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Abstract

The use of computational models is increasingly expected to play an important role in predict-
ing the behaviour of biological systems. Models are being sought at different scales of biological
organisation namely: sub-cellular, cellular, tissue, organ, organism and ecosystem; with a view of
identifying how different components are connected together, how they are controlled and how they
behave when functioning as a system. Except for very simple biological processes, system iden-
tification from first principles can be extremely difficult. This has brought into focus automated
techniques for constructing models using data of system behaviour. Such techniques face three
principal issues: (1) The model representation language must be rich enough to capture system be-
haviour; (2) The system identification technique must be powerful enough to identify substantially
complex models; and (3) There may not be sufficient data to obtain both the model’s structure and
precise estimates of all of its parameters. In this paper, we address these issues in the following
ways: (1) Models are represented in an expressive subset of first-order logic. Specifically, they
are expressed as logic programs; (2) System identification is done using techniques developed in
Inductive Logic Programming (ILP). This allows the identification of first-order logic models from
data. Specifically, we employ an incremental approach in which increasingly complex models are
constructed from simpler ones using snapshots of system behaviour; and (3) We restrict ourselves
to “qualitative” models. These are non-parametric: thus, usually less data are required than for
identifying parametric quantitative models. A further advantage is that the data need not be pre-
cise numerical observations (instead, they are abstractions like positive, negative, zero, increasing,
decreasing and so on). We describe incremental construction of qualitative models using a simple
physical system and demonstrate its application to identification of models at four scales of bio-
logical organisation, namely: (a) a predator-prey model at the ecosystem level; (b) a model for the
human lung at the organ level; (c) a model for regulation of glucose by insulin in the human body at
the extra-cellular level; and (d) a model for the glycolysis metabolic pathway at the cellular level.
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1. Introduction

There is a general move in biology from seeking an understanding at the level of individual units
(genes, proteins and so on) to an understanding at the system-level. Identifying single genes, pro-
teins or metabolite levels cannot be expected to yield an answer to systemic behaviour any more
than a list of radio parts could explain its behaviour (a point made in Lazebnik’s humourous and
perceptive article: Lazebnik, 2002). What is needed is an understanding of the function of each
part and, crucially, how these components are connected, how they are controlled and the dynamic
behaviour of the system as a whole. Biology, which for the last decade or so has been pre-occupied
with establishing the “parts-list” is now moving to address these other issues. Besides the obvious
scientific value of understanding whole systems, substantial benefits are expected to follow in clin-
ical medicine. This is concerned with the application of computation and applied mathematics to
improve existing pharmaceutical and medical practices. It is expected that results in systems-level
biology will allow a better understanding of the nature of diseases, leading to a targeted design of
new drugs and drug treatments. The importance of adopting a systemic approach to biology is not
new: there are statements in Darwin’s Origin that clearly anticipate this need. Its relevance in the
modern biological context is summarised in a recent article in Science (W.Bialek and D.Botstein,
2004):

The basic nature and goals of biological research is changing fundamentally. In the
past, biological processes and the underlying genes, proteins, other molecules, and en-
vironmental factors were of necessity studied one by one in relative isolation. In con-
trast, today we are no longer satisfied with studies or answers that place each of these
in a larger context. We now know that there are tens of thousands of genes encoded in
the genome and that simple perturbations such as . . . heat shock, alter the expression of
thousands of them . . . New goals are in sight, namely robust mathematical models and
computer simulations that faithfully predict the behaviour of entire biological systems.

Some substantial research effort is being expended in trying to achieve these goals. The Physiome
Project for example (see http://www.physiome.org/) lists its principal aim as being “to under-
stand and describe the human organism, its physiology and pathophysiology quantitatively.” This it
hopes to achieve by using models at different levels (molecular to organ) that “include everything
from diagrammatic schema suggesting relationships to fully quantitative computational models.”
Similarly, the United Kingdom’s main research funding body in biology (the BBSRC) has invested
over 15 million pounds in centres for integative systems biology: “the aim is to support research in
such a way that all the components of the system under study can be researched at all relevant levels
of biological organisation. It necessitates being able to to handle large experimental data sets and
having the expertise and capacity to manipulate these and combine them with the theoretical base to
develop new predictive and holistic models of how living systems function.” (see Bioscience for So-
ciety: A Ten Year Vision, January 2003 at
http://www.bbsrc.ac.uk/about/plans reports/vision.html).

In the physical sciences, the principal means of understanding complex systems has been through
the use of mathematical models. This same approach is adopted in the field of mathematical biol-
ogy. Following the pioneering work of Alan Turing (Turing, 1952) and Hodgkin and Huxley (1952)
differential equations are now used to model a wide range of transport, reaction and conservation
phenomena (Murray, 1993). However, while identification of models of physical systems can often
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proceed from first principles (for example, balance equations, energy conservation and so on), the
complexity of biological systems often force a much more experimental approach. The modeller
selects those physical processes believed to be important, constructs a model and checks if solu-
tions match the observed data. If not, the procedure is repeated until an adequate model is found.
For example, a first attempt at modelling oxygen transport to red blood cells may consider a model
that accounted for convection, diffusion and chemical reaction (these are the principal physical pro-
cesses involved). In fact, convection makes a negligible contribution and reaction is only important
for sick lungs. Once it is known that only the diffusion term is important, a parametric equation can
be found relatively easily.

Broadly speaking, system identification can be viewed as “the field of modelling dynamic sys-
tems from experimental data” (Soderstrom and Stoica, 1989). We can distinguish here between:
(a) classical system identification techniques, developed by control engineers and econometricians;
and (b) machine learning techniques for system identification, developed by computer scientists.
While the kinds of models identified by the two kinds of techniques are different, neither provides
a foolproof method that can be employed without user interaction.

Classical system identification has concentrated on models largely constrained to be either ordi-
nary differential equations (ODEs) or linear difference equations of some order. With this constraint
on model structure, the input-output behaviour of the system is observed over a time interval and
some statistical method is used to estimate parameters in the model. In its most general formula-
tion, system identification proceeds by repeated estimation of both structure and parameters until
an acceptable model is found. In practice, a small set of structures are given a priori and the proce-
dure reduces to one of parameter estimation. Classical techniques have been used to identify linear
time-invariant models for purposes of extracting control strategies (in engineering) or time-series
predictions (in economics).

In this paper we are concerned instead with using machine learning techniques for system iden-
tification. Specifically, our interest is in methods that: (a) are not restricted to specific model struc-
tures; and (b) allow the incorporation of domain knowledge both to specify constraints on acceptable
model structures and to direct the search through the space of acceptable structures. We believe both
these features to be necessary in any empirical approach for identifying biological systems from
data. Of the machine learning methods available that are capable of satisfying these requirements,
those developed under the framework of Inductive Logic Programming (ILP) are amongst the most
powerful. There are two reasons for this. First, the rich logic-based formalism used by ILP methods
allows them to represent and identify a wide variety of relational descriptions. Second, ILP meth-
ods are unusual in that they make explicit provisions for the incorporation of domain knowledge to
guide the model identification process. This includes mechanisms for the requirement in (b) above.

One question that is often raised in the context of ILP is that of efficiency. In the context
here, this translates to asking if ILP methods are efficient enough to identify significantly complex
biological models? As long as it is reasonable to identify such models in an incremental manner,
we believe the answer to this question is “yes” and demonstrate this with the identification of four
fairly complex systems at different scales of biological organisation (a predator-prey model at the
ecosystem level; a model for the human lung at the organ level; a model for glucose regulation at
the extra-cellular level; and the glycolysis metabolic pathway at the cellular level).

A second issue, unrelated to the use of ILP, but relevant to the empirical system identification
task is the quantity and quality of data available. The identification of both the structure and pa-
rameter of quantitative models (like ODEs) requires a substantial amount of good quality numerical
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data. While substantial amounts of quantitative data are being generated at some lower levels of
biological organisation (a prominent example is provided by the use of DNA microarray data to es-
timate mRNA levels in a cell), quality is still variable: it is possible, for example to get very different
expression profiles for the same tissue using different microarray technologies (Kuo et al., 2002).
At higher levels (for example, at the organ or ecosystem level), data are sparse, although of perhaps
better quality. In all cases, we believe it to be substantially easier and more reliable to obtain data
that are of a qualitative nature. For example, it may be relatively easier to decide whether certain
metabolites are present or absent in a cell, whether their levels have been increasing or decreasing
and so on, rather than obtain precise measurements of the metabolites. In this paper, we will be
concerned exclusively with system identification from such qualitative data. The resulting models
are non-parametric: that is, parameter estimation is not required and data are only needed to identify
the model structure. Clearly, these qualitative models cannot be treated as being equivalent to their
quantitative counterparts. Nevertheless, they can be used to simulate possible system behaviours
and may be much more understandable to a non-mathematical biologist than a quantitative model
like a differential equation.

The rest of the paper is organised as follows. Section 2 describes an established approach to
qualitative reasoning about dynamic systems. This involves the use of qualitative constraints which
form the building blocks of qualitative models (these models include abstractions of ordinary dif-
ferential equations). Section 3 describes informally the the basics of an ILP system used to identify
qualitative models. This includes a variant that performs an incremental identification of increas-
ingly complex models. Section 5.1 demonstrates this form of identification using a model physical
system. The application to biological systems is in Section 6. Section 7 examines the automatic
identification of stages for the incremental learner. Section 8 concludes the paper. Appendix A
provides details of the ILP system used for incremental system identification. Appendix B provides
details of the procedure for multi-stage decomposition.

2. Constraint-Based Qualitative Reasoning

Figure 1 (slightly modified from Bratko, 2001) shows four different qualitative abstractions of some
numerical statements: (a) numbers are represented by intervals (marked by some distinguished
values like zero,end, inf and so on); (b) derivatives are represented by directions of change (like
inc); (c) functions are represented by monotonic relations (like MPLUS denoting “monotonically
increasing”); and (d) entire sequences of behaviour are represented by qualitative statements that
specify a qualitative values and directions of change.

Reasoning with qualitative abstractions requires a calculus: we propose to use the constraint-
based formulation used in the qualitative simulation program QSIM (Kuipers, 1994) (here we pro-
vide an informal description along the lines described by Bratko 2001). In this, variables take
qualitative values from domains. Domains are defined by a name and some ordered set of distin-
guished values called landmarks. For example, the variable Amount in Fig. 1 could be from the
domain level with landmarks min f ,0, in f . A qualitative state of a variable is usually denoted by
Domain : QVal where QVal is represented as a 〈Qmag,Qdir〉 pair, sometimes written Qmag/Qdir.
Qdir is the qualitative rate of change of the variable, which has a fixed, three-valued resolution (the
three quantities being inc, for increasing; dec, for decreasing; and std, for steady). For example,
the qualitative state of the variable Amount could be level : 0...in f /inc (compare with (d) in Fig. 1).
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Quantitative Statement Qualitative Statement
(a) Level(3.2 s) = 2.6 cm Level(t1) = zero...in f
(b) d

dt Level(3.2 s) = 0.12 m/s DERIV(Level(t1)) = std
(c) Amount = Level ×Level MPLUS(Level,Amount)

(d) Time Amount
0.0 0.00 Amount(zero...end) =
0.1 0.02 zero...in f /inc
. . . . . .
. . . . . .

159.3 62.53

Figure 1: Qualitative abstractions of numerical data (from Bratko, 2001).

The qualitative state of a system is simply a list of the qualitative states of the system’s variables
and a qualitative behaviour is a list of consecutive qualitative states.

Reasoning is accomplished using constraints. In this approach, pioneered by Kuipers (1994),
there are four principal constraints: ADD(A,B,C), for addition of qualitative variables A and B to give
C;1 MULT(A,B,C), to denote A × B = C; MINUS(A,B), for sign inversion A = −B; and DERIV(A,B),
to denote that B is the a derivative of A. In this paper, we will also use SUB(A,B,C) to denote A −
B = C. In addition to these, two functional constraints are also used: MPLUS(A,B), to denote that
when A increases then B increases as well; and MMINUS(A,B), to denote that when A increases then
B decreases. We will henceforth refer to these constraints as “the QSIM constraints”.

Figure 2 shows a qualitative model for a simple physical system, expressed in terms of the QSIM
constraints. A qualitative behaviour of this system—that is, a sequence of qualitative states of the
system variables La, Lb and Fab that satisfy the model’s constraints—is shown in Fig. 3

A number of advantages have been proposed for using qualitative models. First, in some cases
they may be more appropriate than quantitative models. This is particularly so if quantitative mea-
surements are either difficult to obtain or are noisy and what is of interest are the essential properties
of the system. Second, the models are quite comprehensible. Both these features are particularly
relevant to the modelling of biological systems. There is an additional advantage for automatic
system identification of the kind we propose here. Since qualitative models are non-parametric all
computational effort is focussed on identifying the model structure. This typically requires data of
both less precision and quantity than that required for identification of quantitative models.

1. Constraints apply to the qualitative states of A, B and C. Recall that these are of the form Domain : Qmag/Qdir.
Thus, the ADD constraint ensures that both magnitudes and directions of change are consistent. Thus ADD(level :
0/inc, level : 0...in f /std, level : in f /inc) is true, but ADD(level : 0...in f /inc, level : in f /std, level : 0...in f /inc) is
not (0...in f + in f 6= 0...in f ). Similarly, ADD(level : 0...in f /inc, level : 0...in f /std, level : 0...in f /inc) is true, but
ADD(level : 0...in f /inc, level : 0...in f /std, level : 0...in f /std) is not (inc+std 6= std). It should also be apparent, that
while quantitative addition is functional (the sum of a pair of numbers is a unique number) , qualitative addition ones
is relational (that is, for a pair of qualitative states for A and B, ADD may be true for more than one qualitative state for
C). Similar remarks apply to the other constraints.
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d
dt

d
dt

La

Lb

Fab

BA
Diagrammatic Model:

+

La

FabFba

Lb Diff

M+

Qualitative Model:

DERIV(La,Fba)
DERIV(Lb,Fab)
ADD(Lb,Diff,La)
MPLUS(Diff,Fab)
MINUS(Fab,Fba)

Figure 2: The U-tube and its qualitative model. There are three (measurable) system variables: the
water-level in arm A (La); the water-level in arm B (Lb); and the flow of water from
A to B (Fab). The diagrammatic model shows the system components involved (two
differentiators, an adder, an inverter, and a monotonic function generator) and their inter-
connections. The qualitative model expresses the same information as a conjunction of
constraints (here, we have used the QSIM constraints described in the paper).

La Lb Fab

level : 0/std level : 0/std f low : 0/std
level : 0/inc level : 0...in f /dec f low : min f ...0/inc
level : 0...in f /dec level : 0/inc f low : 0...in f /dec
level : 0...in f /dec level : 0...in f /inc f low : 0...in f /dec
level : 0...in f /std level : 0...in f /std f low : 0/std
level : 0...in f /inc level : 0...in f /dec f low : min f ...0/inc

Figure 3: A qualitative behaviour of the U-tube that is consistent with the qualitative model in
Fig. 2. The rows are example states of the qualitative variables and have no implied
ordering.

3. Model Identification using Inductive Logic Programming

Given correct definitions for the QSIM constraints, it is our aim in this paper to identify qualitative
models such as that shown in Fig. 2, given qualitative states such as those shown in Fig. 3. Since
the QSIM constraints are relational, automatic identification of such models clearly requires that
the system identification method be able postulate and test relational models. Perhaps the most
powerful framework for learning such models is that provided by Inductive Logic Programming
(ILP, see Muggleton and Raedt, 1994). ILP is concerned with extracting models in an extremely
expressive subset of first-order logic and reasonably efficient implementations have been developed.

