

University of Westminster Eprints
http://eprints.wmin.ac.uk

Assignment schemes for replicated services in Jini.

Vasil Georgiev
Vladimir Getov
Harrow School of Computer Science

Copyright © [2002] IEEE. Reprinted from Proceedings of the 10th Euromicro
Workshop on Parallel, Distributed, and Network-based Processing: Canary Islands,
Spain, January 9-11, 2002, pp.129-136.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

Assignment Schemes for Replicated Services in Jini�

Vasil Georgiev and Vladimir Getov
School of Computer Science, University of Westminster

Northwick Park, Harrow HA1 3TP, U.K.
E-mail: fV.Georgiev,V.S.Getovg@wmin.ac.uk

Abstract

This paper introduces and compares different schemes
for assignment of replicated services in Jini – an object-
oriented middleware architecture for network-centric com-
puting. Each client in Jini has to be assigned a service
selected from the pool of available services, which have
joined the Jini federation and registered with the lookup
service. Both early and delayed assignments are consid-
ered as basic options in our evaluation. The information
for the system load can be collected at four different levels
of detail in order to be used in the process of assignment
decisions. In our analysis, we concentrate on the scenario
where the requests for service generated by the clients fol-
low independent user-initiated or machine-initiated trans-
actions. The performance evaluation of the assignment
schemes follows the queuing systems methodology. The
comparisons are done with regard to the mean residence
time of the clients in the system as well as the control over-
head imposed by the assignment schemes. A case study of
the scheme using the lowest information level proves the ef-
fectiveness, applicability and limitations of the delayed as-
signment in comparison to the early one. These results are
a first step towards developing a methodology for building
large-scale applications for Jini-based distributed systems.

1. Introduction

1.1 Jini as middleware in Java-centric distributed
processing

Jini is an object-oriented middleware architecture for
network-centric computing. It provides a portable Java-
centric mechanism that enables plugging together the dis-
tributed system components into a federation. The mem-
bers of a Jini federation share services during the process

�This work has been supported in part by HEFCE (UK) under the NFF
initiative.

of completing their tasks. The communication is based on
a set of Java interfaces, which act as service protocols. The
services themselves are located and assigned to the clients
by a special lookup service. Thus, the federation compo-
nents can be identified as services including one or more
lookup service, and clients. The service protocols provide
the necessary functionality for:

� registering the available services with the lookup ser-
vice (the discovery and join protocols);

� service assignment on clients’ demand (the lookup
protocol);

� service access (via a specific service invocation proto-
col).

The most frequent example of a Jini system is proba-
bly the scenario in which a pool of printers is used by a
set of clients over the network. However, presently the Jini
technology has applications far broader than the device-
connection technology toward which it was targeted orig-
inally [15]. In principle, any electronic device running a
Java virtual machine (JVM) – so called intelligent device
– could indeed replace the printers in the above scenario.
Clusters of workstations and high-performance platforms
do not commit any exception in this sense. Moreover, the
Jini technology possesses features that substantially facili-
tate high-performance distributed processing:

� portability/mobility/native legacy binding [4],

� leasing (time-driven control for reliability and garbage
collection [6]),

� distributed event-driven control [11], which somewhat
resurrects the classic concept of communicating se-
quential processes.

These advantages and new features of Jini-based dis-
tributed platforms have attracted active interest by the de-
velopers of distributed applications. In Jini the transi-
tion between coding the drivers for remote (i.e. network-
wide/federation-wide) intelligent devices and coding for re-
mote task evaluation virtually dissolves or at least appears

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

to be rather spontaneous. However, from a performance
point of view distributed data processing in a Jini federa-
tion raises the traditional questions about granularity, scala-
bility and load balancing. In the case of printers and var-
ious other intelligent gadgets one can hardly foresee that
a federation would comprise more than a few similar de-
vices. At the same time, a distributed Jini-based platform
can offer much greater number of similar or replicated ser-
vices [1] - potentially as big as (if not greater than) the num-
ber of client processes. The availability of replicated ser-
vices means that there are different options for assignment
of services to clients. Furthermore, the lookup services in
a federation (when more than one) may require hierarchical
assignment schemes.

