
Symbolic Logic and LATEX

David W. Agler

June 21, 2013

1 Introduction

This document introduces some features of LATEX, the special symbols you
will need in Symbolic Logic (PHIL012), and some reasons for why you should
use LATEX over traditional word processing programs. This video also ac-
companies several video tutorials on how to use LATEX in the Symbolic Logic
(PHIL012) course at Penn State.

2 LATEX is not a word processor

LATEX is a typesetting system that was originally designed to produce docu-
ments with special symbols. LATEX is not a word processor which coordinates
text with styling simultaneously. Instead, the LATEX system separates text
from styling as it consists of (i) a text document (or *.tex file) which is
text that does not contain any formatting and (ii) a compiler that takes the
*.tex file and turns it into a readable and professionally stylized document.
In other words, the production of a document using LATEX begins with the
specification of what you want to say and the structure of what you want to
say and this is then processed by a compiler which styles your document.
To get a clearer idea of what some of this means, let’s look at a very simple
LATEX source document:

\documentclass[12pt]{article}

\begin{document}

\title{Symbolic Logic and \LaTeX\ }

\author{David W. Agler}

1

\date{\today}

\maketitle

\section{Introduction}

Hello Again World!

\end{document}

The above specifies the class (or kind) of document you want to produce (an
article, rather than a book or letter), commands for begining the document,
the title of the article, the author of the article, the date, a command to
make the title, a section that will automatically be numbered, some content
that will appear as text (“Hello World”), and finally a command to end the
document.

What we see then is that the empsource document for LATEX consists of not
only content (“Hello World”) but also the structure of the document.

2.1 Advantages to LATEX

The first question you might have about LaTeX is this: I already know how
to use a word processor (e.g. WORD), what does LATEX give me that I don’t
already have? There are several reasons why you might want to use LATEX
in this course and beyond:

1. LATEX gives you more control over mathematical symbols, formulas,
and your document in general.

But I’m not a mathematician, so why would I ever want to use
LATEX?

2. Some word-processors involve auto-formatting for lists, paragraphs,
margins, and sections that are hard to override. Other times you want
to create structured documents that contain sections, titles, a table
of contents, and an index. LATEX gives you more control over these
functionalities.

But even if your document doesn’t have a lot of structure, there are
some other reasons to use LATEX!

3. LATEX is cross-platform. Some word processing programs are platform
specific.

2

4. There is a lot of user-generated documentation on how to use LATEXİf
you have a question, just google it!

5. LATEX allows you to sharply separate the content of your document
from its form. Once you’ve finished writing what you want to say, then
you can apply a template to design that content.

6. LATEX is free!

2.2 Disadvantages to LATEX

Despite there being several benefits to using LATEX there is a disadvantage.
LATEX has a learning curve. So, if you have a term paper due tonight, now
is not the time to learn LATEXṪhe learning curve is mostly due to the fact
that LATEX separates form from content and so you will need to learn specific
commands to get LATEX to display symbols and format your document the
way you want it. For example, suppose you wanted to write the following
formula in logic:

(∃x)(Px→ Lx)

To write the above equation in LATEX you would need to write the following:

$(\exists x)(Px \rightarrow Lx)$

In other word processors, to do the same thing, you will have to go search-
ing through the different fonts available, create a shortcut (or hotkey) for
these symbols, and then use these shortcut commands to input them into
your document. This is not terribly difficult to do but (i) there are some
serious limitations are limited in how you can control your equations and (ii)
sometimes your formulas will disappear when you try to convert it to PDF
or won’t appear if you send it to a friend.

But, there are two things to be said concerning this:

1. Simple articles are pretty easy to write and so as long as you don’t need
some special features, learning how to use LATEX isn’t terribly difficult.
All you need are a few commands and the LATEX package.