To a good first approximation, the basic task addressed by an ILP system can be viewed as
a discrete optimisation problem of finding the lowest cost elements amongst a finite set of alter-
natives. Many ILP systems solve this problem by employing a procedure that searches through a
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directed acyclic graph representation of possible models. In this representation, a pair of models are
connected in the graph if one can be transformed into another by an operation called “refinement”.
Figure 4 shows some parts of a graph for the U-tube in which a model is refined to another by the
addition of a qualitative constraint. An optimal search procedure (branch-and-bound, for example)
traverses this graph in some order, at all times keeping the cost of the best nodes so far. Whenever a
node is reached where it is certain that it and all its descendents have a cost higher than that of the
best nodes, then the node and its descendents are removed from the search. A portion of the search
tree commencing at /0 for one such search is shown in Fig. 5.

DERIV(La,Fab)

DERIV(Lb,Fba)

DERIV(La,Fab)

ADD(Lb,Diff,La)

ADD(Lb,Diff,La)

DERIV(La,Fab)

DERIV(Lb,Fba)

DERIV(La,Fab)

DERIV(Lb,Fba)

ADD(Lb,Diff,La)

MPLUS(Diff,Fab)

MPLUS(Diff,Fab)

DERIV(La,Fab)

ADD(Lb,Diff,La)

DERIV(La,Fab)

DERIV(Lb,Fba)

MINUS(Fab,Fba)

ADD(Lb,Diff,La)

DERIV(La,Fab)

DERIV(Lb,Fba)

MINUS(Fab,Fba)

MPLUS(Diff,Fab)

DERIV(La,Fab)

DERIV(Lb,Fba)

MINUS(Fab,Fba)

MPLUS(Diff,Fab)

DERIV(La,Fab)

DERIV(Lb,Fba)

ADD(Lb,Diff,La)

MINUS(Fab,Fba)

Φ

ADD(Lb,Diff,La)DERIV(Lb,Fba)MPLUS(Diff,Fab)

DERIV(La,Fab)

MPLUS(Diff,Fab) ADD(Lb,Diff,La)

MINUS(Fab,Fba)ADD(Lb,Diff,La)

... ... ... ...

... ... ......
...

...

... ... ...... ...

... ...

DERIV(La,Fab) ADD(Diff,Lb,La)MINUS(Fab,Fba)

DERIV(Lb,Fba)

Figure 4: Portions of a refinement graph of models for the U-tube.

Enumerative procedures like branch-and-bound works best if the cost function is monotonic.
That is, the score of each node in the search tree is at least as bad as all its descendents (this allows
the nodes and its descendents to be removed from the search). The procedure is optimal in the sense
that it is guaranteed to find the best solution(s). However in the worst case, it may require examining
the entire search space.

Actually, there is more to an ILP system than search. The principal components of such systems
are:
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ADD(Lb,Diff,La)DERIV(Lb,Fba) MINUS(Fab,Fba)DERIV(La,Fab)MPLUS(Diff,Fab)

MPLUS(Diff,Fab)
DERIV(Lb,Fba)

MPLUS(Diff,Fab)
ADD(Lb,Diff,La)

MINUS(Fab,Fba)
MPLUS(Diff,Fab)

DERIV(La,Fab)
MPLUS(Diff,Fab)

MPLUS(Diff,Fab)
DERIV(La,Fab)
DERIV(Lb,Fba)

MPLUS(Diff,Fab)
DERIV(La,Fab)
ADD(Lb,Diff,La)

MPLUS(Diff,Fab)
DERIV(La,Fab)
MINUS(Fab,Fba)

MPLUS(Diff,Fab)
DERIV(La,Fab)
DERIV(Lb,Fba)
ADD(Lb,Diff,La)

MPLUS(Diff,Fab)
DERIV(La,Fab)
DERIV(Lb,Fba)
MINUS(Fab,Fba)

ADD(Lb,Diff,La)
MINUS(Fab,Fba)

DERIV(Lb,Fba)
DERIV(La,Fab)
MPLUS(Diff,Fab)

Φ

Figure 5: Portions of the search tree explored when searching for models for the U-tube. The search
starts from /0.

1. Background knowledge B. These are statements, usually written in some formal language
that specify domain-specific information. We will include in this domain-specific constraints
on the kinds of models that are acceptable (or unacceptable, if easier); and directions to the
search procedure that allow the system to avoid useless search paths. Examples of these for
qualitative model identification are:

(a) Definitions for qualitative constraints like DERIV, MPLUS, ADD and so on, along with
appropriate dimensionality checks etc. to ensure their correct usage.

(b) A constraint specifying that models must not contain relations that are redundant. For
example, the relation ADD(Diff,Lb,La) is redundant if the model already has
ADD(Lb,Diff,La) (that is, ADD is commutative). The model must respect dimensional
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constraints. This prevents relations like ADD(Lb,Fab,La) from appearing in the model
(Fab being a flow has different units of measurement to the level Lb).

(c) A directive that the search need not examine models that explain below some proportion
of the observed behaviours (more on “explain” in a moment).

2. Examples E. These are the observed data. For qualitative model identification, these would
be qualitative observations of system behaviour of the form shown in Fig. 3. ILP systems
also accept counter-examples of system behaviour. Since this is difficult to obtain for the
problems we are concerned with, we do not pursue this further here. Given a set of examples,
H is said to explain an observation e if H is consistent with B and e logically follows from B
and H (see Appendix A for a precise mathematical formulation). For example, given correct
definitions for the qualitative constraints DERIV, MPLUS, ADD and MINUS as background knowl-
edge, the qualitative model described by the conjunction DERIV(La,Fab) ∧ DERIV(Lb,Fba)
∧ ADD(Lb,Diff,La) ∧ MPLUS(Diff,Fab) ∧ MINUS(Fab,Fba) is an explanation of the ex-
amples in Fig. 3.

3. Refinement operator ρ. This function defines the set of descendents for each node in the
refinement graph. With most ILP systems, the set of descendents of a node are (minimal)
generalisations or specialisations of the node. Roughly speaking, for qualitative models, gen-
eralisations correspond either: to removing one or more qualitative components from the dia-
grammatic model; or to “disconnecting” qualitative components from each other. Conversely,
specialisations correspond to adding new components or connecting existing components.

4. Cost function f . This is a real-valued function for each node in the refinement graph. As
mentioned earlier, monotonic cost functions are of some importance. A simple cost function
satisfying this property in Fig. 4 is f (H) =−P, where P is the number of examples explained
by model H. If every element H ′ of ρ(H) contains at least one additional constraint, it can be
shown that number of examples explained by H ′ (and recursively, all its descendents) would
be at most P. It follows therefore that the cost of H is no worse than any of its descendents.
In practice such a cost function is too simple to be of use (the search would trivially return
the most general model), and modifications are made either to: (a) incorporate a trade-off
between the explanatory power of the model and its complexity (Muggleton, 1996); or (b)
include additional constraints in the background knowledge that prevent the selection of trivial
models.

A description of an ILP implementation that uses these components can be found in Section A.2.

4. Identification of Qualitative Models

We refer the reader to Coghill et al. (2005) for an extended review of the literature on learning
qualitative models. Briefly, Bratko and colleagues (Bratko et al., 1989; Mozetic, 1987) appear to
have the been the first to use qualitative reasoning to build a static model for the electric activity
of the heart. Coiera’s GENMODEL (Coiera, 1989a,b) was the first machine learning system that
constructed qualitative models for dynamic systems. A special-purpose ILP system, GENMODEL

(and an updated version in Hau and Coiera, 1997) is restricted to finding qualitative relationships
amongst the observed variables only (that is, no intermediate, or hidden, variables are hypothesised).
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Model-identification systems that allowed intermediate variables were developed independently by
Richards et al. (1992) and Bratko et al. (1992). Both use general-purpose ILP learners (although
in different ways) and the principal advantages and shortcomings of these approaches and a later
program called QSI (Say and Kuru, 1996) have been documented elsewhere (Coghill et al., 2005).

More recently, the QOPH system for identifying qualitative models exploited the possibility
of providing the ILP system ALEPH with a special-purpose refinement operator (Coghill et al.,
2002). This operator, with certain “built-in” constraints on acceptable qualitative models, is used
by ALEPH to search the space of possible models. Extensive experiments are reported by Coghill
et al. (2002) on the reconstruction of some model physical systems. While the results are promising,
the scalability of the approach is unclear, since: (a) Model identification is assumed to be possible
in a single step. Some simple complexity arguments (see Section A.2) suggest that the complexity
of this task grows exponentially with the number of constraints in the model (this is the primary
motivation for the incremental approach described in the next section); and (b) The special-purpose
refinement operator is difficult to modify and its properties are difficult to analyse. Although not
using a general-purpose ILP system, Suc and colleagues have proposed a hybrid approach of com-
bining a logic-based qualitative learner followed by numeric modelling to construct quantitative
models of systems (Suc et al., 2003). The approach, called Q2-learning, first constructs “qualitative
model trees”. These are like decision trees, with monotonic QSIM constraints in the leaves. These
constraints are then used to direct the construction of quantitative models (usually linear models).
The success of this approach depends on the availability and quality of numeric data and the sys-
tem being modelled by a composition of quantitative models (for example, like piecewise linear
models).

The advantages of using of a purely qualitative representation for modelling metabolic pathways
has been recently advocated (King et al., 2005). In that paper, a special-purpose system is used
to generate possible models for the glycolysis pathway. The approach we propose here differs
from that in two principal ways. First, it is a general approach as opposed to a specialised one for
metabolic pathways. Second, the complexity of the implementation by King and his co-workers
is of the same order as QOPH implementation. The incremental approach described in the next
section will usually be significantly more efficient.

5. Incremental Model Identification with ILP

Modern ILP systems are largely “one-shot” model constructors. That is, given B,E,ρ and f , they
attempt to identify models with the lowest cost in a single search. While this approach has been rea-
sonably successful in the identification of small to medium-sized models (for example, qualitative
models containing no more than 4 to 5 constraints), it is unclear whether the approach can scale up
to the identification of substantially complex models. For example, the worst-case bound in Remark
2 in Section A.2 grows exponentially in the number of qualitative constraints in the model.

An obvious approach to control this increase in complexity is to decompose system identifica-
tion into a series of stages, with the final model being some composition of models obtained at each
stage. In this paper we use a simple incremental composition in which models identified at any
stage are modified at the next stage. That is, one or more models are identified for the first stage
(these are all the models consistent with the background knowledge and have the lowest cost). Each
of these are then used to give models for the next stage and so on. This is easily achieved by starting
the search at each stage at nodes in the refinement graph corresponding to the models found at the
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previous stage. Formally the incremental learner is principally provided with: (a) an initial set of
models H0; (b) a sequence of pairs (Bi,Ei) corresponding to the background knowledge and exam-
ples for each stage i (the Bi and Ei do not all have to be different); (c) a general-purpose refinement
operator ρ for all stages; and (d) a cost function f for all stages. The task of the incremental learner
is to construct a set of models from this data (see Fig. 6 and Appendix A).

H i−1
H i

B i E i

L

ρ f

(a)

B2 E2 ρ f

L

B1 E1 ρ f

L

Bn En ρ f

LH H
0 n

(b)

Figure 6: Incremental model identification with ILP. The basic element shown in (a) consists of an
ILP learner L that takes as input a set of models, background knowledge, examples, a
refinement operator ρ and a cost function f . In (b), this basic unit is repeatedly used to
construct a model in n stages. “One-shot” model identification by normal ILP systems is
a special case of this process, with n = 1 and H0 = { /0} (here /0 denotes the empty model).

The actual implementation in Section A.2 contains some additional aspects which are not shown
in Fig. 6 (and similar figures in Section 6) for simplicity:

1. A refinement operator that performs both generalisations and specialisations can completely
revise models found at a previous stage. However, this is computationally expensive. In-
stead, we use a refinement operator ρA that is restricted to performing specialisations only
(for qualitative models, this amounts to adding qualitative constraints and connecting exist-
ing qualitative components). To correct partially for this shortcoming, models are subject to
a limited generalisation before submission to any L. For qualitative models, this translates
to retaining the qualitative components found at the previous stage but disconnecting some
or all components, respecting any constraints provided on the usage of the components (in
ILP terminology, this amounts to removing variable co-references, respecting any language
constraints provided). This allows the incremental procedure to perform a particular kind of
revision of models found at the previous stage;

2. Logically redundant models produced by any L are removed and a subset of the result is
selected randomly;
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3. A cost function fBayes described in Muggleton (1996) is used. For qualitative models, this per-
forms a trade-off between the likelihood of a qualitative model and its complexity (a quantity
related to the number of constraints in the model); and

4. An upper-bound is provided on the amount of search to be conducted by any L.

B i E i

H i−1 H i
L

ρ f

G S

A Bayes

Figure 7: A more accurate representation of the implementation of the basic element used in this
paper. Here G performs a limited generalisation of the input models, and can be eliminated
for refinement operators that perform both generalisations and specialisations. S performs
a random selection of the output models and can be eliminated if all models produced by
L are sent to the next stage. ρA is a refinement operator that performs specialisations
only; and fBayes is a Bayesian cost function. For simplicity, we will not show G and S in
subsequent figures.

A more accurate representation of the basic element of the incremental learner, as implemented
by the procedures in Section A.2, is shown in Fig. 7. With these implementation choices it can
be shown that, for identification of qualitative models, the size of the search space of such an in-
cremental procedure is dominated by maximum number of additional qualitative constraints that
need to be identified at any one of the stages (see Section A.2 for the details). The savings over a
non-incremental approach can be substantial, but two points are worthy of re-emphasis:

1. The incremental approach requires that a domain-specific decomposition into stages should
be possible (by providing background knowledge and observational data for each stage); and

2. We can only guarantee correctness of the incremental approach to the extent that any model
identified for a stage will logically entail the observations for that stage (given the background
knowledge). The approach cannot, however, provably identify the lowest cost model in the
search space. This follows naturally from the fact only lowest cost models are retained at the
end of each stage: unless the cost function exhibits a form of monotonocity with stages (or we
are simply constructing models in a single-stage), this is tantamount to using a greedy search,
which is known to be sub-optimal.

These caveats aside, the incremental approach can be used either: (a) as a “single-shot” model
constructor; or (b) to refine approximate models; or (c) to build increasingly larger models using
sub-components of smaller ones. In the next section, we illustrate (c) using a model physical system.
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5.1 Incremental Qualitative Model Identification: An Example

We consider identifying the qualitative model of the coupled-tanks system shown in Fig. 8. The
measurable system variables are these: the input, InflowA, that pours into the top of tank A; the
output, OutflowB, that pours out of the base of tank B; the flow of water from A to B, Fab; and the
water-levels La and Lb.

Qualitative Model:

,

ADD(NetflowB,OutflowB,Fab) 
ADD(Fab,NetflowA,InflowA)

MPLUS(Lb,OutflowB)
MPLUS(Diff,Fab)
ADD(Lb,Diff,La)
DERIV(Lb,NetflowB)
DERIV(La,NetflowA)

InflowA

A

LbLa

Fab

OutflowB

B

Figure 8: A system comprised of two coupled tanks and its qualitative model.

The coupled tanks system consists of two tanks connected together. This allows us to decompose
the identification of this model into two stages. In the first stage, we focus on identifying a model
for tank B, using the single tank system in Fig. 10 (often called the “bathtub” system in qualitative
modelling literature). Any consistent models identified for the single tank system are then extended
to return final models for the coupled tanks system (see Fig. 9).

