the base-station
it is communicating with. Thus, while the base-station does not have exact
knowledge of the channel (phase and amplitude) from the transmit antenna
array to the users, it does have partial information: the overall quality of the
channel (such as �hk�m��2 for user k at time m).
In Section 6.7.3 we studied opportunistic beamforming that induces time

fluctuations in the channel to increase the multiuser diversity. The multiple
transmit antennas were used to induce time fluctuations and the partial CSI

user 2

user 1

Figure 10.27 Opportunistic
beamforming with two
orthogonal beams. The user
“closest” to a beam is
scheduled on that beam,
resulting in two parallel data
streams to two users.

was used to schedule the users at appropriate time slots. However, the gain
from multiuser diversity is a power gain (boost in the SINR of the user
being scheduled) and with just a single user scheduled at any time slot,
only one of the spatial degrees of freedom is being used. This basic scheme
can be modified, however, allowing multiple users to be scheduled and thus
increasing the utilized spatial degrees of freedom.
The conceptual idea is to have multiple beams, each orthogonal to one

another, at the same time (Figure 10.27). Separate pilot symbols are intro-
duced on each of the beams and the users feedback the SINR of each beam.
Transmissions are scheduled to as many users as there are beams at each time
slot. If there are enough users in the system, the user who is beamformed with
respect to a specific beam (and orthogonal to the other beams) is scheduled on
the specific beam. Let us consider K ≥ nt (if K<nt then we use only K of the
transmit antennas), and at each time m, let Q�m� = �q1�m�� � � � �qnt �m�� be
an nt ×nt unitary matrix, with the columns q1�m�� � � � �qnt �m� orthonormal.
The vector qi�m� represents the ith beam at time m.
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The vector signal sent out from the antenna array at time m is

nt∑
i=1

x̃i�m�qi�m�� (10.74)

Here x̃1� � � � � x̃nt are the nt independent data streams (in the case of coherent
downlink reception, these signals include pilot symbols as well). The unitary
matrix Q�m� is varied such that the individual components do not change
abruptly in time. Focusing on the kth user, the signal it receives at time m is
(substituting (10.74) in (10.73))

yk�m�=
nt∑
i=1

x̃i�m�h
∗
k�m�qi�m�+wk�m�� (10.75)

For simplicity, let us consider the scenario when the channel coefficients
are not varying over the time-scale of communication (slow fading), i.e.,
hk�m�= hk. When the ith beam takes on the value

qi�m�=
hk

�hk�
� (10.76)

then user k is in beamforming configuration with respect to the ith beam;
moreover, it is simultaneously orthogonal to the other beams. The received
signal at user k is

yk�m�= �hk�x̃i�m�+wk�m�� (10.77)

If there are enough users in the system, for every beam i some user will be
nearly in beamforming configuration with respect to it (and simultaneously
nearly orthogonal to the other beams). Thus nt data streams are transmitted
simultaneously in orthogonal spatial directions and the full spatial degrees
of freedom are utilized. The limited feedback from the users allows oppor-
tunistic scheduling of the user transmissions in the appropriate beams at the
appropriate time slots. To achieve close to the beamforming performance and
corresponding nulling to all the other beams requires a user population that
is larger than in the scenario of Section 6.7.3. In general, depending on the
number of the users in the system, the number of spatially orthogonal beams
can be designed.
There are extra system requirements to support multiple beams (as com-

pared to just the single time-varying beam introduced in Section 6.7.3). First,
multiple pilot symbols have to be inserted (one for each beam) to enable coher-
ent downlink reception; thus the fraction of pilot symbol power increases.
Second, the receivers now track nt separate beams and feedback SINR of each
on each of the beams. On a practical note, the receivers could feedback only
the best SINR and the identification of the beam that yields this SINR; this
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restriction probably will not degrade the performance by much. Thus, with
almost the same amount of feedback as the single beam scheme, the modified
opportunistic beamforming scheme utilizes all the spatial degrees of freedom.

10.4 MIMO downlink

Figure 10.28 The downlink
with multiple transmit antennas
at the base-station and multiple
receive antennas at each user.

We have seen so far how downlink is affected by the availability of multiple
transmit antennas at the base-station. In this section, we study the downlink
with multiple receive antennas (at the users) (see Figure 10.28). To focus on
the role of multiple receive antennas, we begin with a single transmit antenna
at the base-station.
The downlink channel with a single transmit and multiple receive antennas

at each user can be written as

yk�m�= hkx�m�+wk�m�� k= 1�2� (10.78)

wherewk�m�∼ �� �0�N0Inr� and i.i.d. in timem. The receive spatial signature
at user k is denoted by hk. Let us focus on the time-invariant model first and
fix this vector. If there is only one user, then we know from Section 7.2.1 that
the user should do receive beamforming: project the received signal in the
direction of the vector channel. Let us try this technique here, with both users
matched filtering their received signals w.r.t. their channels. This is illustrated
in Figure 10.29 and can be shown to be the optimal strategy for both the users
(Exercise 10.22). With the matched filter front-end at each user, we have an
effective AWGN downlink with a single antenna:

ỹk�m� �=
h∗
kyk�m�
�hk�

= �hk�x�m�+wk�m�� k= 1�2� (10.79)

Here wk�m� is �� �0�N0� and i.i.d. in time m and the downlink channel in
(10.79) is very similar to the basic single antenna downlink channel model
of (6.16) in Section 6.2. The only difference is that user k’s channel quality
�hk�2 is replaced by �hk�2.

Thus, to study the downlink with multiple receive antennas, we can
now carry over all our discussions from Section 6.2 for the single antenna
scenario. In particular, we can order the two users based on their received
SNR (suppose �h1� ≤ �h2�) and do superposition coding: the transmit signal
is the linear superposition of the signals to the two users. User 1 treats the
signal of user 2 as noise and decodes its data from ỹ1. User 2, which has
the better SNR, decodes the data of user 1, subtracts the transmit signal
of user 1 from ỹ2 and then decodes its data. With a total power constraint
of P and splitting this among the two users P = P1 +P2 we can write the
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Figure 10.29 Each user with a
front-end matched filter
converting the SIMO downlink
into a SISO downlink.

Base station
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rate tuple that is achieved with the receiver architecture in Figure 10.29 and
superposition coding (cf. (6.22)),

R1 = log
(
1+ P1�h1�2

P2�h1�2+N0

)
� R2 = log

(
1+ P2�h2�2

N0

)
� (10.80)

Thus we have combined the techniques of Sections 7.2.1 and 6.2, namely
receive beamforming and superposition coding into a communication strategy
for the single transmit and multiple receive antenna downlink.
The matched filter operation by the users in Figure 10.29 only requires

tracking of their channels by the users, i.e., CSI is required at the receivers.
Thus, even with fast fading, the architecture in Figure 10.29 allows us to trans-
form the downlink with multiple receive antennas to the basic single antenna
downlink channel as long as the users have their channel state information.
In particular, analyzing receiver CSI and full CSI for the downlink in (10.78)
simplifies to the basic single antenna downlink discussion (in Section 6.4).
In particular, we can ask what impact multiple receive antennas have on

multiuser diversity, an important outcome of our discussion in Section 6.4. The
only difference here is the distribution of the channel quality: �hk�2 replacing
�hk�2. This was also the same difference in the uplink when we studied the role
of multiple receive antennas in multiuser diversity gain (in Section 10.1.6).
We can carry over our main observation: the multiple receive antennas provide
a beamforming gain but the tail of �hk�2 decays more rapidly (Figure 10.8)
and the multiuser diversity gain is restricted (Figure 10.9). To summarize,
the traditional receive beamforming power gain is balanced by the loss of the
benefit of the multiuser diversity gain (which is also a power gain) due to the
“hardening” of the effective fading distribution: �hk�2 ≈ nr (cf. (10.20)).
With multiple transmit antennas at the base-station and multiple receive

antennas at each of the users, we can extend our set of linear strategies from
the discussion in Section 10.3.2: now the base-station splits the information
for user k into independent data streams, modulates them on different spatial
signatures and then transmits them. With full CSI, we can vary these spatial
signatures and powers allocated to the users (and the further allocation among
the data streams within a user) as a function of the channel fluctuations. We
can also embellish the linear strategies with Costa precoding, successively
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precanceling the data streams. The performance of this scheme (linear beam-
forming strategies with and without Costa precoding) can be related to the
corresponding performance of a dual MIMO uplink channel (much as in the
discussion of Section 10.3.2 with multiple antennas at the base-station alone).
This scheme achieves the capacity of the MIMO downlink channel.

10.5 Multiple antennas in cellular networks: a system view

We have discussed the system design implications of multiple antennas in
both the uplink and the downlink. These discussions have been in the context
of multiple access within a single cell and are spread throughout the chapter
(Sections 10.1.3, 10.1.6, 10.2.2, 10.3.5 and 10.4). In this section we take stock
of these implications and consider the role of multiple antennas in cellular
networks with multiple cells. Particular emphasis is on two points:

• the use of multiple antennas in suppressing inter-cell interference;
• how the use of multiple antennas within cells impacts the optimal amount
of frequency reuse in the network.

Summary 10.3 System implications of multiple antennas on
multiple access

Three ways of using multiple receive antennas in the uplink:
• Orthogonal multiple access Each user gets a power gain, but no change
in degrees of freedom.

• Opportunistic communication, one user at a time Power gain but the
multiuser diversity gain is reduced.

• Space division multiple access is capacity achieving: users simultane-
ously transmit and are jointly decoded at the base-station.

Comparison between orthogonal multiple access and SDMA
• Low SNR: performance of orthogonal multiple access comparable to
that of SDMA.

• High SNR: SDMA allows up to nr users to simultaneously transmit with
a single degree of freedom each. Performance is significantly better than
that with orthogonal multiple access.

• An intermediate access scheme with moderate complexity performs com-
parably to SDMA at all SNR levels: blocks of approximately nr users
in SDMA mode and orthogonal access for different blocks.

MIMO uplink
• Orthogonal multiple access: each user has multiple degrees of freedom.
• SDMA: the overall degrees of freedom are still restricted by the number
of receive antennas.
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Downlink with multiple receive antennas
Each user gets receive beamforming gain but reduced multiuser diversity
gain.
Downlink with multiple transmit antennas
• No CSI at the base-station: single spatial degree of freedom.
• Full CSI: the uplink–downlink duality principle makes this situation

analogous to the uplink with multiple receive antennas and now there
are up to nt spatial degrees of freedom.

• Partial CSI at the base-station: the same spatial degrees of freedom as the
full CSI scenario can be achieved by a modification of the opportunistic
beamforming scheme: multiple spatially orthogonal beams are sent out
and multiple users are simultaneously scheduled on these beams.

10.5.1 Inter-cell interference management

Consider the multiple receive antenna uplink with users operating in SDMA
mode. We have seen that successive cancellation is an optimal way to handle
interference among the users within the same cell. However, this technique
is not suitable to handle interference from neighboring cells: the out-of-cell
transmissions are meant to be decoded by their nearest base-stations and the
received signal quality is usually too poor to allow decoding at base-stations
further away. On the other hand, linear receivers such as the MMSE do not
decode the information from the interference and can be used to suppress
out-of-cell interference.
The following model captures the essence of out-of-cell interference: the

received signal at the antenna array (y) comprises the signal (x) of the user of
interest (with the signals of other users in the same cell successfully canceled)
and the out-of-cell interference (z):

y= hx+ z� (10.81)

Here h is the received spatial signature of the user of interest. One model
for the random interference z is as �� �0�Kz�, i.e., it is colored Gaussian
noise with covariance matrix Kz. For example, if the interference originates
from just one out-of-cell transmission (with transmit power, say, q) and the
base-station has an estimate of the received spatial signature of the interfering
transmission (say, g), then the covariance matrix is

qgg∗ +N0I� (10.82)

taking into account the structure of the interference and the background
additive Gaussian noise.
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Once such a model has been adopted, the multiple receive antennas can be
used to suppress interference: we can use the linear MMSE receiver developed
in Section 8.3.3 to get the soft estimate (cf. (8.61)):

x̂ = v∗
mmsey= h∗K−1

z y� (10.83)

The expression for the corresponding SINR is in (8.62). This is the best SINR
possible with a linear estimate. When the interfering noise is white, the oper-
ation is simply traditional receive beamforming. On the other hand, when the
interference is very large and not white then the operation reduces to a decor-
relator: this corresponds to nulling out the interference. The effect of channel
estimation error on interference suppression is explored in Exercise 10.23.

In the uplink, the model for the interference depends on the type of multi-
ple access. In many instances, a natural model for the interference is that it
is white. For example, if the out-of-cell interference comes from many geo-
graphically spread out users (this situation occurs when there are many users
in SDMA mode), then the overall interference is averaged over the multiple
users’ spatial locations and white noise is a natural model. In this case, the
receive antenna array does not explicitly suppress out-of-cell interference. To
be able to exploit the interference suppression capability of the antennas, two
things must happen:

• The number of simultaneously transmitting users in each cell should be
small. For example,in a hybrid SDMA/TDMA strategy, the total number
of users in each cell may be large but the number of users simultaneously
in SDMA mode is small (equal to or less than the number of receive
antennas).

• The out-of-cell interference has to be trackable. In the SDMA/TDMA
system, even though the interference at any time comes from a small
number of users, the interference depends on the geographic location of
the interfering user(s), which changes with the time slot. So either each
slot has to be long enough to allow enough time to estimate the color of
the interference based only on the pilot signal received in that time slot, or
the users are scheduled in a periodic manner and the interference can be
tracked across different time slots.

An example of such a system is described in Example 10.1.
On the other hand, interference suppression in the downlink using multiple

receive antennas at the mobiles is different. Here the interference comes from
a few base-stations of the neighboring cells that reuse the same frequency, i.e.,
from fixed specific geographic locations. Now, an estimate of the covariance
of the interference can be formed and the linear MMSE can be used to manage
the inter-cell interference.

We now turn to the role of multiple antennas in deciding the optimal
amount of frequency reuse in the cellular network. We consider the effect
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on both the uplink and the downlink and the role of multiple receive and
multiple transmit antennas separately.

10.5.2 Uplink with multiple receive antennas

We begin with a discussion of the impact of multiple antennas at the base-
station on the two orthogonal cellular systems studied in Chapter 4 and then
move to SDMA.

Orthogonal multiple access
The array of multiple antennas is used to boost the received signal strength
from the user within the cell via receive beamforming. One immediate benefit
is that each user can lower its transmit power by a factor equal to the
beamforming gain (proportional to nr) to maintain the same signal quality
at the base-station. This reduction in transmit power also helps to reduce
inter-cell interference, so the effective SINR with the power reduction is in
fact more than the SINR achieved in the original setting.
In Example 5.2 we considered a linear array of base-stations and analyzed

the tradeoff between reuse and data rates per user for a given cell size and
transmit power setting. With an array of antennas at each base-station, the
SNR of every user improves by a factor equal to the receive beamforming
gain. Much of the insight derived in Example 5.2 on how much to reuse can
be naturally extended to the case here with the operating SNR boosted by the
receive beamforming gain.

SDMA
If we do not impose the constraint that uplink communication be orthogonal
among the users in the cell, we can use the SDMA strategy where many
users simultaneously transmit and are jointly decoded at the base-station. We
have seen that this scheme significantly betters orthogonal multiple access at
high SNR due to the increased spatial degrees of freedom. At low SNR, both
orthogonal multiple access and SDMA benefit comparably, with the users
getting a receive beamforming gain. Thus, for SDMA to provide significant
performance improvement over orthogonal multiple access, we need the oper-
ating SNR to be large; in the context of a cellular system, this means less
frequency reuse.
Whether the loss in spectral efficiency due to less frequency reuse is fully

compensated for by the increase in spatial degrees of freedom depends on the
specific physical situation. The frequency reuse ratio " represents the loss in
spectral efficiency. The corresponding reduction in interference is represented
by the fraction f": this is the fraction of the received power from a user at
the edge of the cell that the interference constitutes. For example, in a linear
cellular system f" decays roughly as "�, but for a hexagonal cellular system
the decay is much slower: f" decays roughly as "�/2 (cf. Example 5.2).
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Suppose all the K users are at the edge of the cell (a worst case scenario)
and communicating via SDMA to the base-station with receiver CSI. W is
the total bandwidth allotted to the cellular system scaled down by the number
of simultaneous SDMA users sharing it within a cell (as with orthogonal
multiple access, cf. Example 5.2). With SDMA used in each cell, K users
simultaneously transmit over the entire bandwidth K"W .
The SINR of the user at the edge of the cell is, as in (5.20),

SINR= SNR
"K+f"SNR

� with SNR �= P

N0Wd
�
� (10.84)

The SNR at the edge of the cell is SNR, a function of the transmit power P,
the cell size d, and the power decay rate � (cf. (5.21)). The notation for the
fraction f" is carried over from Example 5.2. The largest symmetric rate each
user gets is, the MIMO extension of (5.22),

R" = "W��logdet�Inr + SINR HH∗��bits/s� (10.85)

Here the columns of H represent the receive spatial signatures of the users at
the base-station and the log det expression is the sum of the rates at which
users can simultaneously communicate reliably.

We can now address the engineering question of how much to reuse using
the simple formula for the rate in (10.85). At low SNR the situation is
analogous to the single receive antenna scenario studied in Example 5.2: the
rate is insensitive to the reuse factor and this can be verified directly from
(10.85). On the other hand, at large SNR the interference grows as well and
the SINR peaks at 1/f". The largest rate then is, as in (5.23),

"W�

[
logdet

(
Inr +

1
f"

HH∗
)]

bits/s� (10.86)

and goes to zero for small values of ": thus as in Example 5.2, less reuse
does not lead to a favorable situation.

