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Abstract

High computational cost is the main obstacle to

adapting globally optimal branch-and-bound algorithms

to intensity-based registration. Existing techniques to

speed up such algorithms use a multiresolution pyramid

of images and bounds on the target function among dif-

ferent resolutions for rigidly aligning two images. In

this paper, we propose a dual algorithm in which the

optimization is done in the Fourier domain, and multi-

ple resolution levels are replaced by multiple frequency

bands. The algorithm starts by computing the target

function in lower frequency bands and keeps adding

higher frequency bands until the current subregion is ei-

ther rejected or divided into smaller areas in a branch

and bound manner. Unlike spatial multiresolution ap-

proaches, to compute the target function for a wider

frequency area, one just needs to compute the target in

the residual bands. Therefore, if an area is to be dis-

carded, it performs just enough computations required

for the rejection. This property also enables us to use

a rather large number of frequency bands compared to

the limited number of resolution levels used in the space

domain algorithm. Experimental results on real images

demonstrate considerable speed gains over the space do-

main method in most cases.

1. Introduction

This paper proposes a new method of exhaustively
searching the rigid motion space for intensity-based im-
age registration. Here, the registration target function
is computed in the frequency domain using the DFT
coe�cients of the images. The core idea is that many
of the non-optimal areas of the parameter space can

Figure 1. Partitioning the frequency domain into radial
bands Ω0,Ω1, . . . ,Ω5. This forms nested frequency balls
Bi = ∪ij=0Ωj . The target function can be decomposed as
the sum of target functions over each frequency band.

be rejected by just computing the target function in
low-frequency bands. The method is inspired by the
multiresolution approach of Nasihatkon and Kahl [11]
in the spatial domain, but o�ers signi�cant advantages
by performing the registration in the frequency domain.

The main obstacle in applying global optimization
techniques to intensity-based registration is the compu-
tational cost of calculating a similarity or dissimilarity
measure between two images. That is why most of
the globally optimal registration techniques are about
the alignment of point sets [4, 14, 15, 8, 19], making
them only applicable to feature-based registration. Re-
ducing the computational cost of the exhaustive search
for intensity-based alignment has been well studied in
the context of pattern matching, where a small patch
is searched against a large target image. Such ap-
proaches are quite diverse, but all are based on the
same idea of early rejection: non-optimal solutions
might be rejected without computing the target func-
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tion by �rst examining a low-cost bound. One of the
earliest methods of this type is the successive elimi-

nation approach of Li and Salari [9]. The succeed-
ing approaches are mostly based on computing a se-
quence of bounds, where each bound is tighter com-
pared to the previous one, but requires more computa-
tions [7, 3, 10, 17, 12, 13].

All the above approaches are restricted to searching
over a grid of translations. For more general trans-
formations, one can mention the work of Korman et
al. [5] about a�ne pattern matching. The method is
asserted to �nd the optimal solution with high probabil-

ity. One of the disadvantages of this approach is that
it only provides asymptotic forms for the bounds. The
bounds used in practice for the branch and bound al-
gorithm are learned experimentally from a database of
images. Aside from pattern matching, little work has
been done on global optimization for intensity-based
image alignment. Cremers et al. [1] use Lipschitz opti-
mization for the alignment of shape models. The opti-
mization also involves estimating the rigid pose of the
shapes. However, no e�ort has been made to reduce
the computational cost of the algorithm.

Recently, Nasihatkon and Kahl proposed a multires-
olution approach for reducing the cost of the exhaus-
tive search in rigid intensity-based registration [11].
They use a multiresolution pyramid of images and show
that many areas of the search space can be discarded
by computing the target function in lower resolutions.
The method is incorporated into a Lipschitz optimiza-
tion framework and demonstrates a signi�cant speed-
up over the corresponding single resolution algorithm.

