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  Abstract — In this work, two different artificial neural networks (ANNs) models: Back propagation neural network 

(BPN) and radial basis function neural network (RBFN) are presented for the prediction of surface roughness in die 

sinking Electrical Discharge Machining (EDM). The pulse current (Ip), the pulse duration (Ton) and duty cycle (τ) are 

chosen as input variable with a constant voltage 50 volt, surface roughness is the output parameters of the model. A 

widespread series of EDM experiments was conducted on AISI D2 steel to acquire the data for training and testing and 

it was found that the neural models could predict the process performance with reasonable accuracy, under varying 

machining conditions. However, RBFN is faster than the BPNs and the BPN is reasonably more accurate. Moreover, 

they can be considered as valuable tools for EDM, by giving reliable predictions and provide a possible way to avoid 

time and money consuming experiments 

 

Keywords—Back propagation neural network, Electrical discharge machining, Radial basis function neural network, 

Surface roughness. 

 

 
 

1. INTRODUCTION 

Electrical Discharge Machining is one of the 

earliest non-conventional processes most widely and 

successfully applied for the machining of various 

electrically conductive materials regardless of its 

hardness. It has been distinctively and 

comprehensively used for manufacturing moulds, 

punch and dies for blanking, shearing and 

progressive die tooling, automatic stamping dies and 

used as the components/products used in biomedical, 

automobile, aircraft, and microelectronic industries 

[1]. It works on a thermal erosion process by a 

complex metal removal mechanism, involving the 

formation of a plasma channel between the tool and 

the workpiece, in which the repetitive spark cause 

melting and even evaporating the workpiece. As a 

result, tensile residual stresses, cracking and 

metallurgical transformation of the machined 

material may be observed.  
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All such characteristics are termed as “surface 

integrity” that would help to determine the operational 

behavior of the machine parts [2]. Several researches 

are being carried out on the study of surface integrity 

(including surface topography) induced by EDM.  Due 

to the complexity in nature, there is a lack of analytical 

models correlating the process variables and surface 

finish. For the prediction of surface roughness, 

empirical models as well as multi-regression analysis 

are usually applied. Tsai and Wang [3] developed a 

semi-empirical model in which parameters affecting the 

surface roughness were identified using design of 

experiments (Taguchi method). Petropoulos [5] 

presented a multi-parameter analysis of surface finish 

imparted to Ck60 steel plates by electro-discharge 

machining. The interrelationship between surface 

texture parameters and process parameters is 

emphasized.   

In the recent past, ANNs have emerged as a highly 

flexible modeling tool for manufacturing sectors. 

ANNs are found to be effective as computational 

processors for various associative recall, classification, 
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data compression, combinational problem solving, 

adaptive control, modeling, forecasting, multisensor 

data fusion, and noise filtering. In the literature, 

Back-propagation technique and Radial basis 

function have been employed for modeling the 

processes. Tsai [4] used RBFN on the neural 

network for predicting MRR in EDM process using 

aluminum and iron workpiece. However, Kao [6], 

Panda [7] and Angelos [9] used Back-propagation 

technique on neural network for predicting on-line 

monitoring, MRR and Surface roughness, 

respectively, in EDM process. 

The application of novel ANN models for the 

prediction of the center-line average surface 

roughness ‘Ra’ of electrical discharge machined 

surfaces is discussed in this paper. The proposed 

models use data for the training procedure from an 

extensive experimental research-concerning surface 

integrity of EDMed AISI D2 steels. The Ip, Ton, and 

τ were considered as the input parameters of the 

models and they are varied over a wide range, from 

roughing to near-finishing conditions. The proposed 

neural networks trained with the feed forward back 

propagation algorithm and Radial Basis function 

were proven to be accurately predicting, providing 

surface roughness without conducting  experiments. 

The objective of this work is to establish a better 

process model based on neural network by 

comparing prediction from the discussed models 

under the effect of Ip, Ton, and τ in EDM process. 

 

Table 1   Experimental machining parameter 

Parameter of experiment    Values 

Current (Ip) in A  1, 5, 10, 20, 30, 50 

Pulse on time in µs 5,10, 20, 30,50,100, 200 

Discharge voltage (V)  50 

Duty cycle (τ)  1 12  

Polarity Positive  (þ) 

2. EXPERIMENTATION 

2.1. EXPERIMENTAL SETUP  

A number of experiments were conducted to study 

the effects of various machining parameters on EDM 

process. These studies were undertaken to 

investigate the effects of Ip, Ton, and τ on surface 

roughness. Where, the duty cycle is the ratio of Ton 

to sum of Ton and spark off time (Toff) in 

percentage. The selected workpiece material for the 

research work is AISI D2 (DIN 1.2379) tool steel. 