How do multiple receive antennas affect the optimal reuse ratio? Setting
K = nr (a rule of thumb arrived at in Exercise 10.5), we can use the approx-
imation in (8.29) to simplify the expression for the rate in (10.86):

R" ≈ "Wnrc
∗
(
1
f"

)
� (10.87)

The first observation we can make is that since the rate grows linearly in nr ,
the optimal reuse ratio does not depend on the number of receive antennas.
The optimal reuse ratio thus depends only on how the inter-cell interference
f" decays with the reuse parameter ", as in the single antenna situation studied
in Example 5.2.
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Figure 10.30 The symmetric
rate for every user (in bps/Hz)
with K = 5 users in SDMA
model in an uplink with nr = 5
receive antennas plotted as a
function of the power decay
rate � for the linear cellular
system. The rates are plotted
for reuse ratios 1, 1/2 and 1/3.
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The rates at high SNR with reuse ratios 1, 1/2 and 1/4 are plotted in
Figure 10.30 for nr = K = 5 in the linear cellular system. We observe the
optimality of universal reuse at all power decay rates: the gain in SINR from
less reuse is not worth the loss in spectral reuse. Comparing with the single
receive antenna example, the receive antennas provide a performance boost
(the rate increases linearly with nr). We also observe that universal reuse is
now preferred. The hexagonal cellular system provides even less improvement
in SINR and thus universal reuse is optimal; this is unchanged from the single
receive antenna example.

10.5.3 MIMO uplink

An implementation of SDMA corresponds to altering the nature of medium
access. For example, there is no simple way of incorporating SDMA in any
of the three cellular systems introduced in Chapter 4 without altering the
fundamental way resource allocation is done among users. On the other hand,
the use of multiple antennas at the base-station to do receive beamforming
for each user of interest is a scheme based at the level of a point-to-point
communication link and can be implemented regardless of the nature of the
medium access. In some contexts where the medium access scheme cannot be
altered, a scheme based on improving the quality of individual point-to-point
links is preferred. However, an array of multiple antennas at the base-station
used to receive beamform provides only a power gain and not an increase in
degrees of freedom. If each user has multiple transmit antennas as well, then
an increase in the degrees of freedom of each individual point-to-point link
can be obtained.
In an orthogonal system, the point-to-point MIMO link provides each user

with multiple degrees of freedom and added diversity. With receiver CSI,
each user can use its transmit antenna array to harness the spatial degrees of
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freedom when it is scheduled. The discussion of the role of frequency reuse
earlier now carries over to this case. The nature of the tradeoff is similar: there
is a loss in spectral degrees of freedom (due to less reuse) but an increase
in the spatial degrees of freedom (due to the availability of multiple transmit
antennas at the users).

10.5.4 Downlink with multiple receive antennas

In the downlink the interference comes from a few specific locations at fixed
transmit powers: the neighboring base-stations that reuse the same frequency.
Thus, the interference pattern can be empirically measured at each user and
the array of receive antennas used to do linear MMSE (as discussed in
Section 10.5.1) and boost the received SINR. For orthogonal systems, the
impact on frequency reuse analysis is similar to that in the uplink with the
SINR from the MMSE receiver replacing the earlier simpler expression (as
in (5.20), for the uplink example).
If the base-station has multiple transmit antennas as well, the interference

could be harder to suppress: in the presence of substantial scattering, each of
the base-station transmit antennas could have a distinct receive spatial signa-
ture at the mobile, and in this case an appropriate model for the interference
is white noise. On the other hand, if the scattering is only local (at the base-
station and at the mobile) then all the base-station antennas have the same
receive spatial signature (cf. Section 7.2.3) and interference suppression via
the MMSE receiver is still possible.

10.5.5 Downlink with multiple transmit antennas

With full CSI (i.e., both at the base-station and at the users), the uplink–
downlink duality principle (see Section 10.3.2) allows a comparison to the
reciprocal uplink with the multiple receive antennas and receiver CSI. In
particular, there is a one-to-one relationship between linear schemes (with
and without successive cancellation) for the uplink and that for the downlink.
Thus, many of our inferences in the uplink with multiple receive antennas
hold in the downlink as well. However, full CSI may not be so practical
in an FDD system: having CSI at the base-station in the downlink requires
substantial CSI feedback via the uplink.

Example 10.1 SDMA in ArrayComm systems
ArrayComm Inc. is one of the early companies implementing SDMA
technology. Their products include an SDMA overlay on Japan’s PHS
cellular system, a fixed wireless local loop system, and a mobile cellular
system (iBurst).
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An ArrayComm SDMA system exemplifies many of the design features
that multiple antennas at the base-station allow. It is TDMA based and
is much like the narrowband system we studied in Chapter 4. The main
difference is that within each narrowband channel in each time slot, a
small number of users are in SDMA mode (as opposed to just a single
user in the basic narrowband system of Section 4.2). The array of antennas
at the base-station is also used to suppress out-of-cell interference, thus
allowing denser frequency reuse than a basic narrowband system. To
enable successful SDMA operation and interference suppression in both
the uplink and the downlink, the ArrayComm system has several key
design features.

• The time slots for TDMA are synchronized across different cells. Fur-
ther, the time slots are long enough to allow accurate estimation of the
interference using the training sequence. The estimate of the color of
the interference is then in the same time slot to suppress out-of-cell
interference. Channel state information is not kept across slots.

• The small number of SDMA users within each narrowband channel are
demodulated using appropriate linear filters: for each user, this operation
suppresses both the out-of-cell interference and the in-cell interference
from the other users in SDMA mode sharing the same narrowband
channel.

• The uplink and the downlink operate in TDD mode with the down-
link transmission immediately following the uplink transmission and
to the same set of users. The uplink transmission provides the base-
station CSI that is used in the immediately following downlink trans-
mission to perform SDMA and to suppress out-of-cell interference via
transmit beamforming and nulling. TDD operation avoids the expen-
sive channel state feedback required for downlink SDMA in FDD
systems.

To get a feel for the performance improvement with SDMA over the
basic narrowband system, we can consider a specific implementation of
the ArrayComm system. There are up to twelve antennas per sector at the
base-station with up to four users in SDMA mode over each narrowband
channel. This is an improvement of roughly a factor of four over the
basic narrowband system, which schedules only a single user over each
narrowband channel. Since there are about three antennas per user, sub-
stantial out-of-cell interference suppression is possible. This allows us to
increase the frequency reuse ratio; this is a further benefit over the basic
narrowband system. For example, the SDMA overlay on the PHS system
increases the frequency reuse ratio of 1/8 to 1.

In the Flash OFDM example in Chapter 4, we have mentioned that one
advantage of orthogonal multiple access systems over CDMA systems is
that users can get access to the system without the need to slowly ramp up
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the power. The interference suppression capability of adaptive antennas
provides another way to allow users who are not power controlled to get
access to the system quickly without swamping the existing active users.
Even in a near–far situation of 40–50 dB, SDMA still works successfully;
this means that potentially many users can be kept in the hold state when
there are no active transmissions.
These improvements come at an increased cost to certain system design

features. For example, while downlink transmissions meant for specific
users enjoy a power gain via transmit beamforming, the pilot signal is
intended for all users and has to be isotropic, thus requiring a propor-
tionally larger amount of power. This reduces the traditional amortization
benefit of the downlink pilot. Another aspect is the forced symmetry
between the uplink and the downlink transmissions. To successfully use
the uplink measurements (of the channels of the users in SDMA mode
and the color of the out-of-cell interference) in the following downlink
transmission, the transmission power levels in the uplink and the down-
link have to be comparable (see Exercise 10.24). This puts a strong
constraint on the system designer since the mobiles operate on batter-
ies and are typically much more power constrained than the base-station,
which is powered by an AC supply. Further, the pairing of the uplink or
downlink transmissions is ideal when the flow of traffic is symmetric in
both directions; this is usually true in the case of voice traffic. On the
other hand, data traffic can be asymmetric and leads to wasted uplink
(downlink) transmissions if only downlink (uplink) transmissions are
desired.

Chapter 10 The main plot

Uplink with multiple receive antennas
Space division multiple access (SDMA) is capacity-achieving: all users
simultaneously transmit and are jointly decoded by the base-station.
• Total spatial degrees of freedom limited by number of users and number
of receive antennas.

• Rule of thumb is to have a group of nr users in SDMA mode and
different groups in orthogonal access mode.

• Each of the nr user transmissions in a group obtains the full receive
diversity gain equal to nr .

Uplink with multiple transmit and receive antennas
The overall spatial degrees of freedom are still restricted by the number of
receive antennas, but the diversity gain is enhanced.
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Downlink with multiple transmit antennas
Uplink–downlink duality identifies a correspondence between the down-
link and the reciprocal uplink.

Precoding is the analogous operation to successive cancelation in the
uplink. A precoding scheme that perfectly cancels the intra-cell interference
caused to a user was described.

Precoding operation requires full CSI; hard to justify in an FDD system.
With only partial CSI at the base-station, an opportunistic beamforming
scheme with multiple orthogonal beams utilizes the full spatial degrees of
freedom.

Downlink with multiple receive antennas
Each user’s link is enhanced by receive beamforming: both a power
gain and a diversity gain equal to the number of receive antennas are
obtained.

10.6 Bibliographical notes

The precoding technique for communicating on a channel where the transmitter is
aware of the channel was first studied in the context of the ISI channel by Tomlinson
[121] and Harashima and Miyakawa [57]. More sophisticated precoders for the ISI
channel (designed for use in telephone modems) were developed by Eyuboglu and
Forney [36] and Laroia et al. [71]. A survey on precoding and shaping for ISI channels
is contained in an article by Forney and Ungerböck [39].

Information theoretic study of a state-dependent channel where the transmitter has
non-causal knowledge of the state was studied, and the capacity characterized, by
Gelfand and Pinsker [46]. The calculation of the capacity for the important special
case of additive Gaussian noise and an additive Gaussian state was done by Costa
[23], who concluded the surprising result that the capacity is the same as that of the
channel where the state is known to the receiver also. Practical construction of the
binning schemes (involving two steps: a vector quantization step and a channel coding
step) is still an ongoing effort and the current progress is surveyed by Zamir et al.
[154]. The performance of the opportunistic orthogonal signaling scheme, which uses
orthogonal signals as both channel codes and vector quantizers, was analyzed by Liu
and Viswanath [76].

The Costa precoding scheme was used in the multiple antenna downlink channel
by Caire and Shamai [17]. The optimality of these schemes for the sum rate was
shown in [17, 135, 138, 153]. Weingarten, et al. [141] proved that the Costa precoding
scheme achieves the entire capacity region of the multiple antenna downlink.

The reciprocity between the uplink and the downlink was observed in different
contexts: linear beamforming (Visotsky and Madhow [134], Farrokhi et al. [37]),
capacity of the point-to-point MIMO channel (Telatar [119]), and achievable rates of
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the single antenna Gaussian MAC and BC (Jindal et al. [63]). The presentation here
is based on a unified understanding of these results (Viswanath and Tse [138]).

10.7 Exercises

Exercise 10.1 Consider the time-invariant uplink with multiple receive antennas (10.1).
Suppose user k transmits data at power Pk� k = 1� � � � �K. We would like to employ
a bank of linear MMSE receivers at the base-station to decode the data of the users:

x̂k�m�= c∗ky�m�� (10.88)

is the estimate of the data symbol xk�m�.
1. Find an explicit expression for the linear MMSE filter ck (for user k). Hint:

Recall the analogy between the uplink here with independent data streams being
transmitted on a point-to-point MIMO channel and see (8.66) in Section 8.3.3.

2. Explicitly calculate the SINR of user k using the linear MMSE filter. Hint: See
(8.67).

Exercise 10.2 Consider the bank of linear MMSE receivers at the base-station decoding
the user signals in the uplink (as in Exercise 10.1). We would like to tune the
transmit powers of the users P1� � � � �PK such that the SINR of each user (calculated in
Exercise 10.1(2)) is at least equal to a target level �. Show that, if it is possible to find
a set of power levels that meet this requirement, then there exists a component-wise
minimum power setting that meets the SINR target level. This result is on similar
lines to the one in Exercise 4.5 and is proved in [128].

Exercise 10.3 In this problem, a sequel to Exercise 10.2, we will see an adaptive
algorithm that updates the transmit powers and linear MMSE receivers for each user in
a greedy fashion. This algorithm is closely related to the one we studied in Exercise 4.8
and is adapted from [128].

Users begin (at time 1) with an arbitrary power setting p�1�1 � � � � � p
�1�
K . The bank of

linear MMSE receivers (c�1�1 � � � � � c�1�K ) at the base-station is tuned to these transmit
powers. At time m+ 1, each user updates its transmit power and its MMSE filter
as a function of the power levels of the other users at time m so that its SINR is
exactly equal to �. Show that if there exists a set of powers such that the SINR
requirement can be met, then this synchronous update algorithm will converge to the
component-wise minimal power setting identified in Exercise 10.2.

In this exercise, the update of the user powers (and corresponding MMSE filters)
is synchronous among the users. An asynchronous algorithm, analogous to the one in
Exercise 4.9, works as well.

Exercise 10.4 Consider the two-user uplink with multiple receive antennas (10.1):

y�m�=
2∑

k=1

hkxk�m�+w�m�� (10.89)

Suppose user k has an average power constraint Pk� k= 1�2�
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1. Consider orthogonal multiple access: with � the fraction of the degrees of freedom
allocated to user 1 (and 1−� the fraction to user 2), the reliable communication
rates of the two users are given in Eq. (10.7). Calculate the fraction � that yields the
largest sum rate achievable by orthogonal multiple access and the corresponding
sum rate. Hint: Recall the result for the uplink with a single receive antenna in
Section 6.1.3 that the largest sum rate with orthogonal multiple access is equal to
the sum capacity of the uplink, cf. Figure 6.4.

2. Consider the difference between the sum capacity of the uplink with multiple
receive antennas (see (10.4)) with the largest sum rate of this uplink with orthogonal
multiple access.
(a) Show that this difference is zero exactly when h1 = ch2 for some (complex)

constant c.
(b) Suppose h1 and h2 are not scalar complex multiples of each other. Show

that at high SNR (N0 goes to zero) the difference between the two sum rates
becomes arbitrarily large. With P1 = P2 = P, calculate the rate of growth of
this difference with SNR (P/N0). We conclude that at high SNR (large values
of P1�P2 as compared to N0) orthogonal multiple access is very suboptimal in
terms of the sum of the rates of the users .

Exercise 10.5 Consider the K-user uplink and focus on the sum and symmetric
capacities. The base-station has an array of nr receive antennas. With receiver CSI
and fast fading, we have the following expression: the symmetric capacity is

Csym = 1
K
��log2 det�Inr + SNRHH∗��bits/s/Hz� (10.90)

and the sum capacity Csum is KCsym. Here the columns of H represent the receive
spatial signatures of the users and are modeled as i.i.d. �� �0�1�. Each user has an
identical transmit power constraint P, and the common SNR is equal to P/N0.
1. Show that the sum capacity increases monotonically with the number of users.
2. Show that the symmetric capacity, on the other hand, goes to zero as the number

of users K grows large, for every fixed SNR value and nr . Hint: You can use
Jensen’s inequality to get a bound.

3. Show that the sum capacity increases linearly in K at low SNR. Thus the symmetric
capacity is independent of K at low SNR values.

4. Argue that at high SNR the sum capacity only grows logarithmically in K as K
increases beyond nr .

5. Plot Csum and Csym as a function of K for sample SNR values (from 0 dB to 30 dB)
and sample nr values (3 through 6). Can you conclude some general trends from
your plots? In particular, focus on the following issues.
(a) How does the value of K at which the sum capacity starts to grow slowly

depend on nr?
(b) How does the value of K beyond which the symmetric capacity starts to decay

rapidly depend on nr?
(c) How does the answer to the previous two questions change with the operating

SNR value?

You should be able to arrive at the following rule of thumb: K = nr is a good
operating point at most SNR values in the sense that increasing K beyond it does
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not increase the sum capacity by much, and in fact reduces the symmetric capacity
by quite a bit.

Exercise 10.6 Consider the K-user uplink with nr multiple antennas at the base-
station as in Exercise 10.5. The expression for the symmetric capacity is in (10.90).
Argue that the symmetric capacity at low SNR is comparable to the symmetric rate
with orthogonal multiple access. Hint: Recall the discussion on the low SNR MIMO
performance gain in Section 8.2.2.

Exercise 10.7 In a slow fading uplink, the multiple receive antennas can be used to
improve the reliability of reception (diversity gain), improve the rate of communication
at a fixed reliability level (multiplexing gain), and also spatially separate the signals of
the users (multiple access gain). A reading exercise is to study [86] and [125] which
derive the fundamental tradeoff between these gains.

Exercise 10.8 In this exercise, we further study the comparison between orthogo-
nal multiple access and SDMA with multiple receive antennas at the base-station.
While orthogonal multiple access is simple to implement, SDMA is the capacity
achieving scheme and outperforms orthogonal multiple access in certain scenarios
(cf. Exercise 10.4) but requires complex joint decoding of the users at the base-station.

Consider the following access mechanism, which is a cross between purely orthog-
onal multiple access (where all the users’ signals are orthogonal) and purely SDMA
(where all the K users share the bandwidth and time simultaneously). Divide the K
users into groups of approximately nr users each. We provide orthogonal resource
allocation (time, frequency or a combination) to each of the groups but within each
group the users (approximately nr of them) operate in an SDMA mode.

We would like to compare this intermediate scheme with orthogonal multiple access
and SDMA. Let us use the largest symmetric rate achievable with each scheme as
the performance criterion. The uplink model (same as the one in Exercise 10.5) is
the following: receiver CSI with i.i.d. Rayleigh fast fading. Each user has the same
average transmit power constraint P, and SNR denotes the ratio of P to the background
complex Gaussian noise power N0.
1. Write an expression for the symmetric rate with the intermediate access scheme

(the expression for the symmetric rate with SDMA is in (10.90)).
2. Show that the intermediate access scheme has performance comparable to both

orthogonal multiple access and SDMA at low SNR, in the sense that the ratio of
the performances goes to 1 as SNR→ 0.

3. Show that the intermediate access scheme has performance comparable to SDMA
at high SNR, in the sense that the ratio of the performances goes to 1 as SNR→�.