Here, we propose a similar approach in which the
registration is performed in the frequency domain.
Many of the existing frequency domain approaches are
based on the Fourier shift property, i.e., the fact that
a spatial translation of two images corresponds to a
phase shift di�erence in the Fourier domain. A lot
of them are extensions of the well-known phase cor-
relation technique [6] which computes the cross-power
spectrum and then �nds the integer translation by lo-
cating the peak in the inverse spectrum. Furthermore,
there exists a multitude of other approaches that ex-
tends [6] and includes additional transformations such
as rotation and scaling. For example, Reddy et al. in
[16] exploit the Fourier scaling and rotational proper-
ties in order to �nd the parameters of the transforma-
tion at a low computational cost. By applying a log-
polar transformation of the Fourier magnitude spectra
of the two images, the scale and rotation can be ex-
pressed as a phase shift, thus enabling the use of the
phase correlation method. To decouple rotation and
scale from translation they assume that the magnitude

of the Fourier transforms is not a function of the trans-
lation parameter. This trick, however, is only valid
when the images are exact transformed replica of each
other. Therefore, the approach is not globally optimal
if the images are di�erent.

In our algorithm the frequency domain is divided
into radial bands Ω0,Ω1, . . . ,ΩP as shown in Fig. 1.
The bands form nested balls B0,B1, . . . ,BP where Bi =
∪ij=0Ωj . Our approach can be seen as a dual to spa-
tial multiresolution techniques in which the resolution
levels are replaced by the frequency balls Bi. For each
candidate solution we keep moving from lower to higher
frequency balls. For each ball we compute the target
function and examine a rejection criterion. If the re-
jection criterion is met the candidate solution is dis-
carded, otherwise, we move to the next frequency ball.
Therefore, if a solution is to be rejected, we perform
just enough computations to �nd it out. To sum up,
the advantages of our approach are as follows

� For example, in [11], if the rejection test fails at
a certain resolution, the target function is com-
puted from scratch for the next resolution. How-
ever, here, having the target function for a ball Bi,
to get the target for Bi+1 one just needs to com-
pute the target within the residual band Ωi+1.

� Also, due to the above, dividing the frequency do-
main into more frequency bands does not intro-
duce considerable extra computations. Hence, the
number of frequency bands can be much higher
than the number of resolution levels.

Also, here, we do not need to deal with the errors
induced by downsampling to create the multiresolution
pyramid, such as the errors of approximating the ideal
radial low-pass �lter, or not sampling the �ltered image
outside the image boundaries [11]. However, using the
DFT coe�cients to approximate the image spectrum
leads to space-domain aliasing. Therefore, measures
like zero-padding or inverting the intensity values of
the images might be necessary in both space domain
and frequency domain algorithms.

We describe the basics of multiband method in Sect.
3 after providing a background in Sect. 2. In Sect. 4
we present a technique of integrating the multiband
method into the Lipschitz global optimization frame-
work. Experiments are conducted in Sect. 5.

2. Background

In this section, we describe our analysis framework.
The continuous domain image pairs are represented as
functions f, g : Rd → R, where d = 2 or d = 3. The



target function is chosen to be the correlation between
f and the transformed g:

Q(R, t) =

∫
Rd
f(x) g(R(x + t)) dx, (1)

where R and t denote the rotation matrix and the trans-
lation vector respectively. To perform registration we
need to maximize (1) with respect to R and t. Let
F,G : Rd → C be the Fourier transforms of f and g
respectively. Using the Parseval's theorem, (1) can be
reformulated in the frequency domain as

Q(R, t) =

∫
Rd
F (z)G(Rz) e2πjtT z dz, (2)

where F (z) represents the complex conjugate of F (z)
and j =

√
−1.

Discrete images are represented by a set of samples
{fi} at discrete locations i ∈ Zd. For real images, the
samples are usually zero outside a rectangular or cubi-
cal grid P. In this paper for a two-dimensional m×n
image, the grid is P = {0, 1, . . . ,m−1}×{0, 1, . . . , n−
1} where × represents the Cartesian product. The grid
is de�ned similarly for 3D images. Any discrete image
corresponds to a canonical continuous image using sinc

interpolation:

f(x) =
∑
i∈Zd

fi sinc(x− i), (3)

where sinc(x) =
∏d
i=1

sin(πxi)
πxi

. Notice that F (z), the

Fourier transform of f(x), is bandlimited to (− 1
2 ,

1
2 )

along each dimension, that is, F (z) = 0 for ‖z‖∞ > 1
2 .