B1 E1 B2 E2 ρ f

L

Coupled tank observations
(with data from Tank A ignored)

Coupled tank observations
(with data from both tanks)

QSIM constraints

Coupled tank model constraints
General model constraints

Mode declarations

QSIM constraints

Single tank model constraints
General model constraints

Mode declarations

{φ}

ρ f

L Single Tank
Models

Coupled Tank
Models

A ABayes Bayes

Figure 9: Incremental model identification for the coupled tanks system. Models are first identified
by L for a single tank system. These are then refined by L to models for the coupled
tank system. The term “mode declarations” is used in the sense described in Muggleton
(1995) and refer to statements that provide domain and connectivity information for the
qualitative variables.
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We note in passing that the final model for the coupled tanks is not simply a conjunction of two
single tank models. This conjunction would not capture the fact that the flow from tank A to B is
related to the difference in levels of fluid in A and B. The conjunction of the two models is, in fact,
an appropriate model for the system of cascaded tanks shown in Fig. 11.

Qualitative Model:

Outflow

L

Inflow

DERIV(L,Netflow)

ADD(Outflow,Netflow,Inflow)
MPLUS(L,Outflow)

Figure 10: A single tank system with an input and output. The system variables are Inflow,
Outlflow and , L.

Qualitative Model:

InflowA

,

DERIV(La,NetflowA)

A

B

OutflowB

Lb

La

OutflowA
MPLUS(La,Fab)
ADD(OutflowA,NetflowA,InflowA)

DERIV(Lb,NetflowB)
MPLUS(Lb,OutflowB)
ADD(NetflowB,OutflowB,OutflowA) 

Figure 11: A system comprised of two cascaded tanks. The qualitative model is simply a conjunc-
tion of two single tank models.

We elaborate further on the elements in Fig. 9:

1. Background knowledge. This is comprised of the following components:

(a) Correct definitions of the QSIM constraints. Our definitions are based on those in Bratko
(2001);

(b) A set of general constraints on “well-posed” qualitative models. We describe these in
more detail below;
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(c) Stage-specific constraints on the models constructed. This consists of specifying the
number of qualitative constraints in the final model for each stage. This is 3 for Stage 1
(the single tank model) and 7 for Stage 2 (the coupled tanks model); and

(d) Stage-specific “mode” declarations similar to the description in Muggleton (1995) that
provide domain and connectivity information for the qualitative variables (see Fig. 12);

2. Examples. These are in the form of qualitative states for the system variables. Recall that
for the coupled tanks system these are: La, Lb, InflowA, Fab and OutflowB (see Fig. 8).
Clearly, flows and levels cannot be negative: we are further only interested in a system with
a steady, non-negative input flow. That is, the only valid qualitative state for InflowA is
f low : 0...in f /std. OutflowB, on the other hand, can be any one of f low : 0/std, f low : 0/inc,
f low : 0...in f /std, f low : 0...in f /inc, f low : 0...in f /dec. The level of water La or Lb for the
system can similarly assume any of the following qualitative states: level : 0/std, level : 0/inc,
level : 0...in f /std, level : 0...in f /inc, level : 0...in f /dec. Examples for Stage 1 ignore the
values observed for levels and flows for Tank A (that is, La and InflowA are ignored: this can
be easily specified using the mode declarations). Some observations for Stage 1 are shown in
Fig. 13. Examples for Stage 2 contain the qualitative states of all the system variables.

3. Refinement operator and cost function. These are the operator ρA and fBayes described earlier.

5.2 General Constraints on “Well-posed” Models

In Coghill et al. (2005), the term “well-posed” qualitative models is used to denote those models
that satisfy a number of domain-independent constraints. We use the the following constraints from
that report:2

1. Size. A well-posed model must be of a particular size (measured by the number of qualitative
constraints).

2. Completeness. The model must contain all the measured variables.

3. Language. The number of instances of any qualitative constraint in a well-posed model should
be below some prescribed number.

4. Sufficiency. The model must adequately explain the observed data. By “adequate”, we intend
to acknowledge here that due to noise in the measurements, not all observations may be
logical consequences of the model.3 The percentage of observations that must be explainable
in this sense is a user-defined value.

5. Redundant. The model must not contain relations that are redundant. For example, the rela-
tion ADD(Inflow,Outflow,X) is redundant if the model already has ADD(Outflow,Inflow,X).

2. This list excludes two constraints from the report: the “Determinate” constraint can be effectively enforced by the
“Size” constraint. The “Connected” constraint that requires all intermediate variables should appear in at least two
qualitative constraints is enforced by the more general “Irrelevant variables” constraint here. All the constraints are
assumed to be encoded in the background knowledge for any given stage.

3. Strictly speaking, the model in conjunction with the background knowledge.
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Modes:
DERIV(+level,-flow)
ADD(+level,+level,-level) ADD(+level,-level,+level)
ADD(+flow,+flow,-flow) ADD(+flow,-flow,+flow)
MPLUS(+level,-level) MPLUS(+level,-flow)
MPLUS(+flow,-flow) MPLUS(+flow,-level)
MMINUS(+level,-level) MMINUS(+level,-flow)
MMINUS(+flow,-flow) MMINUS(+flow,-level)
MINUS(+level,+level) MINUS(+flow,+flow)

A legal model:
MPLUS(L,Outflow)
DERIV(L,Netflow)
ADD(Outflow,Netflow,Inflow)

Two illegal models:
MPLUS(L,Outflow)
DERIV(L,Netflow)
ADD(Outflow,L,Inflow)
(ADD cannot add flows to levels)

MPLUS(L,Outflow)
ADD(Netflow,Outflow,Inflow)
DERIV(L,Netflow)
(ADD needs Netflow to be known)

Figure 12: Example “mode” declarations for the qualitative constraints. For example, the mode
declaration ADD(+level,+level,-level) states that given values from domain “level”
for the the first two arguments, ADD computes a value for the third argument (also from
domain “level”). This is thus a simple form of dimensionality check. This prevents the
ILP system from constructing model M2 (in which a variable from a “flow” domain is
added to one from a “level” domain).

Fab OutflowB Lb

f low : 0...in f /std f low : 0/std level : 0/inc
f low : 0...in f /std f low : 0...in f /inc level : 0...in f /inc
f low : 0...in f /std f low : 0...in f /dec level : 0...in f /dec
f low : 0...in f /std f low : 0...in f /std level : 0...in f /std

Figure 13: Some example observations of the relevant system variables for identification of a single
tank model. No ordering is implied amongst these observations.

6. Contradictory. The model must not contain relations that are contradictory given other rela-
tions present in the model.

7. Dimensional. The model must contain relations that respect the dimensionality of the vari-
ables involved (this prevents, for example, constraints like ADD(Inflow,L,...) from ap-
pearing in models for the single-tank system).

8. Single. Well-posed models should not contain two or more disjoint sub-models.
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9. Causal. The model must be causally ordered (Iwasaki and Simon, 1986). In a simple sense,
this requires a variable that appears on the right-hand side of a (qualitative) arithmetic con-
traint should have appeared on the left-hand side of a constraint earlier in the sequence.

The following constraints on the qualitative variables were also used. These are ad-hoc, but were
nevertheless found to be extremely effective in constraining the space of possible models:

10. New variables. A well-posed model can contain no more than some prescribed number of
new, or “hidden”, variables. Increasing this number usually increases the value of b in Remark
3 (this is equal to 1 for the single tank model: the hidden variable is Netflow).

11. Irrelevant variables. Variables in one constraint that are never used by another constraint are
taken to be irrelevant. A well-posed model can contain no more than some prescribed number
of irrelevant variables (this is equal to 0 for the single tank model).

12. Distinct variables. All variables in any constraint are distinct.

13. Dynamic variables. Well-posed models must include DERIV constraints for any pre-specified
“dynamic” variables (these are variables that are known to change with time).

With these inputs, we summarise the results of using incremental model construction to identify
a model for the coupled tanks system. Model construction proceeds in two stages. In the first stage,
we attempt to identify a single tank model, by ignoring observations for levels and flows in tank A.
Figure 14 shows the well-posed models identified by the system. The model with the lowest cost
is extended in an attempt to identify a model for the coupled tanks system. Recall that the models
selected from Stage 1 are subject to a limited form of generalisation before attempting to identify a
model in Stage 2. The result of this generalisation step is shown in Figure 15. Each of these models
are extended in Stage 2 to construct final models for the coupled tanks system: the results are in
Fig. 16 (the fourth one is the correct model for the system).

Model No. Model Cost
1 MPLUS(Lb,OutflowB) −9.13

SUB(Fab,OutflowB,NetflowB)
DERIV(Lb,NetflowB)

2 SUB(OutflowB,Fab,NetflowB) −5.37
MMINUS(Lb,E)
DERIV(E,NetflowB)

3 SUB(Fab,OutflowB,NetflowB) −5.37
MPLUS(Lb,E)
DERIV(E,NetflowB)

4 SUB(Fab,OutflowB,NetflowB) −5.37
DERIV(Lb,E)
MPLUS(NetflowB,E)

5 SUB(Fab,OutflowB,NetflowB) −5.37
DERIV(Lb,E)
MMINUS(NetflowB,E)

Figure 14: Well-posed models for the single tank system identified by the first stage of incremental
learning. Only the lowest cost model is returned: the rest are shown here for illustrative
reasons.
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Model No. Model Model No. Model

1 MPLUS(Lb,OutflowB) 2 MPLUS(Lb,OutflowB)
SUB(Fab,OutflowB,NetflowB) SUB(Fab,OutflowB,NetflowB)
DERIV(Lb,NetflowB) DERIV(Lb,G)

3 MPLUS(Lb,F) 4 MPLUS(Lb,F)
SUB(Fab,OutflowB,NetflowB) SUB(Fab,OutflowB,NetflowB)
DERIV(Lb,NetflowB) DERIV(Lb,H)

5 MPLUS(Lb,F)
SUB(Fab,F,NetFlowB)
DERIV(Lb,NetFlowB)

Figure 15: Generalisations of the lowest cost model for the single tank system. These models are
extended to identify models for the coupled tank system.

Model No. Model Model No. Model

1 MPLUS(Lb,OutflowB) 2 MPLUS(Lb,OutflowB)
SUB(Fab,OutflowB,NetflowB) SUB(Fab,OutflowB,NetflowB)
DERIV(Lb,NetflowB) DERIV(Lb,NetflowB)
SUB(InflowA,Fab,NetflowA) SUB(InflowA,Fab,NetflowA)
DERIV(La,NetflowA) DERIV(La,NetflowA)
ADD(OutflowB,NetflowA,H) ADD(NetflowB,NetflowA,H)
ADD(NetflowB,H,InflowA) ADD(OutflowB,H,InflowA)

3 MPLUS(Lb,OutflowB) 4 MPLUS(Lb,OutflowB)
SUB(Fab,OutflowB,NetflowB) SUB(Fab,OutflowB,NetflowB)
DERIV(Lb,NetflowB) DERIV(Lb,NetflowB)
SUB(InflowA,Fab,NetflowA) SUB(InflowA,Fab,NetflowA)
DERIV(La,NetflowA) DERIV(La,NetflowA)
MPLUS(InflowA,H) MPLUS(Fab,Diff)
MMINUS(InflowA,H) ADD(Lb,Diff,La)

5 MPLUS(Lb,OutflowB)
SUB(Fab,OutflowB,NetflowB)
DERIV(Lb,NetflowB)
SUB(InflowA,Fab,NetflowA)
DERIV(La,NetflowA)
MPLUS(NetflowB,Diff)
ADD(Lb,Diff,La)

Figure 16: Well-posed models identified for the coupled tank system. These were obtained by
extending the lowest-cost model obtained for the single tank system in Fig. 14 (these
are the first three constraints in all the models here). All models shown here have equal
(lowest) cost. Model 4 is the target model

The coupled tank system identification task can clearly be decomposed into two stages: the
identification of the single tank system consisting of 3 qualitative constraints, followed by its ex-
tension by 4 further constraints. It is instructive to illustrate the gain in efficiency from using the
incremental procedure. Figure 17 shows the comparative effects of: (1) No decomposition. We
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attempt to identify all seven constraints in a single stage (this is the “one-shot” approach); and (2)
Correct decomposition. The single tank model is identified in Stage 1, and then extended to the
coupled tank model in Stage 2. This resulted in the models in Figs. 14 and 16.

Figures 16 and 17 illustrate two points we wish to draw attention to about the procedure we
have employed, namely:

1. The result may not be a unique model. For the identification of biological systems about
which little is known, we do not see this as being a hindrance; and in many cases may even
be preferable. New experiments could be proposed to discriminate between the models.

2. Decomposition can significantly increase the efficiency of system identification. No great
significance should also be attached to the fact that the correct model is identified even
with inappropriate decompositions—recall that the greedy search procedure employed is sub-
optimal—although the robustness demonstrated is heartening, since in practice we may not
be in a position to know the correct decomposition.

Decomposition Correct Model Time Taken
Identified?

None Yes > 5 days
Correct Yes 2037 seconds

Figure 17: The effect of decomposition on system identification. The ILP system without decom-
position was halted after 5 days of execution.

Finally, while most of the constraints 1–9 on well-posed models are motivated by some well-
understood principles underlying qualitative reasoning, the constraints 10–13 on qualitative vari-
ables are not. Figure 18 provides some empirical justification for the use of these constraints, by
illustrating the proportion of a (uniform) random sample of 10,000 models, all of which satisfy
constraints 1–9, but fail these constraints. Based on this proportion constraint 13 has the single
strongest effect, followed by 12, 11, and 10.

6. Applications to Biological Systems

In this section we demonstrate the application of the incremental technique described to biological
system identification. The demonstrations here serve a dual purpose. First, they are intended to
illustrate the ability of a general-purpose ILP system to identify qualitative models for biological
systems at significantly different scales of organisation. For this, we have elected to examine mod-
elling problems at the ecosystem, organ, extra-cellular and cellular levels. Second, we intend to
demonstrate the ability of the incremental approach proposed to construct models in three different
ways: in a single stage without providing any initial model (thus acting as a ”one-shot” system
identifier); in a single stage by refining an approximate model provided; and in multiple stages. In
all cases, the ILP system will use the refinement operator and cost function described in Appendix
A. The background knowledge will also largely be the same, consisting of definitions for qualitative
constraints. All tasks are of a re-constructive nature and examples are observations generated using
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Constraint Description Estimate of Proportion of Models
Eliminated

10. New variables New variables = 1 33.07%
New variables = 2 8.84%

11. Irrelevant variables Irrelevant variables = 0 73.81%
Irrelevant variables = 1 33.15%

12. Distinct variables Distinct variables = true 98.52%
Distinct variables = false 0.00 %

13. Dynamic variables Dynamic variables = true 100.00%
Dynamic variables = false 0.00 %

Figure 18: Estimates of the reduction in the search space by the constraints introduced on qualita-
tive variables. The last column represents the proportion of 10,000 models that satisfy
the constraints 1–9 described in Coghill et al. (2005) but fail the corresponding con-
straint in the second column.

the target qualitative model. The goal in each case is to examine if this target model is amongst the
models identified by the ILP system. More details can be found in Section A.3.

6.1 Ecosystem-Level System Identification

In this section we consider a problem in modelling the dynamics of populations. Specifically we are
concerned with identification of a predator-prey model, following the description in Todorovski and
Džeroski (2001), which in turn is based on mathematical models developed for the same problem
in Murray (1993).

The ecosystem considered is a simple one consisting of populations of predator and prey
species—foxes and rabbits, say—that interact in the following manner. Assume that foxes only
eat rabbits and that rabbits only eat grass, of which there is an unlimited supply. If the rabbit popu-
lation is large, the fox population grows. In turn, many rabbits are eaten, resulting in a fall in their
numbers. A smaller number of rabbits causes more foxes to die of starvation. Fewer foxes then
causes an increase in the rabbit population, which leads to the entire cycle being repeated. This kind
of oscillatory behaviour of the two populations is shown in Fig. 19(a). The dynamics of the popu-
lations can be modelled using the Lotka-Volterra model, a variant of which is shown in Fig. 19(b).
Under certain simplifying assumptions described, the qualitative model is in Fig. 19(c).