4. Fix the number of users K (to, say, 30) and the number of receive antennas nr (to,
say, 5). Plot the symmetric rate with SDMA, orthogonal multiple access and the
intermediate access scheme as a function of SNR (0 dB to 30 dB). How does the
intermediate access scheme compare with SDMA and orthogonal multiple access
for the intermediate SNR values?

Exercise 10.9 Consider the K-user uplink with multiple receive antennas (10.1):

y�m�=
K∑
k=1

hkxk�m�+w�m�� (10.91)
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Consider the sum capacity with full CSI (10.17):

Csum = max
Pk�H��k=1� � � � �K

�

[
logdet

(
Inr +

K∑
k=1

Pk�H�hkh
∗
k

)]
� (10.92)

where we have assumed the noise variance N0 = 1 and have written H= �h1� � � � �hK�.
User k has an average power constraint P; due to the ergodicity in the channel fluctu-
ations, the average power is equal to the ensemble average of the power transmitted at
each fading state (Pk�H� when the channel state is H). So the average power constraint
can be written as

��Pk�H��≤ P� (10.93)

We would like to understand what power allocations maximize the sum capacity in
(10.92).
1. Consider the map from a set of powers to the corresponding sum rate in the uplink:

�P1� � � � �PK� �→ logdet

(
Inr +

K∑
k=1

Pkhkh
∗
k

)
� (10.94)

Show that this map is jointly concave in the set of powers.Hint: You will find useful
the following generalization (to higher dimensions) of the elementary observation
that the map x �→ logx is concave for positive real x:

A �→ logdet�A� (10.95)

is concave in the set of positive definite matrices A.
2. Due to the concavity property, we can characterize the optimal power allocation

policy using the Lagrangian:

��P1�H�� � � � �PK�H�� �= �

[
logdet

(
Inr +

K∑
k=1

Pk�H�hkh
∗
k

)]

−
K∑
k=1

�k��Pk�H��� (10.96)

The optimal power allocation policy P∗
k �H� satisfies the Kuhn–Tucker equations:

$L

$Pk�H�

{
= 0 if P∗

k �H� > 0�

≤ 0 if P∗
k �H�= 0�

(10.97)

Calculate the partial derivative explicitly to arrive at:

h∗
k

(
Inr +

K∑
j=1

P∗
j �H�hjh

∗
j

)−1

hk

{
= �k if P∗

k �H� > 0�

≤ �k if P∗
k �H�= 0�

(10.98)

Here �1� � � � � �K are constants such that the average power constraint in (10.93) is
met. With i.i.d. channel fading statistics (i.e., h1� � � � �hK are i.i.d. random vectors),
these constants can be taken to be equal.
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3. The optimal power allocation P∗
k �H�� k = 1� � � � �K satisfying (10.98) is also the

solution to the following optimization problem:

max
P1� � � � �PK≥0

logdet

(
Inr +

K∑
k=1

Pkhkh
∗
k

)
−

K∑
k=1

�kPk� (10.99)

In general, no closed form solution to this problem is known. However, effi-
cient algorithms yielding numerical solutions have been designed; see [15]. Solve
numerically an instance of the optimization problem in (10.99) with nr = 2�K = 3,

h1 =
[
1
0

]
� h2 =

[
0
1

]
� h3 =

[
1
1

]
� (10.100)

and �1 = �2 = �3 = 0�1. You might find the software package [82] useful.
4. To get a feel for the optimization problem in (10.99) let us consider a few illustrative

examples.
(a) Consider the uplink with a single receive antenna, i.e., nr = 1. Further suppose

that each of the �hk�2/�k� k = 1� � � � �K are distinct. Show that an optimal
solution to the problem in (10.99) is to allocate positive power to at most one
user:

P∗
k =

{(
1
�k

− 1
�hk�2

)+
if �hk�2

�k
=maxj=1 � � � K

�hj �2
�j

�

0 else�
(10.101)

This calculation is a reprise of that in Section 6.3.3.
(b) Now suppose there are three users in the uplink with two receive antennas,

i.e., K = 3 and nr = 2. Suppose �k = �� k= 1�2�3 and

h1 =
[
1
1

]
� h2 =

[
1

exp� j2�/3�

]
� h3 =

[
1

exp� j4�/3�

]
� (10.102)

Show that the optimal solution to (10.99) is

P∗
k = 2

9

(
3
�
−1

)+
� k= 1�2�3� (10.103)

Thus for nr > 1 the optimal solution in general allocates positive power to
more than one user. Hint: First show that for any set of powers P1�P2�P3

with their sum constrained (to say P), it is always optimal to choose them all
equal (to P/3).

Exercise 10.10 In this exercise, we look for an approximation to the optimal power
allocation policy derived in Exercise 10.9. To simplify our calculations, we take i.i.d.
fading statistics of the users so that�1� � � � � �K can all be taken equal (and denoted by�).
1. Show that

h∗
k

(
Inr +

K∑
j=1

Pjhjh
∗
j

)−1

hk =
h∗
k

(
Inr +

∑
j 
=k Pjhjh∗

j

)−1
hk

1+h∗
k

(
Inr +

∑
j 
=k Pjhjh∗

j

)−1
hkPk

� (10.104)

Hint: You will find the matrix inversion lemma (8.124) useful.
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2. Starting from (10.98), use (10.104) to show that the optimal power allocation policy
can be rewritten as

P∗
k �H�=

(
1
�
− 1

h∗
k�Inr +

∑
j 
=k P∗

j �H�hjh
∗
j �

−1hk

)+
� (10.105)

3. The quantity

SINRk �= h∗
k

(
Inr +

∑
j 
=k

P∗
j �H�hjh

∗
j

)−1

hkP
∗
k �H� (10.106)

can be interpreted as the SINR at the output of an MMSE filter used to demodulate
user k’s data (cf. (8.67)). If we define

I0 �=
P∗
k �H��hk�2
SINRk

� (10.107)

then I0 can be interpreted as the interference plus noise seen by user k. Substitut-
ing (10.107) in (10.105) we see that the optimal power allocation policy can be
written as

Pk�H�=
(
1
�
− I0

�hk�2
)+

� (10.108)

While this power allocation appears to be the same as that of waterfilling, we have
to be careful since I0 itself is a function of the power allocations of the other users
(which themselves depend on the power allocated to user k, cf. (10.105)). However,
in a large system with K and nr large enough (but the ratio of K and nr being fixed)
I0 converges to a constant in probability (with i.i.d. zero mean entries of H, the
constant it converges to depends only on the variance of the entries of H, the ratio
between K and nr and the background noise density N0). This convergence result
is essentially an application of a general convergence result that is of the same
nature as the singular values of a large random matrix (discussed in Section 8.2.2).
This justifies (10.21) and the details of this result can be found in [136].

Exercise 10.11 Consider the two-user MIMO uplink (see Section 10.2.1) with input
covariances Kx1�Kx2.
1. Consider the corner point A in Figure 10.13, which depicts the achievable rate

region using this input strategy. Show (as an extension of (10.5)) that at the point
A the rates of the two users are

R2 = logdet�Inr +
1
N0

H2Kx2H
∗
2�� (10.109)

R1 = logdet�Inr +H1Kx1�N0Inr +H2Kx2H
∗
2�

−1H∗
1�� (10.110)

2. Analogously, calculate the rate pair represented by the point B.

Exercise 10.12 Consider the capacity region of the two-user MIMO uplink (the convex
hull of the union of the pentagon in Figure 10.13 for all possible input strategies
parameterized by Kx1 and Kx2). Let us fix positive weights a1 ≤ a2 and consider
maximizing a1R1 +a2R2 over all rate pairs �R1�R2� in the capacity region.
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1. Fix an input strategy �Kxk� k = 1�2� and consider the value of a1R1 + a2R2 at
the two corner points A and B of the corresponding pentagon (evaluated in Exer-
cise 10.12). Show that the value of the linear functional is always no less at the
vertex A than at the vertex B. You can use the expression for the rate pairs at
the two corner points A and B derived in Exercise 10.11. This result is analogous
to the polymatroid property derived in Exercise 6.9 for the capacity region of the
single antenna uplink.

2. Now we would like to optimize a1R1 + a2R2 over all possible input strategies.
Since the linear functional will always be optimized at one of the two vertices A
or B in one of the pentagons, we only need to evaluate a1R1 +a2R2 at the corner
point A (cf. (10.110) and (10.109)) and then maximize over the different input
strategies:

max
Kxk�TrKxk≤Pk�k=1�2

a1 logdet�Inr +H1Kx1�N0Inr +H2Kx2H
∗
2�

−1H∗
1�

+a2 logdet�Inr +
1
N�

H2Kx2H
∗
2�� (10.111)

Show that the function being maximized above is jointly concave in the input
Kx1�Kx2. Hint: Show that a1R1 + a2R2 evaluated at the point A can also be
written as

a1 logdet�Inr +
1
N�

H1Kx1H
∗
1 +

1
N0

H2Kx2H
∗
2�+ �a2 −a1� logdet�Inr +

1
N�

H2Kx2H
∗
2��

(10.112)

Now use the concavity property in (10.95) to arrive at the desired result.
3. In general there is no closed-form solution to the optimization problem in (10.111).

However, the concavity property of the function being maximized has been used to
design efficient algorithms that arrive at numerical solutions to this problem, [15].

Exercise 10.13 Consider the two-user fast fading MIMO uplink (see (10.25)). In the
angular domain representation (see (7.70))

Ha
k�m�= U∗

rHk�m�Ut� k= 1�2� (10.113)

suppose that the stationary distribution of Ha
k�m� has entries that are zero mean and

uncorrelated (and further independent across the two users). Now consider maximizing
the linear functional a1R1 +a2R2 (with a1 ≤ a2) over all rate pairs �R1�R2� in the
capacity region.
1. As in Exercise 10.12, show that the maximal value of the linear functional is

attained at the vertex A in Figure 10.7 for some input covariances. Thus conclude
that, analogous to (10.112), the maximal value of the linear functional over the
capacity region can be written as

max
Kxk�TrKxk≤Pk�k=1�2

a1��logdet�Inr +
1
N�

H1Kx1H
∗
1 +

1
N�

H2Kx2H
∗
2��

+�a2 −a1���logdet�Inr +
1
N�

H2Kx2H
∗
2��� (10.114)
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2. Analogous to Exercise 8.3 show that the input covariances of the form in (10.27)
achieve the maximum above in (10.114).

Exercise 10.14 Consider the two-user fast fading MIMO uplink under i.i.d. Rayleigh
fading. Show that the input covariance in (10.30) achieves the maximal value of
every linear functional a1R1+a2R2 over the capacity region. Thus the capacity region
in this case is simply a pentagon. Hint: Show that the input covariance in (10.30)
simultaneously maximizes each of the constraints (10.28) and (10.29).

Exercise 10.15 Consider the (primal) point-to-point MIMO channel

y�m�=Hx�m�+w�m�� (10.115)

and its reciprocal

yrec�m�=H∗xrec�m�+wrec�m�� (10.116)

The MIMO channel H has nt transmit antennas and nr receive antennas (so the
reciprocal channel H∗ is nt times nr). Here w�m� is i.i.d. �� �0�N0Inr � and wrec�m�

is i.i.d. �� �0�N0Int �. Consider sending nmin independent data streams on both these
channels. The data streams are transmitted on the channels after passing through linear
transmit filters (represented by unit norm vectors): v1� � � � �vnmin

for the primal channel
and u1� � � � �unmin

for the reciprocal channel. The data streams are then recovered from
the received signal after passing through linear receive filters: u1� � � � �unmin

for the
primal channel and v1� � � � �vnmin

for the reciprocal channel. This process is illustrated
in Figure 10.31.
1. Suppose powers Q1� � � � �Qnmin

are allocated to the data streams on the primal
channel and powers P1� � � � �Pnmin

are allocated to the data streams on the reciprocal
channel. Show that the SINR for data stream k on the primal channel is

SINRk =
Qku

∗
kHvk

N0 +
∑

j 
=k Qju
∗
kHvj

� (10.117)

Figure 10.31 The data streams
transmitted and received via
linear filters on the primal
(top) and reciprocal (bottom)
channels.
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and that on the reciprocal channel is

SINRreck = Pkv
∗
kH

∗uk
N0 +

∑
j 
=k Pjv∗

kH∗uj
� (10.118)

2. Suppose we fix the linear transmit and receive filters and want to allocate powers
to meet a target SINR for each data stream (in both the primal and reciprocal
channels). Find an expression analogous to (10.43) for the component-wise minimal
set of power allocations.

3. Show that to meet the same SINR requirement for a given data stream on both the
primal and reciprocal channels, the sum of the minimal set of powers is the same
in both the primal and reciprocal channels. This is a generalization of (10.45).

4. We can use this general result to see earlier results in a unified way.
(a) With the filters vk = �0� � � � �0�1�0� � � � �0�t (with the single 1 in the kth

position), show that we capture the uplink–downlink duality result in (10.45).
(b) Suppose H = U�V∗ is the singular value decomposition. With the filters uk

equal to the first nmin rows of U and the filters vk equal to the first nmin columns
of V, show that this transceiver architecture achieves the capacity of the point-
to-point MIMO primal and reciprocal channels with the same overall transmit
power constraint, cf. Figure 7.2. Thus conclude that this result captures the
reciprocity property discussed in Exercise 8.1.

Exercise 10.16 [76] Consider the opportunistic orthogonal signaling scheme described
in Section 10.3.3. Each of the M messages corresponds to K (real) orthogonal signals.
The encoder transmits the signal that has the largest correlation (among the K possible
choices corresponding to the message to be conveyed) with the interference (real
white Gaussian process with power spectral density Ns/2). The decoder decides the
most likely transmit signal (among the MK possible choices) and then decides on the
message corresponding to the most likely transmit signal. Fix the number of messages,
M , and the number of signals for each message, K. Suppose that message 1 is to be
conveyed.
1. Derive a good upper bound on the error probability of opportunistic orthogonal

signaling. Here you can use the technique developed in the upper bound on the error
probability of regular orthogonal signaling in Exercise 5.9. What is the appropriate
choice of the threshold,  , as a function of M�K and the power spectral densities
Ns/2�N0/2?

2. By an appropriate choice of K as a function of M�Ns�N0 show that the upper
bound you have derived converges to zero as M goes to infinity as long as �b/N0

is larger than −1�59dB.
3. Can you explain why opportunistic orthogonal signaling achieves the capacity of

the infinite bandwidth AWGN channel with no interference by interpreting the
correct choice of K?

4. We have worked with the assumption that the interference s�t� is white Gaussian.
Suppose s�t� is still white but not Gaussian. Can you think of a simple way to
modify the opportunistic orthogonal signaling scheme presented in the text so that
we still achieve the same minimal �b/N0 of −1�59dB?

Exercise 10.17 Consider a real random variable x1 that is restricted to the range [0,1]
and x2 is another random variable that is jointly distributed with x1. Suppose u is a
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uniform random variable on [0,1] and is jointly independent of x1 and x2. Consider
the new random variable

x̃1 =
{
x1 +u if x1 +u≤ 1�

x1 +u−1 if x1 +u > 1�
(10.119)

The random variable x̃1 can be thought of as the right cyclic addition of x1 and u.
1. Show that x̃1 is uniformly distributed on [0,1].
2. Show that x̃1 and �x1� x2� are independent.
Now suppose x1 is the Costa-precoded signal containing the message to user 1 in a
two-user single antenna downlink based on x2, the signal of user 2 (cf. Section 10.3.4).
If the realization of the random variable u is known to user 1 also, then x̃1 and x1
contain the same information (since the operation in (10.119) is invertible). Thus we
could transmit x̃1 in place of x1 without any change in the performance of user 1. But
the important change is that the transmit signal x̃1 is now independent of x2.

The common random variable u, shared between the base-station and user 1, is
called the dither. Here we have focused on a single time symbol and made x̃1 uniform.
With a large block length, this basic argument can be extended to make the transmit
vector x̃1 appear Gaussian and independent of x2; this dithering idea is used to justify
(10.65).

Exercise 10.18 Consider the two-user single antenna downlink (cf. (10.63)) with
�h1�> �h2�. Consider the rate tuple �R′

1�R
′
2� achieved via Costa precoding in (10.66).

In this exercise we show that this rate pair is strictly inside the capacity region of the
downlink. Suppose we allocate powers Q1�Q2 to the two users and do superposition
encoding and decoding (cf. Figures 6.7 and 6.8) and aim to achieve the same rates as
the pair in (10.66).
1. Calculate Q1�Q2 such that

R′
1 = log

(
1+ �h1�2Q1

N0

)
� R′

2 = log
(
1+ �h2�2Q2

N0 +�h2�2Q1

)
� (10.120)

where R′
1 and R

′
2 are the rate pair in (10.66).

2. Using the fact that user 1 has a stronger channel than user 2 (i.e., �h1�> �h2�) show
that the total power used in the superposition strategy to achieve the same rate pair
(i.e., Q1 +Q2 from the previous part) is strictly smaller than P1 +P2, the transmit
power in the Costa precoding strategy.

3. Observe that an increase in transmit power strictly increases the capacity region of
the downlink. Hence conclude that the rate pair in (10.66) achieved by the Costa
precoding strategy is strictly within the capacity region of the downlink.

Exercise 10.19 Consider the K-user downlink channel with a single antenna (an
extension of the two-user channel in (10.63)):

yk�m�= hkx�m�+wk�m�� k= 1� � � � �K� (10.121)
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Show that the following rates are achievable using Costa precoding, extending the
argument in Section 10.3.4:

Rk = log

(
1+ �hk�2Pk∑K

j=k+1 �hj �2Pj +N0

)
� k= 1� � � � �K� (10.122)

Here P1� � � � �PK are some non-negative numbers that sum to P, the transmit power
constraint at the base-station. You should not need to assume any specific ordering
of the channels qualities �h1�� �h2�� � � � � �hK� in arriving at your result. On the other
hand, if we have

�h1� ≤ �h2� ≤ · · · ≤ �hK�� (10.123)

then the superposition coding approach, discussed in Section 6.2, achieves the rates
in (10.122).