For each m×n 2D discrete image {fi} we can
de�ne an M×N Discrete Fourier Transform (DFT)
{Fk} on a grid Q = {−bM/2c+1, . . . , bM/2c} ×
{−bN/2c+1, . . . , bN/2c} as

Fk =
∑
i∈P

fi e
2πj (i1k1/M+i2k2/N), (4)

for all k = (k1, k2) ∈ Q. Notice that 0 = (0, 0) ∈ Q. It
is easy to verify that for a discrete image {fi}i∈P , with
{Fk} de�ned on an M×N grid Q we have

Fk = F (k1/M, k2/N), (5)

where F (z) is the Fourier transform of f(x) de�ned in
(3). By choosing larger M and N , and thus increasing
the DFT resolution, one can have the values of F (z)
on a �ner grid. Similar formulas hold for 3D images.

3. The multiband method

The frequency domain is partitioned into radial fre-
quency bands Ω0,Ω1, . . . ,ΩP , where Ωi = {z | ri ≤

‖z‖ < ri+1} and 0 = r0 < r1 < · · · < rP+1. This is
illustrated in Fig. 1. Now, the target function (2) can
be decomposed as a sum of separate target functions
over the di�erent frequency bands:

Q(R, t) =

P∑
i=1

QΩi(R, t), (6)

where

QΩi(R, t) =

∫
Ωi

F (z)G(Rz) e2πjtT z dz. (7)

Using the Cauchy-Schwarz inequality we get

QΩi(R, t) ≤
√∫

Ωi
|F (z)|2dz

√∫
Ωi
|G(Rz)|2dz

=
√∫

Ωi
|F (z)|2dz

√∫
Ωi
|G(z)|2dz

def
= BΩi

res. (8)

Here, we call BΩi
res the residual bound, which means the

residual error if the target function is not computed
at the frequency band Ωi. Furthermore, we de�ne fre-
quency balls B0,B1, . . . ,BP as Bp=∪pi=0Ωi = {z | ‖z‖ <
rp+1}. We de�ne a target function for each ball Bp as
QBp(R, t) =

∑p
i=0Q

Ωi(R, t). The residual bound for
Bp is de�ned as the sum of the residual bounds for the
frequency bands outside Bp, that is,

BBpres =

P∑
i=p+1

BΩi
res. (9)

Notice that, as the quantities BΩi
res are nonnegative,

Bpres is descending with respect to p:

BB0
res ≥ BB1

res ≥ . . . ≥ BBPres = 0. (10)

Now, assume that we have computed the target
function for frequency bands Ω0,Ω1, . . . ,Ωp, for any
0 ≤ p ≤ P . Then (6) and (8) give

Q(R, t) ≤
p∑
i=0

QΩi(R, t) +

P∑
i=p+1

BΩi
res

= QBp(R, t) +BBpres. (11)

Thus, as p increases we have tighter and tighter bounds

B
Bp
res, and, QBp(R, t) becomes a better approximation

of Q(R, t). Finally at p = P we have BBPres = 0 and
QBP (R, t) = Q(R, t).

Now, consider a search scheme where Q(R, t) is to
be maximized over a discrete grid of parameters. Con-
sider a candidate solution (R, t) in the grid and the best
solution Q∗ found so far. We keep computing QBp(R, t)



for p = 0, 1, . . . , P in order. If QBp(R, t) + B
Bp
res < Q∗

for some p, then (R, t) cannot be an optimal solution
and is discarded. If the solution does not get rejected
at any p = 0, 1, . . . , P , then QBP (R, t) = Q(R, t) ≥ Q∗.
In this case the best solution Q∗ gets updated. Notice
that if the rejection criterion fails at p, for computing
the target at p+1 we just need to compute the tar-
get inside the frequency band Ωp+1, as Q

Bp+1(R, t) =
QBp(R, t) + QΩp+1(R, t). This is in contrast with the
multiresolution approach of [11] where the target has
to be computed from scratch for each resolution level.
This advantage also allows us to use a large number
of frequency bands without considerable extra cost,
whereas [11] has to use a fairly few number of resolu-
tion levels. Our method, therefore, for each candidate
solution performs just enough computations required
to make the reject/update decision.