3

2. The complexity of LATEX isn’t for complexity’s sake. Separating the
content and structure of LATEX from styling is beneficial as the com-
plexity of LATEX is due to its immense flexibility. You can use it to
create graphics, tables, chemical diagrams, and even music.

If you think that LATEX is not for you, don’t worry. This course has several
tutorials on how to do logic in WORD. Or, you can even do your work in
HTML.

2.3 How to Get LATEX

There are several ways to get LATEXẆhat you will need is the LATEX system
and a text editor. If you are unsure about whether you want to use the LATEX
system, a safe bet is to start with the online version at www.scribtex.com.
Once you are at the site, click the button that reads ”Go to our new LATEX
editor”, from there you will need to sign up and then can start working from
a *.tex file which can be easily compiled into a viewable PDF.

If you have decided that LATEX is the way to go and are going to install it on
your computer, here are the best sites to download the LaTeX system:

for Mac: www.tug.org/mactex

for Windows: http://miktex.org

While all of the above come with a default text editor, I really like the fol-
lowing text editors (and so highly recommend downloading it in addition to
the above):

TeXstudio: http://texstudio.sourceforge.net/
TeXworks: http://www.tug.org/texworks/

The reason I recommend Texstudio is because the editor contains some but-
tons that allow for the easy creation and modification of tables.

3 Special Symbols

3.1 Propositional Logic

These symbols are created using the following LATEX commands:

4

www.scribtex.com
www.tug.org/mactex
http://miktex.org
http://texstudio.sourceforge.net/
http://www.tug.org/texworks/

Sign LATEX Command Name of Sign
¬ \neg unary not, negation
∧ \wedge caret
∨ \lor the vee or wedge
← \leftarrow left arrow
→ \rightarrow right arrow
↔ \leftrightarrow double arrow
` \vdash right turnstile ”therefore”
a \dashv left turnstile
|= \models models or semantic entailment

If you are using a different system, here are several other operators:

Sign LATEX Command Name of Sign
∼ $\mathord{\sim}$ unary not (the ’tilde’)
& \& (in tables) ampersand
⊃ \supset horseshoe
≡ \equiv tribar
⊗ \otimes circled X

You may also want to subscript integers to propositional letters as follows:

Sign LATEX Command
P P_1

P1 P_1

P2 P_2

P12 P_{12}

3.2 Predicate Logic Symbols

In moving from predicate logic to propositional logic, you will need the fol-
lowing two symbols:

Existential Quantifier: ∃
Universal Quantifier: ∀

These are created using the following commands in LATEX :

Existential Quantifier: \exists

5

Universal Quantifier: \forall

3.3 Modal Logic Symbols

In moving from propositional logic to modal logic, you will need the following
two symbols:

� : modal ‘box’
♦ : modal ‘diamond’

4 Tables

Truth tables, trees, and proofs can be created using tables.

4.1 How To Create a Table

To create a table, the first thing you will need to do is open the table envi-
ronment using the following command:

1 R Premise 1
2 S Premise 2
. . .
. . .
. . .
n Conclusion Justification

This table is created by writing

"\begin{tabular}{lll}" where "\begin{tabular}

opens up the table environment and where the number of rows is specified
by the number of letters in the curly braces (in our case three). Here is the
entire table above in LATEX

\begin{tabular}{lll}

1 & R &Premise 1 \\

2 & S &Premise 2 \\

. & . &.\\

. & . &.\\

6

. & . &.\\

n & Conclusion & Justification \\

\end{tabular}

We can specify the justification of these columns by our choice of letter in
the curly braces:

r column is right justified

c column is centered

l column is centered.

For example, changing ”l” to ”c” in the above gives us the following table:

1 R Premise 1
2 S Premise 2
. . .
. . .
. . .
n Conclusion Justification

Occasionally, we want to add vertical and horizontal lines. To create a vertical
line we separate the letters in the braces with a pipe, which is the following
symbol:

|

On many QWERTY keyboards, this symbol is located above the ”Enter”
key and typically is shared by the backslash key.