We examine reconstructing the model in Fig. 19(c) by using the incremental ILP system as a
single-shot model constructor. For this, the ILP system is provided with: (a) the same background
knowledge as in Section 5.1; (b) example observations of system behaviour generated using the
target model in Fig. 19(c); and (c) the refinement operator and the Bayesian cost function described
in Appendix A. The incremental search procedure commences with an empty model (by convention,
denoted by /0) as the initial hypothesis (see Fig. 20).

The results are shown in Fig.21. Model 1 is the target model. All models were constructed in a
single-stage containing 6 qualitative constraints, in approximately 65 seconds of processor time.
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Prey (N)

Predator (P)

Time

Population

(a)

dN
dt

= g(N)− c(P)

dP
dt

= c(P)−d(P)

(b)

M+
d
dt

d
dt M+

− +

N

Qualitative Model:

DERIV(N,Ndot)

MPLUS(N,G) ,
MPLUS(P,D)
SUB(G,Pdot,P1)
ADD(P1,D,Ndot)

Diagrammatic Model:

P

DERIV(P,Pdot)

(c)

Figure 19: Modelling predator-prey populations. The changes in populations are shown graphically
in (a). There are two system variables: the predator population (P) and the prey popu-
lation (N). At any given point in time, these variables satisfy the differential equation
model in (b). This is a general form of the Lotka-Volterra model for population dynam-
ics. The terms in the model are as follows: g(N) represents the growth-rate of the of
the prey in the absence of predators; c(P) is the consumption rate of the predators; and
d(P) is the decay-rate of the predators. Under the simple assumptions of g(N) ∝ N and
d(P) ∝ P, the corresponding qualitative model is in (c).
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QSIM constraints

Predator−prey model constraints
General model constraints

Mode declarations

{φ}

ρ f

L Predator−prey
Models

A Bayes

Predator−prey observations

B E

Figure 20: Incremental model identification of predator prey models.

Model No. Model Model No. Model

1 DERIV(P,Pdot) 2 DERIV(P,Pdot)
DERIV(N,Ndot) DERIV(N,Ndot)
ADD(Pdot,Ndot,E) ADD(Pdot,Ndot,E)
MPLUS(P,F) MPLUS(P,F)
SUB(E,F,G) SUB(E,F,G)
MPLUS(N,G) MMINUS(N,G)

3 DERIV(P,Pdot) 4 DERIV(P,Pdot)
DERIV(N,Ndot) DERIV(N,Ndot)
ADD(Pdot,Ndot,E) ADD(Pdot,Ndot,E)
MPLUS(N,F) MMINUS(P,F)
SUB(E,F,G) SUB(E,F,G)
MMINUS(P,G) MMINUS(N,G)

5 DERIV(P,Pdot)
DERIV(N,Ndot)
ADD(Pdot,Ndot,E)
MPLUS(N,F)
SUB(F,E,G)
MINUS(P,G)

Figure 21: Predator-prey models identified. The target model in Fig. 19(c) is Model 1.

6.2 Organ-Level System Identification

In this section we consider identification of a qualitative model for the human lung. The primary
function of the lung is to act as a gas-exchanger. Exchange of gases across a barrier occurs simply
because of a difference in pressures. The pulmonary artery carrying blood from the heart contains
low concentrations of oxygen and high concentrations of carbon dioxide (at a constant tempera-
ture, the concentrations of the gases are proportional to their partial pressures). Oxygen diffuses
across the barrier into the blood (and carbon dioxide diffuses into the lung), where is carried by
haemoglobin molecules in the pulmonary vein to the heart. This oxygenated blood is then pumped
by the heart to the rest of the body using the arterial network. A model of the lung acting in this man-
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ner is shown in Fig. 22. The model is constructed using partial pressures of a measurable “marker”
gas. A simplification of the model in Fig. 22(c) results from ignoring the blood vessels and treating
the lung as a simple gas chamber as shown in Fig. 23(a). The resulting differential equation model
is in Fig. 23(b) and the qualitative model is in Fig. 23(c).

We examine reconstructing a model for the lung by providing the ILP system with the approx-
imate model Fig. 23(c): we are interested in investigating whether the ILP system can refine this
to the model in Fig. 22(d). The ILP system is provided with: (a) the same background knowledge
as in Section 5.1, with additional mode declarations needed for the MULT constraint; (b) example
observations of system behaviour generated using the target model in Fig. 22(d); (c) the usual re-
finement operator and cost function. The incremental search is provided with an intial hypothesis
consisting of an approximate model for the lung: MULT(Va,Pa,F), MULT(Vid,Pi,G), DERIV(F,G)
(see Fig. 24).4

The results, shown in Fig.25, were obtained in 528 seconds of processor time. We note here that
model identification required a generalisation of the approximate model provided (DERIV(F,G) is
changed to DERIV(F,H)). Model 2 is the correct model.

6.3 Extra-Cellular System Identification

We use glucose-insulin balance in the human body as a third test case for incremental system iden-
tification by ILP. Hormones are chemical messengers, usually small proteins, that play a regulatory
role in an organism. Of these, the best known is probably insulin, the first protein whose structure
was determined (the amino acid sequence, or primary structure, was determined in 1953 by Sanger
and Tuppy). The role of insulin is primarily in maintaining the balance of glucose in the blood.
Glucose is used as a source of energy by the central nervous system and by the muscles, and as a
source of fat by adipose tissue and the liver, that stores it in the form of a starch called glycogen
(see Fig. 26a). If the concentration of glucose in the blood rises too high (usually after digestion of
food in the small intestine) then specialised cells in the pancreas are stimulated to produce insulin,
by a process involving glycolysis (which we consider in the next section). The presence of insulin
signals muscles, fat tissue and the liver to consume glucose, thus lowering it content in the blood.
This lower amount of glucose in turn inhibits the production of insulin, and sugar levels rise again
until a balance is achieved. This feedback process is not dissimilar to the functioning of a thermo-
stat to maintain a constant temperature in a house. A model of this regulatory mechanism is shown
in Fig. 26(b). The model is from Clancy and Kuipers (1994), and is based on a compartmental
differential equation model developed by Ironi and Stefanneli (Ironi and Stefanelli, 1994).

Our goal is to reconstruct the qualitative model in Fig. 26(b) using by starting from the empty
model. We examine identification of the full model in two stages: the first stage being concerned
with identifying the insulin component (the first three constraints in the qualitative model) and the
second, the glucose component (the remaining six constraints in the model). As before, the ILP sys-
tem is equipped with: (a) QSIM relations and their definitions along with additional model-specific
constraints; (b) example observatons of system behaviour using the target model in Fig. 26(b); and

4. This is provided a priori. In this paper, we do not address how such an hypothesis could have been reached: one
possible means could be using the kind of simplified reasoning shown in Fig. 23. There is, of course, nothing
preventing the incremental learner described here to start from the empty model /0 and construct increasingly better
approximations. This would, however, require observational data: something we cannot obtain for the lung model in
Fig. 23 (it is impossible to ignore the blood vessels in real-life).
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(partial pressure of marker gas in inspired air)
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(volume of the lung)
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(partial pressure of marker
gas in the lung)

(partial pressure of marker
gas in the pulmonary artery)

(partial pressure of marker
gas in the pulmonary vein)
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(a)

d
dt

(Va Pa) = (Vid Pi)− (λ θPD (Par−Pv))

(b)

d
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(Va Pa) = (Vid Pi)− (λ θPD (Pa−Pv))

(c)

*

M+

+

*

Vid Pi

M+

+

d
dt

Pa Va

Pv

X

Z3

Z2

Y

Z1Z

Qualitative Model:

MULT(Pa,Va,X)
MULT(Vid,Pi,Y)
MPLUS(Pa,Z) ,
ADD(Z,Z1,Y)
MPLUS(Pv,Z2)
ADD(Z1,Z2,Z3)
DERIV(X,Z3)

Diagrammatic Model:

(d)

Figure 22: A model for the human lung. In this model, the marker gas is nitrous oxide. There are
seven system variables: the rate of inspiration (Vid); the concentrations of the marker
gas in the inspired air (Ci, which is taken to be proportional to the partial pressure Pi)
and in the lung (Ca, proportional to the pressure Pa); the volume of the lung cavity (Va);
the rate of flow of blood θPD; and the partial pressures in the artery Par and the vein
Pv. On each inspiration, the variables satisfy the differential equation (b). The equation
(c) represents the same quantitative model with the assumption that Pa = Par, which is
reasonable when air is breathed in. The corresponding qualitative model is in (d).
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Ci
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Vid (rate at which air is taken in)

(concentration of marker gas in inspired air)

LUNG

(volume of the lung)
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gas in the lung)

(a)

d
dt

(Va Pa) = (Vid Pi)

(b)

d
dt

*
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Diagrammatic Model:

Pi

Pa Va

X
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Vid

Qualitative Model:

MULT(Va,Pa,X)
MULT(Vid,Pi,Y)
DERIV(X,Y) ,

(c)

Figure 23: A simplified model of the lung. Ignoring the blood vessels altogether effectively views
the lung as the simple gas chamber shown in (a). The resulting quantiative model is in
(b) and the corresponding qualitative model is in (c).
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Lung model constraints
General model constraints

Mode declarations
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Lung observations
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Approximate Lung Lung

Figure 24: Incremental model identification of lung models.

Model No. Model Model No. Model

1 MULT(Va,Pa,F) 2 MULT(Va,Pa,F)
MULT(Vid,Pi,G) MULT(Vid,Pi,G)
DERIV(F,H) DERIV(F,H)
SUB(Pv,Pa,J) SUB(Pv,Pa,J)
SUB(H,G,I) SUB(H,G,I)
MPLUS(I,J) MMINUS(I,J)

3 MULT(Va,Pa,F) 4 MULT(Va,Pa,F)
MULT(Vid,Pi,G) MULT(Vid,Pi,G)
DERIV(F,H) DERIV(F,H)
SUB(Pv,Pa,I) SUB(Pv,Pa,I)
SUB(H,I,J) SUB(H,I,J)
MPLUS(J,G) MMINUS(J,G)

Figure 25: Lung models identified, given the approximate model MULT(Va,Pa,F),
MULT(Vid,Pi,G), DERIV(F,G). The target model in Fig. 22(d) is Model 2.

(c) the refinement operator ρA and cost function fBayes. The full system identification process is
shown in Fig. 27.

Little difficulty was encountered in identifying the correct constraints for the insulin stage in
no more than 1 second of processor time. However, we found it substantially harder to identify
the correct constraints for the glucose stage. The principal problems were: (a) a large number of
models—over 40, including the one sought—were consistent with the constraints provided; and (b)
model evaluation in some cases was extremely slow. We have found two additional constraints to
be very useful in reducing the number of models. First, we prevent additions of exogeneous and
plasma levels of the same substances (for example, additions of Iin and I, or Gin and G). Some
plausible justification of this is possible, on the grounds that the two levels are closely related to
each other. Second, we prevent monotonic functions of exogeneous inputs Gin and In, requiring
these to be approximated by functions of their counterparts in the blood (that is, G and I). In addition,
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I

G
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Gin

Qualitative Model:

DERIV(G,DG)
SPLUS(G,Iin)
MPLUS(G,Gx)
SPLUS(I,Ig)

MPLUS(I,Iout)
DERIV(I,DI)

SUB(Iin,Iout,DI)

ADD(Gx,Ig,Gout)
SUB(Gin,Gout,DG)

Diagrammatic Model:

(b)

Figure 26: Glucose regulation in the blood, shown pictorially in (a), and modelled qualitatively in
(b). In the model, Gin refers to the glucose intake (in the form of food) and Iin, the
insulin produced by the pancreas. G and I are the glucose and insulin levels in the blood.
Gx is the insulin-independent consumption of glucose by the central nervous system and
Ig the insulin-dependent consumption of glucose by the muscles, fat tissue and the liver.
The qualitative model in Clancy and Kuipers (1994) utilises a sigmoid function SPLUS.
For the model here, we use the standard MPLUS function, which is consistent with the
original formulation in Ironi and Stefanelli (1994)

.
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QSIM constraints
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Glucose stage observationsInsulin stage observations

QSIM constraints

Glucose model constraints
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Mode declarations Mode declarations

Figure 27: Incremental model identification of models for glucose regulation.

substantially more restrictive mode declarations than in other cases were needed to restrict the search
space. Further, we restrict the search to occupy no more than 10,000 seconds of processor time. With
these ad hoc constraints in place, we are able to repeat model identification using the two stages.
The correct insulin model is obtained as before and the results after the glucose stage are shown
in Fig.28. Model 3 is equivalent to the target model, given the equivalence of SPLUS and MPLUS in
experiments here.

6.4 Cell-Level System Identification

We use the glycolysis pathway as the final test case for incremental system identification by ILP.
Glycolysis is the archetypal pathway. It was historically one of the first to be unravelled, with Otto
Meyerhof winning the Nobel prize for discovering key steps in it. Specifically, Meyerhof and col-
leagues “. . . were unusually accomplished in breaking down glycolysis into its many separate com-
ponents, analysing each step separately, then reassembling the constituent parts within an overall
system.”5 Glycolysis still presents a challenge to model accurately. The special interest here is that
it is significantly different in nature to the models considered so far in the paper, which have all been
abstractions of ordinary differential equations. We examine now how the qualitative representation
language could be used to develop other kinds of models.

Our qualitative model for glycolysis uses 15 metabolites, namely: pyruvate (pv), glucose (glc),
phosphoenolpyruvate (pep), fructose 6-phosphate (f6p), glucose 6-phosphate (g6p), dihydroxyace-
tone phosphate (dhap), 3-phosphoglycerate (3pg), 1,3-bisphos phoglycerate (1,3bpg), fructose 1,6-
biphosphate (f16bp), 2-phosphoglycerate (2pg), glyceraldehyde 3-phosphate (g3p), ADP (adp),
ATP (atp), NAD (nad), and NADH (nadh). We have not included H+, H2O, or Orthophosphate
as they are assumed to be ubiquitous. The set of reactions in the pathway are shown in Fig. 29.

We will use the following simple qualitative model for enzymes and metabolites. Metabolites
are qualitative variables, whose domains are defined by the name of the metabolite and the land-
marks 0 and in f . Qualitative states of the metabolites are restricted to 0/std,0...in f /std, 0...in f /inc,
0...in f /dec. A “qualitative cell-state” is given by the qualitative states of the metabolites of inter-
est in the cell. Enzymes are associated with “qualitative reactions”, which result in a qualitative

5. See URL http://nobelprize.org/physics/articles/states/otto-meyerhof.html.
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Model No. Model Model No. Model

1 DERIV(I,DI) 2 DERIV(I,DI)
MPLUS(I,Iout) MPLUS(I,Iout)
SUB(Iin,Iout,DI) SUB(Iin,Iout,DI)
DERIV(G,DG) DERIV(G,DG)
MPLUS(G,Iin) MPLUS(G,Iin)
SPLUS(G,Gx) SPLUS(G,Gx)
ADD(I,Gx,I1) ADD(Iout,Gx,I1)
SPLUS(I1,J) SPLUS(I1,J)
SUB(Gin,J,DG) SUB(Gin,J,DG)

3 DERIV(I,DI) 4 DERIV(I,DI)
MPLUS(I,Iout) MPLUS(I,Iout)
SUB(Iin,Iout,DI) SUB(Iin,Iout,DI)
DERIV(G,DG) DERIV(G,DG)
MPLUS(G,Iin) MPLUS(G,Iin)
SPLUS(G,Gx) SPLUS(G,Gx)
SPLUS(I,Ig) MMINUS(I,Ig)
ADD(Gx,Ig,Gout) ADD(Gin,Ig,J)
SUB(Gin,Gout,DG) SUB(J,Gx,DG)

5 DERIV(I,DI)
DERIV(I,Iout)
SUB(Iin,Iout,DI)
DERIV(G,DG)
MPLUS(G,Iin)
SPLUS(I,Ig)
ADD(G,Ig,G1)
SPLUS(G1,Gout)
SUB(Gin,Gout,DG)

Figure 28: Models for glucose-insulin regulation. The target model is Model 3.

decrease in the amounts of the reactants and a qualitative increase in the amounts of the products.
Examples of each of these are in Fig. 30.