4. Integrating into a global optimization

framework

4.1. Lipschitz optimization

Lipschitz optimization is based on the idea of Lips-
chitz continuity. A function Q : C ⊆ Rn → R is Lips-
chitz continuous if there exists a constant L such that

|Q(u)−Q(u′)| ≤ L ‖u− u′‖ , (12)

for all u,u′ ∈ C. The smallest such L is called the Lip-
schitz constant. For di�erentiable functions the Lips-
chitz constant is equal to the supremum of the func-
tion derivative inside the domain C. Usually, the tar-
get function has di�erent sets of parameters, Q(u) =
Q(u1,u2, . . . ,uq). In this case one can de�ne a con-
stant Li for each subset of variables ui. Then we have

∣∣Q(u1, ..,uq)−Q(u′1, ..,u
′
q)
∣∣ ≤ q∑

i=1

Li ‖ui−u′i‖ . (13)

In Lipschitz optimization the parameter space is di-
vided into a number of subregions, usually hypercubes.
For a hypercube C the target function is computed at
its centre uC to get Q(uC). Using (12) or (13) we have

Q(u) ≤ Q(uC) +BLip(C), (14)

where BLip(C) is the Lipschitz bound corresponding to
the cube C. For a single set of parameters it can be
obtained using (12) as

BLip(C) = L · r(C), (15)

where r(C) = supu∈C ‖u− uC‖. Likewise, it can
be obtained from (13) for di�erent sets of parame-
ters. Assume Q(u) is to be maximized and let Q∗

be the so far best target value. For each cube C, if
Q(uC) + BLip(C) < Q∗ then the optimal solution can-
not be inside the cube C, and the cube can be safely
discarded. If Q(uC)+BLip(C) ≥ Q∗ then C is split into
smaller cubes, and each of the sub-cubes is scheduled
to be examined.

4.2. The Lipschitz bounds

Lipschitz bounds have previously been used in rigid
registration, see, for example, [1]. We adapt the bounds
from [11] to our frequency domain framework. These
bounds are shown to be tighter than those of [1].

Remember that in (7) the target function was writ-
ten as the sum of target functions over di�erent fre-
quency bands QΩi(R, t). Here, we �nd a Lipschitz con-
stant for each QΩi . First, the target function (7) is
reformulated as

QΩi(R, t) =

∫
Ωi

F(z)T Γ(2πtT z)G(Rz) dz, (16)

where F(z),G(z) ∈ R2 are two-vectors containing the
real and imaginary parts of F (z) and G(z) respectively,
and Γ(β) is the 2×2 rotation matrix of angle β. No-
tice that (16) is valid only when F and G are Fourier
transforms of real signals. Using this representation,
the magnitude of the derivatives of the target function
is bounded as follows:∥∥∥∥ ddtQΩi(R, t)

∥∥∥∥ ≤ 2π

∫
Ωi

∥∥zF(z)T Γ′(2πtT z)G(Rz)
∥∥ dz

≤ 2π ri+1

∫
Ωi

|F(z)T Γ′(2πtT z)G(Rz)| dz

≤ 2π ri+1

∫
Ωi

‖F(z)‖ ‖G(Rz)‖ dz

≤ 2π ri+1

√∫
Ωi
‖F(z)‖2 dz

√∫
Ωi
‖G(z)‖2 dz

def
= LΩi

t . (17)

Notice that Γ′(β) = d
dβΓ(β) is again a rotation matrix

and ri+1 = supz∈Ωi ‖z‖. For the 2D case, the only
rotation parameter is an angle of rotation θ. Then

| d
dθ
QΩi(R, t)| ≤

∫
Ωi

∣∣∣F(z)T Γ(2πtT z) JG(Rz)
dR

dθ
z
∣∣∣ dz

≤

√∫
Ωi

‖F(z)‖2 dz

√∫
Ωi

∥∥∥∥JG(z)
dR

dθ
R−1z

∥∥∥∥2

dz,

=
√∫

Ωi
‖F(z)‖2 dz

√∫
Ωi
‖JG(z)z⊥‖2 dz def

= LΩi
θ , (18)

where JG is the Jacobian matrix ofG and and z⊥ is the
vector z rotated by 90 degrees clockwise. For the 3D
case (as well as the cases of re�ective symmetry), the



Lipschitz constant can be adapted from [11] in a similar
way. Here, to obtain even tighter estimates of the Lip-
schitz constant, we further divide each frequency band
into smaller sub-bands, and get the Lipschitz constant
as the sum of the constants over each sub-band.