In this paper we focus on the scenario in which the Jini
federation is a set of resources offering one or more types
of replicated services. The resources are connected in a
network thus forming a distributed system. The latter is
loaded (and/or has been entered permanently) by a dynamic
population of clients that seek the assignment of any of the
available replicated services in the Jini federation. We con-
sider here the service assignment task as a case of the gen-
eral problem of load balancing in distributed systems. Nor-
mally, the objective of such a task is to minimise the res-
idence time of the clients in a system via minimisation or
elimination of the idle periods of the service resources. We
show how and which of the known general schemes for
load balancing are applicable and productive in the specific
case of Jini.

1.2 General load balancing schemes

Here we present a compact taxonomy of general load-
balancing approaches, which serve as a starting point for
the formulation of Jini-specific assignment schemes. Fol-
lowing previous related work [5, 12, 14], one can identify
two main branches of load balancing. The static load bal-
ancing (thoroughly covered in [5]) is suitable for clients ar-
riving by group i.e. a distributed execution of a suitably de-
composed application. The dynamic load balancing is de-
signed to handle clients’ jobs for which not only the amount
of work but also the moments of arrival are subject of ap-
proximation. That is why dynamic load balancing requires
a somewhat more elaborate operating structure. Admit-
tedly, it consists of three recognisable and, in a sense, in-
dependent procedures often called polices [12]:

� information policy - this procedure gathers dynamic
system information which is necessary when future
load balancing decisions are to be taken;

� location policy - which consists of decision taking
about the dynamic assignment of jobs to the available
resources;

� transfer policy - this procedure comprises of the job
transfer protocols.

Another taxonomy axis is the distribution of these three
types of policies amongst the system entities (nodes). In
this case, one can recognise three basic schemes - cen-
tralised, distributed and hybrid. In a Jini federation the as-
signment process is focussed on the lookup service. Ac-
tually, the standard Jini lookup service performs a cen-
tralised information-location policy. More specifically, the
Jini lookup information policy consists of the information
about the availability and the leasing conditions of the ser-
vices. The job transfer is virtually not recognised within
Jini architecture as it is left to the services themselves to
deal (or rather not) with further dynamic redistribution of
clients.

From a load balancing point of view, a distributed sys-
tem is thought as a collection of sources (or senders) of
tasks (e.g. the overloaded nodes) and receivers of tasks (e.g.
underloaded and particularly idle nodes). Thus, load bal-
ancing recognises three types of balancing initiatives [14]:

� receiver-initiated balancing - the balancing decisions
in regard of location policy are taken in the instants of
change in the status of receivers e.g. in the moments
of job’s departure after being serviced when the node
may become idle or at least underloaded to some cri-
teria;

� sender-initiated balancing - symmetrically to the for-
mer - decisions are taken in the moments of job’s ar-
rival when the node become overloaded, and

� hybrid-initiated balancing - with obvious semantics.

The last taxonomy axis of consideration is the system in-
formation level, which serves as a decision basis for the re-
source (i.e. service) allocation. This axis may start with
zero information schemes and ”blind” decision-making -
e.g. random allocation of the clients to the available ser-
vices - and may extend to schemes based on full actual in-
formation about the system load status - e.g. monitoring of
the local queue lengths of the services.

The above already available and well known load bal-
ancing concepts can be used as a basis for the develop-
ment of performance-effective methods for distributed pro-
cessing of asynchronous clients in Jini. The most direct
approach is to extend the functionality of the lookup ser-
vice to something like a component configurator [9]. For
example, one can modify the process of client-service as-
signment by rescheduling the decision instants and collect-
ing dynamically information about the system load in some
more deatil.

The rest of this paper is organised as follows. Section 2
presents the system architecture, which is subject of mod-
elling and analysis. Section 3. introduces the assignment

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

not address such eventualities.
The system architecture is obviously that of a network-

based distributed system. Yet logically it is lookup-centric,
which challenges the possibility for a bottleneck at the
lookup service. The obvious alternatives to the bottle-
necked federation-unique lookup service are either splitting
the clients, splitting the scope, or doing both:

� Lookup matching. The actual population of clients is
split between L lookup services. A client is associ-
ated arbitrarily to one of the lookup services upon its
arrival in the system. The association is arbitrary for
the client; it might be RR (Round Robin), JSQ (Join
Shortest Queue), etc. for the lookup service. Each
lookup service acts to its clients as if it is the only
lookup service in the federation.