Exercise 10.20 Consider the reciprocal uplink channel in (10.40) with the receive
filters u1� � � � �uK as in Figure 10.16. This time we embellish the receiver with suc-
cessive cancellation, canceling users in the order K through 1 (i.e., user k does not see
any interference from users K�K−1� � � � � k+1). With powers Q1� � � � �QK allocated
to the users, show that the SINR for user k can be written as

SINRulk = Qk � u∗
khk �2

N0 +
∑

j<k Qj � u∗
khj �2

� (10.124)

To meet the same SINR requirement as in the downlink with Costa precoding in the
reverse order (the expression for the corresponding SINR is in (10.72)) show that the
sum of the minimal powers required is the same for the uplink and the downlink.
This is an extension of the conservation of sum-of-powers property seen without
cancellation in (10.45).

Exercise 10.21 Consider the fast fading multiple transmit antenna downlink (cf.
(10.73)) where the channels from antenna i to user k are modeled as i.i.d. �� �0�1�
random variables (for each antenna i = 1� � � � � nt and for each user k = 1� � � � �K).
Each user has a single receive antenna. Further suppose that the channel fluctuations
are i.i.d. over time as well. Each user has access to the realization of its channel
fluctuations, while the base-station only has knowledge of the statistics of the channel
fluctuations (the receiver CSI model). There is an overall power constraint P on the
transmit power.
1. With just one user in the downlink, we have a MIMO channel with receiver only

CSI. Show that the capacity of this channel is equal to

�

[
log

(
1+ SNR�h�2

nt

)]
� (10.125)

where h∼ �� �0� Int � and SNR= P/N0. Hint: Recall (8.15) and Exercise 8.4.
2. Since the statistics of the user channels are identical, argue that if user k can decode

its data reliably, then all the other users can also successfully decode user k’s data
(as we did in Section 6.4.1 for the single antenna downlink). Conclude that the
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sum of the rates at which the users are being simultaneously reliably transmitted
to is bounded as

K∑
k=1

Rk ≤ �

[
log

(
1+ SNR�h�2

nt

)]
� (10.126)

analogous to (6.52).

Exercise 10.22 Consider the downlink with multiple receive antennas (cf. (10.78)).
Show that the random variables x�m� and yk�m� are independent conditioned on ỹk�m�.
Hence conclude that

I�x�yk�= I�x� ỹk�� k= 1�2� (10.127)

Thus there is no loss in information by having a matched filter front end at each of
the users converting the SIMO downlink into a single antenna channel to each user.

Exercise 10.23 Consider the two-user uplink fading channel with multiple antennas
at the base-station:

y�m�= h1�m�x1�m�+h2�m�x2�m�+w�m�� (10.128)

Here the user channels 	h1�m�
� 	h2�m�
 are statistically independent. Suppose that
h1�m� and h2�m� are �� �0�N0Inr �. We operate the uplink in SDMA mode with the
users having the same power P. The background noise w�m� is i.i.d. �� �0�N0Inr �.
An SIC receiver decodes user 1 first, removes its contribution from 	y�m�
 and then
decodes user 2. We would like to assess the effect of channel estimation error of h2

on the performance of user 1.
1. Suppose the users send training symbols using orthogonal multiple access and

they spend 20% of their power on sending the training signal, repeated every Tc

seconds, which is the channel coherence time of the users. What is the mean square
estimation error of h1 and h2?

2. The first step of the SIC receiver is to decode user 1’s information suppressing the
user 2’s signal. Using the linear MMSE filter to suppress the interference, numer-
ically evaluate the average output SINR of the filter due to the channel estimation
error, as compared to that with perfect channel estimation (cf. (8.62)). Plot the
degradation (ratio of the SINR with imperfect and perfect channel estimates) as a
function of the SNR, P/N0, with Tc = 10ms.

3. Argue using the previous calculation that better channel estimates are required to
fully harness the gains of interference suppression. This means that the pilots in
the uplink with SDMA have to be stronger than in the uplink with a single receive
antenna.

Exercise 10.24 In this exercise, we explore the effect of channel measurement error
on the reciprocity relationship between the uplink and the downlink. To isolate the
situation of interest, consider just a single user in the uplink and the downlink (this
is the natural model whenever the multiple access is orthogonal) with only the base-
station having an array of antennas. The uplink channel is (cf. (10.40))

yul�m�= hxul�m�+wul�m�� (10.129)
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with a power constraint of Pul on the uplink transmit symbol xul. The downlink channel
is (cf. (10.39))

ydl�m�= h∗xdl�m�+wdl�m�� (10.130)

with a power constraint of Pdl on the downlink transmit vector xdl.
1. Suppose a training symbol is sent with the full power Pul over one symbol time in

the uplink to estimate the channel h at the base-station. What is the mean square
error in the best estimate ĥ of the channel h?

2. Now suppose the channel estimate ĥ from the previous part is used to beamform
in the downlink, i.e., the transmit signal is

xdl =
ĥ

�ĥ�xdl�

with the power in the data symbol xdl equal to Pdl. What is the average received SNR
in the downlink? The degradation in SNR is measured by the ratio of the average
received SNR with imperfect and perfect channel estimates. For a fixed uplink
SNR, Pul/N0, plot the average degradation for different values of the downlink
SNR, Pdl/N0.

3. Argue using your calculations that using the reciprocal channel estimate in the
downlink is most beneficial when the uplink power Pul is larger than or of the
same order as the downlink power Pdl. Further, there is a huge degradation in
performance when Pdl is much larger than Pul.



Appendix A Detection and estimation in additive
Gaussian noise

A.1 Gaussian random variables

A.1.1 Scalar real Gaussian random variables

A standard Gaussian random variable w takes values over the real line and
has the probability density function

f�w�= 1√
2�

exp
(
−w2

2

)
� w ∈ �� (A.1)

The mean of w is zero and the variance is 1. A (general) Gaussian random
variable x is of the form

x = �w+�� (A.2)

The mean of x is � and the variance is equal to �2. The random variable x is
a one-to-one function of w and thus the probability density function follows
from (A.1) as

f�x�= 1√
2��2

exp
(
− �x−��2

2�2

)
� x ∈ �� (A.3)

Since the random variable is completely characterized by its mean and vari-
ance, we denote x by � ����2�. In particular, the standard Gaussian random
variable is denoted by � �0�1�. The tail of the Gaussian random variable w

Q�a� �= �	w > a
 (A.4)

is plotted in Figure A.1. The plot and the computations Q�1� = 0�159 and
Q�3�= 0�00015 give a sense of how rapidly the tail decays. The tail decays
exponentially fast as evident by the following upper and lower bounds:

1√
2�a

(
1− 1

a2

)
e−a

2/2 <Q�a� < e−a
2/2� a > 1� (A.5)
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Figure A.1 The Q
function.
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An important property of Gaussianity is that it is preserved by linear trans-
formations: linear combinations of independent Gaussian random variables
are still Gaussian. If x1� � � � � xn are independent and xi ∼� ��i��

2
i � (where

the ∼ notation represents the phrase “is distributed as”), then

n∑
i=1

cixi ∼�

(
n∑
i=1

ci�i�
n∑
i=1

c2i �
2
i

)
� (A.6)

A.1.2 Real Gaussian random vectors

A standard Gaussian random vector w is a collection of n independent and
identically distributed (i.i.d.) standard Gaussian random variables w1� � � � �wn.
The vector w = �w1� � � � �wn�

t takes values in the vector space �n. The
probability density function of w follows from (A.1):

f�w�= 1(√
2�

)n exp(−�w�2
2

)
� w ∈ �n� (A.7)

Here �w� �= √∑n
i=1w

2
i , is the Euclidean distance from the origin to w �=

�w1� � � � �wn�
t. Note that the density depends only on the magnitude of the

argument. Since an orthogonal transformation O (i.e., OtO=OOt = I) pre-
serves the magnitude of a vector, we can immediately conclude:

If w is standard Gaussian, then Ow is also standard Gaussian. (A.8)
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What this result says is that w has the same distribution in any orthonor-

 f (a) = f(a′ )
a2

a

a′
a1

Figure A.2 The isobars, i.e.,
level sets for the density f�w� of
the standard Gaussian random
vector, are circles for n= 2.

mal basis. Geometrically, the distribution of w is invariant to rotations and
reflections and hence w does not prefer any specific direction. Figure A.2
illustrates this isotropic behavior of the density of the standard Gaussian ran-
dom vector w. Another conclusion from (A.8) comes from observing that the
rows of matrix O are orthonormal: the projections of the standard Gaussian
random vector in orthogonal directions are independent.
How is the squared magnitude �w�2 distributed? The squared magnitude

is equal to the sum of the square of n i.i.d. zero-mean Gaussian random
variables. In the literature this sum is called a '-squared random variable with
n degrees of freedom and denoted by '2

n . With n= 2, the squared magnitude
has density

f�a�= 1
2
exp

(
−a

2

)
� a≥ 0� (A.9)

and is said to be exponentially distributed. The density of the '2
n random

variable for general n is derived in Exercise A.1.
Gaussian random vectors are defined as linear transformations of a standard

Gaussian random vector plus a constant vector, a natural generalization of the
scalar case (cf. (A.2)):

x = Aw+�� (A.10)

Here A is a matrix representing a linear transformation from �n to �n and
� is a fixed vector in �n. Several implications follow:

1. A standard Gaussian random vector is also Gaussian (with A = I and
�= 0).

2. For any c, a vector in �n, the random variable

ctx ∼� �ct�� ctAAtc�� (A.11)

this follows directly from (A.6). Thus any linear combination of the ele-
ments of a Gaussian random vector is a Gaussian random variable.1 More
generally, any linear transformation of a Gaussian random vector is also
Gaussian.

3. If A is invertible, then the probability density function of x follows directly
from (A.7) and (A.10):

f�x�= 1

�
√
2��

n√
det�AAt�

exp
(
−1
2
�x−��t�AAt�−1�x−��

)
� x ∈�n�

(A.12)

1 This property can be used to define a Gaussian random vector; it is equivalent to our
definition in (A.10).
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Figure A.3 The isobars of a
general Gaussian random
vector are ellipses. They
corresponds to level sets

x � �A−1�x−���2 = c� for
constants c.

f (a) = f (a′)

µ

a2

a1

a
a′

The isobars of this density are ellipses; the circles of the standard Gaussian
vectors being rotated and scaled by A (Figure A.3). The matrix AAt

replaces �2 in the scalar Gaussian random variable (cf. (A.3)) and is equal
to the covariance matrix of x:

K �= ���x−���x−��t�= AAt� (A.13)

For invertible A, the Gaussian random vector is completely characterized
by its mean vector � and its covariance matrix K = AAt, which is a
symmetric and non-negative definite matrix. We make a few inferences
from this observation:
(a) Even though the Gaussian random vector is defined via the matrix A,

only the covariance matrix K=AAt is used to characterize the density
of x. Is this surprising? Consider two matrices A and AO used to define
two Gaussian random vectors as in (A.10). When O is orthogonal, the
covariance matrices of both these random vectors are the same, equal
to AAt; so the two random vectors must be distributed identically. We
can see this directly using our earlier observation (see (A.8)) that Ow
has the same distribution as w and thus AOw has the same distribution
as Aw.

(b) A Gaussian random vector is composed of independent Gaussian
random variables exactly when the covariance matrix K is diagonal,
i.e., the component random variables are uncorrelated. Such a random
vector is also called a white Gaussian random vector.

(c) When the covariance matrix K is equal to identity, i.e., the component
random variables are uncorrelated and have the same unit variance,
then the Gaussian random vector reduces to the standard Gaussian
random vector.

4. Now suppose that A is not invertible. Then Aw maps the standard Gaus-
sian random vector w into a subspace of dimension less than n, and the
density of Aw is equal to zero outside that subspace and impulsive inside.
This means that some components of Aw can be expressed as linear
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combinations of the others. To avoid messy notation, we can focus only
on those components of Aw that are linearly independent and represent
them as a lower dimensional vector x̃, and represent the other components
of Aw as (deterministic) linear combinations of the components of x̃. By
this strategem, we can always take the covariance K to be invertible.

In general, a Gaussian random vector is completely characterized by its
mean � and by the covariance matrix K; we denote the random vector by
� ���K�.

A.1.3 Complex Gaussian random vectors

So far we have considered real random vectors. In this book, we are primarily
interested in complex random vectors; these are of the form x = xR + jxI
where xR�xI are real random vectors. Complex Gaussian random vectors are
ones in which �xR�xI�

t is a real Gaussian random vector. The distribution is
completely specified by the mean and covariance matrix of the real vector
�xR�xI�

t. Exercise A.3 shows that the same information is contained in the
mean �, the covariance matrix K, and the pseudo-covariance matrix J of the
complex vector x, where

� �= ��x�� (A.14)

K �= ���x−���x−��∗�� (A.15)

J �= ���x−���x−��t�� (A.16)

Here, A∗ is the transpose of the matrix A with each element replaced by its
complex conjugate, and At is just the transpose of A. Note that in general the
covariance matrix K of the complex random vector x by itself is not enough
to specify the full second-order statistics of x. Indeed, since K is Hermitian,
i.e., K = K∗, the diagonal elements are real and the elements in the lower and
upper triangles are complex conjugates of each other. Hence it is specified
by n2 real parameters, where n is the (complex) dimension of x. On the other
hand, the full second-order statistics of x are specified by the n�2n+1� real
parameters in the symmetric 2n×2n covariance matrix of �xR�xI�

t.
For reasons explained in Chapter 2, in wireless communication we are

almost exclusively interested in complex random vectors that have the circular
symmetry property:

x is circular symmetric if e j�x has the same distribution of x for any ��

(A.17)

For a circular symmetric complex random vector x,

��x�= ��e j�x�= e j���x� (A.18)
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for any �; hence the mean �= 0. Moreover

��xxt�= ��e j�x�e j�x�t�= e j2���xxt� (A.19)

for any �; hence the pseudo-covariance matrix J is also zero. Thus, the
covariance matrix K fully specifies the first- and second-order statistics of
a circular symmetric random vector. And if the complex random vector is
also Gaussian, K in fact specifies its entire statistics. A circular symmetric
Gaussian random vector with covariance matrix K is denoted as �� (0,K).

Some special cases:

1. A complex Gaussian random variable w = wR + jwI with i.i.d. zero-mean
Gaussian real and imaginary components is circular symmetric. The circu-
lar symmetry of w is in fact a restatement of the rotational invariance of the
real Gaussian random vector �wR�wI�

t already observed (cf. (A.8)). In fact,
a circular symmetric Gaussian random variable must have i.i.d. zero-mean
real and imaginary components (Exercise A.5). The statistics are fully
specified by the variance �2 �=���w�2�, and the complex random variable
is denoted as �� �0��2�. (Note that, in contrast, the statistics of a general
complex Gaussian random variable are specified by five real parameters:
the means and the variances of the real and imaginary components and
their correlation.) The phase of w is uniform over the range �0�2�� and
independent of the magnitude �w�, which has a density given by

f�r�= r

�2
exp

{−r2
2�2

}
� r ≥ 0 (A.20)

and is known as a Rayleigh random variable. The square of the magnitude,
i.e., w2

1 +w2
2, is '

2
2 , i.e., exponentially distributed, cf. (A.9). A random

variable distributed as �� �0�1� is said to be standard, with the real and
imaginary parts each having variance 1/2.

2. A collection of n i.i.d. �� �0�1� random variables forms a standard circular
symmetric Gaussian random vector w and is denoted by �� �0� I�. The
density function of w can be explicitly written as, following from (A.7),

f�w�= 1
�n

exp�−�w�2�� w ∈ �n� (A.21)

As in the case of a real Gaussian random vector � �0� I� (cf. (A.8)), we
have the property that

Uw has the same distribution as w� (A.22)

for any complex orthogonal matrix U (such a matrix is called a unitary
matrix and is characterized by the property U∗U= I). The property (A.22)
is the complex extension of the isotropic property of the real standard Gaus-
sian random vector (cf. (A.8)). Note the distinction between the circular
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symmetry (A.17) and the isotropic (A.22) properties: the latter is in general
much stronger than the former except that they coincide when w is scalar.

The square of the magnitude of w, as in the real case, is a '2
2n random

variable.
3. If w is �� �0� I� and A is a complex matrix, then x = Aw is also circular

symmetric Gaussian, with covariance matrix K = AA∗, i.e., �� �0�K�.
Conversely, any circular symmetric Gaussian random vector with covari-
ance matrixK can be written as a linearly transformed version of a standard
circular symmetric random vector. If A is invertible, the density function
of x can be explicitly calculated via (A.21), as in (A.12),

f�x�= 1
�n detK

exp
(−x∗K−1x

)
� x ∈ �n� (A.23)

When A is not invertible, the earlier discussion for real random vectors
applies here as well: we focus only on the linearly independent components
of x, and treat the other components as deterministic linear combinations
of these. This allows us to work with a compact notation.

Summary A.1 Complex Gaussian random vectors

• An n-dimensional complex Gaussian random vector x has real and imag-
inary components which form a 2n-dimensional real Gaussian random
vector.

• x is circular symmetric if for any �,

e j�x ∼ x� (A.24)

• A circular symmetric Gaussian x has zero mean and its statistics are
fully specified by the covariance matrix K �= ��xx∗�. It is denoted by
�� �0�K�.

• The scalar complex random variable w ∼ �� �0�1� has i.i.d. real and
imaginary components each distributed as � �0�1/2�. The phase of w is
uniformly distributed in �0�2�� and independent of its magnitude �w�,
which is Rayleigh distributed:

f�r�= r exp
(
− r2

2

)
� r ≥ 0� (A.25)

�w�2 is exponentially distributed.
• If the random vector w∼ �� �0� I�, then its real and imaginary compo-

nents are all i.i.d., and w is isotropic, i.e., for any unitary matrix U,

Uw ∼ w� (A.26)
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Equivalently, the projections of w onto orthogonal directions are i.i.d.
�� �0�1�. The squared magnitude �w�2 is distributed as '2

2n with
mean n.