For 2D registration the cubes have the form
C=Ct×Cθ where Ct and Cθ are the cubes for the trans-
lation vector and the rotation angle respectively. From
(13) the Lipschitz bound can be found as

BΩi
Lip(C) = LΩi

t r(Ct) + LΩi
θ r(Cθ), (19)

where r(Ct) and r(Cθ) can be calculated similarly to
r(C) in (15). For 3D registration (and symmetry detec-
tion) BΩi

Lip(C) can be found in a similar way. Similarly,
we can de�ne Lipschitz bounds for each frequency ball:

B
Bp
Lip(C) =

p∑
i=0

BΩi
Lip(C). (20)

Notice that, as BΩi
Lip(C) ≥ 0, we have

BB0

Lip(C) ≤ BB1

Lip(C) ≤ . . . ≤ BBPLip(C). (21)

One can easily check that

QBp(R, t) ≤ QBp(RC , tC) +B
Bp
Lip(C), (22)

where RC and tC correspond to the central points of Cθ
and Ct respectively. Now, for each cube C we de�ne a
total bound for all p,

B
Bp
total(C) = BBpres +B

Bp
Lip(C). (23)

Then using (11) and (22) we have

Q(R, t) ≤ QBp(RC , tC) +B
Bp
total(C). (24)

4.3. A multiband Lipschitz optimization algorithm

We are now ready to describe the algorithm in
depth. For each cube C we compute the total bound

B
Bp
total(C) for all p, and determine the minimizer p∗ as

p∗ = argmin
p
B
Bp
total(C). (25)

Now, we keep computing QBp(RC , tC) for p = 0, 1, 2, . . .
up to p∗. For each p we examine the upper bound

QBp(RC , tC) + B
Bp
total(C) in (24). If this upper bound

is smaller than Q∗, the best target value found so far,
then the current cube is rejected. If the cube is not
rejected for p = 0, 1, . . . , p∗, we split the cube C. We
do not examine values of p above p∗, as then the total
bound would become larger, but one cannot say that
the target function becomes smaller. In most cases,

if QBp(RC , tC) + B
Bp
total(C) is larger than Q∗ for p =

0, . . . , p∗, it remains larger than Q∗ for p > p∗.
From (10) and (21) we know that as p increases the

value of B
Bp
res decreases, while B

Bp
Lip(C) increases. At the

early iterations of the algorithm, the cubes C are large
and B

Bp
Lip(C) is considerably larger compared to B

Bp
res.

Therefore, the bound B
Bp
total(C) = B

Bp
res + B

Bp
Lip(C) has

its minimum at a small p, and p∗ is small. Therefore,
only a few number of bands needs to be examined be-
fore making the split/reject decision. As the algorithm
continues and the cubes are split to smaller cubes, the

bounds B
Bp
Lip(C) become smaller compared to B

Bp
res, and

p∗ grows larger. Therefore, the target function is com-
puted up to higher frequency bands, which results in a
more accurate approximation of the actual target func-
tion. In this way, many split vs. reject decisions are
made at the initial stages of the algorithm by just com-
puting the target value in lower frequency bands, and
�ne tuning is performed in the �nal stages by examin-

ing higher frequency bands. Fig. 2 plots B
Bp
total(C) for

di�erent cube sizes.
The procedure is summarized in Algorithm 1. In

order to make a fair experimental comparison with
[11], we use the same tree search scheme, namely the
breadth-�rst search. A delimiter called new-level is
used to indicate that an entire level of the search tree
has been visited. When this happens, we �rst com-
pute the target function Q at ulb, the parameter giv-
ing the best (largest) lower bound Q∗lb on the opti-
mal target value, and update the best target value if
necessary (line 9). Then we check the �nishing condi-
tion Q∗up − Q∗ < ε (line 10). It basically checks if the
currently best target value Q∗ is within a margin ε of
the optimal target value. This is done using an upper
bound Q∗up on the entire target function, which is com-
puted in the course of searching an entire level of the
search tree.