We are interested here in finding a sequence of qualitative reactions that are consistent with the
qualitative cell-states before and after glycolysis. For this, we introduce a PATHWAY relation which,
for a given sequence of qualitative reactions, holds for pairs of qualitative cell-states 〈Be f ore,A f ter〉
such that the qualitative state of each metabolite in Be f ore can be transformed into its state in A f ter
by the qualitative reactions. With this relation, the 3 stage glycolysis process can be modelled as
shown in Fig. 31. The reader will note that in this model, reactions proceed sequentially. Of course,
biologically speaking, this is not how things happen: reactions that can proceed, do so concurrently.
While this can be modelled using a slightly different definition for the PATHWAY relation, the model
used here is simpler. There are also good historical reasons to adopt this simpler approach. Gly-
colsis, as the quote above makes clear, and indeed most other pathways have been uncovered by
first experimentally separating them into constituent parts (the qualitative modelling of pathways
in (King et al., 2005) did not make this assumption, making the resulting models both difficult to
identify—all reactions had to be identified in one-shot—and inefficient to execute).

We examine reconstructing a model for the glycolysis pathway in 3 stages (priming, splitting
and phosphorylation). At each stage, the ILP system is provided with: (a) the same background
knowledge as in Section 5.1, with additional definitions for the PATHWAY and associated relations.
For efficiency, we include three restrictions in the definition of the PATHWAY relation, namely: no
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1. (Hexokinase): glucose + ATP ⇔ glucose 6-phosphate + ADP.
2. (Phosphoglucose isomerase): glucose 6-phosphate ⇔ fructose 6-phosphate.
3. (Phosphofructokinase): fructose 6-phosphate + ATP

⇔ fructose 1,6-biphosphate + ADP.
4. (Aldolase): fructose 1,6-biphosphate

⇔ dihydroxyacetone phosphate + glyceraldehyde 3-phosphate.
5. (Triose phosphate isomerase): dihydroxyacetone phosphate

⇔ glyceraldehyde 3-phosphate.
6. (Glyceraldehyde 3-phosphate dehydrogenase):

glyceraldehyde 3-phosphate + NAD ⇔ 1,3-bisphosphoglycerate + NADH.
7. (Phosphoglycerate kinase): 1,3-bisphosphoglycerate + ADP

⇔ 3-phosphoglycerate + ATP.
8. (Phosphoglycerate mutase): 3-phosphoglycerate ⇔ 2-phosglycerate.
9. (Enolase): 2-phosphoglycerate ⇔ phospoenolpyruvate.

10. (Pyruvate kinase): phospoenolpyruvate + ADP ⇔ pyruvate + ATP.

Figure 29: The reactions comprising the glycolysis pathway. The reactions that consume ATP and
NADH are not explicitly included. Glycolysis proceeds in three stages: primary (re-
actions 1–3), splitting (reactions 4 and 5) and phosphorylation (reactions 6–10). The
enzymes involved are in parentheses.

Qualitative states of some metabolites
at p : 0...in f/std, dhap : 0/std, nad : 0...in f/dec

A qualitative cell-state
{ad p : 0/std,at p : 0...in f/std, f 16bp : 0/std, f 6p : 0/std,g6p : 0/std,glc : 0...in f/std}

A qualitative reaction
glc+at p g6p+ad p

Some cell-states consistent with glc+at p g6p+ad p
Before: {ad p : 0/std,at p : 0...in f/std, f 16bp : 0/std, f 6p : 0/std,g6p : 0/std,glc : 0...in f/std}
After: {ad p : 0...in f/inc,at p : 0...in f/dec, f 16bp : 0/std, f 6p : 0/std,g6p : 0...in f/inc,glc : 0...in f/dec}
After: {ad p : 0...in f/inc,at p : 0/std, f 16bp : 0/std, f 6p : 0/std,g6p : 0...in f/inc,glc : 0...in f/dec}

Figure 30: Examples of the qualitative representation used for metabolites, cell-states and chemical
reactions. In this, a qualitative reaction causes a qualitative decrease in the reactants
and a qualitative increase in the products. The non-determinate nature of qualitative
arithmetic means that a cell can be in one of several different states after a reaction.

more than 5 reactions are allowed in a pathway; reactions must use all the metabolites; and reactions
have to satisfy some basic constraints of chemical feasibility.6 In addition, the background knowl-
edge contains an additional constraint that ensures that the model proposed is of the sequential form
shown; (b) examples of system behaviour generated using the target model; and (c) the usual re-
finement operator and cost function. The incremental search procedure commences with the empty
model /0 as the initial hypothesis (see Fig. 32).

6. The obvious constraint is that products cannot contain elements not available in the reactants. A more sophisticated
test estimates the number of chemical bonds broken, and restricts this to at most three: reactions that break more
bonds are taken to require an infeasibly large amount of energy, and to be too complex even for an enzyme to
manage.
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GLYCOLYSIS(Be f ore,A f ter) if
PATHWAY(Be f ore,S1,〈at p+glc ad p+g6p,g6p f 6p,at p+ f 6p ad p+ f 16bp〉)
PATHWAY(S1,S2,〈 f 16bp dhap+g3p,dhap g3p〉)
PATHWAY(S2,A f ter,〈g3p+nad 1,3bpg+nadh,1,3bpg+ad p 3pg+at p,

3pg 2pg,2pg pep,ad p+ pep at p+ pv〉)

where:
PATHWAY(S,F,〈R1,R2, . . .Rn〉)

i = 0, S0 = S
for i = 1 . . .n

QREACTION(Si−1,Ri,Si)
F = Sn

QREACTION(State,R,NewState)
QDECREASE(State,Reactants(R),S)
QINCREASE(S,Products(R),NewState)

Figure 31: A qualitative model for glycolysis. Pathways consist of qualitative reactions, each of
which result in a qualitative decrease in the reactants and a qualitative increase in the
products. The non-determinacy of qualitative arithmetic means that a qualitative re-
action acting on a cell-state could result in one of several new cell-states (since there
would be several ways to decrease or increase the qualitative values of metabolites).
The system identification task is to find the definition for GLYCOLYSIS given definitions
for PATHWAY, QREACTION, QDECREASE and QINCREASE.

B1 E1 B2 E2 B3 E3

{φ}

ρ f

L
Models

A Bayes

Models

A Bayesρ f

L Glycolysis
Models

A Bayes

QSIM constraints

Priming model constraints
General model constraints

Splitting StagePriming Stage

Splitting stage observationsPriming stage observations

ρ f

L

Feasible reactions constraints
PATHWAY definition
Mode declarations

QSIM constraints

Splitting model constraints
General model constraints

Feasible reactions constraints

Mode declarations

Phosphorylation stage
observations

QSIM constraints

Phosphorylation model constraints
General model constraints

Feasible reactions constraints
PATHWAY definition

Mode declarations
PATHWAY definition

Figure 32: Incremental model identification of models for glycolysis.

The results are shown in Fig. 33. We note here that model identification at Stages 2 and 3
requires a generalisation of the model identified earlier (this removes the co-references to the A f ter
variable). The different stages were obtained in 6 seconds (Stage1), 135 seconds (Stage 2) and 5296
seconds (Stage 3).
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Stage Model No. Model
1 1 GLYCOLYSIS(Be f ore,A f ter) if

PATHWAY((Be f ore,A f ter,〈at p+glc ad p+g6p,g6p f 6p,
at p+ f 6p ad p+ f 16bp〉)

2 1 GLYCOLYSIS(Be f ore,A f ter) if
PATHWAY((Be f ore,S1,〈at p+glc ad p+g6p,g6p f 6p,

at p+ f 6p ad p+ f 16bp〉)
PATHWAY(S1,A f ter,〈 f 16bp dhap+g3p,dhap g3p〉)

3 1 GLYCOLYSIS(Be f ore,A f ter) if
PATHWAY((Be f ore,S1,〈at p+glc ad p+g6p,g6p f 6p,

at p+ f 6p ad p+ f 16bp〉)
PATHWAY(S1,S2,〈 f 16bp dhap+g3p,dhap g3p〉)
PATHWAY(S2,A f ter,〈g3p+nad 1,3bpg+nadh,1,3bpg 3pg,

3pg 2pg,2pg pep,ad p+ pep at p+ pv〉)
2 GLYCOLYSIS(Be f ore,A f ter) if

PATHWAY((Be f ore,S1,〈at p+glc ad p+g6p,g6p f 6p,
at p+ f 6p ad p+ f 16bp〉)

PATHWAY(S1,S2,〈 f 16bp dhap+g3p,dhap g3p〉)
PATHWAY(S2,A f ter,〈g3p+nad 1,3bpg+nadh,1,3bpg+ad p 3pg+at p,

3pg 2pg,2pg pep,ad p+ pep at p+ pv〉)

Figure 33: Glycolysis models identified. The target model is Model 2 in Stage 3. The difference
in the two models identified in Stage 3 arise in the seventh equation (the second in
the last PATHWAY constraint). Model 1 proposes 1,3bpg 3pg and Model 2 proposes
1,3bpg+ad p 3pg+at p.

7. Decomposition as Search

So far, we have taken the position that the incremental learner will be provided with a decomposition
of the system to be identified. While this may be entirely reasonable when we have access to appro-
priate expertise—a biologist specialising in the kind of systems we are modelling for example—it is
of some interest to examine whether a suitable decomposition can be identified automatically. That
is, given observations for some system variables, can we automatically decompose the learning task
into one that uses a n-stage incremental learner of the form shown in Fig. 6.

Decomposition of complex systems has been studied extensively in econometrics, ever since the
pioneering work of Simon and Ando (1961). In this, decomposability of a system is a property of
the system by which some subsets of variables (usually non-intersecting) have a greater interaction
with each other than other subsets. These subsets define sub-systems into which the larger system
can be decomposed. Simon and Ando study the formal properties of linear dynamical systems of
the form x(t + 1) = Ax(t), where A is some linear operator and the applicability of their results
to evolutionary systems has been studied by Shpak et al. (2004a,b). Concerned as we are with a
logical representation of a system, our problem is related more to the decomposition of Boolean
functions. Most modern work on this stems from that of Ashenhurst (1957) and Curtis (1962). In
this, a function f of n variables, denoted here by the set S, is decomposed into Boolean functions
h and g, such that f (X) = h(A,g(B)), where A,B ⊂ S and A∪B = S. The techniques are devised
for propositional logic, and it is not evident how they could be used to address the decomposition
task here. Nevertheless, at least one important principle is directly applicable: both the Ashenhurst
and Curtis formulations are essentially procedures that look for suitable decompositions by exam-
ining all possible partitions of S. In general though, finding the optimal decomposition of Boolean
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functions is computationally hard (see, for example, Boros et al., 1994), and some form of heuristic
search is inevitable. This is the basis of the work of Paulson and Wand (1992), who examine the
decomposition of a system specified by state variables. Decomposition here means discovering both
a partitioning into non-disjoint subsets of system variables, and an assignment of variables in each
subset as being “input” or “output”. Each subset constitutes a subsystem, and a pair of subsystems
are related if an output variable of one is an input variable of another. The final decomposition is
the result of a heuristic search process guided by: a set of constraints characterising “good decom-
positions”, a set of rules for enumerating candidate decompositions, and a method of scoring each
candidate based on the complexity of the resulting subsystems.

Unlike Paulson and Wand’s procedure, we require that related subsystems share models (rather
than system variables). Nevertheless, we are able to draw on their basic premise of decomposition
being the result of a heuristic search process. Specifically, we use a randomised local search proce-
dure that identifies each stage of the decomposition using a randomised local search procedure that
executes the following steps: (a) A subset of system variables is selected randomly from candidate
subsets for this decomposition; (b) A model is constructed using this set and its cost determined; (c)
All possible “local moves” are constructed. These result in new subsets obtained by adding a system
variable not in the original set and by removing a system variable included in the original set; (d)
The best local move (the new subset having a model with least cost) is selected and Steps (c)–(d)
repeated (the number of repetitions denoted by M). The procedure halts after some fixed number of
such iterations, and the best scoring subset is returned. Actually, Steps (a)–(d) are repeated several
times (denoted by R) with each repetition starting with a different random subset in Step (a). The
best scoring subset across all repetitions is returned and the the entire procedure repeated for the
next stage. The reader will recognise the procedure as the GSAT algorithm (Selman et al., 1992)
adapted to the problem of automatic decomposition. As with all such procedures, the goal is to
obtain an efficient (but sub-optimal) solution to an inherently intractable problem (see Appendix B
for details). Needless to say that with this, as with the Paulson and Wand work, automatic decom-
position is only worthwhile provided the additional computational burden imposed by searching
for the decomposition is less than that of attempting to find the complete model using a one-shot
(single-stage) learner.

We apply the procedure to the task of decomposing the coupled tanks system. The reader will
recall that this system (shown in Fig 8) is specified by 5 system variables: InflowA, OutflowB,
Fab, La and Lb. The automatic decomposition task is as follows: given values for the 5 system
variables, identify the single tank “subsystem” specified by OutflowB, Fab and Lb and then identify
the the final model using the single tank submodel and the remaining system variables. Figure 34
summarises the result of employing the randomised local search procedure just described to identify
the correct decomposition.

It is evident that for such a small problem, we will quickly explore all of the search space as R
and M are increased. Nevertheless, the tabulation shows that very small values of R and M yield
variable results. The extent to which the success with moderate values of R and M can be replicated
on larger, real systems remains a topic for future research. In Appendix B, we are able to offer
some insight by considering artificial problems created by random decompositions of larger sets
of variables. These experiments suggest that a 2-stage decomposition of a system like the coupled
tanks would require R and M values of approximately 5.

We turn now to the automatic decomposition of the first multi-stage biological system con-
sidered in this paper. The glucose-insulin system is comprised of 4 independent system variables
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R M
1 2 3

1 0.27 0.70 0.40
2 0.50 0.60 0.90
3 0.40 0.90 1.00

Figure 34: Probability estimates of identifying the correct decomposition of the coupled tanks sys-
tem, using the randomised local search procedure described in Appendix B. Here R
denotes the number of restarts of the randomised procedure and M the number of it-
erations of local moves. Each entry is is the probability of identifying correctly the
single-tank model, followed by the correct coupled tanks model, with the correspond-
ing values of R,M. Probability estimates required for each stage are obtained from 10
repeats of the randomised procedure.

(Gin, G, Iin, I), and requires a 2-stage decomposition. Once again, using the experiments on syn-
thetic problems as a guide, we are able to obtain a correct decomposition for this system using
low values of R and M (5 in this case). Unfortunately, the decomposition procedure we have just
described cannot be used to obtain a decomposition for the glycolysis problem. Here, system vari-
ables (metabolites) are re-used across the different stages, which violates a key assumption of the
approach (simply speaking, variables used in a stage cannot be re-used at a later stage). This vio-
lation makes the search vastly harder, putting in perspective the achievement of Meyerhof and his
colleagues.