If we add a pipe after the first letter in the curly baces as follows:

\begin{tabular}{l|ll}

1 & R &Assumption 1 \\

2 & S & . \\

. & . &.\\

. & . &.\\

. & . &.\\

n & Conclusion & Justification \\

\end{tabular}

7

what we get is a line that descends between the first column and the second
column:

1 R Assumption 1
2 S .
. . .
. . .
. . .
n Conclusion Justification

To create a horizontal line, we add the following command where we want
the horizontal line to appear

\hline command

For example, if we want to add a horizontal line after the second row and
above the last line, we would write:

\begin{tabular}{lll}

1 & R &Premise 1 \\

2 & S &Premise 2 \\

\hline

. & . &.\\

. & . &.\\

. & . &.\\

\hline

n & Conclusion & Justification \\

\end{tabular}

This would give use the following table:

1 R Premise 1
2 S Premise 2
. . .
. . .
. . .
n Conclusion Justification

8

4.2 How To Create a Truth Table

Suppose we have the formula P ∧R and we want to create a truth table for
this formula. To do this we begin by creating a table with 5 columns (one
for each propositional letter and one for each operator:

\tablular{cc|cccc} environment

Next, we will want to create 5 rows with P ∧ R at the top separated by a
horizontal line:

\begin{tabular}{cc|ccc}

P & R & P & $\wedge $ & R \\

\hline

& & & & \\

& & & & \\

& & & & \\

& & & &

\end{tabular}

Next, we insert the T’s and F’s between the ampersands:

P R P ∧ R
T T T T T
T F T F F
F T F F T
F F F F F

And, of course, if we needed more columns, we would add more letters to the

\begin{tabular}{*****}

command. While if we needed more rows, we would add them as follows:

row 1 & * & * & * & *\\

row 2 & * & * & * & *\\

. & * & * & * & * \\

. & * & * & * & * \\

. & * & * & * & * \\

row n & * & * & * & *

9

4.3 How To Create a Truth Tree

Creating truth trees is the trickiest part of using LATEX for logic. Before
we begin, it will be necessary to add the following packages to your *.tex
document:

\usepackage{tikz}

\usepackage{tikz-qtree}

In the table mode, we begin by creating a table with however many columns
we might think we need. It is not necessary we know ahead of time, so it can
be helpful to allot for more than we think we will need. Let’s consider the
following set of propositions:

A ∧B,C,A ∨ ¬C

As both of these will use certain notation for creating the tree, let’s look at
that notation:

1. The tree begins with the following commands:

\Tree

[.ROOT]

2. The root of the tree or a root of the subtree always begins with a period
”.” Thus, the above tree produces:

ROOT

3. Each subtree in the tree is indicated by backets ”[]”. It is important
that there is a space to the left of every closing bracket). For example,
the following commands:

\Tree

[.ROOT [.Node1] [.Node2]]

produce the tree below:

ROOT

Node2Node1

10

4. Items descending from the node (sometimes called ”leaf nodes”) are
expressed by their labels. These are expressed by typing a name after
a node within the brackets of a node. The following commands:

\Tree

[.ROOT [.Node1 Leaf1] [.Node2 Leaf2]]

produce the tree below:

ROOT

Node2

Leaf2

Node1

Leaf1

5. In order to have a label that contains space, e.g. ”Node 1” rather than
”Node1”, curly braces are used. The following commands:

\Tree

[.{Root of Tree} [.{Node 1} {Leaf 1}] [.{Node 2} {Leaf 2}]]

produces the tree below:

Root of Tree

Node 2

Leaf 2

Node 1

Leaf 1

6. Adding space and a label to the right of a node will make that leaf
node descend from the parent node. Subsequent spaces and labels will
just create additional leafs under the parent node; it won’t create leafs
under leafs. Thus, if we write:

\Tree

[.{Root of Tree} [.{Node 1} {Leaf 1} {Leaf 1.1}]

[.{Node 2} {Leaf 2} {Leaf 2.1}]]

11

We won’t have a tree where Node 1 descends from the Root, Leaf 1
descends from Node 1, and Leaf 1.1 descends from Leaf 1. Rather, we
will have a tree where both Leaf 1 and Leaf 1.1 will descend from Node
1.