In line 30 of the algorithm the cube is split. It hap-

pens when QBp∗ (RC , tC)+B
Bp∗
total(C) > Q∗, which means

B
Bp∗
Lip (C) > Q∗ −QBp∗ (uC)−B

Bp∗
res (C) def

= Bmargin. (26)

Therefore, Bmargin is the maximum permitted value

of B
Bp∗
Lip (C) for not splitting. The splitting procedure

works as follows. Consider q sets of registration param-
eters u1, . . . ,uq, with C=Cu1

×Cu2
× · · ·×Cuq . In 2D

registration u1 = t and u2 = θ. The Lipschitz bound
is the sum of Lipschitz bounds of di�erent parameters:

B
Bp∗
Lip (C) = B

Bp∗
Lip (Cu1

) + . . .+B
Bp∗
Lip (Cuq ) (27)

where B
Bp∗
Lip (Cui) = L

Bp∗
ui r(Cui) as in (19). By

possibly relabeling the parameters, we assume that



Cθ : 20 degrees
Ct : 25×25 pixels

Cθ : 4 degrees
Ct : 5×5 pixels

Cθ : 0.5 degrees
Ct : 1×1 pixels

Cθ : 0.1 degrees
Ct : 0.2×0.2 pixels

Figure 2. Plotting B
Bp
total

(C) as a function of p for di�erent sizes for the cube C = Cθ × Ct. The frequency domain is divided
into 511 radial bands p = 0, 1, . . . , 510. The minimizer p∗ increases as the cube gets smaller.

BLip(Cu1) ≤ BLip(Cu2) ≤ . . . ≤ BLip(Cuq ). Now, for
each i we split the cube C across the parameter ui if∑q
j=iB

Bp∗
Lip (Cuj ) ≥ Bmargin.

4.4. Implementation

To implement the algorithm we need to compute in-
tegrals over each band Ωi in three occasions, namely for
computing the target function (7), the residual bounds
(8), and the Lipschitz constants (17) and (18). Here,
the integrals are computed numerically, using the DFT
coe�cients in the light of equation (5). Since the bands
are circular, it is convenient to use a squareM×M grid
for the DFT. Nonetheless, non-square DFTs can also
be used, in which the circular bands will turn to el-
liptic bands in the DFT pixel domain. In this paper
we use M = N = max(mf , nf ,mg, ng) for an mf×nf
image {fi} and an mg×ng image {gi}, to compute the
bounds. However, since these bounds are computed
just once at the beginning of the algorithm, one can
use a higher resolution DFT as well.

As for computing the target function, �rst for {fi}
we take an M×M DFT, where M is chosen as above.
Then we can approximate the target integral as

QΩi(R, t) =

∫
Ωi

F (z)G(Rz) e2πjtT z dz.

≈ 1

Md

∑
k∈M ·Ωi

Fk G̃(Rk/M) e2πjtTk/M , (28)

where M · Ωi = {Mz | z ∈ Ωi} and G̃(z) approximates
the value of G(z) by interpolating the DFT coe�cient
of {gi}. Notice that Fk = F (k/M) according to (5).
For {gi} we perform an Mg×Mg DFT where Mg is

usually larger than M . Now, we can �nd G̃(z) from
the DFT coe�cients Gl as follows

G̃(z) =
∑
l

Gl h(l−Mgz) (29)

where h is the interpolation kernel. In this paper we
use a bilinear interpolation for which h is the multi-
plication of triangular kernels along each dimension.

Therefore, to compute (29) we just need to consider
four neighbouring DFT coe�cients of Mgz, denoted
here by N4(Mgz). By replacing into (28) we have

QΩi(R, t) ≈M−d
∑

k∈M ·Ωi

Fk

∑
l∈N4(r(k))

wk,lGl e
2πjtT k
M , (30)