D2 steel was selected due to its emergent range of 

applications in the field of manufacturing tools in 

mould industries. 

Experiments were conducted on Electronica 

Electraplus PS 50ZNC die sinking machine. An 

electrolytic pure copper. with a diameter of 30 mm was 

used as a tool electrode (positive polarity) and 

workpiece materials used were steel square plates of 

dimensions 15 ×15 mm
2
 and of thickness 4 mm. 

Commercial grade EDM oil ( specific gravity = 0.763, 

freezing point= 94˚C ) was used as dielectric fluid. 

Lateral flushing with a pressure of 0.3 kgf/cm
2
 was 

used. The test conditions are depicted in Table 1. To 

obtain more accurate result, every test run was 

performed with 15 min of machining and three 

repeatasions. 

2.2.    SURFACE ROUGHNESS MEASUREMENTS:  

 Roughness measurement was done using a portable 

stylus type profilometer, Talysurf (Taylor Hobson, 

Surtronic 3+). The profilometer was set to a cut-off 

length of 0.8 mm, filter 2CR, and traverse speed 1 

mm/s and 4 mm evaluation length [10]. Roughness 

measurements, in the transverse direction, on the 

workpieces were repeated four times and average of 

four measurements was recorded. The measured profile 

was digitized and processed through the dedicated 

advanced surface finish analysis software, Talyprofile 

for evaluation of the roughness parameters. 

2.3. SURFACE ROUGHNESS 

Surface roughness is an important parameter in the 

EDM process. The parameters that affects roughness 

are Ip, Ton, and τ. It is a measure of the technological 

quality of a product, which mostly influence the 

manufacturing cost of the product. It is defined as the 

arithmetic value of the profile from the centerline along 

the length. 

This can be express as  

∫= dxxy
L

Ra )(
1

               (1) 

Where L is the sampling length, y is the profile curve 

and x is the profile direction. The average surface 

roughness Ra is measured within L = 0.8 mm.  Ra 

measurements of electro-discharge machined surfaces 

were taken to provide quantitative evaluation of the 

effect of EDM parameters on surface finish.  
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3. ARTIFICIAL NEURAL NETWORKS  

One type of network sees the nodes as ‘artificial 

neurons’. These are called artificial neural networks 

(Fig. 1). An artificial neuron is a computational 

model inspired in the natural neurons. Natural 

neurons receive signals through synapses located on 

the dendrites or membrane of the neuron (Fig. 2). 

When the signals received are strong enough 

(surpass a certain threshold), the neuron is activated 

and emits a signal through the axon. This signal 

might be sent to another synapse, and might activate 

other neurons. 

 

Figure 1 Natural Neurons 

 

 

Figure 2  An artificial neurons 

The complexity of real neurons is highly abstracted 

when modeling artificial neurons. These consist of 

inputs (like synapses), which are multiplied by 

weights (strength of the respective signals), and then 

computed by a mathematical function which 

determines the activation of the neuron. Another 

function (which may be the identity) computes the 

output of the artificial neuron (sometimes in 

dependence of a certain threshold). ANNs combine 

artificial neurons in order to process information.  

In past, several studies have been reported on the 

development of neural networks based on different 

architectures. Neural networks are characterized by 

their architecture, activation function and learning 

algorithms. Each type of neural networks would have 

its own input-output characteristics; and therefore it 

could be applied only on some specific process. 

In this study, two neural networks are employed for 

modeling the ‘Ra’ in the EDM process. Two networks 

are discussed as follows. 

A. Back-propagation Network  

B. Radial basis function network  

 

Figure 3 Schematic diagram of back-propagation 

network 

 

 
Figure 4 Comparison of Errors for hidden layers 

3.1. BACK-PROPAGATION NETWORK 

Back-propagation networks are composed of layers 

of neurons. The input layer of neurons is connected to 

the output layer of neurons. The training process of 

BPN is undertaken by changing the weights such that a 

desired input-output relationship is realized. A 

schematic diagram of a BPN with n inputs nodes,        r 

outputs nodes and a single hidden layer of m nodes are 

shown in Fig. 3. In the figure, the number of the hidden 

layers is critical for the convergence rate during the 

training of parameters for a given numbers of nodes at 

inputs and outputs layers [4].  In addition, numerical 

experiments did not show any advantage of a double 

hidden layer over a single layer network as shown in 

Fig. 4. So, only single hidden layer networks are used 

in this work and all the connections have been 

multiplying weights associated with them. The input 

nodes have a transfer function of unity and the 
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activation function of the hidden and output nodes 

are sigmoidal ( )•S  and linear, respectively.  