Root of Tree

Node 2

Leaf 2.1Leaf 2

Node 1

Leaf 1.1Leaf 1

7. In order to indicate descendence, you must use the [.] structure. Thus,
if we wanted to create the following tree:

Root of Tree

Node 2

Leaf 2

Leaf 2.1

Node 1

Leaf 1

Leaf 1.1

we need to make Leaf 1 a node by prefixing [. before it and a closing
bracket after Leaf 1.1. That is, we must use the following commands:

[.{Root of Tree}

[.{Node 1} [.{Leaf 1} {Leaf 1.1}]]

[.{Node 2} [.{Leaf 2} {Leaf 2.1}]]

]

8. Finally, we can stack labels or formulas in a node by using the double
backslash. That is,

Root of Tree

Node 2.0Node 2.1Node 2.2Node 1

Node2Node3

The above is produced by using the following commands:

12

[.{Root of Tree}

[.{Node 1.0 \\ Node 1.1 \\ Node 1.2 }]

[.{Node 2.0 \\ Node 2.1 \\ Node 2.2 }]

]

We can use the principles above to create increasingly complex trees:

Node 0.0

Node 2.0Node 2.1Node 2.2

Leaf 2.2Leaf 2.1Leaf 2.0

Node 1.0Node 1.1Node 1.2

Leaf 1.1Leaf 1.0

Subleaf 1.0.1

Using LATEX for truth trees can be somewhat challenging as it is difficult to
see how the linear commands of LATEX correspond to the tree diagram. First,
it is helpful to begin every tree by giving the root and its closing bracket their
own lines:

\Tree

[.{Node 0.0}

]

Next, remember the following:

SPACES are for descendence

SLASHES are for stacking

BRACKETS are for grouping.

It can be helpful to configure your code by using putting every open bracket
on a separate line. In other words, rather than have your code look like this:

\Tree

[.{Node 0.0} [.{Node 1.0 \\ Node 1.1 \\ Node 1.2 } [.{Leaf 1.0}

{Subleaf 1.0.1}] {Leaf 1.1}] [.{Node 2.0 \\ Node 2.1 \\

Node 2.2 } {Leaf 2.0} {Leaf 2.1} {Leaf 2.2}]

13

it is more perspicuous if it looks like this:

\Tree

[.{Node 0.0}

[.{Node 1.0 \\ Node 1.1 \\ Node 1.2 }

[.{Leaf 1.0} {Subleaf 1.0.1}] {Leaf 1.1}]

[.{Node 2.0 \\ Node 2.1 \\ Node 2.2 } {Leaf 2.0} {Leaf 2.1}

{Leaf 2.2}]

]

};

The main difficulty now becomes how to number the rows of the tree on the
lefthand side and justify the lines of the tree on the righthand side. What we
will do is create three different trees, each in its own column. 1The columns
for numbering

\begin{tikzpicture}[sibling distance=.5cm]

\begin{scope}

Here is where the commands for the first column will go

\end{scope}

\Tree [.{Here is where the main tree will go}

\begin{scope}

Here is where the commands for the third column will go

\end{scope}

\end{tikzpicture}

The left and right columns will be positioned in relation to the main tree.
First, let’s focus on the left column.

\begin{scope}[xshift=-1.5in] %Column #1 For Numbering

\tikzset{edge from parent/.style={edge from parent path={(\tikzparentnode)

-- (\tikzchildnode)}},every tree node/.style={text width=5em,align=left}}

\Tree [.1

[.2

[.3]]]

\end{scope}

1I had some difficulty figuring out how to line trees up with columns; as
such, I drew the following from http://tex.stackexchange.com/questions/48758/

how-to-draw-custom-nodes-attached-to-tikz-qtree.