� Lookup decomposition. A Jini community of services
is split among the available L lookup services. The
lookup scope of each service is reduced by the factor
of L. While not favouring the best possible balancing
among the services this measure can be found handy
in the case of expanding the network scale.

� Multi lookup. Both the service scope and the clients
are split among the available lookup services.

All three approaches are entirely legitimate in Jini.
Lookup decomposition seems more sparing in what con-
cerns the overload due to discovery/join/lookup protocols
trinity. Lookup matching preserves the system-wide scope
of replicated services, which might be advantageous in a
performance sense. We call these three variants of multi-
ple lookup services hierarchical lookup because the lookup
process is actually two-fold: client-lookup service associa-
tion and then client-service association.

3. Service assignment schemes in Jini

In our comparative analysis and development of differ-
ent service assignment schemes the services are “receivers”
of tasks and the clients are “senders” of the tasks. This is
to justify that we do not consider the possibility for inter-
service balancing transfer of tasks - from “sender”-service
to a “receiver”-service. Although perfectly feasible and le-
gitimate such a technique falls somewhat out of the scope
of Jini control tools. We merely treat all services as “re-
ceivers” of tasks and consider the decision taking instants
(apparently by the lookup service) recognising two basic
available options - assignment upon arrival of the clients
and assignment upon the re-emerging of a replicated ser-
vice (i.e. upon the departure of its serviced client). Further-
more, for the standard assignment upon client arrivals we
study the performance of a four level information policy.

All these options form several service assignment schemes.
Our results demonstrate the performance benefits of the
proposed delayed assignment as well as the limitations of
the system granularity and scalability.

In a lookup-centric Jini federation the service assign-
ment task is performed by the lookup service. This archi-
tectural prerequisite favours any load balancing scheme that
places information and location strategy together with the
lookup service. The functionality of the transfer strategy
is virtually not presented in terms of Jini technology. This
is due to the fact that once established, the client-service
assignment is supposed to last during the lifetime of the
client object. Presumably, it is not the service’s task to form
complementary pairs and to swap the most delayed clients.
At the same time nothing prevents the system from redis-
tributing dynamically the clients already in service (or wait-
ing for service in the local queues) according to algorithms
in [3, 12, 14].

The core of the information policy is its scale. The infor-
mation scale of a Jini lookup service may have four levels,
namely:

� Level 0 (L0): no information about services; one state
of the service - “available”.

� Level 1 (L1): reference of the local service queue
lengths qi to given threshold T (qi < or � T ; i =
1; ::S;T � 1) - two states of the service: “under-
loaded” L1- and “overloaded” L1+. Note that for
T = 1 L1 coincides with L0 reducing the scale under-
/over-loaded to idle/busy.

� Level 2 (L2): works like L1 for T � 2 plus in-
formation about the idle services; three states of the
service: “idle” L2o, “underloaded” L2- and “over-
loaded” L2+.

� Level 3 (L3): full actual information about the local
queue lengths of the services. The service’s states are
boundless (or at least numerous).

From a performance point of view, the most valuable in-
formation is whether the service is idle (or about to be idle
soon), or not [3, 10]. That is why L1 or L2 seem more
promising than L3.

The next key issue concerning the assignment scheme is
the assignment initiative, which is the substance of the lo-
cation strategy. In Jini federation we apply three types of
assignment:

� Early assignment !A (clients’ initiative).

� Delayed assignment A! (service’s initiative).

� Hybrid assignment !A! (mixed initiative)

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

In the case of early assignment (we use the short nota-
tion !A) the binding of the client-service pairs takes place
upon arrival of every new client in the system. Ideally,
there is no queue of waiting clients in front of the lookup
service. The queuing is localised in front of the services.
The location decision itself is taken by the lookup ser-
vice based on the available information. For L0 obvi-
ously the clients will be assigned to the available services
arbitrarily (technically, the lookup service may perform
RR, which can give slightly different results to these of a
proper random assignment Rnd). Note that the combina-
tion L0_!A (i.e. no information gathering with an arbi-
trary early assignment among the available replicated ser-
vices) is the “standard” assignment scheme in Jini federa-
tion. This standard scheme is applicable whenever no as-
signment consideration has taken place on the stage of sys-
tem coding. Early assignment can also be combined with
the other three information levels producing schemes such
as Join Idle/Underloaded/Shortest Queue (JIQ/JUQ/JSQ,
which correspond to L1_!A, L2_!A and L3_!A respec-
tively).