Referring to Fig. 1 the net input to the jth hidden 

neuron is given by  

( ) ∑
=

+=
n

i

jijij bxwxy
1

11                  (2) 

Where jiw1 is the weight between the ith input 

node and jth hidden node and jb1  is the bias at jth 

hidden node. The output of the jth hidden node is 

described as: 

( ) ( )( )( )xyxz jj −+= exp11                 (3) 

Given an input vector x, the output, value ( )xok  

of the kth output node is equal to the sum of the 

weighted outputs of the hidden nodes and the bias of 

the kth output node, and is expressed as: 

( ) ∑ += kjkjk bzwxo 22                  (4) 

Where kjw2  is the weight between the jth hidden 

node and kth output node, 
kb2  is biasing term at the 

kth output node. 

The Back Propagation learning process works in 

small iterative steps:  

1. First one of the example cases is applied to the 

network, 

2. Second the network produces some output 

based on the current state of its synaptic weights 

(initially, the output will be random).  

 

Figure 5 Schematic diagram of radial basis 

function network 

 

This output is compared to the known-good output, 

and a mean-squared error (MSE) signal is calculated. 

The error value is then propagated backwards 

through the network, and small changes are made to 

the weights in each layer. The weight changes are 

calculated to reduce the error signal for the case. 

The whole process is repeated for each of the example 

cases, then back to the first case again, and so on. The 

cycle is repeated until the overall error value drops 

below some predetermined threshold. At this point, it is 

said that the network has learnt the problem “good 

enough” - the network will never exactly learn the ideal 

function, but rather it will asymptotically approach the 

ideal function. 

3.2.  RADIAL BASIS FUNCTION NETWORK  

The schematic diagram of a RBFN with n inputs and 

r outputs is shown in Fig. 5. It has a feed forward 

structure consisting of a single hidden layer of m 

locally tuned units (RBFNs) which are fully 

interconnected to an output layer of r linear units. The 

input nodes pass the incoming input vector to the 

hidden nodes. The connections between the hidden 

nodes and the input nodes (first layer connections) are 

not weighted. The connections between hidden nodes 

and output nodes (second layer connections) are 

weighted and the output nodes are simple simulations.  

The commonly used Gaussian basis function ( )⋅Φ  is 

used for the hidden units. All hidden units 

simultaneously receive the n-dimensional real-valued 

input vector x. It should be noticed that the first layer 

weights are absent, because the outputs of hidden units 

are not calculated using the sigmoidal activation 

mechanism. Rather, each hidden unit’s output is 

obtained by calculating the closeness of the input x to 

an n dimensional parameter vector jµ  associated with 

the jth hidden units.  

Referring to Fig. 5, the net input to the jth radial basis 

neuron is given by  

( ) ( )jjj xbxy µ−= 1                 (5) 

Where the bias jb1  is a fixed function of the width 

of the receptive field jσ  that follows the sensitivity of 

the jth radial basis neuron to be adjusted and is 

described below, 

( )( ) jjb σ5.0log1 −=            (6) 

The output of the jth radial basis neuron is described 

as: 

( ) ( )( )( )2
exp xyxz jj −=                (7) 
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Given an input vector x, the output, value ( )xok  

of the kth output node is equal to the sum of the 

weighted outputs of the hidden nodes and the bias of 

the kth output node and is described by.  

( ) ∑
=

+=
m

j

kjkjk bzwxo
1

2                 (8) 

Where kjw  is the weight between the jth hidden 

node and kth output node. 

 
Figure 6 Comparison of average errors for 

various nodes on BPN 

 
Figure 7 Learning behavior of   BPN model for 

surface roughness 
 

It may be noted that here that the choice of ( )⋅Φ  

and jµ  be made carefully so that the RBFNs be 

able to match closely to the performance of the two-

layer back propagation neural networks. The RBFNs 

employ a hybrid two-stage training scheme which 

decouples the learning task from both hidden and 

outputs layers and thus eliminates the need for slow 

back error propagation. In the training process, the 

sum of the MSE criterion function is considered as 

the error function, and it is minimized over the given 

training data sets by adaptively updating the free 

parameters of the RBFN. These parameters are the 

radial basis function centers ( )sj ,µ  their widths 

( )sj ,σ  and the second layer weights ( )swkj , . The 

RBFN is trained in three steps. Firstly, the hidden node 

centers are determined, secondly the hidden widths are 

determined and thirdly the second layer connection 

weights are determined. 