8. Concluding Remarks

The focus in biology has, until recently, been mainly on individual units. Molecular biology, for
example, has mainly focussed on individual molecules and on their properties as isolated entities
or as complexes in very simple model systems. However, biological molecules in living systems
participate in very complex networks, including regulatory networks for gene expression, intracel-
lular metabolic networks and both intra- and inter-cellular communication networks. Such networks
are involved in the maintenance (homeostasis) as well as the differentiation of cellular systems of
which we have a very incomplete understanding. Nevertheless, the progress of molecular biology
has made possible the detailed description of the components that constitute living systems, notably
genes and proteins. Large scale genome sequencing means that we can (at least in principle) delim-
neate all macromolecular components of a given cellular system. Microarray experiments as well
as large scale proteomics will soon give us large amounts of experimental data on gene regulation,
molecular interactions and cellular networks. The challenge now becomes to understand how these
individual components integrate to complex systems and the function and evolution of these sys-
tems, thus scaling up from molecular biology to “systems” biology that provides an understanding
at different levels of biological organisation.

Our experience in the physical sciences suggests that the only tractable way of understanding
complex systems is through the use of mathematical models. However, biological systems are usu-
ally far more complex than physical or human-engineered ones and progress in determining func-
tionality will be crucially dependent on the development of mathematical, and computational tech-
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niques specially devised for biological data analysis, modelling and simulation. In this paper, we
argue that a qualitative representation of values, along with a powerful machine-learning approach
like ILP, provides a useful tool for system-identification at different levels of biological organisa-
tion. We have sought to back this claim by demonstrating the use of a general-purpose ILP system to
identify models for systems at three disparate levels of biological organisation, namely, ecosystem,
organ and cellular. The results are promising, with the target model being amongst a small set of
answers returned in each case. While the applications presented have been re-construction of known
models, this is clearly not the use we envisage for the approach. Specifically, we expect its principal
utility will be in situations where there is some quantitative data of variable quality and quantity, and
not much is known about a suitable mathematical model. In these circumstances, the data can be
converted to a qualitative representation (in the manner described by Hau and Coiera, 1997) and one
or more qualitative models identified. These can then form the basis of understanding the system
better and could even be used to direct the construction of quantitative model. For example, they
could form the basis of the grammars required for an automated technique such as the one described
in Todorovski et al. (2000) (in some sense, this is like extending the Q2-learning framework in Suc
et al. (2003) to the discovery of mathematical models). An additional feature of our work here is
that the approach is an incremental one, that seeks to construct the final model in stages. The value
of decomposition as an aid to understanding complex systems has long been recognised: Courtois
(1985) describes some general principles that motivate the need for such an approach. We believe
that when attempting to construct large models with ILP, some form of structured induction (in the
sense intended in Shapiro, 1987) would be required. The decomposition into a sequence of stages
is an example of such a structuring.

The work presented here has a number of limitations. There are limitations to the power of the
qualitative representation used: (1) they can only provide clues to the precise mathematical struc-
ture. This may be sufficient for common-sense reasoning about a system, but is clearly insufficient
for a complete understanding; (2) simulations with qualitative models can contain spurious behavi-
ous; and (3) abstractions appear to be largely restricted to ODE models. It has been suggested that
the use of “multivariate constraints” (Wellman, 1991) may allow abstractions of PDE models, but
little has been done on that front.

An important limitation of the incremental approach is that the user needs to provide an adequate
decomposition of the system-identification task into stages along with the number of constraints in
the model for each stage. The latter restriction can be relaxed by providing an upper-bound on
the number of constraints. We have described a randomised procedure that attempts to construct a
suitable decomposition automatically. The results are encouraging, but the procedure still involves
constructing many models and its performance on real problems requires further investigation. The
randomised procedure itself is an adaptation of the GSAT algorithm of Selman and colleagues.
Minor modifications of this yield procedures akin to WalkSat (Selman et al., 1994) and simulated
annealing. Both may yield better algorithms for automatic decomposition than the one here; as
would modifications that would allow estimation of model performance without actually requiring
their explicit construction.

In the implementation of the incremental learner, the primary limitation of the greedy strategy
adopted means that we cannot prove that the models returned are the best possible. A further
limitation is the use of a refinement operator that can only perform a restricted kind of refinement
of models found at a previous stage: this was done solely to keep the space of possible models
within manageable limits (in effect, a limited form of theory-revision is performed). A refinement
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operator that performs both generalisations and specialisations could be used, but the computational
cost would be substantial.

Finally, applications of the approach have been restricted to re-construction of known target
models using simulated data. Clearly, it remains to be shown that similar success can be achieved
with real experimental data.

These limitations notwithstanding, we believe the combination of a qualitative representation
and an incremental ILP approach to be particularly well-suited to the identifying systems at different
levels of biological organisation, for the following reasons: (1) The qualitative representation over-
comes some inherent limitations in the data—specifically, noise and sparsity—which make quanti-
tative modelling difficult; (2) Qualitative models provide the correct level of comprehensibility for
the non mathematically-minded biologist; and (3) Models of interest usually involve the relation-
ship between a number of different components. Currently, ILP provides the most powerful—and
in many cases, the only—framework for identifying such relations, but its use is often hampered by
concerns of efficiency. The incremental approach we have described provides one way of overcom-
ing these concerns.
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Appendix A. ILP Details

We now describe the specification and implementation details relevant to the ILP system used in the
paper.

A.1 Specification

In this paper, we closely follow the specification provided by Muggleton (1994) for an ILP system
designed to construct models (usually called hypotheses in the ILP literature) given background
knowledge B and observations (usually called examples in the ILP literature) E In this specification
an ILP algorithm is one that satisfies the following requirements (reproduced with minor changes
from Srinivasan and Kothari, 2005):

Given:
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R1. B ∈ B: background knowledge encoded as statements in logic. This includes I: a set of
constraints that should not be violated by an acceptable hypothesis.

R2. E ∈ E : a finite set of examples = E+∪E− where:

E+ = {e1,e2, . . .} is a set of definite clauses (these are the positive examples);

E− = { f1, f2 . . .} is an optional set of Horn clauses (these are the negative exam-
ples); and

B 6|= E+

Find:

R3. H ∈ H : a hypothesis such that the following conditions are met:

Sufficiency. This consists of:

S1. B∪H |= E+

Consistency. This consists of:

C1. B∪H 6|=�; and

C2. B∪H ∪E− 6|=�

The requirement C1 ensures that H does not violate any of the constraints I in B. The require-
ment C2 is intended to ensure that H does not contain any over-general clauses. Often, implementa-
tions do not require clauses to meet this requirement, as some members of E− are taken to be noisy.
This specification is then refined to allow theories to be inconsistent with some negative examples.
We will use the phrase “H explains E, given B” to denote that at least S1 and C1 are met. An
“acceptable H” is any H that explains E, given B.

The specification does not state how acceptable H’s are to be constructed, or, if several H’s
explain the E, then which of them are to be selected. For this, we introduce the following functions:

• A “downward” refinement operator ρ : H → 2H s.t. ρ(h) ⊆ {h′|h |= h′}. Given a h ∈ H , this
function returns a subset of the elements of H that are implied by h.

• A cost function f : H ×B ×E → ℜ. Given a h ∈ H , B ∈ B and E ∈ E , this function returns
an evaluation of h;

Let ρ1(h) = ρ(h); ρn(h) = {h′′| ∃h′ ∈ ρn−1(h) s.t. h′′ ∈ ρ1
A(h′)},(n≥ 2); and ρ∗(h) = ρ1(h)∪ρ2(h)∪

. . .. With some abuse of notation, let ρ1({h1,h2, . . .}) = ρ1(h1)∪ ρ1(h2)∪ . . .; ρn({h1,h2, . . .}) =
ρn(h1)∪ρn(h2)∪ . . .; and ρ∗({h1,h2, . . .}) = ρ1({h1,h2, . . .})∪ρ2({h1,h2, . . .})∪ . . .

Then, given an initial set of hypotheses H0 ⊆ H we specify a particular kind of ILP algorithm
L(B,E,H0,ρ, f ) by modifying the requirement R3 above to:

R3′. H = L(B,E,H0,ρ, f )⊆ ρ∗(H0): a set of hypotheses such that for each h ∈ H the following are
met:

Sufficiency. This consists of:

S1. B∪h |= E+

Consistency. This consists of:

C1. B∪h 6|=�; and
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C2. B∪h∪E− 6|=�

Minimal Cost. This consists of:

F1. For all h′ ∈ ρ∗(H0) f (h′,B,E) ≥ f (h,B,E)

We are now in a position to specify an incremental ILP system that uses the algorithm L. Given
a finite sequence 〈S1,S2, . . . ,Sk〉 (k ≥ 1), where each Si consists of the tuple (Bi,Ei), (Bi ∈ B and
Ei ∈ E); H0 ⊆ H ; a downward refinement operator ρ; and a cost function f , find Hk, where Hi =
L(Bi,Ei,Hi−1,ρ, f ) (1 ≤ i ≤ k).

A.2 Implementation

The basic task of addressed by L described in the previous section can be viewed as a discrete
optimisation problem. In general terms, this is posed as follows: given a finite discrete set S and
a cost-function f : S → ℜ, find a subset H ⊆ S such that H = {s|s ∈ S and f (s) = minsi∈S f (si)}.
An optimal algorithm for solving such problems is the “branch-and-bound” algorithm, shown in
Fig. 35 (the correctness, complexity and optimality properties of this algorithm can be found in Pa-
padimitriou and Steiglitz, 1982). A specific variant of this algorithm is available within the software
environment comprising ALEPH (Srinivasan, 1999). The modified procedure is in Fig. 36. The
principal differences from Fig. 35 are:

1. The procedure is given a set of starting points H0, instead of a single one (i in Fig. 35);

2. A limitation on the number of nodes explored (n in Fig. 36);

3. The use of a boolean function acceptable : H ×B×E →{FALSE,TRUE}. acceptable(k,B,E)
is T RUE if and only if k satisfies requirements S1 and C1 in Section A.1 (given B and E);

4. Inclusion of background knowledge and examples (B and E in Fig. 36). These are arguments
to both the refinement operator ρ (the reason for this will become apparent shortly) and the
cost function f .

We now describe an implementation for an incremental procedure for model identification that
assumes that the task has been decomposed into a finite sequence of stages 〈S1,S2, . . . ,Sk〉 (k ≥
1). Each Si consists of the tuple (Bi,Ei), where Bi and Ei refer to the background knowledge and
examples relevant to stage i. With this decomposition in place, Fig. 37 shows a simple greedy
implementation used to identify the final models.
Finally, we turn to some points concerning the implementation used in this paper:

• Qualitative models are represented as definite clauses. Given a definite clause C, the qualita-
tive constraints in the model (the size of the model) are obtained by counting the number of
qualitative constraints in C. This will also be called the “size of C”.

• Constraints, such as the restrictions to well-posed models, are assumed to be encoded in the
background knowledge;

• acceptable(C,B,E) is T RUE for any qualitative model C that is consistent with the con-
straints in B, given E.
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bb(i,ρ, f ) : Given an initial element i from a discrete set S; a successor function ρ : S → 2S; and a cost function f : S → ℜ, return H ⊆ S
such that H contains the set of cost-minimal models. That is for all hi, j ∈ H, f (hi) = f (h j) = fmin and for all s′ ∈ S\H f (s′) >
fmin.

1. Active := 〈(i,−∞)〉.

2. worst := ∞

3. selected := /0

4. while Active 6= 〈〉

5. begin

(a) remove element (k,costk) from Active

(b) if costk < worst

(c) begin

i. worst := costk
ii. selected := {k}

iii. let Prune1 ⊆ Active s.t. for each j ∈ Prune1, f ( j) > worst where f ( j) is the lowest cost possible from j or
its successors

iv. remove elements of Prune1 from Active

(d) end

(e) elseif costk = worst

i. selected := selected ∪{k}

(f) Branch := ρ(k)

(g) let Prune2 ⊆ Branch s.t. for each j ∈ Prune2, fmin( j) > best where fmin( j) is the lowest cost possible from j or
its successors

(h) Bound := Branch\Prune2

(i) for x ∈ Bound

i. add (x, f (x)) to Active

6. end

7. return selected

Figure 35: A basic branch-and-bound algorithm. The type of Active determines specialised vari-
ants: if Active is a stack (elements are added and removed from the front) then depth-first
branch-and-bound results; if Active is a queue (elements added to the end and removed
from the front) then breadth-first branch-and-bound results; if Active is a prioritised
queue then best-first branch-and-bound results.

• Active is a prioritised queue sorted by f ;

• The successor function used is ρA. This is defined as follows. Let S be the size of an accept-
able model and C be a qualitative model of size S′ with n = S−S′. We assume B constains a
set of mode declarations in the form described in Muggleton (1995). Then, given a definite
clause C, obtain a definite C′ ∈ ρA(C,B,E) where ρA = ρn

A = 〈D′| ∃D∈ ρn−1
A (C,B,E) s.t. D′ ∈

ρ1
A(D,B,E)〉,(n ≥ 2). C′ ∈ ρ1

A(C,B,E) is obtained by adding a literal L to C, such that:

– Each argument with mode +t in L is substituted with any input variable of type t that
appears in the positive literal in C or with any variable of type t that occurs in a negative
literal in C;

– Each argument with mode −t in L is substituted with of any variable of C of type t that
appears before that argument or by a new variable of type t;
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bbA(B,E,H0,ρ, f ,n) : Given background knowledge B ∈ B; examples E ∈ E ; a set of initial elements H0 from a discrete set of possible
hypotheses H ; a successor function ρ : H ×B ×E → 2H ; a cost function f : H ×B ×E → ℜ; and a maximum number of
nodes n ∈ N (n ≥ 0) to be explored, return H ⊆ H such that H contains the set of cost-minimal models of the models explored.

1. Active = 〈〉

2. for i ∈ H0

(a) add (i,−∞) to Active

3. worst := ∞

4. selected := /0

5. explored := 0

6. while (explored < n and Active 6= 〈〉)

7. begin

(a) remove element (k,costk) from Active

(b) increment explored

(c) if acceptable(k,B,E)

(d) begin

i. if costk < worst

ii. begin

A. worst := cost

B. selected := {k}

C. let Prune1 ⊆ Active s.t. for each j ∈ Prune1, f ( j,B,E) > worst where f ( j,B,E) is the lowest cost
possible from j or its successors

D. remove elements of Prune1 from Active

iii. end

iv. elseif costk = worst

A. selected := selected ∪{k}

(e) end

(f) Branch := ρ(k,B,E)

(g) let Prune2 ⊆ Branch s.t. for each j ∈ Prune2, f ( j,B,E) > worst where f ( j,B,E) is the lowest cost possible from
j or its successors

(h) Bound := Branch\Prune2

(i) for x ∈ Bound

i. add (x, f (x,B,E)) to Active

8. end

9. return selected

Figure 36: A variant of the basic branch-and-bound algorithm, implemented within the ALEPH

system. Here B and E are sets of logic programs; and N the set of natural numbers.

– Each argument with mode #t in L is substituted with a ground term of type t. This
assumes the availability of a generator of elements of the Herbrand universe of terms;
and

– acceptable(C′,B,E) is T RUE.

The following properties of ρ1
A (and, in turn to ρA) can be shown to hold (Riguzzi, 2005):

– It is locally finite. That is, ρ1
A(C,B,E) is finite and computable (assuming the constraints

in B are computable);
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incsearch(S,HI ,ρ, f ,n,m) : Given a sequence of stages S = 〈(B1,E1),(B2,E2), . . . ,(Bk,Ek)〉, (1 ≤ k < ∞) where Bi ∈ B; Ei ∈ E ; a
set of initial elements HI from a discrete set of possible hypotheses H ; a successor function ρ : H ×B ×E → 2H ; and a cost
function f : H ×B ×E → ℜ; a maximum number of nodes n ∈ N (n ≥ 0) to be explored at each stage; and a maximum number
of models m ∈ N (m ≥ 0) to be returned at each stage; and return H ⊆ H

1. H0 := randomselect(m, I)

2. i := 1

3. while (i ≤ k)

4. begin

(a) H ′
i−1 := {h′|h ∈ Hi−1 and h′ = generalise(h)}

(b) H ′
i := {h′|h′ = bbA(Bi,Ei,H ′

i−1,ρ, f ,n)}

(c) H ′′
i := nonredundant(Bi,H ′

i )

(d) Hi := randomselect(m,H ′′
i )

(e) increment i

5. end

6. return Hk

Figure 37: A simple incremental procedure for system identification. Given a decomposition into k
stages, the best models found at each stage are refined further.