More promising to us seems the delayed assignment
(noted here with A!). It corresponds to the service’s ini-
tiative. In this case the assignment takes place whenever a
service becomes idle. This means that arriving clients are
forced to join a common federation-wide queue and wait
until there is an idle service to which a waiting client is to
be assigned. The advantage of this discipline is that the set
of local queues is replaced by a common federation queue.
In queuing theory this case is classic. The common queue
(a true invention of 1960s) outperforms the multiple sepa-
rate queues and often is referred to as “fast” queue [8]. The
delayed assignment goes with L0.

By hybrid assignment (noted !A!) queues are formed to
all the services including the lookup service. Assignment
may take place both at the time of a client’s arrival or on
demand of the services. Every client may experience either
early assignment or delayed assignment depending on the
current conditions of the system. Here all information lev-
els are applicable. In practice, the presence of a federation
queue (or “fast” queue) allows the usage of some limited
in size local queues. Their function is not to be that of a
principal distributed repository of the waiting clients’ pool
but merely that of compact local buffers, which make the
events of transition between the states of the services more
rare (e.g. underloaded-overloaded instead of idle-busy),
thus potentially reducing the system control overhead. On
the other hand long local queues are to be discouraged as
even the most sophisticated information and location strat-
egy L3_!A (JSQ) is worthless if the choice is between any
two services with perhaps 30 and 33 clients waiting in their
local queues (provided the service times form a probabilis-
tic sequence).

The three assignment schemes - early, delayed and hy-
brid - are also applicable in the case of distributed process-
ing of a “big” decomposed task. If the system comprises
of N nodes running S (here S = N) replicated services,
then distributed processing of that task requires decompo-
sition of the task’s domain into S or more subtasks which
are assigned at the same time to the separate services. Such
an approach belongs to the static load balancing techniques
(i.e. to early assignment !A in our taxonomy). A signifi-
cant performance improvement can be obtained by applica-
tion of so called scattered decomposition, which distributes
the task into kS(k > 1) subtasks and assigns them in an
arbitrary order to the different services [5]. Delayed assign-
ment A! of such decomposed tasks would mean that after
initial assignment of first S subtasks to the available repli-
cated services, the rest (k � 1)S subtasks are queued and
assigned along with the availability of idle services in the
Jini community. This scheme can also be hybridised by al-
lowing some short limited local queues to the services.

All these considerations can be extended for a Jini fed-
eration applying hierarchical assignment, i.e. comprising
more than just one lookup service. Then the multiple
lookup services are to be treated in the same way as the ser-
vices are in the above paragraphs.

4. System models

Following the structure of a Jini federation, our model
consists of persistent components and transient components
or transactions. The last ones are the clients. Every client
is identified by two temporal quantities: the moment of its
arrival in the system and the service time it requires. Al-
though seeking the same service the clients are not neces-
sarily allocated the same service time. In fact most of the
numerical tasks as well as the communication or peripheral
devices tasks take unknown time to be completed. That is
why the service time parameter is not to be used on the
stage of service assignment but only when the transaction
enters the service stage of the model. In heterogeneous sys-
tems the service time depends on the allocation as there are
“faster” and “slower” nodes. For such a case the service
time has to be considered as basic service time subject of
correction by appropriate coefficients with regard to the ac-
tual allocation. Our model recognises two types of transac-
tion arrivals: continuos flow of transactions with exponen-
tially distributed interarrival times and bulk arrival of trans-
actions, when the important parameter summarises as the
number of transactions instead of the time of their arrival.
The concept of the transactions can be extended with one
more numerical component - priority. In this paper we do
not consider priority clients. After assignment and com-
pleting the service the clients-transactions leave the system.
Their mean lifetime or the duration of their residence cycle