In this section, widths of all Radial basis function 

units are taken to be equal, which is known as the 

spread factor (SF) of the RBFN. If SF is too small, 

overfitting can occur, while underfitting may occur if 

SF be too large. Therefore, it is of very important to 

choose a proper value for SF in order to achieve better 

generalization ability of the RBFN. Finally, once the 

hidden units are synthesized, the second layer weights 

are computed by using the supervised least-square rule. 

4. RESULT AND DISCUSSION 

 

Initially, the architecture and the topology of the 

networks i.e. the number of hidden layers and the 

number of neurons in each layer in the networks are 

decided. The process parameters Ip, Ton, and τ are 

taken as the inputs and Surface Roughness (Ra) is 

taken as output. Thus, there are three input nodes and 

one output node. The variation of process parameters 

for different experimental set (Run) is as presented in 

Table1.  

 

  The size of the network becomes very large for large 

number of training patterns. As such, the data for 

training are selected judiciously. Out of 44 

experimental data 35 training data sets are considered 

for both the networks to compare the performances. 

Besides, 9 testing sets outside the training data set are 

selected for testing the neural networks. Both the 

ANNs were trained with the above data sets to reach 

the error goal (0.1). The performance of two neural 

network models is studied with the special attention to 

their generalization ability and the training time. 

 

It is always a difficult task to find a optimal 

configuration of BPN. There is no exact rule for setting 

the proper number of neurons in the hidden layer to 

avoid over fitting or under fitting to make the learning 
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phase convergent. For the best performance of the 

BPN, the proper number of nodes in the hidden layer 

is selected through a trial and error method based on 

the number of epochs needed to train the network. It 

was observed that the network performed well with 

100 nodes (Fig 6). The learning behavior of BPN 

model for surface roughness is shown in Figure 7 and 

error goal met at 478 epochs. 

 

 

Figure 8 Comparison of average error for various spread factors 
 

 

Figure 9 Learning behavior of RBFNN model for 

surface roughness 

 

Figure 10 Comparison of average errors for various 

epochs on RBFN 

 

The RBFN is auto configuring in the sense that it has 

only one hidden layer with a growing number of 

neurons during learning to achieve an optimal 

configuration. The only parameter to be varied to 

obtain the best generation ability is the spread factor. 

Computations are carried out for different values of 

spread factor. It is observed that the best generalization 

ability of the network is achieved with a SF 45 for the 

training data as shown in Fig 8. The training 

performances of the same training data sets are shown 

in Fig. 9 
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Figure 11 Residuals calculated as the difference between experimental and predicted values for the data set. 
 

ANN’s are compared separately with results obtained 

by experiments and the average absolute error obtained 

for both the networks. RBFN and BPN models are 

poorer in predicting Ra at one each of input data but for 

the rest of the inputs both the models have almost 

identical generalization ability. The test result accuracy 

measured in terms of mean absolute error (MAE) for 9 

test data are found to be 0.297188 for the BPN and 

0.574888 for RBFN. In the case of RBFN, the number 

of epochs is equal to the number of neurons in the single 

hidden layer of the network. The error goal is reached in 

only 19 epochs in RBFN (Fig.10), while 478 epochs are 

required by the BPN (Fig. 7).  

Fig. 11 shows the error for each model, calculated as 

the difference between the experimental findings and 

predicted values. It is found that except at two places 

both the models predict the roughness with reasonable 

accuracy.  

The experimental results and predicted results of ‘Ra’ 

by the BPN and RBFN were plotted on the same scale, 

as shown in Fig. 12. It clearly shows that BPN model is 

more accurate than RBFN model. 

CONCLUSION 

In this paper, two artificial intelligence techniques: 

Back propagation neural network and radial basis 

function neural network are projected for the prediction 

of surface roughness of the Electrical discharge 

machined surface. The results obtained from widespread 

experiments conducted on AISI D2 steel workpiece 

materials with diverse machining parameters using 

copper electrode are compared and validated with the 

predictions. 

 

Figure 12 Comparison of surface roughness among the 

measured data and predictions based on various models: 

BPN and RBFN 

 

 

It was found to be close correlation with the 

experimental results. It was also observed that the RBFN 

model is quite analogous with BPN for surface roughness 

prediction and both models offered an agreeable 

prediction. The BPN demonstrated a slightly better 

performance compared to the RBFN model i.e. the MAE 

for test data are 0.297188 for the BPN and 0.574888 for 

RBFN. However, the RBFN model predicted quite faster. 

The error goal reached in only 19 epochs while BPN 

requires 500 epochs. It is important to note that, for 

BPNs the required number of nodes in the hidden layer 

found by trial and error method whereas the RBFNs have 

only one hidden layer with a growing number of neurons. 

Conclusively speaking, the surface finish of EDMed 
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surface can be predicted by the above models with 

reasonable accuracy. 
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