– It is weakly complete. That is, any clause containing n literals can be obtained in n
refinement steps from the empty clause;

– It is not proper. That is, C′ can be equivalent to C;

– It is not optimal. That is, C′ can be obtained multiply by refining different clauses.

In addition, it is clear by definition that given a qualitative model C, accep table(C ′,B,E) is
T RUE for any model C′ ∈ ρ1

A(C,B,E). In turn, it follows that acceptable(C′,B,E) is T RUE
for any C′ ∈ ρA(C,B,E).

• The cost function used is fBayes(C,B,E) = −P(C|B,E) where P(C|B,E) is the Bayesian pos-
terior probability estimate of clause C, given background knowledge B and positive examples
E. Finding the model with the maximal posterior probability (that is, lowest cost) involves
maximising the function (McCreath, 1999):

Q(C) = logDH (C)+ p log
1

g(C)

where DH is a prior probability measure over the space of possible models; p = |E|, the
number of positive examples; and g is the generality of a model. We use the approach used
in the the ILP system C-Progol to obtain values for these two functions. That is, the prior
probability is related to the complexity of models (more complex models are taken to be less
probable, a priori); and the generality of a model is estimated using the number of random
examples entailed by the model (the details of this are in Muggleton, 1996);

• The function randomselect(m,H) in Fig. 37 randomly selects (without replacement) m ele-
ments of the set H (or all the elements of H if its cardinality is less than m);
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• For all stages i in Fig. 37, the bbA constructs no more than n models for each stage. Here we
restrict n to 1000;

• For all stages i in Fig. 37, no more than m of the lowest-cost models are returned; Here we
restrict m to 1000;

• The function generalise in Fig. 37 is restricted to “splitting” variable co-references apart (see
Definition 27 and Lemma 31 in Muggleton (1995) and Remark 4 below for more on this);
and

• The function nonredundant in Fig. 37 returns a set of non-redundant models. Given back-
ground knowledge B and a set of models S encoded as definite clauses, a model C1 ∈ S is
redundant, iff for S1 = S−{C1}, B∪ S ≡ B∪ S1. It can be shown that this entails checking
that B∪ S1 |= C1. nonredundant(B,H) returns all elements C ∈ H which do not satisfy this
redundancy check.

We now report on some properties of the various procedures described. It is evident that incsearch in
Fig. 37 performs the same function as a non-incremental (single-shot) ILP system if k = 1, HI = { /0}
(that is, HI consists of the empty model) and m ≥ n.

Remark 1 Termination, correctness and sub-optimality Termination of bbA follows trivially if
the number of nodes searched (n) is finite; and calls to acceptable and f terminate. It is also
easy to see that the conditional statement on Step 7c ensures that, for all models k ∈ selected,
acceptable(k,B,E) is T RUE. All models returned by bbA are correct in this sense. Since models
returned by incsearch on any iteration i are a subset of the models returned by bbA, it follows that
all models returned by incsearch are also correct. The branch-and-bound procedure is known to
be optimal, in that can identify the lowest cost models in the search space H . However, bbA with
ρ = ρA is optimal if and only if n ≥ |H | and HI = { /0}. It follows that incsearch with ρ = ρA is only
optimal if and only if k = 1, HI = { /0}, n ≥ |H |, and m ≥ n.

Although a general statements about search complexity can be made, the following remarks refer
specifically to the search for qualitative models.

Remark 2 Search space for qualitative models. Let the number of qualitative constraints in
acceptable models be restricted to some size d. Given element a single starting element i size di, the
task of bbA (we will assume n to be large) is to return all models of size d. This is done by examining
all models returned by ρA that adds d−di constraints to i. In the worst case, each i = /0 and ρA has
to return all models of size d. If the maximum recall number of any mode declaration be bound by
some constant b, then there are at most b extensions of size 1, b2 extensions of size 2 and so on, up to
bd models of size d. That is, given a model i, the number of acceptable models of size d constructed
by ρA is at most bd .

We now consider an incremental procedure that simply selects some of the best qualitative models
found at a stage for refinement at the next stage. It follows that the size of the search space depends
principally on the maximum number of qualitative constraints added at any stage.
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Remark 3 Incremental search space for qualitative models. (simple case). Assume as before
that the target model is restricted to d constraints and the maximum recall of any mode declaration
is b. Assume further that model identification can be decomposed into k ≥ 1 stages, with each stage
resulting in models with d1,d2, . . . ,dk constraints (we will assume that all models in the initial set
HI have d0 ≥ 0 constraints and that di+1 ≥ di). At each stage i, a model is constructed by addition
of d+

i = di − di−1 constraints to a model selected at stage i− 1. For each model selected at stage

i−1, we know from Remark 2 that bbA constructs at most bd+
i−1 acceptable models. Since no more

than m are selected at stage i−1, the total number of models constructed at stage i is mbd+
i−1 . The

total number of models constructed by the entire procedure is no more than ∑k
i=1 mbd+

i . That is, the
total number of models constructed is O(bd+

max) where d+
max = max(d+

1 ,d+
2 , . . . ,d+

k ).

Models at a stage may not consist of a simple addition of constraints to those found earlier
and we consider generalising models by splitting variables, before adding constraints (as shown
in Fig. 37). For qualitative models, this translates to retaining the qualitative components found
at the previous stage but disconnecting connections between some or all pairs whose outputs are
connected together. While a general analysis will require a detailed description of the variable
splitting procedure, a less detailed calculation is possible for the kinds of qualitative models sought
here. The simplification results primarily from the “Distinct variables” restriction on well-posed
models.

Remark 4 Incremental search space for qualitative models (limited generalisation). Assume
as before that the target model is restricted to d constraints and the maximum recall of any mode
declaration is b. Assume further that model identification can be decomposed into k ≥ 1 stages, with
each stage resulting in models with d1,d2, . . . ,dk = d constraints (we will assume that all models
in the initial set HI have d0 ≥ 0 constraints and that di+1 ≥ di). We will now examine the effect of
allowing generalisation by variable splitting only. For a model M selected at stage i, it is evident
that if all variables in a constraint are distinct, then there can be at most ni = max(di − 1,0) co-
references to any one variable v in M. Let the set of positions with co-references to a variable v
be Ev. Variable splitting essentially renames variables at some or all of these positions into new
ones. This is tantamount to partitioning the set Ev into equivalence classes, with positions in each
equivalence class having the same variable; and each such partitioning giving rise to a model M ′

that is more general than m (in the sense that M ′ θ-subsumes Plotkin, 1970). The nth Bell number
B(n) gives the number of ways in which a set of size n can be partitioned into equivalence classes.7

Thus, the number of models resulting from splitting variable co-references to a variable v in a
model M from stage i is at most B(ni). If the maximum number of variables in any qualitative
constraint is bounded by A, then there can be at most si = Adi splittable variables in any model M
from stage i. Therefore the number of models after generalisation of any M from stage i is at most
G(i) = Bsi(ni) Since there are no more than m models at any stage i, the total number of models after
generalisation is no more than mG(i). Recall each of these is then specialised by bbA to construct
a model for stage i + 1. The total number of models constructed by the entire procedure is thus no
more than ∑k

i=1 mG(i−1) bd+
i .

7. The nth Bell number is equal to ∑n
k=0 S(k)

n . S(k)
n , or Stirling numbers of the second kind, describe the way a set

of n elements can be partitioned into k disjoint, non-empty subsets. These can be computed using the formula

S(k)
n = S(k−1)

n−1 + kS(k)
n−1 (with S(1)

n = 1).
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In general, it is evident that variable splitting is not the only form of generalisation that may be
needed: components found at a previous stage may have to be discarded entirely before constructing
a model for the current stage. It is evident that allowing this form of generalisation will significantly
increase the worst-case search complexity.

Remark 5 Incremental search space for qualitative models (general case). Assume as before
that the target model is restricted to d constraints and the maximum recall of any mode declaration
is b. Assume further that model identification can be decomposed into k ≥ 1 stages, with each stage
resulting in models with d1,d2, . . . ,dk constraints (we will assume that all models in the initial set
HI have d0 ≥ 0 constraints and that di+1 ≥ di). From Remark 4 above, we know that the number of
models after generalisation by splitting variables at stage i is mG(i), each with di constraints. Each
of these models can be generalised further by dropping one or more constraints. This results in a
total of mG(i)2di models, each of which is then specialised by bbA to construct a model for stage
i + 1. In the worst case, all the constraints found in each of the models at stage i are removed by
the generalisation step and the specialisation step at stage i + 1 has to construct models with i + 1
constraints in each case. The total number of models constructed by the entire procedure is thus no
more than ∑k

i=1 mG(i−1)2di−1 bdi .

A.3 Application

In all cases, the application tasks are of a re-constructive nature. That is, a known target model for
each stage of the incremental process is used to generate examples for that stage. These, along with
the background knowledge and a set of random examples for the stage are given to the learner. (the
random examples are needed for the Bayesian calculation described in the previous section) We
then check to see if the target model is amongst the results returned by the learner. All experiments
were conducted on a laptop equipped with a 1.5 GHz Intel Pentium M Processor and 768 MB of
main memory. Examples are restricted to a random sample of no more than 500 observations of
system behaviour and no more than 500 random observations (these are needed for the Bayesian
cost calculations). Incremental construction of models was accomplished using ALEPH version 5,
with the YAP compiler (version 5.0.1).

We describe here the background knowledge and examples relevant to each of the application
tasks presented in the paper. Common to all tasks are definitions of the QSIM constraints. The
definitions we use are based on those in Bratko (2001) and are available on request from the first
author. In the following sections we describe the encoding of the examples, the mode declarations
and the values of the main parameters used for each application task. The principal parameters for
system identification are these: (1) The number of constraints in the model (the “size” constraint
described in Section 5.1 on well-posed models); (2) Upper bound on the number of occurrences
of any kind of constraint (the “language” constraint described in Section 5.1); (3) Upper bound on
the the number of nodes to be seached (n in the incsearch procedure); (4) Upper bound on the the
number of models to be selected from a stage (m in the incsearch procedure); (5) Upper bound on
the number of new variables in any model (constraint 10 described in Section 5.1); (6) Upper bound
on the number of irrelevant variables in any model (constraint 11 in Section 5.1).

A.3.1 THE TANK MODELS

System variables for the coupled tanks system are La, Lb, InflowA, Fab and OutflowB. Examples
for both the coupled tanks and single tank system are encoded using a state/5 predicate (the argu-
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state(l:0/inc,l:0/std,f:0...inf/std,f:0/inc,f:0/std).
state(l:0/inc,l:0...inf/dec,f:0...inf/std,f:minf...0/inc,f:0...inf/dec).
state(l:0...inf/dec,l:0/inc,f:0...inf/std,f:0...inf/dec,f:0/inc).
state(l:0...inf/dec,l:0...inf/dec,f:0...inf/std,f:0...inf/dec,f:0...inf/dec).
state(l:0...inf/dec,l:0...inf/dec,f:0...inf/std,f:0...inf/inc,f:0...inf/dec).

Figure 38: Example observations from the coupled tank system.

ADD(+level,+level,-level) SUB(+level,+level,-level)
ADD(+flow,+flow,-flow) SUB(+flow,+flow,-flow)

MPLUS(+level,-level) MPLUS(+level,-flow)
MPLUS(+flow,-flow) MPLUS(+flow,-level)

MMINUS(+level,-level) MMINUS(+level,-flow)
MMINUS(+flow,-flow) MMINUS(+flow,-level)

MINUS(+level,+level) MINUS(+flow,+flow)

DERIV(+level,-flow)

Figure 39: Mode declarations used for identifying the tank system.

ments refer to the system variables La–OutflowB, in the order just listed). Some of the observations
are shown in Fig. 38 (the syntax used is in the Prolog language):
22 observations are generated in all using the correct model for the coupled tank system. For the first
stage of learning—the single tank system—observations made for Tank A (that is, La and InflowA)
are ignored. This is achieved using the following mode declaration for state/5 (here, the “ ” denotes
that the corresponding argument is to be ignored):

STATE(_,+level,_,+flow,+flow)

In contrast, the mode declaration for state/5 for the coupled tank system is as follows:

STATE(+level,+level,+flow,+flow,+flow)

Mode declarations for the QSIM constraints for both single and coupled tanks are shown in Fig. 39.
The values of the principal parameters for the two stages are shown in the tabulation below.

Parameter Stage 1 Stage 2
(single tank) (coupled tanks)

Size 3 7
Language 2 2
n 1000 1000
m 1000 1000
Newvars 3 3
Irrelev 0 0
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state(p:0...inf/dec,n:0...inf/inc).
state(p:0...inf/std,n:0...inf/inc).
state(p:0...inf/inc,n:0...inf/dec).

Figure 40: Example observations from the predator-prey system.

ADD(+qval,+qval,-qval) SUB(+qval,+qval,-qval)

MPLUS(+predator,-qval) MPLUS(+prey,-qval)
MPLUS(+qval,-qval) MPLUS(+predator,+prey)

MMINUS(+predator,-qval) MMINUS(+prey,-qval)
MMINUS(+qval,-qval) MMINUS(+predator,+prey)

MINUS(+predator,+qval) MINUS(+prey,+qval)
MINUS(+predator,+prey) MINUS(+qval,+qval)

DERIV(+predator,-qval)
DERIV(+prey,-qval)

Figure 41: Mode declarations used for identifying the predator-prey system.

A.3.2 THE PREDATOR-PREY MODELS

System variables for the predator-prey system are the predator population P and the prey population
N. Examples for the system are encoded using a state/2 predicate (the arguments of which are P and
N). Some of the observations are shown in Fig. 40.
5 observations of system behaviour are obtained using the target model. The mode declaration for
the state/2 predicate is

STATE(+predator,+prey)

Mode declarations for the QSIM constraints are shown in Fig. 41.
The values of principal parameters are shown in the tabulation below.

Parameter Value
Size 6
Language 2
n 1000
m 1000
Newvars 5
Irrelev 0

A.3.3 THE LUNG MODELS

System variables for identifying the human lung model are Pa, Va, Pi, Vid and Pv. Examples for
the system are encoded using a state/5 predicate (the arguments of which are Pa–Pv in the order
just listed). Some of the observations are shown in Fig. 42.
500 observations of system behaviour are obtained using the target model. The mode declaration
for the state/5 predicate is:
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state(p:0/std,v:0/inc,p:0...inf/inc,f:0/inc,p:0/inc).
state(p:0/std,v:0...inf/dec,p:0/std,f:0...inf/dec,p:0/std).
state(p:0/std,v:0...inf/dec,p:0/inc,f:0/inc,p:0/inc).
state(p:0/std,v:0...inf/dec,p:0/inc,f:0...inf/std,p:0/inc).
state(p:0/std,v:0...inf/dec,p:0/inc,f:0...inf/inc,p:0/std).

Figure 42: Example observations from the lung system.