14

http://tex.stackexchange.com/questions/48758/how-to-draw-custom-nodes-attached-to-tikz-qtree
http://tex.stackexchange.com/questions/48758/how-to-draw-custom-nodes-attached-to-tikz-qtree

This will give us a tree with three numbered rows:

1

2

3

We can adjust the position of these by changing the ”xshift” value from ”-
1.5” to some other number and we can add additional numbers by adding
more open and closed brackets with numbers, i.e. [.n]. Next, let’s add the
following tree to our numbered column:

\Tree

[.P

[.R

[.S] [.T]]

[.U

[.V] [.W] [.X]]

[.A

[.B] [.C] [.D]]

]

Adding the above command will produce:

1

2

3

P

A

DCB

U

XWV

R

TS

Finally, let’s add the justification column. To do this, we will use the same
commands we used to create the numbered columns except that we will need
to adjust the ”xshift” from ”-1.5in” to ”2.5in”. This will ensure that the
justification column is pushed to the right of the main tree. Here is what we
will add to the existing commands:

\begin{scope}[xshift=2.5in] %Column #3 For Justification

\tikzset{edge from parent/.style={edge from parent path={(\tikzparentnode)

-- (\tikzchildnode)}},every tree node/.style={text width=5em,align=left}}

\Tree [.{P}

15

[.{S}

[.{R}]]]

\end{scope}

Putting everything together, we get the following tree:

1

2

3

P

A

DCB

U

XWV

R

TS

P

S

R

The major difficulty we now face is how to STACK propositions on top of
each other without the use of a line connect parent to sibiling. The trick
will be to (i) make sure the anchor is south, (ii) toggle the level distance to
coordinate

1
2
3
4
5

6

A&∼B
C

∼A∨ ∼C
A
∼B

∼C
⊗

∼A
⊗

P
P
P

1,&D
1,&D

3,∨D

4.4 How To Create a Proof

In order to create a proof, we will need to install a the fitch.sty package cre-
ated by Johan W. Kluwer (http://folk.uio.no/johanw/FitchSty.html).
Here is how to do this:

1. 1. In your C: drive, create a directory as follows:

C:\\Local TeX Files\tex\latex\misc

2. click on (http://folk.uio.no/johanw/FitchSty.html) and save the
fitch.sty file to that directory.

16

http://folk.uio.no/johanw/FitchSty.html
http://folk.uio.no/johanw/FitchSty.html

3. Now, you will need to make the *.sty file known to your LaTeK system.
In the case of MiKTeX, click ”Start/ Programs/ MiKTeX 2.x/” then
access ”Maintenance” as the Administrator, then click ”Settings” to
access the MiKTeX options, then click Root, add the *.sty file, and
finally click ”General”, and click ”Refresh FNDB”.

For further assistance with this, see http://tex.stackexchange.com/
questions/2063/how-can-i-manually-install-a-package-on-miktex-windows

4. Once MiKTeK recognizes the fitch.sty, you will need to write

\usepackage{fitch1}

under the document class at the top of your *.tex file.

Let’s see how this pacakge works.
First, in order to begin a proof you will need to write the following commands:

\begin{equation*}

\begin{fitch}

[proof will go here]

\end{fitch}

\end{equation*}

The proof will automatically number lines and so the focus will be on (i) pro-
viding the wff in the main line of the proof and (ii) providing its justification

1 P P

2 Q P

3 S P

To make an assumption and enter a subproof, use the following command:

\fa

To make another assumption in order to enter a nested subproof, use the
above command iteratively. So,