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

T (ρ) | γ =95 10 5.05

0

0.5

1

1.5

2

2.5

3

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L0_!A (any S)

L0_A! (S=2)

L0_A! (S=4)

L0_A! (S=8)

L0_A! (S=16)

L0_A! (S=32)

Figure 3. Mean residence time in service by
different system load. Delayed vs. early as-
signment.

assignment in Jini federation) we have a case of a M/M/1
queuing system for each of the services and the calculation
of the mean residence time of the clients/transactions in the
system is straightforward. If the system is heterogeneous
(i.e. the mean service time of the replicated services differs)
than an iterative estimation of the probability of assignment
will yield the steady state results for all the services, which
to be summarised statistically (in manner this has been done
in [3]).

A natural counterpart of the standard assignment is
L0_A! or L1(T=1)_A! (delayed assignment with arbi-
trary choice of available idle services). The homogenous
case of it represents simply a M/M/S system (where S is
the number of all services in Jini community. Using Er-
lang’s result from [8] we obtain the mean residence time
for such a system by different relative load and different
relative granularity in the system. The results presented in
Fig 3. prove the effect of application of delayed association
to the early one. Technically this requires replacement of
the [transparent] local queues of the services by a common
“fast” queue for the lookup service (or services).

Although promising as they are the above results are
valid if one ignores the overhead imposed by supporting the
lookup service’s queue. However such a centralised scheme
may account for a bottleneck in the distributed systems.
To correct the model we have to consider the delay due to
service-client assignment (which is inevitable) as well as
that to join/leave protocols by the services1.

1One may apply mechanisms other than simply using the join/leave
protocols in order to obtain distraction of the newly assigned services from
the Jini community. In any case, they will impose some delay in servicing
the clients along with loading the lookup service with that additional pro-
tocol overhead.

τ(ρ) | γ=950.21 0.0082

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0.1 0.3 0.5 0.7 0.9

L0_A! (S=32)

L0_A! (S=24)

L0_A! (S=16)

L0_A! (S=8)

L0_A! (S=4)

L0_A! (S=2)

L0_!A (any S)

Figure 4. Mean time for assignment by differ-
ent system load.

Presumably the rate at which the lookup service (when
idle) performs join and leave operations is known - �. Con-
sidering lookup service as single server queuing system, we
have to define its arrival process which does not coincide
with the clients’ arrival process. In A! case the operation of
the lookup service is initiated by the services instead of by
the clients. Thus the lookup arrival process has rate ' such
that ' = 3S�� = 3S��=
 (from the queuing theory �� is
the rate of departure of serviced clients which correspond
to a new join process for the now idle service; this value is
multiplied by the number of services S and by the number
of lookup operations - join, leave and assign). The mean
time for assignment is � ('; �) and it incorporates all tree
protocol operations as they rise with the same frequency,
though in different moments.

Considering the protocol overhead of the delayed as-
signment, we calculated the time � spent in service-client
assignments for different system load � and fixed (fine to
moderate) system granularity
 = 95 (see Fig. 4). Here
we observe that the better performance of the delayed as-
signment schemes regarding T is countered by lesser sta-
bility regarding � . Indeed, the stability of the lookup pro-
cess by “standard” (i.e. early) assignment is confirmed by
the experimental results in [7]. This implies the probable
restrictions to the system scalability of the delayed assign-
ment protocols.

Another subject of interest in our case study is the im-
pact of the system granularity, which is presented here in
Fig 5. The results show that the delayed assignment is ap-
plicable for systems of medium and coarse granularity but
has questionable merits for fine granularity of the clients’
tasks. The missing points of the A! graphs correspond to
situations for which there isn’t a steady-state solution.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

τ(γ)0.014

ρ=

0.001

0.002

0.003

0.004

0.005

0.006

10 100 1000

fine coarse

L0_A! (S=16); 0.9

L0_A! (S=32); 0.33

L0_!A (any S); 0.9

L0_!A (any S); 0.33

Figure 5. Mean time for assignment by differ-
ent system granularity.