where wk,l = h(l − r(k)), and r(k) =
MgRk
M . Notice

that, the number of computations required for comput-
ing the above for all Ωi is proportional to the number
of the DFT pixels Fk which is M2 for the 2D case.
Therefore, taking a higher resolution DFT of {fi} (i.e.
increasing M) will result in more computations. How-
ever, we can still get better approximations by tak-
ing a higher resolution DFT for {gi}. We have found
experimentally that using a bilinear interpolation and
choosing Mg = 6M gives su�ciently accurate results
in most cases. Therefore, we use this setup in our ex-
periments. Since, M = max(mf , nf ,mg, ng) is about
the size of the image dimensions, we can encounter the
problem of aliasing in the space domain. The problem
is not serious for images with a fairly large dark margin.
For other images one can use tricks such as inverting
the image intensity in case of a light background, or
zero padding the original image. The latter, though, is
equivalent to increasing M , and thus the computation
time of the target function. One also needs to limit
the amount of translation in each dimension. Notice
that (30) is periodic in t with a period of M . There-
fore, one hard constraint on the amount of translation
is M/2 along each dimension. However, this can be
smaller depending on the size of dark margins of the
images and the value taken for M . Therefore, using a
larger M might be necessary in some cases.

5. Experiments

All experiments are conducted on an Intel Xeon
3.40GHz machine with 24GB of RAM. The algorithm
is written in C++. In all the experiments the images
are rotated by random angles that are drawn uniformly



Algorithm 1 A Lipschitz optimization algorithm for
intensity-based rigid registration in the frequency do-
main.
1: Q∗ ← −∞ . so-far best target value
2: Q∗lb ← −∞ . best lower-bound on optimal target
3: Qup ← −∞ . an upper-bound on target function
4: Queue.Push(C0)
5: Queue.Push(new-level)
6: loop

7: C ← Queue.Pop( )
8: if C = new-level then . new level
9: Q∗,u∗←UpdateMax(Q∗, Q(u∗lb),u∗,u∗lb)

10: if Q∗up −Q∗ < ε then
11: return u∗

12: end if

13: Queue.Push(new-level)
14: Qup ← −∞
15: continue loop . go to line 6
16: end if

17: uC ← C.Centre()

18: p∗ ← argminpB
Bp
total(C)

19: Q← 0 . QBp(uC)
20: for p← 0 to p∗ do
21: Q← Q+QΩp(uC) . update QBp(uC)

22: if Q+B
Bp
total(C) < Q∗ then

23: continue loop . reject C, go to line 6
24: end if

25: end for

26: Qlb ← Q−BBp∗res

27: Qup ← max(Qup, Q+B
Bp∗
total(C))

28: Q∗lb,u
∗
lb←UpdateMax(Q∗lb,Qlb,u

∗
lb,uC)

29: Q∗, u∗←UpdateMax(Q∗, Q∗lb,u
∗,u∗lb)

30: for C′ in C.Split() do
31: Queue.Push(C′)
32: end for

33: end loop

34: procedure UpdateMax(Q1, Q2,u1,u2)
35: if Q1 ≥ Q2 then

36: return Q1,u1

37: else

38: return Q2,u2

39: end if

40: end procedure

in the interval (−π, π). Next the images are translated
according to two random parameters that are drawn
uniformly in the intervals (−m,m)/8 and (−n, n)/8,
where m is the number of rows and n is the number of
columns of the image, respectively.

The only work we found on speeding up globally
optimal rigid intensity-based registration is [11] and

therefore the performance of the algorithm will be com-
pared to this work. In the code available for that
method, the preprocessing stages such as obtaining the
bounds and building the multiresolution pyramid is
done using Matlab, while the main branch-and-bound
loop is written in C++. Therefore, in order to make
a fair comparison we just compare the running time of
the main loop for both the algorithms. The termina-
tion threshold ε is 0.01 of the geometric average of the
energies of the two images, as in [11]. This choice is
crucial for a fair comparison.

In our current implementation, the computation of
the target function with a single choice of rotation and
translation parameters is considerably slower than the
computation in the space domain as implemented in
[11]. This can sometimes be up to a factor of 8. There
are several reasons behind this, e.g. that in the space
domain only the intersecting parts of the two images
are computed. However, the most important reason
is that in the implementation of the space domain al-
gorithm, the pixels are visited in order: after (i1, i2) it
visits (i1, i2 +1). Thus, for rotating the pixel (i1, i2 +1)
we just need to add a constant vector to the rotated
version of (i1, i2). However, in the frequency domain
approach the DFT pixels are visited in the order of
their corresponding frequency bands. Furthermore, we
use a large array for computing the DFT of G as the
reference image, as Mg = 6M , then the DFT pixels
of {Gk} are 36 times that of {Fk}, and more than 72
times that of {fi} since it contains complex numbers.
Since the elements of this large array are not nearly ac-
cessed in the order they stored in the memory and the
pixels are visited in the order of the frequency bands, it
cannot fully take advantage of the memory caching of
the CPU. For each experiment we report the speed-up
factor when using the frequency based approach rela-
tive to the space domain counterpart. We also report
the speed-up factor after normalizing with a correlation
factor, i.e., the speed-up factor is multiplied by the av-
erage time it takes to compute a single correlation for
the multiband approach divided by the corresponding
number for the multiresolution approach.