17

http://tex.stackexchange.com/questions/2063/how-can-i-manually-install-a-package-on-miktex-windows
http://tex.stackexchange.com/questions/2063/how-can-i-manually-install-a-package-on-miktex-windows

\begin{equation*}

\begin{fitch}

\fa P & A \\

\fa\fa Q & A \\

\fa\fa P\land Q & 1,2\land I \\

\end{fitch}

\end{equation*}

Would give us:

1 P A

2 Q A

3 P ∧Q 1,2 ∧ I

fitch.sty also allows for several other commands dealing with assumptions.
For example, the following:

1 ∀y¬P (y)

2 ∃xP (x)

3 u Pa

4 ¬Pa

5 ⊥

6 ⊥

7 ¬∃xP (x)

was typset using the following code:

\begin{equation*}

\begin{fitch}

\fh \forall y\lnot P(y) \\

\fa\fh \exists xP(x) \\

\fa\fa\fitchmodalh{u} Pa \\

\fa\fa\fa \lnot Pa \\

\fa\fa\fa \bot \\

\fa\fa\bot \\

18

\fa \lnot\exists xP(x)

\end{fitch}

\end{equation*}

5 LaTeX Resources

1. A Great LaTeX Blog: <http://texblog.net/>

2. LaTeX templates: http://www.latextemplates.com/

3. LaTeX package 1 for Fitch-style proofs: http://folk.uio.no/johanw/
FitchSty.html

4. LaTeX package 2 for Fitch-style proofs: http://www.mathstat.dal.

ca/~selinger/fitch/

5. LaTeX for Linguistics http://www.essex.ac.uk/linguistics/external/
clmt/latex4ling/

6. On Nodes: http://en.wikibooks.org/wiki/LaTeX/PGF/TikZ#Nodes

7. More on Nodes: http://stuff.mit.edu/afs/athena/contrib/tex-contrib/
beamer/pgf-1.01/doc/generic/pgf/version-for-tex4ht/en/pgfmanualse12.

html

8. Tikz-Qtree: http://ctan.mackichan.com/graphics/pgf/contrib/tikz-qtree/
tikz-qtree-manual.pdf

9. LaTeX for Logicians: http://www.logicmatters.net/latex-for-logicians/

19

<http://texblog.net/>
http://www.latextemplates.com/
http://folk.uio.no/johanw/FitchSty.html
http://folk.uio.no/johanw/FitchSty.html
http://www.mathstat.dal.ca/~selinger/fitch/
http://www.mathstat.dal.ca/~selinger/fitch/
http://www.essex.ac.uk/linguistics/external/clmt/latex4ling/
http://www.essex.ac.uk/linguistics/external/clmt/latex4ling/
http://en.wikibooks.org/wiki/LaTeX/PGF/TikZ#Nodes
http://stuff.mit.edu/afs/athena/contrib/tex-contrib/beamer/pgf-1.01/doc/generic/pgf/version-for-tex4ht/en/pgfmanualse12.html
http://stuff.mit.edu/afs/athena/contrib/tex-contrib/beamer/pgf-1.01/doc/generic/pgf/version-for-tex4ht/en/pgfmanualse12.html
http://stuff.mit.edu/afs/athena/contrib/tex-contrib/beamer/pgf-1.01/doc/generic/pgf/version-for-tex4ht/en/pgfmanualse12.html
http://ctan.mackichan.com/graphics/pgf/contrib/tikz-qtree/tikz-qtree-manual.pdf
http://ctan.mackichan.com/graphics/pgf/contrib/tikz-qtree/tikz-qtree-manual.pdf
http://www.logicmatters.net/latex-for-logicians/

	Introduction
	LaTeX is not a word processor
	Advantages to LaTeX
	Disadvantages to LaTeX
	How to Get LaTeX

	Special Symbols
	Propositional Logic
	Predicate Logic Symbols
	Modal Logic Symbols

	Tables
	How To Create a Table
	How To Create a Truth Table
	How To Create a Truth Tree
	How To Create a Proof

	LaTeX Resources