• If x ∼ �� �0�K� and K is invertible, then the density of x is

f�x�= 1
�n detK

exp�−x∗K−1x�� x ∈ �n� (A.27)

A.2 Detection in Gaussian noise

A.2.1 Scalar detection

Consider the real additive Gaussian noise channel:

y = u+w� (A.28)

where the transmit symbol u is equally likely to be uA or uB and w ∼
� �0�N0/2� is real Gaussian noise. The detection problem involves making a
decision on whether uA or uB was transmitted based on the observation y. The
optimal detector, with the least probability of making an erroneous decision,
chooses the symbol that is most likely to have been transmitted given the
received signal y, i.e., uA is chosen if

�	u= uA�y
≥ �	u= uB�y
� (A.29)

Since the two symbols uA, uB are equally likely to have been transmitted,
Bayes’ rule lets us simplify this to the maximum likelihood (ML) receiver,
which chooses the transmit symbol that makes the observation y most likely.
Conditioned on u = ui, the received signal y ∼ � �ui�N0/2�� i = A�B, and
the decision rule is to choose uA if

1√
�N0

exp
(
− �y−uA�

2

N0

)
≥ 1√

�N0

exp
(
− �y−uB�

2

N0

)
� (A.30)

and uB otherwise. The ML rule in (A.30) further simplifies: choose uA when

�y−uA�< �y−uB�� (A.31)

The rule is illustrated in Figure A.4 and can be interpreted as corresponding to
choosing the nearest neighboring transmit symbol. The probability of making
an error, the same whether the symbol uA or uB was transmitted, is equal to

�

{
y <

uA+uB
2

�u= uA

}
= �

{
w >

�uA−uB�
2

}
=Q

(
�uA−uB�
2
√
N0/2

)
� (A.32)
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Figure A.4 The ML rule is to
choose the symbol that is
closest to the received symbol.

y

If y < (uA+uB)/2
choose uA

If y > (uA + uB) / 2
choose uB

uA
2

uB
(uA+uB)

�{y |x = uA} �{y |x = uB}

Thus, the error probability only depends on the distance between the two
transmit symbols uA�uB.

A.2.2 Detection in a vector space

Now consider detecting the transmit vector u equally likely to be uA or uB
(both elements of �n). The received vector is

y= u+w� (A.33)

and w ∼ � �0� �N0/2�I�. Analogous to (A.30), the ML decision rule is to
choose uA if

1
��N0�

n/2
exp

(
−�y−uA�2

N0

)
≥ 1
��N0�

n/2
exp

(
−�y−uB�2

N0

)
� (A.34)

which simplifies to, analogous to (A.31),

�y−uA�< �y−uB�� (A.35)

the same nearest neighbor rule. By the isotropic property of the Gaussian
noise, we expect the error probability to be the same for both the transmit
symbols uA�uB. Suppose uA is transmitted, so y = uA +w. Then an error
occurs when the event in (A.35) does not occur, i.e., �w�> �w+uA−uB�.
So, the error probability is equal to

�	�w�2 > �w+uA−uB�2
= �

{
�uA−uB�

tw <−�uA−uB�2
2

}
� (A.36)
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Geometrically, this says that the decision regions are the two sides of
the hyperplane perpendicular to the vector uB − uA, and an error occurs
when the received vector lies on the side of the hyperplane opposite to the
transmit vector (Figure A.5). We know from (A.11) that �uA − uB�

tw ∼
� �0��uA−uB�2N0/2�. Thus the error probability in (A.36) can be written in
compact notation as

Q

(
�uA−uB�
2
√
N0/2

)
� (A.37)

The quantity �uA−uB�/2 is the distance from each of the vectors uA�uB to
the decision boundary. Comparing the error probability in (A.37) with that
in the scalar case (cf. (A.32)), we see that the the error probability depends
only on the Euclidean distance between uA and uB and not on the specific
orientations and magnitudes of uA and uB.

An alternative view
To see how we could have reduced the vector detection problem to the scalar
one, consider a small change in the way we think of the transmit vector
u ∈ 	uA�uB
. We can write the transmit vector u as

u= x�uA−uB�+
1
2
�uA+uB�� (A.38)

where the information is in the scalar x, which is equally likely to be ±1/2.
Substituting (A.38) in (A.33), we can subtract the constant vector �uA+uB�/2
from the received signal y to arrive at

y− 1
2
�uA+uB�= x�uA−uB�+w� (A.39)

Figure A.5 The decision region
for the nearest neighbor rule is
partitioned by the hyperplane
perpendicular to uB −uA and
halfway between uA and uB .

if y ∈UA
choose uA

if y ∈UB
choose uB

uA

uB

UA

UB

y2

y1



506 Appendix A Detection and estimation in additive Gaussian noise

We observe that the transmit symbol (a scalar x) is only in a specific direction:

v �= �uA−uB�/�uA−uB�� (A.40)

The components of the received vector y in the directions orthogonal to v
contain purely noise, and, due to the isotropic property of w, the noise in
these directions is also independent of the noise in the signal direction. This
means that the components of the received vector in these directions are
irrrelevant for detection. Therefore projecting the received vector along the
signal direction v provides all the necessary information for detection:

ỹ �= vt
(
y− 1

2
�uA+uB�

)
� (A.41)

We have thus reduced the vector detection problem to the scalar one.
Figure A.6 summarizes the situation.
More formally, we are viewing the received vector in a different orthonor-

mal basis: the first direction is that given by v, and the other directions are
orthogonal to each other and to the first one. In other words, we form an
orthogonal matrix O whose first row is v, and the other rows are orthogonal
to each other and to the first one and have unit norm. Then

O
(
y− 1

2
�uA+uB�

)
=

⎡⎢⎢⎢⎣
x�uA−uB�

0
���

0

⎤⎥⎥⎥⎦+Ow� (A.42)

Since Ow ∼� �0� �N0/2�I� (cf. (A.8)), this means that all but the first com-
ponent of the vector O�y− 1

2 �uA + uB�� are independent of the transmit
symbol x and the noise in the first component. Thus it suffices to make a
decision on the transmit symbol x, using only the first component, which is
precisely (A.41).

Figure A.6 Projecting the
received vector y onto the
signal direction v reduces the
vector detection problem to
the scalar one.

y

ỹ

uA

uB

UA

UB

y2

y1
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This important observation can be summarized:

1. In technical jargon, the scalar ỹ in (A.41) is called a sufficient statistic of
the received vector y to detect the transmit symbol u.

2. The sufficient statistic ỹ is a projection of the received signal in the signal
direction v: in the literature on communication theory, this operation is
called a matched filter; the linear filter at the receiver is “matched” to the
direction of the transmit signal.

3. This argument explains why the error probability depends on uA and uB
only through the distance between them: the noise is isotropic and the
entire detection problem is rotationally invariant.

We now arrive at a scalar detection problem:

ỹ = x�uA−uB�+w� (A.43)

where w, the first component of Ow is � �0�N0/2� and independent of the
transmit symbol u. The effective distance between the two constellation points
is �uA−uB�. The error probability is, from (A.32),

Q

(
�uA−uB�
2
√
N0/2

)
� (A.44)

the same as that arrived at in (A.37), via a direct calculation.
The above argument for binary detection generalizes naturally to the case

when the transmit vector can be one of M vectors u1� � � � �uM . The projec-
tion of y onto the subspace spanned by u1� � � � �uM is a sufficient statistic
for the detection problem. In the special case when the vectors u1� � � � �uM
are collinear, i.e., ui = hxi for some vector h (for example, when we are
transmitting from a PAM constellation), then a projection onto the direction
h provides a sufficient statistic.

A.2.3 Detection in a complex vector space

Consider detecting the transmit symbol u, equally likely to be one of two
complex vectors uA�uB in additive standard complex Gaussian noise. The
received complex vector is

y= u+w� (A.45)

where w ∼ �� �0�N0I�. We can proceed as in the real case. Write

u= x�uA−uB�+
1
2
�uA+uB�� (A.46)
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The signal is in the direction

v �= �uA−uB�/�uA−uB�� (A.47)

Projection of the received vector y onto v provides a (complex) scalar suffi-
cient statistic:

ỹ �= v∗
(
y− 1

2
�uA+uB�

)
= x�uA−uB�+w� (A.48)

where w∼ �� �0�N0�. Note that since x is real (±1/2), we can further extract
a sufficient statistic by looking only at the real component of ỹ:

��ỹ�= x�uA−uB�+��w�� (A.49)

where ��w�∼ N�0�N0/2�. The error probability is exactly as in (A.44):

Q

(
�uA−uB�
2
√
N0/2

)
� (A.50)

Note that although uA and uB are complex vectors, the transmit vectors

x�uA−uB�+
1
2
�uA+uB�� x = ±1� (A.51)

lie in a subspace of one real dimension and hence we can extract a real
sufficient statistic. If there are more than two possible transmit vectors and
they are of the form hxi, where xi is complex valued, h∗y is still a sufficient
statistic but ��h∗y� is sufficient only if x is real (for example, when we are
transmitting a PAM constellation).
The main results of our discussion are summarized below.

Summary A.2 Vector detection in complex Gaussian noise

Binary signals
The transmit vector u is either uA or uB and we wish to detect u from
received vector

y= u+w� (A.52)

where w∼ �� �0�N0I�. The ML detector picks the transmit vector closest
to y and the error probability is

Q

(
�uA−uB�
2
√
N0/2

)
� (A.53)
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Collinear signals
The transmit symbol x is equally likely to take one of a finite set of values
in � (the constellation points) and the received vector is

y= hx+w� (A.54)

where h is a fixed vector.

Projecting y onto the unit vector v �= h/�h� yields a scalar sufficient
statistic:

v∗y= �h�x+w� (A.55)

Here w ∼ �� �0�N0�.

If further the constellation is real-valued, then

��v∗y�= �h�x+��w� (A.56)

is sufficient. Here ��w�∼� �0�N0/2�.

With antipodal signalling, x = ±a, the ML error probability is simply

Q

(
a�h�√
N0/2

)
� (A.57)

Via a translation, the binary signal detection problem in the first part of
the summary can be reduced to this antipodal signalling scenario.

A.3 Estimation in Gaussian noise

A.3.1 Scalar estimation

Consider a zero-mean real signal x embedded in independent additive real
Gaussian noise (w ∼� �0�N0/2�):

y = x+w� (A.58)

Suppose we wish to come up with an estimate x̂ of x and we use the mean
squared error (MSE) to evaluate the performance:

MSE �= ���x− x̂�2�� (A.59)
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where the averaging is over the randomness of both the signal x and the
noise w. This problem is quite different from the detection problem studied
in Section A.2. The estimate that yields the smallest mean squared error is
the classical conditional mean:

x̂ = ��x�y�� (A.60)

which has the important orthogonality property: the error is independent of
the observation. In particular, this implies that

���x̂−x�y�= 0� (A.61)

The orthogonality principle is a classical result and all standard textbooks
dealing with probability theory and random variables treat this material.
In general, the conditional mean ��x�y� is some complicated non-linear

function of y. To simplify the analysis, one studies the restricted class of linear
estimates that minimize the MSE. This restriction is without loss of generality
in the important case when x is a Gaussian random variable because, in this
case, the conditional mean operator is actually linear.

Since x is zero mean, linear estimates are of the form x̂= cy for some real
number c. What is the best coefficient c? This can be derived directly or via
using the orthogonality principle (cf. (A.61)):

c = ��x2�

��x2�+N0/2
� (A.62)

Intuitively, we are weighting the received signal y by the transmitted sig-
nal energy as a fraction of the received signal energy. The corresponding
minimum mean squared error (MMSE) is

MMSE = ��x2�N0/2
��x2�+N0/2

� (A.63)

A.3.2 Estimation in a vector space

Now consider estimating x in a vector space:

y= hx+w� (A.64)

Here x and w∼� �0� �N0/2�I� are independent and h is a fixed vector in �n.
We have seen that the projection of y in the direction of h,

ỹ = hty
�h�2 = x+w� (A.65)

is a sufficient statistic: the projections of y in directions orthogonal to h
are independent of both the signal x and w, the noise in the direction
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of h. Thus we can convert this problem to a scalar one: estimate x from
ỹ, with w ∼ � �0�N0/�2�h�2��. Now this problem is identical to the scalar
estimation problem in (A.58) with the energy of the noise w suppressed by a
factor of �h�2. The best linear estimate of x is thus, as in (A.62),

��x2��h�2
��x2��h�2+N0/2

ỹ� (A.66)

We can combine the sufficient statistic calculation in (A.65) and the scalar
linear estimate in (A.66) to arrive at the best linear estimate x̂ = cty of x
from y:

c = ��x2�

��x2��h�2+N0/2
h� (A.67)

The corresponding minimum mean squared error is

MMSE = ��x2�N0/2
��x2��h�2+N0/2

� (A.68)

An alternative performance measure to evaluate linear estimators is the
signal-to-noise ratio (SNR) defined as the ratio of the signal energy in the
estimate to the noise energy:

SNR �= �cth�2��x2�
�c�2N0/2

� (A.69)

That the matched filter (c = h) yields the maximal SNR at the output of any
linear filter is a classical result in communication theory (and is studied in
all standard textbooks on the topic). It follows directly from the Cauchy–
Schwartz inequality:

�cth�2 ≤ �c�2 �h�2� (A.70)

with equality exactly when c= h. The fact that the matched filter maximizes
the SNR and when appropriately scaled yields the MMSE is not coincidental;
this is studied in greater detail in Exercise A.8.

A.3.3 Estimation in a complex vector space

The extension of our discussion to the complex field is natural. Let us
first consider scalar complex estimation, an extension of the basic real setup
in (A.58):

y = x+w� (A.71)
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where w ∼ �� �0�N0� is independent of the complex zero-mean transmitted
signal x. We are interested in a linear estimate x̂ = c∗y, for some complex
constant c. The performance metric is

MSE = ���x− x̂�2�� (A.72)

The best linear estimate x̂ = c∗y can be directly calculated to be, as an
extension of (A.62),

c = ���x�2�
���x�2�+N0

� (A.73)

The corresponding minimum MSE is

MMSE = ���x�2�N0

���x�2�+N0

� (A.74)

The orthogonality principle (cf. (A.61)) for the complex case is extended to:

���x̂−x�y∗�= 0� (A.75)

The linear estimate in (A.73) is easily seen to satisfy (A.75).
Now let us consider estimating the scalar complex zero mean x in a complex

vector space:

y= hx+w� (A.76)

with w ∼ �� �0�N0I� independent of x and h a fixed vector in �n. The
projection of y in the direction of h is a sufficient statistic and we can reduce
the vector estimation problem to a scalar one: estimate x from

ỹ = h∗y
�h�2 = x+w� (A.77)

where w ∼ �� �0�N0/�h�2�.
Thus the best linear estimator is, as an extension of (A.67),

c = ���x�2�
���x�2��h�2+N0

h� (A.78)

The corresponding minimum MSE is, as an extension of (A.68),

MMSE = ��x2�N0

��x2��h�2+N0

� (A.79)
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Summary A.3 Mean square estimation in a complex
vector space

The linear estimate with the smallest mean squared error of x from

y = x+w� (A.80)

with w ∼ �� �0�N0�, is

x̂ = ���x�2�
���x�2�+N0

y� (A.81)

To estimate x from

y= hx+w� (A.82)

where w ∼ �� �0�N0I�,

h∗y (A.83)

is a sufficient statistic, reducing the vector estimation problem to the
scalar one.

The best linear estimator is

x̂ = ���x�2�
���x�2��h�2+N0

h∗y� (A.84)

The corresponding minimum mean squared error (MMSE) is:

MMSE = ���x�2�N0

���x�2��h�2+N0

� (A.85)

In the special case when x∼ �� ����2�, this estimator yields the minimum
mean squared error among all estimators, linear or non-linear.

A.4 Exercises

Exercise A.1 Consider the n-dimensional standard Gaussian random vector
w ∼ � �0� In� and its squared magnitude �w�2.
1. With n= 1, show that the density of �w�2 is

f1�a�=
1√
2�a

exp
(
−a

2

)
� a≥ 0� (A.86)
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2. For any n, show that the density of �w�2 (denoted by fn�·�) satisfies the recursive
relation:

fn+2�a�=
a

n
fn�a�� a≥ 0� (A.87)

3. Using the formulas for the densities for n= 1 and 2 ((A.86) and (A.9), respectively)
and the recurisve relation in (A.87) determine the density of �w�2 for n≥ 3.

Exercise A.2 Let 	w�t�
 be white Gaussian noise with power spectral density N0/2.
Let s1� � � � � sM be a set of finite orthonormal waveforms (i.e., orthogonal and unit
energy), and define zi =

∫ �
−�w�t�si�t�dt. Find the joint distribution of z. Hint: Recall

the isotropic property of the normalized Gaussian random vector (see (A.8)).

Exercise A.3 Consider a complex random vector x.
1. Verify that the second-order statistics of x (i.e., the covariance matrix of the real

representation ���x��	�x��t) can be completely specified by the covariance and
pseudo-covariance matrices of x, defined in (A.15) and (A.16) respectively.

2. In the case where x is circular symmetric, express the covariance matrix
���x��	�x��t in terms of the covariance matrix of the complex vector x only.

Exercise A.4 Consider a complex Gaussian random vector x.
1. Show that a necessary and sufficient condition for x to be circular symmetric is

that the mean � and the pseudo-covariance matrix J are zero.
2. Now suppose the relationship between the covariance matrix of ���x��	�x��t and

the covariance matrix of x in part (2) of Exercise A.3 holds. Can we conclude that
x is circular symmetric?

Exercise A.5 Show that a circular symmetric complex Gaussian random variable must
have i.i.d. real and imaginary components.