ADD(+press,+press,-press) SUB(+press,+press,-press)
ADD(+vol,+vol,-vol) SUB(+vol,+vol,-vol)
ADD(+volrate,+volrate,-volrate) SUB(+volrate,+volrate,-volrate)
ADD(+qval,+qval,-qval) SUB(+qval,+qval,-qval)

MPLUS(+press,-press) MPLUS(+press,-vol)
MPLUS(+press,-volrate) MPLUS(+press,-qval)
MPLUS(+vol,-vol) MPLUS(+vol,-volrate)
MPLUS(+vol,-qval) MPLUS(+qval,-volrate)
MPLUS(+qval,-qval)

MMINUS(+press,-press) MMINUS(+press,-vol)
MMINUS(+press,-volrate) MMINUS(+press,-qval)
MMINUS(+vol,-vol) MMINUS(+vol,-volrate)
MMINUS(+vol,-qval) MMINUS(+qval,-volrate)
MMINUS(+qval,-qval)

MINUS(+press,+press) MINUS(+vol,+vol)
MINUS(+volrate,+volrate) MINUS(+qval,+qval)

MULT(+press,+press,-qval) MULT(+press,+vol,-qval)
MULT(+press,+volrate,-qval) MULT(+press,+qval,-qval)
MULT(+vol,+vol,-qval) MULT(+vol,+volrate,-qval)
MULT(+vol,+qval,-qval) MULT(+qval,+volrate,-qval)
MULT(+qval,+qval,-qval)

DERIV(+qval,-qval)

Figure 43: Mode declarations used to identify the lung system.

STATE(+press,+vol,+press,+volrate,+press)

Mode declarations for the QSIM constraints are shown in Fig. 43.
The values of principal parameters are shown in the tabulation below.

Parameter Value
Size 7
Language 2
n 1000
m 1000
Newvars 6
Irrelev 0
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state(l:0...inf/dec,l:0...inf/inc,f:0...inf/dec,l:0...inf/inc,l:0...inf/std,f:0/inc).
state(l:0...inf/dec,l:0...inf/inc,f:0...inf/dec,l:0...inf/inc,l:0...inf/inc,f:0...inf/dec).
state(l:0...inf/dec,l:0...inf/inc,f:0...inf/dec,l:0...inf/inc,l:0...inf/inc,f:0...inf/inc).
state(l:0...inf/std,l:0...inf/std,f:0/std,l:0...inf/std,l:0...inf/std,f:0/std).
state(l:0...inf/dec,l:0...inf/dec,f:0...inf/std,f:0...inf/inc,f:0...inf/dec).

Figure 44: Example observations from the glucose-insulin regulatory system.

ADD(+glevel,+glevel,-glevel) SUB(+ilevel,+ilevel,+iflow)
ADD(+ilevel,+ilevel,-ilevel) SUB(+glevel,+glevel,+gflow)

MPLUS(+glevel,-glevel) MPLUS(+glevel,-ilevel)
MPLUS(+ilevel,-glevel) MPLUS(+ilevel,-ilevel)

SPLUS(+glevel,-glevel) SPLUS(+glevel,-ilevel)
SPLUS(+ilevel,-glevel) SPLUS(+ilevel,-ilevel)

MMINUS(+glevel,-glevel) MMINUS(+glevel,-ilevel)
MMINUS(+ilevel,-glevel) MMINUS(+ilevel,-ilevel)

SMINUS(+glevel,-glevel) SMINUS(+glevel,-ilevel)
SMINUS(+ilevel,-glevel) SMINUS(+ilevel,-ilevel)

MINUS(+glevel,+glevel) MINUS(+ilevel,+ilevel)

DERIV(+glevel,+gflow) DERIV(+ilevel,+iflow)

Figure 45: Mode declarations used for identifying the glucose-insulin models.

A.3.4 THE GLUCOSE-INSULIN MODELS

System variables for the glucose-insulin models are Gin, G, DG, Iin, I, and DI. Of these DG and DI
are dependent on the glucose and insulin variables and could have been inferred from them. Exam-
ples for both the insulin and glucose stages are encoded using a state/6 predicate (the arguments
refer to the system variables Gin–DI, in the order just listed). Some of the observations are shown
in Fig. 44 (the syntax used is in the Prolog language):
24 observations are generated in all using the correct model for glucose-insulin regulation. For the
first stage of learning—the insulin stage—observations relevant to glucose (that is, Gin, G and DG)
are ignored. This is achieved using the following mode declaration for state/6 (here, the “ ” denotes
that the corresponding argument is to be ignored):

STATE(_,_,_,+ilevel,+ilevel,+iflow)

In contrast, the mode declaration for state/6 for the glucose stage is as follows:

STATE(+glevel,+glevel,+gflow,+ilevel,+ilevel,+iflow)

Mode declarations for the QSIM constraints for both insulin and glucose stages are shown in Fig. 45.
The values of the principal parameters for the two stages are shown in the tabulation below.
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glycolysis([adp:0/std,atp:0...inf/std,f16bp:0/std,f6p:0/std,g6p:0/std,glc:0...inf/std],
[adp:0...inf/inc,atp:0...inf/dec,f16bp:0...inf/inc,f6p:0/std,g6p:0/std,glc:0...inf/dec]).

glycolysis([adp:0/std,atp:0...inf/std,f16bp:0/std,f6p:0/std,g6p:0/std,glc:0...inf/std],
[adp:0...inf/inc,atp:0...inf/dec,f16bp:0...inf/inc,f6p:0...inf/dec,g6p:0/std,glc:0...inf/dec]).

glycolysis([adp:0/std,atp:0...inf/std,f16bp:0/std,f6p:0/std,g6p:0/std,glc:0...inf/std],
[adp:0...inf/inc,atp:0...inf/dec,f16bp:0...inf/inc,f6p:0...inf/std,g6p:0/std,glc:0...inf/dec]).

glycolysis([adp:0/std,atp:0...inf/std,f16bp:0/std,f6p:0/std,g6p:0/std,glc:0...inf/std],
[adp:0...inf/inc,atp:0...inf/dec,f16bp:0...inf/inc,f6p:0...inf/inc,g6p:0/std,glc:0...inf/dec]).

glycolysis([adp:0/std,atp:0...inf/std,f16bp:0/std,f6p:0/std,g6p:0/std,glc:0...inf/std],
[adp:0...inf/inc,atp:0...inf/dec,f16bp:0...inf/inc,f6p:0/std,g6p:0...inf/dec,glc:0...inf/dec]).

Figure 46: Example observations from the priming stage of glycolysis.

Parameter Stage 1 Stage 2
(insulin) (glucose)

Size 3 9
Language 2 2
n 1000 1000
m 1000 1000
Newvars 5 5
Irrelev 0 0

A.3.5 THE GLYCOLYSIS MODELS

System variables for identifying models at any stage of glycolysis are cell-states before and after
the stage. Examples for a stage are encoded using a glycolysis/2 predicate (the arguments of which
are the cell-state before and after the reactions involved in that stage). Some of the observations for
the first stage (priming) are shown in Fig. 46.
500 observations of system behaviour are obtained using the target models for each stage. The mode
declaration for the glycolysis/2 predicate is:

GLYCOLYSIS(+cellstate,-cellstate)

Although QSIM constraints form the basis of qualitative reactions, the models constructed use a
pathway/3 predicate. The mode declaration for this predicate is simply:

PATHWAY(+cellstate,#qreactions,-cellstate)

(Here the ”#” indicates that a corresponding argument is a ground term: in this case a sequence of
qualitative reactions).

The values of principal parameters for the three stages are shown in the tabulation below.

Parameter Stage 1 Stage 2 Stage 3
(priming) (splitting) (phosphorylation)

Size 1 2 3
Language 3 3 3
n 1000 1000 1000
m 1000 1000 1000
Newvars 3 3 3
Irrelev 0 0 0
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System Variables Search Space
4 15
5 181
6 2163
7 27133
8 364395
9 5272861

10 82289163

Figure 47: Number of partition-sequences to be searched for a given number of system variables.

Appendix B. Automatic Decomposition

We present here a specification for the problem of automatic decomposition addressed in the latter
half of the paper, along with implementation details of a search procedure that identifies an accept-
able decomposition.

B.1 Specification

We will assume that we are looking to decompose a system specified by a set of qualitative system
variables. The problem can be specified as follows. Given a non-empty set S of system variables,
consider first the notion of a “partition-sequence” (S1,S2, . . . ,Sn), in which Si ⊂ S, and S1,S2 . . .Sn

form a partition of S. Given a set E of observed values for the system variables S, background knowl-
edge B, a refinement operator ρ, a cost function f , and a partition-sequence P = (S1,S2, . . . ,Sn), we
are able to construct a n-stage incremental learner of the form shown in Fig. 6(b) that returns a set
of models Hn = L(B,En,ρ, f ,Hn−1) with minimal cost, where H0 = { /0} and at each stage i, Ei are
the values observed for variables S1∪S2 · · ·Si. Let us assume that we are also able to obtain the cost
of Hn, which, for reasons that will become obvious immediately, we call CP. With automatic system
decomposition, we are concerned with a procedure that returns an optimal partition-sequence P∗

such that, of all possible partition sequences P, CP∗ ≤ CP (that is, P∗ yields models with the least
cost).

Remark 6 Search space for decompositions. We are able to provide some details on the combi-
natorics of the search for decompositions. Recall that the number of partitions of a set of n elements

into exactly k non-empty blocks is given by S(k)
n (Stirling’s number of the second kind). For each

such partition, a valid answer is given by an ordering of the blocks into some sequence. The number

of k-length partition-sequences is thus D(k)
n = k!S(k)

n . We have an additional constraint that requires
the first block in any partition-sequence to contain at least 2 elements. This means that we are only
interested in partition-sequences of length 1,2, . . . ,n− 2. The total number of partition-sequences

to be considered is therefore D(1)
n + D(2)

n + · · ·+ D(n−2)
n . This is at most (n− 2)D(n−2)

n . Of course,
models have be constructed with each element of any partition-sequence. The complexity of this has
be estimated in the previous section.

Fig. 47 tabulates the size of the search space for some values of n (the number of system variables),
showing how an addition of a system variable increases the size of the search space by an order of
magnitude (the number appears always to be greater than 10n−3).
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B.2 Implementation

Figure 48 shows a GSAT-like randomised local search procedure that identifies a partition-sequence
based on a greedy selection of elements. In experiments for the paper we have made one modifi-
cation to this procedure, which we have not shown in the figure for simplicity. In Fig. 48 variable
subsets are compared simply on costs. If a pair of variable subsets V1 and V2 have the same cost,
we further examine the following. For each of V1,2 we obtain a best-case estimate of the length of
the final partition-sequence. The subset with the shorter length is preferred. If these lengths are also
the same, then the subset with fewer variables is preferred (on the assumption that the resulting ILP
model would be simpler). In addition, of course, we will use ρ = ρA and f = fBayes.

Remark 7 Space searched by rls. Let |S| = n. The procedure contains 3 loops in Steps 4, 4f,
and 4(f)viii The loop in Step 4(f)viii iterates at most M times. On each iteration, there are at most
n local moves from any subset. Therefore, at most Mn subsets are examined by the loop in Step
4(f)viii. This is called no more than R times by the loop in Step 4f, resulting in at most MRn subsets.
The outermost loop in Step 4 can iterate no more than n times, which means the number of subsets
examined are at most MRn2.

B.3 Application

We consider first 3 artificial problems obtained by a random decomposition of a set of 10 variables
into 2, 3 and 4 stages. For each problem and stage, the “correct” variable subset is assigned the least
cost possible. All other subsets are assigned costs randomly. The task is to find the correct variable
subset at each stage for each of the 3 problems.8 The search space has approximately 108 elements
(in contrast to the coupled tanks problem, which has about 102). Figures 49 summarises the results
of attempting to identify the correct decompositions for each of the 3 problems.

More generally, we examine the values of R and M needed for identifying the correct decomposi-
tion.9 The values required using artificial problem sets of the kind just described, with n = 4,5,6,8,
and 10 variables with k = 2,3, and 4 stages are shown in Fig. 50. The probability of obtaining the
correct decomposition are shown in Fig. 51.

From these results, it is evident that both an increase in the number of variables or the number
of stages usually requires an increase in the values of R and M (Fig. 50a), and that as the values of
R and M are increased, the probability of obtaining the correct decomposition increases (Fig. 50b).
Both these observations may be evident to the reader since an increase in either the number of
variables or stages makes the search space larger. Increasing R and M then allows a more extensive
search. A further characteristic of the automatic decomposition problem that may not be as obvious
is this: since the number of variables left at each stage less than at the previous stage, we should,
in principle, be able to achieve the same performance by starting with high values of R and M
and progressively reducing their values after each stage. We do not explore this further, as such a
progressive reduction is not a feature of the procedure here.

8. The procedure in the previous section has to be modified slightly, since there is no need to construct models using an
ILP learner for these problems.

9. We note that the experiments are concerned with exact identification of the correct decomposition. Approximate
identification, not addressed here, would yield higher probabilities.

1525



SRINIVASAN AND KING

rls(S,B,E,ρ, f ,R,M) : Given a non-empty set of system variables S; background knowledge B; a set of values for the system variables
E; a refinement operator ρ; a cost function f ; an upper bound on the number of restarts R; and an upper bound on the depth of
local moves M, returns a partition-sequence (S1,S2, . . . ,Sk), in which each Si results in the lowest cost model at stage i, given
models constructed for Si−1.

1. i = 0

2. Hi = { /0}, Si = /0

3. VarsLe f t = S

4. while VarsLe f t 6= /0 do

(a) Increment i

(b) VarsUsed = S0 ∪S1 · · ·Si−1

(c) bestcost = ∞
(d) VarsSelected = VarsLe f t

(e) r = 0

(f) while r < R do

i. VarsAvail = VarsLe f t \VarsUsed

ii. Randomly select V ⊂VarsAvail

iii. Let c be the cost of the models returned by an incremental learner constructed using Hi−1, B, E, VarsUsed∪
V , ρ, f

iv. if c < bestcost then

A. bestcost = c

B. VarsSelected = V

v. endif

vi. bestlocal = V

vii. m = 0

viii. while m < M do

A. Let L be the set of all variable subsets constituting local moves from bestlocal

B. Let V ′ be the element of L resulting in the least cost c′ using an incremental learner constructed using
Hi−1, B, E, VarsUsed ∪V ′, ρ, f

C. bestlocal = V ′

ix. if c′ < bestcost then

A. bestcost = c′

B. VarsSelected = V ′

x. endif

xi. Increment m

xii. endwhile

(g) Increment r

(h) endwhile

5. Si = VarsSelected

6. VarsLe f t = VarsLe f t \VarsSelected

7. endwhile

return (S1,S2, . . . ,Si)

Figure 48: A randomised local search procedure for decomposing a set of system variables into a
partition-sequence from which an incremental ILP learner can be constructed.
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R M
3 10 25 50

3 0.00 0.15 0.12 0.10
10 0.30 0.48 0.64 0.64
25 0.30 0.80 0.90 0.90
50 0.50 0.80 1.00 1.00

(a) 2-stage decomposition ({4,6,8,9,10},{1,2,3,5,7})

R M
3 10 25 50

3 0.03 0.18 0.18 0.10
10 0.20 0.30 0.60 0.60
25 0.60 0.60 0.80 0.90
50 0.80 1.00 0.90 1.00

(a) 3-stage decomposition ({1,5,6,8,10},{4,9},{2,3,7})

R M
3 10 25 50

3 0.03 0.00 0.00 0.00
10 0.00 0.18 0.04 0.32
25 0.25 0.0.36 0.40 0.40
50 0.18 0.63 0.72 0.64

(a) 4-stage decomposition ({2,3,4},{10},{6,7,8,9},{1,5})

Figure 49: Probability estimates of identifying the correct decomposition using the randomised lo-
cal search procedure on artificial problems with a set of 10 variables S = {1,2, . . . ,10}.
The decompositions to be identified are shown as sequences (S1,S2, . . . ,Sk) where
Si ⊂ S, Si ∩ S j = /0 and k represents the number of stages. The probability estimates
required for each stage are obtained from 30 trials of using the randomised procedure.
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Figure 50: (a) R,M estimates for identification of the correct decomposition of a set of n variables
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