First, we experiment on two examples from [11], the
star�sh and brain MRI images, see Fig. 3. The star�sh
image is of size 870×870 pixels and is registered to a
rigidly transformed copy of itself. The brain images
are two di�erent slices of a brain MRI volume with
sizes 312 × 276 pixels, where the second image is ran-
domly transformed. These two cases are of interest
since, according to [11], a multiresolution scheme is
about 260 times faster than the single-resolution ap-
proach for the star�sh image. For the brain images,
however, the speed gain is about 4.5 which is relatively



(a) (b) (c)
Figure 3. Registering two images of a star�sh and two dif-
ferent slices of a single brain MRI image for random values
of the rotation and translation. (a) the �rst image, (b) the
second image rotated and translated, and (c) the �rst im-
age registered to the second image. The star�sh image is
downloaded from http://www.ck12.org and the MRI data
is obtained from [2].

(a) (b)

(c) (d)

Figure 4. The speed-up factors and normalized speed-up
factors for (a-b) the star�sh and (c-d) the brain MRI image.
Notice that the results are reported in logarithmic scale.

small. The speed-up factors of using the multiband
approach instead of the multiresolution approach are
reported in Fig. 4 for 20 runs of the algorithms. In the
star�sh example, even the unnormalized speed gain is
considerably large in most cases, where for the brain
image the multiband approach is always slower if not
normalized for the computation time of a single corre-
lation. One explanation could be as follows. The brain
MRI image does not fully take advantage from a multi-
level approach, as reported in [11]. Thus, it is expected
that in many iterations most of the bands or resolution
levels of the two images are examined to make the re-
ject vs. split decision, and the algorithm does not take
full advantage of the multi-level paradigm. Therefore,
the higher computation time of a single correlation in
the multiband approach shows its e�ect.

We also make a comparison of the algorithms for
a data set consisting of 32 di�erent leaves with sizes
760× 960 pixels [18], see Fig. 5. We ran the algorithm
10 times for each leaf, where in each case the second

image obtained by randomly rotating and translating
the �rst image, plus applying a slight a�ne warp. The
histogram of the speed-up factors of the individual ex-
periments for all the leaves when using the multiband
approach is shown in Fig. 6. Clearly the multiband al-
gorithm outperforms the multiresolution algorithm for
most of the cases. Note that the histograms are com-
puted on the 10-logarithm of the speed-up factors.

(a) (b) (c)
Figure 5. Registering two images of leaf number 17 from the
leaf data set [18], (a) the �rst image, (b) the second image,
and (c) the �rst image registered to the second image.

Figure 6. The histogram of the (left) unnormalized, and
(right) normalized speed-up factors of the multiband over
the multiresolution approach for the leaf data set.

6. Conclusion and future work

In this paper, we have proposed a novel algorithm
that performs an exhaustive search for rigid intensity-
based registration in the frequency domain. We have
shown that by letting the algorithm operate from lower
to higher frequencies, rather than from lower to higher
resolutions, it is possible to reduce the number of ex-
tra computations in a globally optimal approach. We
demonstrated considerable speed gains over the multi-
resolution approach in cases where the images had a
potential to take advantage of a multi-level approach.
For the cases where a multi-level approach did not o�er
a huge speed-up, our implementation of the multiband
approach can perform worse. This is because in our
current implementation a single evaluation of the tar-
get function is much slower than the multiresolution
approach in the space domain. This problem might
be resolved by resampling the DFTs in the polar co-
ordinates. One possible extension of our work would
be to use another basis function with better energy
compaction properties than the Fourier basis. Further-
more, extending the algorithm to cover more general
transformations such as similarity, a�ne, and nonlinear
mappings would be another interesting line of research.
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