Exercise A.6 Let x be an n-dimensional i.i.d. complex Gaussian random vector, with
the real and imaginary parts distributed as � �0�Kx� where Kx is a 2×2 covariance
matrix. Suppose U is a unitary matrix (i.e., U∗U = I). Identify the conditions on Kx

under which Ux has the same distribution as x.

Exercise A.7 Let z be an n-dimensional i.i.d. complex Gaussian random vector, with
the real and imaginary parts distributed as � �0�Kx� where Kx is a 2×2 covariance
matrix. We wish to detect a scalar x, equally likely to be ±1 from

y= hx+ z� (A.88)

where x and z are independent and h is a fixed vector in �n. Identify the conditions
on Kx under which the scalar h∗y is a sufficient statistic to detect x from y.

Exercise A.8 Consider estimating the real zero-mean scalar x from:

y= hx+w� (A.89)

where w ∼� �0�N0/2I� is uncorrelated with x and h is a fixed vector in �n.
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1. Consider the scaled linear estimate cty (with the normalization �c� = 1):

x̂ �= acty= �acth� x+actz� (A.90)

Show that the constant a that minimizes the mean square error (���x− x̂�2�) is
equal to

��x2��cth�2
��x2��cth�2 +N0/2

� (A.91)

2. Calculate the minimal mean square error (denoted by MMSE) of the linear estimate
in (A.90) (by using the value of a in (A.91). Show that

��x2�

MMSE
= 1+SNR �= 1+ ��x2��cth�2

N0/2
� (A.92)

For every fixed linear estimator c, this shows the relationship between the correspond-
ing SNR and MMSE (of an appropriately scaled estimate). In particular, this relation
holds when we optimize over all c leading to the best linear estimator.



Appendix B Information theory from first
principles

This appendix discusses the information theory behind the capacity expres-
sions used in the book. Section 8.3.4 is the only part of the book that supposes
an understanding of the material in this appendix. More in-depth and broader
expositions of information theory can be found in standard texts such as [26]
and [43].

B.1 Discrete memoryless channels

Although the transmitted and received signals are continuous-valued in most
of the channels we considered in this book, the heart of the communication
problem is discrete in nature: the transmitter sends one out of a finite num-
ber of codewords and the receiver would like to figure out which codeword
is transmitted. Thus, to focus on the essence of the problem, we first con-
sider channels with discrete input and output, so-called discrete memoryless
channels (DMCs).

Both the input x�m� and the output y�m� of a DMC lie in finite sets �
and 
 respectively. (These sets are called the input and output alphabets
of the channel respectively.) The statistics of the channel are described by
conditional probabilities 	p�j�i�
i∈��j∈
 . These are also called transition prob-
abilities. Given an input sequence x = �x�1�� � � � � x�N��, the probability of
observing an output sequence y= �y�1�� � � � � y�N�� is given by1

p�y�x�=
N∏

m=1

p�y�m��x�m��� (B.1)

The interpretation is that the channel noise corrupts the input symbols
independently (hence the term memoryless).

1 This formula is only valid when there is no feedback from the receiver to the transmitter,
i.e., the input is not a function of past outputs. This we assume throughout.
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Example B.1 Binary symmetric channel
The binary symmetric channel has binary input and binary output �� =

 = 	0�1
�. The transition probabilities are p�0�1�= p�1�0�= ��p�0�0�=
p�1�1� = 1− �. A 0 and a 1 are both flipped with probability �. See
Figure B.1(a).

Example B.2 Binary erasure channel
The binary erasure channel has binary input and ternary output �� =
	0�1
�
 = 	0�1� e
�. The transition probabilities are p�0�0� = p�1�1� =
1− ��p�e�0� = p�e�1� = �. Here, symbols cannot be flipped but can be
erased. See Figure B.1(b).

An abstraction of the communication system is shown in Figure B.2. The
sender has one out of several equally likely messages it wants to transmit
to the receiver. To convey the information, it uses a codebook � of block
length N and size �� �, where � = 	x1� � � � �x�� �
 and xi are the codewords. To
transmit the ith message, the codeword xi is sent across the noisy channel.
Based on the received vector y, the decoder generates an estimate î of the
correct message. The error probability is pe = �	î 
= i
. We will assume that
the maximum likelihood (ML) decoder is used, since it minimizes the error
probability for a given code. Since we are transmitting one of �� � messages,
the number of bits conveyed is log �� �. Since the block length of the code
is N , the rate of the code is R = 1

N
log �� � bits per unit time. The data rate

R and the ML error probability pe are the two key performance measures of
a code.

R= 1
N
log �� ��

pe = �	î 
= i
�

(B.2)

(B.3)

Figure B.1 Examples of
discrete memoryless channels:
(a) binary symmetric channel;
(b) binary erasure channel. (a)
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îDecoder
Channel
p(y | x)

xi = (xi[1], . . . , xi[N]) y = (y[1], . . . , y[N])

Encoder

Message
i {0 , 1, . . . , |C |                                                                                 – 1}∋

Information is said to be communicated reliably at rate R if for everyFigure B.2 Abstraction of a
communication system à la
Shannon.

� > 0, one can find a code of rate R and block length N such that the error
probability pe < �. The capacity C of the channel is the maximum rate for
which reliable communication is possible.
Note that the key feature of this definition is that one is allowed to code

over arbitrarily large block length N . Since there is noise in the channel, it is
clear that the error probability cannot be made arbitrarily small if the block
length is fixed a priori. (Recall the AWGN example in Section 5.1.) Only
when the code is over long block length is there hope that one can rely on
some kind of law of large numbers to average out the random effect of the
noise. Still, it is not clear a priori whether a non-zero reliable information rate
can be achieved in general.
Shannon showed not only that C> 0 for most channels of interest but also

gave a simple way to compute C as a function of 	p�y�x�
. To explain this
we have to first define a few statistical measures.

B.2 Entropy, conditional entropy and mutual information

Let x be a discrete random variable taking on values in � and with a
probability mass function px. Define the entropy of x to be2

H�x� �=∑
i∈�

px�i� log�1/px�i��� (B.4)

This can be interpreted as a measure of the amount of uncertainty associated
with the random variable x. The entropy H�x� is always non-negative and
equal to zero if and only if x is deterministic. If x can take on K values, then
it can be shown that the entropy is maximized when x is uniformly distributed
on these K values, in which case H�x�= logK (see Exercise B.1).

Example B.3 Binary entropy
The entropy of a binary-valued random variable x which takes on the
values with probabilities p and 1−p is

H�p� �= −p logp− �1−p� log�1−p�� (B.5)

2 In this book, all logarithms are taken to the base 2 unless specified otherwise.
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Figure B.3 The binary entropy function.

The function H�·� is called the binary entropy function, and is plotted in
Figure B.3. It attains its maximum value of 1 at p= 1/2, and is zero when
p = 0 or p = 1. Note that we never mentioned the actual values x takes
on; the amount of uncertainty depends only on the probabilities.

Let us now consider two random variables x and y. The joint entropy of x
and y is defined to be

H�x� y� �= ∑
i∈��j∈


px�y�i� j� log�1/px�y�i� j��� (B.6)

The entropy of x conditional on y = j is naturally defined to be

H�x�y = j� �=∑
i∈�

px�y�i�j� log�1/px�y�i�j��� (B.7)

This can be interpreted as the amount of uncertainty left in x after observing
that y = j. The conditional entropy of x given y is the expectation of this
quantity, averaged over all possible values of y:

H�x�y� �=∑
j∈


py�j�H�x�y = j�= ∑
i∈��j∈


px�y�i� j� log�1/px�y�i�j��� (B.8)
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The quantity H�x�y� can be interpreted as the average amount of uncertainty
left in x after observing y. Note that

H�x� y�=H�x�+H�y�x�=H�y�+H�x�y�� (B.9)

This has a natural interpretation: the total uncertainty in x and y is the sum
of the uncertainty in x plus the uncertainty in y conditional on x. This is
called the chain rule for entropies. In particular, if x and y are independent,
H�x�y� = H�x� and hence H�x� y� = H�x�+H�y�. One would expect that
conditioning reduces uncertainty, and in fact it can be shown that

H�x�y�≤H�x�� (B.10)

with equality if and only if x and y are independent. (See Exercise B.2.) Hence,

H�x� y�=H�x�+H�y�x�≤H�x�+H�y�� (B.11)

with equality if and only if x and y are independent.
The quantity H�x�−H�x�y� is of special significance to the communication

problem at hand. SinceH�x� is the amount of uncertainty in x before observing
y, this quantity can be interpreted as the reduction in uncertainty of x from
the observation of y, i.e., the amount of information in y about x. Similarly,
H�y�−H�y�x� can be interpreted as the reduction in uncertainty of y from
the observation of x. Note that

H�y�−H�y�x�=H�y�+H�x�−H�x� y�=H�x�−H�x�y�� (B.12)

So if one defines

I�x� y� �=H�y�−H�y�x�=H�x�−H�x�y�� (B.13)

then this quantity is symmetric in the random variables x and y. I�x� y� is
called the mutual information between x and y. A consequence of (B.10) is
that the mutual information I�x� y� is a non-negative quantity, and equal to
zero if and only if x and y are independent.

We have defined the mutual information between scalar random vari-
ables, but the definition extends naturally to random vectors. For example,
I�x1� x2� y� should be interpreted as the mutual information between the ran-
dom vector �x1� x2� and y, i.e., I�x1� x2� y�=H�x1� x2�−H�x1� x2�y�. One can
also define a notion of conditional mutual information:

I�x� y�z� �=H�x�z�−H�x�y� z�� (B.14)

Note that since

H�x�z�=∑
k

pz�k�H�x�z= k�� (B.15)
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and

H�x�y� z�=∑
k

pz�k�H�x�y� z= k�� (B.16)

it follows that

I�x� y�z�=∑
k

pz�k�I�x� y�z= k�� (B.17)

Given three random variables x1� x2 and y, observe that

I�x1� x2� y� = H�x1� x2�−H�x1� x2�y�
= H�x1�+H�x2�x1�− �H�x1�y�+H�x2�x1� y��
= I�x1� y�+ I�x2� y�x1��

This is the chain rule for mutual information:

I�x1� x2� y�= I�x1� y�+ I�x2� y�x1�� (B.18)

In words: the information that x1 and x2 jointly provide about y is equal to the
sum of the information x1 provides about y plus the additional information x2
provides about y after observing x1. This fact is very useful in Chapters 7 to 10.

B.3 Noisy channel coding theorem

Let us now go back to the communication problem shown in Figure B.2.
We convey one of �� � equally likely messages by mapping it to its N -length
codeword in the code � = 	x1� � � � �x�� �
. The input to the channel is then
an N -dimensional random vector x, uniformly distributed on the codewords
of � . The output of the channel is another N -dimensional vector y.

B.3.1 Reliable communication and conditional entropy

To decode the transmitted message correctly with high probability, it is clear
that the conditional entropy H�x�y� has to be close to zero3. Otherwise, there
is too much uncertainty in the input, given the output, to figure out what the
right message is. Now,

H�x�y�=H�x�− I�x�y�� (B.19)

3 This statement can be made precise in the regime of large block lengths using Faro’s
inequality.
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i.e., the uncertainty in x subtracting the reduction in uncertainty in x by
observing y. The entropy H�x� is equal to log �� � = NR, where R is the data
rate. For reliable communication, H�x�y�≈ 0, which implies

R≈ 1
N
I�x�y�� (B.20)

Intuitively: for reliable communication, the rate of flow of mutual information
across the channel should match the rate at which information is generated.
Now, the mutual information depends on the distribution of the random input
x, and this distribution is in turn a function of the code � . By optimizing over
all codes, we get an upper bound on the reliable rate of communication:

max
�

1
N
I�x�y�� (B.21)

B.3.2 A simple upper bound

The optimization problem (B.21) is a high-dimensional combinatorial one
and is difficult to solve. Observe that since the input vector x is uniformly
distributed on the codewords of � , the optimization in (B.21) is over only a
subset of possible input distributions. We can derive a further upper bound
by relaxing the feasible set and allowing the optimization to be over all input
distributions:

C̄ �=max
px

1
N
I�x�y�� (B.22)

Now,

I�x�y� = H�y�−H�y�x� (B.23)

≤
N∑

m=1

H�y�m��−H�y�x� (B.24)

=
N∑

m=1

H�y�m��−
N∑

m=1

H�y�m��x�m�� (B.25)

=
N∑

m=1

I�x�m�� y�m��� (B.26)

The inequality in (B.24) follows from (B.11) and the equality in (B.25) comes
from the memoryless property of the channel. Equality in (B.24) is attained
if the output symbols are independent over time, and one way to achieve this
is to make the inputs independent over time. Hence,

C̄ = 1
N

N∑
m=1

max
px�m�

I�x�m�� y�m��=max
px�1�

I�x�1�� y�1��� (B.27)
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Thus, the optimizing problem over input distributions on the N -length
block reduces to an optimization problem over input distributions on single
symbols.

B.3.3 Achieving the upper bound

To achieve this upper bound C̄, one has to find a code whose mutual infor-
mation I�x�y�/N per symbol is close to C̄ and such that (B.20) is satisfied.
A priori it is unclear if such a code exists at all. The cornerstone result of
information theory, due to Shannon, is that indeed such codes exist if the
block length N is chosen sufficiently large.

Theorem B.1 (Noisy channel coding theorem [109]) Consider a discrete
memoryless channel with input symbol x and output symbol y. The capacity
of the channel is

C =max
px

I�x� y�� (B.28)

Shannon’s proof of the existence of optimal codes is through a random-
ization argument. Given any symbol input distribution px, we can randomly
generate a code � with rate R by choosing each symbol in each codeword
independently according to px. The main result is that with the rate as in
(B.20), the code with large block length N satisfies, with high probability,

1
N
I�x�y�≈ I�x� y�� (B.29)

In other words, reliable communication is possible at the rate of I�x� y�.
In particular, by choosing codewords according to the distribution p∗

x that
maximizes I�x� y�, the maximum reliable rate is achieved. The smaller the
desired error probability, the larger the block length N has to be for the law
of large numbers to average out the effect of the random noise in the channel
as well as the effect of the random choice of the code. We will not go into
the details of the derivation of the noisy channel coding theorem in this book,
although the sphere-packing argument for the AWGN channel in Section B.5
suggests that this result is plausible. More details can be found in standard
information theory texts such as [26].

The maximization in (B.28) is over all distributions of the input random
variable x. Note that the input distribution together with the channel transition
probabilities specifies a joint distribution on x and y. This determines the
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value of I�x� y�. The maximization is over all possible input distribution It
can be shown that the mutual information I�x� y� is a concave function of the
input probabilities and hence the input maximization is a convex optimization
problem, which can be solved very efficiently. Sometimes one can even
appeal to symmetry to obtain the optimal distribution in closed form.

Figure B.4 The capacity of
(a) the binary symmetric
channel and (b) the binary
erasure channel.

Example B.4 Binary symmetric channel
The capacity of the binary symmetric channel with crossover probabil-
ity � is

C =max
px

H�y�−H�y�x�

=max
px

H�y�−H���

= 1−H���bits per channel use (B.30)

whereH��� is the binary entropy function (B.5). The maximum is achieved
by choosing x to be uniform so that the output y is also uniform. The
capacity is plotted in Figure B.4. It is 1 when � = 0 or 1, and 0 when
�= 1/2.

Note that since a fraction � of the symbols are flipped in the long run,
one may think that the capacity of the channel is 1− � bits per channel
use, the fraction of symbols that get through unflipped. However, this is
too naive since the receiver does not know which symbols are flipped
and which are correct. Indeed, when � = 1/2, the input and output are
independent and there is no way we can get any information across the
channel. The expression (B.30) gives the correct answer.
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Example B.5 Binary erasure channel
The optimal input distribution for the binary symmetric channel is uniform
because of the symmetry in the channel. Similar symmetry exists in the
binary erasure channel and the optimal input distribution is uniform too.
The capacity of the channel with erasure probability � can be calculated
to be

C = 1− �bits per channel use� (B.31)

In the binary symmetric channel, the receiver does not know which
symbols are flipped. In the erasure channel, on the other hand, the receiver
knows exactly which symbols are erased. If the transmitter also knows
that information, then it can send bits only when the channel is not erased
and a long-term throughput of 1−� bits per channel use is achieved. What
the capacity result says is that no such feedback information is necessary;
(forward) coding is sufficient to get this rate reliably.

B.3.4 Operational interpretation

There is a common misconception that needs to be pointed out. In solving
the input distribution optimization problem (B.22) for the capacity C, it was
remarked that, at the optimal solution, the outputs y�m� should be independent,
and one way to achieve this is for the inputs x�m� to be independent. Does that
imply no coding is needed to achieve capacity? For example, in the binary
symmetric channel, the optimal input yields i.i.d. equally likely symbols; does
it mean then that we can send equally likely information bits raw across the
channel and still achieve capacity?
Of course not: to get very small error probability one needs to code over

many symbols. The fallacy of the above argument is that reliable commu-
nication cannot be achieved at exactly the rate C and when the outputs are
exactly independent. Indeed, when the outputs and inputs are i.i.d.,

H�x�y�=
N∑

m=1

H�x�m��y�m��= NH�x�m��y�m��� (B.32)

and there is a lot of uncertainty in the input given the output: the communica-
tion is hardly reliable. But once one shoots for a rate strictly less than C, no
matter how close, the coding theorem guarantees that reliable communication
is possible. The mutual information I�x�y�/N per symbol is close to C, the
outputs y�m� are almost independent, but now the conditional entropy H�x�y�
is reduced abruptly to (close to) zero since reliable decoding is possible. But
to achieve this performance, coding is crucial; indeed the entropy per input
symbol is close to I�x�y�/N , less than H�x�m�� under uncoded transmission.
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For the binary symmetric channel, the entropy per coded symbol is 1−H���,
rather than 1 for uncoded symbols.
The bottom line is that while the value of the input optimization problem

(B.22) has operational meaning as the maximum rate of reliable communica-
tion, it is incorrect to interpret the i.i.d. input distribution which attains that
value as the statistics of the input symbols which achieve reliable communi-
cation. Coding is always needed to achieve capacity. What is true, however,
is that if we randomly pick the codewords according to the i.i.d. input distri-
bution, the resulting code is very likely to be good. But this is totally different
from sending uncoded symbols.