6. Conclusions

The Jini architecture is focused on putting the system
together by higher-level structuring and linking the clients
and system resources. The key QoS issues of the Jini tech-
nology are simplicity, reliability and spontaneity. This pa-
per suggests a set of schemes that would bring addition-
ally to the structure of Jini components the benefits of bet-
ter usage of the potentially available multiple resources in
the network. While a “standard” Jini program would em-
ploy an assignment scheme, which is practically an early
assignment without local system information (L0_!A), it
is still worth to consider other options such as delayed as-
signment or assignment based on some more details about
the dynamic load of the services in a federation.

Our case study demonstrates the advantages and limi-
tations that the delayed service assignment may have in a
Jini-based distributed processing system. Yet, it is merely
an example of how the presented assignment schemes can
be evaluated and what sort of results one should expect.
Obviously, it is only a fraction of work due to the per-
formance evaluation of distributed Jini applications. Fu-
ture research in this direction would include simulation and
benchmarking studies of the performance effect for differ-
ent information levels. The important cases of both early
and delayed assignments of a bulk arriving decomposed ap-
plication has also to be evaluated. We expect that extensive
implementation hints will emerge when the whole picture
of performance evaluation and applicability of the assign-
ment schemes is being completed. Indeed, such type of re-
sults can be used for the design of dynamically adjustable
service assignment schemes.

References

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lil-
ley. The design and implementation of an intentional nam-
ing system. Operating Systems Review, 34(5):186–201, De-
cember 1999.

[2] K. Arnold. The Jini architecture: Dynamic services in
a flexible network. In Proc. of 36th ACM/IEEE Design
Automation Conference, pages 157–162. ACM Press, June
1999.

[3] V. Georgiev and M. Iliev. Hybrid scheme for load balancing
in heterogeneous distributed systems. In Proc. of 11th Eu-
ropean Simulation Multiconference, pages 521–528. SCS,
June 1997.

[4] V. Getov, P. Gray, S. Mintchev, and V. Sunderam. Multi-
language programming environments for high-performance
Java computing. Scientific Programming, 7(2):139–146,
April 1999.

[5] R. v. Hanxleden and L. R. Scott. Load balancing on message
passing architectures. Journal of Parallel and Distributed
Computing, 13(3):312–324, November 1991.

[6] P. Hasselmeyer, M. Schumacher, and M. Voss. Pay as you
go - associating costs with Jini leases. In Proc. of 4th In-
ternational IEEE Conference on Enterprise Distributed Ob-
ject Computing (EDOC’2000), pages 48–57. IEEE Com-
puter Society, September 2000.

[7] M. Kahn and C. Cicalese. CoABS grid scalability ex-
periments. In Proc. of Second International Workshop on
Infrastructure for Agents, MAS, and Scalable MAS, May
2001.

[8] L. Kleinrock and R. Gail. Queueing Systems: Problems and
Solutions. John Wiley & Sons, New York, 1996.

[9] F. Kon, R. Campbell, M. Mickunas, K. Nahrstedt, and
F. Ballesteros. 2K: A distributed operating system for dy-
namic heterogeneous environments. In Proc. of 9th IEEE
International Symposium on High-performance Distributed
Computing, pages 201–208. IEEE Computer Society, Au-
gust 2000.

[10] H. Kuchen and A. Wagener. Comparison of
dynamic load balancing strategies. TR 90-05,
RWTH - Aachen, 1990. ftp://ftp.informatik.rwth-
aachen.de/pub/reports/1990/index.html.

[11] Q. Mahmoud. Using Jini for high-performance network
computing. In Proc. of IEEE International Conference
on Parallel Computing in Electrical Engineering (PAR-
ELEC’00), pages 244–247. IEEE Computer Society, August
2000.

[12] R. Mirchandaney, D. Towsley, and J. Stancovic. Adaptive
load sharing in heterogeneous distributed systems. Journal
of Parallel and Distributed Computing, 9(4):331–346, Au-
gust 1990.

[13] T. Schriber. An Introduction to Simulation Using GPSS/H.
John Wiley & Sons, New York, 1991.

[14] N. Shivaratri and P. Krueger. Adaptive location policies for
global scheduling. IEEE Transactions on Software Engi-
neering, 20(6):432–444, June 1994.

[15] J. Waldo. The Jini architecture for network-centric comput-
ing. Communications of the ACM, 42(7):76–82, July 1999.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