B.4 Formal derivation of AWGN capacity

We can now apply the methodology developed in the previous sections to
formally derive the capacity of the AWGN channel.

B.4.1 Analog memoryless channels

So far we have focused on channels with discrete-valued input and output
symbols. To derive the capacity of the AWGN channel, we need to extend
the framework to analog channels with continuous-valued input and output.
There is no conceptual difficulty in this extension. In particular, Theorem B.1
can be generalized to such analog channels.4 The definitions of entropy and
conditional entropy, however, have to be modified appropriately.
For a continuous random variable x with pdf fx, define the differential

entropy of x as

h�x� �=
∫ �

−�
fx�u� log�1/fx�u��du� (B.33)

Similarly, the conditional differential entropy of x given y is defined as

h�x�y� �=
∫ �

−�
fx�y�u� v� log�1/fx�y�u�v��dudv� (B.34)

The mutual information is again defined as

I�x� y� �= h�x�−h�x�y�� (B.35)

4 Although the underlying channel is analog, the communication process is still digital. This
means that discrete symbols will still be used in the encoding. By formulating the
communication problem directly in terms of the underlying analog channel, this means
we are not constraining ourselves to using a particular symbol constellation (for example,
2-PAM or QPSK) a priori.
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Observe that the chain rules for entropy and for mutual information extend
readily to the continuous-valued case. The capacity of the continuous-valued
channel can be shown to be

C =max
fx

I�x� y�� (B.36)

This result can be proved by discretizing the continuous-valued input and
output of the channel, approximating it by discrete memoryless channels with
increasing alphabet sizes, and taking limits appropriately.

For many channels, it is common to have a cost constraint on the transmitted
codewords. Given a cost function c � � → � defined on the input symbols,
a cost constraint on the codewords can be defined: we require that every
codeword xn in the codebook must satisfy

1
N

N∑
m=1

c�xn�m��≤ A� (B.37)

One can then ask: what is the maximum rate of reliable communication
subject to this constraint on the codewords? The answer turns out to be

C = max
fx�E�c�x��≤A

I�x� y�� (B.38)

B.4.2 Derivation of AWGN capacity

We can now apply this result to derive the capacity of the power-constrained
(real) AWGN channel:

y = x+w� (B.39)

The cost function is c�x�= x2. The differential entropy of a� ����2� random
variable w can be calculated to be

h�w�= 1
2
log�2�e�2�� (B.40)

Not surprisingly, h�w� does not depend on the mean � of W : differential
entropies are invariant to translations of the pdf. Thus, conditional on the
input x of the Gaussian channel, the differential entropy h�y�x� of the output y
is just �1/2� log�2�e�2�. The mutual information for the Gaussian channel
is, therefore,

I�x� y�= h�y�−h�y�x�= h�y�− 1
2
log�2�e�2�� (B.41)

The computation of the capacity

C = max
fx�E�x

2�≤P
I�x� y� (B.42)
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is now reduced to finding the input distribution on x to maximize h�y� sub-
ject to a second moment constraint on x. To solve this problem, we use a
key fact about Gaussian random variables: they are differential entropy max-
imizers. More precisely, given a constraint E�u2� ≤ A on a random variable
u, the distribution u is � �0�A� maximizes the differential entropy h�u�.
(See Exercise B.6 for a proof of this fact.) Applying this to our problem,
we see that the second moment constraint of P on x translates into a sec-
ond moment constraint of P+�2 on y. Thus, h�y� is maximized when y is
� �0�P+�2�, which is achieved by choosing x to be � �0�P�. Thus, the
capacity of the Gaussian channel is

C = 1
2
log�2�e�P+�2��− 1

2
log�2�e�2�= 1

2
log

(
1+ P

�2

)
� (B.43)

agreeing with the result obtained via the heuristic sphere-packing deriva-
tion in Section 5.1. A capacity-achieving code can be obtained by choosing
each component of each codeword i.i.d. � �0�P�. Each codeword is therefore
isotropically distributed, and, by the law of large numbers, with high probabil-
ity lies near the surface of the sphere of radius

√
NP. Since in high dimensions

most of the volume of a sphere is near its surface, this is effectively the same
as picking each codeword uniformly from the sphere.

Now consider a complex baseband AWGN channel:

y = x+w (B.44)

where w is �� �0�N0�. There is an average power constraint of P per (com-
plex) symbol. One way to derive the capacity of this channel is to think of
each use of the complex channel as two uses of a real AWGN channel, with
SNR= �P/2�/�N0/2�= P/N0. Hence, the capacity of the channel is

1
2
log

(
1+ P

N0

)
bits per real dimension� (B.45)

or

log
(
1+ P

N0

)
bits per complex dimension� (B.46)

Alternatively we may just as well work directly with the complex channel
and the associated complex random variables. This will be useful when we
deal with other more complicated wireless channel models later on. To this
end, one can think of the differential entropy of a complex random variable x
as that of a real random vector ���x��	�x��. Hence, if w is �� �0�N0�,
h�w�= h���w��+h�	�w��= log��eN0�. The mutual information I�x� y� of
the complex AWGN channel y = x+w is then

I�x� y�= h�y�− log��eN0�� (B.47)
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With a power constraint E��x�2� ≤ P on the complex input x, y is con-
strained to satisfy E��y�2� ≤ P+N0. Here, we use an important fact: among
all complex random variables, the circular symmetric Gaussian random vari-
able maximizes the differential entropy for a given second moment con-
straint. (See Exercise B.7.) Hence, the capacity of the complex Gaussian
channel is

C = log��e�P+N0��− log��eN0�= log
(
1+ P

N0

)
� (B.48)

which is the same as Eq. (5.11).

B.5 Sphere-packing interpretation

In this section we consider a more precise version of the heuristic sphere-
packing argument in Section 5.1 for the capacity of the real AWGN channel.
Furthermore, we outline how the capacity as predicted by the sphere-packing
argument can be achieved. The material here is particularly useful when we
discuss precoding in Chapter 10.

B.5.1 Upper bound

Consider transmissions over a block of N symbols, where N is large. Suppose
we use a code � consisting of �� � equally likely codewords 	x1� � � � �x�� �
.
By the law of large numbers, the N -dimensional received vector y = x+w
will with high probability lie approximately5 within a y-sphere of radius√
N�P+�2�, so without loss of generality we need only to focus on what

happens inside this y-sphere. Let �i be the part of the maximum-likelihood
decision region for xi within the y-sphere. The sum of the volumes of the �i

is equal to Vy, the volume of the y-sphere. Given this total volume, it can be
shown, using the spherical symmetry of the Gaussian noise distribution, that
the error probability is lower bounded by the (hypothetical) case when the
�i are all perfect spheres of equal volume Vy/�� �. But by the law of large
numbers, the received vector y lies near the surface of a noise sphere of radius√
N�2 around the transmitted codeword. Thus, for reliable communication,

Vy/�� � should be no smaller than the volume Vw of this noise sphere, otherwise
even in the ideal case when the decision regions are all spheres of equal
volume, the error probability will still be very large. Hence, the number of

5 To make this and other statements in this section completely rigorous, appropriate � and (
have to be added.
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codewords is at most equal to the ratio of the volume of the y-sphere to that
of a noise sphere:

Vy

Vw
=

[√
N�P+�2�

]N
[√

N�2
]N �

(See Exercise B.10(3) for an explicit expression of the volume of an
N -dimensional sphere of a given radius.) Hence, the number of bits per
symbol time that can be reliably communicated is at most

1
N

log

⎛⎜⎝
[√

N�P+�2�
]N

[√
N�2

]N
⎞⎟⎠= 1

2
log

(
1+ P

�2

)
� (B.49)

The geometric picture is in Figure B.5.

B.5.2 Achievability

The above argument only gives an upper bound on the rate of reliable com-
munication. The question is: can we design codes that can perform this
well?
Let us use a codebook � = 	x1� � � � �x�� �
 such that the N -dimensional

codewords lie in the sphere of radius
√
NP (the “x-sphere”) and thus satisfy

the power constraint. The optimal detector is the maximum likelihood nearest
neighbor rule. For reasons that will be apparent shortly, we instead consider
the following suboptimal detector: given the received vector y, decode to the
codeword xi nearest to �y, where � �= P/�P+�2�.
It is not easy to design a specific code that yields good performance, but

suppose we just randomly and independently choose each codeword to be

Figure B.5 The number of
noise spheres that can be
packed into the y-sphere
yields the maximum number
of codewords that can be
reliably distinguished.

√N (P + σ 
2)

√Nσ 
2

√NP
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uniformly distributed in the sphere6. In high dimensions, most of the volume
of the sphere lies near its surface, so in fact the codewords will with high
probability lie near the surface of the x-sphere.

What is the performance of this random code? Suppose the transmitted
codeword is x1. By the law of large numbers again,

��y−x1�2 = ��w+ ��−1�x1�2�
≈ �2N�2+ ��−1�2NP�

= N
P�2

P+�2
�

i.e., the transmitted codeword lies inside an uncertainty sphere of radius√
NP�2/�P+�2� around the vector �y. Thus, as long as all the other code-

words lie outside this uncertainty sphere, then the receiver will be able to
decode correctly (Figure B.6). The probability that the random codeword
xi (i 
= 1) lies inside the uncertainty sphere is equal to the ratio of the volume
of the uncertainty sphere to that of the x-sphere:

p=
(√

NP�2/�P+�2�
)N

�
√
NP�N

=
(

�2

P+�2

)N
2

� (B.50)

By the union bound, the probability that any of the codewords (x2� � � � �x�� �)
lie inside the uncertainty sphere is bounded by ��� �− 1�p. Thus, as long as
the number of codewords is much smaller than 1/p, then the probability of
error is small (in particular, we can take the number of codewords �� � to be

Figure B.6 The ratio of the
volume of the uncertainty
sphere to that of the x-sphere
yields the probability that a
given random codeword lies
inside the uncertainty sphere.
The inverse of this probability
yields a lower bound on the
number of codewords that can
be reliably distinguished.

√NP

x1α y

√NPσ 2

P + σ 2

6 Randomly and independently choosing each codeword to have i.i.d. � �0�P� components
would work too but the argument is more complex.
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1/pN ). In terms of the data rate R bits per symbol time, this means that as
long as

R= log �� �
N

= log1/p
N

− logN
N

<
1
2
log

(
1+ P

�2

)
�

then reliable communication is possible.
Both the upper bound and the achievability arguments are based on calcu-

lating the ratio of volumes of spheres. The ratio is the same in both cases, but
the spheres involved are different. The sphere-packing picture in Figure B.5
corresponds to the following decomposition of the capacity expression:

1
2
log

(
1+ P

�2

)
= I�x� y�= h�y�−h�y�x�� (B.51)

with the volume of the y-sphere proportional to 2Nh�y� and the volume of the
noise sphere proportional to 2Nh�y�x�. The picture in Figure B.6, on the other
hand, corresponds to the decomposition:

1
2
log

(
1+ P

�2

)
= I�x� y�= h�x�−h�x�y�� (B.52)

with the volume of the x-sphere proportional to 2Nh�x�. Conditional on y, x is
N��y��2

mmse�, where �=P/�P+�2� is the coefficient of the MMSE estimator
of x given y, and

�2
mmse =

P�2

P+�2
�

is the MMSE estimation error. The radius of the uncertainty sphere considered
above is

√
N�2

mmse and its volume is proportional to 2Nh�x�y�. In fact the
proposed receiver, which finds the nearest codeword to �y, is motivated
precisely by this decomposition. In this picture, then, the AWGN capacity
formula is being interpreted in terms of the number of MMSE error spheres
that can be packed inside the x-sphere.

B.6 Time-invariant parallel channel

Consider the parallel channel (cf. (5.33):

ỹn�i�= h̃nd̃n�i�+ w̃n�i� n= 0�1� � � � �Nc−1� (B.53)

subject to an average power per sub-carrier constraint of P (cf. (5.37)):

E��d̃�i��2�≤ NcP� (B.54)
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The capacity in bits per symbol is

CNc
= max

���d̃�2�≤NcP
I�d̃� ỹ�� (B.55)

Now

I�d̃� ỹ� = h�ỹ�−h�ỹ�d̃� (B.56)

≤
Nc−1∑
n=0

(
h�ỹn�−h�ỹn�d̃n�

)
(B.57)

≤
Nc−1∑
n=0

log

(
1+ Pn�h̃n�2

N0

)
� (B.58)

The inequality in (B.57) is from (B.11) and Pn denotes the variance of
d̃n in (B.58). Equality in (B.57) is achieved when d̃n� n = 0� � � � �Nc − 1,
are independent. Equality is achieved in (B.58) when d̃n is �� �0�Pn��n =
0� � � � �Nc−1. Thus, computing the capacity in (B.55) is reduced to a power
allocation problem (by identifying the variance of d̃n with the power allocated
to the nth sub-carrier):

CNc
= max

P0� � � � �PNc−1

Nc−1∑
n=0

log

(
1+ Pn�h̃n�2

N0

)
� (B.59)

subject to

1
Nc

Nc−1∑
n=0

Pn = P� Pn ≥ 0� n= 0� � � � �Nc−1� (B.60)

The solution to this optimization problem is waterfilling and is described in
Section 5.3.3.

B.7 Capacity of the fast fading channel

B.7.1 Scalar fast fading channnel

Ideal interleaving
The fast fading channel with ideal interleaving is modeled as follows:

y�m�= h�m�x�m�+w�m�� (B.61)

where the channel coefficients h�m� are i.i.d. in time and independent of the
i.i.d. �� �0�N0� additive noise w�m�. We are interested in the situation when
the receiver tracks the fading channel, but the transmitter only has access to
the statistical characterization; the receiver CSI scenario. The capacity of the
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power-constrained fast fading channel with receiver CSI can be written as,
by viewing the receiver CSI as part of the output of the channel,

C = max
px���x2�≤P

I�x� y�h�� (B.62)

Since the fading channel h is independent of the input, I�x�h�= 0. Thus, by
the chain rule of mutual information (see (B.18)),

I�x� y�h�= I�x�h�+ I�x� y�h�= I�x� y�h�� (B.63)

Conditioned on the fading coefficient h, the channel is simply an AWGN
one, with SNR equal to P�h�2/N0, where we have denoted the transmit power
constraint by P. The optimal input distribution for a power constrained AWGN
channel is �� , regardless of the operating SNR. Thus, the maximizing input
distribution in (B.62) is �� �0�P�. With this input distribution,

I�x� y�h= h�= log
(
1+ P�h�2

N0

)
�

and thus the capacity of the fast fading channel with receiver CSI is

C = �h

[
log

(
1+ P�h�2

N0

)]
� (B.64)

where the average is over the stationary distribution of the fading channel.

Stationary ergodic fading
The above derivation hinges on the i.i.d. assumption on the fading process
	h�m�
. Yet in fact (B.64) holds as long as 	h�m�
 is stationary and ergodic.
The alternative derivation below is more insightful and valid for this more
general setting.
We first fix a realization of the fading process 	h�m�
. Recall from (B.20)

that the rate of reliable communication is given by the average rate of flow
of mutual information:

1
N
I�x�y�= 1

N

N∑
m=1

log�1+�h�m��2SNR�� (B.65)

For large N , due to the ergodicity of the fading process,

1
N

N∑
m=1

log�1+�h�m��2SNR�→ ��log�1+�h�2SNR��� (B.66)

for almost all realizations of the fading process 	h�m�
. This yields the same
expression of capacity as in (B.64).
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B.7.2 Fast fading MIMO channel

We have only considered the scalar fast fading channel so far; the extension
of the ideas to the MIMO case is very natural. The fast fading MIMO channel
with ideal interleaving is (cf. (8.7))

y�m�=H�m�x�m�+w�m�� m= 1�2� � � � � (B.67)

where the channel H is i.i.d. in time and independent of the i.i.d. additive
noise, which is �� �0�N0Inr�. There is an average total power constraint of P
on the transmit signal. The capacity of the fast fading channel with receiver
CSI is, as in (B.62),

C = max
px ����x�2�≤P

I�x�y�H�� (B.68)

The observation in (B.63) holds here as well, so the capacity calculation is
based on the conditional mutual information I�x�y�H�. If we fix the MIMO
channel at a specific realization, we have

I�x�y�H= H� = h�y�−h�y�x�
= h�y�−h�w� (B.69)

= h�y�−nr log��eN0�� (B.70)

To proceed, we use the following fact about Gaussian random vectors: they
are entropy maximizers. Specifically, among all n-dimensional complex ran-
dom vectors with a given covariance matrix K, the one that maximizes the
differential entropy is complex circular-symmetric jointly Gaussian �� �0�K�
(Exercise B.8). This is the vector extension of the result that Gaussian ran-
dom variables are entropy maximizers for a fixed variance constraint. The
corresponding maximum value is given by

log�det��eK��� (B.71)

If the covariance of x is Kx and the channel is H= H, then the covariance
of y is

N0Inr +HKxH
∗� (B.72)

Calculating the corresponding maximal entropy of y (cf. (B.71)) and substi-
tuting in (B.70), we see that

I�x�y�H= H� ≤ log���e�nr det�N0Inr +HKxH
∗��−nr log��eN0�

= logdet
(
Inr +

1
N0

HKxH
∗
)
� (B.73)
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with equality if x is �� �0�Kx�. This means that even if the transmitter does
not know the channel, there is no loss of optimality in choosing the input to
be �� .
Finally, the capacity of the fast fading MIMO channel is found by averaging

(B.73) with respect to the stationary distribution of H and choosing the
appropriate covariance matrix subject to the power constraint:

C = max
Kx�Tr�Kx�≤P

�H

[
logdet

(
Inr +

1
N0

HKxH
∗
)]

� (B.74)

Just as in the scalar case, this result can be generalized to any stationary
and ergodic fading process 	H�m�
.

B.8 Outage formulation

Consider the slow fading MIMO channel (cf. (8.79))

y�m�=Hx�m�+w�m�� (B.75)

Here the MIMO channel, represented by H (an nr ×nt matrix with complex
entries), is random but not varying with time. The additive noise is i.i.d.
�� �0�N0� and independent of H.
If there is a positive probability, however small, that the entries of H are

small, then the capacity of the channel is zero. In particular, the capacity of
the i.i.d. Rayleigh slow fading MIMO channel is zero. So we focus on char-
acterizing the �-outage capacity: the largest rate of reliable communication
such that the error probability is no more than �. We are aided in this study
by viewing the slow fading channel in (B.75) as a compound channel.

The basic compound channel consists of a collection of DMCs p��y�x�,
� ∈ & with the same input alphabet � and the same output alphabet 
 and
parameterized by �. Operationally, the communication between the transmit-
ter and the receiver is carried out over one specific channel based on the
(arbitrary) choice of the parameter � from the set &. The transmitter does not
know the value of � but the receiver does. The capacity is the largest rate at
which a single coding strategy can achieve reliable communication regard-
less of which � is chosen. The corresponding capacity achieving strategy is
said to be universal over the class of channels parameterized by � ∈ &. An
important result in information theory is the characterization of the capacity
of the compound channel:

C =max
px

inf
�∈&

I��x� y�� (B.76)

Here, the mutual information I��x� y� signifies that the conditional dis-
tribution of the output symbol y given the input symbol x is given by the
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channel p��y�x�. The characterization of the capacity in (B.76) offers a natural
interpretation: there exists a coding strategy, parameterized by the input distri-
bution px, that achieves reliable communication at a rate that is the minimum
mutual information among all the allowed channels. We have considered only
discrete input and output alphabets, but the generalization to continuous input
and output alphabets and, further, to cost constraints on the input follows
much the same line as our discussion in Section B.4.1. The tutorial article
[69] provides a more comprehensive introduction to compound channels.

We can view the slow fading channel in (B.75) as a compound channel
parameterized by H. In this case, we can simplify the parameterization of
coding strategies by the input distribution px: for any fixed H and channel
input distribution px with covariance matrix Kx, the corresponding mutual
information

I�x�y�≤ logdet
(
Inr +

1
N0

HKxH
∗
)
� (B.77)

Equality holds when px is �� �0�Kx� (see Exercise B.8). Thus we can repa-
rameterize a coding strategy by its corresponding covariance matrix (the input
distribution is chosen to be �� with zero mean and the corresponding covari-
ance). For every fixed covariance matrix Kx that satisfies the power constraint
on the input, we can reword the compound channel result in (B.76) as follows.
Over the slow fading MIMO channel in (B.75), there exists a universal coding
strategy at a rate R bits/s/Hz that achieves reliable communication over all
channels H which satisfy the property

logdet
(
Inr +

1
N0

HKxH
∗
)
> R� (B.78)

Furthermore, no reliable communication using the coding strategy parameter-
ized by Kx is possible over channels that are in outage: that is, they do not
satisfy the condition in (B.78). We can now choose the covariance matrix,
subject to the input power constraints, such that we minimize the probability
of outage. With a total power constraint of P on the transmit signal, the outage
probability when communicating at rate R bits/s/Hz is

pmimo
out �= min

Kx�Tr�Kx�≤P
�

{
logdet

(
Inr +

1
N0

HKxH
∗
)
< R

}
� (B.79)

The �-outage capacity is now the largest rate R such that pmimo
out ≤ �.

By restricting the number of receive antennas nr to be 1, this discussion
also characterizes the outage probability of the MISO fading channel. Further,
restricting the MIMO channel H to be diagonal we have also characterized
the outage probability of the parallel fading channel.
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B.9 Multiple access channel

B.9.1 Capacity region

The uplink channel (with potentially multiple antenna elements) is a special
case of the multiple access channel. Information theory gives a formula
for computing the capacity region of the multiple access channel in terms
of mutual information, from which the corresponding region for the uplink
channel can be derived as a special case.
The capacity of a memoryless point-to-point channel with input x and

output y is given by

C =max
px

I�x� y��

where the maximization is over the input distributions subject to the average
cost constraint. There is an analogous theorem for multiple access channels.
Consider a two-user channel, with inputs xk from user k, k= 1�2 and output y.
For given input distributions px1 and px2 and independent across the two
users, define the pentagon ��px1� px2� as the set of all rate pairs satisfying:

R1 < I�x1� y�x2�� (B.80)

R2 < I�x2� y�x1�� (B.81)

R1+R2 < I�x1� x2� y�� (B.82)

The capacity region of the multiple access channel is the convex hull of the
union of these pentagons over all possible independent input distributions
subject to the appropriate individual average cost constraints, i.e.,

� = convex hull of�∪px1 �px2
��px1� px2��� (B.83)

The convex hull operation means that we not only include points in
∪��px1� px2� in � , but also all their convex combinations. This is natural since
the convex combinations can be achieved by time-sharing.

The capacity region of the uplink channel with single antenna elements
can be arrived at by specializing this result to the scalar Gaussian multiple
access channel. With average power constraints on the two users, we observe
that Gaussian inputs for user 1 and 2 simultaneously maximize I�x1� y�x2�,
I�x2� y�x1� and I�x1� x2� y�. Hence, the pentagon from this input distribution
is a superset of all other pentagons, and the capacity region itself is this
pentagon. The same observation holds for the time-invariant uplink channel
with single transmit antennas at each user and multiple receive antennas at
the base-station. The expressions for the capacity regions of the uplink with
a single receive antenna are provided in (6.4), (6.5) and (6.6). The capacity
region of the uplink with multiple receive antennas is expressed in (10.6).
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Figure B.7 The achievable rate
regions (pentagons)
corresponding to two different
input distributions may not
fully overlap with respect to
one another.

R2

R1

B2

B1

A2

A1

In the uplink with single transmit antennas, there was a unique set of input
distributions that simultaneously maximized the different constraints ((B.80),
(B.81) and (B.82)). In general, no single pentagon may dominate over the
other pentagons, and in that case the overall capacity region may not be a
pentagon (see Figure B.7). An example of this situation is provided by the
uplink with multiple transmit antennas at the users. In this situation, zero mean
circularly symmetric complex Gaussian random vectors still simultaneously
maximize all the constraints, but with different covariance matrices. Thus
we can restrict the user input distributions to be zero mean �� , but leave
the covariance matrices of the users as parameters to be chosen. Consider
the two-user uplink with multiple transmit and receive antennas. Fixing the
kth user input distribution to be �� �0�Kk� for k = 1�2, the corresponding
pentagon is expressed in (10.23) and (10.24). In general, there is no single
choice of covariance matrices that simultaneously maximize the constraints:
the capacity region is the convex hull of the union of the pentagons created
by all the possible covariance matrices (subject to the power constraints on
the users).

B.9.2 Corner points of the capacity region

Consider the pentagon ��px1� px2� parameterized by fixed independent input
distributions on the two users and illustrated in Figure B.8. The two corner
points A and B have an important significance: if we have coding schemes
that achieve reliable communication to the users at the rates advertised by
these two points, then the rates at every other point in the pentagon can be
achieved by appropriate time-sharing between the two strategies that achieved
the points A and B. Below, we try to get some insight into the nature of the
two corner points and properties of the receiver design that achieves them.
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Figure B.8 The set of rates at
which two users can jointly
reliably communicate is a
pentagon, parameterized by
the independent users’ input
distributions.

R1

R2

B

A

I (x2; y|x1)

I (x1; y)

Consider the corner point B. At this point, user 1 gets the rate I�x1� y�.
Using the chain rule for mutual information we can write

I�x1� x2� y�= I�x1� y�+ I�x2� y�x1��

Since the sum rate constraint is tight at the corner point B, user 2 achieves
its highest rate I�x2� y�x1�. This rate pair can be achieved by a successive
interference cancellation (SIC) receiver: decode user 1 first, treating the signal
from user 2 as part of the noise. Next, decode user 2 conditioned on the already
decoded information from user 1. In the uplink with a single antenna, the
second stage of the successive cancellation receiver is very explicit: given the
decoded information from user 1, the receiver simply subtracts the decoded
transmit signal of user 1 from the received signal. With multiple receive
antennas, the successive cancellation is done in conjunction with the MMSE
receiver. The MMSE receiver is information lossless (this aspect is explored
in Section 8.3.4) and we can conclude the following intuitive statement: the
MMSE–SIC receiver is optimal because it “implements” the chain rule for
mutual information.

B.9.3 Fast fading uplink

Consider the canonical two-user fast fading MIMO uplink channel:

y�m�=H1�m�x1�m�+H2�m�x2�m�+w�m�� (B.84)

where the MIMO channels H1 and H2 are independent and i.i.d. over time. As
argued in Section B.7.1, interleaving allows us to convert stationary channels
with memory to this canonical form. We are interested in the receiver CSI
situation: the receiver tracks both the users’ channels perfectly. For fixed
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independent input distributions px1 and px2 , the achievable rate region consists
of tuples �R1�R2� constrained by

R1 < I�x1�y�H1�H2�x2�� (B.85)

R2 < I�x2�y�H1�H2�x1�� (B.86)

R1+R2 < I�x1�x2�y�H1�H2�� (B.87)

Here we have modeled receiver CSI as the MIMO channels being part of the
output of the multiple access channel. Since the channels are independent of
the user inputs, we can use the chain rule of mutual information, as in (B.63),
to rewrite the constraints on the rate tuples as

R1 < I�x1�y�H1�H2�x2�� (B.88)

R2 < I�x2�y�H1�H2�x1�� (B.89)

R1+R2 < I�x1�x2�y�H1�H2�� (B.90)

Fixing the realization of the MIMO channels of the users, we see again (as in
the time-invariant MIMO uplink) that the input distributions can be restricted
to be zero mean �� but leave their covariance matrices as parameters to
be chosen later. The corresponding rate region is a pentagon expressed by
(10.23) and (10.24). The conditional mutual information is now the average
over the stationary distributions of the MIMO channels: an expression for this
pentagon is provided in (10.28) and (10.29).

B.10 Exercises

Exercise B.1 Suppose x is a discrete random variable taking on K values, each with
probability p1� � � � � pK . Show that

max
p1� � � � �pK

H�x�= logK�

and further that this is achieved only when pi = 1/K� i= 1� � � � �K, i.e., x is uniformly
distributed.

Exercise B.2 In this exercise, we will study when conditioning does not reduce
entropy.
1. A concave function f is defined in the text by the condition f ′′�x�≤ 0 for x in the

domain. Give an alternative geometric definition that does not use calculus.
2. Jensen’s inequality for a random variable x states that for any concave function f

��f�x��≤ f���x��� (B.91)
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Prove this statement. Hint: You might find it useful to draw a picture and visualize
the proof geometrically. The geometric definition of a concave function might
come in handy here.

3. Show that H�x�y�≤H�x� with equality if and only if x and y are independent. Give
an example in which H�x�y = k� > H�x�. Why is there no contradiction between
these two statements?

Exercise B.3 Under what condition on x1� x2� y does it hold that

I�x1� x2� y�= I�x1� y�+ I�x2� y�? (B.92)

Exercise B.4 Consider a continuous real random variable x with density fx�·� non-zero
on the entire real line. Suppose the second moment of x is fixed to be P. Show that
among all random variables with the constraints as those on x, the Gaussian random
variable has the maximum differential entropy. Hint: The differential entropy is a
concave function of the density function and fixing the second moment corresponds
to a linear constraint on the density function. So, you can use the classical Lagrangian
techniques to solve this problem.

Exercise B.5 Suppose x is now a non-negative random variable with density non-zero
for all non-negative real numbers. Further suppose that the mean of x is fixed. Show
that among all random variables of this form, the exponential random variable has the
maximum differential entropy.

Exercise B.6 In this exercise, we generalize the results in Exercises B.4 and B.5.
Consider a continuous real random variable x with density fx�·� on a support set S
(i.e., fx�u�= 0� u 
∈ S). In this problem we will study the structure of the random
variable x with maximal differential entropy that satisfies the following moment
conditions: ∫

S
ri�u�fx�u�du= Ai� i= 1� � � � �m� (B.93)

Show that x with density

fx�u�= exp

(
�0 −1+

m∑
i=1

�iri�u�

)
� u ∈ S� (B.94)

has the maximal differential entropy subject to the moment conditions (B.93). Here
�0��1� � � � � �m are chosen such that the moment conditions (B.93) are met and that
fx�·� is a density function (i.e., it integrates to unity).

Exercise B.7 In this problem, we will consider the differential entropy of a vector of
continuous random variables with moment conditions.
1. Consider the class of continuous real random vectors x with the covariance condi-

tion: ��xxt�=K. Show that the jointly Gaussian random vector with covariance K
has the maximal differential entropy among this set of covariance constrained
random variables.

2. Now consider a complex random variable x. Show that among the class of contin-
uous complex random variables x with the second moment condition ���x�2�≤ P,
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the circularly symmetric Gaussian complex random variable has the maximal dif-
ferential entropy. Hint: View x as a length 2 vector of real random variables and
use the previous part of this question.

Exercise B.8 Consider a zero mean complex random vector x with fixed covariance
��xx∗�=K. Show the following upper bound on the differential entropy:

h�x�≤ logdet��eK�� (B.95)

with equality when x is �� �0�K�. Hint: This is a generalization of Exercise B.7(2).

Exercise B.9 Show that the structure of the input distribution in (5.28) optimizes the
mutual information in the MISO channel. Hint: Write the second moment of y as a
function of the covariance of x and see which covariance of x maximizes the second
moment of y. Now use Exercise B.8 to reach the desired conclusion.

Exercise B.10 Consider the real random vector x with i.i.d. � �0�P� components. In
this exercise, we consider properties of the scaled vector x̃ �= �1/

√
N�x. (The material

here is drawn from the discussion in Chapter 5.5 in [148].)
1. Show that ����x�2��/N = P, so the scaling ensured that the mean length of �x̃�2

is P, independent of N .
2. Calculate the variance of �x̃�2 and show that �x̃�2 converges to P in probability.

Thus, the scaled vector is concentrated around its mean.
3. Consider the event that x̃ lies in the shell between two concentric spheres of radius

"−� and ". (See Figure B.9.) Calculate the volume of this shell to be

BN

(
"N − �"−��N

)
� whereBN =

{
�N/2/� N2 �! N even

�2N��N−1�/2���N −1�/2�!/N ! N odd�
(B.96)

4. Show that we can approximate the volume of the shell by

NBN"
N−1�� for�/"
 1� (B.97)

Figure B.9 The shell between
two concentric spheres of
radius �−� and �.

~x

ρ − δ

δ
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Figure B.10 Behavior of
���−�≤ �x̃�< �� as a
function of �.

(ρ e−ρ 
2 / 2P)

N

ρ e−ρ 
2 / 2P

√P ρ

5. Let us approximate the density of x̃ inside this shell to be

fx̃�a�≈
(

N

2�P

)N/2

exp
(
−N"2

2P

)
� r−� < �a� ≤ "� (B.98)

Combining (B.98) and (B.97), show that for �/"= a constant 
 1,

��"−�≤ �x̃�< "�≈
[
" exp

(
− "2

2P

)]N
� (B.99)

6. Show that the right hand side of (B.99) has a single maximum at "2 = P (see
Figure B.10).

7. Conclude that as N becomes large, the consequence is that only values of �x̃�2 in
the vicinity of P have significant probability. This phenomenon is called sphere
hardening.

Exercise B.11 Calculate the mutual information achieved by the isotropic input dis-
tribution x is �� �0�P/L · IL� in the MISO channel (cf. (5.27)) with given channel
gains h1� � � � � hL.

Exercise B.12 In this exercise, we will study the capacity of the L-tap frequency-
selective channel directly (without recourse to the cyclic prefix idea). Consider a
length Nc vector input x on to the channel in (5.32) and denote the vector output (of
length Nc +L−1) by y. The input and output are linearly related as

y=Gx+w� (B.100)

where G is a matrix whose entries depend on the channel coefficients h0� � � � � hL−1

as follows: G�i� j�= hi−j for i ≥ j and zero everywhere else. The channel in (B.100)
is a vector version of the basic AWGN channel and we consider the rate of reliable
communication I�x�y�/Nc.
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1. Show that the optimal input distribution is x is �� �0�Kx�, for some covariance
matrix Kx meeting the power constraint. (Hint: You will find Exercise B.8 useful.)

2. Show that it suffices to consider only those covariances Kx that have the same set
of eigenvectors as G∗G. (Hint: Use Exercise B.8 to explicitly write the reliable
rate of communiation in the vector AWGN channel of (B.100).)

3. Show that

�G∗G�ij = ri−j� (B.101)

where

rn �=
L−l−1∑
�=0

�h��
∗h��+n�� n≥ 0� (B.102)

rn �= r∗−n� n≤ 0� (B.103)

Such a matrix G∗G is said to be Toeplitz.
4. An important result about the Hermitian Toeplitz matrix GG∗ is that the empirical

distribution of its eigenvalues converges (weakly) to the discrete-time Fourier
transform of the sequence 	rl
. How is the discrete-time Fourier transform of the
sequence 	rl
 related to the discrete-time Fourier transform H�f� of the sequence
h0� � � � � hL−1?

5. Use the result of the previous part and the nature of the optimal K∗
x (discussed in

part (2)) to show that the rate of reliable communication is equal to

∫ W

0
log

(
1+ P∗�f��H�f��2

N0

)
df� (B.104)

Here the waterfilling power allocation P∗�f� is as defined in (5.47). This answer
is, of course, the same as that derived in the text (cf. (5.49)). The cyclic prefix
converted the frequency-selective channel into a parallel channel, reliable commu-
nication over which is easier to understand. With a direct approach we had to use
analytical results about Toeplitz forms; more can be learnt about these techniques
from [53].
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